• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001-2004 by David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License as published by the
6  * Free Software Foundation; either version 2 of the License, or (at your
7  * option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
11  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software Foundation,
16  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 /* this file is part of ehci-hcd.c */
20 
21 /*-------------------------------------------------------------------------*/
22 
23 /*
24  * EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
25  *
26  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
27  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
28  * buffers needed for the larger number).  We use one QH per endpoint, queue
29  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
30  *
31  * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
32  * interrupts) needs careful scheduling.  Performance improvements can be
33  * an ongoing challenge.  That's in "ehci-sched.c".
34  *
35  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
36  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
37  * (b) special fields in qh entries or (c) split iso entries.  TTs will
38  * buffer low/full speed data so the host collects it at high speed.
39  */
40 
41 /*-------------------------------------------------------------------------*/
42 
43 /* PID Codes that are used here, from EHCI specification, Table 3-16. */
44 #define PID_CODE_IN    1
45 #define PID_CODE_SETUP 2
46 
47 /* fill a qtd, returning how much of the buffer we were able to queue up */
48 
49 static int
qtd_fill(struct ehci_hcd * ehci,struct ehci_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)50 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
51 		  size_t len, int token, int maxpacket)
52 {
53 	int	i, count;
54 	u64	addr = buf;
55 
56 	/* one buffer entry per 4K ... first might be short or unaligned */
57 	qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
58 	qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
59 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
60 	if (likely (len < count))		/* ... iff needed */
61 		count = len;
62 	else {
63 		buf +=  0x1000;
64 		buf &= ~0x0fff;
65 
66 		/* per-qtd limit: from 16K to 20K (best alignment) */
67 		for (i = 1; count < len && i < 5; i++) {
68 			addr = buf;
69 			qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
70 			qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
71 					(u32)(addr >> 32));
72 			buf += 0x1000;
73 			if ((count + 0x1000) < len)
74 				count += 0x1000;
75 			else
76 				count = len;
77 		}
78 
79 		/* short packets may only terminate transfers */
80 		if (count != len)
81 			count -= (count % maxpacket);
82 	}
83 	qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
84 	qtd->length = count;
85 
86 	return count;
87 }
88 
89 /*-------------------------------------------------------------------------*/
90 
91 static inline void
qh_update(struct ehci_hcd * ehci,struct ehci_qh * qh,struct ehci_qtd * qtd)92 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
93 {
94 	struct ehci_qh_hw *hw = qh->hw;
95 
96 	/* writes to an active overlay are unsafe */
97 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
98 
99 	hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
100 	hw->hw_alt_next = EHCI_LIST_END(ehci);
101 
102 	/* Except for control endpoints, we make hardware maintain data
103 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
104 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
105 	 * ever clear it.
106 	 */
107 	if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
108 		unsigned	is_out, epnum;
109 
110 		is_out = qh->is_out;
111 		epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
112 		if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
113 			hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
114 			usb_settoggle(qh->ps.udev, epnum, is_out, 1);
115 		}
116 	}
117 
118 	hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
119 }
120 
121 /* if it weren't for a common silicon quirk (writing the dummy into the qh
122  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
123  * recovery (including urb dequeue) would need software changes to a QH...
124  */
125 static void
qh_refresh(struct ehci_hcd * ehci,struct ehci_qh * qh)126 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
127 {
128 	struct ehci_qtd *qtd;
129 
130 	qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
131 
132 	/*
133 	 * first qtd may already be partially processed.
134 	 * If we come here during unlink, the QH overlay region
135 	 * might have reference to the just unlinked qtd. The
136 	 * qtd is updated in qh_completions(). Update the QH
137 	 * overlay here.
138 	 */
139 	if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
140 		qh->hw->hw_qtd_next = qtd->hw_next;
141 		if (qh->should_be_inactive)
142 			ehci_warn(ehci, "qh %p should be inactive!\n", qh);
143 	} else {
144 		qh_update(ehci, qh, qtd);
145 	}
146 	qh->should_be_inactive = 0;
147 }
148 
149 /*-------------------------------------------------------------------------*/
150 
151 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
152 
ehci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)153 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
154 		struct usb_host_endpoint *ep)
155 {
156 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
157 	struct ehci_qh		*qh = ep->hcpriv;
158 	unsigned long		flags;
159 
160 	spin_lock_irqsave(&ehci->lock, flags);
161 	qh->clearing_tt = 0;
162 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
163 			&& ehci->rh_state == EHCI_RH_RUNNING)
164 		qh_link_async(ehci, qh);
165 	spin_unlock_irqrestore(&ehci->lock, flags);
166 }
167 
ehci_clear_tt_buffer(struct ehci_hcd * ehci,struct ehci_qh * qh,struct urb * urb,u32 token)168 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
169 		struct urb *urb, u32 token)
170 {
171 
172 	/* If an async split transaction gets an error or is unlinked,
173 	 * the TT buffer may be left in an indeterminate state.  We
174 	 * have to clear the TT buffer.
175 	 *
176 	 * Note: this routine is never called for Isochronous transfers.
177 	 */
178 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
179 #ifdef CONFIG_DYNAMIC_DEBUG
180 		struct usb_device *tt = urb->dev->tt->hub;
181 		dev_dbg(&tt->dev,
182 			"clear tt buffer port %d, a%d ep%d t%08x\n",
183 			urb->dev->ttport, urb->dev->devnum,
184 			usb_pipeendpoint(urb->pipe), token);
185 #endif /* CONFIG_DYNAMIC_DEBUG */
186 		if (!ehci_is_TDI(ehci)
187 				|| urb->dev->tt->hub !=
188 				   ehci_to_hcd(ehci)->self.root_hub) {
189 			if (usb_hub_clear_tt_buffer(urb) == 0)
190 				qh->clearing_tt = 1;
191 		} else {
192 
193 			/* REVISIT ARC-derived cores don't clear the root
194 			 * hub TT buffer in this way...
195 			 */
196 		}
197 	}
198 }
199 
qtd_copy_status(struct ehci_hcd * ehci,struct urb * urb,size_t length,u32 token)200 static int qtd_copy_status (
201 	struct ehci_hcd *ehci,
202 	struct urb *urb,
203 	size_t length,
204 	u32 token
205 )
206 {
207 	int	status = -EINPROGRESS;
208 
209 	/* count IN/OUT bytes, not SETUP (even short packets) */
210 	if (likely(QTD_PID(token) != PID_CODE_SETUP))
211 		urb->actual_length += length - QTD_LENGTH (token);
212 
213 	/* don't modify error codes */
214 	if (unlikely(urb->unlinked))
215 		return status;
216 
217 	/* force cleanup after short read; not always an error */
218 	if (unlikely (IS_SHORT_READ (token)))
219 		status = -EREMOTEIO;
220 
221 	/* serious "can't proceed" faults reported by the hardware */
222 	if (token & QTD_STS_HALT) {
223 		if (token & QTD_STS_BABBLE) {
224 			/* FIXME "must" disable babbling device's port too */
225 			status = -EOVERFLOW;
226 		/*
227 		 * When MMF is active and PID Code is IN, queue is halted.
