1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93 #include <linux/cpufreq_times.h>
94
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101
102 #include <trace/events/sched.h>
103
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106
107 /*
108 * Minimum number of threads to boot the kernel
109 */
110 #define MIN_THREADS 20
111
112 /*
113 * Maximum number of threads
114 */
115 #define MAX_THREADS FUTEX_TID_MASK
116
117 /*
118 * Protected counters by write_lock_irq(&tasklist_lock)
119 */
120 unsigned long total_forks; /* Handle normal Linux uptimes. */
121 int nr_threads; /* The idle threads do not count.. */
122
123 int max_threads; /* tunable limit on nr_threads */
124
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
128
129 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)130 int lockdep_tasklist_lock_is_held(void)
131 {
132 return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136
nr_processes(void)137 int nr_processes(void)
138 {
139 int cpu;
140 int total = 0;
141
142 for_each_possible_cpu(cpu)
143 total += per_cpu(process_counts, cpu);
144
145 return total;
146 }
147
arch_release_task_struct(struct task_struct * tsk)148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154
alloc_task_struct_node(int node)155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159
free_task_struct(struct task_struct * tsk)160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165
166 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
167
168 /*
169 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
170 * kmemcache based allocator.
171 */
172 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
173
174 #ifdef CONFIG_VMAP_STACK
175 /*
176 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
177 * flush. Try to minimize the number of calls by caching stacks.
178 */
179 #define NR_CACHED_STACKS 2
180 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
181
free_vm_stack_cache(unsigned int cpu)182 static int free_vm_stack_cache(unsigned int cpu)
183 {
184 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
185 int i;
186
187 for (i = 0; i < NR_CACHED_STACKS; i++) {
188 struct vm_struct *vm_stack = cached_vm_stacks[i];
189
190 if (!vm_stack)
191 continue;
192
193 vfree(vm_stack->addr);
194 cached_vm_stacks[i] = NULL;
195 }
196
197 return 0;
198 }
199 #endif
200
alloc_thread_stack_node(struct task_struct * tsk,int node)201 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
202 {
203 #ifdef CONFIG_VMAP_STACK
204 void *stack;
205 int i;
206
207 for (i = 0; i < NR_CACHED_STACKS; i++) {
208 struct vm_struct *s;
209
210 s = this_cpu_xchg(cached_stacks[i], NULL);
211
212 if (!s)
213 continue;
214
215 /* Clear stale pointers from reused stack. */
216 memset(s->addr, 0, THREAD_SIZE);
217
218 tsk->stack_vm_area = s;
219 return s->addr;
220 }
221
222 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
223 VMALLOC_START, VMALLOC_END,
224 THREADINFO_GFP,
225 PAGE_KERNEL,
226 0, node, __builtin_return_address(0));
227
228 /*
229 * We can't call find_vm_area() in interrupt context, and
230 * free_thread_stack() can be called in interrupt context,
231 * so cache the vm_struct.
232 */
233 if (stack)
234 tsk->stack_vm_area = find_vm_area(stack);
235 return stack;
236 #else
237 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
238 THREAD_SIZE_ORDER);
239
240 return page ? page_address(page) : NULL;
241 #endif
242 }
243
free_thread_stack(struct task_struct * tsk)244 static inline void free_thread_stack(struct task_struct *tsk)
245 {
246 #ifdef CONFIG_VMAP_STACK
247 if (task_stack_vm_area(tsk)) {
248 int i;
249
250 for (i = 0; i < NR_CACHED_STACKS; i++) {
251 if (this_cpu_cmpxchg(cached_stacks[i],
252 NULL, tsk->stack_vm_area) != NULL)
253 continue;
254
255 return;
256 }
257
258 vfree_atomic(tsk->stack);
259 return;
260 }
261 #endif
262
263 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
264 }
265 # else
266 static struct kmem_cache *thread_stack_cache;
267
alloc_thread_stack_node(struct task_struct * tsk,int node)268 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
269 int node)
270 {
271 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
272 }
273
free_thread_stack(struct task_struct * tsk)274 static void free_thread_stack(struct task_struct *tsk)
275 {
276 kmem_cache_free(thread_stack_cache, tsk->stack);
277 }
278
thread_stack_cache_init(void)279 void thread_stack_cache_init(void)
280 {
281 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
282 THREAD_SIZE, 0, NULL);
283 BUG_ON(thread_stack_cache == NULL);
284 }
285 # endif
286 #endif
287
288 /* SLAB cache for signal_struct structures (tsk->signal) */
289 static struct kmem_cache *signal_cachep;
290
291 /* SLAB cache for sighand_struct structures (tsk->sighand) */
292 struct kmem_cache *sighand_cachep;
293
294 /* SLAB cache for files_struct structures (tsk->files) */
295 struct kmem_cache *files_cachep;
296
297 /* SLAB cache for fs_struct structures (tsk->fs) */
298 struct kmem_cache *fs_cachep;
299
300 /* SLAB cache for vm_area_struct structures */
301 struct kmem_cache *vm_area_cachep;
302
303 /* SLAB cache for mm_struct structures (tsk->mm) */
304 static struct kmem_cache *mm_cachep;
305
account_kernel_stack(struct task_struct * tsk,int account)306 static void account_kernel_stack(struct task_struct *tsk, int account)
307 {
308 void *stack = task_stack_page(tsk);
309 struct vm_struct *vm = task_stack_vm_area(tsk);
310
311 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
312
313 if (vm) {
314 int i;
315
316 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
317
318 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
319 mod_zone_page_state(page_zone(vm->pages[i]),
320 NR_KERNEL_STACK_KB,
321 PAGE_SIZE / 1024 * account);
322 }
323
324 /* All stack pages belong to the same memcg. */
325 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
326 account * (THREAD_SIZE / 1024));
327 } else {
328 /*
329 * All stack pages are in the same zone and belong to the
330 * same memcg.
331 */
332 struct page *first_page = virt_to_page(stack);
333
334 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
335 THREAD_SIZE / 1024 * account);
336
337 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
338 account * (THREAD_SIZE / 1024));
339 }
340 }
341
release_task_stack(struct task_struct * tsk)342 static void release_task_stack(struct task_struct *tsk)
343 {
344 if (WARN_ON(tsk->state != TASK_DEAD))
345 return; /* Better to leak the stack than to free prematurely */
346
347 account_kernel_stack(tsk, -1);
348 free_thread_stack(tsk);
349 tsk->stack = NULL;
350 #ifdef CONFIG_VMAP_STACK
351 tsk->stack_vm_area = NULL;
352 #endif
353 }
354
355 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)356 void put_task_stack(struct task_struct *tsk)
357 {
358 if (atomic_dec_and_test(&tsk->stack_refcount))
359 release_task_stack(tsk);
360 }
361 #endif
362
free_task(struct task_struct * tsk)363 void free_task(struct task_struct *tsk)
364 {
365 cpufreq_task_times_exit(tsk);
366
367 #ifndef CONFIG_THREAD_INFO_IN_TASK
368 /*
369 * The task is finally done with both the stack and thread_info,
370 * so free both.
371 */
372 release_task_stack(tsk);
373 #else
374 /*
375 * If the task had a separate stack allocation, it should be gone
376 * by now.
377 */
378 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
379 #endif
380 rt_mutex_debug_task_free(tsk);
381 ftrace_graph_exit_task(tsk);
382 put_seccomp_filter(tsk);
383 arch_release_task_struct(tsk);
384 if (tsk->flags & PF_KTHREAD)
385 free_kthread_struct(tsk);
386 free_task_struct(tsk);
387 }
388 EXPORT_SYMBOL(free_task);
389
free_signal_struct(struct signal_struct * sig)390 static inline void free_signal_struct(struct signal_struct *sig)
391 {
392 taskstats_tgid_free(sig);
393 sched_autogroup_exit(sig);
394 /*
395 * __mmdrop is not safe to call from softirq context on x86 due to
396 * pgd_dtor so postpone it to the async context
397 */
398 if (sig->oom_mm)
399 mmdrop_async(sig->oom_mm);
400 kmem_cache_free(signal_cachep, sig);
401 }
402
put_signal_struct(struct signal_struct * sig)403 static inline void put_signal_struct(struct signal_struct *sig)
404 {
405 if (atomic_dec_and_test(&sig->sigcnt))
406 free_signal_struct(sig);
407 }
408
__put_task_struct(struct task_struct * tsk)409 void __put_task_struct(struct task_struct *tsk)
410 {
411 WARN_ON(!tsk->exit_state);
412 WARN_ON(atomic_read(&tsk->usage));
413 WARN_ON(tsk == current);
414
415 cgroup_free(tsk);
416 task_numa_free(tsk, true);
417 security_task_free(tsk);
418 exit_creds(tsk);
419 delayacct_tsk_free(tsk);
420 put_signal_struct(tsk->signal);
421
422 if (!profile_handoff_task(tsk))
423 free_task(tsk);
424 }
425 EXPORT_SYMBOL_GPL(__put_task_struct);
426
arch_task_cache_init(void)427 void __init __weak arch_task_cache_init(void) { }
428
429 /*
430 * set_max_threads
431 */
set_max_threads(unsigned int max_threads_suggested)432 static void set_max_threads(unsigned int max_threads_suggested)
433 {
434 u64 threads;
435
436 /*
437 * The number of threads shall be limited such that the thread
438 * structures may only consume a small part of the available memory.
