• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2001-2004 by David Brownell
3  * Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation; either version 2 of the License, or (at your
8  * option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software Foundation,
17  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 /* this file is part of ehci-hcd.c */
21 
22 /*-------------------------------------------------------------------------*/
23 
24 /*
25  * EHCI scheduled transaction support:  interrupt, iso, split iso
26  * These are called "periodic" transactions in the EHCI spec.
27  *
28  * Note that for interrupt transfers, the QH/QTD manipulation is shared
29  * with the "asynchronous" transaction support (control/bulk transfers).
30  * The only real difference is in how interrupt transfers are scheduled.
31  *
32  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
33  * It keeps track of every ITD (or SITD) that's linked, and holds enough
34  * pre-calculated schedule data to make appending to the queue be quick.
35  */
36 
37 static int ehci_get_frame(struct usb_hcd *hcd);
38 
39 /*
40  * periodic_next_shadow - return "next" pointer on shadow list
41  * @periodic: host pointer to qh/itd/sitd
42  * @tag: hardware tag for type of this record
43  */
44 static union ehci_shadow *
periodic_next_shadow(struct ehci_hcd * ehci,union ehci_shadow * periodic,__hc32 tag)45 periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
46 		__hc32 tag)
47 {
48 	switch (hc32_to_cpu(ehci, tag)) {
49 	case Q_TYPE_QH:
50 		return &periodic->qh->qh_next;
51 	case Q_TYPE_FSTN:
52 		return &periodic->fstn->fstn_next;
53 	case Q_TYPE_ITD:
54 		return &periodic->itd->itd_next;
55 	/* case Q_TYPE_SITD: */
56 	default:
57 		return &periodic->sitd->sitd_next;
58 	}
59 }
60 
61 static __hc32 *
shadow_next_periodic(struct ehci_hcd * ehci,union ehci_shadow * periodic,__hc32 tag)62 shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
63 		__hc32 tag)
64 {
65 	switch (hc32_to_cpu(ehci, tag)) {
66 	/* our ehci_shadow.qh is actually software part */
67 	case Q_TYPE_QH:
68 		return &periodic->qh->hw->hw_next;
69 	/* others are hw parts */
70 	default:
71 		return periodic->hw_next;
72 	}
73 }
74 
75 /* caller must hold ehci->lock */
periodic_unlink(struct ehci_hcd * ehci,unsigned frame,void * ptr)76 static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
77 {
78 	union ehci_shadow	*prev_p = &ehci->pshadow[frame];
79 	__hc32			*hw_p = &ehci->periodic[frame];
80 	union ehci_shadow	here = *prev_p;
81 
82 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
83 	while (here.ptr && here.ptr != ptr) {
84 		prev_p = periodic_next_shadow(ehci, prev_p,
85 				Q_NEXT_TYPE(ehci, *hw_p));
86 		hw_p = shadow_next_periodic(ehci, &here,
87 				Q_NEXT_TYPE(ehci, *hw_p));
88 		here = *prev_p;
89 	}
90 	/* an interrupt entry (at list end) could have been shared */
91 	if (!here.ptr)
92 		return;
93 
94 	/* update shadow and hardware lists ... the old "next" pointers
95 	 * from ptr may still be in use, the caller updates them.
96 	 */
97 	*prev_p = *periodic_next_shadow(ehci, &here,
98 			Q_NEXT_TYPE(ehci, *hw_p));
99 
100 	if (!ehci->use_dummy_qh ||
101 	    *shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
102 			!= EHCI_LIST_END(ehci))
103 		*hw_p = *shadow_next_periodic(ehci, &here,
104 				Q_NEXT_TYPE(ehci, *hw_p));
105 	else
106 		*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
107 }
108 
109 /*-------------------------------------------------------------------------*/
110 
111 /* Bandwidth and TT management */
112 
113 /* Find the TT data structure for this device; create it if necessary */
find_tt(struct usb_device * udev)114 static struct ehci_tt *find_tt(struct usb_device *udev)
115 {
116 	struct usb_tt		*utt = udev->tt;
117 	struct ehci_tt		*tt, **tt_index, **ptt;
118 	unsigned		port;
119 	bool			allocated_index = false;
120 
121 	if (!utt)
122 		return NULL;		/* Not below a TT */
123 
124 	/*
125 	 * Find/create our data structure.
126 	 * For hubs with a single TT, we get it directly.
127 	 * For hubs with multiple TTs, there's an extra level of pointers.
128 	 */
129 	tt_index = NULL;
130 	if (utt->multi) {
131 		tt_index = utt->hcpriv;
132 		if (!tt_index) {		/* Create the index array */
133 			tt_index = kzalloc(utt->hub->maxchild *
134 					sizeof(*tt_index), GFP_ATOMIC);
135 			if (!tt_index)
136 				return ERR_PTR(-ENOMEM);
137 			utt->hcpriv = tt_index;
138 			allocated_index = true;
139 		}
140 		port = udev->ttport - 1;
141 		ptt = &tt_index[port];
142 	} else {
143 		port = 0;
144 		ptt = (struct ehci_tt **) &utt->hcpriv;
145 	}
146 
147 	tt = *ptt;
148 	if (!tt) {				/* Create the ehci_tt */
149 		struct ehci_hcd		*ehci =
150 				hcd_to_ehci(bus_to_hcd(udev->bus));
151 
152 		tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
153 		if (!tt) {
154 			if (allocated_index) {
155 				utt->hcpriv = NULL;
156 				kfree(tt_index);
157 			}
158 			return ERR_PTR(-ENOMEM);
159 		}
160 		list_add_tail(&tt->tt_list, &ehci->tt_list);
161 		INIT_LIST_HEAD(&tt->ps_list);
162 		tt->usb_tt = utt;
163 		tt->tt_port = port;
164 		*ptt = tt;
165 	}
166 
167 	return tt;
168 }
169 
170 /* Release the TT above udev, if it's not in use */
drop_tt(struct usb_device * udev)171 static void drop_tt(struct usb_device *udev)
172 {
173 	struct usb_tt		*utt = udev->tt;
174 	struct ehci_tt		*tt, **tt_index, **ptt;
175 	int			cnt, i;
176 
177 	if (!utt || !utt->hcpriv)
178 		return;		/* Not below a TT, or never allocated */
179 
180 	cnt = 0;
181 	if (utt->multi) {
182 		tt_index = utt->hcpriv;
183 		ptt = &tt_index[udev->ttport - 1];
184 
185 		/* How many entries are left in tt_index? */
186 		for (i = 0; i < utt->hub->maxchild; ++i)
187 			cnt += !!tt_index[i];
188 	} else {
189 		tt_index = NULL;
190 		ptt = (struct ehci_tt **) &utt->hcpriv;
191 	}
192 
193 	tt = *ptt;
194 	if (!tt || !list_empty(&tt->ps_list))
195 		return;		/* never allocated, or still in use */
196 
197 	list_del(&tt->tt_list);
198 	*ptt = NULL;
199 	kfree(tt);
200 	if (cnt == 1) {
201 		utt->hcpriv = NULL;
202 		kfree(tt_index);
203 	}
204 }
205 
bandwidth_dbg(struct ehci_hcd * ehci,int sign,char * type,struct ehci_per_sched * ps)206 static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
207 		struct ehci_per_sched *ps)
208 {
209 	dev_dbg(&ps->udev->dev,
210 			"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
211 			ps->ep->desc.bEndpointAddress,
212 			(sign >= 0 ? "reserve" : "release"), type,
213 			(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
214 			ps->phase, ps->phase_uf, ps->period,
215 			ps->usecs, ps->c_usecs, ps->cs_mask);
216 }
217 
reserve_release_intr_bandwidth(struct ehci_hcd * ehci,struct ehci_qh * qh,int sign)218 static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
219 		struct ehci_qh *qh, int sign)
220 {
221 	unsigned		start_uf;
222 	unsigned		i, j, m;
223 	int			usecs = qh->ps.usecs;
224 	int			c_usecs = qh->ps.c_usecs;
225 	int			tt_usecs = qh->ps.tt_usecs;
226 	struct ehci_tt		*tt;
227 
228 	if (qh->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
229 		return;
230 	start_uf = qh->ps.bw_phase << 3;
231 
232 	bandwidth_dbg(ehci, sign, "intr", &qh->ps);
233 
234 	if (sign < 0) {		/* Release bandwidth */
235 		usecs = -usecs;
236 		c_usecs = -c_usecs;
237 		tt_usecs = -tt_usecs;
238 	}
239 
240 	/* Entire transaction (high speed) or start-split (full/low speed) */
241 	for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
242 			i += qh->ps.bw_uperiod)
243 		ehci->bandwidth[i] += usecs;
244 
245 	/* Complete-split (full/low speed) */
246 	if (qh->ps.c_usecs) {
247 		/* NOTE: adjustments needed for FSTN */
248 		for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
249 				i += qh->ps.bw_uperiod) {
250 			for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
251 				if (qh->ps.cs_mask & m)
252 					ehci->bandwidth[i+j] += c_usecs;
253 			}
254 		}
255 	}
256 
257 	/* FS/LS bus bandwidth */
258 	if (tt_usecs) {
259 		tt = find_tt(qh->ps.udev);
260 		if (sign > 0)
261 			list_add_tail(&qh->ps.ps_list, &tt->ps_list);
262 		else
263 			list_del(&qh->ps.ps_list);
264 
265 		for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
266 				i += qh->ps.bw_period)
267 			tt->bandwidth[i] += tt_usecs;
268 	}
269 }
270 
271 /*-------------------------------------------------------------------------*/
272 
compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],struct ehci_tt * tt)273 static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
274 		struct ehci_tt *tt)
275 {
276 	struct ehci_per_sched	*ps;
277 	unsigned		uframe, uf, x;
278 	u8			*budget_line;
279 
280 	if (!tt)
281 		return;
282 	memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
283 
284 	/* Add up the contributions from all the endpoints using this TT */
285 	list_for_each_entry(ps, &tt->ps_list, ps_list) {
286 		for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
287 				uframe += ps->bw_uperiod) {
288 			budget_line = &budget_table[uframe];
289 			x = ps->tt_usecs;
290 
291 			/* propagate the time forward */
292 			for (uf = ps->phase_uf; uf < 8; ++uf) {
293 				x += budget_line[uf];
294 
295 				/* Each microframe lasts 125 us */
296 				if (x <= 125) {
297 					budget_line[uf] = x;
298 					break;
299 				}
300 				budget_line[uf] = 125;
301 				x -= 125;
302 			}
303 		}
304 	}
305 }
306 
same_tt(struct usb_device * dev1,struct usb_device * dev2)307 static int __maybe_unused same_tt(struct usb_device *dev1,
308 		struct usb_device *dev2)
309 {
310 	if (!dev1->tt || !dev2->tt)
311 		return 0;
312 	if (dev1->tt != dev2->tt)
313 		return 0;
314 	if (dev1->tt->multi)
315 		return dev1->ttport == dev2->ttport;
316 	else
317 		return 1;
318 }
319 
320 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
321 
322 /* Which uframe does the low/fullspeed transfer start in?
323  *
324  * The parameter is the mask of ssplits in "H-frame" terms
325  * and this returns the transfer start uframe in "B-frame" terms,
326  * which allows both to match, e.g. a ssplit in "H-frame" uframe 0
327  * will cause a transfer in "B-frame" uframe 0.  "B-frames" lag
328  * "H-frames" by 1 uframe.  See the EHCI spec sec 4.5 and figure 4.7.
