1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/sched/mm.h>
48 #include <linux/sched/task.h>
49 #include <linux/seq_file.h>
50 #include <linux/security.h>
51 #include <linux/slab.h>
52 #include <linux/spinlock.h>
53 #include <linux/stat.h>
54 #include <linux/string.h>
55 #include <linux/time.h>
56 #include <linux/time64.h>
57 #include <linux/backing-dev.h>
58 #include <linux/sort.h>
59 #include <linux/oom.h>
60
61 #include <linux/uaccess.h>
62 #include <linux/atomic.h>
63 #include <linux/mutex.h>
64 #include <linux/cgroup.h>
65 #include <linux/wait.h>
66
67 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
68 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
69
70 /* See "Frequency meter" comments, below. */
71
72 struct fmeter {
73 int cnt; /* unprocessed events count */
74 int val; /* most recent output value */
75 time64_t time; /* clock (secs) when val computed */
76 spinlock_t lock; /* guards read or write of above */
77 };
78
79 struct cpuset {
80 struct cgroup_subsys_state css;
81
82 unsigned long flags; /* "unsigned long" so bitops work */
83
84 /*
85 * On default hierarchy:
86 *
87 * The user-configured masks can only be changed by writing to
88 * cpuset.cpus and cpuset.mems, and won't be limited by the
89 * parent masks.
90 *
91 * The effective masks is the real masks that apply to the tasks
92 * in the cpuset. They may be changed if the configured masks are
93 * changed or hotplug happens.
94 *
95 * effective_mask == configured_mask & parent's effective_mask,
96 * and if it ends up empty, it will inherit the parent's mask.
97 *
98 *
99 * On legacy hierachy:
100 *
101 * The user-configured masks are always the same with effective masks.
102 */
103
104 /* user-configured CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t cpus_allowed;
106 cpumask_var_t cpus_requested;
107 nodemask_t mems_allowed;
108
109 /* effective CPUs and Memory Nodes allow to tasks */
110 cpumask_var_t effective_cpus;
111 nodemask_t effective_mems;
112
113 /*
114 * This is old Memory Nodes tasks took on.
115 *
116 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
117 * - A new cpuset's old_mems_allowed is initialized when some
118 * task is moved into it.
119 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
120 * cpuset.mems_allowed and have tasks' nodemask updated, and
121 * then old_mems_allowed is updated to mems_allowed.
122 */
123 nodemask_t old_mems_allowed;
124
125 struct fmeter fmeter; /* memory_pressure filter */
126
127 /*
128 * Tasks are being attached to this cpuset. Used to prevent
129 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
130 */
131 int attach_in_progress;
132
133 /* partition number for rebuild_sched_domains() */
134 int pn;
135
136 /* for custom sched domain */
137 int relax_domain_level;
138 };
139
css_cs(struct cgroup_subsys_state * css)140 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
141 {
142 return css ? container_of(css, struct cpuset, css) : NULL;
143 }
144
145 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)146 static inline struct cpuset *task_cs(struct task_struct *task)
147 {
148 return css_cs(task_css(task, cpuset_cgrp_id));
149 }
150
parent_cs(struct cpuset * cs)151 static inline struct cpuset *parent_cs(struct cpuset *cs)
152 {
153 return css_cs(cs->css.parent);
154 }
155
156 #ifdef CONFIG_NUMA
task_has_mempolicy(struct task_struct * task)157 static inline bool task_has_mempolicy(struct task_struct *task)
158 {
159 return task->mempolicy;
160 }
161 #else
task_has_mempolicy(struct task_struct * task)162 static inline bool task_has_mempolicy(struct task_struct *task)
163 {
164 return false;
165 }
166 #endif
167
168
169 /* bits in struct cpuset flags field */
170 typedef enum {
171 CS_ONLINE,
172 CS_CPU_EXCLUSIVE,
173 CS_MEM_EXCLUSIVE,
174 CS_MEM_HARDWALL,
175 CS_MEMORY_MIGRATE,
176 CS_SCHED_LOAD_BALANCE,
177 CS_SPREAD_PAGE,
178 CS_SPREAD_SLAB,
179 } cpuset_flagbits_t;
180
181 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)182 static inline bool is_cpuset_online(struct cpuset *cs)
183 {
184 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
185 }
186
is_cpu_exclusive(const struct cpuset * cs)187 static inline int is_cpu_exclusive(const struct cpuset *cs)
188 {
189 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
190 }
191
is_mem_exclusive(const struct cpuset * cs)192 static inline int is_mem_exclusive(const struct cpuset *cs)
193 {
194 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
195 }
196
is_mem_hardwall(const struct cpuset * cs)197 static inline int is_mem_hardwall(const struct cpuset *cs)
198 {
199 return test_bit(CS_MEM_HARDWALL, &cs->flags);
200 }
201
is_sched_load_balance(const struct cpuset * cs)202 static inline int is_sched_load_balance(const struct cpuset *cs)
203 {
204 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
205 }
206
is_memory_migrate(const struct cpuset * cs)207 static inline int is_memory_migrate(const struct cpuset *cs)
208 {
209 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
210 }
211
is_spread_page(const struct cpuset * cs)212 static inline int is_spread_page(const struct cpuset *cs)
213 {
214 return test_bit(CS_SPREAD_PAGE, &cs->flags);
215 }
216
is_spread_slab(const struct cpuset * cs)217 static inline int is_spread_slab(const struct cpuset *cs)
218 {
219 return test_bit(CS_SPREAD_SLAB, &cs->flags);
220 }
221
222 static struct cpuset top_cpuset = {
223 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
224 (1 << CS_MEM_EXCLUSIVE)),
225 };
226
227 /**
228 * cpuset_for_each_child - traverse online children of a cpuset
229 * @child_cs: loop cursor pointing to the current child
230 * @pos_css: used for iteration
231 * @parent_cs: target cpuset to walk children of
232 *
233 * Walk @child_cs through the online children of @parent_cs. Must be used
234 * with RCU read locked.
235 */
236 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
237 css_for_each_child((pos_css), &(parent_cs)->css) \
238 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
239
240 /**
241 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
242 * @des_cs: loop cursor pointing to the current descendant
243 * @pos_css: used for iteration
244 * @root_cs: target cpuset to walk ancestor of
245 *
246 * Walk @des_cs through the online descendants of @root_cs. Must be used
247 * with RCU read locked. The caller may modify @pos_css by calling
248 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
249 * iteration and the first node to be visited.
250 */
251 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
252 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
253 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
254
255 /*
256 * There are two global locks guarding cpuset structures - cpuset_mutex and
257 * callback_lock. We also require taking task_lock() when dereferencing a
258 * task's cpuset pointer. See "The task_lock() exception", at the end of this
259 * comment.
260 *
261 * A task must hold both locks to modify cpusets. If a task holds
262 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
263 * is the only task able to also acquire callback_lock and be able to
264 * modify cpusets. It can perform various checks on the cpuset structure
265 * first, knowing nothing will change. It can also allocate memory while
266 * just holding cpuset_mutex. While it is performing these checks, various
267 * callback routines can briefly acquire callback_lock to query cpusets.
268 * Once it is ready to make the changes, it takes callback_lock, blocking
269 * everyone else.
270 *
271 * Calls to the kernel memory allocator can not be made while holding
272 * callback_lock, as that would risk double tripping on callback_lock
273 * from one of the callbacks into the cpuset code from within
274 * __alloc_pages().
275 *
276 * If a task is only holding callback_lock, then it has read-only
277 * access to cpusets.
278 *
279 * Now, the task_struct fields mems_allowed and mempolicy may be changed
280 * by other task, we use alloc_lock in the task_struct fields to protect
281 * them.
282 *
283 * The cpuset_common_file_read() handlers only hold callback_lock across
284 * small pieces of code, such as when reading out possibly multi-word
285 * cpumasks and nodemasks.
286 *
287 * Accessing a task's cpuset should be done in accordance with the
288 * guidelines for accessing subsystem state in kernel/cgroup.c
289 */
290
291 static DEFINE_MUTEX(cpuset_mutex);
292 static DEFINE_SPINLOCK(callback_lock);
293
294 static struct workqueue_struct *cpuset_migrate_mm_wq;
295
296 /*
297 * CPU / memory hotplug is handled asynchronously.
298 */
299 static void cpuset_hotplug_workfn(struct work_struct *work);
300 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
301
302 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
303
304 /*
305 * Cgroup v2 behavior is used when on default hierarchy or the
306 * cgroup_v2_mode flag is set.
307 */
is_in_v2_mode(void)308 static inline bool is_in_v2_mode(void)
309 {
310 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
311 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
312 }
313
314 /*
315 * This is ugly, but preserves the userspace API for existing cpuset
316 * users. If someone tries to mount the "cpuset" filesystem, we
317 * silently switch it to mount "cgroup" instead
318 */
cpuset_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)319 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
320 int flags, const char *unused_dev_name, void *data)
321 {
322 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
323 struct dentry *ret = ERR_PTR(-ENODEV);
324 if (cgroup_fs) {
325 char mountopts[] =
326 "cpuset,noprefix,"
327 "release_agent=/sbin/cpuset_release_agent";
328 ret = cgroup_fs->mount(cgroup_fs, flags,
329 unused_dev_name, mountopts);
330 put_filesystem(cgroup_fs);
331 }
332 return ret;
333 }
334
335 static struct file_system_type cpuset_fs_type = {
336 .name = "cpuset",
337 .mount = cpuset_mount,
338 };
339
340 /*
341 * Return in pmask the portion of a cpusets's cpus_allowed that
342 * are online. If none are online, walk up the cpuset hierarchy
343 * until we find one that does have some online cpus.
344 *
345 * One way or another, we guarantee to return some non-empty subset
346 * of cpu_online_mask.
347 *
348 * Call with callback_lock or cpuset_mutex held.
349 */
guarantee_online_cpus(struct cpuset * cs,struct cpumask * pmask)350 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
351 {
352 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) {
353 cs = parent_cs(cs);
354 if (unlikely(!cs)) {
355 /*
356 * The top cpuset doesn't have any online cpu as a
357 * consequence of a race between cpuset_hotplug_work
358 * and cpu hotplug notifier. But we know the top
359 * cpuset's effective_cpus is on its way to to be
360 * identical to cpu_online_mask.
361 */
362 cpumask_copy(pmask, cpu_online_mask);
363 return;
364 }
365 }
366 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
367 }
368
369 /*
370 * Return in *pmask the portion of a cpusets's mems_allowed that
371 * are online, with memory. If none are online with memory, walk
372 * up the cpuset hierarchy until we find one that does have some
373 * online mems. The top cpuset always has some mems online.
374 *
375 * One way or another, we guarantee to return some non-empty subset
376 * of node_states[N_MEMORY].
377 *
378 * Call with callback_lock or cpuset_mutex held.