228 		 * EHCI Specification, Table 4-13.
229 		 */
230 		} else if ((token & QTD_STS_MMF) &&
231 					(QTD_PID(token) == PID_CODE_IN)) {
232 			status = -EPROTO;
233 		/* CERR nonzero + halt --> stall */
234 		} else if (QTD_CERR(token)) {
235 			status = -EPIPE;
236 
237 		/* In theory, more than one of the following bits can be set
238 		 * since they are sticky and the transaction is retried.
239 		 * Which to test first is rather arbitrary.
240 		 */
241 		} else if (token & QTD_STS_MMF) {
242 			/* fs/ls interrupt xfer missed the complete-split */
243 			status = -EPROTO;
244 		} else if (token & QTD_STS_DBE) {
245 			status = (QTD_PID (token) == 1) /* IN ? */
246 				? -ENOSR  /* hc couldn't read data */
247 				: -ECOMM; /* hc couldn't write data */
248 		} else if (token & QTD_STS_XACT) {
249 			/* timeout, bad CRC, wrong PID, etc */
250 			ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
251 				urb->dev->devpath,
252 				usb_pipeendpoint(urb->pipe),
253 				usb_pipein(urb->pipe) ? "in" : "out");
254 			status = -EPROTO;
255 		} else {	/* unknown */
256 			status = -EPROTO;
257 		}
258 	}
259 
260 	return status;
261 }
262 
263 static void
ehci_urb_done(struct ehci_hcd * ehci,struct urb * urb,int status)264 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
265 {
266 	if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
267 		/* ... update hc-wide periodic stats */
268 		ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
269 	}
270 
271 	if (unlikely(urb->unlinked)) {
272 		COUNT(ehci->stats.unlink);
273 	} else {
274 		/* report non-error and short read status as zero */
275 		if (status == -EINPROGRESS || status == -EREMOTEIO)
276 			status = 0;
277 		COUNT(ehci->stats.complete);
278 	}
279 
280 #ifdef EHCI_URB_TRACE
281 	ehci_dbg (ehci,
282 		"%s %s urb %p ep%d%s status %d len %d/%d\n",
283 		__func__, urb->dev->devpath, urb,
284 		usb_pipeendpoint (urb->pipe),
285 		usb_pipein (urb->pipe) ? "in" : "out",
286 		status,
287 		urb->actual_length, urb->transfer_buffer_length);
288 #endif
289 
290 	usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
291 	usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
292 }
293 
294 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
295 
296 /*
297  * Process and free completed qtds for a qh, returning URBs to drivers.
298  * Chases up to qh->hw_current.  Returns nonzero if the caller should
299  * unlink qh.
300  */
301 static unsigned
qh_completions(struct ehci_hcd * ehci,struct ehci_qh * qh)302 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
303 {
304 	struct ehci_qtd		*last, *end = qh->dummy;
305 	struct list_head	*entry, *tmp;
306 	int			last_status;
307 	int			stopped;
308 	u8			state;
309 	struct ehci_qh_hw	*hw = qh->hw;
310 
311 	/* completions (or tasks on other cpus) must never clobber HALT
312 	 * till we've gone through and cleaned everything up, even when
313 	 * they add urbs to this qh's queue or mark them for unlinking.
314 	 *
315 	 * NOTE:  unlinking expects to be done in queue order.
316 	 *
317 	 * It's a bug for qh->qh_state to be anything other than
318 	 * QH_STATE_IDLE, unless our caller is scan_async() or
319 	 * scan_intr().
320 	 */
321 	state = qh->qh_state;
322 	qh->qh_state = QH_STATE_COMPLETING;
323 	stopped = (state == QH_STATE_IDLE);
324 
325  rescan:
326 	last = NULL;
327 	last_status = -EINPROGRESS;
328 	qh->dequeue_during_giveback = 0;
329 
330 	/* remove de-activated QTDs from front of queue.
331 	 * after faults (including short reads), cleanup this urb
332 	 * then let the queue advance.
333 	 * if queue is stopped, handles unlinks.
334 	 */
335 	list_for_each_safe (entry, tmp, &qh->qtd_list) {
336 		struct ehci_qtd	*qtd;
337 		struct urb	*urb;
338 		u32		token = 0;
339 
340 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
341 		urb = qtd->urb;
342 
343 		/* clean up any state from previous QTD ...*/
344 		if (last) {
345 			if (likely (last->urb != urb)) {
346 				ehci_urb_done(ehci, last->urb, last_status);
347 				last_status = -EINPROGRESS;
348 			}
349 			ehci_qtd_free (ehci, last);
350 			last = NULL;
351 		}
352 
353 		/* ignore urbs submitted during completions we reported */
354 		if (qtd == end)
355 			break;
356 
357 		/* hardware copies qtd out of qh overlay */
358 		rmb ();
359 		token = hc32_to_cpu(ehci, qtd->hw_token);
360 
361 		/* always clean up qtds the hc de-activated */
362  retry_xacterr:
363 		if ((token & QTD_STS_ACTIVE) == 0) {
364 
365 			/* Report Data Buffer Error: non-fatal but useful */
366 			if (token & QTD_STS_DBE)
367 				ehci_dbg(ehci,
368 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
369 					urb,
370 					usb_endpoint_num(&urb->ep->desc),
371 					usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
372 					urb->transfer_buffer_length,
373 					qtd,
374 					qh);
375 
376 			/* on STALL, error, and short reads this urb must
377 			 * complete and all its qtds must be recycled.
378 			 */
379 			if ((token & QTD_STS_HALT) != 0) {
380 
381 				/* retry transaction errors until we
382 				 * reach the software xacterr limit
383 				 */
384 				if ((token & QTD_STS_XACT) &&
385 						QTD_CERR(token) == 0 &&
386 						++qh->xacterrs < QH_XACTERR_MAX &&
387 						!urb->unlinked) {
388 					ehci_dbg(ehci,
389 	"detected XactErr len %zu/%zu retry %d\n",
390 	qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
391 
392 					/* reset the token in the qtd and the
393 					 * qh overlay (which still contains
394 					 * the qtd) so that we pick up from
395 					 * where we left off
396 					 */
397 					token &= ~QTD_STS_HALT;
398 					token |= QTD_STS_ACTIVE |
399 							(EHCI_TUNE_CERR << 10);
400 					qtd->hw_token = cpu_to_hc32(ehci,
401 							token);
402 					wmb();
403 					hw->hw_token = cpu_to_hc32(ehci,
404 							token);
405 					goto retry_xacterr;
406 				}
407 				stopped = 1;
408 				qh->unlink_reason |= QH_UNLINK_HALTED;
409 
410 			/* magic dummy for some short reads; qh won't advance.
411 			 * that silicon quirk can kick in with this dummy too.
412 			 *
413 			 * other short reads won't stop the queue, including
414 			 * control transfers (status stage handles that) or
415 			 * most other single-qtd reads ... the queue stops if
416 			 * URB_SHORT_NOT_OK was set so the driver submitting
417 			 * the urbs could clean it up.