329  */
tt_start_uframe(struct ehci_hcd * ehci,__hc32 mask)330 static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
331 {
332 	unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
333 
334 	if (!smask) {
335 		ehci_err(ehci, "invalid empty smask!\n");
336 		/* uframe 7 can't have bw so this will indicate failure */
337 		return 7;
338 	}
339 	return ffs(smask) - 1;
340 }
341 
342 static const unsigned char
343 max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
344 
345 /* carryover low/fullspeed bandwidth that crosses uframe boundries */
carryover_tt_bandwidth(unsigned short tt_usecs[8])346 static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
347 {
348 	int i;
349 
350 	for (i = 0; i < 7; i++) {
351 		if (max_tt_usecs[i] < tt_usecs[i]) {
352 			tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
353 			tt_usecs[i] = max_tt_usecs[i];
354 		}
355 	}
356 }
357 
358 /*
359  * Return true if the device's tt's downstream bus is available for a
360  * periodic transfer of the specified length (usecs), starting at the
361  * specified frame/uframe.  Note that (as summarized in section 11.19
362  * of the usb 2.0 spec) TTs can buffer multiple transactions for each
363  * uframe.
364  *
365  * The uframe parameter is when the fullspeed/lowspeed transfer
366  * should be executed in "B-frame" terms, which is the same as the
367  * highspeed ssplit's uframe (which is in "H-frame" terms).  For example
368  * a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
369  * See the EHCI spec sec 4.5 and fig 4.7.
370  *
371  * This checks if the full/lowspeed bus, at the specified starting uframe,
372  * has the specified bandwidth available, according to rules listed
373  * in USB 2.0 spec section 11.18.1 fig 11-60.
374  *
375  * This does not check if the transfer would exceed the max ssplit
376  * limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
377  * since proper scheduling limits ssplits to less than 16 per uframe.
378  */
tt_available(struct ehci_hcd * ehci,struct ehci_per_sched * ps,struct ehci_tt * tt,unsigned frame,unsigned uframe)379 static int tt_available(
380 	struct ehci_hcd		*ehci,
381 	struct ehci_per_sched	*ps,
382 	struct ehci_tt		*tt,
383 	unsigned		frame,
384 	unsigned		uframe
385 )
386 {
387 	unsigned		period = ps->bw_period;
388 	unsigned		usecs = ps->tt_usecs;
389 
390 	if ((period == 0) || (uframe >= 7))	/* error */
391 		return 0;
392 
393 	for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
394 			frame += period) {
395 		unsigned	i, uf;
396 		unsigned short	tt_usecs[8];
397 
398 		if (tt->bandwidth[frame] + usecs > 900)
399 			return 0;
400 
401 		uf = frame << 3;
402 		for (i = 0; i < 8; (++i, ++uf))
403 			tt_usecs[i] = ehci->tt_budget[uf];
404 
405 		if (max_tt_usecs[uframe] <= tt_usecs[uframe])
406 			return 0;
407 
408 		/* special case for isoc transfers larger than 125us:
409 		 * the first and each subsequent fully used uframe
410 		 * must be empty, so as to not illegally delay
411 		 * already scheduled transactions
412 		 */
413 		if (usecs > 125) {
414 			int ufs = (usecs / 125);
415 
416 			for (i = uframe; i < (uframe + ufs) && i < 8; i++)
417 				if (tt_usecs[i] > 0)
418 					return 0;
419 		}
420 
421 		tt_usecs[uframe] += usecs;
422 
423 		carryover_tt_bandwidth(tt_usecs);
424 
425 		/* fail if the carryover pushed bw past the last uframe's limit */
426 		if (max_tt_usecs[7] < tt_usecs[7])
427 			return 0;
428 	}
429 
430 	return 1;
431 }
432 
433 #else
434 
435 /* return true iff the device's transaction translator is available
436  * for a periodic transfer starting at the specified frame, using
437  * all the uframes in the mask.
438  */
tt_no_collision(struct ehci_hcd * ehci,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)439 static int tt_no_collision(
440 	struct ehci_hcd		*ehci,
441 	unsigned		period,
442 	struct usb_device	*dev,
443 	unsigned		frame,
444 	u32			uf_mask
445 )
446 {
447 	if (period == 0)	/* error */
448 		return 0;
449 
450 	/* note bandwidth wastage:  split never follows csplit
451 	 * (different dev or endpoint) until the next uframe.
452 	 * calling convention doesn't make that distinction.
453 	 */
454 	for (; frame < ehci->periodic_size; frame += period) {
455 		union ehci_shadow	here;
456 		__hc32			type;
457 		struct ehci_qh_hw	*hw;
458 
459 		here = ehci->pshadow[frame];
460 		type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
461 		while (here.ptr) {
462 			switch (hc32_to_cpu(ehci, type)) {
463 			case Q_TYPE_ITD:
464 				type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
465 				here = here.itd->itd_next;
466 				continue;
467 			case Q_TYPE_QH:
468 				hw = here.qh->hw;
469 				if (same_tt(dev, here.qh->ps.udev)) {
470 					u32		mask;
471 
472 					mask = hc32_to_cpu(ehci,
473 							hw->hw_info2);
474 					/* "knows" no gap is needed */
475 					mask |= mask >> 8;
476 					if (mask & uf_mask)
477 						break;
478 				}
479 				type = Q_NEXT_TYPE(ehci, hw->hw_next);
480 				here = here.qh->qh_next;
481 				continue;
482 			case Q_TYPE_SITD:
483 				if (same_tt(dev, here.sitd->urb->dev)) {
484 					u16		mask;
485 
486 					mask = hc32_to_cpu(ehci, here.sitd
487 								->hw_uframe);
488 					/* FIXME assumes no gap for IN! */
489 					mask |= mask >> 8;
490 					if (mask & uf_mask)
491 						break;
492 				}
493 				type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
494 				here = here.sitd->sitd_next;
495 				continue;
496 			/* case Q_TYPE_FSTN: */
497 			default:
498 				ehci_dbg(ehci,
499 					"periodic frame %d bogus type %d\n",
500 					frame, type);
501 			}
502 
503 			/* collision or error */
504 			return 0;
505 		}
506 	}
507 
508 	/* no collision */
509 	return 1;
510 }
511 
512 #endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
513 
514 /*-------------------------------------------------------------------------*/
515 
enable_periodic(struct ehci_hcd * ehci)516 static void enable_periodic(struct ehci_hcd *ehci)
517 {
518 	if (ehci->periodic_count++)
519 		return;
520 
521 	/* Stop waiting to turn off the periodic schedule */
522 	ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
523 
524 	/* Don't start the schedule until PSS is 0 */
525 	ehci_poll_PSS(ehci);
526 	turn_on_io_watchdog(ehci);
527 }
528 
disable_periodic(struct ehci_hcd * ehci)529 static void disable_periodic(struct ehci_hcd *ehci)
530 {
531 	if (--ehci->periodic_count)
532 		return;
533 
534 	/* Don't turn off the schedule until PSS is 1 */
535 	ehci_poll_PSS(ehci);
536 }
537 
538 /*-------------------------------------------------------------------------*/
539 
540 /* periodic schedule slots have iso tds (normal or split) first, then a
541  * sparse tree for active interrupt transfers.
542  *
543  * this just links in a qh; caller guarantees uframe masks are set right.
544  * no FSTN support (yet; ehci 0.96+)
545  */
qh_link_periodic(struct ehci_hcd * ehci,struct ehci_qh * qh)546 static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
547 {
548 	unsigned	i;
549 	unsigned	period = qh->ps.period;
550 
551 	dev_dbg(&qh->ps.udev->dev,
552 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
553 		period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
554 			& (QH_CMASK | QH_SMASK),
555 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
556 
557 	/* high bandwidth, or otherwise every microframe */
558 	if (period == 0)
559 		period = 1;
560 
561 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
562 		union ehci_shadow	*prev = &ehci->pshadow[i];
563 		__hc32			*hw_p = &ehci->periodic[i];
564 		union ehci_shadow	here = *prev;
565 		__hc32			type = 0;
566 
567 		/* skip the iso nodes at list head */
568 		while (here.ptr) {
569 			type = Q_NEXT_TYPE(ehci, *hw_p);
570 			if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
571 				break;
572 			prev = periodic_next_shadow(ehci, prev, type);
573 			hw_p = shadow_next_periodic(ehci, &here, type);
574 			here = *prev;
575 		}
576 
577 		/* sorting each branch by period (slow-->fast)
578 		 * enables sharing interior tree nodes
579 		 */
580 		while (here.ptr && qh != here.qh) {
581 			if (qh->ps.period > here.qh->ps.period)
582 				break;
583 			prev = &here.qh->qh_next;
584 			hw_p = &here.qh->hw->hw_next;
585 			here = *prev;
586 		}
587 		/* link in this qh, unless some earlier pass did that */
588 		if (qh != here.qh) {
589 			qh->qh_next = here;
590 			if (here.qh)
591 				qh->hw->hw_next = *hw_p;
592 			wmb();
593 			prev->qh = qh;
594 			*hw_p = QH_NEXT(ehci, qh->qh_dma);
595 		}
596 	}
597 	qh->qh_state = QH_STATE_LINKED;
598 	qh->xacterrs = 0;
599 	qh->unlink_reason = 0;
600 
601 	/* update per-qh bandwidth for debugfs */
602 	ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
603 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
604 		: (qh->ps.usecs * 8);
605 
606 	list_add(&qh->intr_node, &ehci->intr_qh_list);
607 
608 	/* maybe enable periodic schedule processing */
609 	++ehci->intr_count;
610 	enable_periodic(ehci);
611 }
612 
qh_unlink_periodic(struct ehci_hcd * ehci,struct ehci_qh * qh)613 static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
614 {
615 	unsigned	i;
616 	unsigned	period;
617 
618 	/*
619 	 * If qh is for a low/full-speed device, simply unlinking it
620 	 * could interfere with an ongoing split transaction.  To unlink
621 	 * it safely would require setting the QH_INACTIVATE bit and
622 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
623 	 *
624 	 * We won't bother with any of this.  Instead, we assume that the
625 	 * only reason for unlinking an interrupt QH while the current URB
626 	 * is still active is to dequeue all the URBs (flush the whole
627 	 * endpoint queue).
628 	 *
629 	 * If rebalancing the periodic schedule is ever implemented, this
630 	 * approach will no longer be valid.
631 	 */
632 
633 	/* high bandwidth, or otherwise part of every microframe */
634 	period = qh->ps.period ? : 1;
635 
636 	for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
637 		periodic_unlink(ehci, i, qh);
638 
639 	/* update per-qh bandwidth for debugfs */
640 	ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
641 		? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
642 		: (qh->ps.usecs * 8);
643 
644 	dev_dbg(&qh->ps.udev->dev,
645 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
646 		qh->ps.period,
647 		hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
648 		qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
649 
650 	/* qh->qh_next still "live" to HC */
651 	qh->qh_state = QH_STATE_UNLINK;
652 	qh->qh_next.ptr = NULL;
653 
654 	if (ehci->qh_scan_next == qh)
655 		ehci->qh_scan_next = list_entry(qh->intr_node.next,
656 				struct ehci_qh, intr_node);
657 	list_del(&qh->intr_node);
658 }
659 
cancel_unlink_wait_intr(struct ehci_hcd * ehci,struct ehci_qh * qh)660 static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
661 {
662 	if (qh->qh_state != QH_STATE_LINKED ||
663 			list_empty(&qh->unlink_node))
664 		return;
665 
666 	list_del_init(&qh->unlink_node);
667 
668 	/*
669 	 * TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
670 	 * avoiding unnecessary CPU wakeup
671 	 */
672 }
673 
start_unlink_intr(struct ehci_hcd * ehci,struct ehci_qh * qh)674 static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
675 {
676 	/* If the QH isn't linked then there's nothing we can do. */
677 	if (qh->qh_state != QH_STATE_LINKED)
678 		return;
679 
680 	/* if the qh is waiting for unlink, cancel it now */
681 	cancel_unlink_wait_intr(ehci, qh);
682 
683 	qh_unlink_periodic(ehci, qh);
684 
685 	/* Make sure the unlinks are visible before starting the timer */
686 	wmb();
687 
688 	/*
689 	 * The EHCI spec doesn't say how long it takes the controller to
690 	 * stop accessing an unlinked interrupt QH.  The timer delay is
691 	 * 9 uframes; presumably that will be long enough.