379 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)380 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
381 {
382 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
383 cs = parent_cs(cs);
384 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
385 }
386
387 /*
388 * update task's spread flag if cpuset's page/slab spread flag is set
389 *
390 * Call with callback_lock or cpuset_mutex held.
391 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)392 static void cpuset_update_task_spread_flag(struct cpuset *cs,
393 struct task_struct *tsk)
394 {
395 if (is_spread_page(cs))
396 task_set_spread_page(tsk);
397 else
398 task_clear_spread_page(tsk);
399
400 if (is_spread_slab(cs))
401 task_set_spread_slab(tsk);
402 else
403 task_clear_spread_slab(tsk);
404 }
405
406 /*
407 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
408 *
409 * One cpuset is a subset of another if all its allowed CPUs and
410 * Memory Nodes are a subset of the other, and its exclusive flags
411 * are only set if the other's are set. Call holding cpuset_mutex.
412 */
413
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)414 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
415 {
416 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
417 nodes_subset(p->mems_allowed, q->mems_allowed) &&
418 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
419 is_mem_exclusive(p) <= is_mem_exclusive(q);
420 }
421
422 /**
423 * alloc_trial_cpuset - allocate a trial cpuset
424 * @cs: the cpuset that the trial cpuset duplicates
425 */
alloc_trial_cpuset(struct cpuset * cs)426 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
427 {
428 struct cpuset *trial;
429
430 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
431 if (!trial)
432 return NULL;
433
434 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
435 goto free_cs;
436 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
437 goto free_cpus;
438
439 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
440 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
441 return trial;
442
443 free_cpus:
444 free_cpumask_var(trial->cpus_allowed);
445 free_cs:
446 kfree(trial);
447 return NULL;
448 }
449
450 /**
451 * free_trial_cpuset - free the trial cpuset
452 * @trial: the trial cpuset to be freed
453 */
free_trial_cpuset(struct cpuset * trial)454 static void free_trial_cpuset(struct cpuset *trial)
455 {
456 free_cpumask_var(trial->effective_cpus);
457 free_cpumask_var(trial->cpus_allowed);
458 kfree(trial);
459 }
460
461 /*
462 * validate_change() - Used to validate that any proposed cpuset change
463 * follows the structural rules for cpusets.
464 *
465 * If we replaced the flag and mask values of the current cpuset
466 * (cur) with those values in the trial cpuset (trial), would
467 * our various subset and exclusive rules still be valid? Presumes
468 * cpuset_mutex held.
469 *
470 * 'cur' is the address of an actual, in-use cpuset. Operations
471 * such as list traversal that depend on the actual address of the
472 * cpuset in the list must use cur below, not trial.
473 *
474 * 'trial' is the address of bulk structure copy of cur, with
475 * perhaps one or more of the fields cpus_allowed, mems_allowed,
476 * or flags changed to new, trial values.
477 *
478 * Return 0 if valid, -errno if not.
479 */
480
validate_change(struct cpuset * cur,struct cpuset * trial)481 static int validate_change(struct cpuset *cur, struct cpuset *trial)
482 {
483 struct cgroup_subsys_state *css;
484 struct cpuset *c, *par;
485 int ret;
486
487 rcu_read_lock();
488
489 /* Each of our child cpusets must be a subset of us */
490 ret = -EBUSY;
491 cpuset_for_each_child(c, css, cur)
492 if (!is_cpuset_subset(c, trial))
493 goto out;
494
495 /* Remaining checks don't apply to root cpuset */
496 ret = 0;
497 if (cur == &top_cpuset)
498 goto out;
499
500 par = parent_cs(cur);
501
502 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
503 ret = -EACCES;
504 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
505 goto out;
506
507 /*
508 * If either I or some sibling (!= me) is exclusive, we can't
509 * overlap
510 */
511 ret = -EINVAL;
512 cpuset_for_each_child(c, css, par) {
513 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
514 c != cur &&
515 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
516 goto out;
517 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
518 c != cur &&
519 nodes_intersects(trial->mems_allowed, c->mems_allowed))
520 goto out;
521 }
522
523 /*
524 * Cpusets with tasks - existing or newly being attached - can't
525 * be changed to have empty cpus_allowed or mems_allowed.
526 */
527 ret = -ENOSPC;
528 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
529 if (!cpumask_empty(cur->cpus_allowed) &&
530 cpumask_empty(trial->cpus_allowed))
531 goto out;
532 if (!nodes_empty(cur->mems_allowed) &&
533 nodes_empty(trial->mems_allowed))
534 goto out;
535 }
536
537 /*
538 * We can't shrink if we won't have enough room for SCHED_DEADLINE
539 * tasks.
540 */
541 ret = -EBUSY;
542 if (is_cpu_exclusive(cur) &&
543 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
544 trial->cpus_allowed))
545 goto out;
546
547 ret = 0;
548 out:
549 rcu_read_unlock();
550 return ret;
551 }
552
553 #ifdef CONFIG_SMP
554 /*
555 * Helper routine for generate_sched_domains().
556 * Do cpusets a, b have overlapping effective cpus_allowed masks?
557 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)558 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
559 {
560 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
561 }
562
563 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)564 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
565 {
566 if (dattr->relax_domain_level < c->relax_domain_level)
567 dattr->relax_domain_level = c->relax_domain_level;
568 return;
569 }
570
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)571 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
572 struct cpuset *root_cs)
573 {
574 struct cpuset *cp;
575 struct cgroup_subsys_state *pos_css;
576
577 rcu_read_lock();
578 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
579 /* skip the whole subtree if @cp doesn't have any CPU */
580 if (cpumask_empty(cp->cpus_allowed)) {
581 pos_css = css_rightmost_descendant(pos_css);
582 continue;
583 }
584
585 if (is_sched_load_balance(cp))
586 update_domain_attr(dattr, cp);
587 }
588 rcu_read_unlock();
589 }
590
591 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)592 static inline int nr_cpusets(void)
593 {
594 /* jump label reference count + the top-level cpuset */
595 return static_key_count(&cpusets_enabled_key.key) + 1;
596 }
597
598 /*
599 * generate_sched_domains()
600 *
601 * This function builds a partial partition of the systems CPUs
602 * A 'partial partition' is a set of non-overlapping subsets whose
603 * union is a subset of that set.
604 * The output of this function needs to be passed to kernel/sched/core.c
605 * partition_sched_domains() routine, which will rebuild the scheduler's
606 * load balancing domains (sched domains) as specified by that partial
607 * partition.
608 *
609 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
610 * for a background explanation of this.
611 *
612 * Does not return errors, on the theory that the callers of this
613 * routine would rather not worry about failures to rebuild sched
614 * domains when operating in the severe memory shortage situations
615 * that could cause allocation failures below.
616 *
617 * Must be called with cpuset_mutex held.
618 *
619 * The three key local variables below are:
620 * q - a linked-list queue of cpuset pointers, used to implement a
621 * top-down scan of all cpusets. This scan loads a pointer
622 * to each cpuset marked is_sched_load_balance into the
623 * array 'csa'. For our purposes, rebuilding the schedulers
624 * sched domains, we can ignore !is_sched_load_balance cpusets.
625 * csa - (for CpuSet Array) Array of pointers to all the cpusets
626 * that need to be load balanced, for convenient iterative
627 * access by the subsequent code that finds the best partition,
628 * i.e the set of domains (subsets) of CPUs such that the
629 * cpus_allowed of every cpuset marked is_sched_load_balance
630 * is a subset of one of these domains, while there are as
631 * many such domains as possible, each as small as possible.
632 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
633 * the kernel/sched/core.c routine partition_sched_domains() in a
634 * convenient format, that can be easily compared to the prior
635 * value to determine what partition elements (sched domains)
636 * were changed (added or removed.)
637 *
638 * Finding the best partition (set of domains):
639 * The triple nested loops below over i, j, k scan over the
640 * load balanced cpusets (using the array of cpuset pointers in
641 * csa[]) looking for pairs of cpusets that have overlapping
642 * cpus_allowed, but which don't have the same 'pn' partition
643 * number and gives them in the same partition number. It keeps
644 * looping on the 'restart' label until it can no longer find
645 * any such pairs.
646 *
647 * The union of the cpus_allowed masks from the set of
648 * all cpusets having the same 'pn' value then form the one
649 * element of the partition (one sched domain) to be passed to
650 * partition_sched_domains().
651 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)652 static int generate_sched_domains(cpumask_var_t **domains,
653 struct sched_domain_attr **attributes)
654 {
655 struct cpuset *cp; /* scans q */
656 struct cpuset **csa; /* array of all cpuset ptrs */
657 int csn; /* how many cpuset ptrs in csa so far */
658 int i, j, k; /* indices for partition finding loops */
659 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
660 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
661 struct sched_domain_attr *dattr; /* attributes for custom domains */
662 int ndoms = 0; /* number of sched domains in result */
663 int nslot; /* next empty doms[] struct cpumask slot */
664 struct cgroup_subsys_state *pos_css;
665
666 doms = NULL;
667 dattr = NULL;
668 csa = NULL;
669
670 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
671 goto done;
672 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
673
674 /* Special case for the 99% of systems with one, full, sched domain */
675 if (is_sched_load_balance(&top_cpuset)) {
676 ndoms = 1;
677 doms = alloc_sched_domains(ndoms);
678 if (!doms)
679 goto done;
680
681 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
682 if (dattr) {
683 *dattr = SD_ATTR_INIT;
684 update_domain_attr_tree(dattr, &top_cpuset);
685 }
686 cpumask_and(doms[0], top_cpuset.effective_cpus,
687 non_isolated_cpus);
688
689 goto done;
690 }
691
692 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
693 if (!csa)
694 goto done;
695 csn = 0;
696
697 rcu_read_lock();
698 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
699 if (cp == &top_cpuset)
700 continue;
701 /*
702 * Continue traversing beyond @cp iff @cp has some CPUs and
703 * isn't load balancing. The former is obvious. The
704 * latter: All child cpusets contain a subset of the
705 * parent's cpus, so just skip them, and then we call
706 * update_domain_attr_tree() to calc relax_domain_level of
707 * the corresponding sched domain.
708 */
709 if (!cpumask_empty(cp->cpus_allowed) &&
710 !(is_sched_load_balance(cp) &&
711 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
712 continue;
713
714 if (is_sched_load_balance(cp))
715 csa[csn++] = cp;
716
717 /* skip @cp's subtree */
718 pos_css = css_rightmost_descendant(pos_css);
719 }
720 rcu_read_unlock();
721
722 for (i = 0; i < csn; i++)
723 csa[i]->pn = i;
724 ndoms = csn;
725
726 restart:
727 /* Find the best partition (set of sched domains) */
728 for (i = 0; i < csn; i++) {
729 struct cpuset *a = csa[i];
730 int apn = a->pn;
731
732 for (j = 0; j < csn; j++) {
733 struct cpuset *b = csa[j];
734 int bpn = b->pn;
735
736 if (apn != bpn && cpusets_overlap(a, b)) {
737 for (k = 0; k < csn; k++) {
738 struct cpuset *c = csa[k];
739
740 if (c->pn == bpn)
741 c->pn = apn;
742 }
743 ndoms--; /* one less element */
744 goto restart;
745 }
746 }
747 }
748
749 /*
750 * Now we know how many domains to create.