418 			 */
419 			} else if (IS_SHORT_READ (token)
420 					&& !(qtd->hw_alt_next
421 						& EHCI_LIST_END(ehci))) {
422 				stopped = 1;
423 				qh->unlink_reason |= QH_UNLINK_SHORT_READ;
424 			}
425 
426 		/* stop scanning when we reach qtds the hc is using */
427 		} else if (likely (!stopped
428 				&& ehci->rh_state >= EHCI_RH_RUNNING)) {
429 			break;
430 
431 		/* scan the whole queue for unlinks whenever it stops */
432 		} else {
433 			stopped = 1;
434 
435 			/* cancel everything if we halt, suspend, etc */
436 			if (ehci->rh_state < EHCI_RH_RUNNING) {
437 				last_status = -ESHUTDOWN;
438 				qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
439 			}
440 
441 			/* this qtd is active; skip it unless a previous qtd
442 			 * for its urb faulted, or its urb was canceled.
443 			 */
444 			else if (last_status == -EINPROGRESS && !urb->unlinked)
445 				continue;
446 
447 			/*
448 			 * If this was the active qtd when the qh was unlinked
449 			 * and the overlay's token is active, then the overlay
450 			 * hasn't been written back to the qtd yet so use its
451 			 * token instead of the qtd's.  After the qtd is
452 			 * processed and removed, the overlay won't be valid
453 			 * any more.
454 			 */
455 			if (state == QH_STATE_IDLE &&
456 					qh->qtd_list.next == &qtd->qtd_list &&
457 					(hw->hw_token & ACTIVE_BIT(ehci))) {
458 				token = hc32_to_cpu(ehci, hw->hw_token);
459 				hw->hw_token &= ~ACTIVE_BIT(ehci);
460 				qh->should_be_inactive = 1;
461 
462 				/* An unlink may leave an incomplete
463 				 * async transaction in the TT buffer.
464 				 * We have to clear it.
465 				 */
466 				ehci_clear_tt_buffer(ehci, qh, urb, token);
467 			}
468 		}
469 
470 		/* unless we already know the urb's status, collect qtd status
471 		 * and update count of bytes transferred.  in common short read
472 		 * cases with only one data qtd (including control transfers),
473 		 * queue processing won't halt.  but with two or more qtds (for
474 		 * example, with a 32 KB transfer), when the first qtd gets a
475 		 * short read the second must be removed by hand.
476 		 */
477 		if (last_status == -EINPROGRESS) {
478 			last_status = qtd_copy_status(ehci, urb,
479 					qtd->length, token);
480 			if (last_status == -EREMOTEIO
481 					&& (qtd->hw_alt_next
482 						& EHCI_LIST_END(ehci)))
483 				last_status = -EINPROGRESS;
484 
485 			/* As part of low/full-speed endpoint-halt processing
486 			 * we must clear the TT buffer (11.17.5).
487 			 */
488 			if (unlikely(last_status != -EINPROGRESS &&
489 					last_status != -EREMOTEIO)) {
490 				/* The TT's in some hubs malfunction when they
491 				 * receive this request following a STALL (they
492 				 * stop sending isochronous packets).  Since a
493 				 * STALL can't leave the TT buffer in a busy
494 				 * state (if you believe Figures 11-48 - 11-51
495 				 * in the USB 2.0 spec), we won't clear the TT
496 				 * buffer in this case.  Strictly speaking this
497 				 * is a violation of the spec.
498 				 */
499 				if (last_status != -EPIPE)
500 					ehci_clear_tt_buffer(ehci, qh, urb,
501 							token);
502 			}
503 		}
504 
505 		/* if we're removing something not at the queue head,
506 		 * patch the hardware queue pointer.
507 		 */
508 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
509 			last = list_entry (qtd->qtd_list.prev,
510 					struct ehci_qtd, qtd_list);
511 			last->hw_next = qtd->hw_next;
512 		}
513 
514 		/* remove qtd; it's recycled after possible urb completion */
515 		list_del (&qtd->qtd_list);
516 		last = qtd;
517 
518 		/* reinit the xacterr counter for the next qtd */
519 		qh->xacterrs = 0;
520 	}
521 
522 	/* last urb's completion might still need calling */
523 	if (likely (last != NULL)) {
524 		ehci_urb_done(ehci, last->urb, last_status);
525 		ehci_qtd_free (ehci, last);
526 	}
527 
528 	/* Do we need to rescan for URBs dequeued during a giveback? */
529 	if (unlikely(qh->dequeue_during_giveback)) {
530 		/* If the QH is already unlinked, do the rescan now. */
531 		if (state == QH_STATE_IDLE)
532 			goto rescan;
533 
534 		/* Otherwise the caller must unlink the QH. */
535 	}
536 
537 	/* restore original state; caller must unlink or relink */
538 	qh->qh_state = state;
539 
540 	/* be sure the hardware's done with the qh before refreshing
541 	 * it after fault cleanup, or recovering from silicon wrongly
542 	 * overlaying the dummy qtd (which reduces DMA chatter).
543 	 *
544 	 * We won't refresh a QH that's linked (after the HC
545 	 * stopped the queue).  That avoids a race:
546 	 *  - HC reads first part of QH;
547 	 *  - CPU updates that first part and the token;
548 	 *  - HC reads rest of that QH, including token
549 	 * Result:  HC gets an inconsistent image, and then
550 	 * DMAs to/from the wrong memory (corrupting it).
551 	 *
552 	 * That should be rare for interrupt transfers,
553 	 * except maybe high bandwidth ...
554 	 */
555 	if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
556 		qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
557 
558 	/* Let the caller know if the QH needs to be unlinked. */
559 	return qh->unlink_reason;
560 }
561 
562 /*-------------------------------------------------------------------------*/
563 
564 /*
565  * reverse of qh_urb_transaction:  free a list of TDs.
566  * used for cleanup after errors, before HC sees an URB's TDs.
567  */
qtd_list_free(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list)568 static void qtd_list_free (
569 	struct ehci_hcd		*ehci,
570 	struct urb		*urb,
571 	struct list_head	*qtd_list
572 ) {
573 	struct list_head	*entry, *temp;
574 
575 	list_for_each_safe (entry, temp, qtd_list) {
576 		struct ehci_qtd	*qtd;
577 
578 		qtd = list_entry (entry, struct ehci_qtd, qtd_list);
579 		list_del (&qtd->qtd_list);
580 		ehci_qtd_free (ehci, qtd);
581 	}
582 }
583 
584 /*
585  * create a list of filled qtds for this URB; won't link into qh.