692 	 */
693 	qh->unlink_cycle = ehci->intr_unlink_cycle;
694 
695 	/* New entries go at the end of the intr_unlink list */
696 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
697 
698 	if (ehci->intr_unlinking)
699 		;	/* Avoid recursive calls */
700 	else if (ehci->rh_state < EHCI_RH_RUNNING)
701 		ehci_handle_intr_unlinks(ehci);
702 	else if (ehci->intr_unlink.next == &qh->unlink_node) {
703 		ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
704 		++ehci->intr_unlink_cycle;
705 	}
706 }
707 
708 /*
709  * It is common only one intr URB is scheduled on one qh, and
710  * given complete() is run in tasklet context, introduce a bit
711  * delay to avoid unlink qh too early.
712  */
start_unlink_intr_wait(struct ehci_hcd * ehci,struct ehci_qh * qh)713 static void start_unlink_intr_wait(struct ehci_hcd *ehci,
714 				   struct ehci_qh *qh)
715 {
716 	qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
717 
718 	/* New entries go at the end of the intr_unlink_wait list */
719 	list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
720 
721 	if (ehci->rh_state < EHCI_RH_RUNNING)
722 		ehci_handle_start_intr_unlinks(ehci);
723 	else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
724 		ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
725 		++ehci->intr_unlink_wait_cycle;
726 	}
727 }
728 
end_unlink_intr(struct ehci_hcd * ehci,struct ehci_qh * qh)729 static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
730 {
731 	struct ehci_qh_hw	*hw = qh->hw;
732 	int			rc;
733 
734 	qh->qh_state = QH_STATE_IDLE;
735 	hw->hw_next = EHCI_LIST_END(ehci);
736 
737 	if (!list_empty(&qh->qtd_list))
738 		qh_completions(ehci, qh);
739 
740 	/* reschedule QH iff another request is queued */
741 	if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
742 		rc = qh_schedule(ehci, qh);
743 		if (rc == 0) {
744 			qh_refresh(ehci, qh);
745 			qh_link_periodic(ehci, qh);
746 		}
747 
748 		/* An error here likely indicates handshake failure
749 		 * or no space left in the schedule.  Neither fault
750 		 * should happen often ...
751 		 *
752 		 * FIXME kill the now-dysfunctional queued urbs
753 		 */
754 		else {
755 			ehci_err(ehci, "can't reschedule qh %p, err %d\n",
756 					qh, rc);
757 		}
758 	}
759 
760 	/* maybe turn off periodic schedule */
761 	--ehci->intr_count;
762 	disable_periodic(ehci);
763 }
764 
765 /*-------------------------------------------------------------------------*/
766 
check_period(struct ehci_hcd * ehci,unsigned frame,unsigned uframe,unsigned uperiod,unsigned usecs)767 static int check_period(
768 	struct ehci_hcd *ehci,
769 	unsigned	frame,
770 	unsigned	uframe,
771 	unsigned	uperiod,
772 	unsigned	usecs
773 ) {
774 	/* complete split running into next frame?
775 	 * given FSTN support, we could sometimes check...
776 	 */
777 	if (uframe >= 8)
778 		return 0;
779 
780 	/* convert "usecs we need" to "max already claimed" */
781 	usecs = ehci->uframe_periodic_max - usecs;
782 
783 	for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
784 			uframe += uperiod) {
785 		if (ehci->bandwidth[uframe] > usecs)
786 			return 0;
787 	}
788 
789 	/* success! */
790 	return 1;
791 }
792 
check_intr_schedule(struct ehci_hcd * ehci,unsigned frame,unsigned uframe,struct ehci_qh * qh,unsigned * c_maskp,struct ehci_tt * tt)793 static int check_intr_schedule(
794 	struct ehci_hcd		*ehci,
795 	unsigned		frame,
796 	unsigned		uframe,
797 	struct ehci_qh		*qh,
798 	unsigned		*c_maskp,
799 	struct ehci_tt		*tt
800 )
801 {
802 	int		retval = -ENOSPC;
803 	u8		mask = 0;
804 
805 	if (qh->ps.c_usecs && uframe >= 6)	/* FSTN territory? */
806 		goto done;
807 
808 	if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
809 		goto done;
810 	if (!qh->ps.c_usecs) {
811 		retval = 0;
812 		*c_maskp = 0;
813 		goto done;
814 	}
815 
816 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
817 	if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
818 		unsigned i;
819 
820 		/* TODO : this may need FSTN for SSPLIT in uframe 5. */
821 		for (i = uframe+2; i < 8 && i <= uframe+4; i++)
822 			if (!check_period(ehci, frame, i,
823 					qh->ps.bw_uperiod, qh->ps.c_usecs))
824 				goto done;
825 			else
826 				mask |= 1 << i;
827 
828 		retval = 0;
829 
830 		*c_maskp = mask;
831 	}
832 #else
833 	/* Make sure this tt's buffer is also available for CSPLITs.
834 	 * We pessimize a bit; probably the typical full speed case
835 	 * doesn't need the second CSPLIT.
836 	 *
837 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
838 	 * one smart pass...
839 	 */
840 	mask = 0x03 << (uframe + qh->gap_uf);
841 	*c_maskp = mask;
842 
843 	mask |= 1 << uframe;
844 	if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
845 		if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
846 				qh->ps.bw_uperiod, qh->ps.c_usecs))
847 			goto done;
848 		if (!check_period(ehci, frame, uframe + qh->gap_uf,
849 				qh->ps.bw_uperiod, qh->ps.c_usecs))
850 			goto done;
851 		retval = 0;
852 	}
853 #endif
854 done:
855 	return retval;
856 }
857 
858 /* "first fit" scheduling policy used the first time through,
859  * or when the previous schedule slot can't be re-used.
860  */
qh_schedule(struct ehci_hcd * ehci,struct ehci_qh * qh)861 static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
862 {
863 	int		status = 0;
864 	unsigned	uframe;
865 	unsigned	c_mask;
866 	struct ehci_qh_hw	*hw = qh->hw;
867 	struct ehci_tt		*tt;
868 
869 	hw->hw_next = EHCI_LIST_END(ehci);
870 
871 	/* reuse the previous schedule slots, if we can */
872 	if (qh->ps.phase != NO_FRAME) {
873 		ehci_dbg(ehci, "reused qh %p schedule\n", qh);
874 		return 0;
875 	}
876 
877 	uframe = 0;
878 	c_mask = 0;
879 	tt = find_tt(qh->ps.udev);
880 	if (IS_ERR(tt)) {
881 		status = PTR_ERR(tt);
882 		goto done;
883 	}
884 	compute_tt_budget(ehci->tt_budget, tt);
885 
886 	/* else scan the schedule to find a group of slots such that all
887 	 * uframes have enough periodic bandwidth available.
888 	 */
889 	/* "normal" case, uframing flexible except with splits */
890 	if (qh->ps.bw_period) {
891 		int		i;
892 		unsigned	frame;
893 
894 		for (i = qh->ps.bw_period; i > 0; --i) {
895 			frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
896 			for (uframe = 0; uframe < 8; uframe++) {
897 				status = check_intr_schedule(ehci,
898 						frame, uframe, qh, &c_mask, tt);
899 				if (status == 0)
900 					goto got_it;
901 			}
902 		}
903 
904 	/* qh->ps.bw_period == 0 means every uframe */
905 	} else {
906 		status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
907 	}
908 	if (status)
909 		goto done;
910 
911  got_it:
912 	qh->ps.phase = (qh->ps.period ? ehci->random_frame &
913 			(qh->ps.period - 1) : 0);
914 	qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
915 	qh->ps.phase_uf = uframe;
916 	qh->ps.cs_mask = qh->ps.period ?
917 			(c_mask << 8) | (1 << uframe) :
918 			QH_SMASK;
919 
920 	/* reset S-frame and (maybe) C-frame masks */
921 	hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
922 	hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
923 	reserve_release_intr_bandwidth(ehci, qh, 1);
924 
925 done:
926 	return status;
927 }
928 
intr_submit(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)929 static int intr_submit(
930 	struct ehci_hcd		*ehci,
931 	struct urb		*urb,
932 	struct list_head	*qtd_list,
933 	gfp_t			mem_flags
934 ) {
935 	unsigned		epnum;
936 	unsigned long		flags;
937 	struct ehci_qh		*qh;
938 	int			status;
939 	struct list_head	empty;
940 
941 	/* get endpoint and transfer/schedule data */
942 	epnum = urb->ep->desc.bEndpointAddress;
943 
944 	spin_lock_irqsave(&ehci->lock, flags);
945 
946 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
947 		status = -ESHUTDOWN;
948 		goto done_not_linked;
949 	}
950 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
951 	if (unlikely(status))
952 		goto done_not_linked;
953 
954 	/* get qh and force any scheduling errors */
955 	INIT_LIST_HEAD(&empty);
956 	qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
957 	if (qh == NULL) {
958 		status = -ENOMEM;
959 		goto done;
960 	}
961 	if (qh->qh_state == QH_STATE_IDLE) {
962 		status = qh_schedule(ehci, qh);
963 		if (status)
964 			goto done;
965 	}
966 
967 	/* then queue the urb's tds to the qh */
968 	qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
969 	BUG_ON(qh == NULL);
970 
971 	/* stuff into the periodic schedule */
972 	if (qh->qh_state == QH_STATE_IDLE) {
973 		qh_refresh(ehci, qh);
974 		qh_link_periodic(ehci, qh);
975 	} else {
976 		/* cancel unlink wait for the qh */
977 		cancel_unlink_wait_intr(ehci, qh);
978 	}
979 
980 	/* ... update usbfs periodic stats */
981 	ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
982 
983 done:
984 	if (unlikely(status))
985 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
986 done_not_linked:
987 	spin_unlock_irqrestore(&ehci->lock, flags);
988 	if (status)
989 		qtd_list_free(ehci, urb, qtd_list);
990 
991 	return status;
992 }
993 
scan_intr(struct ehci_hcd * ehci)994 static void scan_intr(struct ehci_hcd *ehci)
995 {
996 	struct ehci_qh		*qh;
997 
998 	list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
999 			intr_node) {
1000 
1001 		/* clean any finished work for this qh */
1002 		if (!list_empty(&qh->qtd_list)) {
1003 			int temp;
1004 
1005 			/*
1006 			 * Unlinks could happen here; completion reporting
1007 			 * drops the lock.  That's why ehci->qh_scan_next
1008 			 * always holds the next qh to scan; if the next qh
1009 			 * gets unlinked then ehci->qh_scan_next is adjusted
1010 			 * in qh_unlink_periodic().