751 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
752 */
753 doms = alloc_sched_domains(ndoms);
754 if (!doms)
755 goto done;
756
757 /*
758 * The rest of the code, including the scheduler, can deal with
759 * dattr==NULL case. No need to abort if alloc fails.
760 */
761 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
762
763 for (nslot = 0, i = 0; i < csn; i++) {
764 struct cpuset *a = csa[i];
765 struct cpumask *dp;
766 int apn = a->pn;
767
768 if (apn < 0) {
769 /* Skip completed partitions */
770 continue;
771 }
772
773 dp = doms[nslot];
774
775 if (nslot == ndoms) {
776 static int warnings = 10;
777 if (warnings) {
778 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
779 nslot, ndoms, csn, i, apn);
780 warnings--;
781 }
782 continue;
783 }
784
785 cpumask_clear(dp);
786 if (dattr)
787 *(dattr + nslot) = SD_ATTR_INIT;
788 for (j = i; j < csn; j++) {
789 struct cpuset *b = csa[j];
790
791 if (apn == b->pn) {
792 cpumask_or(dp, dp, b->effective_cpus);
793 cpumask_and(dp, dp, non_isolated_cpus);
794 if (dattr)
795 update_domain_attr_tree(dattr + nslot, b);
796
797 /* Done with this partition */
798 b->pn = -1;
799 }
800 }
801 nslot++;
802 }
803 BUG_ON(nslot != ndoms);
804
805 done:
806 free_cpumask_var(non_isolated_cpus);
807 kfree(csa);
808
809 /*
810 * Fallback to the default domain if kmalloc() failed.
811 * See comments in partition_sched_domains().
812 */
813 if (doms == NULL)
814 ndoms = 1;
815
816 *domains = doms;
817 *attributes = dattr;
818 return ndoms;
819 }
820
821 /*
822 * Rebuild scheduler domains.
823 *
824 * If the flag 'sched_load_balance' of any cpuset with non-empty
825 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
826 * which has that flag enabled, or if any cpuset with a non-empty
827 * 'cpus' is removed, then call this routine to rebuild the
828 * scheduler's dynamic sched domains.
829 *
830 * Call with cpuset_mutex held. Takes get_online_cpus().
831 */
rebuild_sched_domains_locked(void)832 static void rebuild_sched_domains_locked(void)
833 {
834 struct sched_domain_attr *attr;
835 cpumask_var_t *doms;
836 int ndoms;
837
838 lockdep_assert_held(&cpuset_mutex);
839 get_online_cpus();
840
841 /*
842 * We have raced with CPU hotplug. Don't do anything to avoid
843 * passing doms with offlined cpu to partition_sched_domains().
844 * Anyways, hotplug work item will rebuild sched domains.
845 */
846 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
847 goto out;
848
849 /* Generate domain masks and attrs */
850 ndoms = generate_sched_domains(&doms, &attr);
851
852 /* Have scheduler rebuild the domains */
853 partition_sched_domains(ndoms, doms, attr);
854 out:
855 put_online_cpus();
856 }
857 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)858 static void rebuild_sched_domains_locked(void)
859 {
860 }
861 #endif /* CONFIG_SMP */
862
rebuild_sched_domains(void)863 void rebuild_sched_domains(void)
864 {
865 mutex_lock(&cpuset_mutex);
866 rebuild_sched_domains_locked();
867 mutex_unlock(&cpuset_mutex);
868 }
869
870 /**
871 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
872 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
873 *
874 * Iterate through each task of @cs updating its cpus_allowed to the
875 * effective cpuset's. As this function is called with cpuset_mutex held,
876 * cpuset membership stays stable.
877 */
update_tasks_cpumask(struct cpuset * cs)878 static void update_tasks_cpumask(struct cpuset *cs)
879 {
880 struct css_task_iter it;
881 struct task_struct *task;
882
883 css_task_iter_start(&cs->css, 0, &it);
884 while ((task = css_task_iter_next(&it)))
885 set_cpus_allowed_ptr(task, cs->effective_cpus);
886 css_task_iter_end(&it);
887 }
888
889 /*
890 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
891 * @cs: the cpuset to consider
892 * @new_cpus: temp variable for calculating new effective_cpus
893 *
894 * When congifured cpumask is changed, the effective cpumasks of this cpuset
895 * and all its descendants need to be updated.
896 *
897 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
898 *
899 * Called with cpuset_mutex held
900 */
update_cpumasks_hier(struct cpuset * cs,struct cpumask * new_cpus)901 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
902 {
903 struct cpuset *cp;
904 struct cgroup_subsys_state *pos_css;
905 bool need_rebuild_sched_domains = false;
906
907 rcu_read_lock();
908 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
909 struct cpuset *parent = parent_cs(cp);
910
911 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
912
913 /*
914 * If it becomes empty, inherit the effective mask of the
915 * parent, which is guaranteed to have some CPUs.
916 */
917 if (is_in_v2_mode() && cpumask_empty(new_cpus))
918 cpumask_copy(new_cpus, parent->effective_cpus);
919
920 /* Skip the whole subtree if the cpumask remains the same. */
921 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
922 pos_css = css_rightmost_descendant(pos_css);
923 continue;
924 }
925
926 if (!css_tryget_online(&cp->css))
927 continue;
928 rcu_read_unlock();
929
930 spin_lock_irq(&callback_lock);
931 cpumask_copy(cp->effective_cpus, new_cpus);
932 spin_unlock_irq(&callback_lock);
933
934 WARN_ON(!is_in_v2_mode() &&
935 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
936
937 update_tasks_cpumask(cp);
938
939 /*
940 * If the effective cpumask of any non-empty cpuset is changed,
941 * we need to rebuild sched domains.
942 */
943 if (!cpumask_empty(cp->cpus_allowed) &&
944 is_sched_load_balance(cp))
945 need_rebuild_sched_domains = true;
946
947 rcu_read_lock();
948 css_put(&cp->css);
949 }
950 rcu_read_unlock();
951
952 if (need_rebuild_sched_domains)
953 rebuild_sched_domains_locked();
954 }
955
956 /**
957 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
958 * @cs: the cpuset to consider
959 * @trialcs: trial cpuset
960 * @buf: buffer of cpu numbers written to this cpuset
961 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)962 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
963 const char *buf)
964 {
965 int retval;
966
967 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
968 if (cs == &top_cpuset)
969 return -EACCES;
970
971 /*
972 * An empty cpus_allowed is ok only if the cpuset has no tasks.
973 * Since cpulist_parse() fails on an empty mask, we special case
974 * that parsing. The validate_change() call ensures that cpusets
975 * with tasks have cpus.
976 */
977 if (!*buf) {
978 cpumask_clear(trialcs->cpus_allowed);
979 } else {
980 retval = cpulist_parse(buf, trialcs->cpus_requested);
981 if (retval < 0)
982 return retval;
983
984 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
985 return -EINVAL;
986
987 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
988 }
989
990 /* Nothing to do if the cpus didn't change */
991 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
992 return 0;
993
994 retval = validate_change(cs, trialcs);
995 if (retval < 0)
996 return retval;
997
998 spin_lock_irq(&callback_lock);
999 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1000 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1001 spin_unlock_irq(&callback_lock);
1002
1003 /* use trialcs->cpus_allowed as a temp variable */
1004 update_cpumasks_hier(cs, trialcs->cpus_allowed);
1005 return 0;
1006 }
1007
1008 /*
1009 * Migrate memory region from one set of nodes to another. This is
1010 * performed asynchronously as it can be called from process migration path
1011 * holding locks involved in process management. All mm migrations are
1012 * performed in the queued order and can be waited for by flushing
1013 * cpuset_migrate_mm_wq.
1014 */
1015
1016 struct cpuset_migrate_mm_work {
1017 struct work_struct work;
1018 struct mm_struct *mm;
1019 nodemask_t from;
1020 nodemask_t to;
1021 };
1022
cpuset_migrate_mm_workfn(struct work_struct * work)1023 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1024 {
1025 struct cpuset_migrate_mm_work *mwork =
1026 container_of(work, struct cpuset_migrate_mm_work, work);
1027
1028 /* on a wq worker, no need to worry about %current's mems_allowed */
1029 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1030 mmput(mwork->mm);
1031 kfree(mwork);
1032 }
1033
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1034 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1035 const nodemask_t *to)
1036 {
1037 struct cpuset_migrate_mm_work *mwork;
1038
1039 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1040 if (mwork) {
1041 mwork->mm = mm;
1042 mwork->from = *from;
1043 mwork->to = *to;
1044 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1045 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1046 } else {
1047 mmput(mm);
1048 }
1049 }
1050
cpuset_post_attach(void)1051 static void cpuset_post_attach(void)
1052 {
1053 flush_workqueue(cpuset_migrate_mm_wq);
1054 }
1055
1056 /*
1057 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1058 * @tsk: the task to change
1059 * @newmems: new nodes that the task will be set
1060 *
1061 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1062 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1063 * parallel, it might temporarily see an empty intersection, which results in
1064 * a seqlock check and retry before OOM or allocation failure.
1065 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1066 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1067 nodemask_t *newmems)
1068 {
1069 task_lock(tsk);
1070
1071 local_irq_disable();
1072 write_seqcount_begin(&tsk->mems_allowed_seq);
1073
1074 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1075 mpol_rebind_task(tsk, newmems);
1076 tsk->mems_allowed = *newmems;
1077
1078 write_seqcount_end(&tsk->mems_allowed_seq);
1079 local_irq_enable();
1080
1081 task_unlock(tsk);
1082 }
1083
1084 static void *cpuset_being_rebound;
1085
1086 /**
1087 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1088 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1089 *
1090 * Iterate through each task of @cs updating its mems_allowed to the
1091 * effective cpuset's. As this function is called with cpuset_mutex held,
1092 * cpuset membership stays stable.
1093 */
update_tasks_nodemask(struct cpuset * cs)1094 static void update_tasks_nodemask(struct cpuset *cs)
1095 {
1096 static nodemask_t newmems; /* protected by cpuset_mutex */
1097 struct css_task_iter it;
1098 struct task_struct *task;
1099
1100 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1101
1102 guarantee_online_mems(cs, &newmems);
1103
1104 /*
1105 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1106 * take while holding tasklist_lock. Forks can happen - the
1107 * mpol_dup() cpuset_being_rebound check will catch such forks,
1108 * and rebind their vma mempolicies too. Because we still hold
1109 * the global cpuset_mutex, we know that no other rebind effort
1110 * will be contending for the global variable cpuset_being_rebound.
