• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57 
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 
65 #undef pr_fmt
66 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
67 
68 /*
69  * The size has to be longer than this string, so we can append
70  * board/chip information to it in the initialization code.
71  */
72 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
73 
74 DEFINE_SPINLOCK(hfi1_devs_lock);
75 LIST_HEAD(hfi1_dev_list);
76 DEFINE_MUTEX(hfi1_mutex);	/* general driver use */
77 
78 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
79 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
80 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
81 		 HFI1_DEFAULT_MAX_MTU));
82 
83 unsigned int hfi1_cu = 1;
84 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
85 MODULE_PARM_DESC(cu, "Credit return units");
86 
87 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
88 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
89 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
90 static const struct kernel_param_ops cap_ops = {
91 	.set = hfi1_caps_set,
92 	.get = hfi1_caps_get
93 };
94 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
95 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
96 
97 MODULE_LICENSE("Dual BSD/GPL");
98 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
99 
100 /*
101  * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
102  */
103 #define MAX_PKT_RECV 64
104 /*
105  * MAX_PKT_THREAD_RCV is the max # of packets processed before
106  * the qp_wait_list queue is flushed.
107  */
108 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
109 #define EGR_HEAD_UPDATE_THRESHOLD 16
110 
111 struct hfi1_ib_stats hfi1_stats;
112 
hfi1_caps_set(const char * val,const struct kernel_param * kp)113 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
114 {
115 	int ret = 0;
116 	unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
117 		cap_mask = *cap_mask_ptr, value, diff,
118 		write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
119 			      HFI1_CAP_WRITABLE_MASK);
120 
121 	ret = kstrtoul(val, 0, &value);
122 	if (ret) {
123 		pr_warn("Invalid module parameter value for 'cap_mask'\n");
124 		goto done;
125 	}
126 	/* Get the changed bits (except the locked bit) */
127 	diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
128 
129 	/* Remove any bits that are not allowed to change after driver load */
130 	if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
131 		pr_warn("Ignoring non-writable capability bits %#lx\n",
132 			diff & ~write_mask);
133 		diff &= write_mask;
134 	}
135 
136 	/* Mask off any reserved bits */
137 	diff &= ~HFI1_CAP_RESERVED_MASK;
138 	/* Clear any previously set and changing bits */
139 	cap_mask &= ~diff;
140 	/* Update the bits with the new capability */
141 	cap_mask |= (value & diff);
142 	/* Check for any kernel/user restrictions */
143 	diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
144 		((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
145 	cap_mask &= ~diff;
146 	/* Set the bitmask to the final set */
147 	*cap_mask_ptr = cap_mask;
148 done:
149 	return ret;
150 }
151 
hfi1_caps_get(char * buffer,const struct kernel_param * kp)152 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
153 {
154 	unsigned long cap_mask = *(unsigned long *)kp->arg;
155 
156 	cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
157 	cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
158 
159 	return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
160 }
161 
get_unit_name(int unit)162 const char *get_unit_name(int unit)
163 {
164 	static char iname[16];
165 
166 	snprintf(iname, sizeof(iname), DRIVER_NAME "_%u", unit);
167 	return iname;
168 }
169 
get_card_name(struct rvt_dev_info * rdi)170 const char *get_card_name(struct rvt_dev_info *rdi)
171 {
172 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
173 	struct hfi1_devdata *dd = container_of(ibdev,
174 					       struct hfi1_devdata, verbs_dev);
175 	return get_unit_name(dd->unit);
176 }
177 
get_pci_dev(struct rvt_dev_info * rdi)178 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
179 {
180 	struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
181 	struct hfi1_devdata *dd = container_of(ibdev,
182 					       struct hfi1_devdata, verbs_dev);
183 	return dd->pcidev;
184 }
185 
186 /*
187  * Return count of units with at least one port ACTIVE.
188  */
hfi1_count_active_units(void)189 int hfi1_count_active_units(void)
190 {
191 	struct hfi1_devdata *dd;
192 	struct hfi1_pportdata *ppd;
193 	unsigned long flags;
194 	int pidx, nunits_active = 0;
195 
196 	spin_lock_irqsave(&hfi1_devs_lock, flags);
197 	list_for_each_entry(dd, &hfi1_dev_list, list) {
198 		if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
199 			continue;
200 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
201 			ppd = dd->pport + pidx;
202 			if (ppd->lid && ppd->linkup) {
203 				nunits_active++;
204 				break;
205 			}
206 		}
207 	}
208 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
209 	return nunits_active;
210 }
211 
212 /*
213  * Get address of eager buffer from it's index (allocated in chunks, not
214  * contiguous).
215  */
get_egrbuf(const struct hfi1_ctxtdata * rcd,u64 rhf,u8 * update)216 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
217 			       u8 *update)
218 {
219 	u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
220 
221 	*update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
222 	return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
223 			(offset * RCV_BUF_BLOCK_SIZE));
224 }
225 
hfi1_get_header(struct hfi1_devdata * dd,__le32 * rhf_addr)226 static inline void *hfi1_get_header(struct hfi1_devdata *dd,
227 				    __le32 *rhf_addr)
228 {
229 	u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
230 
231 	return (void *)(rhf_addr - dd->rhf_offset + offset);
232 }
233 
hfi1_get_msgheader(struct hfi1_devdata * dd,__le32 * rhf_addr)234 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_devdata *dd,
235 						   __le32 *rhf_addr)
236 {
237 	return (struct ib_header *)hfi1_get_header(dd, rhf_addr);
238 }
239 
240 static inline struct hfi1_16b_header
hfi1_get_16B_header(struct hfi1_devdata * dd,__le32 * rhf_addr)241 		*hfi1_get_16B_header(struct hfi1_devdata *dd,
242 				     __le32 *rhf_addr)
243 {
244 	return (struct hfi1_16b_header *)hfi1_get_header(dd, rhf_addr);
245 }
246 
247 /*
248  * Validate and encode the a given RcvArray Buffer size.
249  * The function will check whether the given size falls within
250  * allowed size ranges for the respective type and, optionally,
251  * return the proper encoding.
252  */
hfi1_rcvbuf_validate(u32 size,u8 type,u16 * encoded)253 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
254 {
255 	if (unlikely(!PAGE_ALIGNED(size)))
256 		return 0;
257 	if (unlikely(size < MIN_EAGER_BUFFER))
258 		return 0;
259 	if (size >
260 	    (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
261 		return 0;
262 	if (encoded)
263 		*encoded = ilog2(size / PAGE_SIZE) + 1;
264 	return 1;
265 }
266 
rcv_hdrerr(struct hfi1_ctxtdata * rcd,struct hfi1_pportdata * ppd,struct hfi1_packet * packet)267 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
268 		       struct hfi1_packet *packet)
269 {
270 	struct ib_header *rhdr = packet->hdr;
271 	u32 rte = rhf_rcv_type_err(packet->rhf);
272 	u32 mlid_base;
273 	struct hfi1_ibport *ibp = rcd_to_iport(rcd);
274 	struct hfi1_devdata *dd = ppd->dd;
275 	struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
276 
277 	if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
278 		return;
279 
280 	if (packet->etype == RHF_RCV_TYPE_BYPASS) {
281 		goto drop;
282 	} else {
283 		u8 lnh = ib_get_lnh(rhdr);
284 
285 		mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
286 		if (lnh == HFI1_LRH_BTH) {
287 			packet->ohdr = &rhdr->u.oth;
288 		} else if (lnh == HFI1_LRH_GRH) {
289 			packet->ohdr = &rhdr->u.l.oth;
290 			packet->grh = &rhdr->u.l.grh;
291 		} else {
292 			goto drop;
293 		}
294 	}
295 
296 	if (packet->rhf & RHF_TID_ERR) {
297 		/* For TIDERR and RC QPs preemptively schedule a NAK */
298 		u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
299 		u32 dlid = ib_get_dlid(rhdr);
300 		u32 qp_num;
301 
302 		/* Sanity check packet */
303 		if (tlen < 24)
304 			goto drop;
305 
306 		/* Check for GRH */
307 		if (packet->grh) {
308 			u32 vtf;
309 			struct ib_grh *grh = packet->grh;
310 
311 			if (grh->next_hdr != IB_GRH_NEXT_HDR)
312 				goto drop;
313 			vtf = be32_to_cpu(grh->version_tclass_flow);
314 			if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
315 				goto drop;
316 		}
317 
318 		/* Get the destination QP number. */
319 		qp_num = ib_bth_get_qpn(packet->ohdr);
320 		if (dlid < mlid_base) {
321 			struct rvt_qp *qp;
322 			unsigned long flags;
323 
324 			rcu_read_lock();
325 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
326 			if (!qp) {
327 				rcu_read_unlock();
328 				goto drop;
329 			}
330 
331 			/*
332 			 * Handle only RC QPs - for other QP types drop error
333 			 * packet.