1011 			 */
1012 			temp = qh_completions(ehci, qh);
1013 			if (unlikely(temp))
1014 				start_unlink_intr(ehci, qh);
1015 			else if (unlikely(list_empty(&qh->qtd_list) &&
1016 					qh->qh_state == QH_STATE_LINKED))
1017 				start_unlink_intr_wait(ehci, qh);
1018 		}
1019 	}
1020 }
1021 
1022 /*-------------------------------------------------------------------------*/
1023 
1024 /* ehci_iso_stream ops work with both ITD and SITD */
1025 
1026 static struct ehci_iso_stream *
iso_stream_alloc(gfp_t mem_flags)1027 iso_stream_alloc(gfp_t mem_flags)
1028 {
1029 	struct ehci_iso_stream *stream;
1030 
1031 	stream = kzalloc(sizeof(*stream), mem_flags);
1032 	if (likely(stream != NULL)) {
1033 		INIT_LIST_HEAD(&stream->td_list);
1034 		INIT_LIST_HEAD(&stream->free_list);
1035 		stream->next_uframe = NO_FRAME;
1036 		stream->ps.phase = NO_FRAME;
1037 	}
1038 	return stream;
1039 }
1040 
1041 static void
iso_stream_init(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,struct urb * urb)1042 iso_stream_init(
1043 	struct ehci_hcd		*ehci,
1044 	struct ehci_iso_stream	*stream,
1045 	struct urb		*urb
1046 )
1047 {
1048 	static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
1049 
1050 	struct usb_device	*dev = urb->dev;
1051 	u32			buf1;
1052 	unsigned		epnum, maxp;
1053 	int			is_input;
1054 	unsigned		tmp;
1055 
1056 	/*
1057 	 * this might be a "high bandwidth" highspeed endpoint,
1058 	 * as encoded in the ep descriptor's wMaxPacket field
1059 	 */
1060 	epnum = usb_pipeendpoint(urb->pipe);
1061 	is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
1062 	maxp = usb_endpoint_maxp(&urb->ep->desc);
1063 	buf1 = is_input ? 1 << 11 : 0;
1064 
1065 	/* knows about ITD vs SITD */
1066 	if (dev->speed == USB_SPEED_HIGH) {
1067 		unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
1068 
1069 		stream->highspeed = 1;
1070 
1071 		buf1 |= maxp;
1072 		maxp *= multi;
1073 
1074 		stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
1075 		stream->buf1 = cpu_to_hc32(ehci, buf1);
1076 		stream->buf2 = cpu_to_hc32(ehci, multi);
1077 
1078 		/* usbfs wants to report the average usecs per frame tied up
1079 		 * when transfers on this endpoint are scheduled ...
1080 		 */
1081 		stream->ps.usecs = HS_USECS_ISO(maxp);
1082 
1083 		/* period for bandwidth allocation */
1084 		tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1085 				1 << (urb->ep->desc.bInterval - 1));
1086 
1087 		/* Allow urb->interval to override */
1088 		stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
1089 
1090 		stream->uperiod = urb->interval;
1091 		stream->ps.period = urb->interval >> 3;
1092 		stream->bandwidth = stream->ps.usecs * 8 /
1093 				stream->ps.bw_uperiod;
1094 
1095 	} else {
1096 		u32		addr;
1097 		int		think_time;
1098 		int		hs_transfers;
1099 
1100 		addr = dev->ttport << 24;
1101 		if (!ehci_is_TDI(ehci)
1102 				|| (dev->tt->hub !=
1103 					ehci_to_hcd(ehci)->self.root_hub))
1104 			addr |= dev->tt->hub->devnum << 16;
1105 		addr |= epnum << 8;
1106 		addr |= dev->devnum;
1107 		stream->ps.usecs = HS_USECS_ISO(maxp);
1108 		think_time = dev->tt->think_time;
1109 		stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
1110 				dev->speed, is_input, 1, maxp));
1111 		hs_transfers = max(1u, (maxp + 187) / 188);
1112 		if (is_input) {
1113 			u32	tmp;
1114 
1115 			addr |= 1 << 31;
1116 			stream->ps.c_usecs = stream->ps.usecs;
1117 			stream->ps.usecs = HS_USECS_ISO(1);
1118 			stream->ps.cs_mask = 1;
1119 
1120 			/* c-mask as specified in USB 2.0 11.18.4 3.c */
1121 			tmp = (1 << (hs_transfers + 2)) - 1;
1122 			stream->ps.cs_mask |= tmp << (8 + 2);
1123 		} else
1124 			stream->ps.cs_mask = smask_out[hs_transfers - 1];
1125 
1126 		/* period for bandwidth allocation */
1127 		tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1128 				1 << (urb->ep->desc.bInterval - 1));
1129 
1130 		/* Allow urb->interval to override */
1131 		stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
1132 		stream->ps.bw_uperiod = stream->ps.bw_period << 3;
1133 
1134 		stream->ps.period = urb->interval;
1135 		stream->uperiod = urb->interval << 3;
1136 		stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
1137 				stream->ps.bw_period;
1138 
1139 		/* stream->splits gets created from cs_mask later */
1140 		stream->address = cpu_to_hc32(ehci, addr);
1141 	}
1142 
1143 	stream->ps.udev = dev;
1144 	stream->ps.ep = urb->ep;
1145 
1146 	stream->bEndpointAddress = is_input | epnum;
1147 	stream->maxp = maxp;
1148 }
1149 
1150 static struct ehci_iso_stream *
iso_stream_find(struct ehci_hcd * ehci,struct urb * urb)1151 iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
1152 {
1153 	unsigned		epnum;
1154 	struct ehci_iso_stream	*stream;
1155 	struct usb_host_endpoint *ep;
1156 	unsigned long		flags;
1157 
1158 	epnum = usb_pipeendpoint (urb->pipe);
1159 	if (usb_pipein(urb->pipe))
1160 		ep = urb->dev->ep_in[epnum];
1161 	else
1162 		ep = urb->dev->ep_out[epnum];
1163 
1164 	spin_lock_irqsave(&ehci->lock, flags);
1165 	stream = ep->hcpriv;
1166 
1167 	if (unlikely(stream == NULL)) {
1168 		stream = iso_stream_alloc(GFP_ATOMIC);
1169 		if (likely(stream != NULL)) {
1170 			ep->hcpriv = stream;
1171 			iso_stream_init(ehci, stream, urb);
1172 		}
1173 
1174 	/* if dev->ep [epnum] is a QH, hw is set */
1175 	} else if (unlikely(stream->hw != NULL)) {
1176 		ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
1177 			urb->dev->devpath, epnum,
1178 			usb_pipein(urb->pipe) ? "in" : "out");
1179 		stream = NULL;
1180 	}
1181 
1182 	spin_unlock_irqrestore(&ehci->lock, flags);
1183 	return stream;
1184 }
1185 
1186 /*-------------------------------------------------------------------------*/
1187 
1188 /* ehci_iso_sched ops can be ITD-only or SITD-only */
1189 
1190 static struct ehci_iso_sched *
iso_sched_alloc(unsigned packets,gfp_t mem_flags)1191 iso_sched_alloc(unsigned packets, gfp_t mem_flags)
1192 {
1193 	struct ehci_iso_sched	*iso_sched;
1194 	int			size = sizeof(*iso_sched);
1195 
1196 	size += packets * sizeof(struct ehci_iso_packet);
1197 	iso_sched = kzalloc(size, mem_flags);
1198 	if (likely(iso_sched != NULL))
1199 		INIT_LIST_HEAD(&iso_sched->td_list);
1200 
1201 	return iso_sched;
1202 }
1203 
1204 static inline void
itd_sched_init(struct ehci_hcd * ehci,struct ehci_iso_sched * iso_sched,struct ehci_iso_stream * stream,struct urb * urb)1205 itd_sched_init(
1206 	struct ehci_hcd		*ehci,
1207 	struct ehci_iso_sched	*iso_sched,
1208 	struct ehci_iso_stream	*stream,
1209 	struct urb		*urb
1210 )
1211 {
1212 	unsigned	i;
1213 	dma_addr_t	dma = urb->transfer_dma;
1214 
1215 	/* how many uframes are needed for these transfers */
1216 	iso_sched->span = urb->number_of_packets * stream->uperiod;
1217 
1218 	/* figure out per-uframe itd fields that we'll need later
1219 	 * when we fit new itds into the schedule.
1220 	 */
1221 	for (i = 0; i < urb->number_of_packets; i++) {
1222 		struct ehci_iso_packet	*uframe = &iso_sched->packet[i];
1223 		unsigned		length;
1224 		dma_addr_t		buf;
1225 		u32			trans;
1226 
1227 		length = urb->iso_frame_desc[i].length;
1228 		buf = dma + urb->iso_frame_desc[i].offset;
1229 
1230 		trans = EHCI_ISOC_ACTIVE;
1231 		trans |= buf & 0x0fff;
1232 		if (unlikely(((i + 1) == urb->number_of_packets))
1233 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
1234 			trans |= EHCI_ITD_IOC;
1235 		trans |= length << 16;
1236 		uframe->transaction = cpu_to_hc32(ehci, trans);
1237 
1238 		/* might need to cross a buffer page within a uframe */
1239 		uframe->bufp = (buf & ~(u64)0x0fff);
1240 		buf += length;
1241 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
1242 			uframe->cross = 1;
1243 	}
1244 }
1245 
1246 static void
iso_sched_free(struct ehci_iso_stream * stream,struct ehci_iso_sched * iso_sched)1247 iso_sched_free(
1248 	struct ehci_iso_stream	*stream,
1249 	struct ehci_iso_sched	*iso_sched
1250 )
1251 {
1252 	if (!iso_sched)
1253 		return;
1254 	/* caller must hold ehci->lock! */
1255 	list_splice(&iso_sched->td_list, &stream->free_list);
1256 	kfree(iso_sched);
1257 }
1258 
1259 static int
itd_urb_transaction(struct ehci_iso_stream * stream,struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)1260 itd_urb_transaction(
1261 	struct ehci_iso_stream	*stream,
1262 	struct ehci_hcd		*ehci,
1263 	struct urb		*urb,
1264 	gfp_t			mem_flags
1265 )
1266 {
1267 	struct ehci_itd		*itd;
1268 	dma_addr_t		itd_dma;
1269 	int			i;
1270 	unsigned		num_itds;
1271 	struct ehci_iso_sched	*sched;
1272 	unsigned long		flags;
1273 
1274 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
1275 	if (unlikely(sched == NULL))
1276 		return -ENOMEM;
1277 
1278 	itd_sched_init(ehci, sched, stream, urb);
1279 
1280 	if (urb->interval < 8)
1281 		num_itds = 1 + (sched->span + 7) / 8;
1282 	else
1283 		num_itds = urb->number_of_packets;
1284 
1285 	/* allocate/init ITDs */
1286 	spin_lock_irqsave(&ehci->lock, flags);
1287 	for (i = 0; i < num_itds; i++) {
1288 
1289 		/*
1290 		 * Use iTDs from the free list, but not iTDs that may
1291 		 * still be in use by the hardware.