586  */
587 static struct list_head *
qh_urb_transaction(struct ehci_hcd * ehci,struct urb * urb,struct list_head * head,gfp_t flags)588 qh_urb_transaction (
589 	struct ehci_hcd		*ehci,
590 	struct urb		*urb,
591 	struct list_head	*head,
592 	gfp_t			flags
593 ) {
594 	struct ehci_qtd		*qtd, *qtd_prev;
595 	dma_addr_t		buf;
596 	int			len, this_sg_len, maxpacket;
597 	int			is_input;
598 	u32			token;
599 	int			i;
600 	struct scatterlist	*sg;
601 
602 	/*
603 	 * URBs map to sequences of QTDs:  one logical transaction
604 	 */
605 	qtd = ehci_qtd_alloc (ehci, flags);
606 	if (unlikely (!qtd))
607 		return NULL;
608 	list_add_tail (&qtd->qtd_list, head);
609 	qtd->urb = urb;
610 
611 	token = QTD_STS_ACTIVE;
612 	token |= (EHCI_TUNE_CERR << 10);
613 	/* for split transactions, SplitXState initialized to zero */
614 
615 	len = urb->transfer_buffer_length;
616 	is_input = usb_pipein (urb->pipe);
617 	if (usb_pipecontrol (urb->pipe)) {
618 		/* SETUP pid */
619 		qtd_fill(ehci, qtd, urb->setup_dma,
620 				sizeof (struct usb_ctrlrequest),
621 				token | (2 /* "setup" */ << 8), 8);
622 
623 		/* ... and always at least one more pid */
624 		token ^= QTD_TOGGLE;
625 		qtd_prev = qtd;
626 		qtd = ehci_qtd_alloc (ehci, flags);
627 		if (unlikely (!qtd))
628 			goto cleanup;
629 		qtd->urb = urb;
630 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
631 		list_add_tail (&qtd->qtd_list, head);
632 
633 		/* for zero length DATA stages, STATUS is always IN */
634 		if (len == 0)
635 			token |= (1 /* "in" */ << 8);
636 	}
637 
638 	/*
639 	 * data transfer stage:  buffer setup
640 	 */
641 	i = urb->num_mapped_sgs;
642 	if (len > 0 && i > 0) {
643 		sg = urb->sg;
644 		buf = sg_dma_address(sg);
645 
646 		/* urb->transfer_buffer_length may be smaller than the
647 		 * size of the scatterlist (or vice versa)
648 		 */
649 		this_sg_len = min_t(int, sg_dma_len(sg), len);
650 	} else {
651 		sg = NULL;
652 		buf = urb->transfer_dma;
653 		this_sg_len = len;
654 	}
655 
656 	if (is_input)
657 		token |= (1 /* "in" */ << 8);
658 	/* else it's already initted to "out" pid (0 << 8) */
659 
660 	maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
661 
662 	/*
663 	 * buffer gets wrapped in one or more qtds;
664 	 * last one may be "short" (including zero len)
665 	 * and may serve as a control status ack
666 	 */
667 	for (;;) {
668 		int this_qtd_len;
669 
670 		this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
671 				maxpacket);
672 		this_sg_len -= this_qtd_len;
673 		len -= this_qtd_len;
674 		buf += this_qtd_len;
675 
676 		/*
677 		 * short reads advance to a "magic" dummy instead of the next
678 		 * qtd ... that forces the queue to stop, for manual cleanup.
679 		 * (this will usually be overridden later.)
680 		 */
681 		if (is_input)
682 			qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
683 
684 		/* qh makes control packets use qtd toggle; maybe switch it */
685 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
686 			token ^= QTD_TOGGLE;
687 
688 		if (likely(this_sg_len <= 0)) {
689 			if (--i <= 0 || len <= 0)
690 				break;
691 			sg = sg_next(sg);
692 			buf = sg_dma_address(sg);
693 			this_sg_len = min_t(int, sg_dma_len(sg), len);
694 		}
695 
696 		qtd_prev = qtd;
697 		qtd = ehci_qtd_alloc (ehci, flags);
698 		if (unlikely (!qtd))
699 			goto cleanup;
700 		qtd->urb = urb;
701 		qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
702 		list_add_tail (&qtd->qtd_list, head);
703 	}
704 
705 	/*
706 	 * unless the caller requires manual cleanup after short reads,
707 	 * have the alt_next mechanism keep the queue running after the
708 	 * last data qtd (the only one, for control and most other cases).
709 	 */
710 	if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
711 				|| usb_pipecontrol (urb->pipe)))
712 		qtd->hw_alt_next = EHCI_LIST_END(ehci);
713 
714 	/*
715 	 * control requests may need a terminating data "status" ack;
716 	 * other OUT ones may need a terminating short packet
717 	 * (zero length).
718 	 */
719 	if (likely (urb->transfer_buffer_length != 0)) {
720 		int	one_more = 0;
721 
722 		if (usb_pipecontrol (urb->pipe)) {
723 			one_more = 1;
724 			token ^= 0x0100;	/* "in" <--> "out"  */
725 			token |= QTD_TOGGLE;	/* force DATA1 */
726 		} else if (usb_pipeout(urb->pipe)
727 				&& (urb->transfer_flags & URB_ZERO_PACKET)
728 				&& !(urb->transfer_buffer_length % maxpacket)) {
729 			one_more = 1;
730 		}
731 		if (one_more) {
732 			qtd_prev = qtd;
733 			qtd = ehci_qtd_alloc (ehci, flags);
734 			if (unlikely (!qtd))
735 				goto cleanup;
736 			qtd->urb = urb;
737 			qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
738 			list_add_tail (&qtd->qtd_list, head);
739 
740 			/* never any data in such packets */
741 			qtd_fill(ehci, qtd, 0, 0, token, 0);
742 		}
743 	}
744 
745 	/* by default, enable interrupt on urb completion */
746 	if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
747 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
748 	return head;
749 
750 cleanup:
751 	qtd_list_free (ehci, urb, head);
752 	return NULL;
753 }
754 
755 /*-------------------------------------------------------------------------*/
756 
757 // Would be best to create all qh's from config descriptors,
758 // when each interface/altsetting is established.  Unlink
759 // any previous qh and cancel its urbs first; endpoints are
760 // implicitly reset then (data toggle too).
761 // That'd mean updating how usbcore talks to HCDs. (2.7?)
762 
763 
764 /*
765  * Each QH holds a qtd list; a QH is used for everything except iso.
766  *
767  * For interrupt urbs, the scheduler must set the microframe scheduling
768  * mask(s) each time the QH gets scheduled.  For highspeed, that's
769  * just one microframe in the s-mask.  For split interrupt transactions
770  * there are additional complications: c-mask, maybe FSTNs.
771  */
772 static struct ehci_qh *
qh_make(struct ehci_hcd * ehci,struct urb * urb,gfp_t flags)773 qh_make (
774 	struct ehci_hcd		*ehci,
775 	struct urb		*urb,
776 	gfp_t			flags
777 ) {
778 	struct ehci_qh		*qh = ehci_qh_alloc (ehci, flags);
779 	struct usb_host_endpoint *ep;
780 	u32			info1 = 0, info2 = 0;
781 	int			is_input, type;
782 	int			maxp = 0;
783 	int			mult;
784 	struct usb_tt		*tt = urb->dev->tt;
785 	struct ehci_qh_hw	*hw;
786 
787 	if (!qh)
788 		return qh;
789 
790 	/*
791 	 * init endpoint/device data for this QH
792 	 */
793 	info1 |= usb_pipeendpoint (urb->pipe) << 8;
794 	info1 |= usb_pipedevice (urb->pipe) << 0;
795 
796 	is_input = usb_pipein (urb->pipe);
797 	type = usb_pipetype (urb->pipe);
798 	ep = usb_pipe_endpoint (urb->dev, urb->pipe);
799 	maxp = usb_endpoint_maxp (&ep->desc);
800 	mult = usb_endpoint_maxp_mult (&ep->desc);
801 
802 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
803 	 * acts like up to 3KB, but is built from smaller packets.