334 			 */
335 			spin_lock_irqsave(&qp->r_lock, flags);
336 
337 			/* Check for valid receive state. */
338 			if (!(ib_rvt_state_ops[qp->state] &
339 			      RVT_PROCESS_RECV_OK)) {
340 				ibp->rvp.n_pkt_drops++;
341 			}
342 
343 			switch (qp->ibqp.qp_type) {
344 			case IB_QPT_RC:
345 				hfi1_rc_hdrerr(rcd, packet, qp);
346 				break;
347 			default:
348 				/* For now don't handle any other QP types */
349 				break;
350 			}
351 
352 			spin_unlock_irqrestore(&qp->r_lock, flags);
353 			rcu_read_unlock();
354 		} /* Unicast QP */
355 	} /* Valid packet with TIDErr */
356 
357 	/* handle "RcvTypeErr" flags */
358 	switch (rte) {
359 	case RHF_RTE_ERROR_OP_CODE_ERR:
360 	{
361 		void *ebuf = NULL;
362 		u8 opcode;
363 
364 		if (rhf_use_egr_bfr(packet->rhf))
365 			ebuf = packet->ebuf;
366 
367 		if (!ebuf)
368 			goto drop; /* this should never happen */
369 
370 		opcode = ib_bth_get_opcode(packet->ohdr);
371 		if (opcode == IB_OPCODE_CNP) {
372 			/*
373 			 * Only in pre-B0 h/w is the CNP_OPCODE handled
374 			 * via this code path.
375 			 */
376 			struct rvt_qp *qp = NULL;
377 			u32 lqpn, rqpn;
378 			u16 rlid;
379 			u8 svc_type, sl, sc5;
380 
381 			sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
382 			sl = ibp->sc_to_sl[sc5];
383 
384 			lqpn = ib_bth_get_qpn(packet->ohdr);
385 			rcu_read_lock();
386 			qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
387 			if (!qp) {
388 				rcu_read_unlock();
389 				goto drop;
390 			}
391 
392 			switch (qp->ibqp.qp_type) {
393 			case IB_QPT_UD:
394 				rlid = 0;
395 				rqpn = 0;
396 				svc_type = IB_CC_SVCTYPE_UD;
397 				break;
398 			case IB_QPT_UC:
399 				rlid = ib_get_slid(rhdr);
400 				rqpn = qp->remote_qpn;
401 				svc_type = IB_CC_SVCTYPE_UC;
402 				break;
403 			default:
404 				goto drop;
405 			}
406 
407 			process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
408 			rcu_read_unlock();
409 		}
410 
411 		packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
412 		break;
413 	}
414 	default:
415 		break;
416 	}
417 
418 drop:
419 	return;
420 }
421 
init_packet(struct hfi1_ctxtdata * rcd,struct hfi1_packet * packet)422 static inline void init_packet(struct hfi1_ctxtdata *rcd,
423 			       struct hfi1_packet *packet)
424 {
425 	packet->rsize = rcd->rcvhdrqentsize; /* words */
426 	packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
427 	packet->rcd = rcd;
428 	packet->updegr = 0;
429 	packet->etail = -1;
430 	packet->rhf_addr = get_rhf_addr(rcd);
431 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
432 	packet->rhqoff = rcd->head;
433 	packet->numpkt = 0;
434 }
435 
hfi1_process_ecn_slowpath(struct rvt_qp * qp,struct hfi1_packet * pkt,bool do_cnp)436 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
437 			       bool do_cnp)
438 {
439 	struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
440 	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
441 	struct ib_other_headers *ohdr = pkt->ohdr;
442 	struct ib_grh *grh = pkt->grh;
443 	u32 rqpn = 0, bth1;
444 	u16 pkey;
445 	u32 rlid, slid, dlid = 0;
446 	u8 hdr_type, sc, svc_type;
447 	bool is_mcast = false;
448 
449 	/* can be called from prescan */
450 	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
451 		is_mcast = hfi1_is_16B_mcast(dlid);
452 		pkey = hfi1_16B_get_pkey(pkt->hdr);
453 		sc = hfi1_16B_get_sc(pkt->hdr);
454 		dlid = hfi1_16B_get_dlid(pkt->hdr);
455 		slid = hfi1_16B_get_slid(pkt->hdr);
456 		hdr_type = HFI1_PKT_TYPE_16B;
457 	} else {
458 		is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
459 			   (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
460 		pkey = ib_bth_get_pkey(ohdr);
461 		sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
462 		dlid = ib_get_dlid(pkt->hdr);
463 		slid = ib_get_slid(pkt->hdr);
464 		hdr_type = HFI1_PKT_TYPE_9B;
465 	}
466 
467 	switch (qp->ibqp.qp_type) {
468 	case IB_QPT_UD:
469 		dlid = ppd->lid;
470 		rlid = slid;
471 		rqpn = ib_get_sqpn(pkt->ohdr);
472 		svc_type = IB_CC_SVCTYPE_UD;
473 		break;
474 	case IB_QPT_SMI:
475 	case IB_QPT_GSI:
476 		rlid = slid;
477 		rqpn = ib_get_sqpn(pkt->ohdr);
478 		svc_type = IB_CC_SVCTYPE_UD;
479 		break;
480 	case IB_QPT_UC:
481 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
482 		rqpn = qp->remote_qpn;
483 		svc_type = IB_CC_SVCTYPE_UC;
484 		break;
485 	case IB_QPT_RC:
486 		rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
487 		rqpn = qp->remote_qpn;
488 		svc_type = IB_CC_SVCTYPE_RC;
489 		break;
490 	default:
491 		return;
492 	}
493 
494 	bth1 = be32_to_cpu(ohdr->bth[1]);
495 	/* Call appropriate CNP handler */
496 	if (do_cnp && (bth1 & IB_FECN_SMASK))
497 		hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
498 					      dlid, rlid, sc, grh);
499 
500 	if (!is_mcast && (bth1 & IB_BECN_SMASK)) {
501 		u32 lqpn = bth1 & RVT_QPN_MASK;
502 		u8 sl = ibp->sc_to_sl[sc];
503 
504 		process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
505 	}
506 
507 }
508 
509 struct ps_mdata {
510 	struct hfi1_ctxtdata *rcd;
511 	u32 rsize;
512 	u32 maxcnt;
513 	u32 ps_head;
514 	u32 ps_tail;
515 	u32 ps_seq;
516 };
517 
init_ps_mdata(struct ps_mdata * mdata,struct hfi1_packet * packet)518 static inline void init_ps_mdata(struct ps_mdata *mdata,
519 				 struct hfi1_packet *packet)
520 {
521 	struct hfi1_ctxtdata *rcd = packet->rcd;
522 
523 	mdata->rcd = rcd;
524 	mdata->rsize = packet->rsize;
525 	mdata->maxcnt = packet->maxcnt;
526 	mdata->ps_head = packet->rhqoff;
527 
528 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
529 		mdata->ps_tail = get_rcvhdrtail(rcd);
530 		if (rcd->ctxt == HFI1_CTRL_CTXT)
531 			mdata->ps_seq = rcd->seq_cnt;
532 		else
533 			mdata->ps_seq = 0; /* not used with DMA_RTAIL */
534 	} else {
535 		mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
536 		mdata->ps_seq = rcd->seq_cnt;
537 	}
538 }
539 
ps_done(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)540 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
541 			  struct hfi1_ctxtdata *rcd)
542 {
543 	if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
544 		return mdata->ps_head == mdata->ps_tail;
545 	return mdata->ps_seq != rhf_rcv_seq(rhf);
546 }
547 
ps_skip(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)548 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
549 			  struct hfi1_ctxtdata *rcd)
550 {
551 	/*
552 	 * Control context can potentially receive an invalid rhf.