439 */
440 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
441 threads = MAX_THREADS;
442 else
443 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
444 (u64) THREAD_SIZE * 8UL);
445
446 if (threads > max_threads_suggested)
447 threads = max_threads_suggested;
448
449 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
450 }
451
452 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
453 /* Initialized by the architecture: */
454 int arch_task_struct_size __read_mostly;
455 #endif
456
fork_init(void)457 void __init fork_init(void)
458 {
459 int i;
460 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
461 #ifndef ARCH_MIN_TASKALIGN
462 #define ARCH_MIN_TASKALIGN 0
463 #endif
464 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
465
466 /* create a slab on which task_structs can be allocated */
467 task_struct_cachep = kmem_cache_create("task_struct",
468 arch_task_struct_size, align,
469 SLAB_PANIC|SLAB_ACCOUNT, NULL);
470 #endif
471
472 /* do the arch specific task caches init */
473 arch_task_cache_init();
474
475 set_max_threads(MAX_THREADS);
476
477 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
478 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
479 init_task.signal->rlim[RLIMIT_SIGPENDING] =
480 init_task.signal->rlim[RLIMIT_NPROC];
481
482 for (i = 0; i < UCOUNT_COUNTS; i++) {
483 init_user_ns.ucount_max[i] = max_threads/2;
484 }
485
486 #ifdef CONFIG_VMAP_STACK
487 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
488 NULL, free_vm_stack_cache);
489 #endif
490
491 lockdep_init_task(&init_task);
492 }
493
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)494 int __weak arch_dup_task_struct(struct task_struct *dst,
495 struct task_struct *src)
496 {
497 *dst = *src;
498 return 0;
499 }
500
set_task_stack_end_magic(struct task_struct * tsk)501 void set_task_stack_end_magic(struct task_struct *tsk)
502 {
503 unsigned long *stackend;
504
505 stackend = end_of_stack(tsk);
506 *stackend = STACK_END_MAGIC; /* for overflow detection */
507 }
508
dup_task_struct(struct task_struct * orig,int node)509 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
510 {
511 struct task_struct *tsk;
512 unsigned long *stack;
513 struct vm_struct *stack_vm_area;
514 int err;
515
516 if (node == NUMA_NO_NODE)
517 node = tsk_fork_get_node(orig);
518 tsk = alloc_task_struct_node(node);
519 if (!tsk)
520 return NULL;
521
522 stack = alloc_thread_stack_node(tsk, node);
523 if (!stack)
524 goto free_tsk;
525
526 stack_vm_area = task_stack_vm_area(tsk);
527
528 err = arch_dup_task_struct(tsk, orig);
529
530 /*
531 * arch_dup_task_struct() clobbers the stack-related fields. Make
532 * sure they're properly initialized before using any stack-related
533 * functions again.
534 */
535 tsk->stack = stack;
536 #ifdef CONFIG_VMAP_STACK
537 tsk->stack_vm_area = stack_vm_area;
538 #endif
539 #ifdef CONFIG_THREAD_INFO_IN_TASK
540 atomic_set(&tsk->stack_refcount, 1);
541 #endif
542
543 if (err)
544 goto free_stack;
545
546 #ifdef CONFIG_SECCOMP
547 /*
548 * We must handle setting up seccomp filters once we're under
549 * the sighand lock in case orig has changed between now and
550 * then. Until then, filter must be NULL to avoid messing up
551 * the usage counts on the error path calling free_task.
552 */
553 tsk->seccomp.filter = NULL;
554 #endif
555
556 setup_thread_stack(tsk, orig);
557 clear_user_return_notifier(tsk);
558 clear_tsk_need_resched(tsk);
559 set_task_stack_end_magic(tsk);
560
561 #ifdef CONFIG_CC_STACKPROTECTOR
562 tsk->stack_canary = get_random_canary();
563 #endif
564
565 /*
566 * One for us, one for whoever does the "release_task()" (usually
567 * parent)
568 */
569 atomic_set(&tsk->usage, 2);
570 #ifdef CONFIG_BLK_DEV_IO_TRACE
571 tsk->btrace_seq = 0;
572 #endif
573 tsk->splice_pipe = NULL;
574 tsk->task_frag.page = NULL;
575 tsk->wake_q.next = NULL;
576
577 account_kernel_stack(tsk, 1);
578
579 kcov_task_init(tsk);
580
581 #ifdef CONFIG_FAULT_INJECTION
582 tsk->fail_nth = 0;
583 #endif
584
585 return tsk;
586
587 free_stack:
588 free_thread_stack(tsk);
589 free_tsk:
590 free_task_struct(tsk);
591 return NULL;
592 }
593
594 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)595 static __latent_entropy int dup_mmap(struct mm_struct *mm,
596 struct mm_struct *oldmm)
597 {
598 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
599 struct rb_node **rb_link, *rb_parent;
600 int retval;
601 unsigned long charge;
602 LIST_HEAD(uf);
603
604 uprobe_start_dup_mmap();
605 if (down_write_killable(&oldmm->mmap_sem)) {
606 retval = -EINTR;
607 goto fail_uprobe_end;
608 }
609 flush_cache_dup_mm(oldmm);
610 uprobe_dup_mmap(oldmm, mm);
611 /*
612 * Not linked in yet - no deadlock potential:
613 */
614 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
615
616 /* No ordering required: file already has been exposed. */
617 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
618
619 mm->total_vm = oldmm->total_vm;
620 mm->data_vm = oldmm->data_vm;
621 mm->exec_vm = oldmm->exec_vm;
622 mm->stack_vm = oldmm->stack_vm;
623
624 rb_link = &mm->mm_rb.rb_node;
625 rb_parent = NULL;
626 pprev = &mm->mmap;
627 retval = ksm_fork(mm, oldmm);
628 if (retval)
629 goto out;
630 retval = khugepaged_fork(mm, oldmm);
631 if (retval)
632 goto out;
633
634 prev = NULL;
635 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
636 struct file *file;
637
638 if (mpnt->vm_flags & VM_DONTCOPY) {
639 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
640 continue;
641 }
642 charge = 0;
643 if (mpnt->vm_flags & VM_ACCOUNT) {
644 unsigned long len = vma_pages(mpnt);
645
646 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
647 goto fail_nomem;
648 charge = len;
649 }
650 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
651 if (!tmp)
652 goto fail_nomem;
653 *tmp = *mpnt;
654 INIT_LIST_HEAD(&tmp->anon_vma_chain);
655 retval = vma_dup_policy(mpnt, tmp);
656 if (retval)
657 goto fail_nomem_policy;
658 tmp->vm_mm = mm;
659 retval = dup_userfaultfd(tmp, &uf);
660 if (retval)
661 goto fail_nomem_anon_vma_fork;
662 if (tmp->vm_flags & VM_WIPEONFORK) {
663 /* VM_WIPEONFORK gets a clean slate in the child. */
664 tmp->anon_vma = NULL;
665 if (anon_vma_prepare(tmp))
666 goto fail_nomem_anon_vma_fork;
667 } else if (anon_vma_fork(tmp, mpnt))
668 goto fail_nomem_anon_vma_fork;
669 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
670 tmp->vm_next = tmp->vm_prev = NULL;
671 file = tmp->vm_file;
672 if (file) {
673 struct inode *inode = file_inode(file);
674 struct address_space *mapping = file->f_mapping;
675
676 get_file(file);
677 if (tmp->vm_flags & VM_DENYWRITE)
678 atomic_dec(&inode->i_writecount);
679 i_mmap_lock_write(mapping);
680 if (tmp->vm_flags & VM_SHARED)
681 atomic_inc(&mapping->i_mmap_writable);
682 flush_dcache_mmap_lock(mapping);
683 /* insert tmp into the share list, just after mpnt */
684 vma_interval_tree_insert_after(tmp, mpnt,
685 &mapping->i_mmap);
686 flush_dcache_mmap_unlock(mapping);
687 i_mmap_unlock_write(mapping);
688 }
689
690 /*
691 * Clear hugetlb-related page reserves for children. This only
692 * affects MAP_PRIVATE mappings. Faults generated by the child
693 * are not guaranteed to succeed, even if read-only
694 */
695 if (is_vm_hugetlb_page(tmp))
696 reset_vma_resv_huge_pages(tmp);
697
698 /*
699 * Link in the new vma and copy the page table entries.