804 	 */
805 	if (maxp > 1024) {
806 		ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
807 		goto done;
808 	}
809 
810 	/* Compute interrupt scheduling parameters just once, and save.
811 	 * - allowing for high bandwidth, how many nsec/uframe are used?
812 	 * - split transactions need a second CSPLIT uframe; same question
813 	 * - splits also need a schedule gap (for full/low speed I/O)
814 	 * - qh has a polling interval
815 	 *
816 	 * For control/bulk requests, the HC or TT handles these.
817 	 */
818 	if (type == PIPE_INTERRUPT) {
819 		unsigned	tmp;
820 
821 		qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
822 				is_input, 0, mult * maxp));
823 		qh->ps.phase = NO_FRAME;
824 
825 		if (urb->dev->speed == USB_SPEED_HIGH) {
826 			qh->ps.c_usecs = 0;
827 			qh->gap_uf = 0;
828 
829 			if (urb->interval > 1 && urb->interval < 8) {
830 				/* NOTE interval 2 or 4 uframes could work.
831 				 * But interval 1 scheduling is simpler, and
832 				 * includes high bandwidth.
833 				 */
834 				urb->interval = 1;
835 			} else if (urb->interval > ehci->periodic_size << 3) {
836 				urb->interval = ehci->periodic_size << 3;
837 			}
838 			qh->ps.period = urb->interval >> 3;
839 
840 			/* period for bandwidth allocation */
841 			tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
842 					1 << (urb->ep->desc.bInterval - 1));
843 
844 			/* Allow urb->interval to override */
845 			qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
846 			qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
847 		} else {
848 			int		think_time;
849 
850 			/* gap is f(FS/LS transfer times) */
851 			qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
852 					is_input, 0, maxp) / (125 * 1000);
853 
854 			/* FIXME this just approximates SPLIT/CSPLIT times */
855 			if (is_input) {		// SPLIT, gap, CSPLIT+DATA
856 				qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
857 				qh->ps.usecs = HS_USECS(1);
858 			} else {		// SPLIT+DATA, gap, CSPLIT
859 				qh->ps.usecs += HS_USECS(1);
860 				qh->ps.c_usecs = HS_USECS(0);
861 			}
862 
863 			think_time = tt ? tt->think_time : 0;
864 			qh->ps.tt_usecs = NS_TO_US(think_time +
865 					usb_calc_bus_time (urb->dev->speed,
866 					is_input, 0, maxp));
867 			if (urb->interval > ehci->periodic_size)
868 				urb->interval = ehci->periodic_size;
869 			qh->ps.period = urb->interval;
870 
871 			/* period for bandwidth allocation */
872 			tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
873 					urb->ep->desc.bInterval);
874 			tmp = rounddown_pow_of_two(tmp);
875 
876 			/* Allow urb->interval to override */
877 			qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
878 			qh->ps.bw_uperiod = qh->ps.bw_period << 3;
879 		}
880 	}
881 
882 	/* support for tt scheduling, and access to toggles */
883 	qh->ps.udev = urb->dev;
884 	qh->ps.ep = urb->ep;
885 
886 	/* using TT? */
887 	switch (urb->dev->speed) {
888 	case USB_SPEED_LOW:
889 		info1 |= QH_LOW_SPEED;
890 		/* FALL THROUGH */
891 
892 	case USB_SPEED_FULL:
893 		/* EPS 0 means "full" */
894 		if (type != PIPE_INTERRUPT)
895 			info1 |= (EHCI_TUNE_RL_TT << 28);
896 		if (type == PIPE_CONTROL) {
897 			info1 |= QH_CONTROL_EP;		/* for TT */
898 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
899 		}
900 		info1 |= maxp << 16;
901 
902 		info2 |= (EHCI_TUNE_MULT_TT << 30);
903 
904 		/* Some Freescale processors have an erratum in which the
905 		 * port number in the queue head was 0..N-1 instead of 1..N.
906 		 */
907 		if (ehci_has_fsl_portno_bug(ehci))
908 			info2 |= (urb->dev->ttport-1) << 23;
909 		else
910 			info2 |= urb->dev->ttport << 23;
911 
912 		/* set the address of the TT; for TDI's integrated
913 		 * root hub tt, leave it zeroed.
914 		 */
915 		if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
916 			info2 |= tt->hub->devnum << 16;
917 
918 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
919 
920 		break;
921 
922 	case USB_SPEED_HIGH:		/* no TT involved */
923 		info1 |= QH_HIGH_SPEED;
924 		if (type == PIPE_CONTROL) {
925 			info1 |= (EHCI_TUNE_RL_HS << 28);
926 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
927 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
928 			info2 |= (EHCI_TUNE_MULT_HS << 30);
929 		} else if (type == PIPE_BULK) {
930 			info1 |= (EHCI_TUNE_RL_HS << 28);
931 			/* The USB spec says that high speed bulk endpoints
932 			 * always use 512 byte maxpacket.  But some device
933 			 * vendors decided to ignore that, and MSFT is happy
934 			 * to help them do so.  So now people expect to use
935 			 * such nonconformant devices with Linux too; sigh.
936 			 */
937 			info1 |= maxp << 16;
938 			info2 |= (EHCI_TUNE_MULT_HS << 30);
939 		} else {		/* PIPE_INTERRUPT */
940 			info1 |= maxp << 16;
941 			info2 |= mult << 30;
942 		}
943 		break;
944 	default:
945 		ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
946 			urb->dev->speed);
947 done:
948 		qh_destroy(ehci, qh);
949 		return NULL;
950 	}
951 
952 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
953 
954 	/* init as live, toggle clear */
955 	qh->qh_state = QH_STATE_IDLE;
956 	hw = qh->hw;
957 	hw->hw_info1 = cpu_to_hc32(ehci, info1);
958 	hw->hw_info2 = cpu_to_hc32(ehci, info2);
959 	qh->is_out = !is_input;
960 	usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
961 	return qh;
962 }
963 
964 /*-------------------------------------------------------------------------*/
965 
enable_async(struct ehci_hcd * ehci)966 static void enable_async(struct ehci_hcd *ehci)
967 {
968 	if (ehci->async_count++)
969 		return;
970 
971 	/* Stop waiting to turn off the async schedule */
972 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
973 
974 	/* Don't start the schedule until ASS is 0 */
975 	ehci_poll_ASS(ehci);
976 	turn_on_io_watchdog(ehci);
977 }
978 
disable_async(struct ehci_hcd * ehci)979 static void disable_async(struct ehci_hcd *ehci)
980 {
981 	if (--ehci->async_count)
982 		return;
983 
984 	/* The async schedule and unlink lists are supposed to be empty */
985 	WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
986 			!list_empty(&ehci->async_idle));
987 
988 	/* Don't turn off the schedule until ASS is 1 */
989 	ehci_poll_ASS(ehci);
990 }
991 
992 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
993 
qh_link_async(struct ehci_hcd * ehci,struct ehci_qh * qh)994 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
995 {
996 	__hc32		dma = QH_NEXT(ehci, qh->qh_dma);
997 	struct ehci_qh	*head;
998 
999 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
1000 	if (unlikely(qh->clearing_tt))
1001 		return;
1002 
1003 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
1004 
1005 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
1006 	qh_refresh(ehci, qh);
1007 
1008 	/* splice right after start */
1009 	head = ehci->async;
1010 	qh->qh_next = head->qh_next;
1011 	qh->hw->hw_next = head->hw->hw_next;
1012 	wmb ();
1013 
1014 	head->qh_next.qh = qh;
1015 	head->hw->hw_next = dma;
1016 
1017 	qh->qh_state = QH_STATE_LINKED;
1018 	qh->xacterrs = 0;
1019 	qh->unlink_reason = 0;
1020 	/* qtd completions reported later by interrupt */
1021 
1022 	enable_async(ehci);
1023 }
1024 
1025 /*-------------------------------------------------------------------------*/
1026 
1027 /*
1028  * For control/bulk/interrupt, return QH with these TDs appended.