553 	 * Drop such packets.
554 	 */
555 	if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
556 		return mdata->ps_seq != rhf_rcv_seq(rhf);
557 
558 	return 0;
559 }
560 
update_ps_mdata(struct ps_mdata * mdata,struct hfi1_ctxtdata * rcd)561 static inline void update_ps_mdata(struct ps_mdata *mdata,
562 				   struct hfi1_ctxtdata *rcd)
563 {
564 	mdata->ps_head += mdata->rsize;
565 	if (mdata->ps_head >= mdata->maxcnt)
566 		mdata->ps_head = 0;
567 
568 	/* Control context must do seq counting */
569 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
570 	    (rcd->ctxt == HFI1_CTRL_CTXT)) {
571 		if (++mdata->ps_seq > 13)
572 			mdata->ps_seq = 1;
573 	}
574 }
575 
576 /*
577  * prescan_rxq - search through the receive queue looking for packets
578  * containing Excplicit Congestion Notifications (FECNs, or BECNs).
579  * When an ECN is found, process the Congestion Notification, and toggle
580  * it off.
581  * This is declared as a macro to allow quick checking of the port to avoid
582  * the overhead of a function call if not enabled.
583  */
584 #define prescan_rxq(rcd, packet) \
585 	do { \
586 		if (rcd->ppd->cc_prescan) \
587 			__prescan_rxq(packet); \
588 	} while (0)
__prescan_rxq(struct hfi1_packet * packet)589 static void __prescan_rxq(struct hfi1_packet *packet)
590 {
591 	struct hfi1_ctxtdata *rcd = packet->rcd;
592 	struct ps_mdata mdata;
593 
594 	init_ps_mdata(&mdata, packet);
595 
596 	while (1) {
597 		struct hfi1_devdata *dd = rcd->dd;
598 		struct hfi1_ibport *ibp = rcd_to_iport(rcd);
599 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
600 					 dd->rhf_offset;
601 		struct rvt_qp *qp;
602 		struct ib_header *hdr;
603 		struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
604 		u64 rhf = rhf_to_cpu(rhf_addr);
605 		u32 etype = rhf_rcv_type(rhf), qpn, bth1;
606 		int is_ecn = 0;
607 		u8 lnh;
608 
609 		if (ps_done(&mdata, rhf, rcd))
610 			break;
611 
612 		if (ps_skip(&mdata, rhf, rcd))
613 			goto next;
614 
615 		if (etype != RHF_RCV_TYPE_IB)
616 			goto next;
617 
618 		packet->hdr = hfi1_get_msgheader(dd, rhf_addr);
619 		hdr = packet->hdr;
620 		lnh = ib_get_lnh(hdr);
621 
622 		if (lnh == HFI1_LRH_BTH) {
623 			packet->ohdr = &hdr->u.oth;
624 			packet->grh = NULL;
625 		} else if (lnh == HFI1_LRH_GRH) {
626 			packet->ohdr = &hdr->u.l.oth;
627 			packet->grh = &hdr->u.l.grh;
628 		} else {
629 			goto next; /* just in case */
630 		}
631 
632 		bth1 = be32_to_cpu(packet->ohdr->bth[1]);
633 		is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK));
634 
635 		if (!is_ecn)
636 			goto next;
637 
638 		qpn = bth1 & RVT_QPN_MASK;
639 		rcu_read_lock();
640 		qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
641 
642 		if (!qp) {
643 			rcu_read_unlock();
644 			goto next;
645 		}
646 
647 		process_ecn(qp, packet, true);
648 		rcu_read_unlock();
649 
650 		/* turn off BECN, FECN */
651 		bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
652 		packet->ohdr->bth[1] = cpu_to_be32(bth1);
653 next:
654 		update_ps_mdata(&mdata, rcd);
655 	}
656 }
657 
process_rcv_qp_work(struct hfi1_ctxtdata * rcd)658 static void process_rcv_qp_work(struct hfi1_ctxtdata *rcd)
659 {
660 	struct rvt_qp *qp, *nqp;
661 
662 	/*
663 	 * Iterate over all QPs waiting to respond.
664 	 * The list won't change since the IRQ is only run on one CPU.
665 	 */
666 	list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
667 		list_del_init(&qp->rspwait);
668 		if (qp->r_flags & RVT_R_RSP_NAK) {
669 			qp->r_flags &= ~RVT_R_RSP_NAK;
670 			hfi1_send_rc_ack(rcd, qp, 0);
671 		}
672 		if (qp->r_flags & RVT_R_RSP_SEND) {
673 			unsigned long flags;
674 
675 			qp->r_flags &= ~RVT_R_RSP_SEND;
676 			spin_lock_irqsave(&qp->s_lock, flags);
677 			if (ib_rvt_state_ops[qp->state] &
678 					RVT_PROCESS_OR_FLUSH_SEND)
679 				hfi1_schedule_send(qp);
680 			spin_unlock_irqrestore(&qp->s_lock, flags);
681 		}
682 		rvt_put_qp(qp);
683 	}
684 }
685 
max_packet_exceeded(struct hfi1_packet * packet,int thread)686 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
687 {
688 	if (thread) {
689 		if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
690 			/* allow defered processing */
691 			process_rcv_qp_work(packet->rcd);
692 		cond_resched();
693 		return RCV_PKT_OK;
694 	} else {
695 		this_cpu_inc(*packet->rcd->dd->rcv_limit);
696 		return RCV_PKT_LIMIT;
697 	}
698 }
699 
check_max_packet(struct hfi1_packet * packet,int thread)700 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
701 {
702 	int ret = RCV_PKT_OK;
703 
704 	if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
705 		ret = max_packet_exceeded(packet, thread);
706 	return ret;
707 }
708 
skip_rcv_packet(struct hfi1_packet * packet,int thread)709 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
710 {
711 	int ret;
712 
713 	packet->rcd->dd->ctx0_seq_drop++;
714 	/* Set up for the next packet */
715 	packet->rhqoff += packet->rsize;
716 	if (packet->rhqoff >= packet->maxcnt)
717 		packet->rhqoff = 0;
718 
719 	packet->numpkt++;
720 	ret = check_max_packet(packet, thread);
721 
722 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
723 				     packet->rcd->dd->rhf_offset;
724 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
725 
726 	return ret;
727 }
728 
process_rcv_packet(struct hfi1_packet * packet,int thread)729 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
730 {
731 	int ret;
732 
733 	packet->etype = rhf_rcv_type(packet->rhf);
734 
735 	/* total length */
736 	packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
737 	/* retrieve eager buffer details */
738 	packet->ebuf = NULL;
739 	if (rhf_use_egr_bfr(packet->rhf)) {
740 		packet->etail = rhf_egr_index(packet->rhf);
741 		packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
742 				 &packet->updegr);
743 		/*
744 		 * Prefetch the contents of the eager buffer.  It is
745 		 * OK to send a negative length to prefetch_range().