1111 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1112 * is idempotent. Also migrate pages in each mm to new nodes.
1113 */
1114 css_task_iter_start(&cs->css, 0, &it);
1115 while ((task = css_task_iter_next(&it))) {
1116 struct mm_struct *mm;
1117 bool migrate;
1118
1119 cpuset_change_task_nodemask(task, &newmems);
1120
1121 mm = get_task_mm(task);
1122 if (!mm)
1123 continue;
1124
1125 migrate = is_memory_migrate(cs);
1126
1127 mpol_rebind_mm(mm, &cs->mems_allowed);
1128 if (migrate)
1129 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1130 else
1131 mmput(mm);
1132 }
1133 css_task_iter_end(&it);
1134
1135 /*
1136 * All the tasks' nodemasks have been updated, update
1137 * cs->old_mems_allowed.
1138 */
1139 cs->old_mems_allowed = newmems;
1140
1141 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1142 cpuset_being_rebound = NULL;
1143 }
1144
1145 /*
1146 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1147 * @cs: the cpuset to consider
1148 * @new_mems: a temp variable for calculating new effective_mems
1149 *
1150 * When configured nodemask is changed, the effective nodemasks of this cpuset
1151 * and all its descendants need to be updated.
1152 *
1153 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1154 *
1155 * Called with cpuset_mutex held
1156 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1157 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1158 {
1159 struct cpuset *cp;
1160 struct cgroup_subsys_state *pos_css;
1161
1162 rcu_read_lock();
1163 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1164 struct cpuset *parent = parent_cs(cp);
1165
1166 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1167
1168 /*
1169 * If it becomes empty, inherit the effective mask of the
1170 * parent, which is guaranteed to have some MEMs.
1171 */
1172 if (is_in_v2_mode() && nodes_empty(*new_mems))
1173 *new_mems = parent->effective_mems;
1174
1175 /* Skip the whole subtree if the nodemask remains the same. */
1176 if (nodes_equal(*new_mems, cp->effective_mems)) {
1177 pos_css = css_rightmost_descendant(pos_css);
1178 continue;
1179 }
1180
1181 if (!css_tryget_online(&cp->css))
1182 continue;
1183 rcu_read_unlock();
1184
1185 spin_lock_irq(&callback_lock);
1186 cp->effective_mems = *new_mems;
1187 spin_unlock_irq(&callback_lock);
1188
1189 WARN_ON(!is_in_v2_mode() &&
1190 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1191
1192 update_tasks_nodemask(cp);
1193
1194 rcu_read_lock();
1195 css_put(&cp->css);
1196 }
1197 rcu_read_unlock();
1198 }
1199
1200 /*
1201 * Handle user request to change the 'mems' memory placement
1202 * of a cpuset. Needs to validate the request, update the
1203 * cpusets mems_allowed, and for each task in the cpuset,
1204 * update mems_allowed and rebind task's mempolicy and any vma
1205 * mempolicies and if the cpuset is marked 'memory_migrate',
1206 * migrate the tasks pages to the new memory.
1207 *
1208 * Call with cpuset_mutex held. May take callback_lock during call.
1209 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1210 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1211 * their mempolicies to the cpusets new mems_allowed.
1212 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1213 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1214 const char *buf)
1215 {
1216 int retval;
1217
1218 /*
1219 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1220 * it's read-only
1221 */
1222 if (cs == &top_cpuset) {
1223 retval = -EACCES;
1224 goto done;
1225 }
1226
1227 /*
1228 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1229 * Since nodelist_parse() fails on an empty mask, we special case
1230 * that parsing. The validate_change() call ensures that cpusets
1231 * with tasks have memory.
1232 */
1233 if (!*buf) {
1234 nodes_clear(trialcs->mems_allowed);
1235 } else {
1236 retval = nodelist_parse(buf, trialcs->mems_allowed);
1237 if (retval < 0)
1238 goto done;
1239
1240 if (!nodes_subset(trialcs->mems_allowed,
1241 top_cpuset.mems_allowed)) {
1242 retval = -EINVAL;
1243 goto done;
1244 }
1245 }
1246
1247 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1248 retval = 0; /* Too easy - nothing to do */
1249 goto done;
1250 }
1251 retval = validate_change(cs, trialcs);
1252 if (retval < 0)
1253 goto done;
1254
1255 spin_lock_irq(&callback_lock);
1256 cs->mems_allowed = trialcs->mems_allowed;
1257 spin_unlock_irq(&callback_lock);
1258
1259 /* use trialcs->mems_allowed as a temp variable */
1260 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1261 done:
1262 return retval;
1263 }
1264
current_cpuset_is_being_rebound(void)1265 int current_cpuset_is_being_rebound(void)
1266 {
1267 int ret;
1268
1269 rcu_read_lock();
1270 ret = task_cs(current) == cpuset_being_rebound;
1271 rcu_read_unlock();
1272
1273 return ret;
1274 }
1275
update_relax_domain_level(struct cpuset * cs,s64 val)1276 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1277 {
1278 #ifdef CONFIG_SMP
1279 if (val < -1 || val >= sched_domain_level_max)
1280 return -EINVAL;
1281 #endif
1282
1283 if (val != cs->relax_domain_level) {
1284 cs->relax_domain_level = val;
1285 if (!cpumask_empty(cs->cpus_allowed) &&
1286 is_sched_load_balance(cs))
1287 rebuild_sched_domains_locked();
1288 }
1289
1290 return 0;
1291 }
1292
1293 /**
1294 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1295 * @cs: the cpuset in which each task's spread flags needs to be changed
1296 *
1297 * Iterate through each task of @cs updating its spread flags. As this
1298 * function is called with cpuset_mutex held, cpuset membership stays
1299 * stable.
1300 */
update_tasks_flags(struct cpuset * cs)1301 static void update_tasks_flags(struct cpuset *cs)
1302 {
1303 struct css_task_iter it;
1304 struct task_struct *task;
1305
1306 css_task_iter_start(&cs->css, 0, &it);
1307 while ((task = css_task_iter_next(&it)))
1308 cpuset_update_task_spread_flag(cs, task);
1309 css_task_iter_end(&it);
1310 }
1311
1312 /*
1313 * update_flag - read a 0 or a 1 in a file and update associated flag
1314 * bit: the bit to update (see cpuset_flagbits_t)
1315 * cs: the cpuset to update
1316 * turning_on: whether the flag is being set or cleared
1317 *
1318 * Call with cpuset_mutex held.
1319 */
1320
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)1321 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1322 int turning_on)
1323 {
1324 struct cpuset *trialcs;
1325 int balance_flag_changed;
1326 int spread_flag_changed;
1327 int err;
1328
1329 trialcs = alloc_trial_cpuset(cs);
1330 if (!trialcs)
1331 return -ENOMEM;
1332
1333 if (turning_on)
1334 set_bit(bit, &trialcs->flags);
1335 else
1336 clear_bit(bit, &trialcs->flags);
1337
1338 err = validate_change(cs, trialcs);
1339 if (err < 0)
1340 goto out;
1341
1342 balance_flag_changed = (is_sched_load_balance(cs) !=
1343 is_sched_load_balance(trialcs));
1344
1345 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1346 || (is_spread_page(cs) != is_spread_page(trialcs)));
1347
1348 spin_lock_irq(&callback_lock);
1349 cs->flags = trialcs->flags;
1350 spin_unlock_irq(&callback_lock);
1351
1352 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1353 rebuild_sched_domains_locked();
1354
1355 if (spread_flag_changed)
1356 update_tasks_flags(cs);
1357 out:
1358 free_trial_cpuset(trialcs);
1359 return err;
1360 }
1361
1362 /*
1363 * Frequency meter - How fast is some event occurring?
1364 *
1365 * These routines manage a digitally filtered, constant time based,
1366 * event frequency meter. There are four routines:
1367 * fmeter_init() - initialize a frequency meter.
1368 * fmeter_markevent() - called each time the event happens.
1369 * fmeter_getrate() - returns the recent rate of such events.
1370 * fmeter_update() - internal routine used to update fmeter.
1371 *
1372 * A common data structure is passed to each of these routines,
1373 * which is used to keep track of the state required to manage the
1374 * frequency meter and its digital filter.
1375 *
1376 * The filter works on the number of events marked per unit time.
1377 * The filter is single-pole low-pass recursive (IIR). The time unit
1378 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1379 * simulate 3 decimal digits of precision (multiplied by 1000).
1380 *
1381 * With an FM_COEF of 933, and a time base of 1 second, the filter
1382 * has a half-life of 10 seconds, meaning that if the events quit
1383 * happening, then the rate returned from the fmeter_getrate()
1384 * will be cut in half each 10 seconds, until it converges to zero.
1385 *
1386 * It is not worth doing a real infinitely recursive filter. If more
1387 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1388 * just compute FM_MAXTICKS ticks worth, by which point the level
1389 * will be stable.
1390 *
1391 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1392 * arithmetic overflow in the fmeter_update() routine.
1393 *
1394 * Given the simple 32 bit integer arithmetic used, this meter works
1395 * best for reporting rates between one per millisecond (msec) and
1396 * one per 32 (approx) seconds. At constant rates faster than one
1397 * per msec it maxes out at values just under 1,000,000. At constant
1398 * rates between one per msec, and one per second it will stabilize
1399 * to a value N*1000, where N is the rate of events per second.
1400 * At constant rates between one per second and one per 32 seconds,
1401 * it will be choppy, moving up on the seconds that have an event,
1402 * and then decaying until the next event. At rates slower than
1403 * about one in 32 seconds, it decays all the way back to zero between
1404 * each event.