1029  * Allocates and initializes the QH if necessary.
1030  * Returns null if it can't allocate a QH it needs to.
1031  * If the QH has TDs (urbs) already, that's great.
1032  */
qh_append_tds(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)1033 static struct ehci_qh *qh_append_tds (
1034 	struct ehci_hcd		*ehci,
1035 	struct urb		*urb,
1036 	struct list_head	*qtd_list,
1037 	int			epnum,
1038 	void			**ptr
1039 )
1040 {
1041 	struct ehci_qh		*qh = NULL;
1042 	__hc32			qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1043 
1044 	qh = (struct ehci_qh *) *ptr;
1045 	if (unlikely (qh == NULL)) {
1046 		/* can't sleep here, we have ehci->lock... */
1047 		qh = qh_make (ehci, urb, GFP_ATOMIC);
1048 		*ptr = qh;
1049 	}
1050 	if (likely (qh != NULL)) {
1051 		struct ehci_qtd	*qtd;
1052 
1053 		if (unlikely (list_empty (qtd_list)))
1054 			qtd = NULL;
1055 		else
1056 			qtd = list_entry (qtd_list->next, struct ehci_qtd,
1057 					qtd_list);
1058 
1059 		/* control qh may need patching ... */
1060 		if (unlikely (epnum == 0)) {
1061 
1062                         /* usb_reset_device() briefly reverts to address 0 */
1063                         if (usb_pipedevice (urb->pipe) == 0)
1064 				qh->hw->hw_info1 &= ~qh_addr_mask;
1065 		}
1066 
1067 		/* just one way to queue requests: swap with the dummy qtd.
1068 		 * only hc or qh_refresh() ever modify the overlay.
1069 		 */
1070 		if (likely (qtd != NULL)) {
1071 			struct ehci_qtd		*dummy;
1072 			dma_addr_t		dma;
1073 			__hc32			token;
1074 
1075 			/* to avoid racing the HC, use the dummy td instead of
1076 			 * the first td of our list (becomes new dummy).  both
1077 			 * tds stay deactivated until we're done, when the
1078 			 * HC is allowed to fetch the old dummy (4.10.2).
1079 			 */
1080 			token = qtd->hw_token;
1081 			qtd->hw_token = HALT_BIT(ehci);
1082 
1083 			dummy = qh->dummy;
1084 
1085 			dma = dummy->qtd_dma;
1086 			*dummy = *qtd;
1087 			dummy->qtd_dma = dma;
1088 
1089 			list_del (&qtd->qtd_list);
1090 			list_add (&dummy->qtd_list, qtd_list);
1091 			list_splice_tail(qtd_list, &qh->qtd_list);
1092 
1093 			ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1094 			qh->dummy = qtd;
1095 
1096 			/* hc must see the new dummy at list end */
1097 			dma = qtd->qtd_dma;
1098 			qtd = list_entry (qh->qtd_list.prev,
1099 					struct ehci_qtd, qtd_list);
1100 			qtd->hw_next = QTD_NEXT(ehci, dma);
1101 
1102 			/* let the hc process these next qtds */
1103 			wmb ();
1104 			dummy->hw_token = token;
1105 
1106 			urb->hcpriv = qh;
1107 		}
1108 	}
1109 	return qh;
1110 }
1111 
1112 /*-------------------------------------------------------------------------*/
1113 
1114 static int
submit_async(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)1115 submit_async (
1116 	struct ehci_hcd		*ehci,
1117 	struct urb		*urb,
1118 	struct list_head	*qtd_list,
1119 	gfp_t			mem_flags
1120 ) {
1121 	int			epnum;
1122 	unsigned long		flags;
1123 	struct ehci_qh		*qh = NULL;
1124 	int			rc;
1125 
1126 	epnum = urb->ep->desc.bEndpointAddress;
1127 
1128 #ifdef EHCI_URB_TRACE
1129 	{
1130 		struct ehci_qtd *qtd;
1131 		qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1132 		ehci_dbg(ehci,
1133 			 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1134 			 __func__, urb->dev->devpath, urb,
1135 			 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1136 			 urb->transfer_buffer_length,
1137 			 qtd, urb->ep->hcpriv);
1138 	}
1139 #endif
1140 
1141 	spin_lock_irqsave (&ehci->lock, flags);
1142 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1143 		rc = -ESHUTDOWN;
1144 		goto done;
1145 	}
1146 	rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1147 	if (unlikely(rc))
1148 		goto done;
1149 
1150 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1151 	if (unlikely(qh == NULL)) {
1152 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1153 		rc = -ENOMEM;
1154 		goto done;
1155 	}
1156 
1157 	/* Control/bulk operations through TTs don't need scheduling,
1158 	 * the HC and TT handle it when the TT has a buffer ready.
1159 	 */
1160 	if (likely (qh->qh_state == QH_STATE_IDLE))
1161 		qh_link_async(ehci, qh);
1162  done:
1163 	spin_unlock_irqrestore (&ehci->lock, flags);
1164 	if (unlikely (qh == NULL))
1165 		qtd_list_free (ehci, urb, qtd_list);
1166 	return rc;
1167 }
1168 
1169 /*-------------------------------------------------------------------------*/
1170 #ifdef CONFIG_USB_HCD_TEST_MODE
1171 /*
1172  * This function creates the qtds and submits them for the
1173  * SINGLE_STEP_SET_FEATURE Test.