700 */
701 *pprev = tmp;
702 pprev = &tmp->vm_next;
703 tmp->vm_prev = prev;
704 prev = tmp;
705
706 __vma_link_rb(mm, tmp, rb_link, rb_parent);
707 rb_link = &tmp->vm_rb.rb_right;
708 rb_parent = &tmp->vm_rb;
709
710 mm->map_count++;
711 if (!(tmp->vm_flags & VM_WIPEONFORK))
712 retval = copy_page_range(mm, oldmm, mpnt);
713
714 if (tmp->vm_ops && tmp->vm_ops->open)
715 tmp->vm_ops->open(tmp);
716
717 if (retval)
718 goto out;
719 }
720 /* a new mm has just been created */
721 retval = arch_dup_mmap(oldmm, mm);
722 out:
723 up_write(&mm->mmap_sem);
724 flush_tlb_mm(oldmm);
725 up_write(&oldmm->mmap_sem);
726 dup_userfaultfd_complete(&uf);
727 fail_uprobe_end:
728 uprobe_end_dup_mmap();
729 return retval;
730 fail_nomem_anon_vma_fork:
731 mpol_put(vma_policy(tmp));
732 fail_nomem_policy:
733 kmem_cache_free(vm_area_cachep, tmp);
734 fail_nomem:
735 retval = -ENOMEM;
736 vm_unacct_memory(charge);
737 goto out;
738 }
739
mm_alloc_pgd(struct mm_struct * mm)740 static inline int mm_alloc_pgd(struct mm_struct *mm)
741 {
742 mm->pgd = pgd_alloc(mm);
743 if (unlikely(!mm->pgd))
744 return -ENOMEM;
745 return 0;
746 }
747
mm_free_pgd(struct mm_struct * mm)748 static inline void mm_free_pgd(struct mm_struct *mm)
749 {
750 pgd_free(mm, mm->pgd);
751 }
752 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)753 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
754 {
755 down_write(&oldmm->mmap_sem);
756 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
757 up_write(&oldmm->mmap_sem);
758 return 0;
759 }
760 #define mm_alloc_pgd(mm) (0)
761 #define mm_free_pgd(mm)
762 #endif /* CONFIG_MMU */
763
764 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
765
766 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
767 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
768
769 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
770
coredump_filter_setup(char * s)771 static int __init coredump_filter_setup(char *s)
772 {
773 default_dump_filter =
774 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
775 MMF_DUMP_FILTER_MASK;
776 return 1;
777 }
778
779 __setup("coredump_filter=", coredump_filter_setup);
780
781 #include <linux/init_task.h>
782
mm_init_aio(struct mm_struct * mm)783 static void mm_init_aio(struct mm_struct *mm)
784 {
785 #ifdef CONFIG_AIO
786 spin_lock_init(&mm->ioctx_lock);
787 mm->ioctx_table = NULL;
788 #endif
789 }
790
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)791 static __always_inline void mm_clear_owner(struct mm_struct *mm,
792 struct task_struct *p)
793 {
794 #ifdef CONFIG_MEMCG
795 if (mm->owner == p)
796 WRITE_ONCE(mm->owner, NULL);
797 #endif
798 }
799
mm_init_owner(struct mm_struct * mm,struct task_struct * p)800 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
801 {
802 #ifdef CONFIG_MEMCG
803 mm->owner = p;
804 #endif
805 }
806
mm_init_uprobes_state(struct mm_struct * mm)807 static void mm_init_uprobes_state(struct mm_struct *mm)
808 {
809 #ifdef CONFIG_UPROBES
810 mm->uprobes_state.xol_area = NULL;
811 #endif
812 }
813
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)814 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
815 struct user_namespace *user_ns)
816 {
817 mm->mmap = NULL;
818 mm->mm_rb = RB_ROOT;
819 mm->vmacache_seqnum = 0;
820 atomic_set(&mm->mm_users, 1);
821 atomic_set(&mm->mm_count, 1);
822 init_rwsem(&mm->mmap_sem);
823 INIT_LIST_HEAD(&mm->mmlist);
824 mm->core_state = NULL;
825 atomic_long_set(&mm->nr_ptes, 0);
826 mm_nr_pmds_init(mm);
827 mm->map_count = 0;
828 mm->locked_vm = 0;
829 mm->pinned_vm = 0;
830 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
831 spin_lock_init(&mm->page_table_lock);
832 mm_init_cpumask(mm);
833 mm_init_aio(mm);
834 mm_init_owner(mm, p);
835 RCU_INIT_POINTER(mm->exe_file, NULL);
836 mmu_notifier_mm_init(mm);
837 hmm_mm_init(mm);
838 init_tlb_flush_pending(mm);
839 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
840 mm->pmd_huge_pte = NULL;
841 #endif
842 mm_init_uprobes_state(mm);
843
844 if (current->mm) {
845 mm->flags = current->mm->flags & MMF_INIT_MASK;
846 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
847 } else {
848 mm->flags = default_dump_filter;
849 mm->def_flags = 0;
850 }
851
852 if (mm_alloc_pgd(mm))
853 goto fail_nopgd;
854
855 if (init_new_context(p, mm))
856 goto fail_nocontext;
857
858 mm->user_ns = get_user_ns(user_ns);
859 return mm;
860
861 fail_nocontext:
862 mm_free_pgd(mm);
863 fail_nopgd:
864 free_mm(mm);
865 return NULL;
866 }
867
check_mm(struct mm_struct * mm)868 static void check_mm(struct mm_struct *mm)
869 {
870 int i;
871
872 for (i = 0; i < NR_MM_COUNTERS; i++) {
873 long x = atomic_long_read(&mm->rss_stat.count[i]);
874
875 if (unlikely(x))
876 printk(KERN_ALERT "BUG: Bad rss-counter state "
877 "mm:%p idx:%d val:%ld\n", mm, i, x);
878 }
879
880 if (atomic_long_read(&mm->nr_ptes))
881 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
882 atomic_long_read(&mm->nr_ptes));
883 if (mm_nr_pmds(mm))
884 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
885 mm_nr_pmds(mm));
886
887 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
888 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
889 #endif
890 }
891
892 /*
893 * Allocate and initialize an mm_struct.
894 */
mm_alloc(void)895 struct mm_struct *mm_alloc(void)
896 {
897 struct mm_struct *mm;
898
899 mm = allocate_mm();
900 if (!mm)
901 return NULL;
902
903 memset(mm, 0, sizeof(*mm));
904 return mm_init(mm, current, current_user_ns());
905 }
906
907 /*
908 * Called when the last reference to the mm
909 * is dropped: either by a lazy thread or by
910 * mmput. Free the page directory and the mm.
911 */
__mmdrop(struct mm_struct * mm)912 void __mmdrop(struct mm_struct *mm)
913 {
914 BUG_ON(mm == &init_mm);
915 mm_free_pgd(mm);
916 destroy_context(mm);
917 hmm_mm_destroy(mm);
918 mmu_notifier_mm_destroy(mm);
919 check_mm(mm);
920 put_user_ns(mm->user_ns);
921 free_mm(mm);
922 }
923 EXPORT_SYMBOL_GPL(__mmdrop);
924
__mmput(struct mm_struct * mm)925 static inline void __mmput(struct mm_struct *mm)
926 {
927 VM_BUG_ON(atomic_read(&mm->mm_users));
928
929 uprobe_clear_state(mm);
930 exit_aio(mm);
931 ksm_exit(mm);
932 khugepaged_exit(mm); /* must run before exit_mmap */
933 exit_mmap(mm);
934 mm_put_huge_zero_page(mm);
935 set_mm_exe_file(mm, NULL);
936 if (!list_empty(&mm->mmlist)) {
937 spin_lock(&mmlist_lock);
938 list_del(&mm->mmlist);
939 spin_unlock(&mmlist_lock);
940 }
941 if (mm->binfmt)
942 module_put(mm->binfmt->module);
943 mmdrop(mm);
944 }
945
946 /*
947 * Decrement the use count and release all resources for an mm.
948 */
mmput(struct mm_struct * mm)949 void mmput(struct mm_struct *mm)
950 {
951 might_sleep();
952
953 if (atomic_dec_and_test(&mm->mm_users))
954 __mmput(mm);
955 }
956 EXPORT_SYMBOL_GPL(mmput);
957
958 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)959 static void mmput_async_fn(struct work_struct *work)
960 {
961 struct mm_struct *mm = container_of(work, struct mm_struct,
962 async_put_work);
963
964 __mmput(mm);
965 }
966
mmput_async(struct mm_struct * mm)967 void mmput_async(struct mm_struct *mm)
968 {
969 if (atomic_dec_and_test(&mm->mm_users)) {
970 INIT_WORK(&mm->async_put_work, mmput_async_fn);
971 schedule_work(&mm->async_put_work);
972 }
973 }
974 #endif
975
976 /**
977 * set_mm_exe_file - change a reference to the mm's executable file
978 *
979 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
980 *
981 * Main users are mmput() and sys_execve(). Callers prevent concurrent
982 * invocations: in mmput() nobody alive left, in execve task is single
983 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
984 * mm->exe_file, but does so without using set_mm_exe_file() in order
985 * to do avoid the need for any locks.
986 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)987 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
988 {
989 struct file *old_exe_file;
990
991 /*
992 * It is safe to dereference the exe_file without RCU as
993 * this function is only called if nobody else can access
994 * this mm -- see comment above for justification.
995 */
996 old_exe_file = rcu_dereference_raw(mm->exe_file);
997
998 if (new_exe_file)
999 get_file(new_exe_file);
1000 rcu_assign_pointer(mm->exe_file, new_exe_file);
1001 if (old_exe_file)
1002 fput(old_exe_file);
1003 }
1004
1005 /**
1006 * get_mm_exe_file - acquire a reference to the mm's executable file
1007 *
1008 * Returns %NULL if mm has no associated executable file.
1009 * User must release file via fput().
1010 */
get_mm_exe_file(struct mm_struct * mm)1011 struct file *get_mm_exe_file(struct mm_struct *mm)
1012 {
1013 struct file *exe_file;
1014
1015 rcu_read_lock();
1016 exe_file = rcu_dereference(mm->exe_file);
1017 if (exe_file && !get_file_rcu(exe_file))
1018 exe_file = NULL;
1019 rcu_read_unlock();
1020 return exe_file;
1021 }
1022 EXPORT_SYMBOL(get_mm_exe_file);
1023
1024 /**
1025 * get_task_exe_file - acquire a reference to the task's executable file
1026 *
1027 * Returns %NULL if task's mm (if any) has no associated executable file or
1028 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1029 * User must release file via fput().
