• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License, version 2, as
6  * published by the Free Software Foundation.
7  */
8 
9 #define pr_fmt(fmt) "xive-kvm: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kvm_host.h>
13 #include <linux/err.h>
14 #include <linux/gfp.h>
15 #include <linux/spinlock.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/cpumask.h>
19 #include <asm/uaccess.h>
20 #include <asm/kvm_book3s.h>
21 #include <asm/kvm_ppc.h>
22 #include <asm/hvcall.h>
23 #include <asm/xics.h>
24 #include <asm/xive.h>
25 #include <asm/xive-regs.h>
26 #include <asm/debug.h>
27 #include <asm/debugfs.h>
28 #include <asm/time.h>
29 #include <asm/opal.h>
30 
31 #include <linux/debugfs.h>
32 #include <linux/seq_file.h>
33 
34 #include "book3s_xive.h"
35 
36 
37 /*
38  * Virtual mode variants of the hcalls for use on radix/radix
39  * with AIL. They require the VCPU's VP to be "pushed"
40  *
41  * We still instanciate them here because we use some of the
42  * generated utility functions as well in this file.
43  */
44 #define XIVE_RUNTIME_CHECKS
45 #define X_PFX xive_vm_
46 #define X_STATIC static
47 #define X_STAT_PFX stat_vm_
48 #define __x_tima		xive_tima
49 #define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
50 #define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
51 #define __x_writeb	__raw_writeb
52 #define __x_readw	__raw_readw
53 #define __x_readq	__raw_readq
54 #define __x_writeq	__raw_writeq
55 
56 #include "book3s_xive_template.c"
57 
58 /*
59  * We leave a gap of a couple of interrupts in the queue to
60  * account for the IPI and additional safety guard.
61  */
62 #define XIVE_Q_GAP	2
63 
64 /*
65  * This is a simple trigger for a generic XIVE IRQ. This must
66  * only be called for interrupts that support a trigger page
67  */
xive_irq_trigger(struct xive_irq_data * xd)68 static bool xive_irq_trigger(struct xive_irq_data *xd)
69 {
70 	/* This should be only for MSIs */
71 	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
72 		return false;
73 
74 	/* Those interrupts should always have a trigger page */
75 	if (WARN_ON(!xd->trig_mmio))
76 		return false;
77 
78 	out_be64(xd->trig_mmio, 0);
79 
80 	return true;
81 }
82 
xive_esc_irq(int irq,void * data)83 static irqreturn_t xive_esc_irq(int irq, void *data)
84 {
85 	struct kvm_vcpu *vcpu = data;
86 
87 	/* We use the existing H_PROD mechanism to wake up the target */
88 	vcpu->arch.prodded = 1;
89 	smp_mb();
90 	if (vcpu->arch.ceded)
91 		kvmppc_fast_vcpu_kick(vcpu);
92 
93 	return IRQ_HANDLED;
94 }
95 
xive_attach_escalation(struct kvm_vcpu * vcpu,u8 prio)96 static int xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio)
97 {
98 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
99 	struct xive_q *q = &xc->queues[prio];
100 	char *name = NULL;
101 	int rc;
102 
103 	/* Already there ? */
104 	if (xc->esc_virq[prio])
105 		return 0;
106 
107 	/* Hook up the escalation interrupt */
108 	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
109 	if (!xc->esc_virq[prio]) {
110 		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
111 		       prio, xc->server_num);
112 		return -EIO;
113 	}
114 
115 	/*
116 	 * Future improvement: start with them disabled
117 	 * and handle DD2 and later scheme of merged escalation
118 	 * interrupts
119 	 */
120 	name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
121 			 vcpu->kvm->arch.lpid, xc->server_num, prio);
122 	if (!name) {
123 		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
124 		       prio, xc->server_num);
125 		rc = -ENOMEM;
126 		goto error;
127 	}
128 	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
129 			 IRQF_NO_THREAD, name, vcpu);
130 	if (rc) {
131 		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
132 		       prio, xc->server_num);
133 		goto error;
134 	}
135 	xc->esc_virq_names[prio] = name;
136 	return 0;
137 error:
138 	irq_dispose_mapping(xc->esc_virq[prio]);
139 	xc->esc_virq[prio] = 0;
140 	kfree(name);
141 	return rc;
142 }
143 
xive_provision_queue(struct kvm_vcpu * vcpu,u8 prio)144 static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
145 {
146 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
147 	struct kvmppc_xive *xive = xc->xive;
148 	struct xive_q *q =  &xc->queues[prio];
149 	void *qpage;
150 	int rc;
151 
152 	if (WARN_ON(q->qpage))
153 		return 0;
154 
155 	/* Allocate the queue and retrieve infos on current node for now */
156 	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
157 	if (!qpage) {
158 		pr_err("Failed to allocate queue %d for VCPU %d\n",
159 		       prio, xc->server_num);
160 		return -ENOMEM;;
161 	}
162 	memset(qpage, 0, 1 << xive->q_order);
163 
164 	/*
165 	 * Reconfigure the queue. This will set q->qpage only once the
166 	 * queue is fully configured. This is a requirement for prio 0
167 	 * as we will stop doing EOIs for every IPI as soon as we observe
168 	 * qpage being non-NULL, and instead will only EOI when we receive
169 	 * corresponding queue 0 entries
170 	 */
171 	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
172 					 xive->q_order, true);
173 	if (rc)
174 		pr_err("Failed to configure queue %d for VCPU %d\n",
175 		       prio, xc->server_num);
176 	return rc;
177 }
178 
179 /* Called with kvm_lock held */
xive_check_provisioning(struct kvm * kvm,u8 prio)180 static int xive_check_provisioning(struct kvm *kvm, u8 prio)
181 {
182 	struct kvmppc_xive *xive = kvm->arch.xive;
183 	struct kvm_vcpu *vcpu;
184 	int i, rc;
185 
186 	lockdep_assert_held(&kvm->lock);
187 
188 	/* Already provisioned ? */
189 	if (xive->qmap & (1 << prio))
190 		return 0;
191 
192 	pr_devel("Provisioning prio... %d\n", prio);
193 
194 	/* Provision each VCPU and enable escalations */
195 	kvm_for_each_vcpu(i, vcpu, kvm) {
196 		if (!vcpu->arch.xive_vcpu)
197 			continue;
198 		rc = xive_provision_queue(vcpu, prio);
199 		if (rc == 0)
200 			xive_attach_escalation(vcpu, prio);
201 		if (rc)
202 			return rc;
203 	}
204 
205 	/* Order previous stores and mark it as provisioned */
206 	mb();
207 	xive->qmap |= (1 << prio);
208 	return 0;
209 }
210 
xive_inc_q_pending(struct kvm * kvm,u32 server,u8 prio)211 static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
212 {
213 	struct kvm_vcpu *vcpu;
214 	struct kvmppc_xive_vcpu *xc;
215 	struct xive_q *q;
216 
217 	/* Locate target server */
218 	vcpu = kvmppc_xive_find_server(kvm, server);
219 	if (!vcpu) {
220 		pr_warn("%s: Can't find server %d\n", __func__, server);
221 		return;
222 	}
223 	xc = vcpu->arch.xive_vcpu;
224 	if (WARN_ON(!xc))
225 		return;
226 
227 	q = &xc->queues[prio];
228 	atomic_inc(&q->pending_count);
229 }
230 
xive_try_pick_queue(struct kvm_vcpu * vcpu,u8 prio)231 static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
232 {
233 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
234 	struct xive_q *q;
235 	u32 max;
236 
237 	if (WARN_ON(!xc))
238 		return -ENXIO;
239 	if (!xc->valid)
240 		return -ENXIO;
241 
242 	q = &xc->queues[prio];
243 	if (WARN_ON(!q->qpage))
244 		return -ENXIO;
245 
246 	/* Calculate max number of interrupts in that queue. */
247 	max = (q->msk + 1) - XIVE_Q_GAP;
248 	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
249 }
250 
xive_select_target(struct kvm * kvm,u32 * server,u8 prio)251 static int xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
252 {