1174  * This is done in two parts: first SETUP req for GetDesc is sent then
1175  * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1176  *
1177  * is_setup : i/p arguement decides which of the two stage needs to be
1178  * performed; TRUE - SETUP and FALSE - IN+STATUS
1179  * Returns 0 if success
1180  */
submit_single_step_set_feature(struct usb_hcd * hcd,struct urb * urb,int is_setup)1181 static int submit_single_step_set_feature(
1182 	struct usb_hcd  *hcd,
1183 	struct urb      *urb,
1184 	int             is_setup
1185 ) {
1186 	struct ehci_hcd		*ehci = hcd_to_ehci(hcd);
1187 	struct list_head	qtd_list;
1188 	struct list_head	*head;
1189 
1190 	struct ehci_qtd		*qtd, *qtd_prev;
1191 	dma_addr_t		buf;
1192 	int			len, maxpacket;
1193 	u32			token;
1194 
1195 	INIT_LIST_HEAD(&qtd_list);
1196 	head = &qtd_list;
1197 
1198 	/* URBs map to sequences of QTDs:  one logical transaction */
1199 	qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1200 	if (unlikely(!qtd))
1201 		return -1;
1202 	list_add_tail(&qtd->qtd_list, head);
1203 	qtd->urb = urb;
1204 
1205 	token = QTD_STS_ACTIVE;
1206 	token |= (EHCI_TUNE_CERR << 10);
1207 
1208 	len = urb->transfer_buffer_length;
1209 	/*
1210 	 * Check if the request is to perform just the SETUP stage (getDesc)
1211 	 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1212 	 * 15 secs after the setup
1213 	 */
1214 	if (is_setup) {
1215 		/* SETUP pid */
1216 		qtd_fill(ehci, qtd, urb->setup_dma,
1217 				sizeof(struct usb_ctrlrequest),
1218 				token | (2 /* "setup" */ << 8), 8);
1219 
1220 		submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1221 		return 0; /*Return now; we shall come back after 15 seconds*/
1222 	}
1223 
1224 	/*
1225 	 * IN: data transfer stage:  buffer setup : start the IN txn phase for
1226 	 * the get_Desc SETUP which was sent 15seconds back
1227 	 */
1228 	token ^= QTD_TOGGLE;   /*We need to start IN with DATA-1 Pid-sequence*/
1229 	buf = urb->transfer_dma;
1230 
1231 	token |= (1 /* "in" */ << 8);  /*This is IN stage*/
1232 
1233 	maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
1234 
1235 	qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1236 
1237 	/*
1238 	 * Our IN phase shall always be a short read; so keep the queue running
1239 	 * and let it advance to the next qtd which zero length OUT status
1240 	 */
1241 	qtd->hw_alt_next = EHCI_LIST_END(ehci);
1242 
1243 	/* STATUS stage for GetDesc control request */
1244 	token ^= 0x0100;        /* "in" <--> "out"  */
1245 	token |= QTD_TOGGLE;    /* force DATA1 */
1246 
1247 	qtd_prev = qtd;
1248 	qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1249 	if (unlikely(!qtd))
1250 		goto cleanup;
1251 	qtd->urb = urb;
1252 	qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1253 	list_add_tail(&qtd->qtd_list, head);
1254 
1255 	/* dont fill any data in such packets */
1256 	qtd_fill(ehci, qtd, 0, 0, token, 0);
1257 
1258 	/* by default, enable interrupt on urb completion */
1259 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
1260 		qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
1261 
1262 	submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1263 
1264 	return 0;
1265 
1266 cleanup:
1267 	qtd_list_free(ehci, urb, head);
1268 	return -1;
1269 }
1270 #endif /* CONFIG_USB_HCD_TEST_MODE */
1271 
1272 /*-------------------------------------------------------------------------*/
1273 
single_unlink_async(struct ehci_hcd * ehci,struct ehci_qh * qh)1274 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1275 {
1276 	struct ehci_qh		*prev;
1277 
1278 	/* Add to the end of the list of QHs waiting for the next IAAD */
1279 	qh->qh_state = QH_STATE_UNLINK_WAIT;
1280 	list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1281 
1282 	/* Unlink it from the schedule */
1283 	prev = ehci->async;
1284 	while (prev->qh_next.qh != qh)
1285 		prev = prev->qh_next.qh;
1286 
1287 	prev->hw->hw_next = qh->hw->hw_next;
1288 	prev->qh_next = qh->qh_next;
1289 	if (ehci->qh_scan_next == qh)
1290 		ehci->qh_scan_next = qh->qh_next.qh;
1291 }
1292 
start_iaa_cycle(struct ehci_hcd * ehci)1293 static void start_iaa_cycle(struct ehci_hcd *ehci)
1294 {
1295 	/* If the controller isn't running, we don't have to wait for it */
1296 	if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1297 		end_unlink_async(ehci);
1298 
1299 	/* Otherwise start a new IAA cycle if one isn't already running */
1300 	} else if (ehci->rh_state == EHCI_RH_RUNNING &&
1301 			!ehci->iaa_in_progress) {
1302 
1303 		/* Make sure the unlinks are all visible to the hardware */
1304 		wmb();
1305 
1306 		ehci_writel(ehci, ehci->command | CMD_IAAD,
1307 				&ehci->regs->command);
1308 		ehci_readl(ehci, &ehci->regs->command);
1309 		ehci->iaa_in_progress = true;
1310 		ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1311 	}
1312 }
1313 
end_iaa_cycle(struct ehci_hcd * ehci)1314 static void end_iaa_cycle(struct ehci_hcd *ehci)
1315 {
1316 	if (ehci->has_synopsys_hc_bug)
1317 		ehci_writel(ehci, (u32) ehci->async->qh_dma,
1318 			    &ehci->regs->async_next);
1319 
1320 	/* The current IAA cycle has ended */
1321 	ehci->iaa_in_progress = false;
1322 
1323 	end_unlink_async(ehci);
1324 }
1325 
1326 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1327 
end_unlink_async(struct ehci_hcd * ehci)1328 static void end_unlink_async(struct ehci_hcd *ehci)
1329 {
1330 	struct ehci_qh		*qh;
1331 	bool			early_exit;
1332 
1333 	if (list_empty(&ehci->async_unlink))
1334 		return;
1335 	qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1336 			unlink_node);	/* QH whose IAA cycle just ended */
1337 
1338 	/*
1339 	 * If async_unlinking is set then this routine is already running,
1340 	 * either on the stack or on another CPU.
1341 	 */
1342 	early_exit = ehci->async_unlinking;
1343 
1344 	/* If the controller isn't running, process all the waiting QHs */
1345 	if (ehci->rh_state < EHCI_RH_RUNNING)
1346 		list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1347 
1348 	/*
1349 	 * Intel (?) bug: The HC can write back the overlay region even
1350 	 * after the IAA interrupt occurs.  In self-defense, always go
1351 	 * through two IAA cycles for each QH.
1352 	 */
1353 	else if (qh->qh_state == QH_STATE_UNLINK) {
1354 		/*
1355 		 * Second IAA cycle has finished.  Process only the first
1356 		 * waiting QH (NVIDIA (?) bug).