1405 */
1406
1407 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1408 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1409 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1410 #define FM_SCALE 1000 /* faux fixed point scale */
1411
1412 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)1413 static void fmeter_init(struct fmeter *fmp)
1414 {
1415 fmp->cnt = 0;
1416 fmp->val = 0;
1417 fmp->time = 0;
1418 spin_lock_init(&fmp->lock);
1419 }
1420
1421 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)1422 static void fmeter_update(struct fmeter *fmp)
1423 {
1424 time64_t now;
1425 u32 ticks;
1426
1427 now = ktime_get_seconds();
1428 ticks = now - fmp->time;
1429
1430 if (ticks == 0)
1431 return;
1432
1433 ticks = min(FM_MAXTICKS, ticks);
1434 while (ticks-- > 0)
1435 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1436 fmp->time = now;
1437
1438 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1439 fmp->cnt = 0;
1440 }
1441
1442 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)1443 static void fmeter_markevent(struct fmeter *fmp)
1444 {
1445 spin_lock(&fmp->lock);
1446 fmeter_update(fmp);
1447 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1448 spin_unlock(&fmp->lock);
1449 }
1450
1451 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)1452 static int fmeter_getrate(struct fmeter *fmp)
1453 {
1454 int val;
1455
1456 spin_lock(&fmp->lock);
1457 fmeter_update(fmp);
1458 val = fmp->val;
1459 spin_unlock(&fmp->lock);
1460 return val;
1461 }
1462
1463 static struct cpuset *cpuset_attach_old_cs;
1464
1465 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)1466 static int cpuset_can_attach(struct cgroup_taskset *tset)
1467 {
1468 struct cgroup_subsys_state *css;
1469 struct cpuset *cs;
1470 struct task_struct *task;
1471 int ret;
1472
1473 /* used later by cpuset_attach() */
1474 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1475 cs = css_cs(css);
1476
1477 mutex_lock(&cpuset_mutex);
1478
1479 /* allow moving tasks into an empty cpuset if on default hierarchy */
1480 ret = -ENOSPC;
1481 if (!is_in_v2_mode() &&
1482 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1483 goto out_unlock;
1484
1485 cgroup_taskset_for_each(task, css, tset) {
1486 ret = task_can_attach(task, cs->cpus_allowed);
1487 if (ret)
1488 goto out_unlock;
1489 ret = security_task_setscheduler(task);
1490 if (ret)
1491 goto out_unlock;
1492 }
1493
1494 /*
1495 * Mark attach is in progress. This makes validate_change() fail
1496 * changes which zero cpus/mems_allowed.
1497 */
1498 cs->attach_in_progress++;
1499 ret = 0;
1500 out_unlock:
1501 mutex_unlock(&cpuset_mutex);
1502 return ret;
1503 }
1504
cpuset_cancel_attach(struct cgroup_taskset * tset)1505 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1506 {
1507 struct cgroup_subsys_state *css;
1508 struct cpuset *cs;
1509
1510 cgroup_taskset_first(tset, &css);
1511 cs = css_cs(css);
1512
1513 mutex_lock(&cpuset_mutex);
1514 css_cs(css)->attach_in_progress--;
1515 mutex_unlock(&cpuset_mutex);
1516 }
1517
1518 /*
1519 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1520 * but we can't allocate it dynamically there. Define it global and
1521 * allocate from cpuset_init().
1522 */
1523 static cpumask_var_t cpus_attach;
1524
cpuset_attach(struct cgroup_taskset * tset)1525 static void cpuset_attach(struct cgroup_taskset *tset)
1526 {
1527 /* static buf protected by cpuset_mutex */
1528 static nodemask_t cpuset_attach_nodemask_to;
1529 struct task_struct *task;
1530 struct task_struct *leader;
1531 struct cgroup_subsys_state *css;
1532 struct cpuset *cs;
1533 struct cpuset *oldcs = cpuset_attach_old_cs;
1534
1535 cgroup_taskset_first(tset, &css);
1536 cs = css_cs(css);
1537
1538 mutex_lock(&cpuset_mutex);
1539
1540 /* prepare for attach */
1541 if (cs == &top_cpuset)
1542 cpumask_copy(cpus_attach, cpu_possible_mask);
1543 else
1544 guarantee_online_cpus(cs, cpus_attach);
1545
1546 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1547
1548 cgroup_taskset_for_each(task, css, tset) {
1549 /*
1550 * can_attach beforehand should guarantee that this doesn't
1551 * fail. TODO: have a better way to handle failure here
1552 */
1553 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1554
1555 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1556 cpuset_update_task_spread_flag(cs, task);
1557 }
1558
1559 /*
1560 * Change mm for all threadgroup leaders. This is expensive and may
1561 * sleep and should be moved outside migration path proper.
1562 */
1563 cpuset_attach_nodemask_to = cs->effective_mems;
1564 cgroup_taskset_for_each_leader(leader, css, tset) {
1565 struct mm_struct *mm = get_task_mm(leader);
1566
1567 if (mm) {
1568 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1569
1570 /*
1571 * old_mems_allowed is the same with mems_allowed
1572 * here, except if this task is being moved
1573 * automatically due to hotplug. In that case
1574 * @mems_allowed has been updated and is empty, so
1575 * @old_mems_allowed is the right nodesets that we
1576 * migrate mm from.
1577 */
1578 if (is_memory_migrate(cs))
1579 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1580 &cpuset_attach_nodemask_to);
1581 else
1582 mmput(mm);
1583 }
1584 }
1585
1586 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1587
1588 cs->attach_in_progress--;
1589 if (!cs->attach_in_progress)
1590 wake_up(&cpuset_attach_wq);
1591
1592 mutex_unlock(&cpuset_mutex);
1593 }
1594
1595 /* The various types of files and directories in a cpuset file system */
1596
1597 typedef enum {
1598 FILE_MEMORY_MIGRATE,
1599 FILE_CPULIST,
1600 FILE_MEMLIST,
1601 FILE_EFFECTIVE_CPULIST,
1602 FILE_EFFECTIVE_MEMLIST,
1603 FILE_CPU_EXCLUSIVE,
1604 FILE_MEM_EXCLUSIVE,
1605 FILE_MEM_HARDWALL,
1606 FILE_SCHED_LOAD_BALANCE,
1607 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1608 FILE_MEMORY_PRESSURE_ENABLED,
1609 FILE_MEMORY_PRESSURE,
1610 FILE_SPREAD_PAGE,
1611 FILE_SPREAD_SLAB,
1612 } cpuset_filetype_t;
1613
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)1614 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1615 u64 val)
1616 {
1617 struct cpuset *cs = css_cs(css);
1618 cpuset_filetype_t type = cft->private;
1619 int retval = 0;
1620
1621 mutex_lock(&cpuset_mutex);
1622 if (!is_cpuset_online(cs)) {
1623 retval = -ENODEV;
1624 goto out_unlock;
1625 }
1626
1627 switch (type) {
1628 case FILE_CPU_EXCLUSIVE:
1629 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1630 break;
1631 case FILE_MEM_EXCLUSIVE:
1632 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1633 break;
1634 case FILE_MEM_HARDWALL:
1635 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1636 break;
1637 case FILE_SCHED_LOAD_BALANCE:
1638 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1639 break;
1640 case FILE_MEMORY_MIGRATE:
1641 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1642 break;
1643 case FILE_MEMORY_PRESSURE_ENABLED:
1644 cpuset_memory_pressure_enabled = !!val;
1645 break;
1646 case FILE_SPREAD_PAGE:
1647 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1648 break;
1649 case FILE_SPREAD_SLAB:
1650 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1651 break;
1652 default:
1653 retval = -EINVAL;
1654 break;
1655 }
1656 out_unlock:
1657 mutex_unlock(&cpuset_mutex);
1658 return retval;
1659 }
1660
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)1661 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1662 s64 val)
1663 {
1664 struct cpuset *cs = css_cs(css);
1665 cpuset_filetype_t type = cft->private;
1666 int retval = -ENODEV;
1667
1668 mutex_lock(&cpuset_mutex);
1669 if (!is_cpuset_online(cs))
1670 goto out_unlock;
1671
1672 switch (type) {
1673 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1674 retval = update_relax_domain_level(cs, val);
1675 break;
1676 default:
1677 retval = -EINVAL;
1678 break;
1679 }
1680 out_unlock:
1681 mutex_unlock(&cpuset_mutex);
1682 return retval;
1683 }
1684
1685 /*
1686 * Common handling for a write to a "cpus" or "mems" file.
1687 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1688 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1689 char *buf, size_t nbytes, loff_t off)
1690 {
1691 struct cpuset *cs = css_cs(of_css(of));
1692 struct cpuset *trialcs;
1693 int retval = -ENODEV;
1694
1695 buf = strstrip(buf);
1696
1697 /*
1698 * CPU or memory hotunplug may leave @cs w/o any execution
1699 * resources, in which case the hotplug code asynchronously updates
1700 * configuration and transfers all tasks to the nearest ancestor
1701 * which can execute.
1702 *
1703 * As writes to "cpus" or "mems" may restore @cs's execution
1704 * resources, wait for the previously scheduled operations before
1705 * proceeding, so that we don't end up keep removing tasks added
1706 * after execution capability is restored.
1707 *
1708 * cpuset_hotplug_work calls back into cgroup core via
1709 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1710 * operation like this one can lead to a deadlock through kernfs
1711 * active_ref protection. Let's break the protection. Losing the
1712 * protection is okay as we check whether @cs is online after
1713 * grabbing cpuset_mutex anyway. This only happens on the legacy
1714 * hierarchies.
1715 */
1716 css_get(&cs->css);
1717 kernfs_break_active_protection(of->kn);
1718 flush_work(&cpuset_hotplug_work);
1719
1720 mutex_lock(&cpuset_mutex);
1721 if (!is_cpuset_online(cs))
1722 goto out_unlock;
1723
1724 trialcs = alloc_trial_cpuset(cs);
1725 if (!trialcs) {
1726 retval = -ENOMEM;
1727 goto out_unlock;
1728 }
1729
1730 switch (of_cft(of)->private) {
1731 case FILE_CPULIST:
1732 retval = update_cpumask(cs, trialcs, buf);
1733 break;
1734 case FILE_MEMLIST:
1735 retval = update_nodemask(cs, trialcs, buf);
1736 break;
1737 default:
1738 retval = -EINVAL;
1739 break;
1740 }
1741
1742 free_trial_cpuset(trialcs);
1743 out_unlock:
1744 mutex_unlock(&cpuset_mutex);
1745 kernfs_unbreak_active_protection(of->kn);
1746 css_put(&cs->css);
1747 flush_workqueue(cpuset_migrate_mm_wq);
1748 return retval ?: nbytes;
1749 }
1750
1751 /*
1752 * These ascii lists should be read in a single call, by using a user
1753 * buffer large enough to hold the entire map. If read in smaller
1754 * chunks, there is no guarantee of atomicity. Since the display format
1755 * used, list of ranges of sequential numbers, is variable length,
1756 * and since these maps can change value dynamically, one could read
1757 * gibberish by doing partial reads while a list was changing.