746 		 * The +2 is the size of the RHF.
747 		 */
748 		prefetch_range(packet->ebuf,
749 			       packet->tlen - ((packet->rcd->rcvhdrqentsize -
750 					       (rhf_hdrq_offset(packet->rhf)
751 						+ 2)) * 4));
752 	}
753 
754 	/*
755 	 * Call a type specific handler for the packet. We
756 	 * should be able to trust that etype won't be beyond
757 	 * the range of valid indexes. If so something is really
758 	 * wrong and we can probably just let things come
759 	 * crashing down. There is no need to eat another
760 	 * comparison in this performance critical code.
761 	 */
762 	packet->rcd->dd->rhf_rcv_function_map[packet->etype](packet);
763 	packet->numpkt++;
764 
765 	/* Set up for the next packet */
766 	packet->rhqoff += packet->rsize;
767 	if (packet->rhqoff >= packet->maxcnt)
768 		packet->rhqoff = 0;
769 
770 	ret = check_max_packet(packet, thread);
771 
772 	packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
773 				      packet->rcd->dd->rhf_offset;
774 	packet->rhf = rhf_to_cpu(packet->rhf_addr);
775 
776 	return ret;
777 }
778 
process_rcv_update(int last,struct hfi1_packet * packet)779 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
780 {
781 	/*
782 	 * Update head regs etc., every 16 packets, if not last pkt,
783 	 * to help prevent rcvhdrq overflows, when many packets
784 	 * are processed and queue is nearly full.
785 	 * Don't request an interrupt for intermediate updates.
786 	 */
787 	if (!last && !(packet->numpkt & 0xf)) {
788 		update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
789 			       packet->etail, 0, 0);
790 		packet->updegr = 0;
791 	}
792 	packet->grh = NULL;
793 }
794 
finish_packet(struct hfi1_packet * packet)795 static inline void finish_packet(struct hfi1_packet *packet)
796 {
797 	/*
798 	 * Nothing we need to free for the packet.
799 	 *
800 	 * The only thing we need to do is a final update and call for an
801 	 * interrupt
802 	 */
803 	update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
804 		       packet->etail, rcv_intr_dynamic, packet->numpkt);
805 }
806 
807 /*
808  * Handle receive interrupts when using the no dma rtail option.
809  */
handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata * rcd,int thread)810 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
811 {
812 	u32 seq;
813 	int last = RCV_PKT_OK;
814 	struct hfi1_packet packet;
815 
816 	init_packet(rcd, &packet);
817 	seq = rhf_rcv_seq(packet.rhf);
818 	if (seq != rcd->seq_cnt) {
819 		last = RCV_PKT_DONE;
820 		goto bail;
821 	}
822 
823 	prescan_rxq(rcd, &packet);
824 
825 	while (last == RCV_PKT_OK) {
826 		last = process_rcv_packet(&packet, thread);
827 		seq = rhf_rcv_seq(packet.rhf);
828 		if (++rcd->seq_cnt > 13)
829 			rcd->seq_cnt = 1;
830 		if (seq != rcd->seq_cnt)
831 			last = RCV_PKT_DONE;
832 		process_rcv_update(last, &packet);
833 	}
834 	process_rcv_qp_work(rcd);
835 	rcd->head = packet.rhqoff;
836 bail:
837 	finish_packet(&packet);
838 	return last;
839 }
840 
handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata * rcd,int thread)841 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
842 {
843 	u32 hdrqtail;
844 	int last = RCV_PKT_OK;
845 	struct hfi1_packet packet;
846 
847 	init_packet(rcd, &packet);
848 	hdrqtail = get_rcvhdrtail(rcd);
849 	if (packet.rhqoff == hdrqtail) {
850 		last = RCV_PKT_DONE;
851 		goto bail;
852 	}
853 	smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
854 
855 	prescan_rxq(rcd, &packet);
856 
857 	while (last == RCV_PKT_OK) {
858 		last = process_rcv_packet(&packet, thread);
859 		if (packet.rhqoff == hdrqtail)
860 			last = RCV_PKT_DONE;
861 		process_rcv_update(last, &packet);
862 	}
863 	process_rcv_qp_work(rcd);
864 	rcd->head = packet.rhqoff;
865 bail:
866 	finish_packet(&packet);
867 	return last;
868 }
869 
set_nodma_rtail(struct hfi1_devdata * dd,u16 ctxt)870 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
871 {
872 	struct hfi1_ctxtdata *rcd;
873 	u16 i;
874 
875 	/*
876 	 * For dynamically allocated kernel contexts (like vnic) switch
877 	 * interrupt handler only for that context. Otherwise, switch
878 	 * interrupt handler for all statically allocated kernel contexts.
879 	 */
880 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
881 		rcd = hfi1_rcd_get_by_index(dd, ctxt);
882 		if (rcd) {
883 			rcd->do_interrupt =
884 				&handle_receive_interrupt_nodma_rtail;
885 			hfi1_rcd_put(rcd);
886 		}
887 		return;
888 	}
889 
890 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
891 		rcd = hfi1_rcd_get_by_index(dd, i);
892 		if (rcd)
893 			rcd->do_interrupt =
894 				&handle_receive_interrupt_nodma_rtail;
895 		hfi1_rcd_put(rcd);
896 	}
897 }
898 
set_dma_rtail(struct hfi1_devdata * dd,u16 ctxt)899 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
900 {
901 	struct hfi1_ctxtdata *rcd;
902 	u16 i;
903 
904 	/*
905 	 * For dynamically allocated kernel contexts (like vnic) switch
906 	 * interrupt handler only for that context. Otherwise, switch
907 	 * interrupt handler for all statically allocated kernel contexts.