1292 		 */
1293 		if (likely(!list_empty(&stream->free_list))) {
1294 			itd = list_first_entry(&stream->free_list,
1295 					struct ehci_itd, itd_list);
1296 			if (itd->frame == ehci->now_frame)
1297 				goto alloc_itd;
1298 			list_del(&itd->itd_list);
1299 			itd_dma = itd->itd_dma;
1300 		} else {
1301  alloc_itd:
1302 			spin_unlock_irqrestore(&ehci->lock, flags);
1303 			itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
1304 					&itd_dma);
1305 			spin_lock_irqsave(&ehci->lock, flags);
1306 			if (!itd) {
1307 				iso_sched_free(stream, sched);
1308 				spin_unlock_irqrestore(&ehci->lock, flags);
1309 				return -ENOMEM;
1310 			}
1311 		}
1312 
1313 		memset(itd, 0, sizeof(*itd));
1314 		itd->itd_dma = itd_dma;
1315 		itd->frame = NO_FRAME;
1316 		list_add(&itd->itd_list, &sched->td_list);
1317 	}
1318 	spin_unlock_irqrestore(&ehci->lock, flags);
1319 
1320 	/* temporarily store schedule info in hcpriv */
1321 	urb->hcpriv = sched;
1322 	urb->error_count = 0;
1323 	return 0;
1324 }
1325 
1326 /*-------------------------------------------------------------------------*/
1327 
reserve_release_iso_bandwidth(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,int sign)1328 static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
1329 		struct ehci_iso_stream *stream, int sign)
1330 {
1331 	unsigned		uframe;
1332 	unsigned		i, j;
1333 	unsigned		s_mask, c_mask, m;
1334 	int			usecs = stream->ps.usecs;
1335 	int			c_usecs = stream->ps.c_usecs;
1336 	int			tt_usecs = stream->ps.tt_usecs;
1337 	struct ehci_tt		*tt;
1338 
1339 	if (stream->ps.phase == NO_FRAME)	/* Bandwidth wasn't reserved */
1340 		return;
1341 	uframe = stream->ps.bw_phase << 3;
1342 
1343 	bandwidth_dbg(ehci, sign, "iso", &stream->ps);
1344 
1345 	if (sign < 0) {		/* Release bandwidth */
1346 		usecs = -usecs;
1347 		c_usecs = -c_usecs;
1348 		tt_usecs = -tt_usecs;
1349 	}
1350 
1351 	if (!stream->splits) {		/* High speed */
1352 		for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
1353 				i += stream->ps.bw_uperiod)
1354 			ehci->bandwidth[i] += usecs;
1355 
1356 	} else {			/* Full speed */
1357 		s_mask = stream->ps.cs_mask;
1358 		c_mask = s_mask >> 8;
1359 
1360 		/* NOTE: adjustment needed for frame overflow */
1361 		for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
1362 				i += stream->ps.bw_uperiod) {
1363 			for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
1364 					(++j, m <<= 1)) {
1365 				if (s_mask & m)
1366 					ehci->bandwidth[i+j] += usecs;
1367 				else if (c_mask & m)
1368 					ehci->bandwidth[i+j] += c_usecs;
1369 			}
1370 		}
1371 
1372 		tt = find_tt(stream->ps.udev);
1373 		if (sign > 0)
1374 			list_add_tail(&stream->ps.ps_list, &tt->ps_list);
1375 		else
1376 			list_del(&stream->ps.ps_list);
1377 
1378 		for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
1379 				i += stream->ps.bw_period)
1380 			tt->bandwidth[i] += tt_usecs;
1381 	}
1382 }
1383 
1384 static inline int
itd_slot_ok(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,unsigned uframe)1385 itd_slot_ok(
1386 	struct ehci_hcd		*ehci,
1387 	struct ehci_iso_stream	*stream,
1388 	unsigned		uframe
1389 )
1390 {
1391 	unsigned		usecs;
1392 
1393 	/* convert "usecs we need" to "max already claimed" */
1394 	usecs = ehci->uframe_periodic_max - stream->ps.usecs;
1395 
1396 	for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
1397 			uframe += stream->ps.bw_uperiod) {
1398 		if (ehci->bandwidth[uframe] > usecs)
1399 			return 0;
1400 	}
1401 	return 1;
1402 }
1403 
1404 static inline int
sitd_slot_ok(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,unsigned uframe,struct ehci_iso_sched * sched,struct ehci_tt * tt)1405 sitd_slot_ok(
1406 	struct ehci_hcd		*ehci,
1407 	struct ehci_iso_stream	*stream,
1408 	unsigned		uframe,
1409 	struct ehci_iso_sched	*sched,
1410 	struct ehci_tt		*tt
1411 )
1412 {
1413 	unsigned		mask, tmp;
1414 	unsigned		frame, uf;
1415 
1416 	mask = stream->ps.cs_mask << (uframe & 7);
1417 
1418 	/* for OUT, don't wrap SSPLIT into H-microframe 7 */
1419 	if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
1420 		return 0;
1421 
1422 	/* for IN, don't wrap CSPLIT into the next frame */
1423 	if (mask & ~0xffff)
1424 		return 0;
1425 
1426 	/* check bandwidth */
1427 	uframe &= stream->ps.bw_uperiod - 1;
1428 	frame = uframe >> 3;
1429 
1430 #ifdef CONFIG_USB_EHCI_TT_NEWSCHED
1431 	/* The tt's fullspeed bus bandwidth must be available.
1432 	 * tt_available scheduling guarantees 10+% for control/bulk.
1433 	 */
1434 	uf = uframe & 7;
1435 	if (!tt_available(ehci, &stream->ps, tt, frame, uf))
1436 		return 0;
1437 #else
1438 	/* tt must be idle for start(s), any gap, and csplit.
1439 	 * assume scheduling slop leaves 10+% for control/bulk.
1440 	 */
1441 	if (!tt_no_collision(ehci, stream->ps.bw_period,
1442 			stream->ps.udev, frame, mask))
1443 		return 0;
1444 #endif
1445 
1446 	do {
1447 		unsigned	max_used;
1448 		unsigned	i;
1449 
1450 		/* check starts (OUT uses more than one) */
1451 		uf = uframe;
1452 		max_used = ehci->uframe_periodic_max - stream->ps.usecs;
1453 		for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
1454 			if (ehci->bandwidth[uf] > max_used)
1455 				return 0;
1456 		}
1457 
1458 		/* for IN, check CSPLIT */
1459 		if (stream->ps.c_usecs) {
1460 			max_used = ehci->uframe_periodic_max -
1461 					stream->ps.c_usecs;
1462 			uf = uframe & ~7;
1463 			tmp = 1 << (2+8);
1464 			for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
1465 				if ((stream->ps.cs_mask & tmp) == 0)
1466 					continue;
1467 				if (ehci->bandwidth[uf+i] > max_used)
1468 					return 0;
1469 			}
1470 		}
1471 
1472 		uframe += stream->ps.bw_uperiod;
1473 	} while (uframe < EHCI_BANDWIDTH_SIZE);
1474 
1475 	stream->ps.cs_mask <<= uframe & 7;
1476 	stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
1477 	return 1;
1478 }
1479 
1480 /*
1481  * This scheduler plans almost as far into the future as it has actual
1482  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
1483  * "as small as possible" to be cache-friendlier.)  That limits the size
1484  * transfers you can stream reliably; avoid more than 64 msec per urb.
1485  * Also avoid queue depths of less than ehci's worst irq latency (affected
1486  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
1487  * and other factors); or more than about 230 msec total (for portability,
1488  * given EHCI_TUNE_FLS and the slop).  Or, write a smarter scheduler!
1489  */
1490 
1491 static int
iso_stream_schedule(struct ehci_hcd * ehci,struct urb * urb,struct ehci_iso_stream * stream)1492 iso_stream_schedule(
1493 	struct ehci_hcd		*ehci,
1494 	struct urb		*urb,
1495 	struct ehci_iso_stream	*stream
1496 )
1497 {
1498 	u32			now, base, next, start, period, span, now2;
1499 	u32			wrap = 0, skip = 0;
1500 	int			status = 0;
1501 	unsigned		mod = ehci->periodic_size << 3;
1502 	struct ehci_iso_sched	*sched = urb->hcpriv;
1503 	bool			empty = list_empty(&stream->td_list);
1504 	bool			new_stream = false;
1505 
1506 	period = stream->uperiod;
1507 	span = sched->span;
1508 	if (!stream->highspeed)
1509 		span <<= 3;
1510 
1511 	/* Start a new isochronous stream? */
1512 	if (unlikely(empty && !hcd_periodic_completion_in_progress(
1513 			ehci_to_hcd(ehci), urb->ep))) {
1514 
1515 		/* Schedule the endpoint */
1516 		if (stream->ps.phase == NO_FRAME) {
1517 			int		done = 0;
1518 			struct ehci_tt	*tt = find_tt(stream->ps.udev);
1519 
1520 			if (IS_ERR(tt)) {
1521 				status = PTR_ERR(tt);
1522 				goto fail;
1523 			}
1524 			compute_tt_budget(ehci->tt_budget, tt);
1525 
1526 			start = ((-(++ehci->random_frame)) << 3) & (period - 1);
1527 
1528 			/* find a uframe slot with enough bandwidth.
1529 			 * Early uframes are more precious because full-speed
1530 			 * iso IN transfers can't use late uframes,
1531 			 * and therefore they should be allocated last.
1532 			 */
1533 			next = start;
1534 			start += period;
1535 			do {
1536 				start--;
1537 				/* check schedule: enough space? */
1538 				if (stream->highspeed) {
1539 					if (itd_slot_ok(ehci, stream, start))
1540 						done = 1;
1541 				} else {
1542 					if ((start % 8) >= 6)
1543 						continue;
1544 					if (sitd_slot_ok(ehci, stream, start,
1545 							sched, tt))
1546 						done = 1;
1547 				}
1548 			} while (start > next && !done);
1549 
1550 			/* no room in the schedule */
1551 			if (!done) {
1552 				ehci_dbg(ehci, "iso sched full %p", urb);
1553 				status = -ENOSPC;
1554 				goto fail;
1555 			}
1556 			stream->ps.phase = (start >> 3) &
1557 					(stream->ps.period - 1);
1558 			stream->ps.bw_phase = stream->ps.phase &
1559 					(stream->ps.bw_period - 1);
1560 			stream->ps.phase_uf = start & 7;
1561 			reserve_release_iso_bandwidth(ehci, stream, 1);
1562 		}
1563 
1564 		/* New stream is already scheduled; use the upcoming slot */
1565 		else {
1566 			start = (stream->ps.phase << 3) + stream->ps.phase_uf;
1567 		}
1568 
1569 		stream->next_uframe = start;
1570 		new_stream = true;
1571 	}
1572 
1573 	now = ehci_read_frame_index(ehci) & (mod - 1);
1574 
1575 	/* Take the isochronous scheduling threshold into account */
1576 	if (ehci->i_thresh)
1577 		next = now + ehci->i_thresh;	/* uframe cache */
1578 	else
1579 		next = (now + 2 + 7) & ~0x07;	/* full frame cache */
1580 
1581 	/* If needed, initialize last_iso_frame so that this URB will be seen */
1582 	if (ehci->isoc_count == 0)
1583 		ehci->last_iso_frame = now >> 3;
1584 
1585 	/*
1586 	 * Use ehci->last_iso_frame as the base.  There can't be any
1587 	 * TDs scheduled for earlier than that.
1588 	 */
1589 	base = ehci->last_iso_frame << 3;
1590 	next = (next - base) & (mod - 1);
1591 	start = (stream->next_uframe - base) & (mod - 1);
1592 
1593 	if (unlikely(new_stream))
1594 		goto do_ASAP;
1595 
1596 	/*
1597 	 * Typical case: reuse current schedule, stream may still be active.