1030 */
get_task_exe_file(struct task_struct * task)1031 struct file *get_task_exe_file(struct task_struct *task)
1032 {
1033 struct file *exe_file = NULL;
1034 struct mm_struct *mm;
1035
1036 task_lock(task);
1037 mm = task->mm;
1038 if (mm) {
1039 if (!(task->flags & PF_KTHREAD))
1040 exe_file = get_mm_exe_file(mm);
1041 }
1042 task_unlock(task);
1043 return exe_file;
1044 }
1045 EXPORT_SYMBOL(get_task_exe_file);
1046
1047 /**
1048 * get_task_mm - acquire a reference to the task's mm
1049 *
1050 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1051 * this kernel workthread has transiently adopted a user mm with use_mm,
1052 * to do its AIO) is not set and if so returns a reference to it, after
1053 * bumping up the use count. User must release the mm via mmput()
1054 * after use. Typically used by /proc and ptrace.
1055 */
get_task_mm(struct task_struct * task)1056 struct mm_struct *get_task_mm(struct task_struct *task)
1057 {
1058 struct mm_struct *mm;
1059
1060 task_lock(task);
1061 mm = task->mm;
1062 if (mm) {
1063 if (task->flags & PF_KTHREAD)
1064 mm = NULL;
1065 else
1066 mmget(mm);
1067 }
1068 task_unlock(task);
1069 return mm;
1070 }
1071 EXPORT_SYMBOL_GPL(get_task_mm);
1072
mm_access(struct task_struct * task,unsigned int mode)1073 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1074 {
1075 struct mm_struct *mm;
1076 int err;
1077
1078 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1079 if (err)
1080 return ERR_PTR(err);
1081
1082 mm = get_task_mm(task);
1083 if (mm && mm != current->mm &&
1084 !ptrace_may_access(task, mode)) {
1085 mmput(mm);
1086 mm = ERR_PTR(-EACCES);
1087 }
1088 mutex_unlock(&task->signal->cred_guard_mutex);
1089
1090 return mm;
1091 }
1092
complete_vfork_done(struct task_struct * tsk)1093 static void complete_vfork_done(struct task_struct *tsk)
1094 {
1095 struct completion *vfork;
1096
1097 task_lock(tsk);
1098 vfork = tsk->vfork_done;
1099 if (likely(vfork)) {
1100 tsk->vfork_done = NULL;
1101 complete(vfork);
1102 }
1103 task_unlock(tsk);
1104 }
1105
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1106 static int wait_for_vfork_done(struct task_struct *child,
1107 struct completion *vfork)
1108 {
1109 int killed;
1110
1111 freezer_do_not_count();
1112 killed = wait_for_completion_killable(vfork);
1113 freezer_count();
1114
1115 if (killed) {
1116 task_lock(child);
1117 child->vfork_done = NULL;
1118 task_unlock(child);
1119 }
1120
1121 put_task_struct(child);
1122 return killed;
1123 }
1124
1125 /* Please note the differences between mmput and mm_release.
1126 * mmput is called whenever we stop holding onto a mm_struct,
1127 * error success whatever.
1128 *
1129 * mm_release is called after a mm_struct has been removed
1130 * from the current process.
1131 *
1132 * This difference is important for error handling, when we
1133 * only half set up a mm_struct for a new process and need to restore
1134 * the old one. Because we mmput the new mm_struct before
1135 * restoring the old one. . .
1136 * Eric Biederman 10 January 1998
1137 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1138 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1139 {
1140 uprobe_free_utask(tsk);
1141
1142 /* Get rid of any cached register state */
1143 deactivate_mm(tsk, mm);
1144
1145 /*
1146 * Signal userspace if we're not exiting with a core dump
1147 * because we want to leave the value intact for debugging
1148 * purposes.
1149 */
1150 if (tsk->clear_child_tid) {
1151 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1152 atomic_read(&mm->mm_users) > 1) {
1153 /*
1154 * We don't check the error code - if userspace has
1155 * not set up a proper pointer then tough luck.
1156 */
1157 put_user(0, tsk->clear_child_tid);
1158 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1159 1, NULL, NULL, 0);
1160 }
1161 tsk->clear_child_tid = NULL;
1162 }
1163
1164 /*
1165 * All done, finally we can wake up parent and return this mm to him.
1166 * Also kthread_stop() uses this completion for synchronization.
1167 */
1168 if (tsk->vfork_done)
1169 complete_vfork_done(tsk);
1170 }
1171
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1172 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1173 {
1174 futex_exit_release(tsk);
1175 mm_release(tsk, mm);
1176 }
1177
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1178 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1179 {
1180 futex_exec_release(tsk);
1181 mm_release(tsk, mm);
1182 }
1183
1184 /*
1185 * Allocate a new mm structure and copy contents from the
1186 * mm structure of the passed in task structure.
1187 */
dup_mm(struct task_struct * tsk)1188 static struct mm_struct *dup_mm(struct task_struct *tsk)
1189 {
1190 struct mm_struct *mm, *oldmm = current->mm;
1191 int err;
1192
1193 mm = allocate_mm();
1194 if (!mm)
1195 goto fail_nomem;
1196
1197 memcpy(mm, oldmm, sizeof(*mm));
1198
1199 if (!mm_init(mm, tsk, mm->user_ns))
1200 goto fail_nomem;
1201
1202 err = dup_mmap(mm, oldmm);
1203 if (err)
1204 goto free_pt;
1205
1206 mm->hiwater_rss = get_mm_rss(mm);
1207 mm->hiwater_vm = mm->total_vm;
1208
1209 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1210 goto free_pt;
1211
1212 return mm;
1213
1214 free_pt:
1215 /* don't put binfmt in mmput, we haven't got module yet */
1216 mm->binfmt = NULL;
1217 mm_init_owner(mm, NULL);
1218 mmput(mm);
1219
1220 fail_nomem:
1221 return NULL;
1222 }
1223
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1224 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1225 {
1226 struct mm_struct *mm, *oldmm;
1227 int retval;
1228
1229 tsk->min_flt = tsk->maj_flt = 0;
1230 tsk->nvcsw = tsk->nivcsw = 0;
1231 #ifdef CONFIG_DETECT_HUNG_TASK
1232 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1233 #endif
1234
1235 tsk->mm = NULL;
1236 tsk->active_mm = NULL;
1237
1238 /*
1239 * Are we cloning a kernel thread?
1240 *
1241 * We need to steal a active VM for that..
1242 */
1243 oldmm = current->mm;
1244 if (!oldmm)
1245 return 0;
1246
1247 /* initialize the new vmacache entries */
1248 vmacache_flush(tsk);
1249
1250 if (clone_flags & CLONE_VM) {
1251 mmget(oldmm);
1252 mm = oldmm;
1253 goto good_mm;
1254 }
1255
1256 retval = -ENOMEM;
1257 mm = dup_mm(tsk);
1258 if (!mm)
1259 goto fail_nomem;
1260
1261 good_mm:
1262 tsk->mm = mm;
1263 tsk->active_mm = mm;
1264 return 0;
1265
1266 fail_nomem:
1267 return retval;
1268 }
1269
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1270 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1271 {
1272 struct fs_struct *fs = current->fs;
1273 if (clone_flags & CLONE_FS) {
1274 /* tsk->fs is already what we want */
1275 spin_lock(&fs->lock);
1276 if (fs->in_exec) {
1277 spin_unlock(&fs->lock);
1278 return -EAGAIN;
1279 }
1280 fs->users++;
1281 spin_unlock(&fs->lock);
1282 return 0;
1283 }
1284 tsk->fs = copy_fs_struct(fs);
1285 if (!tsk->fs)
1286 return -ENOMEM;
1287 return 0;
1288 }
1289
copy_files(unsigned long clone_flags,struct task_struct * tsk)1290 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1291 {
1292 struct files_struct *oldf, *newf;
1293 int error = 0;
1294
1295 /*
1296 * A background process may not have any files ...
1297 */
1298 oldf = current->files;
1299 if (!oldf)
1300 goto out;
1301
1302 if (clone_flags & CLONE_FILES) {
1303 atomic_inc(&oldf->count);
1304 goto out;
1305 }
1306
1307 newf = dup_fd(oldf, &error);
1308 if (!newf)
1309 goto out;
1310
1311 tsk->files = newf;
1312 error = 0;
1313 out:
1314 return error;
1315 }
1316
copy_io(unsigned long clone_flags,struct task_struct * tsk)1317 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1318 {
1319 #ifdef CONFIG_BLOCK
1320 struct io_context *ioc = current->io_context;
1321 struct io_context *new_ioc;
1322
1323 if (!ioc)
1324 return 0;
1325 /*
1326 * Share io context with parent, if CLONE_IO is set
1327 */
1328 if (clone_flags & CLONE_IO) {
1329 ioc_task_link(ioc);
1330 tsk->io_context = ioc;
1331 } else if (ioprio_valid(ioc->ioprio)) {
1332 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1333 if (unlikely(!new_ioc))
1334 return -ENOMEM;
1335
1336 new_ioc->ioprio = ioc->ioprio;
1337 put_io_context(new_ioc);
1338 }
1339 #endif
1340 return 0;
1341 }
1342
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1343 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1344 {
1345 struct sighand_struct *sig;
1346
1347 if (clone_flags & CLONE_SIGHAND) {
1348 atomic_inc(¤t->sighand->count);
1349 return 0;
1350 }
1351 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1352 rcu_assign_pointer(tsk->sighand, sig);
1353 if (!sig)
1354 return -ENOMEM;
1355
1356 atomic_set(&sig->count, 1);
1357 spin_lock_irq(¤t->sighand->siglock);
1358 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1359 spin_unlock_irq(¤t->sighand->siglock);
1360 return 0;
1361 }
1362
__cleanup_sighand(struct sighand_struct * sighand)1363 void __cleanup_sighand(struct sighand_struct *sighand)
1364 {
1365 if (atomic_dec_and_test(&sighand->count)) {
1366 signalfd_cleanup(sighand);
1367 /*
1368 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1369 * without an RCU grace period, see __lock_task_sighand().