908 	 */
909 	if (ctxt >= dd->first_dyn_alloc_ctxt) {
910 		rcd = hfi1_rcd_get_by_index(dd, ctxt);
911 		if (rcd) {
912 			rcd->do_interrupt =
913 				&handle_receive_interrupt_dma_rtail;
914 			hfi1_rcd_put(rcd);
915 		}
916 		return;
917 	}
918 
919 	for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
920 		rcd = hfi1_rcd_get_by_index(dd, i);
921 		if (rcd)
922 			rcd->do_interrupt =
923 				&handle_receive_interrupt_dma_rtail;
924 		hfi1_rcd_put(rcd);
925 	}
926 }
927 
set_all_slowpath(struct hfi1_devdata * dd)928 void set_all_slowpath(struct hfi1_devdata *dd)
929 {
930 	struct hfi1_ctxtdata *rcd;
931 	u16 i;
932 
933 	/* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
934 	for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
935 		rcd = hfi1_rcd_get_by_index(dd, i);
936 		if (!rcd)
937 			continue;
938 		if ((i < dd->first_dyn_alloc_ctxt) ||
939 		    (rcd->sc && (rcd->sc->type == SC_KERNEL))) {
940 			rcd->do_interrupt = &handle_receive_interrupt;
941 		}
942 		hfi1_rcd_put(rcd);
943 	}
944 }
945 
set_armed_to_active(struct hfi1_ctxtdata * rcd,struct hfi1_packet * packet,struct hfi1_devdata * dd)946 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
947 				      struct hfi1_packet *packet,
948 				      struct hfi1_devdata *dd)
949 {
950 	struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
951 	u8 etype = rhf_rcv_type(packet->rhf);
952 	u8 sc = SC15_PACKET;
953 
954 	if (etype == RHF_RCV_TYPE_IB) {
955 		struct ib_header *hdr = hfi1_get_msgheader(packet->rcd->dd,
956 							   packet->rhf_addr);
957 		sc = hfi1_9B_get_sc5(hdr, packet->rhf);
958 	} else if (etype == RHF_RCV_TYPE_BYPASS) {
959 		struct hfi1_16b_header *hdr = hfi1_get_16B_header(
960 						packet->rcd->dd,
961 						packet->rhf_addr);
962 		sc = hfi1_16B_get_sc(hdr);
963 	}
964 	if (sc != SC15_PACKET) {
965 		int hwstate = driver_lstate(rcd->ppd);
966 
967 		if (hwstate != IB_PORT_ACTIVE) {
968 			dd_dev_info(dd,
969 				    "Unexpected link state %s\n",
970 				    opa_lstate_name(hwstate));
971 			return 0;
972 		}
973 
974 		queue_work(rcd->ppd->link_wq, lsaw);
975 		return 1;
976 	}
977 	return 0;
978 }
979 
980 /*
981  * handle_receive_interrupt - receive a packet
982  * @rcd: the context
983  *
984  * Called from interrupt handler for errors or receive interrupt.
985  * This is the slow path interrupt handler.
986  */
handle_receive_interrupt(struct hfi1_ctxtdata * rcd,int thread)987 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
988 {
989 	struct hfi1_devdata *dd = rcd->dd;
990 	u32 hdrqtail;
991 	int needset, last = RCV_PKT_OK;
992 	struct hfi1_packet packet;
993 	int skip_pkt = 0;
994 
995 	/* Control context will always use the slow path interrupt handler */
996 	needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
997 
998 	init_packet(rcd, &packet);
999 
1000 	if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1001 		u32 seq = rhf_rcv_seq(packet.rhf);
1002 
1003 		if (seq != rcd->seq_cnt) {
1004 			last = RCV_PKT_DONE;
1005 			goto bail;
1006 		}
1007 		hdrqtail = 0;
1008 	} else {
1009 		hdrqtail = get_rcvhdrtail(rcd);
1010 		if (packet.rhqoff == hdrqtail) {
1011 			last = RCV_PKT_DONE;
1012 			goto bail;
1013 		}
1014 		smp_rmb();  /* prevent speculative reads of dma'ed hdrq */
1015 
1016 		/*
1017 		 * Control context can potentially receive an invalid
1018 		 * rhf. Drop such packets.
1019 		 */
1020 		if (rcd->ctxt == HFI1_CTRL_CTXT) {
1021 			u32 seq = rhf_rcv_seq(packet.rhf);
1022 
1023 			if (seq != rcd->seq_cnt)
1024 				skip_pkt = 1;
1025 		}
1026 	}
1027 
1028 	prescan_rxq(rcd, &packet);
1029 
1030 	while (last == RCV_PKT_OK) {
1031 		if (unlikely(dd->do_drop &&
1032 			     atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1033 			     DROP_PACKET_ON)) {
1034 			dd->do_drop = 0;
1035 
1036 			/* On to the next packet */
1037 			packet.rhqoff += packet.rsize;
1038 			packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1039 					  packet.rhqoff +
1040 					  dd->rhf_offset;
1041 			packet.rhf = rhf_to_cpu(packet.rhf_addr);
1042 
1043 		} else if (skip_pkt) {
1044 			last = skip_rcv_packet(&packet, thread);
1045 			skip_pkt = 0;
1046 		} else {
1047 			/* Auto activate link on non-SC15 packet receive */
1048 			if (unlikely(rcd->ppd->host_link_state ==
1049 				     HLS_UP_ARMED) &&
1050 			    set_armed_to_active(rcd, &packet, dd))
1051 				goto bail;
1052 			last = process_rcv_packet(&packet, thread);
1053 		}
1054 
1055 		if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1056 			u32 seq = rhf_rcv_seq(packet.rhf);
1057 
1058 			if (++rcd->seq_cnt > 13)
1059 				rcd->seq_cnt = 1;
1060 			if (seq != rcd->seq_cnt)
1061 				last = RCV_PKT_DONE;
1062 			if (needset) {
1063 				dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1064 				set_nodma_rtail(dd, rcd->ctxt);
1065 				needset = 0;
1066 			}
1067 		} else {
1068 			if (packet.rhqoff == hdrqtail)
1069 				last = RCV_PKT_DONE;
1070 			/*
1071 			 * Control context can potentially receive an invalid
1072 			 * rhf. Drop such packets.
1073 			 */
1074 			if (rcd->ctxt == HFI1_CTRL_CTXT) {
1075 				u32 seq = rhf_rcv_seq(packet.rhf);
1076 
1077 				if (++rcd->seq_cnt > 13)
1078 					rcd->seq_cnt = 1;
1079 				if (!last && (seq != rcd->seq_cnt))
1080 					skip_pkt = 1;
1081 			}
1082 
1083 			if (needset) {
1084 				dd_dev_info(dd,
1085 					    "Switching to DMA_RTAIL\n");
1086 				set_dma_rtail(dd, rcd->ctxt);
1087 				needset = 0;
1088 			}
1089 		}
1090 
1091 		process_rcv_update(last, &packet);
1092 	}
1093 
1094 	process_rcv_qp_work(rcd);
1095 	rcd->head = packet.rhqoff;
1096 
1097 bail:
1098 	/*
1099 	 * Always write head at end, and setup rcv interrupt, even
1100 	 * if no packets were processed.
1101 	 */
1102 	finish_packet(&packet);
1103 	return last;
1104 }
1105 
1106 /*
1107  * We may discover in the interrupt that the hardware link state has
1108  * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1109  * and we need to update the driver's notion of the link state.  We cannot
1110  * run set_link_state from interrupt context, so we queue this function on
1111  * a workqueue.
1112  *
1113  * We delay the regular interrupt processing until after the state changes
1114  * so that the link will be in the correct state by the time any application
1115  * we wake up attempts to send a reply to any message it received.
1116  * (Subsequent receive interrupts may possibly force the wakeup before we
1117  * update the link state.)
1118  *
1119  * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1120  * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1121  * so we're safe from use-after-free of the rcd.
1122  */
receive_interrupt_work(struct work_struct * work)1123 void receive_interrupt_work(struct work_struct *work)
1124 {
1125 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1126 						  linkstate_active_work);
1127 	struct hfi1_devdata *dd = ppd->dd;
1128 	struct hfi1_ctxtdata *rcd;
1129 	u16 i;
1130 
1131 	/* Received non-SC15 packet implies neighbor_normal */
1132 	ppd->neighbor_normal = 1;
1133 	set_link_state(ppd, HLS_UP_ACTIVE);
1134 
1135 	/*
1136 	 * Interrupt all statically allocated kernel contexts that could
1137 	 * have had an interrupt during auto activation.
1138 	 */
1139 	for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1140 		rcd = hfi1_rcd_get_by_index(dd, i);
1141 		if (rcd)
1142 			force_recv_intr(rcd);
1143 		hfi1_rcd_put(rcd);
1144 	}
1145 }
1146 
1147 /*
1148  * Convert a given MTU size to the on-wire MAD packet enumeration.