1598 	 * Hopefully there are no gaps from the host falling behind
1599 	 * (irq delays etc).  If there are, the behavior depends on
1600 	 * whether URB_ISO_ASAP is set.
1601 	 */
1602 	now2 = (now - base) & (mod - 1);
1603 
1604 	/* Is the schedule about to wrap around? */
1605 	if (unlikely(!empty && start < period)) {
1606 		ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
1607 				urb, stream->next_uframe, base, period, mod);
1608 		status = -EFBIG;
1609 		goto fail;
1610 	}
1611 
1612 	/* Is the next packet scheduled after the base time? */
1613 	if (likely(!empty || start <= now2 + period)) {
1614 
1615 		/* URB_ISO_ASAP: make sure that start >= next */
1616 		if (unlikely(start < next &&
1617 				(urb->transfer_flags & URB_ISO_ASAP)))
1618 			goto do_ASAP;
1619 
1620 		/* Otherwise use start, if it's not in the past */
1621 		if (likely(start >= now2))
1622 			goto use_start;
1623 
1624 	/* Otherwise we got an underrun while the queue was empty */
1625 	} else {
1626 		if (urb->transfer_flags & URB_ISO_ASAP)
1627 			goto do_ASAP;
1628 		wrap = mod;
1629 		now2 += mod;
1630 	}
1631 
1632 	/* How many uframes and packets do we need to skip? */
1633 	skip = (now2 - start + period - 1) & -period;
1634 	if (skip >= span) {		/* Entirely in the past? */
1635 		ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
1636 				urb, start + base, span - period, now2 + base,
1637 				base);
1638 
1639 		/* Try to keep the last TD intact for scanning later */
1640 		skip = span - period;
1641 
1642 		/* Will it come before the current scan position? */
1643 		if (empty) {
1644 			skip = span;	/* Skip the entire URB */
1645 			status = 1;	/* and give it back immediately */
1646 			iso_sched_free(stream, sched);
1647 			sched = NULL;
1648 		}
1649 	}
1650 	urb->error_count = skip / period;
1651 	if (sched)
1652 		sched->first_packet = urb->error_count;
1653 	goto use_start;
1654 
1655  do_ASAP:
1656 	/* Use the first slot after "next" */
1657 	start = next + ((start - next) & (period - 1));
1658 
1659  use_start:
1660 	/* Tried to schedule too far into the future? */
1661 	if (unlikely(start + span - period >= mod + wrap)) {
1662 		ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
1663 				urb, start, span - period, mod + wrap);
1664 		status = -EFBIG;
1665 		goto fail;
1666 	}
1667 
1668 	start += base;
1669 	stream->next_uframe = (start + skip) & (mod - 1);
1670 
1671 	/* report high speed start in uframes; full speed, in frames */
1672 	urb->start_frame = start & (mod - 1);
1673 	if (!stream->highspeed)
1674 		urb->start_frame >>= 3;
1675 	return status;
1676 
1677  fail:
1678 	iso_sched_free(stream, sched);
1679 	urb->hcpriv = NULL;
1680 	return status;
1681 }
1682 
1683 /*-------------------------------------------------------------------------*/
1684 
1685 static inline void
itd_init(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,struct ehci_itd * itd)1686 itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
1687 		struct ehci_itd *itd)
1688 {
1689 	int i;
1690 
1691 	/* it's been recently zeroed */
1692 	itd->hw_next = EHCI_LIST_END(ehci);
1693 	itd->hw_bufp[0] = stream->buf0;
1694 	itd->hw_bufp[1] = stream->buf1;
1695 	itd->hw_bufp[2] = stream->buf2;
1696 
1697 	for (i = 0; i < 8; i++)
1698 		itd->index[i] = -1;
1699 
1700 	/* All other fields are filled when scheduling */
1701 }
1702 
1703 static inline void
itd_patch(struct ehci_hcd * ehci,struct ehci_itd * itd,struct ehci_iso_sched * iso_sched,unsigned index,u16 uframe)1704 itd_patch(
1705 	struct ehci_hcd		*ehci,
1706 	struct ehci_itd		*itd,
1707 	struct ehci_iso_sched	*iso_sched,
1708 	unsigned		index,
1709 	u16			uframe
1710 )
1711 {
1712 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
1713 	unsigned		pg = itd->pg;
1714 
1715 	/* BUG_ON(pg == 6 && uf->cross); */
1716 
1717 	uframe &= 0x07;
1718 	itd->index[uframe] = index;
1719 
1720 	itd->hw_transaction[uframe] = uf->transaction;
1721 	itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
1722 	itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
1723 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
1724 
1725 	/* iso_frame_desc[].offset must be strictly increasing */
1726 	if (unlikely(uf->cross)) {
1727 		u64	bufp = uf->bufp + 4096;
1728 
1729 		itd->pg = ++pg;
1730 		itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
1731 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
1732 	}
1733 }
1734 
1735 static inline void
itd_link(struct ehci_hcd * ehci,unsigned frame,struct ehci_itd * itd)1736 itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
1737 {
1738 	union ehci_shadow	*prev = &ehci->pshadow[frame];
1739 	__hc32			*hw_p = &ehci->periodic[frame];
1740 	union ehci_shadow	here = *prev;
1741 	__hc32			type = 0;
1742 
1743 	/* skip any iso nodes which might belong to previous microframes */
1744 	while (here.ptr) {
1745 		type = Q_NEXT_TYPE(ehci, *hw_p);
1746 		if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
1747 			break;
1748 		prev = periodic_next_shadow(ehci, prev, type);
1749 		hw_p = shadow_next_periodic(ehci, &here, type);
1750 		here = *prev;
1751 	}
1752 
1753 	itd->itd_next = here;
1754 	itd->hw_next = *hw_p;
1755 	prev->itd = itd;
1756 	itd->frame = frame;
1757 	wmb();
1758 	*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
1759 }
1760 
1761 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct ehci_hcd * ehci,struct urb * urb,unsigned mod,struct ehci_iso_stream * stream)1762 static void itd_link_urb(
1763 	struct ehci_hcd		*ehci,
1764 	struct urb		*urb,
1765 	unsigned		mod,
1766 	struct ehci_iso_stream	*stream
1767 )
1768 {
1769 	int			packet;
1770 	unsigned		next_uframe, uframe, frame;
1771 	struct ehci_iso_sched	*iso_sched = urb->hcpriv;
1772 	struct ehci_itd		*itd;
1773 
1774 	next_uframe = stream->next_uframe & (mod - 1);
1775 
1776 	if (unlikely(list_empty(&stream->td_list)))
1777 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1778 				+= stream->bandwidth;
1779 
1780 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1781 		if (ehci->amd_pll_fix == 1)
1782 			usb_amd_quirk_pll_disable();
1783 	}
1784 
1785 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
1786 
1787 	/* fill iTDs uframe by uframe */
1788 	for (packet = iso_sched->first_packet, itd = NULL;
1789 			packet < urb->number_of_packets;) {
1790 		if (itd == NULL) {
1791 			/* ASSERT:  we have all necessary itds */
1792 			/* BUG_ON(list_empty(&iso_sched->td_list)); */
1793 
1794 			/* ASSERT:  no itds for this endpoint in this uframe */
1795 
1796 			itd = list_entry(iso_sched->td_list.next,
1797 					struct ehci_itd, itd_list);
1798 			list_move_tail(&itd->itd_list, &stream->td_list);
1799 			itd->stream = stream;
1800 			itd->urb = urb;
1801 			itd_init(ehci, stream, itd);
1802 		}
1803 
1804 		uframe = next_uframe & 0x07;
1805 		frame = next_uframe >> 3;
1806 
1807 		itd_patch(ehci, itd, iso_sched, packet, uframe);
1808 
1809 		next_uframe += stream->uperiod;
1810 		next_uframe &= mod - 1;
1811 		packet++;
1812 
1813 		/* link completed itds into the schedule */
1814 		if (((next_uframe >> 3) != frame)
1815 				|| packet == urb->number_of_packets) {
1816 			itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
1817 			itd = NULL;
1818 		}
1819 	}
1820 	stream->next_uframe = next_uframe;
1821 
1822 	/* don't need that schedule data any more */
1823 	iso_sched_free(stream, iso_sched);
1824 	urb->hcpriv = stream;
1825 
1826 	++ehci->isoc_count;
1827 	enable_periodic(ehci);
1828 }
1829 
1830 #define	ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
1831 
1832 /* Process and recycle a completed ITD.  Return true iff its urb completed,
1833  * and hence its completion callback probably added things to the hardware
1834  * schedule.
1835  *
1836  * Note that we carefully avoid recycling this descriptor until after any
1837  * completion callback runs, so that it won't be reused quickly.  That is,
1838  * assuming (a) no more than two urbs per frame on this endpoint, and also
1839  * (b) only this endpoint's completions submit URBs.  It seems some silicon
1840  * corrupts things if you reuse completed descriptors very quickly...