1758 */
cpuset_common_seq_show(struct seq_file * sf,void * v)1759 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1760 {
1761 struct cpuset *cs = css_cs(seq_css(sf));
1762 cpuset_filetype_t type = seq_cft(sf)->private;
1763 int ret = 0;
1764
1765 spin_lock_irq(&callback_lock);
1766
1767 switch (type) {
1768 case FILE_CPULIST:
1769 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
1770 break;
1771 case FILE_MEMLIST:
1772 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1773 break;
1774 case FILE_EFFECTIVE_CPULIST:
1775 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1776 break;
1777 case FILE_EFFECTIVE_MEMLIST:
1778 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1779 break;
1780 default:
1781 ret = -EINVAL;
1782 }
1783
1784 spin_unlock_irq(&callback_lock);
1785 return ret;
1786 }
1787
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)1788 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1789 {
1790 struct cpuset *cs = css_cs(css);
1791 cpuset_filetype_t type = cft->private;
1792 switch (type) {
1793 case FILE_CPU_EXCLUSIVE:
1794 return is_cpu_exclusive(cs);
1795 case FILE_MEM_EXCLUSIVE:
1796 return is_mem_exclusive(cs);
1797 case FILE_MEM_HARDWALL:
1798 return is_mem_hardwall(cs);
1799 case FILE_SCHED_LOAD_BALANCE:
1800 return is_sched_load_balance(cs);
1801 case FILE_MEMORY_MIGRATE:
1802 return is_memory_migrate(cs);
1803 case FILE_MEMORY_PRESSURE_ENABLED:
1804 return cpuset_memory_pressure_enabled;
1805 case FILE_MEMORY_PRESSURE:
1806 return fmeter_getrate(&cs->fmeter);
1807 case FILE_SPREAD_PAGE:
1808 return is_spread_page(cs);
1809 case FILE_SPREAD_SLAB:
1810 return is_spread_slab(cs);
1811 default:
1812 BUG();
1813 }
1814
1815 /* Unreachable but makes gcc happy */
1816 return 0;
1817 }
1818
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)1819 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1820 {
1821 struct cpuset *cs = css_cs(css);
1822 cpuset_filetype_t type = cft->private;
1823 switch (type) {
1824 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1825 return cs->relax_domain_level;
1826 default:
1827 BUG();
1828 }
1829
1830 /* Unrechable but makes gcc happy */
1831 return 0;
1832 }
1833
1834
1835 /*
1836 * for the common functions, 'private' gives the type of file
1837 */
1838
1839 static struct cftype files[] = {
1840 {
1841 .name = "cpus",
1842 .seq_show = cpuset_common_seq_show,
1843 .write = cpuset_write_resmask,
1844 .max_write_len = (100U + 6 * NR_CPUS),
1845 .private = FILE_CPULIST,
1846 },
1847
1848 {
1849 .name = "mems",
1850 .seq_show = cpuset_common_seq_show,
1851 .write = cpuset_write_resmask,
1852 .max_write_len = (100U + 6 * MAX_NUMNODES),
1853 .private = FILE_MEMLIST,
1854 },
1855
1856 {
1857 .name = "effective_cpus",
1858 .seq_show = cpuset_common_seq_show,
1859 .private = FILE_EFFECTIVE_CPULIST,
1860 },
1861
1862 {
1863 .name = "effective_mems",
1864 .seq_show = cpuset_common_seq_show,
1865 .private = FILE_EFFECTIVE_MEMLIST,
1866 },
1867
1868 {
1869 .name = "cpu_exclusive",
1870 .read_u64 = cpuset_read_u64,
1871 .write_u64 = cpuset_write_u64,
1872 .private = FILE_CPU_EXCLUSIVE,
1873 },
1874
1875 {
1876 .name = "mem_exclusive",
1877 .read_u64 = cpuset_read_u64,
1878 .write_u64 = cpuset_write_u64,
1879 .private = FILE_MEM_EXCLUSIVE,
1880 },
1881
1882 {
1883 .name = "mem_hardwall",
1884 .read_u64 = cpuset_read_u64,
1885 .write_u64 = cpuset_write_u64,
1886 .private = FILE_MEM_HARDWALL,
1887 },
1888
1889 {
1890 .name = "sched_load_balance",
1891 .read_u64 = cpuset_read_u64,
1892 .write_u64 = cpuset_write_u64,
1893 .private = FILE_SCHED_LOAD_BALANCE,
1894 },
1895
1896 {
1897 .name = "sched_relax_domain_level",
1898 .read_s64 = cpuset_read_s64,
1899 .write_s64 = cpuset_write_s64,
1900 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1901 },
1902
1903 {
1904 .name = "memory_migrate",
1905 .read_u64 = cpuset_read_u64,
1906 .write_u64 = cpuset_write_u64,
1907 .private = FILE_MEMORY_MIGRATE,
1908 },
1909
1910 {
1911 .name = "memory_pressure",
1912 .read_u64 = cpuset_read_u64,
1913 .private = FILE_MEMORY_PRESSURE,
1914 },
1915
1916 {
1917 .name = "memory_spread_page",
1918 .read_u64 = cpuset_read_u64,
1919 .write_u64 = cpuset_write_u64,
1920 .private = FILE_SPREAD_PAGE,
1921 },
1922
1923 {
1924 .name = "memory_spread_slab",
1925 .read_u64 = cpuset_read_u64,
1926 .write_u64 = cpuset_write_u64,
1927 .private = FILE_SPREAD_SLAB,
1928 },
1929
1930 {
1931 .name = "memory_pressure_enabled",
1932 .flags = CFTYPE_ONLY_ON_ROOT,
1933 .read_u64 = cpuset_read_u64,
1934 .write_u64 = cpuset_write_u64,
1935 .private = FILE_MEMORY_PRESSURE_ENABLED,
1936 },
1937
1938 { } /* terminate */
1939 };
1940
1941 /*
1942 * cpuset_css_alloc - allocate a cpuset css
1943 * cgrp: control group that the new cpuset will be part of
1944 */
1945
1946 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)1947 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1948 {
1949 struct cpuset *cs;
1950
1951 if (!parent_css)
1952 return &top_cpuset.css;
1953
1954 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1955 if (!cs)
1956 return ERR_PTR(-ENOMEM);
1957 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1958 goto free_cs;
1959 if (!alloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
1960 goto free_allowed;
1961 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1962 goto free_requested;
1963
1964 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1965 cpumask_clear(cs->cpus_allowed);
1966 cpumask_clear(cs->cpus_requested);
1967 nodes_clear(cs->mems_allowed);
1968 cpumask_clear(cs->effective_cpus);
1969 nodes_clear(cs->effective_mems);
1970 fmeter_init(&cs->fmeter);
1971 cs->relax_domain_level = -1;
1972
1973 return &cs->css;
1974
1975 free_requested:
1976 free_cpumask_var(cs->cpus_requested);
1977 free_allowed:
1978 free_cpumask_var(cs->cpus_allowed);
1979 free_cs:
1980 kfree(cs);
1981 return ERR_PTR(-ENOMEM);
1982 }
1983
cpuset_css_online(struct cgroup_subsys_state * css)1984 static int cpuset_css_online(struct cgroup_subsys_state *css)
1985 {
1986 struct cpuset *cs = css_cs(css);
1987 struct cpuset *parent = parent_cs(cs);
1988 struct cpuset *tmp_cs;
1989 struct cgroup_subsys_state *pos_css;
1990
1991 if (!parent)
1992 return 0;
1993
1994 mutex_lock(&cpuset_mutex);
1995
1996 set_bit(CS_ONLINE, &cs->flags);
1997 if (is_spread_page(parent))
1998 set_bit(CS_SPREAD_PAGE, &cs->flags);
1999 if (is_spread_slab(parent))
2000 set_bit(CS_SPREAD_SLAB, &cs->flags);
2001
2002 cpuset_inc();
2003
2004 spin_lock_irq(&callback_lock);
2005 if (is_in_v2_mode()) {
2006 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2007 cs->effective_mems = parent->effective_mems;
2008 }
2009 spin_unlock_irq(&callback_lock);
2010
2011 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2012 goto out_unlock;
2013
2014 /*
2015 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2016 * set. This flag handling is implemented in cgroup core for
2017 * histrical reasons - the flag may be specified during mount.
2018 *
2019 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2020 * refuse to clone the configuration - thereby refusing the task to
2021 * be entered, and as a result refusing the sys_unshare() or
2022 * clone() which initiated it. If this becomes a problem for some
2023 * users who wish to allow that scenario, then this could be
2024 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2025 * (and likewise for mems) to the new cgroup.
2026 */
2027 rcu_read_lock();
2028 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2029 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2030 rcu_read_unlock();
2031 goto out_unlock;
2032 }
2033 }
2034 rcu_read_unlock();
2035
2036 spin_lock_irq(&callback_lock);
2037 cs->mems_allowed = parent->mems_allowed;
2038 cs->effective_mems = parent->mems_allowed;
2039 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2040 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2041 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2042 spin_unlock_irq(&callback_lock);
2043 out_unlock:
2044 mutex_unlock(&cpuset_mutex);
2045 return 0;
2046 }
2047
2048 /*
2049 * If the cpuset being removed has its flag 'sched_load_balance'
2050 * enabled, then simulate turning sched_load_balance off, which
2051 * will call rebuild_sched_domains_locked().
2052 */
2053
cpuset_css_offline(struct cgroup_subsys_state * css)2054 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2055 {
2056 struct cpuset *cs = css_cs(css);
2057
2058 mutex_lock(&cpuset_mutex);
2059
2060 if (is_sched_load_balance(cs))
2061 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2062
2063 cpuset_dec();
2064 clear_bit(CS_ONLINE, &cs->flags);
2065
2066 mutex_unlock(&cpuset_mutex);
2067 }
2068
cpuset_css_free(struct cgroup_subsys_state * css)2069 static void cpuset_css_free(struct cgroup_subsys_state *css)
2070 {
2071 struct cpuset *cs = css_cs(css);
2072
2073 free_cpumask_var(cs->effective_cpus);
2074 free_cpumask_var(cs->cpus_allowed);
2075 free_cpumask_var(cs->cpus_requested);
2076 kfree(cs);
2077 }
2078
cpuset_bind(struct cgroup_subsys_state * root_css)2079 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2080 {
2081 mutex_lock(&cpuset_mutex);
2082 spin_lock_irq(&callback_lock);
2083
2084 if (is_in_v2_mode()) {
2085 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2086 top_cpuset.mems_allowed = node_possible_map;
2087 } else {
2088 cpumask_copy(top_cpuset.cpus_allowed,
2089 top_cpuset.effective_cpus);
2090 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2091 }
2092
2093 spin_unlock_irq(&callback_lock);
2094 mutex_unlock(&cpuset_mutex);
2095 }
2096
2097 /*
2098 * Make sure the new task conform to the current state of its parent,
2099 * which could have been changed by cpuset just after it inherits the
2100 * state from the parent and before it sits on the cgroup's task list.