1357 		 */
1358 		list_move_tail(&qh->unlink_node, &ehci->async_idle);
1359 	}
1360 
1361 	/*
1362 	 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1363 	 * after the IAA interrupt occurs.  To prevent problems, QHs that
1364 	 * may still be active will wait until 2 ms have passed with no
1365 	 * change to the hw_current and hw_token fields (this delay occurs
1366 	 * between the two IAA cycles).
1367 	 *
1368 	 * The EHCI spec (4.8.2) says that active QHs must not be removed
1369 	 * from the async schedule and recommends waiting until the QH
1370 	 * goes inactive.  This is ridiculous because the QH will _never_
1371 	 * become inactive if the endpoint NAKs indefinitely.
1372 	 */
1373 
1374 	/* Some reasons for unlinking guarantee the QH can't be active */
1375 	else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1376 			QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1377 		goto DelayDone;
1378 
1379 	/* The QH can't be active if the queue was and still is empty... */
1380 	else if	((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1381 			list_empty(&qh->qtd_list))
1382 		goto DelayDone;
1383 
1384 	/* ... or if the QH has halted */
1385 	else if	(qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1386 		goto DelayDone;
1387 
1388 	/* Otherwise we have to wait until the QH stops changing */
1389 	else {
1390 		__hc32		qh_current, qh_token;
1391 
1392 		qh_current = qh->hw->hw_current;
1393 		qh_token = qh->hw->hw_token;
1394 		if (qh_current != ehci->old_current ||
1395 				qh_token != ehci->old_token) {
1396 			ehci->old_current = qh_current;
1397 			ehci->old_token = qh_token;
1398 			ehci_enable_event(ehci,
1399 					EHCI_HRTIMER_ACTIVE_UNLINK, true);
1400 			return;
1401 		}
1402  DelayDone:
1403 		qh->qh_state = QH_STATE_UNLINK;
1404 		early_exit = true;
1405 	}
1406 	ehci->old_current = ~0;		/* Prepare for next QH */
1407 
1408 	/* Start a new IAA cycle if any QHs are waiting for it */
1409 	if (!list_empty(&ehci->async_unlink))
1410 		start_iaa_cycle(ehci);
1411 
1412 	/*
1413 	 * Don't allow nesting or concurrent calls,
1414 	 * or wait for the second IAA cycle for the next QH.
1415 	 */
1416 	if (early_exit)
1417 		return;
1418 
1419 	/* Process the idle QHs */
1420 	ehci->async_unlinking = true;
1421 	while (!list_empty(&ehci->async_idle)) {
1422 		qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1423 				unlink_node);
1424 		list_del(&qh->unlink_node);
1425 
1426 		qh->qh_state = QH_STATE_IDLE;
1427 		qh->qh_next.qh = NULL;
1428 
1429 		if (!list_empty(&qh->qtd_list))
1430 			qh_completions(ehci, qh);
1431 		if (!list_empty(&qh->qtd_list) &&
1432 				ehci->rh_state == EHCI_RH_RUNNING)
1433 			qh_link_async(ehci, qh);
1434 		disable_async(ehci);
1435 	}
1436 	ehci->async_unlinking = false;
1437 }
1438 
1439 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1440 
unlink_empty_async(struct ehci_hcd * ehci)1441 static void unlink_empty_async(struct ehci_hcd *ehci)
1442 {
1443 	struct ehci_qh		*qh;
1444 	struct ehci_qh		*qh_to_unlink = NULL;
1445 	int			count = 0;
1446 
1447 	/* Find the last async QH which has been empty for a timer cycle */
1448 	for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1449 		if (list_empty(&qh->qtd_list) &&
1450 				qh->qh_state == QH_STATE_LINKED) {
1451 			++count;
1452 			if (qh->unlink_cycle != ehci->async_unlink_cycle)
1453 				qh_to_unlink = qh;
1454 		}
1455 	}
1456 
1457 	/* If nothing else is being unlinked, unlink the last empty QH */
1458 	if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1459 		qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1460 		start_unlink_async(ehci, qh_to_unlink);
1461 		--count;
1462 	}
1463 
1464 	/* Other QHs will be handled later */
1465 	if (count > 0) {
1466 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1467 		++ehci->async_unlink_cycle;
1468 	}
1469 }
1470 
1471 #ifdef	CONFIG_PM
1472 
1473 /* The root hub is suspended; unlink all the async QHs */
unlink_empty_async_suspended(struct ehci_hcd * ehci)1474 static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1475 {
1476 	struct ehci_qh		*qh;
1477 
1478 	while (ehci->async->qh_next.qh) {
1479 		qh = ehci->async->qh_next.qh;
1480 		WARN_ON(!list_empty(&qh->qtd_list));
1481 		single_unlink_async(ehci, qh);
1482 	}
1483 }
1484 
1485 #endif
1486 
1487 /* makes sure the async qh will become idle */
1488 /* caller must own ehci->lock */
1489 
start_unlink_async(struct ehci_hcd * ehci,struct ehci_qh * qh)1490 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1491 {
1492 	/* If the QH isn't linked then there's nothing we can do. */
1493 	if (qh->qh_state != QH_STATE_LINKED)
1494 		return;
1495 
1496 	single_unlink_async(ehci, qh);
1497 	start_iaa_cycle(ehci);
1498 }
1499 
1500 /*-------------------------------------------------------------------------*/
1501 
scan_async(struct ehci_hcd * ehci)1502 static void scan_async (struct ehci_hcd *ehci)
1503 {
1504 	struct ehci_qh		*qh;
1505 	bool			check_unlinks_later = false;
1506 
1507 	ehci->qh_scan_next = ehci->async->qh_next.qh;
1508 	while (ehci->qh_scan_next) {
1509 		qh = ehci->qh_scan_next;
1510 		ehci->qh_scan_next = qh->qh_next.qh;
1511 
1512 		/* clean any finished work for this qh */
1513 		if (!list_empty(&qh->qtd_list)) {
1514 			int temp;
1515 
1516 			/*
1517 			 * Unlinks could happen here; completion reporting
1518 			 * drops the lock.  That's why ehci->qh_scan_next
1519 			 * always holds the next qh to scan; if the next qh
1520 			 * gets unlinked then ehci->qh_scan_next is adjusted
1521 			 * in single_unlink_async().
1522 			 */
1523 			temp = qh_completions(ehci, qh);
1524 			if (unlikely(temp)) {
1525 				start_unlink_async(ehci, qh);
1526 			} else if (list_empty(&qh->qtd_list)
1527 					&& qh->qh_state == QH_STATE_LINKED) {
1528 				qh->unlink_cycle = ehci->async_unlink_cycle;
1529 				check_unlinks_later = true;
1530 			}
1531 		}
1532 	}
1533 
1534 	/*
1535 	 * Unlink empty entries, reducing DMA usage as well
1536 	 * as HCD schedule-scanning costs.  Delay for any qh
1537 	 * we just scanned, there's a not-unusual case that it
1538 	 * doesn't stay idle for long.
1539 	 */
1540 	if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1541 			!(ehci->enabled_hrtimer_events &
1542 				BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1543 		ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1544 		++ehci->async_unlink_cycle;
1545 	}
1546 }
1547