1841  */
itd_complete(struct ehci_hcd * ehci,struct ehci_itd * itd)1842 static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
1843 {
1844 	struct urb				*urb = itd->urb;
1845 	struct usb_iso_packet_descriptor	*desc;
1846 	u32					t;
1847 	unsigned				uframe;
1848 	int					urb_index = -1;
1849 	struct ehci_iso_stream			*stream = itd->stream;
1850 	struct usb_device			*dev;
1851 	bool					retval = false;
1852 
1853 	/* for each uframe with a packet */
1854 	for (uframe = 0; uframe < 8; uframe++) {
1855 		if (likely(itd->index[uframe] == -1))
1856 			continue;
1857 		urb_index = itd->index[uframe];
1858 		desc = &urb->iso_frame_desc[urb_index];
1859 
1860 		t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
1861 		itd->hw_transaction[uframe] = 0;
1862 
1863 		/* report transfer status */
1864 		if (unlikely(t & ISO_ERRS)) {
1865 			urb->error_count++;
1866 			if (t & EHCI_ISOC_BUF_ERR)
1867 				desc->status = usb_pipein(urb->pipe)
1868 					? -ENOSR  /* hc couldn't read */
1869 					: -ECOMM; /* hc couldn't write */
1870 			else if (t & EHCI_ISOC_BABBLE)
1871 				desc->status = -EOVERFLOW;
1872 			else /* (t & EHCI_ISOC_XACTERR) */
1873 				desc->status = -EPROTO;
1874 
1875 			/* HC need not update length with this error */
1876 			if (!(t & EHCI_ISOC_BABBLE)) {
1877 				desc->actual_length = EHCI_ITD_LENGTH(t);
1878 				urb->actual_length += desc->actual_length;
1879 			}
1880 		} else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
1881 			desc->status = 0;
1882 			desc->actual_length = EHCI_ITD_LENGTH(t);
1883 			urb->actual_length += desc->actual_length;
1884 		} else {
1885 			/* URB was too late */
1886 			urb->error_count++;
1887 		}
1888 	}
1889 
1890 	/* handle completion now? */
1891 	if (likely((urb_index + 1) != urb->number_of_packets))
1892 		goto done;
1893 
1894 	/*
1895 	 * ASSERT: it's really the last itd for this urb
1896 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
1897 	 *	 BUG_ON(itd->urb == urb);
1898 	 */
1899 
1900 	/* give urb back to the driver; completion often (re)submits */
1901 	dev = urb->dev;
1902 	ehci_urb_done(ehci, urb, 0);
1903 	retval = true;
1904 	urb = NULL;
1905 
1906 	--ehci->isoc_count;
1907 	disable_periodic(ehci);
1908 
1909 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
1910 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
1911 		if (ehci->amd_pll_fix == 1)
1912 			usb_amd_quirk_pll_enable();
1913 	}
1914 
1915 	if (unlikely(list_is_singular(&stream->td_list)))
1916 		ehci_to_hcd(ehci)->self.bandwidth_allocated
1917 				-= stream->bandwidth;
1918 
1919 done:
1920 	itd->urb = NULL;
1921 
1922 	/* Add to the end of the free list for later reuse */
1923 	list_move_tail(&itd->itd_list, &stream->free_list);
1924 
1925 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
1926 	if (list_empty(&stream->td_list)) {
1927 		list_splice_tail_init(&stream->free_list,
1928 				&ehci->cached_itd_list);
1929 		start_free_itds(ehci);
1930 	}
1931 
1932 	return retval;
1933 }
1934 
1935 /*-------------------------------------------------------------------------*/
1936 
itd_submit(struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)1937 static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
1938 	gfp_t mem_flags)
1939 {
1940 	int			status = -EINVAL;
1941 	unsigned long		flags;
1942 	struct ehci_iso_stream	*stream;
1943 
1944 	/* Get iso_stream head */
1945 	stream = iso_stream_find(ehci, urb);
1946 	if (unlikely(stream == NULL)) {
1947 		ehci_dbg(ehci, "can't get iso stream\n");
1948 		return -ENOMEM;
1949 	}
1950 	if (unlikely(urb->interval != stream->uperiod)) {
1951 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
1952 			stream->uperiod, urb->interval);
1953 		goto done;
1954 	}
1955 
1956 #ifdef EHCI_URB_TRACE
1957 	ehci_dbg(ehci,
1958 		"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
1959 		__func__, urb->dev->devpath, urb,
1960 		usb_pipeendpoint(urb->pipe),
1961 		usb_pipein(urb->pipe) ? "in" : "out",
1962 		urb->transfer_buffer_length,
1963 		urb->number_of_packets, urb->interval,
1964 		stream);
1965 #endif
1966 
1967 	/* allocate ITDs w/o locking anything */
1968 	status = itd_urb_transaction(stream, ehci, urb, mem_flags);
1969 	if (unlikely(status < 0)) {
1970 		ehci_dbg(ehci, "can't init itds\n");
1971 		goto done;
1972 	}
1973 
1974 	/* schedule ... need to lock */
1975 	spin_lock_irqsave(&ehci->lock, flags);
1976 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1977 		status = -ESHUTDOWN;
1978 		goto done_not_linked;
1979 	}
1980 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1981 	if (unlikely(status))
1982 		goto done_not_linked;
1983 	status = iso_stream_schedule(ehci, urb, stream);
1984 	if (likely(status == 0)) {
1985 		itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
1986 	} else if (status > 0) {
1987 		status = 0;
1988 		ehci_urb_done(ehci, urb, 0);
1989 	} else {
1990 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1991 	}
1992  done_not_linked:
1993 	spin_unlock_irqrestore(&ehci->lock, flags);
1994  done:
1995 	return status;
1996 }
1997 
1998 /*-------------------------------------------------------------------------*/
1999 
2000 /*
2001  * "Split ISO TDs" ... used for USB 1.1 devices going through the
2002  * TTs in USB 2.0 hubs.  These need microframe scheduling.
2003  */
2004 
2005 static inline void
sitd_sched_init(struct ehci_hcd * ehci,struct ehci_iso_sched * iso_sched,struct ehci_iso_stream * stream,struct urb * urb)2006 sitd_sched_init(
2007 	struct ehci_hcd		*ehci,
2008 	struct ehci_iso_sched	*iso_sched,
2009 	struct ehci_iso_stream	*stream,
2010 	struct urb		*urb
2011 )
2012 {
2013 	unsigned	i;
2014 	dma_addr_t	dma = urb->transfer_dma;
2015 
2016 	/* how many frames are needed for these transfers */
2017 	iso_sched->span = urb->number_of_packets * stream->ps.period;
2018 
2019 	/* figure out per-frame sitd fields that we'll need later
2020 	 * when we fit new sitds into the schedule.
2021 	 */
2022 	for (i = 0; i < urb->number_of_packets; i++) {
2023 		struct ehci_iso_packet	*packet = &iso_sched->packet[i];
2024 		unsigned		length;
2025 		dma_addr_t		buf;
2026 		u32			trans;
2027 
2028 		length = urb->iso_frame_desc[i].length & 0x03ff;
2029 		buf = dma + urb->iso_frame_desc[i].offset;
2030 
2031 		trans = SITD_STS_ACTIVE;
2032 		if (((i + 1) == urb->number_of_packets)
2033 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
2034 			trans |= SITD_IOC;
2035 		trans |= length << 16;
2036 		packet->transaction = cpu_to_hc32(ehci, trans);
2037 
2038 		/* might need to cross a buffer page within a td */
2039 		packet->bufp = buf;
2040 		packet->buf1 = (buf + length) & ~0x0fff;
2041 		if (packet->buf1 != (buf & ~(u64)0x0fff))
2042 			packet->cross = 1;
2043 
2044 		/* OUT uses multiple start-splits */
2045 		if (stream->bEndpointAddress & USB_DIR_IN)
2046 			continue;
2047 		length = (length + 187) / 188;
2048 		if (length > 1) /* BEGIN vs ALL */
2049 			length |= 1 << 3;
2050 		packet->buf1 |= length;
2051 	}
2052 }
2053 
2054 static int
sitd_urb_transaction(struct ehci_iso_stream * stream,struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)2055 sitd_urb_transaction(
2056 	struct ehci_iso_stream	*stream,
2057 	struct ehci_hcd		*ehci,
2058 	struct urb		*urb,
2059 	gfp_t			mem_flags
2060 )
2061 {
2062 	struct ehci_sitd	*sitd;
2063 	dma_addr_t		sitd_dma;
2064 	int			i;
2065 	struct ehci_iso_sched	*iso_sched;
2066 	unsigned long		flags;
2067 
2068 	iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
2069 	if (iso_sched == NULL)
2070 		return -ENOMEM;
2071 
2072 	sitd_sched_init(ehci, iso_sched, stream, urb);
2073 
2074 	/* allocate/init sITDs */
2075 	spin_lock_irqsave(&ehci->lock, flags);
2076 	for (i = 0; i < urb->number_of_packets; i++) {
2077 
2078 		/* NOTE:  for now, we don't try to handle wraparound cases
2079 		 * for IN (using sitd->hw_backpointer, like a FSTN), which
2080 		 * means we never need two sitds for full speed packets.
2081 		 */
2082 
2083 		/*
2084 		 * Use siTDs from the free list, but not siTDs that may
2085 		 * still be in use by the hardware.
2086 		 */
2087 		if (likely(!list_empty(&stream->free_list))) {
2088 			sitd = list_first_entry(&stream->free_list,
2089 					 struct ehci_sitd, sitd_list);
2090 			if (sitd->frame == ehci->now_frame)
2091 				goto alloc_sitd;
2092 			list_del(&sitd->sitd_list);
2093 			sitd_dma = sitd->sitd_dma;
2094 		} else {
2095  alloc_sitd:
2096 			spin_unlock_irqrestore(&ehci->lock, flags);
2097 			sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
2098 					&sitd_dma);
2099 			spin_lock_irqsave(&ehci->lock, flags);
2100 			if (!sitd) {
2101 				iso_sched_free(stream, iso_sched);
2102 				spin_unlock_irqrestore(&ehci->lock, flags);
2103 				return -ENOMEM;
2104 			}
2105 		}
2106 
2107 		memset(sitd, 0, sizeof(*sitd));
2108 		sitd->sitd_dma = sitd_dma;
2109 		sitd->frame = NO_FRAME;
2110 		list_add(&sitd->sitd_list, &iso_sched->td_list);
2111 	}
2112 
2113 	/* temporarily store schedule info in hcpriv */
2114 	urb->hcpriv = iso_sched;
2115 	urb->error_count = 0;
2116 
2117 	spin_unlock_irqrestore(&ehci->lock, flags);
2118 	return 0;
2119 }
2120 
2121 /*-------------------------------------------------------------------------*/
2122 
2123 static inline void
sitd_patch(struct ehci_hcd * ehci,struct ehci_iso_stream * stream,struct ehci_sitd * sitd,struct ehci_iso_sched * iso_sched,unsigned index)2124 sitd_patch(
2125 	struct ehci_hcd		*ehci,
2126 	struct ehci_iso_stream	*stream,
2127 	struct ehci_sitd	*sitd,
2128 	struct ehci_iso_sched	*iso_sched,
2129 	unsigned		index
2130 )
2131 {
2132 	struct ehci_iso_packet	*uf = &iso_sched->packet[index];
2133 	u64			bufp;
2134 
2135 	sitd->hw_next = EHCI_LIST_END(ehci);
2136 	sitd->hw_fullspeed_ep = stream->address;
2137 	sitd->hw_uframe = stream->splits;
2138 	sitd->hw_results = uf->transaction;
2139 	sitd->hw_backpointer = EHCI_LIST_END(ehci);
2140 
2141 	bufp = uf->bufp;
2142 	sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
2143 	sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
2144 
2145 	sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
2146 	if (uf->cross)
2147 		bufp += 4096;
2148 	sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
2149 	sitd->index = index;
2150 }
2151 
2152 static inline void
sitd_link(struct ehci_hcd * ehci,unsigned frame,struct ehci_sitd * sitd)2153 sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
2154 {
2155 	/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
2156 	sitd->sitd_next = ehci->pshadow[frame];
2157 	sitd->hw_next = ehci->periodic[frame];
2158 	ehci->pshadow[frame].sitd = sitd;
2159 	sitd->frame = frame;
2160 	wmb();
2161 	ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
2162 }
2163 
2164 /* fit urb's sitds into the selected schedule slot; activate as needed */
sitd_link_urb(struct ehci_hcd * ehci,struct urb * urb,unsigned mod,struct ehci_iso_stream * stream)2165 static void sitd_link_urb(
2166 	struct ehci_hcd		*ehci,
2167 	struct urb		*urb,
2168 	unsigned		mod,
2169 	struct ehci_iso_stream	*stream
2170 )
2171 {
2172 	int			packet;
2173 	unsigned		next_uframe;
2174 	struct ehci_iso_sched	*sched = urb->hcpriv;
2175 	struct ehci_sitd	*sitd;
2176 
2177 	next_uframe = stream->next_uframe;
2178 
2179 	if (list_empty(&stream->td_list))
2180 		/* usbfs ignores TT bandwidth */
2181 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2182 				+= stream->bandwidth;
2183 
2184 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2185 		if (ehci->amd_pll_fix == 1)
2186 			usb_amd_quirk_pll_disable();
2187 	}
2188 
2189 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
2190 
2191 	/* fill sITDs frame by frame */
2192 	for (packet = sched->first_packet, sitd = NULL;
2193 			packet < urb->number_of_packets;
2194 			packet++) {
2195 
2196 		/* ASSERT:  we have all necessary sitds */
2197 		BUG_ON(list_empty(&sched->td_list));
2198 
2199 		/* ASSERT:  no itds for this endpoint in this frame */
2200 
2201 		sitd = list_entry(sched->td_list.next,
2202 				struct ehci_sitd, sitd_list);
2203 		list_move_tail(&sitd->sitd_list, &stream->td_list);
2204 		sitd->stream = stream;
2205 		sitd->urb = urb;
2206 
2207 		sitd_patch(ehci, stream, sitd, sched, packet);
2208 		sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
2209 				sitd);
2210 
2211 		next_uframe += stream->uperiod;
2212 	}
2213 	stream->next_uframe = next_uframe & (mod - 1);
2214 
2215 	/* don't need that schedule data any more */
2216 	iso_sched_free(stream, sched);
2217 	urb->hcpriv = stream;
2218 
2219 	++ehci->isoc_count;
2220 	enable_periodic(ehci);
2221 }
2222 
2223 /*-------------------------------------------------------------------------*/
2224 
2225 #define	SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
2226 				| SITD_STS_XACT | SITD_STS_MMF)
2227 
2228 /* Process and recycle a completed SITD.  Return true iff its urb completed,
2229  * and hence its completion callback probably added things to the hardware
2230  * schedule.