253 	struct kvm_vcpu *vcpu;
254 	int i, rc;
255 
256 	/* Locate target server */
257 	vcpu = kvmppc_xive_find_server(kvm, *server);
258 	if (!vcpu) {
259 		pr_devel("Can't find server %d\n", *server);
260 		return -EINVAL;
261 	}
262 
263 	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
264 
265 	/* Try pick it */
266 	rc = xive_try_pick_queue(vcpu, prio);
267 	if (rc == 0)
268 		return rc;
269 
270 	pr_devel(" .. failed, looking up candidate...\n");
271 
272 	/* Failed, pick another VCPU */
273 	kvm_for_each_vcpu(i, vcpu, kvm) {
274 		if (!vcpu->arch.xive_vcpu)
275 			continue;
276 		rc = xive_try_pick_queue(vcpu, prio);
277 		if (rc == 0) {
278 			*server = vcpu->arch.xive_vcpu->server_num;
279 			pr_devel("  found on 0x%x/%d\n", *server, prio);
280 			return rc;
281 		}
282 	}
283 	pr_devel("  no available target !\n");
284 
285 	/* No available target ! */
286 	return -EBUSY;
287 }
288 
xive_lock_and_mask(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,struct kvmppc_xive_irq_state * state)289 static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
290 			     struct kvmppc_xive_src_block *sb,
291 			     struct kvmppc_xive_irq_state *state)
292 {
293 	struct xive_irq_data *xd;
294 	u32 hw_num;
295 	u8 old_prio;
296 	u64 val;
297 
298 	/*
299 	 * Take the lock, set masked, try again if racing
300 	 * with H_EOI
301 	 */
302 	for (;;) {
303 		arch_spin_lock(&sb->lock);
304 		old_prio = state->guest_priority;
305 		state->guest_priority = MASKED;
306 		mb();
307 		if (!state->in_eoi)
308 			break;
309 		state->guest_priority = old_prio;
310 		arch_spin_unlock(&sb->lock);
311 	}
312 
313 	/* No change ? Bail */
314 	if (old_prio == MASKED)
315 		return old_prio;
316 
317 	/* Get the right irq */
318 	kvmppc_xive_select_irq(state, &hw_num, &xd);
319 
320 	/*
321 	 * If the interrupt is marked as needing masking via
322 	 * firmware, we do it here. Firmware masking however
323 	 * is "lossy", it won't return the old p and q bits
324 	 * and won't set the interrupt to a state where it will
325 	 * record queued ones. If this is an issue we should do
326 	 * lazy masking instead.
327 	 *
328 	 * For now, we work around this in unmask by forcing
329 	 * an interrupt whenever we unmask a non-LSI via FW
330 	 * (if ever).
331 	 */
332 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
333 		xive_native_configure_irq(hw_num,
334 					  xive->vp_base + state->act_server,
335 					  MASKED, state->number);
336 		/* set old_p so we can track if an H_EOI was done */
337 		state->old_p = true;
338 		state->old_q = false;
339 	} else {
340 		/* Set PQ to 10, return old P and old Q and remember them */
341 		val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
342 		state->old_p = !!(val & 2);
343 		state->old_q = !!(val & 1);
344 
345 		/*
346 		 * Synchronize hardware to sensure the queues are updated
347 		 * when masking
348 		 */
349 		xive_native_sync_source(hw_num);
350 	}
351 
352 	return old_prio;
353 }
354 
xive_lock_for_unmask(struct kvmppc_xive_src_block * sb,struct kvmppc_xive_irq_state * state)355 static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
356 				 struct kvmppc_xive_irq_state *state)
357 {
358 	/*
359 	 * Take the lock try again if racing with H_EOI
360 	 */
361 	for (;;) {
362 		arch_spin_lock(&sb->lock);
363 		if (!state->in_eoi)
364 			break;
365 		arch_spin_unlock(&sb->lock);
366 	}
367 }
368 
xive_finish_unmask(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,struct kvmppc_xive_irq_state * state,u8 prio)369 static void xive_finish_unmask(struct kvmppc_xive *xive,
370 			       struct kvmppc_xive_src_block *sb,
371 			       struct kvmppc_xive_irq_state *state,
372 			       u8 prio)
373 {
374 	struct xive_irq_data *xd;
375 	u32 hw_num;
376 
377 	/* If we aren't changing a thing, move on */
378 	if (state->guest_priority != MASKED)
379 		goto bail;
380 
381 	/* Get the right irq */
382 	kvmppc_xive_select_irq(state, &hw_num, &xd);
383 
384 	/*
385 	 * See command in xive_lock_and_mask() concerning masking
386 	 * via firmware.
387 	 */
388 	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
389 		xive_native_configure_irq(hw_num,
390 					  xive->vp_base + state->act_server,
391 					  state->act_priority, state->number);
392 		/* If an EOI is needed, do it here */
393 		if (!state->old_p)
394 			xive_vm_source_eoi(hw_num, xd);
395 		/* If this is not an LSI, force a trigger */
396 		if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
397 			xive_irq_trigger(xd);
398 		goto bail;
399 	}
400 
401 	/* Old Q set, set PQ to 11 */
402 	if (state->old_q)
403 		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
404 
405 	/*
406 	 * If not old P, then perform an "effective" EOI,
407 	 * on the source. This will handle the cases where
408 	 * FW EOI is needed.
409 	 */
410 	if (!state->old_p)
411 		xive_vm_source_eoi(hw_num, xd);
412 
413 	/* Synchronize ordering and mark unmasked */
414 	mb();
415 bail:
416 	state->guest_priority = prio;
417 }
418 
419 /*
420  * Target an interrupt to a given server/prio, this will fallback
421  * to another server if necessary and perform the HW targetting
422  * updates as needed
423  *
424  * NOTE: Must be called with the state lock held
425  */
xive_target_interrupt(struct kvm * kvm,struct kvmppc_xive_irq_state * state,u32 server,u8 prio)426 static int xive_target_interrupt(struct kvm *kvm,
427 				 struct kvmppc_xive_irq_state *state,
428 				 u32 server, u8 prio)
429 {
430 	struct kvmppc_xive *xive = kvm->arch.xive;
431 	u32 hw_num;
432 	int rc;
433 
434 	/*
435 	 * This will return a tentative server and actual
436 	 * priority. The count for that new target will have
437 	 * already been incremented.
438 	 */
439 	rc = xive_select_target(kvm, &server, prio);
440 
441 	/*
442 	 * We failed to find a target ? Not much we can do
443 	 * at least until we support the GIQ.
444 	 */
445 	if (rc)
446 		return rc;
447 
448 	/*
449 	 * Increment the old queue pending count if there
450 	 * was one so that the old queue count gets adjusted later
451 	 * when observed to be empty.
452 	 */
453 	if (state->act_priority != MASKED)
454 		xive_inc_q_pending(kvm,
455 				   state->act_server,
456 				   state->act_priority);
457 	/*
458 	 * Update state and HW
459 	 */
460 	state->act_priority = prio;
461 	state->act_server = server;
462 
463 	/* Get the right irq */
464 	kvmppc_xive_select_irq(state, &hw_num, NULL);
465 
466 	return xive_native_configure_irq(hw_num,
467 					 xive->vp_base + server,
468 					 prio, state->number);
469 }
470 
471 /*
472  * Targetting rules: In order to avoid losing track of
473  * pending interrupts accross mask and unmask, which would
474  * allow queue overflows, we implement the following rules:
475  *
476  *  - Unless it was never enabled (or we run out of capacity)
477  *    an interrupt is always targetted at a valid server/queue
478  *    pair even when "masked" by the guest. This pair tends to
479  *    be the last one used but it can be changed under some
480  *    circumstances. That allows us to separate targetting
481  *    from masking, we only handle accounting during (re)targetting,
482  *    this also allows us to let an interrupt drain into its target
483  *    queue after masking, avoiding complex schemes to remove
484  *    interrupts out of remote processor queues.
