• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46 
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53 
54 static int load_elf_binary(struct linux_binprm *bprm);
55 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
56 				int, int, unsigned long);
57 
58 #ifdef CONFIG_USELIB
59 static int load_elf_library(struct file *);
60 #else
61 #define load_elf_library NULL
62 #endif
63 
64 /*
65  * If we don't support core dumping, then supply a NULL so we
66  * don't even try.
67  */
68 #ifdef CONFIG_ELF_CORE
69 static int elf_core_dump(struct coredump_params *cprm);
70 #else
71 #define elf_core_dump	NULL
72 #endif
73 
74 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
75 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
76 #else
77 #define ELF_MIN_ALIGN	PAGE_SIZE
78 #endif
79 
80 #ifndef ELF_CORE_EFLAGS
81 #define ELF_CORE_EFLAGS	0
82 #endif
83 
84 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
85 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
86 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
87 
88 static struct linux_binfmt elf_format = {
89 	.module		= THIS_MODULE,
90 	.load_binary	= load_elf_binary,
91 	.load_shlib	= load_elf_library,
92 	.core_dump	= elf_core_dump,
93 	.min_coredump	= ELF_EXEC_PAGESIZE,
94 };
95 
96 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
97 
set_brk(unsigned long start,unsigned long end,int prot)98 static int set_brk(unsigned long start, unsigned long end, int prot)
99 {
100 	start = ELF_PAGEALIGN(start);
101 	end = ELF_PAGEALIGN(end);
102 	if (end > start) {
103 		/*
104 		 * Map the last of the bss segment.
105 		 * If the header is requesting these pages to be
106 		 * executable, honour that (ppc32 needs this).
107 		 */
108 		int error = vm_brk_flags(start, end - start,
109 				prot & PROT_EXEC ? VM_EXEC : 0);
110 		if (error)
111 			return error;
112 	}
113 	current->mm->start_brk = current->mm->brk = end;
114 	return 0;
115 }
116 
117 /* We need to explicitly zero any fractional pages
118    after the data section (i.e. bss).  This would
119    contain the junk from the file that should not
120    be in memory
121  */
padzero(unsigned long elf_bss)122 static int padzero(unsigned long elf_bss)
123 {
124 	unsigned long nbyte;
125 
126 	nbyte = ELF_PAGEOFFSET(elf_bss);
127 	if (nbyte) {
128 		nbyte = ELF_MIN_ALIGN - nbyte;
129 		if (clear_user((void __user *) elf_bss, nbyte))
130 			return -EFAULT;
131 	}
132 	return 0;
133 }
134 
135 /* Let's use some macros to make this stack manipulation a little clearer */
136 #ifdef CONFIG_STACK_GROWSUP
137 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
138 #define STACK_ROUND(sp, items) \
139 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
140 #define STACK_ALLOC(sp, len) ({ \
141 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
142 	old_sp; })
143 #else
144 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
145 #define STACK_ROUND(sp, items) \
146 	(((unsigned long) (sp - items)) &~ 15UL)
147 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
148 #endif
149 
150 #ifndef ELF_BASE_PLATFORM
151 /*
152  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
153  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
154  * will be copied to the user stack in the same manner as AT_PLATFORM.
155  */
156 #define ELF_BASE_PLATFORM NULL
157 #endif
158 
159 static int
create_elf_tables(struct linux_binprm * bprm,struct elfhdr * exec,unsigned long load_addr,unsigned long interp_load_addr)160 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
161 		unsigned long load_addr, unsigned long interp_load_addr)
162 {
163 	unsigned long p = bprm->p;
164 	int argc = bprm->argc;
165 	int envc = bprm->envc;
166 	elf_addr_t __user *sp;
167 	elf_addr_t __user *u_platform;
168 	elf_addr_t __user *u_base_platform;
169 	elf_addr_t __user *u_rand_bytes;
170 	const char *k_platform = ELF_PLATFORM;
171 	const char *k_base_platform = ELF_BASE_PLATFORM;
172 	unsigned char k_rand_bytes[16];
173 	int items;
174 	elf_addr_t *elf_info;
175 	int ei_index = 0;
176 	const struct cred *cred = current_cred();
177 	struct vm_area_struct *vma;
178 
179 	/*
180 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
181 	 * evictions by the processes running on the same package. One
182 	 * thing we can do is to shuffle the initial stack for them.