1149  * Return -1 if the size is invalid.
1150  */
mtu_to_enum(u32 mtu,int default_if_bad)1151 int mtu_to_enum(u32 mtu, int default_if_bad)
1152 {
1153 	switch (mtu) {
1154 	case     0: return OPA_MTU_0;
1155 	case   256: return OPA_MTU_256;
1156 	case   512: return OPA_MTU_512;
1157 	case  1024: return OPA_MTU_1024;
1158 	case  2048: return OPA_MTU_2048;
1159 	case  4096: return OPA_MTU_4096;
1160 	case  8192: return OPA_MTU_8192;
1161 	case 10240: return OPA_MTU_10240;
1162 	}
1163 	return default_if_bad;
1164 }
1165 
enum_to_mtu(int mtu)1166 u16 enum_to_mtu(int mtu)
1167 {
1168 	switch (mtu) {
1169 	case OPA_MTU_0:     return 0;
1170 	case OPA_MTU_256:   return 256;
1171 	case OPA_MTU_512:   return 512;
1172 	case OPA_MTU_1024:  return 1024;
1173 	case OPA_MTU_2048:  return 2048;
1174 	case OPA_MTU_4096:  return 4096;
1175 	case OPA_MTU_8192:  return 8192;
1176 	case OPA_MTU_10240: return 10240;
1177 	default: return 0xffff;
1178 	}
1179 }
1180 
1181 /*
1182  * set_mtu - set the MTU
1183  * @ppd: the per port data
1184  *
1185  * We can handle "any" incoming size, the issue here is whether we
1186  * need to restrict our outgoing size.  We do not deal with what happens
1187  * to programs that are already running when the size changes.
1188  */
set_mtu(struct hfi1_pportdata * ppd)1189 int set_mtu(struct hfi1_pportdata *ppd)
1190 {
1191 	struct hfi1_devdata *dd = ppd->dd;
1192 	int i, drain, ret = 0, is_up = 0;
1193 
1194 	ppd->ibmtu = 0;
1195 	for (i = 0; i < ppd->vls_supported; i++)
1196 		if (ppd->ibmtu < dd->vld[i].mtu)
1197 			ppd->ibmtu = dd->vld[i].mtu;
1198 	ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1199 
1200 	mutex_lock(&ppd->hls_lock);
1201 	if (ppd->host_link_state == HLS_UP_INIT ||
1202 	    ppd->host_link_state == HLS_UP_ARMED ||
1203 	    ppd->host_link_state == HLS_UP_ACTIVE)
1204 		is_up = 1;
1205 
1206 	drain = !is_ax(dd) && is_up;
1207 
1208 	if (drain)
1209 		/*
1210 		 * MTU is specified per-VL. To ensure that no packet gets
1211 		 * stuck (due, e.g., to the MTU for the packet's VL being
1212 		 * reduced), empty the per-VL FIFOs before adjusting MTU.
1213 		 */
1214 		ret = stop_drain_data_vls(dd);
1215 
1216 	if (ret) {
1217 		dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1218 			   __func__);
1219 		goto err;
1220 	}
1221 
1222 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1223 
1224 	if (drain)
1225 		open_fill_data_vls(dd); /* reopen all VLs */
1226 
1227 err:
1228 	mutex_unlock(&ppd->hls_lock);
1229 
1230 	return ret;
1231 }
1232 
hfi1_set_lid(struct hfi1_pportdata * ppd,u32 lid,u8 lmc)1233 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1234 {
1235 	struct hfi1_devdata *dd = ppd->dd;
1236 
1237 	ppd->lid = lid;
1238 	ppd->lmc = lmc;
1239 	hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1240 
1241 	dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1242 
1243 	return 0;
1244 }
1245 
shutdown_led_override(struct hfi1_pportdata * ppd)1246 void shutdown_led_override(struct hfi1_pportdata *ppd)
1247 {
1248 	struct hfi1_devdata *dd = ppd->dd;
1249 
1250 	/*
1251 	 * This pairs with the memory barrier in hfi1_start_led_override to
1252 	 * ensure that we read the correct state of LED beaconing represented
1253 	 * by led_override_timer_active
1254 	 */
1255 	smp_rmb();
1256 	if (atomic_read(&ppd->led_override_timer_active)) {
1257 		del_timer_sync(&ppd->led_override_timer);
1258 		atomic_set(&ppd->led_override_timer_active, 0);
1259 		/* Ensure the atomic_set is visible to all CPUs */
1260 		smp_wmb();
1261 	}
1262 
1263 	/* Hand control of the LED to the DC for normal operation */
1264 	write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1265 }
1266 
run_led_override(unsigned long opaque)1267 static void run_led_override(unsigned long opaque)
1268 {
1269 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)opaque;
1270 	struct hfi1_devdata *dd = ppd->dd;
1271 	unsigned long timeout;
1272 	int phase_idx;
1273 
1274 	if (!(dd->flags & HFI1_INITTED))
1275 		return;
1276 
1277 	phase_idx = ppd->led_override_phase & 1;
1278 
1279 	setextled(dd, phase_idx);
1280 
1281 	timeout = ppd->led_override_vals[phase_idx];
1282 
1283 	/* Set up for next phase */
1284 	ppd->led_override_phase = !ppd->led_override_phase;
1285 
1286 	mod_timer(&ppd->led_override_timer, jiffies + timeout);
1287 }
1288 
1289 /*
1290  * To have the LED blink in a particular pattern, provide timeon and timeoff
1291  * in milliseconds.
1292  * To turn off custom blinking and return to normal operation, use
1293  * shutdown_led_override()
1294  */
hfi1_start_led_override(struct hfi1_pportdata * ppd,unsigned int timeon,unsigned int timeoff)1295 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1296 			     unsigned int timeoff)
1297 {
1298 	if (!(ppd->dd->flags & HFI1_INITTED))
1299 		return;
1300 
1301 	/* Convert to jiffies for direct use in timer */
1302 	ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1303 	ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1304 
1305 	/* Arbitrarily start from LED on phase */
1306 	ppd->led_override_phase = 1;
1307 
1308 	/*
1309 	 * If the timer has not already been started, do so. Use a "quick"
1310 	 * timeout so the handler will be called soon to look at our request.