485  *
486  *  - When masking, we set PQ to 10 and save the previous value
487  *    of P and Q.
488  *
489  *  - When unmasking, if saved Q was set, we set PQ to 11
490  *    otherwise we leave PQ to the HW state which will be either
491  *    10 if nothing happened or 11 if the interrupt fired while
492  *    masked. Effectively we are OR'ing the previous Q into the
493  *    HW Q.
494  *
495  *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
496  *    which will unmask the interrupt and shoot a new one if Q was
497  *    set.
498  *
499  *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
500  *    effectively meaning an H_EOI from the guest is still expected
501  *    for that interrupt).
502  *
503  *  - If H_EOI occurs while masked, we clear the saved P.
504  *
505  *  - When changing target, we account on the new target and
506  *    increment a separate "pending" counter on the old one.
507  *    This pending counter will be used to decrement the old
508  *    target's count when its queue has been observed empty.
509  */
510 
kvmppc_xive_set_xive(struct kvm * kvm,u32 irq,u32 server,u32 priority)511 int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
512 			 u32 priority)
513 {
514 	struct kvmppc_xive *xive = kvm->arch.xive;
515 	struct kvmppc_xive_src_block *sb;
516 	struct kvmppc_xive_irq_state *state;
517 	u8 new_act_prio;
518 	int rc = 0;
519 	u16 idx;
520 
521 	if (!xive)
522 		return -ENODEV;
523 
524 	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
525 		 irq, server, priority);
526 
527 	/* First, check provisioning of queues */
528 	if (priority != MASKED)
529 		rc = xive_check_provisioning(xive->kvm,
530 			      xive_prio_from_guest(priority));
531 	if (rc) {
532 		pr_devel("  provisioning failure %d !\n", rc);
533 		return rc;
534 	}
535 
536 	sb = kvmppc_xive_find_source(xive, irq, &idx);
537 	if (!sb)
538 		return -EINVAL;
539 	state = &sb->irq_state[idx];
540 
541 	/*
542 	 * We first handle masking/unmasking since the locking
543 	 * might need to be retried due to EOIs, we'll handle
544 	 * targetting changes later. These functions will return
545 	 * with the SB lock held.
546 	 *
547 	 * xive_lock_and_mask() will also set state->guest_priority
548 	 * but won't otherwise change other fields of the state.
549 	 *
550 	 * xive_lock_for_unmask will not actually unmask, this will
551 	 * be done later by xive_finish_unmask() once the targetting
552 	 * has been done, so we don't try to unmask an interrupt
553 	 * that hasn't yet been targetted.
554 	 */
555 	if (priority == MASKED)
556 		xive_lock_and_mask(xive, sb, state);
557 	else
558 		xive_lock_for_unmask(sb, state);
559 
560 
561 	/*
562 	 * Then we handle targetting.
563 	 *
564 	 * First calculate a new "actual priority"
565 	 */
566 	new_act_prio = state->act_priority;
567 	if (priority != MASKED)
568 		new_act_prio = xive_prio_from_guest(priority);
569 
570 	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
571 		 new_act_prio, state->act_server, state->act_priority);
572 
573 	/*
574 	 * Then check if we actually need to change anything,
575 	 *
576 	 * The condition for re-targetting the interrupt is that
577 	 * we have a valid new priority (new_act_prio is not 0xff)
578 	 * and either the server or the priority changed.
579 	 *
580 	 * Note: If act_priority was ff and the new priority is
581 	 *       also ff, we don't do anything and leave the interrupt
582 	 *       untargetted. An attempt of doing an int_on on an
583 	 *       untargetted interrupt will fail. If that is a problem
584 	 *       we could initialize interrupts with valid default
585 	 */
586 
587 	if (new_act_prio != MASKED &&
588 	    (state->act_server != server ||
589 	     state->act_priority != new_act_prio))
590 		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
591 
592 	/*
593 	 * Perform the final unmasking of the interrupt source
594 	 * if necessary
595 	 */
596 	if (priority != MASKED)
597 		xive_finish_unmask(xive, sb, state, priority);
598 
599 	/*
600 	 * Finally Update saved_priority to match. Only int_on/off
601 	 * set this field to a different value.
602 	 */
603 	state->saved_priority = priority;
604 
605 	arch_spin_unlock(&sb->lock);
606 	return rc;
607 }
608 
kvmppc_xive_get_xive(struct kvm * kvm,u32 irq,u32 * server,u32 * priority)609 int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
610 			 u32 *priority)
611 {
612 	struct kvmppc_xive *xive = kvm->arch.xive;
613 	struct kvmppc_xive_src_block *sb;
614 	struct kvmppc_xive_irq_state *state;
615 	u16 idx;
616 
617 	if (!xive)
618 		return -ENODEV;
619 
620 	sb = kvmppc_xive_find_source(xive, irq, &idx);
621 	if (!sb)
622 		return -EINVAL;
623 	state = &sb->irq_state[idx];
624 	arch_spin_lock(&sb->lock);
625 	*server = state->act_server;
626 	*priority = state->guest_priority;
627 	arch_spin_unlock(&sb->lock);
628 
629 	return 0;
630 }
631 
kvmppc_xive_int_on(struct kvm * kvm,u32 irq)632 int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
633 {
634 	struct kvmppc_xive *xive = kvm->arch.xive;
635 	struct kvmppc_xive_src_block *sb;
636 	struct kvmppc_xive_irq_state *state;
637 	u16 idx;
638 
639 	if (!xive)
640 		return -ENODEV;
641 
642 	sb = kvmppc_xive_find_source(xive, irq, &idx);
643 	if (!sb)
644 		return -EINVAL;
645 	state = &sb->irq_state[idx];
646 
647 	pr_devel("int_on(irq=0x%x)\n", irq);
648 
649 	/*
650 	 * Check if interrupt was not targetted
651 	 */
652 	if (state->act_priority == MASKED) {
653 		pr_devel("int_on on untargetted interrupt\n");
654 		return -EINVAL;
655 	}
656 
657 	/* If saved_priority is 0xff, do nothing */
658 	if (state->saved_priority == MASKED)
659 		return 0;
660 
661 	/*
662 	 * Lock and unmask it.
663 	 */
664 	xive_lock_for_unmask(sb, state);
665 	xive_finish_unmask(xive, sb, state, state->saved_priority);
666 	arch_spin_unlock(&sb->lock);
667 
668 	return 0;
669 }
670 
kvmppc_xive_int_off(struct kvm * kvm,u32 irq)671 int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
672 {
673 	struct kvmppc_xive *xive = kvm->arch.xive;
674 	struct kvmppc_xive_src_block *sb;
675 	struct kvmppc_xive_irq_state *state;
676 	u16 idx;
677 
678 	if (!xive)
679 		return -ENODEV;
680 
681 	sb = kvmppc_xive_find_source(xive, irq, &idx);
682 	if (!sb)
683 		return -EINVAL;
684 	state = &sb->irq_state[idx];
685 
686 	pr_devel("int_off(irq=0x%x)\n", irq);
687 
688 	/*
689 	 * Lock and mask
690 	 */
691 	state->saved_priority = xive_lock_and_mask(xive, sb, state);
692 	arch_spin_unlock(&sb->lock);
693 
694 	return 0;
695 }
696 
xive_restore_pending_irq(struct kvmppc_xive * xive,u32 irq)697 static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
698 {
699 	struct kvmppc_xive_src_block *sb;
700 	struct kvmppc_xive_irq_state *state;
701 	u16 idx;
702 
703 	sb = kvmppc_xive_find_source(xive, irq, &idx);
704 	if (!sb)
705 		return false;
706 	state = &sb->irq_state[idx];
707 	if (!state->valid)
708 		return false;
709 
710 	/*
711 	 * Trigger the IPI. This assumes we never restore a pass-through
712 	 * interrupt which should be safe enough
713 	 */
714 	xive_irq_trigger(&state->ipi_data);
715 
716 	return true;
717 }
718 
kvmppc_xive_get_icp(struct kvm_vcpu * vcpu)719 u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
720 {
721 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
722 
723 	if (!xc)
724 		return 0;
725 
726 	/* Return the per-cpu state for state saving/migration */
727 	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
728 	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
729 	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
730 }
731 
kvmppc_xive_set_icp(struct kvm_vcpu * vcpu,u64 icpval)732 int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
733 {
734 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
735 	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
736 	u8 cppr, mfrr;
737 	u32 xisr;
738 
739 	if (!xc || !xive)
740 		return -ENOENT;
741 
742 	/* Grab individual state fields. We don't use pending_pri */
743 	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
744 	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
745 		KVM_REG_PPC_ICP_XISR_MASK;
746 	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
747 
748 	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
749 		 xc->server_num, cppr, mfrr, xisr);
750 
751 	/*
752 	 * We can't update the state of a "pushed" VCPU, but that
753 	 * shouldn't happen.