1370 */
1371 kmem_cache_free(sighand_cachep, sighand);
1372 }
1373 }
1374
1375 #ifdef CONFIG_POSIX_TIMERS
1376 /*
1377 * Initialize POSIX timer handling for a thread group.
1378 */
posix_cpu_timers_init_group(struct signal_struct * sig)1379 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1380 {
1381 unsigned long cpu_limit;
1382
1383 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1384 if (cpu_limit != RLIM_INFINITY) {
1385 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1386 sig->cputimer.running = true;
1387 }
1388
1389 /* The timer lists. */
1390 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1391 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1392 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1393 }
1394 #else
posix_cpu_timers_init_group(struct signal_struct * sig)1395 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1396 #endif
1397
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1398 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1399 {
1400 struct signal_struct *sig;
1401
1402 if (clone_flags & CLONE_THREAD)
1403 return 0;
1404
1405 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1406 tsk->signal = sig;
1407 if (!sig)
1408 return -ENOMEM;
1409
1410 sig->nr_threads = 1;
1411 atomic_set(&sig->live, 1);
1412 atomic_set(&sig->sigcnt, 1);
1413
1414 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1415 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1416 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1417
1418 init_waitqueue_head(&sig->wait_chldexit);
1419 sig->curr_target = tsk;
1420 init_sigpending(&sig->shared_pending);
1421 seqlock_init(&sig->stats_lock);
1422 prev_cputime_init(&sig->prev_cputime);
1423
1424 #ifdef CONFIG_POSIX_TIMERS
1425 INIT_LIST_HEAD(&sig->posix_timers);
1426 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1427 sig->real_timer.function = it_real_fn;
1428 #endif
1429
1430 task_lock(current->group_leader);
1431 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1432 task_unlock(current->group_leader);
1433
1434 posix_cpu_timers_init_group(sig);
1435
1436 tty_audit_fork(sig);
1437 sched_autogroup_fork(sig);
1438
1439 sig->oom_score_adj = current->signal->oom_score_adj;
1440 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1441
1442 mutex_init(&sig->cred_guard_mutex);
1443
1444 return 0;
1445 }
1446
copy_seccomp(struct task_struct * p)1447 static void copy_seccomp(struct task_struct *p)
1448 {
1449 #ifdef CONFIG_SECCOMP
1450 /*
1451 * Must be called with sighand->lock held, which is common to
1452 * all threads in the group. Holding cred_guard_mutex is not
1453 * needed because this new task is not yet running and cannot
1454 * be racing exec.
1455 */
1456 assert_spin_locked(¤t->sighand->siglock);
1457
1458 /* Ref-count the new filter user, and assign it. */
1459 get_seccomp_filter(current);
1460 p->seccomp = current->seccomp;
1461
1462 /*
1463 * Explicitly enable no_new_privs here in case it got set
1464 * between the task_struct being duplicated and holding the
1465 * sighand lock. The seccomp state and nnp must be in sync.
1466 */
1467 if (task_no_new_privs(current))
1468 task_set_no_new_privs(p);
1469
1470 /*
1471 * If the parent gained a seccomp mode after copying thread
1472 * flags and between before we held the sighand lock, we have
1473 * to manually enable the seccomp thread flag here.
1474 */
1475 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1476 set_tsk_thread_flag(p, TIF_SECCOMP);
1477 #endif
1478 }
1479
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1480 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1481 {
1482 current->clear_child_tid = tidptr;
1483
1484 return task_pid_vnr(current);
1485 }
1486
rt_mutex_init_task(struct task_struct * p)1487 static void rt_mutex_init_task(struct task_struct *p)
1488 {
1489 raw_spin_lock_init(&p->pi_lock);
1490 #ifdef CONFIG_RT_MUTEXES
1491 p->pi_waiters = RB_ROOT_CACHED;
1492 p->pi_top_task = NULL;
1493 p->pi_blocked_on = NULL;
1494 #endif
1495 }
1496
1497 #ifdef CONFIG_POSIX_TIMERS
1498 /*
1499 * Initialize POSIX timer handling for a single task.
1500 */
posix_cpu_timers_init(struct task_struct * tsk)1501 static void posix_cpu_timers_init(struct task_struct *tsk)
1502 {
1503 tsk->cputime_expires.prof_exp = 0;
1504 tsk->cputime_expires.virt_exp = 0;
1505 tsk->cputime_expires.sched_exp = 0;
1506 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1507 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1508 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1509 }
1510 #else
posix_cpu_timers_init(struct task_struct * tsk)1511 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1512 #endif
1513
1514 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1515 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1516 {
1517 task->pids[type].pid = pid;
1518 }
1519
rcu_copy_process(struct task_struct * p)1520 static inline void rcu_copy_process(struct task_struct *p)
1521 {
1522 #ifdef CONFIG_PREEMPT_RCU
1523 p->rcu_read_lock_nesting = 0;
1524 p->rcu_read_unlock_special.s = 0;
1525 p->rcu_blocked_node = NULL;
1526 INIT_LIST_HEAD(&p->rcu_node_entry);
1527 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1528 #ifdef CONFIG_TASKS_RCU
1529 p->rcu_tasks_holdout = false;
1530 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1531 p->rcu_tasks_idle_cpu = -1;
1532 #endif /* #ifdef CONFIG_TASKS_RCU */
1533 }
1534
__delayed_free_task(struct rcu_head * rhp)1535 static void __delayed_free_task(struct rcu_head *rhp)
1536 {
1537 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1538
1539 free_task(tsk);
1540 }
1541
delayed_free_task(struct task_struct * tsk)1542 static __always_inline void delayed_free_task(struct task_struct *tsk)
1543 {
1544 if (IS_ENABLED(CONFIG_MEMCG))
1545 call_rcu(&tsk->rcu, __delayed_free_task);
1546 else
1547 free_task(tsk);
1548 }
1549
1550 /*
1551 * This creates a new process as a copy of the old one,
1552 * but does not actually start it yet.
1553 *
1554 * It copies the registers, and all the appropriate
1555 * parts of the process environment (as per the clone
1556 * flags). The actual kick-off is left to the caller.
1557 */
copy_process(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace,unsigned long tls,int node)1558 static __latent_entropy struct task_struct *copy_process(
1559 unsigned long clone_flags,
1560 unsigned long stack_start,
1561 unsigned long stack_size,
1562 int __user *child_tidptr,
1563 struct pid *pid,
1564 int trace,
1565 unsigned long tls,
1566 int node)
1567 {
1568 int retval;
1569 struct task_struct *p;
1570
1571 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1572 return ERR_PTR(-EINVAL);
1573
1574 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1575 return ERR_PTR(-EINVAL);
1576
1577 /*
1578 * Thread groups must share signals as well, and detached threads
1579 * can only be started up within the thread group.
1580 */
1581 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1582 return ERR_PTR(-EINVAL);
1583
1584 /*
1585 * Shared signal handlers imply shared VM. By way of the above,
1586 * thread groups also imply shared VM. Blocking this case allows
1587 * for various simplifications in other code.
1588 */
1589 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1590 return ERR_PTR(-EINVAL);
1591
1592 /*
1593 * Siblings of global init remain as zombies on exit since they are
1594 * not reaped by their parent (swapper). To solve this and to avoid
1595 * multi-rooted process trees, prevent global and container-inits
1596 * from creating siblings.
1597 */
1598 if ((clone_flags & CLONE_PARENT) &&
1599 current->signal->flags & SIGNAL_UNKILLABLE)
1600 return ERR_PTR(-EINVAL);
1601
1602 /*
1603 * If the new process will be in a different pid or user namespace
1604 * do not allow it to share a thread group with the forking task.
1605 */
1606 if (clone_flags & CLONE_THREAD) {
1607 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1608 (task_active_pid_ns(current) !=
1609 current->nsproxy->pid_ns_for_children))
1610 return ERR_PTR(-EINVAL);
1611 }
1612
1613 retval = -ENOMEM;
1614 p = dup_task_struct(current, node);
1615 if (!p)
1616 goto fork_out;
1617
1618 cpufreq_task_times_init(p);
1619
1620 /*
1621 * This _must_ happen before we call free_task(), i.e. before we jump
1622 * to any of the bad_fork_* labels. This is to avoid freeing
1623 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1624 * kernel threads (PF_KTHREAD).
1625 */
1626 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1627 /*
1628 * Clear TID on mm_release()?