1311 	 */
1312 	if (!timer_pending(&ppd->led_override_timer)) {
1313 		setup_timer(&ppd->led_override_timer, run_led_override,
1314 			    (unsigned long)ppd);
1315 		ppd->led_override_timer.expires = jiffies + 1;
1316 		add_timer(&ppd->led_override_timer);
1317 		atomic_set(&ppd->led_override_timer_active, 1);
1318 		/* Ensure the atomic_set is visible to all CPUs */
1319 		smp_wmb();
1320 	}
1321 }
1322 
1323 /**
1324  * hfi1_reset_device - reset the chip if possible
1325  * @unit: the device to reset
1326  *
1327  * Whether or not reset is successful, we attempt to re-initialize the chip
1328  * (that is, much like a driver unload/reload).  We clear the INITTED flag
1329  * so that the various entry points will fail until we reinitialize.  For
1330  * now, we only allow this if no user contexts are open that use chip resources
1331  */
hfi1_reset_device(int unit)1332 int hfi1_reset_device(int unit)
1333 {
1334 	int ret;
1335 	struct hfi1_devdata *dd = hfi1_lookup(unit);
1336 	struct hfi1_pportdata *ppd;
1337 	int pidx;
1338 
1339 	if (!dd) {
1340 		ret = -ENODEV;
1341 		goto bail;
1342 	}
1343 
1344 	dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1345 
1346 	if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1347 		dd_dev_info(dd,
1348 			    "Invalid unit number %u or not initialized or not present\n",
1349 			    unit);
1350 		ret = -ENXIO;
1351 		goto bail;
1352 	}
1353 
1354 	/* If there are any user/vnic contexts, we cannot reset */
1355 	mutex_lock(&hfi1_mutex);
1356 	if (dd->rcd)
1357 		if (hfi1_stats.sps_ctxts) {
1358 			mutex_unlock(&hfi1_mutex);
1359 			ret = -EBUSY;
1360 			goto bail;
1361 		}
1362 	mutex_unlock(&hfi1_mutex);
1363 
1364 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1365 		ppd = dd->pport + pidx;
1366 
1367 		shutdown_led_override(ppd);
1368 	}
1369 	if (dd->flags & HFI1_HAS_SEND_DMA)
1370 		sdma_exit(dd);
1371 
1372 	hfi1_reset_cpu_counters(dd);
1373 
1374 	ret = hfi1_init(dd, 1);
1375 
1376 	if (ret)
1377 		dd_dev_err(dd,
1378 			   "Reinitialize unit %u after reset failed with %d\n",
1379 			   unit, ret);
1380 	else
1381 		dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1382 			    unit);
1383 
1384 bail:
1385 	return ret;
1386 }
1387 
hfi1_setup_ib_header(struct hfi1_packet * packet)1388 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1389 {
1390 	packet->hdr = (struct hfi1_ib_message_header *)
1391 			hfi1_get_msgheader(packet->rcd->dd,
1392 					   packet->rhf_addr);
1393 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1394 }
1395 
hfi1_bypass_ingress_pkt_check(struct hfi1_packet * packet)1396 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1397 {
1398 	struct hfi1_pportdata *ppd = packet->rcd->ppd;
1399 
1400 	/* slid and dlid cannot be 0 */
1401 	if ((!packet->slid) || (!packet->dlid))
1402 		return -EINVAL;
1403 
1404 	/* Compare port lid with incoming packet dlid */
1405 	if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1406 	    (packet->dlid !=
1407 		opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1408 		if (packet->dlid != ppd->lid)
1409 			return -EINVAL;
1410 	}
1411 
1412 	/* No multicast packets with SC15 */
1413 	if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1414 		return -EINVAL;
1415 
1416 	/* Packets with permissive DLID always on SC15 */
1417 	if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1418 					 16B)) &&
1419 	    (packet->sc != 0xF))
1420 		return -EINVAL;
1421 
1422 	return 0;
1423 }
1424 
hfi1_setup_9B_packet(struct hfi1_packet * packet)1425 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1426 {
1427 	struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1428 	struct ib_header *hdr;
1429 	u8 lnh;
1430 
1431 	hfi1_setup_ib_header(packet);
1432 	hdr = packet->hdr;
1433 
1434 	lnh = ib_get_lnh(hdr);
1435 	if (lnh == HFI1_LRH_BTH) {
1436 		packet->ohdr = &hdr->u.oth;
1437 		packet->grh = NULL;
1438 	} else if (lnh == HFI1_LRH_GRH) {
1439 		u32 vtf;
1440 
1441 		packet->ohdr = &hdr->u.l.oth;
1442 		packet->grh = &hdr->u.l.grh;
1443 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1444 			goto drop;
1445 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1446 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1447 			goto drop;
1448 	} else {
1449 		goto drop;
1450 	}
1451 
1452 	/* Query commonly used fields from packet header */
1453 	packet->payload = packet->ebuf;
1454 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1455 	packet->slid = ib_get_slid(hdr);
1456 	packet->dlid = ib_get_dlid(hdr);
1457 	if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1458 		     (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1459 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1460 				be16_to_cpu(IB_MULTICAST_LID_BASE);
1461 	packet->sl = ib_get_sl(hdr);
1462 	packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1463 	packet->pad = ib_bth_get_pad(packet->ohdr);
1464 	packet->extra_byte = 0;
1465 	packet->fecn = ib_bth_get_fecn(packet->ohdr);
1466 	packet->becn = ib_bth_get_becn(packet->ohdr);
1467 
1468 	return 0;
1469 drop:
1470 	ibp->rvp.n_pkt_drops++;
1471 	return -EINVAL;
1472 }
1473 
hfi1_setup_bypass_packet(struct hfi1_packet * packet)1474 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1475 {
1476 	/*
1477 	 * Bypass packets have a different header/payload split
1478 	 * compared to an IB packet.
1479 	 * Current split is set such that 16 bytes of the actual
1480 	 * header is in the header buffer and the remining is in
1481 	 * the eager buffer. We chose 16 since hfi1 driver only
1482 	 * supports 16B bypass packets and we will be able to
1483 	 * receive the entire LRH with such a split.
1484 	 */
1485 
1486 	struct hfi1_ctxtdata *rcd = packet->rcd;
1487 	struct hfi1_pportdata *ppd = rcd->ppd;
1488 	struct hfi1_ibport *ibp = &ppd->ibport_data;
1489 	u8 l4;
1490 	u8 grh_len;
1491 
1492 	packet->hdr = (struct hfi1_16b_header *)
1493 			hfi1_get_16B_header(packet->rcd->dd,
1494 					    packet->rhf_addr);
1495 	packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1496 
1497 	l4 = hfi1_16B_get_l4(packet->hdr);
1498 	if (l4 == OPA_16B_L4_IB_LOCAL) {
1499 		grh_len = 0;
1500 		packet->ohdr = packet->ebuf;
1501 		packet->grh = NULL;
1502 	} else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1503 		u32 vtf;
1504 
1505 		grh_len = sizeof(struct ib_grh);
1506 		packet->ohdr = packet->ebuf + grh_len;
1507 		packet->grh = packet->ebuf;
1508 		if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1509 			goto drop;
1510 		vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1511 		if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1512 			goto drop;
1513 	} else {
1514 		goto drop;
1515 	}
1516 
1517 	/* Query commonly used fields from packet header */
1518 	packet->opcode = ib_bth_get_opcode(packet->ohdr);
1519 	packet->hlen = hdr_len_by_opcode[packet->opcode] + 8 + grh_len;
1520 	packet->payload = packet->ebuf + packet->hlen - (4 * sizeof(u32));
1521 	packet->slid = hfi1_16B_get_slid(packet->hdr);
1522 	packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1523 	if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1524 		packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1525 				opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1526 					    16B);
1527 	packet->sc = hfi1_16B_get_sc(packet->hdr);
1528 	packet->sl = ibp->sc_to_sl[packet->sc];
1529 	packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1530 	packet->extra_byte = SIZE_OF_LT;
1531 	packet->fecn = hfi1_16B_get_fecn(packet->hdr);
1532 	packet->becn = hfi1_16B_get_becn(packet->hdr);
1533 
1534 	if (hfi1_bypass_ingress_pkt_check(packet))
1535 		goto drop;
1536 
1537 	return 0;
1538 drop:
1539 	hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1540 	ibp->rvp.n_pkt_drops++;
1541 	return -EINVAL;
1542 }
1543 
handle_eflags(struct hfi1_packet * packet)1544 void handle_eflags(struct hfi1_packet *packet)
1545 {
1546 	struct hfi1_ctxtdata *rcd = packet->rcd;
1547 	u32 rte = rhf_rcv_type_err(packet->rhf);
1548 
1549 	rcv_hdrerr(rcd, rcd->ppd, packet);
1550 	if (rhf_err_flags(packet->rhf))
1551 		dd_dev_err(rcd->dd,
1552 			   "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1553 			   rcd->ctxt, packet->rhf,
1554 			   packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1555 			   packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1556 			   packet->rhf & RHF_DC_ERR ? "dc " : "",
1557 			   packet->rhf & RHF_TID_ERR ? "tid " : "",
1558 			   packet->rhf & RHF_LEN_ERR ? "len " : "",
1559 			   packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1560 			   packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1561 			   packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1562 			   rte);
1563 }
1564 
1565 /*
1566  * The following functions are called by the interrupt handler. They are type
1567  * specific handlers for each packet type.