754 	 */
755 	if (WARN_ON(vcpu->arch.xive_pushed))
756 		return -EIO;
757 
758 	/* Update VCPU HW saved state */
759 	vcpu->arch.xive_saved_state.cppr = cppr;
760 	xc->hw_cppr = xc->cppr = cppr;
761 
762 	/*
763 	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
764 	 * having a pending MFRR change, which will re-evaluate the
765 	 * target. The VCPU will thus potentially get a spurious
766 	 * interrupt but that's not a big deal.
767 	 */
768 	xc->mfrr = mfrr;
769 	if (mfrr < cppr)
770 		xive_irq_trigger(&xc->vp_ipi_data);
771 
772 	/*
773 	 * Now saved XIRR is "interesting". It means there's something in
774 	 * the legacy "1 element" queue... for an IPI we simply ignore it,
775 	 * as the MFRR restore will handle that. For anything else we need
776 	 * to force a resend of the source.
777 	 * However the source may not have been setup yet. If that's the
778 	 * case, we keep that info and increment a counter in the xive to
779 	 * tell subsequent xive_set_source() to go look.
780 	 */
781 	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
782 		xc->delayed_irq = xisr;
783 		xive->delayed_irqs++;
784 		pr_devel("  xisr restore delayed\n");
785 	}
786 
787 	return 0;
788 }
789 
kvmppc_xive_set_mapped(struct kvm * kvm,unsigned long guest_irq,struct irq_desc * host_desc)790 int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
791 			   struct irq_desc *host_desc)
792 {
793 	struct kvmppc_xive *xive = kvm->arch.xive;
794 	struct kvmppc_xive_src_block *sb;
795 	struct kvmppc_xive_irq_state *state;
796 	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
797 	unsigned int host_irq = irq_desc_get_irq(host_desc);
798 	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
799 	u16 idx;
800 	u8 prio;
801 	int rc;
802 
803 	if (!xive)
804 		return -ENODEV;
805 
806 	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
807 
808 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
809 	if (!sb)
810 		return -EINVAL;
811 	state = &sb->irq_state[idx];
812 
813 	/*
814 	 * Mark the passed-through interrupt as going to a VCPU,
815 	 * this will prevent further EOIs and similar operations
816 	 * from the XIVE code. It will also mask the interrupt
817 	 * to either PQ=10 or 11 state, the latter if the interrupt
818 	 * is pending. This will allow us to unmask or retrigger it
819 	 * after routing it to the guest with a simple EOI.
820 	 *
821 	 * The "state" argument is a "token", all it needs is to be
822 	 * non-NULL to switch to passed-through or NULL for the
823 	 * other way around. We may not yet have an actual VCPU
824 	 * target here and we don't really care.
825 	 */
826 	rc = irq_set_vcpu_affinity(host_irq, state);
827 	if (rc) {
828 		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
829 		return rc;
830 	}
831 
832 	/*
833 	 * Mask and read state of IPI. We need to know if its P bit
834 	 * is set as that means it's potentially already using a
835 	 * queue entry in the target
836 	 */
837 	prio = xive_lock_and_mask(xive, sb, state);
838 	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
839 		 state->old_p, state->old_q);
840 
841 	/* Turn the IPI hard off */
842 	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
843 
844 	/* Grab info about irq */
845 	state->pt_number = hw_irq;
846 	state->pt_data = irq_data_get_irq_handler_data(host_data);
847 
848 	/*
849 	 * Configure the IRQ to match the existing configuration of
850 	 * the IPI if it was already targetted. Otherwise this will
851 	 * mask the interrupt in a lossy way (act_priority is 0xff)
852 	 * which is fine for a never started interrupt.
853 	 */
854 	xive_native_configure_irq(hw_irq,
855 				  xive->vp_base + state->act_server,
856 				  state->act_priority, state->number);
857 
858 	/*
859 	 * We do an EOI to enable the interrupt (and retrigger if needed)
860 	 * if the guest has the interrupt unmasked and the P bit was *not*
861 	 * set in the IPI. If it was set, we know a slot may still be in
862 	 * use in the target queue thus we have to wait for a guest
863 	 * originated EOI
864 	 */
865 	if (prio != MASKED && !state->old_p)
866 		xive_vm_source_eoi(hw_irq, state->pt_data);
867 
868 	/* Clear old_p/old_q as they are no longer relevant */
869 	state->old_p = state->old_q = false;
870 
871 	/* Restore guest prio (unlocks EOI) */
872 	mb();
873 	state->guest_priority = prio;
874 	arch_spin_unlock(&sb->lock);
875 
876 	return 0;
877 }
878 EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
879 
kvmppc_xive_clr_mapped(struct kvm * kvm,unsigned long guest_irq,struct irq_desc * host_desc)880 int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
881 			   struct irq_desc *host_desc)
882 {
883 	struct kvmppc_xive *xive = kvm->arch.xive;
884 	struct kvmppc_xive_src_block *sb;
885 	struct kvmppc_xive_irq_state *state;
886 	unsigned int host_irq = irq_desc_get_irq(host_desc);
887 	u16 idx;
888 	u8 prio;
889 	int rc;
890 
891 	if (!xive)
892 		return -ENODEV;
893 
894 	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
895 
896 	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
897 	if (!sb)
898 		return -EINVAL;
899 	state = &sb->irq_state[idx];
900 
901 	/*
902 	 * Mask and read state of IRQ. We need to know if its P bit
903 	 * is set as that means it's potentially already using a
904 	 * queue entry in the target
905 	 */
906 	prio = xive_lock_and_mask(xive, sb, state);
907 	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
908 		 state->old_p, state->old_q);
909 
910 	/*
911 	 * If old_p is set, the interrupt is pending, we switch it to
912 	 * PQ=11. This will force a resend in the host so the interrupt
913 	 * isn't lost to whatver host driver may pick it up
914 	 */
915 	if (state->old_p)
916 		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
917 
918 	/* Release the passed-through interrupt to the host */
919 	rc = irq_set_vcpu_affinity(host_irq, NULL);
920 	if (rc) {
921 		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
922 		return rc;
923 	}
924 
925 	/* Forget about the IRQ */
926 	state->pt_number = 0;
927 	state->pt_data = NULL;
928 
929 	/* Reconfigure the IPI */
930 	xive_native_configure_irq(state->ipi_number,
931 				  xive->vp_base + state->act_server,
932 				  state->act_priority, state->number);
933 
934 	/*
935 	 * If old_p is set (we have a queue entry potentially
936 	 * occupied) or the interrupt is masked, we set the IPI
937 	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
938 	 */
939 	if (prio == MASKED || state->old_p)
940 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
941 	else
942 		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
943 
944 	/* Restore guest prio (unlocks EOI) */
945 	mb();
946 	state->guest_priority = prio;
947 	arch_spin_unlock(&sb->lock);
948 
949 	return 0;
950 }
951 EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
952 
kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu * vcpu)953 static void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
954 {
955 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
956 	struct kvm *kvm = vcpu->kvm;
957 	struct kvmppc_xive *xive = kvm->arch.xive;
958 	int i, j;
959 
960 	for (i = 0; i <= xive->max_sbid; i++) {
961 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
962 
963 		if (!sb)
964 			continue;
965 		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
966 			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
967 