1629 */
1630 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1631
1632 ftrace_graph_init_task(p);
1633
1634 rt_mutex_init_task(p);
1635
1636 #ifdef CONFIG_PROVE_LOCKING
1637 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1638 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1639 #endif
1640 retval = -EAGAIN;
1641 if (atomic_read(&p->real_cred->user->processes) >=
1642 task_rlimit(p, RLIMIT_NPROC)) {
1643 if (p->real_cred->user != INIT_USER &&
1644 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1645 goto bad_fork_free;
1646 }
1647 current->flags &= ~PF_NPROC_EXCEEDED;
1648
1649 retval = copy_creds(p, clone_flags);
1650 if (retval < 0)
1651 goto bad_fork_free;
1652
1653 /*
1654 * If multiple threads are within copy_process(), then this check
1655 * triggers too late. This doesn't hurt, the check is only there
1656 * to stop root fork bombs.
1657 */
1658 retval = -EAGAIN;
1659 if (nr_threads >= max_threads)
1660 goto bad_fork_cleanup_count;
1661
1662 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1663 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1664 p->flags |= PF_FORKNOEXEC;
1665 INIT_LIST_HEAD(&p->children);
1666 INIT_LIST_HEAD(&p->sibling);
1667 rcu_copy_process(p);
1668 p->vfork_done = NULL;
1669 spin_lock_init(&p->alloc_lock);
1670
1671 init_sigpending(&p->pending);
1672
1673 p->utime = p->stime = p->gtime = 0;
1674 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1675 p->utimescaled = p->stimescaled = 0;
1676 #endif
1677 prev_cputime_init(&p->prev_cputime);
1678
1679 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1680 seqcount_init(&p->vtime.seqcount);
1681 p->vtime.starttime = 0;
1682 p->vtime.state = VTIME_INACTIVE;
1683 #endif
1684
1685 #if defined(SPLIT_RSS_COUNTING)
1686 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1687 #endif
1688
1689 p->default_timer_slack_ns = current->timer_slack_ns;
1690
1691 #ifdef CONFIG_PSI
1692 p->psi_flags = 0;
1693 #endif
1694
1695 task_io_accounting_init(&p->ioac);
1696 acct_clear_integrals(p);
1697
1698 posix_cpu_timers_init(p);
1699
1700 p->io_context = NULL;
1701 p->audit_context = NULL;
1702 cgroup_fork(p);
1703 #ifdef CONFIG_NUMA
1704 p->mempolicy = mpol_dup(p->mempolicy);
1705 if (IS_ERR(p->mempolicy)) {
1706 retval = PTR_ERR(p->mempolicy);
1707 p->mempolicy = NULL;
1708 goto bad_fork_cleanup_threadgroup_lock;
1709 }
1710 #endif
1711 #ifdef CONFIG_CPUSETS
1712 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1713 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1714 seqcount_init(&p->mems_allowed_seq);
1715 #endif
1716 #ifdef CONFIG_TRACE_IRQFLAGS
1717 p->irq_events = 0;
1718 p->hardirqs_enabled = 0;
1719 p->hardirq_enable_ip = 0;
1720 p->hardirq_enable_event = 0;
1721 p->hardirq_disable_ip = _THIS_IP_;
1722 p->hardirq_disable_event = 0;
1723 p->softirqs_enabled = 1;
1724 p->softirq_enable_ip = _THIS_IP_;
1725 p->softirq_enable_event = 0;
1726 p->softirq_disable_ip = 0;
1727 p->softirq_disable_event = 0;
1728 p->hardirq_context = 0;
1729 p->softirq_context = 0;
1730 #endif
1731
1732 p->pagefault_disabled = 0;
1733
1734 #ifdef CONFIG_LOCKDEP
1735 p->lockdep_depth = 0; /* no locks held yet */
1736 p->curr_chain_key = 0;
1737 p->lockdep_recursion = 0;
1738 lockdep_init_task(p);
1739 #endif
1740
1741 #ifdef CONFIG_DEBUG_MUTEXES
1742 p->blocked_on = NULL; /* not blocked yet */
1743 #endif
1744 #ifdef CONFIG_BCACHE
1745 p->sequential_io = 0;
1746 p->sequential_io_avg = 0;
1747 #endif
1748
1749 /* Perform scheduler related setup. Assign this task to a CPU. */
1750 retval = sched_fork(clone_flags, p);
1751 if (retval)
1752 goto bad_fork_cleanup_policy;
1753
1754 retval = perf_event_init_task(p);
1755 if (retval)
1756 goto bad_fork_cleanup_policy;
1757 retval = audit_alloc(p);
1758 if (retval)
1759 goto bad_fork_cleanup_perf;
1760 /* copy all the process information */
1761 shm_init_task(p);
1762 retval = security_task_alloc(p, clone_flags);
1763 if (retval)
1764 goto bad_fork_cleanup_audit;
1765 retval = copy_semundo(clone_flags, p);
1766 if (retval)
1767 goto bad_fork_cleanup_security;
1768 retval = copy_files(clone_flags, p);
1769 if (retval)
1770 goto bad_fork_cleanup_semundo;
1771 retval = copy_fs(clone_flags, p);
1772 if (retval)
1773 goto bad_fork_cleanup_files;
1774 retval = copy_sighand(clone_flags, p);
1775 if (retval)
1776 goto bad_fork_cleanup_fs;
1777 retval = copy_signal(clone_flags, p);
1778 if (retval)
1779 goto bad_fork_cleanup_sighand;
1780 retval = copy_mm(clone_flags, p);
1781 if (retval)
1782 goto bad_fork_cleanup_signal;
1783 retval = copy_namespaces(clone_flags, p);
1784 if (retval)
1785 goto bad_fork_cleanup_mm;
1786 retval = copy_io(clone_flags, p);
1787 if (retval)
1788 goto bad_fork_cleanup_namespaces;
1789 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1790 if (retval)
1791 goto bad_fork_cleanup_io;
1792
1793 if (pid != &init_struct_pid) {
1794 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1795 if (IS_ERR(pid)) {
1796 retval = PTR_ERR(pid);
1797 goto bad_fork_cleanup_thread;
1798 }
1799 }
1800
1801 #ifdef CONFIG_BLOCK
1802 p->plug = NULL;
1803 #endif
1804 futex_init_task(p);
1805
1806 /*
1807 * sigaltstack should be cleared when sharing the same VM
1808 */
1809 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1810 sas_ss_reset(p);
1811
1812 /*
1813 * Syscall tracing and stepping should be turned off in the
1814 * child regardless of CLONE_PTRACE.
1815 */
1816 user_disable_single_step(p);
1817 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1818 #ifdef TIF_SYSCALL_EMU
1819 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1820 #endif
1821 clear_all_latency_tracing(p);
1822
1823 /* ok, now we should be set up.. */
1824 p->pid = pid_nr(pid);
1825 if (clone_flags & CLONE_THREAD) {
1826 p->exit_signal = -1;
1827 p->group_leader = current->group_leader;
1828 p->tgid = current->tgid;
1829 } else {
1830 if (clone_flags & CLONE_PARENT)
1831 p->exit_signal = current->group_leader->exit_signal;
1832 else
1833 p->exit_signal = (clone_flags & CSIGNAL);
1834 p->group_leader = p;
1835 p->tgid = p->pid;
1836 }
1837
1838 p->nr_dirtied = 0;
1839 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1840 p->dirty_paused_when = 0;
1841
1842 p->pdeath_signal = 0;
1843 INIT_LIST_HEAD(&p->thread_group);
1844 p->task_works = NULL;
1845
1846 cgroup_threadgroup_change_begin(current);
1847 /*
1848 * Ensure that the cgroup subsystem policies allow the new process to be
1849 * forked. It should be noted the the new process's css_set can be changed
1850 * between here and cgroup_post_fork() if an organisation operation is in
1851 * progress.
1852 */
1853 retval = cgroup_can_fork(p);
1854 if (retval)
1855 goto bad_fork_free_pid;
1856
1857 /*
1858 * From this point on we must avoid any synchronous user-space
1859 * communication until we take the tasklist-lock. In particular, we do
1860 * not want user-space to be able to predict the process start-time by
1861 * stalling fork(2) after we recorded the start_time but before it is
1862 * visible to the system.
1863 */
1864
1865 p->start_time = ktime_get_ns();
1866 p->real_start_time = ktime_get_boot_ns();
1867
1868 /*
1869 * Make it visible to the rest of the system, but dont wake it up yet.
1870 * Need tasklist lock for parent etc handling!
1871 */
1872 write_lock_irq(&tasklist_lock);
1873
1874 /* CLONE_PARENT re-uses the old parent */
1875 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1876 p->real_parent = current->real_parent;
1877 p->parent_exec_id = current->parent_exec_id;
1878 } else {
1879 p->real_parent = current;
1880 p->parent_exec_id = current->self_exec_id;
1881 }
1882
1883 klp_copy_process(p);
1884
1885 spin_lock(¤t->sighand->siglock);
1886
1887 /*
1888 * Copy seccomp details explicitly here, in case they were changed
1889 * before holding sighand lock.
1890 */
1891 copy_seccomp(p);
1892
1893 /*
1894 * Process group and session signals need to be delivered to just the
1895 * parent before the fork or both the parent and the child after the
1896 * fork. Restart if a signal comes in before we add the new process to
1897 * it's process group.
1898 * A fatal signal pending means that current will exit, so the new
1899 * thread can't slip out of an OOM kill (or normal SIGKILL).