1568  */
process_receive_ib(struct hfi1_packet * packet)1569 int process_receive_ib(struct hfi1_packet *packet)
1570 {
1571 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1572 		return RHF_RCV_CONTINUE;
1573 
1574 	if (hfi1_setup_9B_packet(packet))
1575 		return RHF_RCV_CONTINUE;
1576 
1577 	trace_hfi1_rcvhdr(packet->rcd->ppd->dd,
1578 			  packet->rcd->ctxt,
1579 			  rhf_err_flags(packet->rhf),
1580 			  RHF_RCV_TYPE_IB,
1581 			  packet->hlen,
1582 			  packet->tlen,
1583 			  packet->updegr,
1584 			  rhf_egr_index(packet->rhf));
1585 
1586 	if (unlikely(
1587 		 (hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1588 		 (packet->rhf & RHF_DC_ERR))))
1589 		return RHF_RCV_CONTINUE;
1590 
1591 	if (unlikely(rhf_err_flags(packet->rhf))) {
1592 		handle_eflags(packet);
1593 		return RHF_RCV_CONTINUE;
1594 	}
1595 
1596 	hfi1_ib_rcv(packet);
1597 	return RHF_RCV_CONTINUE;
1598 }
1599 
hfi1_is_vnic_packet(struct hfi1_packet * packet)1600 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1601 {
1602 	/* Packet received in VNIC context via RSM */
1603 	if (packet->rcd->is_vnic)
1604 		return true;
1605 
1606 	if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1607 	    (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1608 		return true;
1609 
1610 	return false;
1611 }
1612 
process_receive_bypass(struct hfi1_packet * packet)1613 int process_receive_bypass(struct hfi1_packet *packet)
1614 {
1615 	struct hfi1_devdata *dd = packet->rcd->dd;
1616 
1617 	if (hfi1_is_vnic_packet(packet)) {
1618 		hfi1_vnic_bypass_rcv(packet);
1619 		return RHF_RCV_CONTINUE;
1620 	}
1621 
1622 	if (hfi1_setup_bypass_packet(packet))
1623 		return RHF_RCV_CONTINUE;
1624 
1625 	if (unlikely(rhf_err_flags(packet->rhf))) {
1626 		handle_eflags(packet);
1627 		return RHF_RCV_CONTINUE;
1628 	}
1629 
1630 	if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1631 		hfi1_16B_rcv(packet);
1632 	} else {
1633 		dd_dev_err(dd,
1634 			   "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1635 		incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1636 		if (!(dd->err_info_rcvport.status_and_code &
1637 		      OPA_EI_STATUS_SMASK)) {
1638 			u64 *flits = packet->ebuf;
1639 
1640 			if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1641 				dd->err_info_rcvport.packet_flit1 = flits[0];
1642 				dd->err_info_rcvport.packet_flit2 =
1643 					packet->tlen > sizeof(flits[0]) ?
1644 					flits[1] : 0;
1645 			}
1646 			dd->err_info_rcvport.status_and_code |=
1647 				(OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1648 		}
1649 	}
1650 	return RHF_RCV_CONTINUE;
1651 }
1652 
process_receive_error(struct hfi1_packet * packet)1653 int process_receive_error(struct hfi1_packet *packet)
1654 {
1655 	/* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1656 	if (unlikely(
1657 		 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1658 		 rhf_rcv_type_err(packet->rhf) == 3))
1659 		return RHF_RCV_CONTINUE;
1660 
1661 	hfi1_setup_ib_header(packet);
1662 	handle_eflags(packet);
1663 
1664 	if (unlikely(rhf_err_flags(packet->rhf)))
1665 		dd_dev_err(packet->rcd->dd,
1666 			   "Unhandled error packet received. Dropping.\n");
1667 
1668 	return RHF_RCV_CONTINUE;
1669 }
1670 
kdeth_process_expected(struct hfi1_packet * packet)1671 int kdeth_process_expected(struct hfi1_packet *packet)
1672 {
1673 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1674 		return RHF_RCV_CONTINUE;
1675 
1676 	hfi1_setup_ib_header(packet);
1677 	if (unlikely(rhf_err_flags(packet->rhf)))
1678 		handle_eflags(packet);
1679 
1680 	dd_dev_err(packet->rcd->dd,
1681 		   "Unhandled expected packet received. Dropping.\n");
1682 	return RHF_RCV_CONTINUE;
1683 }
1684 
kdeth_process_eager(struct hfi1_packet * packet)1685 int kdeth_process_eager(struct hfi1_packet *packet)
1686 {
1687 	hfi1_setup_ib_header(packet);
1688 	if (unlikely(rhf_err_flags(packet->rhf)))
1689 		handle_eflags(packet);
1690 	if (unlikely(hfi1_dbg_fault_packet(packet)))
1691 		return RHF_RCV_CONTINUE;
1692 
1693 	dd_dev_err(packet->rcd->dd,
1694 		   "Unhandled eager packet received. Dropping.\n");
1695 	return RHF_RCV_CONTINUE;
1696 }
1697 
process_receive_invalid(struct hfi1_packet * packet)1698 int process_receive_invalid(struct hfi1_packet *packet)
1699 {
1700 	dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1701 		   rhf_rcv_type(packet->rhf));
1702 	return RHF_RCV_CONTINUE;
1703 }
1704 
seqfile_dump_rcd(struct seq_file * s,struct hfi1_ctxtdata * rcd)1705 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1706 {
1707 	struct hfi1_packet packet;
1708 	struct ps_mdata mdata;
1709 
1710 	seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1711 		   rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1712 		   HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1713 		   "dma_rtail" : "nodma_rtail",
1714 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1715 		   RCV_HDR_HEAD_HEAD_MASK,
1716 		   read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1717 
1718 	init_packet(rcd, &packet);
1719 	init_ps_mdata(&mdata, &packet);
1720 
1721 	while (1) {
1722 		struct hfi1_devdata *dd = rcd->dd;
1723 		__le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1724 					 dd->rhf_offset;
1725 		struct ib_header *hdr;
1726 		u64 rhf = rhf_to_cpu(rhf_addr);
1727 		u32 etype = rhf_rcv_type(rhf), qpn;
1728 		u8 opcode;
1729 		u32 psn;
1730 		u8 lnh;
1731 
1732 		if (ps_done(&mdata, rhf, rcd))
1733 			break;
1734 
1735 		if (ps_skip(&mdata, rhf, rcd))
1736 			goto next;
1737 
1738 		if (etype > RHF_RCV_TYPE_IB)
1739 			goto next;
1740 
1741 		packet.hdr = hfi1_get_msgheader(dd, rhf_addr);
1742 		hdr = packet.hdr;
1743 
1744 		lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1745 
1746 		if (lnh == HFI1_LRH_BTH)
1747 			packet.ohdr = &hdr->u.oth;
1748 		else if (lnh == HFI1_LRH_GRH)
1749 			packet.ohdr = &hdr->u.l.oth;
1750 		else
1751 			goto next; /* just in case */
1752 
1753 		opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1754 		qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1755 		psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1756 
1757 		seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1758 			   mdata.ps_head, opcode, qpn, psn);
1759 next:
1760 		update_ps_mdata(&mdata, rcd);
1761 	}
1762 }
1763