968 			if (!state->valid)
969 				continue;
970 			if (state->act_priority == MASKED)
971 				continue;
972 			if (state->act_server != xc->server_num)
973 				continue;
974 
975 			/* Clean it up */
976 			arch_spin_lock(&sb->lock);
977 			state->act_priority = MASKED;
978 			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
979 			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
980 			if (state->pt_number) {
981 				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
982 				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
983 			}
984 			arch_spin_unlock(&sb->lock);
985 		}
986 	}
987 }
988 
kvmppc_xive_cleanup_vcpu(struct kvm_vcpu * vcpu)989 void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
990 {
991 	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
992 	struct kvmppc_xive *xive = xc->xive;
993 	int i;
994 
995 	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
996 
997 	/* Ensure no interrupt is still routed to that VP */
998 	xc->valid = false;
999 	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1000 
1001 	/* Mask the VP IPI */
1002 	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1003 
1004 	/* Free escalations */
1005 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1006 		if (xc->esc_virq[i]) {
1007 			free_irq(xc->esc_virq[i], vcpu);
1008 			irq_dispose_mapping(xc->esc_virq[i]);
1009 			kfree(xc->esc_virq_names[i]);
1010 		}
1011 	}
1012 
1013 	/* Disable the VP */
1014 	xive_native_disable_vp(xc->vp_id);
1015 
1016 	/* Free the queues */
1017 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1018 		struct xive_q *q = &xc->queues[i];
1019 
1020 		xive_native_disable_queue(xc->vp_id, q, i);
1021 		if (q->qpage) {
1022 			free_pages((unsigned long)q->qpage,
1023 				   xive->q_page_order);
1024 			q->qpage = NULL;
1025 		}
1026 	}
1027 
1028 	/* Free the IPI */
1029 	if (xc->vp_ipi) {
1030 		xive_cleanup_irq_data(&xc->vp_ipi_data);
1031 		xive_native_free_irq(xc->vp_ipi);
1032 	}
1033 	/* Free the VP */
1034 	kfree(xc);
1035 }
1036 
kvmppc_xive_connect_vcpu(struct kvm_device * dev,struct kvm_vcpu * vcpu,u32 cpu)1037 int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1038 			     struct kvm_vcpu *vcpu, u32 cpu)
1039 {
1040 	struct kvmppc_xive *xive = dev->private;
1041 	struct kvmppc_xive_vcpu *xc;
1042 	int i, r = -EBUSY;
1043 
1044 	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1045 
1046 	if (dev->ops != &kvm_xive_ops) {
1047 		pr_devel("Wrong ops !\n");
1048 		return -EPERM;
1049 	}
1050 	if (xive->kvm != vcpu->kvm)
1051 		return -EPERM;
1052 	if (vcpu->arch.irq_type)
1053 		return -EBUSY;
1054 	if (kvmppc_xive_find_server(vcpu->kvm, cpu)) {
1055 		pr_devel("Duplicate !\n");
1056 		return -EEXIST;
1057 	}
1058 	if (cpu >= KVM_MAX_VCPUS) {
1059 		pr_devel("Out of bounds !\n");
1060 		return -EINVAL;
1061 	}
1062 	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1063 	if (!xc)
1064 		return -ENOMEM;
1065 
1066 	/* We need to synchronize with queue provisioning */
1067 	mutex_lock(&vcpu->kvm->lock);
1068 	vcpu->arch.xive_vcpu = xc;
1069 	xc->xive = xive;
1070 	xc->vcpu = vcpu;
1071 	xc->server_num = cpu;
1072 	xc->vp_id = xive->vp_base + cpu;
1073 	xc->mfrr = 0xff;
1074 	xc->valid = true;
1075 
1076 	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1077 	if (r)
1078 		goto bail;
1079 
1080 	/* Configure VCPU fields for use by assembly push/pull */
1081 	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1082 	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1083 
1084 	/* Allocate IPI */
1085 	xc->vp_ipi = xive_native_alloc_irq();
1086 	if (!xc->vp_ipi) {
1087 		r = -EIO;
1088 		goto bail;
1089 	}
1090 	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1091 
1092 	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1093 	if (r)
1094 		goto bail;
1095 
1096 	/*
1097 	 * Initialize queues. Initially we set them all for no queueing
1098 	 * and we enable escalation for queue 0 only which we'll use for
1099 	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1100 	 * do handle provisioning however.
1101 	 */
1102 	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1103 		struct xive_q *q = &xc->queues[i];
1104 
1105 		/* Is queue already enabled ? Provision it */
1106 		if (xive->qmap & (1 << i)) {
1107 			r = xive_provision_queue(vcpu, i);
1108 			if (r == 0)
1109 				xive_attach_escalation(vcpu, i);
1110 			if (r)
1111 				goto bail;
1112 		} else {
1113 			r = xive_native_configure_queue(xc->vp_id,
1114 							q, i, NULL, 0, true);
1115 			if (r) {
1116 				pr_err("Failed to configure queue %d for VCPU %d\n",
1117 				       i, cpu);
1118 				goto bail;
1119 			}
1120 		}
1121 	}
1122 
1123 	/* If not done above, attach priority 0 escalation */
1124 	r = xive_attach_escalation(vcpu, 0);
1125 	if (r)
1126 		goto bail;
1127 
1128 	/* Enable the VP */
1129 	r = xive_native_enable_vp(xc->vp_id);
1130 	if (r)
1131 		goto bail;
1132 
1133 	/* Route the IPI */
1134 	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1135 	if (!r)
1136 		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1137 
1138 bail:
1139 	mutex_unlock(&vcpu->kvm->lock);
1140 	if (r) {
1141 		kvmppc_xive_cleanup_vcpu(vcpu);
1142 		return r;
1143 	}
1144 
1145 	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1146 	return 0;
1147 }
1148 
1149 /*
1150  * Scanning of queues before/after migration save
1151  */
xive_pre_save_set_queued(struct kvmppc_xive * xive,u32 irq)1152 static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1153 {
1154 	struct kvmppc_xive_src_block *sb;
1155 	struct kvmppc_xive_irq_state *state;
1156 	u16 idx;
1157 
1158 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1159 	if (!sb)
1160 		return;
1161 
1162 	state = &sb->irq_state[idx];
1163 
1164 	/* Some sanity checking */
1165 	if (!state->valid) {
1166 		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1167 		return;
1168 	}
1169 
1170 	/*
1171 	 * If the interrupt is in a queue it should have P set.
1172 	 * We warn so that gets reported. A backtrace isn't useful
1173 	 * so no need to use a WARN_ON.
1174 	 */
1175 	if (!state->saved_p)
1176 		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1177 
1178 	/* Set flag */
1179 	state->in_queue = true;
1180 }
1181 
xive_pre_save_mask_irq(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,u32 irq)1182 static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1183 				   struct kvmppc_xive_src_block *sb,
1184 				   u32 irq)
1185 {
1186 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1187 
1188 	if (!state->valid)
1189 		return;
1190 
1191 	/* Mask and save state, this will also sync HW queues */
1192 	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1193 
1194 	/* Transfer P and Q */
1195 	state->saved_p = state->old_p;
1196 	state->saved_q = state->old_q;
1197 
1198 	/* Unlock */
1199 	arch_spin_unlock(&sb->lock);
1200 }
1201 
xive_pre_save_unmask_irq(struct kvmppc_xive * xive,struct kvmppc_xive_src_block * sb,u32 irq)1202 static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1203 				     struct kvmppc_xive_src_block *sb,
1204 				     u32 irq)
1205 {
1206 	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1207 
1208 	if (!state->valid)
1209 		return;
1210 
1211 	/*
1212 	 * Lock / exclude EOI (not technically necessary if the
1213 	 * guest isn't running concurrently. If this becomes a
1214 	 * performance issue we can probably remove the lock.