1900 */
1901 recalc_sigpending();
1902 if (signal_pending(current)) {
1903 retval = -ERESTARTNOINTR;
1904 goto bad_fork_cancel_cgroup;
1905 }
1906 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1907 retval = -ENOMEM;
1908 goto bad_fork_cancel_cgroup;
1909 }
1910
1911 if (likely(p->pid)) {
1912 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1913
1914 init_task_pid(p, PIDTYPE_PID, pid);
1915 if (thread_group_leader(p)) {
1916 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1917 init_task_pid(p, PIDTYPE_SID, task_session(current));
1918
1919 if (is_child_reaper(pid)) {
1920 ns_of_pid(pid)->child_reaper = p;
1921 p->signal->flags |= SIGNAL_UNKILLABLE;
1922 }
1923
1924 p->signal->leader_pid = pid;
1925 p->signal->tty = tty_kref_get(current->signal->tty);
1926 /*
1927 * Inherit has_child_subreaper flag under the same
1928 * tasklist_lock with adding child to the process tree
1929 * for propagate_has_child_subreaper optimization.
1930 */
1931 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1932 p->real_parent->signal->is_child_subreaper;
1933 list_add_tail(&p->sibling, &p->real_parent->children);
1934 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1935 attach_pid(p, PIDTYPE_PGID);
1936 attach_pid(p, PIDTYPE_SID);
1937 __this_cpu_inc(process_counts);
1938 } else {
1939 current->signal->nr_threads++;
1940 atomic_inc(¤t->signal->live);
1941 atomic_inc(¤t->signal->sigcnt);
1942 list_add_tail_rcu(&p->thread_group,
1943 &p->group_leader->thread_group);
1944 list_add_tail_rcu(&p->thread_node,
1945 &p->signal->thread_head);
1946 }
1947 attach_pid(p, PIDTYPE_PID);
1948 nr_threads++;
1949 }
1950
1951 total_forks++;
1952 spin_unlock(¤t->sighand->siglock);
1953 syscall_tracepoint_update(p);
1954 write_unlock_irq(&tasklist_lock);
1955
1956 proc_fork_connector(p);
1957 cgroup_post_fork(p);
1958 cgroup_threadgroup_change_end(current);
1959 perf_event_fork(p);
1960
1961 trace_task_newtask(p, clone_flags);
1962 uprobe_copy_process(p, clone_flags);
1963
1964 return p;
1965
1966 bad_fork_cancel_cgroup:
1967 spin_unlock(¤t->sighand->siglock);
1968 write_unlock_irq(&tasklist_lock);
1969 cgroup_cancel_fork(p);
1970 bad_fork_free_pid:
1971 cgroup_threadgroup_change_end(current);
1972 if (pid != &init_struct_pid)
1973 free_pid(pid);
1974 bad_fork_cleanup_thread:
1975 exit_thread(p);
1976 bad_fork_cleanup_io:
1977 if (p->io_context)
1978 exit_io_context(p);
1979 bad_fork_cleanup_namespaces:
1980 exit_task_namespaces(p);
1981 bad_fork_cleanup_mm:
1982 if (p->mm) {
1983 mm_clear_owner(p->mm, p);
1984 mmput(p->mm);
1985 }
1986 bad_fork_cleanup_signal:
1987 if (!(clone_flags & CLONE_THREAD))
1988 free_signal_struct(p->signal);
1989 bad_fork_cleanup_sighand:
1990 __cleanup_sighand(p->sighand);
1991 bad_fork_cleanup_fs:
1992 exit_fs(p); /* blocking */
1993 bad_fork_cleanup_files:
1994 exit_files(p); /* blocking */
1995 bad_fork_cleanup_semundo:
1996 exit_sem(p);
1997 bad_fork_cleanup_security:
1998 security_task_free(p);
1999 bad_fork_cleanup_audit:
2000 audit_free(p);
2001 bad_fork_cleanup_perf:
2002 perf_event_free_task(p);
2003 bad_fork_cleanup_policy:
2004 lockdep_free_task(p);
2005 #ifdef CONFIG_NUMA
2006 mpol_put(p->mempolicy);
2007 bad_fork_cleanup_threadgroup_lock:
2008 #endif
2009 delayacct_tsk_free(p);
2010 bad_fork_cleanup_count:
2011 atomic_dec(&p->cred->user->processes);
2012 exit_creds(p);
2013 bad_fork_free:
2014 p->state = TASK_DEAD;
2015 put_task_stack(p);
2016 delayed_free_task(p);
2017 fork_out:
2018 return ERR_PTR(retval);
2019 }
2020
init_idle_pids(struct pid_link * links)2021 static inline void init_idle_pids(struct pid_link *links)
2022 {
2023 enum pid_type type;
2024
2025 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2026 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2027 links[type].pid = &init_struct_pid;
2028 }
2029 }
2030
fork_idle(int cpu)2031 struct task_struct *fork_idle(int cpu)
2032 {
2033 struct task_struct *task;
2034 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2035 cpu_to_node(cpu));
2036 if (!IS_ERR(task)) {
2037 init_idle_pids(task->pids);
2038 init_idle(task, cpu);
2039 }
2040
2041 return task;
2042 }
2043
2044 /*
2045 * Ok, this is the main fork-routine.
2046 *
2047 * It copies the process, and if successful kick-starts
2048 * it and waits for it to finish using the VM if required.
2049 */
_do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr,unsigned long tls)2050 long _do_fork(unsigned long clone_flags,
2051 unsigned long stack_start,
2052 unsigned long stack_size,
2053 int __user *parent_tidptr,
2054 int __user *child_tidptr,
2055 unsigned long tls)
2056 {
2057 struct task_struct *p;
2058 int trace = 0;
2059 long nr;
2060
2061 /*
2062 * Determine whether and which event to report to ptracer. When
2063 * called from kernel_thread or CLONE_UNTRACED is explicitly
2064 * requested, no event is reported; otherwise, report if the event
2065 * for the type of forking is enabled.
2066 */
2067 if (!(clone_flags & CLONE_UNTRACED)) {
2068 if (clone_flags & CLONE_VFORK)
2069 trace = PTRACE_EVENT_VFORK;
2070 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2071 trace = PTRACE_EVENT_CLONE;
2072 else
2073 trace = PTRACE_EVENT_FORK;
2074
2075 if (likely(!ptrace_event_enabled(current, trace)))
2076 trace = 0;
2077 }
2078
2079 p = copy_process(clone_flags, stack_start, stack_size,
2080 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2081 add_latent_entropy();
2082 /*
2083 * Do this prior waking up the new thread - the thread pointer
2084 * might get invalid after that point, if the thread exits quickly.
2085 */
2086 if (!IS_ERR(p)) {
2087 struct completion vfork;
2088 struct pid *pid;
2089
2090 cpufreq_task_times_alloc(p);
2091
2092 trace_sched_process_fork(current, p);
2093
2094 pid = get_task_pid(p, PIDTYPE_PID);
2095 nr = pid_vnr(pid);
2096
2097 if (clone_flags & CLONE_PARENT_SETTID)
2098 put_user(nr, parent_tidptr);
2099
2100 if (clone_flags & CLONE_VFORK) {
2101 p->vfork_done = &vfork;
2102 init_completion(&vfork);
2103 get_task_struct(p);
2104 }
2105
2106 wake_up_new_task(p);
2107
2108 /* forking complete and child started to run, tell ptracer */
2109 if (unlikely(trace))
2110 ptrace_event_pid(trace, pid);
2111
2112 if (clone_flags & CLONE_VFORK) {
2113 if (!wait_for_vfork_done(p, &vfork))
2114 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2115 }
2116
2117 put_pid(pid);
2118 } else {
2119 nr = PTR_ERR(p);
2120 }
2121 return nr;
2122 }
2123
2124 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2125 /* For compatibility with architectures that call do_fork directly rather than
2126 * using the syscall entry points below. */
do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)2127 long do_fork(unsigned long clone_flags,
2128 unsigned long stack_start,
2129 unsigned long stack_size,
2130 int __user *parent_tidptr,
2131 int __user *child_tidptr)
2132 {
2133 return _do_fork(clone_flags, stack_start, stack_size,
2134 parent_tidptr, child_tidptr, 0);
2135 }
2136 #endif
2137
2138 /*
2139 * Create a kernel thread.