2101 */
cpuset_fork(struct task_struct * task)2102 static void cpuset_fork(struct task_struct *task)
2103 {
2104 if (task_css_is_root(task, cpuset_cgrp_id))
2105 return;
2106
2107 set_cpus_allowed_ptr(task, ¤t->cpus_allowed);
2108 task->mems_allowed = current->mems_allowed;
2109 }
2110
2111 struct cgroup_subsys cpuset_cgrp_subsys = {
2112 .css_alloc = cpuset_css_alloc,
2113 .css_online = cpuset_css_online,
2114 .css_offline = cpuset_css_offline,
2115 .css_free = cpuset_css_free,
2116 .can_attach = cpuset_can_attach,
2117 .cancel_attach = cpuset_cancel_attach,
2118 .attach = cpuset_attach,
2119 .post_attach = cpuset_post_attach,
2120 .bind = cpuset_bind,
2121 .fork = cpuset_fork,
2122 .legacy_cftypes = files,
2123 .early_init = true,
2124 };
2125
2126 /**
2127 * cpuset_init - initialize cpusets at system boot
2128 *
2129 * Description: Initialize top_cpuset and the cpuset internal file system,
2130 **/
2131
cpuset_init(void)2132 int __init cpuset_init(void)
2133 {
2134 int err = 0;
2135
2136 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
2137 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
2138 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
2139
2140 cpumask_setall(top_cpuset.cpus_allowed);
2141 cpumask_setall(top_cpuset.cpus_requested);
2142 nodes_setall(top_cpuset.mems_allowed);
2143 cpumask_setall(top_cpuset.effective_cpus);
2144 nodes_setall(top_cpuset.effective_mems);
2145
2146 fmeter_init(&top_cpuset.fmeter);
2147 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2148 top_cpuset.relax_domain_level = -1;
2149
2150 err = register_filesystem(&cpuset_fs_type);
2151 if (err < 0)
2152 return err;
2153
2154 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
2155
2156 return 0;
2157 }
2158
2159 /*
2160 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2161 * or memory nodes, we need to walk over the cpuset hierarchy,
2162 * removing that CPU or node from all cpusets. If this removes the
2163 * last CPU or node from a cpuset, then move the tasks in the empty
2164 * cpuset to its next-highest non-empty parent.
2165 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)2166 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2167 {
2168 struct cpuset *parent;
2169
2170 /*
2171 * Find its next-highest non-empty parent, (top cpuset
2172 * has online cpus, so can't be empty).
2173 */
2174 parent = parent_cs(cs);
2175 while (cpumask_empty(parent->cpus_allowed) ||
2176 nodes_empty(parent->mems_allowed))
2177 parent = parent_cs(parent);
2178
2179 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2180 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2181 pr_cont_cgroup_name(cs->css.cgroup);
2182 pr_cont("\n");
2183 }
2184 }
2185
2186 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2187 hotplug_update_tasks_legacy(struct cpuset *cs,
2188 struct cpumask *new_cpus, nodemask_t *new_mems,
2189 bool cpus_updated, bool mems_updated)
2190 {
2191 bool is_empty;
2192
2193 spin_lock_irq(&callback_lock);
2194 cpumask_copy(cs->cpus_allowed, new_cpus);
2195 cpumask_copy(cs->effective_cpus, new_cpus);
2196 cs->mems_allowed = *new_mems;
2197 cs->effective_mems = *new_mems;
2198 spin_unlock_irq(&callback_lock);
2199
2200 /*
2201 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2202 * as the tasks will be migratecd to an ancestor.
2203 */
2204 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2205 update_tasks_cpumask(cs);
2206 if (mems_updated && !nodes_empty(cs->mems_allowed))
2207 update_tasks_nodemask(cs);
2208
2209 is_empty = cpumask_empty(cs->cpus_allowed) ||
2210 nodes_empty(cs->mems_allowed);
2211
2212 mutex_unlock(&cpuset_mutex);
2213
2214 /*
2215 * Move tasks to the nearest ancestor with execution resources,
2216 * This is full cgroup operation which will also call back into
2217 * cpuset. Should be done outside any lock.
2218 */
2219 if (is_empty)
2220 remove_tasks_in_empty_cpuset(cs);
2221
2222 mutex_lock(&cpuset_mutex);
2223 }
2224
2225 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)2226 hotplug_update_tasks(struct cpuset *cs,
2227 struct cpumask *new_cpus, nodemask_t *new_mems,
2228 bool cpus_updated, bool mems_updated)
2229 {
2230 if (cpumask_empty(new_cpus))
2231 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2232 if (nodes_empty(*new_mems))
2233 *new_mems = parent_cs(cs)->effective_mems;
2234
2235 spin_lock_irq(&callback_lock);
2236 cpumask_copy(cs->effective_cpus, new_cpus);
2237 cs->effective_mems = *new_mems;
2238 spin_unlock_irq(&callback_lock);
2239
2240 if (cpus_updated)
2241 update_tasks_cpumask(cs);
2242 if (mems_updated)
2243 update_tasks_nodemask(cs);
2244 }
2245
2246 /**
2247 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2248 * @cs: cpuset in interest
2249 *
2250 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2251 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2252 * all its tasks are moved to the nearest ancestor with both resources.
2253 */
cpuset_hotplug_update_tasks(struct cpuset * cs)2254 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2255 {
2256 static cpumask_t new_cpus;
2257 static nodemask_t new_mems;
2258 bool cpus_updated;
2259 bool mems_updated;
2260 retry:
2261 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2262
2263 mutex_lock(&cpuset_mutex);
2264
2265 /*
2266 * We have raced with task attaching. We wait until attaching
2267 * is finished, so we won't attach a task to an empty cpuset.
2268 */
2269 if (cs->attach_in_progress) {
2270 mutex_unlock(&cpuset_mutex);
2271 goto retry;
2272 }
2273
2274 cpumask_and(&new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
2275 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2276
2277 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2278 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2279
2280 if (is_in_v2_mode())
2281 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2282 cpus_updated, mems_updated);
2283 else
2284 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2285 cpus_updated, mems_updated);
2286
2287 mutex_unlock(&cpuset_mutex);
2288 }
2289
2290 static bool force_rebuild;
2291
cpuset_force_rebuild(void)2292 void cpuset_force_rebuild(void)
2293 {
2294 force_rebuild = true;
2295 }
2296
2297 /**
2298 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2299 *
2300 * This function is called after either CPU or memory configuration has
2301 * changed and updates cpuset accordingly. The top_cpuset is always
2302 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2303 * order to make cpusets transparent (of no affect) on systems that are
2304 * actively using CPU hotplug but making no active use of cpusets.
2305 *
2306 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2307 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2308 * all descendants.
2309 *
2310 * Note that CPU offlining during suspend is ignored. We don't modify
2311 * cpusets across suspend/resume cycles at all.
2312 */
cpuset_hotplug_workfn(struct work_struct * work)2313 static void cpuset_hotplug_workfn(struct work_struct *work)
2314 {
2315 static cpumask_t new_cpus;
2316 static nodemask_t new_mems;
2317 bool cpus_updated, mems_updated;
2318 bool on_dfl = is_in_v2_mode();
2319
2320 mutex_lock(&cpuset_mutex);
2321
2322 /* fetch the available cpus/mems and find out which changed how */
2323 cpumask_copy(&new_cpus, cpu_active_mask);
2324 new_mems = node_states[N_MEMORY];
2325
2326 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2327 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2328
2329 /* synchronize cpus_allowed to cpu_active_mask */
2330 if (cpus_updated) {
2331 spin_lock_irq(&callback_lock);
2332 if (!on_dfl)
2333 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2334 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2335 spin_unlock_irq(&callback_lock);
2336 /* we don't mess with cpumasks of tasks in top_cpuset */
2337 }
2338
2339 /* synchronize mems_allowed to N_MEMORY */
2340 if (mems_updated) {
2341 spin_lock_irq(&callback_lock);
2342 if (!on_dfl)
2343 top_cpuset.mems_allowed = new_mems;
2344 top_cpuset.effective_mems = new_mems;
2345 spin_unlock_irq(&callback_lock);
2346 update_tasks_nodemask(&top_cpuset);
2347 }
2348
2349 mutex_unlock(&cpuset_mutex);
2350
2351 /* if cpus or mems changed, we need to propagate to descendants */
2352 if (cpus_updated || mems_updated) {
2353 struct cpuset *cs;
2354 struct cgroup_subsys_state *pos_css;
2355
2356 rcu_read_lock();
2357 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2358 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2359 continue;
2360 rcu_read_unlock();
2361
2362 cpuset_hotplug_update_tasks(cs);
2363
2364 rcu_read_lock();
2365 css_put(&cs->css);
2366 }
2367 rcu_read_unlock();
2368 }
2369
2370 /* rebuild sched domains if cpus_allowed has changed */
2371 if (cpus_updated || force_rebuild) {
2372 force_rebuild = false;
2373 rebuild_sched_domains();
2374 }
2375 }
2376
cpuset_update_active_cpus(void)2377 void cpuset_update_active_cpus(void)
2378 {
2379 /*
2380 * We're inside cpu hotplug critical region which usually nests
2381 * inside cgroup synchronization. Bounce actual hotplug processing
2382 * to a work item to avoid reverse locking order.
2383 */
2384 schedule_work(&cpuset_hotplug_work);
2385 }
2386
cpuset_wait_for_hotplug(void)2387 void cpuset_wait_for_hotplug(void)
2388 {
2389 flush_work(&cpuset_hotplug_work);
2390 }
2391
2392 /*
2393 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2394 * Call this routine anytime after node_states[N_MEMORY] changes.
2395 * See cpuset_update_active_cpus() for CPU hotplug handling.
2396 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)2397 static int cpuset_track_online_nodes(struct notifier_block *self,
2398 unsigned long action, void *arg)
2399 {
2400 schedule_work(&cpuset_hotplug_work);
2401 return NOTIFY_OK;
2402 }
2403
2404 static struct notifier_block cpuset_track_online_nodes_nb = {
2405 .notifier_call = cpuset_track_online_nodes,
2406 .priority = 10, /* ??! */
2407 };
2408
2409 /**
2410 * cpuset_init_smp - initialize cpus_allowed
2411 *
2412 * Description: Finish top cpuset after cpu, node maps are initialized
2413 */
cpuset_init_smp(void)2414 void __init cpuset_init_smp(void)
2415 {
2416 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2417 top_cpuset.mems_allowed = node_states[N_MEMORY];
2418 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2419
2420 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2421 top_cpuset.effective_mems = node_states[N_MEMORY];
2422
2423 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2424
2425 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2426 BUG_ON(!cpuset_migrate_mm_wq);
2427 }
2428
2429 /**
2430 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2431 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2432 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2433 *
2434 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2435 * attached to the specified @tsk. Guaranteed to return some non-empty
2436 * subset of cpu_online_mask, even if this means going outside the
2437 * tasks cpuset.
2438 **/
2439
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)2440 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2441 {
2442 unsigned long flags;
2443
2444 spin_lock_irqsave(&callback_lock, flags);
2445 rcu_read_lock();
2446 guarantee_online_cpus(task_cs(tsk), pmask);
2447 rcu_read_unlock();
2448 spin_unlock_irqrestore(&callback_lock, flags);
2449 }
2450
2451 /**
2452 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
2453 * @tsk: pointer to task_struct with which the scheduler is struggling
2454 *
2455 * Description: In the case that the scheduler cannot find an allowed cpu in
2456 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
2457 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
2458 * which will not contain a sane cpumask during cases such as cpu hotplugging.