2231  *
2232  * Note that we carefully avoid recycling this descriptor until after any
2233  * completion callback runs, so that it won't be reused quickly.  That is,
2234  * assuming (a) no more than two urbs per frame on this endpoint, and also
2235  * (b) only this endpoint's completions submit URBs.  It seems some silicon
2236  * corrupts things if you reuse completed descriptors very quickly...
2237  */
sitd_complete(struct ehci_hcd * ehci,struct ehci_sitd * sitd)2238 static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
2239 {
2240 	struct urb				*urb = sitd->urb;
2241 	struct usb_iso_packet_descriptor	*desc;
2242 	u32					t;
2243 	int					urb_index;
2244 	struct ehci_iso_stream			*stream = sitd->stream;
2245 	struct usb_device			*dev;
2246 	bool					retval = false;
2247 
2248 	urb_index = sitd->index;
2249 	desc = &urb->iso_frame_desc[urb_index];
2250 	t = hc32_to_cpup(ehci, &sitd->hw_results);
2251 
2252 	/* report transfer status */
2253 	if (unlikely(t & SITD_ERRS)) {
2254 		urb->error_count++;
2255 		if (t & SITD_STS_DBE)
2256 			desc->status = usb_pipein(urb->pipe)
2257 				? -ENOSR  /* hc couldn't read */
2258 				: -ECOMM; /* hc couldn't write */
2259 		else if (t & SITD_STS_BABBLE)
2260 			desc->status = -EOVERFLOW;
2261 		else /* XACT, MMF, etc */
2262 			desc->status = -EPROTO;
2263 	} else if (unlikely(t & SITD_STS_ACTIVE)) {
2264 		/* URB was too late */
2265 		urb->error_count++;
2266 	} else {
2267 		desc->status = 0;
2268 		desc->actual_length = desc->length - SITD_LENGTH(t);
2269 		urb->actual_length += desc->actual_length;
2270 	}
2271 
2272 	/* handle completion now? */
2273 	if ((urb_index + 1) != urb->number_of_packets)
2274 		goto done;
2275 
2276 	/*
2277 	 * ASSERT: it's really the last sitd for this urb
2278 	 * list_for_each_entry (sitd, &stream->td_list, sitd_list)
2279 	 *	 BUG_ON(sitd->urb == urb);
2280 	 */
2281 
2282 	/* give urb back to the driver; completion often (re)submits */
2283 	dev = urb->dev;
2284 	ehci_urb_done(ehci, urb, 0);
2285 	retval = true;
2286 	urb = NULL;
2287 
2288 	--ehci->isoc_count;
2289 	disable_periodic(ehci);
2290 
2291 	ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
2292 	if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
2293 		if (ehci->amd_pll_fix == 1)
2294 			usb_amd_quirk_pll_enable();
2295 	}
2296 
2297 	if (list_is_singular(&stream->td_list))
2298 		ehci_to_hcd(ehci)->self.bandwidth_allocated
2299 				-= stream->bandwidth;
2300 
2301 done:
2302 	sitd->urb = NULL;
2303 
2304 	/* Add to the end of the free list for later reuse */
2305 	list_move_tail(&sitd->sitd_list, &stream->free_list);
2306 
2307 	/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
2308 	if (list_empty(&stream->td_list)) {
2309 		list_splice_tail_init(&stream->free_list,
2310 				&ehci->cached_sitd_list);
2311 		start_free_itds(ehci);
2312 	}
2313 
2314 	return retval;
2315 }
2316 
2317 
sitd_submit(struct ehci_hcd * ehci,struct urb * urb,gfp_t mem_flags)2318 static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
2319 	gfp_t mem_flags)
2320 {
2321 	int			status = -EINVAL;
2322 	unsigned long		flags;
2323 	struct ehci_iso_stream	*stream;
2324 
2325 	/* Get iso_stream head */
2326 	stream = iso_stream_find(ehci, urb);
2327 	if (stream == NULL) {
2328 		ehci_dbg(ehci, "can't get iso stream\n");
2329 		return -ENOMEM;
2330 	}
2331 	if (urb->interval != stream->ps.period) {
2332 		ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
2333 			stream->ps.period, urb->interval);
2334 		goto done;
2335 	}
2336 
2337 #ifdef EHCI_URB_TRACE
2338 	ehci_dbg(ehci,
2339 		"submit %p dev%s ep%d%s-iso len %d\n",
2340 		urb, urb->dev->devpath,
2341 		usb_pipeendpoint(urb->pipe),
2342 		usb_pipein(urb->pipe) ? "in" : "out",
2343 		urb->transfer_buffer_length);
2344 #endif
2345 
2346 	/* allocate SITDs */
2347 	status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
2348 	if (status < 0) {
2349 		ehci_dbg(ehci, "can't init sitds\n");
2350 		goto done;
2351 	}
2352 
2353 	/* schedule ... need to lock */
2354 	spin_lock_irqsave(&ehci->lock, flags);
2355 	if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
2356 		status = -ESHUTDOWN;
2357 		goto done_not_linked;
2358 	}
2359 	status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
2360 	if (unlikely(status))
2361 		goto done_not_linked;
2362 	status = iso_stream_schedule(ehci, urb, stream);
2363 	if (likely(status == 0)) {
2364 		sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
2365 	} else if (status > 0) {
2366 		status = 0;
2367 		ehci_urb_done(ehci, urb, 0);
2368 	} else {
2369 		usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
2370 	}
2371  done_not_linked:
2372 	spin_unlock_irqrestore(&ehci->lock, flags);
2373  done:
2374 	return status;
2375 }
2376 
2377 /*-------------------------------------------------------------------------*/
2378 
scan_isoc(struct ehci_hcd * ehci)2379 static void scan_isoc(struct ehci_hcd *ehci)
2380 {
2381 	unsigned		uf, now_frame, frame;
2382 	unsigned		fmask = ehci->periodic_size - 1;
2383 	bool			modified, live;
2384 	union ehci_shadow	q, *q_p;
2385 	__hc32			type, *hw_p;
2386 
2387 	/*
2388 	 * When running, scan from last scan point up to "now"
2389 	 * else clean up by scanning everything that's left.
2390 	 * Touches as few pages as possible:  cache-friendly.
2391 	 */
2392 	if (ehci->rh_state >= EHCI_RH_RUNNING) {
2393 		uf = ehci_read_frame_index(ehci);
2394 		now_frame = (uf >> 3) & fmask;
2395 		live = true;
2396 	} else  {
2397 		now_frame = (ehci->last_iso_frame - 1) & fmask;
2398 		live = false;
2399 	}
2400 	ehci->now_frame = now_frame;
2401 
2402 	frame = ehci->last_iso_frame;
2403 
2404 restart:
2405 	/* Scan each element in frame's queue for completions */
2406 	q_p = &ehci->pshadow[frame];
2407 	hw_p = &ehci->periodic[frame];
2408 	q.ptr = q_p->ptr;
2409 	type = Q_NEXT_TYPE(ehci, *hw_p);
2410 	modified = false;
2411 
2412 	while (q.ptr != NULL) {
2413 		switch (hc32_to_cpu(ehci, type)) {
2414 		case Q_TYPE_ITD:
2415 			/*
2416 			 * If this ITD is still active, leave it for
2417 			 * later processing ... check the next entry.
2418 			 * No need to check for activity unless the
2419 			 * frame is current.
2420 			 */
2421 			if (frame == now_frame && live) {
2422 				rmb();
2423 				for (uf = 0; uf < 8; uf++) {
2424 					if (q.itd->hw_transaction[uf] &
2425 							ITD_ACTIVE(ehci))
2426 						break;
2427 				}
2428 				if (uf < 8) {
2429 					q_p = &q.itd->itd_next;
2430 					hw_p = &q.itd->hw_next;
2431 					type = Q_NEXT_TYPE(ehci,
2432 							q.itd->hw_next);
2433 					q = *q_p;
2434 					break;
2435 				}
2436 			}
2437 
2438 			/*
2439 			 * Take finished ITDs out of the schedule
2440 			 * and process them:  recycle, maybe report
2441 			 * URB completion.  HC won't cache the
2442 			 * pointer for much longer, if at all.
2443 			 */
2444 			*q_p = q.itd->itd_next;
2445 			if (!ehci->use_dummy_qh ||
2446 					q.itd->hw_next != EHCI_LIST_END(ehci))
2447 				*hw_p = q.itd->hw_next;
2448 			else
2449 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2450 			type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
2451 			wmb();
2452 			modified = itd_complete(ehci, q.itd);
2453 			q = *q_p;
2454 			break;
2455 		case Q_TYPE_SITD:
2456 			/*
2457 			 * If this SITD is still active, leave it for
2458 			 * later processing ... check the next entry.
2459 			 * No need to check for activity unless the
2460 			 * frame is current.
2461 			 */
2462 			if (((frame == now_frame) ||
2463 					(((frame + 1) & fmask) == now_frame))
2464 				&& live
2465 				&& (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
2466 
2467 				q_p = &q.sitd->sitd_next;
2468 				hw_p = &q.sitd->hw_next;
2469 				type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2470 				q = *q_p;
2471 				break;
2472 			}
2473 
2474 			/*
2475 			 * Take finished SITDs out of the schedule
2476 			 * and process them:  recycle, maybe report
2477 			 * URB completion.
2478 			 */
2479 			*q_p = q.sitd->sitd_next;
2480 			if (!ehci->use_dummy_qh ||
2481 					q.sitd->hw_next != EHCI_LIST_END(ehci))
2482 				*hw_p = q.sitd->hw_next;
2483 			else
2484 				*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
2485 			type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
2486 			wmb();
2487 			modified = sitd_complete(ehci, q.sitd);
2488 			q = *q_p;
2489 			break;
2490 		default:
2491 			ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
2492 					type, frame, q.ptr);
2493 			/* BUG(); */
2494 			/* FALL THROUGH */
2495 		case Q_TYPE_QH:
2496 		case Q_TYPE_FSTN:
2497 			/* End of the iTDs and siTDs */
2498 			q.ptr = NULL;
2499 			break;
2500 		}
2501 
2502 		/* Assume completion callbacks modify the queue */
2503 		if (unlikely(modified && ehci->isoc_count > 0))
2504 			goto restart;
2505 	}
2506 
2507 	/* Stop when we have reached the current frame */
2508 	if (frame == now_frame)
2509 		return;
2510 
2511 	/* The last frame may still have active siTDs */
2512 	ehci->last_iso_frame = frame;
2513 	frame = (frame + 1) & fmask;
2514 
2515 	goto restart;
2516 }
2517