2140 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2141 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2142 {
2143 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2144 (unsigned long)arg, NULL, NULL, 0);
2145 }
2146
2147 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2148 SYSCALL_DEFINE0(fork)
2149 {
2150 #ifdef CONFIG_MMU
2151 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2152 #else
2153 /* can not support in nommu mode */
2154 return -EINVAL;
2155 #endif
2156 }
2157 #endif
2158
2159 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2160 SYSCALL_DEFINE0(vfork)
2161 {
2162 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2163 0, NULL, NULL, 0);
2164 }
2165 #endif
2166
2167 #ifdef __ARCH_WANT_SYS_CLONE
2168 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2169 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2170 int __user *, parent_tidptr,
2171 unsigned long, tls,
2172 int __user *, child_tidptr)
2173 #elif defined(CONFIG_CLONE_BACKWARDS2)
2174 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2175 int __user *, parent_tidptr,
2176 int __user *, child_tidptr,
2177 unsigned long, tls)
2178 #elif defined(CONFIG_CLONE_BACKWARDS3)
2179 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2180 int, stack_size,
2181 int __user *, parent_tidptr,
2182 int __user *, child_tidptr,
2183 unsigned long, tls)
2184 #else
2185 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2186 int __user *, parent_tidptr,
2187 int __user *, child_tidptr,
2188 unsigned long, tls)
2189 #endif
2190 {
2191 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2192 }
2193 #endif
2194
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2195 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2196 {
2197 struct task_struct *leader, *parent, *child;
2198 int res;
2199
2200 read_lock(&tasklist_lock);
2201 leader = top = top->group_leader;
2202 down:
2203 for_each_thread(leader, parent) {
2204 list_for_each_entry(child, &parent->children, sibling) {
2205 res = visitor(child, data);
2206 if (res) {
2207 if (res < 0)
2208 goto out;
2209 leader = child;
2210 goto down;
2211 }
2212 up:
2213 ;
2214 }
2215 }
2216
2217 if (leader != top) {
2218 child = leader;
2219 parent = child->real_parent;
2220 leader = parent->group_leader;
2221 goto up;
2222 }
2223 out:
2224 read_unlock(&tasklist_lock);
2225 }
2226
2227 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2228 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2229 #endif
2230
sighand_ctor(void * data)2231 static void sighand_ctor(void *data)
2232 {
2233 struct sighand_struct *sighand = data;
2234
2235 spin_lock_init(&sighand->siglock);
2236 init_waitqueue_head(&sighand->signalfd_wqh);
2237 }
2238
proc_caches_init(void)2239 void __init proc_caches_init(void)
2240 {
2241 sighand_cachep = kmem_cache_create("sighand_cache",
2242 sizeof(struct sighand_struct), 0,
2243 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2244 SLAB_ACCOUNT, sighand_ctor);
2245 signal_cachep = kmem_cache_create("signal_cache",
2246 sizeof(struct signal_struct), 0,
2247 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2248 NULL);
2249 files_cachep = kmem_cache_create("files_cache",
2250 sizeof(struct files_struct), 0,
2251 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2252 NULL);
2253 fs_cachep = kmem_cache_create("fs_cache",
2254 sizeof(struct fs_struct), 0,
2255 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2256 NULL);
2257 /*
2258 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2259 * whole struct cpumask for the OFFSTACK case. We could change
2260 * this to *only* allocate as much of it as required by the
2261 * maximum number of CPU's we can ever have. The cpumask_allocation
2262 * is at the end of the structure, exactly for that reason.
2263 */
2264 mm_cachep = kmem_cache_create("mm_struct",
2265 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2266 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2267 NULL);
2268 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2269 mmap_init();
2270 nsproxy_cache_init();
2271 }
2272
2273 /*
2274 * Check constraints on flags passed to the unshare system call.
2275 */
check_unshare_flags(unsigned long unshare_flags)2276 static int check_unshare_flags(unsigned long unshare_flags)
2277 {
2278 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2279 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2280 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2281 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2282 return -EINVAL;
2283 /*
2284 * Not implemented, but pretend it works if there is nothing
2285 * to unshare. Note that unsharing the address space or the
2286 * signal handlers also need to unshare the signal queues (aka
2287 * CLONE_THREAD).
2288 */
2289 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2290 if (!thread_group_empty(current))
2291 return -EINVAL;
2292 }
2293 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2294 if (atomic_read(¤t->sighand->count) > 1)
2295 return -EINVAL;
2296 }
2297 if (unshare_flags & CLONE_VM) {
2298 if (!current_is_single_threaded())
2299 return -EINVAL;
2300 }
2301
2302 return 0;
2303 }
2304
2305 /*
2306 * Unshare the filesystem structure if it is being shared
2307 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2308 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2309 {
2310 struct fs_struct *fs = current->fs;
2311
2312 if (!(unshare_flags & CLONE_FS) || !fs)
2313 return 0;
2314
2315 /* don't need lock here; in the worst case we'll do useless copy */
2316 if (fs->users == 1)
2317 return 0;
2318
2319 *new_fsp = copy_fs_struct(fs);
2320 if (!*new_fsp)
2321 return -ENOMEM;
2322
2323 return 0;
2324 }
2325
2326 /*
2327 * Unshare file descriptor table if it is being shared
2328 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)2329 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2330 {
2331 struct files_struct *fd = current->files;
2332 int error = 0;
2333
2334 if ((unshare_flags & CLONE_FILES) &&
2335 (fd && atomic_read(&fd->count) > 1)) {
2336 *new_fdp = dup_fd(fd, &error);
2337 if (!*new_fdp)
2338 return error;
2339 }
2340
2341 return 0;
2342 }
2343
2344 /*
2345 * unshare allows a process to 'unshare' part of the process
2346 * context which was originally shared using clone. copy_*
2347 * functions used by do_fork() cannot be used here directly
2348 * because they modify an inactive task_struct that is being
2349 * constructed. Here we are modifying the current, active,
2350 * task_struct.
2351 */
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)2352 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2353 {
2354 struct fs_struct *fs, *new_fs = NULL;
2355 struct files_struct *fd, *new_fd = NULL;
2356 struct cred *new_cred = NULL;
2357 struct nsproxy *new_nsproxy = NULL;
2358 int do_sysvsem = 0;
2359 int err;
2360
2361 /*
2362 * If unsharing a user namespace must also unshare the thread group
2363 * and unshare the filesystem root and working directories.
2364 */
2365 if (unshare_flags & CLONE_NEWUSER)
2366 unshare_flags |= CLONE_THREAD | CLONE_FS;
2367 /*
2368 * If unsharing vm, must also unshare signal handlers.
2369 */
2370 if (unshare_flags & CLONE_VM)
2371 unshare_flags |= CLONE_SIGHAND;
2372 /*
2373 * If unsharing a signal handlers, must also unshare the signal queues.
2374 */
2375 if (unshare_flags & CLONE_SIGHAND)
2376 unshare_flags |= CLONE_THREAD;
2377 /*
2378 * If unsharing namespace, must also unshare filesystem information.
2379 */
2380 if (unshare_flags & CLONE_NEWNS)
2381 unshare_flags |= CLONE_FS;
2382
2383 err = check_unshare_flags(unshare_flags);
2384 if (err)
2385 goto bad_unshare_out;
2386 /*
2387 * CLONE_NEWIPC must also detach from the undolist: after switching
2388 * to a new ipc namespace, the semaphore arrays from the old
2389 * namespace are unreachable.
2390 */
2391 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2392 do_sysvsem = 1;
2393 err = unshare_fs(unshare_flags, &new_fs);
2394 if (err)
2395 goto bad_unshare_out;
2396 err = unshare_fd(unshare_flags, &new_fd);
2397 if (err)
2398 goto bad_unshare_cleanup_fs;
2399 err = unshare_userns(unshare_flags, &new_cred);
2400 if (err)
2401 goto bad_unshare_cleanup_fd;
2402 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2403 new_cred, new_fs);
2404 if (err)
2405 goto bad_unshare_cleanup_cred;
2406
2407 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2408 if (do_sysvsem) {
2409 /*
2410 * CLONE_SYSVSEM is equivalent to sys_exit().
2411 */
2412 exit_sem(current);
2413 }
2414 if (unshare_flags & CLONE_NEWIPC) {
2415 /* Orphan segments in old ns (see sem above). */
2416 exit_shm(current);
2417 shm_init_task(current);
2418 }
2419
2420 if (new_nsproxy)
2421 switch_task_namespaces(current, new_nsproxy);
2422
2423 task_lock(current);
2424
2425 if (new_fs) {
2426 fs = current->fs;
2427 spin_lock(&fs->lock);
2428 current->fs = new_fs;
2429 if (--fs->users)
2430 new_fs = NULL;
2431 else
2432 new_fs = fs;
2433 spin_unlock(&fs->lock);
2434 }
2435
2436 if (new_fd) {
2437 fd = current->files;
2438 current->files = new_fd;
2439 new_fd = fd;
2440 }
2441
2442 task_unlock(current);
2443
2444 if (new_cred) {
2445 /* Install the new user namespace */
2446 commit_creds(new_cred);
2447 new_cred = NULL;
2448 }
2449 }
2450
2451 perf_event_namespaces(current);
2452
2453 bad_unshare_cleanup_cred:
2454 if (new_cred)
2455 put_cred(new_cred);
2456 bad_unshare_cleanup_fd:
2457 if (new_fd)
2458 put_files_struct(new_fd);
2459
2460 bad_unshare_cleanup_fs:
2461 if (new_fs)
2462 free_fs_struct(new_fs);
2463
2464 bad_unshare_out:
2465 return err;
2466 }
2467
2468 /*
2469 * Helper to unshare the files of the current task.
2470 * We don't want to expose copy_files internals to
2471 * the exec layer of the kernel.
2472 */
2473
unshare_files(struct files_struct ** displaced)2474 int unshare_files(struct files_struct **displaced)
2475 {
2476 struct task_struct *task = current;
2477 struct files_struct *copy = NULL;
2478 int error;
2479
2480 error = unshare_fd(CLONE_FILES, ©);
2481 if (error || !copy) {
2482 *displaced = NULL;
2483 return error;
2484 }
2485 *displaced = task->files;
2486 task_lock(task);
2487 task->files = copy;
2488 task_unlock(task);
2489 return 0;
2490 }
2491
sysctl_max_threads(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2492 int sysctl_max_threads(struct ctl_table *table, int write,
2493 void __user *buffer, size_t *lenp, loff_t *ppos)
2494 {
2495 struct ctl_table t;
2496 int ret;
2497 int threads = max_threads;
2498 int min = 1;
2499 int max = MAX_THREADS;
2500
2501 t = *table;
2502 t.data = &threads;
2503 t.extra1 = &min;
2504 t.extra2 = &max;
2505
2506 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2507 if (ret || !write)
2508 return ret;
2509
2510 max_threads = threads;
2511
2512 return 0;
2513 }
2514