2459 * This is the absolute last resort for the scheduler and it is only used if
2460 * _every_ other avenue has been traveled.
2461 **/
2462
cpuset_cpus_allowed_fallback(struct task_struct * tsk)2463 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2464 {
2465 rcu_read_lock();
2466 do_set_cpus_allowed(tsk, is_in_v2_mode() ?
2467 task_cs(tsk)->cpus_allowed : cpu_possible_mask);
2468 rcu_read_unlock();
2469
2470 /*
2471 * We own tsk->cpus_allowed, nobody can change it under us.
2472 *
2473 * But we used cs && cs->cpus_allowed lockless and thus can
2474 * race with cgroup_attach_task() or update_cpumask() and get
2475 * the wrong tsk->cpus_allowed. However, both cases imply the
2476 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2477 * which takes task_rq_lock().
2478 *
2479 * If we are called after it dropped the lock we must see all
2480 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2481 * set any mask even if it is not right from task_cs() pov,
2482 * the pending set_cpus_allowed_ptr() will fix things.
2483 *
2484 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2485 * if required.
2486 */
2487 }
2488
cpuset_init_current_mems_allowed(void)2489 void __init cpuset_init_current_mems_allowed(void)
2490 {
2491 nodes_setall(current->mems_allowed);
2492 }
2493
2494 /**
2495 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2496 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2497 *
2498 * Description: Returns the nodemask_t mems_allowed of the cpuset
2499 * attached to the specified @tsk. Guaranteed to return some non-empty
2500 * subset of node_states[N_MEMORY], even if this means going outside the
2501 * tasks cpuset.
2502 **/
2503
cpuset_mems_allowed(struct task_struct * tsk)2504 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2505 {
2506 nodemask_t mask;
2507 unsigned long flags;
2508
2509 spin_lock_irqsave(&callback_lock, flags);
2510 rcu_read_lock();
2511 guarantee_online_mems(task_cs(tsk), &mask);
2512 rcu_read_unlock();
2513 spin_unlock_irqrestore(&callback_lock, flags);
2514
2515 return mask;
2516 }
2517
2518 /**
2519 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2520 * @nodemask: the nodemask to be checked
2521 *
2522 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2523 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)2524 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2525 {
2526 return nodes_intersects(*nodemask, current->mems_allowed);
2527 }
2528
2529 /*
2530 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2531 * mem_hardwall ancestor to the specified cpuset. Call holding
2532 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2533 * (an unusual configuration), then returns the root cpuset.
2534 */
nearest_hardwall_ancestor(struct cpuset * cs)2535 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2536 {
2537 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2538 cs = parent_cs(cs);
2539 return cs;
2540 }
2541
2542 /**
2543 * cpuset_node_allowed - Can we allocate on a memory node?
2544 * @node: is this an allowed node?
2545 * @gfp_mask: memory allocation flags
2546 *
2547 * If we're in interrupt, yes, we can always allocate. If @node is set in
2548 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2549 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2550 * yes. If current has access to memory reserves as an oom victim, yes.
2551 * Otherwise, no.
2552 *
2553 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2554 * and do not allow allocations outside the current tasks cpuset
2555 * unless the task has been OOM killed.
2556 * GFP_KERNEL allocations are not so marked, so can escape to the
2557 * nearest enclosing hardwalled ancestor cpuset.
2558 *
2559 * Scanning up parent cpusets requires callback_lock. The
2560 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2561 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2562 * current tasks mems_allowed came up empty on the first pass over
2563 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2564 * cpuset are short of memory, might require taking the callback_lock.
2565 *
2566 * The first call here from mm/page_alloc:get_page_from_freelist()
2567 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2568 * so no allocation on a node outside the cpuset is allowed (unless
2569 * in interrupt, of course).
2570 *
2571 * The second pass through get_page_from_freelist() doesn't even call
2572 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2573 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2574 * in alloc_flags. That logic and the checks below have the combined
2575 * affect that:
2576 * in_interrupt - any node ok (current task context irrelevant)
2577 * GFP_ATOMIC - any node ok
2578 * tsk_is_oom_victim - any node ok
2579 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2580 * GFP_USER - only nodes in current tasks mems allowed ok.
2581 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)2582 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
2583 {
2584 struct cpuset *cs; /* current cpuset ancestors */
2585 int allowed; /* is allocation in zone z allowed? */
2586 unsigned long flags;
2587
2588 if (in_interrupt())
2589 return true;
2590 if (node_isset(node, current->mems_allowed))
2591 return true;
2592 /*
2593 * Allow tasks that have access to memory reserves because they have
2594 * been OOM killed to get memory anywhere.
2595 */
2596 if (unlikely(tsk_is_oom_victim(current)))
2597 return true;
2598 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2599 return false;
2600
2601 if (current->flags & PF_EXITING) /* Let dying task have memory */
2602 return true;
2603
2604 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2605 spin_lock_irqsave(&callback_lock, flags);
2606
2607 rcu_read_lock();
2608 cs = nearest_hardwall_ancestor(task_cs(current));
2609 allowed = node_isset(node, cs->mems_allowed);
2610 rcu_read_unlock();
2611
2612 spin_unlock_irqrestore(&callback_lock, flags);
2613 return allowed;
2614 }
2615
2616 /**
2617 * cpuset_mem_spread_node() - On which node to begin search for a file page
2618 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2619 *
2620 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2621 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2622 * and if the memory allocation used cpuset_mem_spread_node()
2623 * to determine on which node to start looking, as it will for
2624 * certain page cache or slab cache pages such as used for file
2625 * system buffers and inode caches, then instead of starting on the
2626 * local node to look for a free page, rather spread the starting
2627 * node around the tasks mems_allowed nodes.
2628 *
2629 * We don't have to worry about the returned node being offline
2630 * because "it can't happen", and even if it did, it would be ok.
2631 *
2632 * The routines calling guarantee_online_mems() are careful to
2633 * only set nodes in task->mems_allowed that are online. So it
2634 * should not be possible for the following code to return an
2635 * offline node. But if it did, that would be ok, as this routine
2636 * is not returning the node where the allocation must be, only
2637 * the node where the search should start. The zonelist passed to
2638 * __alloc_pages() will include all nodes. If the slab allocator
2639 * is passed an offline node, it will fall back to the local node.
2640 * See kmem_cache_alloc_node().
2641 */
2642
cpuset_spread_node(int * rotor)2643 static int cpuset_spread_node(int *rotor)
2644 {
2645 return *rotor = next_node_in(*rotor, current->mems_allowed);
2646 }
2647
cpuset_mem_spread_node(void)2648 int cpuset_mem_spread_node(void)
2649 {
2650 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2651 current->cpuset_mem_spread_rotor =
2652 node_random(¤t->mems_allowed);
2653
2654 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
2655 }
2656
cpuset_slab_spread_node(void)2657 int cpuset_slab_spread_node(void)
2658 {
2659 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2660 current->cpuset_slab_spread_rotor =
2661 node_random(¤t->mems_allowed);
2662
2663 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
2664 }
2665
2666 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2667
2668 /**
2669 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2670 * @tsk1: pointer to task_struct of some task.
2671 * @tsk2: pointer to task_struct of some other task.
2672 *
2673 * Description: Return true if @tsk1's mems_allowed intersects the
2674 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2675 * one of the task's memory usage might impact the memory available
2676 * to the other.
2677 **/
2678
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)2679 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2680 const struct task_struct *tsk2)
2681 {
2682 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2683 }
2684
2685 /**
2686 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2687 *
2688 * Description: Prints current's name, cpuset name, and cached copy of its
2689 * mems_allowed to the kernel log.
2690 */
cpuset_print_current_mems_allowed(void)2691 void cpuset_print_current_mems_allowed(void)
2692 {
2693 struct cgroup *cgrp;
2694
2695 rcu_read_lock();
2696
2697 cgrp = task_cs(current)->css.cgroup;
2698 pr_info("%s cpuset=", current->comm);
2699 pr_cont_cgroup_name(cgrp);
2700 pr_cont(" mems_allowed=%*pbl\n",
2701 nodemask_pr_args(¤t->mems_allowed));
2702
2703 rcu_read_unlock();
2704 }
2705
2706 /*
2707 * Collection of memory_pressure is suppressed unless
2708 * this flag is enabled by writing "1" to the special
2709 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2710 */
2711
2712 int cpuset_memory_pressure_enabled __read_mostly;
2713
2714 /**
2715 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2716 *
2717 * Keep a running average of the rate of synchronous (direct)
2718 * page reclaim efforts initiated by tasks in each cpuset.
2719 *
2720 * This represents the rate at which some task in the cpuset
2721 * ran low on memory on all nodes it was allowed to use, and
2722 * had to enter the kernels page reclaim code in an effort to
2723 * create more free memory by tossing clean pages or swapping
2724 * or writing dirty pages.
2725 *
2726 * Display to user space in the per-cpuset read-only file
2727 * "memory_pressure". Value displayed is an integer
2728 * representing the recent rate of entry into the synchronous
2729 * (direct) page reclaim by any task attached to the cpuset.
2730 **/
2731
__cpuset_memory_pressure_bump(void)2732 void __cpuset_memory_pressure_bump(void)
2733 {
2734 rcu_read_lock();
2735 fmeter_markevent(&task_cs(current)->fmeter);
2736 rcu_read_unlock();
2737 }
2738
2739 #ifdef CONFIG_PROC_PID_CPUSET
2740 /*
2741 * proc_cpuset_show()
2742 * - Print tasks cpuset path into seq_file.
2743 * - Used for /proc/<pid>/cpuset.
2744 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2745 * doesn't really matter if tsk->cpuset changes after we read it,
2746 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2747 * anyway.
2748 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)2749 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2750 struct pid *pid, struct task_struct *tsk)
2751 {
2752 char *buf;
2753 struct cgroup_subsys_state *css;
2754 int retval;
2755
2756 retval = -ENOMEM;
2757 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2758 if (!buf)
2759 goto out;
2760
2761 css = task_get_css(tsk, cpuset_cgrp_id);
2762 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2763 current->nsproxy->cgroup_ns);
2764 css_put(css);
2765 if (retval >= PATH_MAX)
2766 retval = -ENAMETOOLONG;
2767 if (retval < 0)
2768 goto out_free;
2769 seq_puts(m, buf);
2770 seq_putc(m, '\n');
2771 retval = 0;
2772 out_free:
2773 kfree(buf);
2774 out:
2775 return retval;
2776 }
2777 #endif /* CONFIG_PROC_PID_CPUSET */
2778
2779 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)2780 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2781 {
2782 seq_printf(m, "Mems_allowed:\t%*pb\n",
2783 nodemask_pr_args(&task->mems_allowed));
2784 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2785 nodemask_pr_args(&task->mems_allowed));
2786 }
2787