1215 	 */
1216 	xive_lock_for_unmask(sb, state);
1217 
1218 	/* Restore mask/prio if it wasn't masked */
1219 	if (state->saved_scan_prio != MASKED)
1220 		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1221 
1222 	/* Unlock */
1223 	arch_spin_unlock(&sb->lock);
1224 }
1225 
xive_pre_save_queue(struct kvmppc_xive * xive,struct xive_q * q)1226 static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1227 {
1228 	u32 idx = q->idx;
1229 	u32 toggle = q->toggle;
1230 	u32 irq;
1231 
1232 	do {
1233 		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1234 		if (irq > XICS_IPI)
1235 			xive_pre_save_set_queued(xive, irq);
1236 	} while(irq);
1237 }
1238 
xive_pre_save_scan(struct kvmppc_xive * xive)1239 static void xive_pre_save_scan(struct kvmppc_xive *xive)
1240 {
1241 	struct kvm_vcpu *vcpu = NULL;
1242 	int i, j;
1243 
1244 	/*
1245 	 * See comment in xive_get_source() about how this
1246 	 * work. Collect a stable state for all interrupts
1247 	 */
1248 	for (i = 0; i <= xive->max_sbid; i++) {
1249 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1250 		if (!sb)
1251 			continue;
1252 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1253 			xive_pre_save_mask_irq(xive, sb, j);
1254 	}
1255 
1256 	/* Then scan the queues and update the "in_queue" flag */
1257 	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1258 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1259 		if (!xc)
1260 			continue;
1261 		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1262 			if (xc->queues[j].qpage)
1263 				xive_pre_save_queue(xive, &xc->queues[j]);
1264 		}
1265 	}
1266 
1267 	/* Finally restore interrupt states */
1268 	for (i = 0; i <= xive->max_sbid; i++) {
1269 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1270 		if (!sb)
1271 			continue;
1272 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1273 			xive_pre_save_unmask_irq(xive, sb, j);
1274 	}
1275 }
1276 
xive_post_save_scan(struct kvmppc_xive * xive)1277 static void xive_post_save_scan(struct kvmppc_xive *xive)
1278 {
1279 	u32 i, j;
1280 
1281 	/* Clear all the in_queue flags */
1282 	for (i = 0; i <= xive->max_sbid; i++) {
1283 		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1284 		if (!sb)
1285 			continue;
1286 		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1287 			sb->irq_state[j].in_queue = false;
1288 	}
1289 
1290 	/* Next get_source() will do a new scan */
1291 	xive->saved_src_count = 0;
1292 }
1293 
1294 /*
1295  * This returns the source configuration and state to user space.
1296  */
xive_get_source(struct kvmppc_xive * xive,long irq,u64 addr)1297 static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1298 {
1299 	struct kvmppc_xive_src_block *sb;
1300 	struct kvmppc_xive_irq_state *state;
1301 	u64 __user *ubufp = (u64 __user *) addr;
1302 	u64 val, prio;
1303 	u16 idx;
1304 
1305 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1306 	if (!sb)
1307 		return -ENOENT;
1308 
1309 	state = &sb->irq_state[idx];
1310 
1311 	if (!state->valid)
1312 		return -ENOENT;
1313 
1314 	pr_devel("get_source(%ld)...\n", irq);
1315 
1316 	/*
1317 	 * So to properly save the state into something that looks like a
1318 	 * XICS migration stream we cannot treat interrupts individually.
1319 	 *
1320 	 * We need, instead, mask them all (& save their previous PQ state)
1321 	 * to get a stable state in the HW, then sync them to ensure that
1322 	 * any interrupt that had already fired hits its queue, and finally
1323 	 * scan all the queues to collect which interrupts are still present
1324 	 * in the queues, so we can set the "pending" flag on them and
1325 	 * they can be resent on restore.
1326 	 *
1327 	 * So we do it all when the "first" interrupt gets saved, all the
1328 	 * state is collected at that point, the rest of xive_get_source()
1329 	 * will merely collect and convert that state to the expected
1330 	 * userspace bit mask.
1331 	 */
1332 	if (xive->saved_src_count == 0)
1333 		xive_pre_save_scan(xive);
1334 	xive->saved_src_count++;
1335 
1336 	/* Convert saved state into something compatible with xics */
1337 	val = state->act_server;
1338 	prio = state->saved_scan_prio;
1339 
1340 	if (prio == MASKED) {
1341 		val |= KVM_XICS_MASKED;
1342 		prio = state->saved_priority;
1343 	}
1344 	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1345 	if (state->lsi) {
1346 		val |= KVM_XICS_LEVEL_SENSITIVE;
1347 		if (state->saved_p)
1348 			val |= KVM_XICS_PENDING;
1349 	} else {
1350 		if (state->saved_p)
1351 			val |= KVM_XICS_PRESENTED;
1352 
1353 		if (state->saved_q)
1354 			val |= KVM_XICS_QUEUED;
1355 
1356 		/*
1357 		 * We mark it pending (which will attempt a re-delivery)
1358 		 * if we are in a queue *or* we were masked and had
1359 		 * Q set which is equivalent to the XICS "masked pending"
1360 		 * state
1361 		 */
1362 		if (state->in_queue || (prio == MASKED && state->saved_q))
1363 			val |= KVM_XICS_PENDING;
1364 	}
1365 
1366 	/*
1367 	 * If that was the last interrupt saved, reset the
1368 	 * in_queue flags
1369 	 */
1370 	if (xive->saved_src_count == xive->src_count)
1371 		xive_post_save_scan(xive);
1372 
1373 	/* Copy the result to userspace */
1374 	if (put_user(val, ubufp))
1375 		return -EFAULT;
1376 
1377 	return 0;
1378 }
1379 
xive_create_src_block(struct kvmppc_xive * xive,int irq)1380 static struct kvmppc_xive_src_block *xive_create_src_block(struct kvmppc_xive *xive,
1381 							   int irq)
1382 {
1383 	struct kvm *kvm = xive->kvm;
1384 	struct kvmppc_xive_src_block *sb;
1385 	int i, bid;
1386 
1387 	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1388 
1389 	mutex_lock(&kvm->lock);
1390 
1391 	/* block already exists - somebody else got here first */
1392 	if (xive->src_blocks[bid])
1393 		goto out;
1394 
1395 	/* Create the ICS */
1396 	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1397 	if (!sb)
1398 		goto out;
1399 
1400 	sb->id = bid;
1401 
1402 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1403 		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1404 		sb->irq_state[i].guest_priority = MASKED;
1405 		sb->irq_state[i].saved_priority = MASKED;
1406 		sb->irq_state[i].act_priority = MASKED;
1407 	}
1408 	smp_wmb();
1409 	xive->src_blocks[bid] = sb;
1410 
1411 	if (bid > xive->max_sbid)
1412 		xive->max_sbid = bid;
1413 
1414 out:
1415 	mutex_unlock(&kvm->lock);
1416 	return xive->src_blocks[bid];
1417 }
1418 
xive_check_delayed_irq(struct kvmppc_xive * xive,u32 irq)1419 static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1420 {
1421 	struct kvm *kvm = xive->kvm;
1422 	struct kvm_vcpu *vcpu = NULL;
1423 	int i;
1424 
1425 	kvm_for_each_vcpu(i, vcpu, kvm) {
1426 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1427 
1428 		if (!xc)
1429 			continue;
1430 
1431 		if (xc->delayed_irq == irq) {
1432 			xc->delayed_irq = 0;
1433 			xive->delayed_irqs--;
1434 			return true;
1435 		}
1436 	}
1437 	return false;
1438 }
1439 
xive_set_source(struct kvmppc_xive * xive,long irq,u64 addr)1440 static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1441 {
1442 	struct kvmppc_xive_src_block *sb;
1443 	struct kvmppc_xive_irq_state *state;
1444 	u64 __user *ubufp = (u64 __user *) addr;
1445 	u16 idx;
1446 	u64 val;
1447 	u8 act_prio, guest_prio;
1448 	u32 server;
1449 	int rc = 0;
1450 
1451 	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1452 		return -ENOENT;
1453 
1454 	pr_devel("set_source(irq=0x%lx)\n", irq);
1455 
1456 	/* Find the source */
1457 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1458 	if (!sb) {
1459 		pr_devel("No source, creating source block...\n");
1460 		sb = xive_create_src_block(xive, irq);
1461 		if (!sb) {
1462 			pr_devel("Failed to create block...\n");
1463 			return -ENOMEM;
1464 		}
1465 	}
1466 	state = &sb->irq_state[idx];
1467 
1468 	/* Read user passed data */
1469 	if (get_user(val, ubufp)) {
1470 		pr_devel("fault getting user info !\n");
1471 		return -EFAULT;
1472 	}
1473 
1474 	server = val & KVM_XICS_DESTINATION_MASK;
1475 	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1476 
1477 	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1478 		 val, server, guest_prio);
1479 	/*
1480 	 * If the source doesn't already have an IPI, allocate
1481 	 * one and get the corresponding data
1482 	 */
1483 	if (!state->ipi_number) {
1484 		state->ipi_number = xive_native_alloc_irq();
1485 		if (state->ipi_number == 0) {
1486 			pr_devel("Failed to allocate IPI !\n");
1487 			return -ENOMEM;
1488 		}
1489 		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1490 		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1491 	}
1492 
1493 	/*
1494 	 * We use lock_and_mask() to set us in the right masked
1495 	 * state. We will override that state from the saved state
1496 	 * further down, but this will handle the cases of interrupts
1497 	 * that need FW masking. We set the initial guest_priority to
1498 	 * 0 before calling it to ensure it actually performs the masking.
1499 	 */
1500 	state->guest_priority = 0;
1501 	xive_lock_and_mask(xive, sb, state);
1502 
1503 	/*
1504 	 * Now, we select a target if we have one. If we don't we
1505 	 * leave the interrupt untargetted. It means that an interrupt
1506 	 * can become "untargetted" accross migration if it was masked
1507 	 * by set_xive() but there is little we can do about it.
1508 	 */
1509 
1510 	/* First convert prio and mark interrupt as untargetted */
1511 	act_prio = xive_prio_from_guest(guest_prio);
1512 	state->act_priority = MASKED;
1513 
1514 	/*
1515 	 * We need to drop the lock due to the mutex below. Hopefully
1516 	 * nothing is touching that interrupt yet since it hasn't been
1517 	 * advertized to a running guest yet
1518 	 */
1519 	arch_spin_unlock(&sb->lock);
1520 
1521 	/* If we have a priority target the interrupt */
1522 	if (act_prio != MASKED) {
1523 		/* First, check provisioning of queues */
1524 		mutex_lock(&xive->kvm->lock);
1525 		rc = xive_check_provisioning(xive->kvm, act_prio);
1526 		mutex_unlock(&xive->kvm->lock);
1527 
1528 		/* Target interrupt */
1529 		if (rc == 0)
1530 			rc = xive_target_interrupt(xive->kvm, state,
1531 						   server, act_prio);
1532 		/*
1533 		 * If provisioning or targetting failed, leave it
1534 		 * alone and masked. It will remain disabled until
1535 		 * the guest re-targets it.
1536 		 */
1537 	}
1538 
1539 	/*
1540 	 * Find out if this was a delayed irq stashed in an ICP,
1541 	 * in which case, treat it as pending
1542 	 */
1543 	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1544 		val |= KVM_XICS_PENDING;
1545 		pr_devel("  Found delayed ! forcing PENDING !\n");
1546 	}
1547 
1548 	/* Cleanup the SW state */
1549 	state->old_p = false;
1550 	state->old_q = false;
1551 	state->lsi = false;
1552 	state->asserted = false;
1553 
1554 	/* Restore LSI state */
1555 	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1556 		state->lsi = true;
1557 		if (val & KVM_XICS_PENDING)
1558 			state->asserted = true;
1559 		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1560 	}
1561 
1562 	/*
1563 	 * Restore P and Q. If the interrupt was pending, we
1564 	 * force Q and !P, which will trigger a resend.
1565 	 *
1566 	 * That means that a guest that had both an interrupt
1567 	 * pending (queued) and Q set will restore with only
1568 	 * one instance of that interrupt instead of 2, but that
1569 	 * is perfectly fine as coalescing interrupts that haven't
1570 	 * been presented yet is always allowed.
1571 	 */
1572 	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1573 		state->old_p = true;
1574 	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1575 		state->old_q = true;
1576 
1577 	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1578 
1579 	/*
1580 	 * If the interrupt was unmasked, update guest priority and
1581 	 * perform the appropriate state transition and do a
1582 	 * re-trigger if necessary.
1583 	 */
1584 	if (val & KVM_XICS_MASKED) {
1585 		pr_devel("  masked, saving prio\n");
1586 		state->guest_priority = MASKED;
1587 		state->saved_priority = guest_prio;
1588 	} else {
1589 		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1590 		xive_finish_unmask(xive, sb, state, guest_prio);
1591 		state->saved_priority = guest_prio;
1592 	}
1593 
1594 	/* Increment the number of valid sources and mark this one valid */
1595 	if (!state->valid)
1596 		xive->src_count++;
1597 	state->valid = true;
1598 
1599 	return 0;
1600 }
1601 
kvmppc_xive_set_irq(struct kvm * kvm,int irq_source_id,u32 irq,int level,bool line_status)1602 int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1603 			bool line_status)
1604 {
1605 	struct kvmppc_xive *xive = kvm->arch.xive;
1606 	struct kvmppc_xive_src_block *sb;
1607 	struct kvmppc_xive_irq_state *state;
1608 	u16 idx;
1609 
1610 	if (!xive)
1611 		return -ENODEV;
1612 
1613 	sb = kvmppc_xive_find_source(xive, irq, &idx);
1614 	if (!sb)
1615 		return -EINVAL;
1616 
1617 	/* Perform locklessly .... (we need to do some RCUisms here...) */
1618 	state = &sb->irq_state[idx];
1619 	if (!state->valid)
1620 		return -EINVAL;
1621 
1622 	/* We don't allow a trigger on a passed-through interrupt */
1623 	if (state->pt_number)
1624 		return -EINVAL;
1625 
1626 	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1627 		state->asserted = 1;
1628 	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1629 		state->asserted = 0;
1630 		return 0;
1631 	}
1632 
1633 	/* Trigger the IPI */
1634 	xive_irq_trigger(&state->ipi_data);
1635 
1636 	return 0;
1637 }
1638 
xive_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1639 static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1640 {
1641 	struct kvmppc_xive *xive = dev->private;
1642 
1643 	/* We honor the existing XICS ioctl */
1644 	switch (attr->group) {
1645 	case KVM_DEV_XICS_GRP_SOURCES:
1646 		return xive_set_source(xive, attr->attr, attr->addr);
1647 	}
1648 	return -ENXIO;
1649 }
1650 
xive_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1651 static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1652 {
1653 	struct kvmppc_xive *xive = dev->private;
1654 
1655 	/* We honor the existing XICS ioctl */
1656 	switch (attr->group) {
1657 	case KVM_DEV_XICS_GRP_SOURCES:
1658 		return xive_get_source(xive, attr->attr, attr->addr);
1659 	}
1660 	return -ENXIO;
1661 }
1662 
xive_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)1663 static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1664 {
1665 	/* We honor the same limits as XICS, at least for now */
1666 	switch (attr->group) {
1667 	case KVM_DEV_XICS_GRP_SOURCES:
1668 		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1669 		    attr->attr < KVMPPC_XICS_NR_IRQS)
1670 			return 0;
1671 		break;
1672 	}
1673 	return -ENXIO;
1674 }
1675 
kvmppc_xive_cleanup_irq(u32 hw_num,struct xive_irq_data * xd)1676 static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1677 {
1678 	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1679 	xive_native_configure_irq(hw_num, 0, MASKED, 0);
1680 }
1681 
kvmppc_xive_free_sources(struct kvmppc_xive_src_block * sb)1682 static void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1683 {
1684 	int i;
1685 
1686 	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1687 		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1688 
1689 		if (!state->valid)
1690 			continue;
1691 
1692 		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1693 		xive_cleanup_irq_data(&state->ipi_data);
1694 		xive_native_free_irq(state->ipi_number);
1695 
1696 		/* Pass-through, cleanup too but keep IRQ hw data */
1697 		if (state->pt_number)
1698 			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1699 
1700 		state->valid = false;
1701 	}
1702 }
1703 
kvmppc_xive_free(struct kvm_device * dev)1704 static void kvmppc_xive_free(struct kvm_device *dev)
1705 {
1706 	struct kvmppc_xive *xive = dev->private;
1707 	struct kvm *kvm = xive->kvm;
1708 	int i;
1709 
1710 	debugfs_remove(xive->dentry);
1711 
1712 	if (kvm)
1713 		kvm->arch.xive = NULL;
1714 
1715 	/* Mask and free interrupts */
1716 	for (i = 0; i <= xive->max_sbid; i++) {
1717 		if (xive->src_blocks[i])
1718 			kvmppc_xive_free_sources(xive->src_blocks[i]);
1719 		kfree(xive->src_blocks[i]);
1720 		xive->src_blocks[i] = NULL;
1721 	}
1722 
1723 	if (xive->vp_base != XIVE_INVALID_VP)
1724 		xive_native_free_vp_block(xive->vp_base);
1725 
1726 
1727 	kfree(xive);
1728 	kfree(dev);
1729 }
1730 
kvmppc_xive_create(struct kvm_device * dev,u32 type)1731 static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
1732 {
1733 	struct kvmppc_xive *xive;
1734 	struct kvm *kvm = dev->kvm;
1735 	int ret = 0;
1736 
1737 	pr_devel("Creating xive for partition\n");
1738 
1739 	xive = kzalloc(sizeof(*xive), GFP_KERNEL);
1740 	if (!xive)
1741 		return -ENOMEM;
1742 
1743 	dev->private = xive;
1744 	xive->dev = dev;
1745 	xive->kvm = kvm;
1746 
1747 	/* Already there ? */
1748 	if (kvm->arch.xive)
1749 		ret = -EEXIST;
1750 	else
1751 		kvm->arch.xive = xive;
1752 
1753 	/* We use the default queue size set by the host */
1754 	xive->q_order = xive_native_default_eq_shift();
1755 	if (xive->q_order < PAGE_SHIFT)
1756 		xive->q_page_order = 0;
1757 	else
1758 		xive->q_page_order = xive->q_order - PAGE_SHIFT;
1759 
1760 	/* Allocate a bunch of VPs */
1761 	xive->vp_base = xive_native_alloc_vp_block(KVM_MAX_VCPUS);
1762 	pr_devel("VP_Base=%x\n", xive->vp_base);
1763 
1764 	if (xive->vp_base == XIVE_INVALID_VP)
1765 		ret = -ENOMEM;
1766 
1767 	if (ret) {
1768 		kfree(xive);
1769 		return ret;
1770 	}
1771 
1772 	return 0;
1773 }
1774 
1775 
xive_debug_show(struct seq_file * m,void * private)1776 static int xive_debug_show(struct seq_file *m, void *private)
1777 {
1778 	struct kvmppc_xive *xive = m->private;
1779 	struct kvm *kvm = xive->kvm;
1780 	struct kvm_vcpu *vcpu;
1781 	u64 t_rm_h_xirr = 0;
1782 	u64 t_rm_h_ipoll = 0;
1783 	u64 t_rm_h_cppr = 0;
1784 	u64 t_rm_h_eoi = 0;
1785 	u64 t_rm_h_ipi = 0;
1786 	u64 t_vm_h_xirr = 0;
1787 	u64 t_vm_h_ipoll = 0;
1788 	u64 t_vm_h_cppr = 0;
1789 	u64 t_vm_h_eoi = 0;
1790 	u64 t_vm_h_ipi = 0;
1791 	unsigned int i;
1792 
1793 	if (!kvm)
1794 		return 0;
1795 
1796 	seq_printf(m, "=========\nVCPU state\n=========\n");
1797 
1798 	kvm_for_each_vcpu(i, vcpu, kvm) {
1799 		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1800 
1801 		if (!xc)
1802 			continue;
1803 
1804 		seq_printf(m, "cpu server %#x CPPR:%#x HWCPPR:%#x"
1805 			   " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
1806 			   xc->server_num, xc->cppr, xc->hw_cppr,
1807 			   xc->mfrr, xc->pending,
1808 			   xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
1809 
1810 		t_rm_h_xirr += xc->stat_rm_h_xirr;
1811 		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
1812 		t_rm_h_cppr += xc->stat_rm_h_cppr;
1813 		t_rm_h_eoi += xc->stat_rm_h_eoi;
1814 		t_rm_h_ipi += xc->stat_rm_h_ipi;
1815 		t_vm_h_xirr += xc->stat_vm_h_xirr;
1816 		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
1817 		t_vm_h_cppr += xc->stat_vm_h_cppr;
1818 		t_vm_h_eoi += xc->stat_vm_h_eoi;
1819 		t_vm_h_ipi += xc->stat_vm_h_ipi;
1820 	}
1821 
1822 	seq_printf(m, "Hcalls totals\n");
1823 	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
1824 	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
1825 	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
1826 	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
1827 	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
1828 
1829 	return 0;
1830 }
1831 
xive_debug_open(struct inode * inode,struct file * file)1832 static int xive_debug_open(struct inode *inode, struct file *file)
1833 {
1834 	return single_open(file, xive_debug_show, inode->i_private);
1835 }
1836 
1837 static const struct file_operations xive_debug_fops = {
1838 	.open = xive_debug_open,
1839 	.read = seq_read,
1840 	.llseek = seq_lseek,
1841 	.release = single_release,
1842 };
1843 
xive_debugfs_init(struct kvmppc_xive * xive)1844 static void xive_debugfs_init(struct kvmppc_xive *xive)
1845 {
1846 	char *name;
1847 
1848 	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
1849 	if (!name) {
1850 		pr_err("%s: no memory for name\n", __func__);
1851 		return;
1852 	}
1853 
1854 	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
1855 					   xive, &xive_debug_fops);
1856 
1857 	pr_debug("%s: created %s\n", __func__, name);
1858 	kfree(name);
1859 }
1860 
kvmppc_xive_init(struct kvm_device * dev)1861 static void kvmppc_xive_init(struct kvm_device *dev)
1862 {
1863 	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
1864 
1865 	/* Register some debug interfaces */
1866 	xive_debugfs_init(xive);
1867 }
1868 
1869 struct kvm_device_ops kvm_xive_ops = {
1870 	.name = "kvm-xive",
1871 	.create = kvmppc_xive_create,
1872 	.init = kvmppc_xive_init,
1873 	.destroy = kvmppc_xive_free,
1874 	.set_attr = xive_set_attr,
1875 	.get_attr = xive_get_attr,
1876 	.has_attr = xive_has_attr,
1877 };
1878 
kvmppc_xive_init_module(void)1879 void kvmppc_xive_init_module(void)
1880 {
1881 	__xive_vm_h_xirr = xive_vm_h_xirr;
1882 	__xive_vm_h_ipoll = xive_vm_h_ipoll;
1883 	__xive_vm_h_ipi = xive_vm_h_ipi;
1884 	__xive_vm_h_cppr = xive_vm_h_cppr;
1885 	__xive_vm_h_eoi = xive_vm_h_eoi;
1886 }
1887 
kvmppc_xive_exit_module(void)1888 void kvmppc_xive_exit_module(void)
1889 {
1890 	__xive_vm_h_xirr = NULL;
1891 	__xive_vm_h_ipoll = NULL;
1892 	__xive_vm_h_ipi = NULL;
1893 	__xive_vm_h_cppr = NULL;
1894 	__xive_vm_h_eoi = NULL;
1895 }
1896