183 	 */
184 
185 	p = arch_align_stack(p);
186 
187 	/*
188 	 * If this architecture has a platform capability string, copy it
189 	 * to userspace.  In some cases (Sparc), this info is impossible
190 	 * for userspace to get any other way, in others (i386) it is
191 	 * merely difficult.
192 	 */
193 	u_platform = NULL;
194 	if (k_platform) {
195 		size_t len = strlen(k_platform) + 1;
196 
197 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
198 		if (__copy_to_user(u_platform, k_platform, len))
199 			return -EFAULT;
200 	}
201 
202 	/*
203 	 * If this architecture has a "base" platform capability
204 	 * string, copy it to userspace.
205 	 */
206 	u_base_platform = NULL;
207 	if (k_base_platform) {
208 		size_t len = strlen(k_base_platform) + 1;
209 
210 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
211 		if (__copy_to_user(u_base_platform, k_base_platform, len))
212 			return -EFAULT;
213 	}
214 
215 	/*
216 	 * Generate 16 random bytes for userspace PRNG seeding.
217 	 */
218 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
219 	u_rand_bytes = (elf_addr_t __user *)
220 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
221 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
222 		return -EFAULT;
223 
224 	/* Create the ELF interpreter info */
225 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
226 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
227 #define NEW_AUX_ENT(id, val) \
228 	do { \
229 		elf_info[ei_index++] = id; \
230 		elf_info[ei_index++] = val; \
231 	} while (0)
232 
233 #ifdef ARCH_DLINFO
234 	/*
235 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
236 	 * AUXV.
237 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
238 	 * ARCH_DLINFO changes
239 	 */
240 	ARCH_DLINFO;
241 #endif
242 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
243 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
244 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
245 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
246 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
247 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
248 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
249 	NEW_AUX_ENT(AT_FLAGS, 0);
250 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
251 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
252 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
253 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
254 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
255 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
256 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
257 #ifdef ELF_HWCAP2
258 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
259 #endif
260 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
261 	if (k_platform) {
262 		NEW_AUX_ENT(AT_PLATFORM,
263 			    (elf_addr_t)(unsigned long)u_platform);
264 	}
265 	if (k_base_platform) {
266 		NEW_AUX_ENT(AT_BASE_PLATFORM,
267 			    (elf_addr_t)(unsigned long)u_base_platform);
268 	}
269 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
270 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
271 	}
272 #undef NEW_AUX_ENT
273 	/* AT_NULL is zero; clear the rest too */
274 	memset(&elf_info[ei_index], 0,
275 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
276 
277 	/* And advance past the AT_NULL entry.  */
278 	ei_index += 2;
279 
280 	sp = STACK_ADD(p, ei_index);
281 
282 	items = (argc + 1) + (envc + 1) + 1;
283 	bprm->p = STACK_ROUND(sp, items);
284 
285 	/* Point sp at the lowest address on the stack */
286 #ifdef CONFIG_STACK_GROWSUP
287 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
288 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
289 #else
290 	sp = (elf_addr_t __user *)bprm->p;
291 #endif
292 
293 
294 	/*
295 	 * Grow the stack manually; some architectures have a limit on how
296 	 * far ahead a user-space access may be in order to grow the stack.
297 	 */
298 	vma = find_extend_vma(current->mm, bprm->p);
299 	if (!vma)
300 		return -EFAULT;
301 
302 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
303 	if (__put_user(argc, sp++))
304 		return -EFAULT;
305 
306 	/* Populate list of argv pointers back to argv strings. */
307 	p = current->mm->arg_end = current->mm->arg_start;
308 	while (argc-- > 0) {
309 		size_t len;
310 		if (__put_user((elf_addr_t)p, sp++))
311 			return -EFAULT;
312 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
313 		if (!len || len > MAX_ARG_STRLEN)
314 			return -EINVAL;
315 		p += len;
316 	}
317 	if (__put_user(0, sp++))
318 		return -EFAULT;
319 	current->mm->arg_end = p;
320 
321 	/* Populate list of envp pointers back to envp strings. */
322 	current->mm->env_end = current->mm->env_start = p;
323 	while (envc-- > 0) {
324 		size_t len;
325 		if (__put_user((elf_addr_t)p, sp++))
326 			return -EFAULT;
327 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
328 		if (!len || len > MAX_ARG_STRLEN)
329 			return -EINVAL;
330 		p += len;
331 	}
332 	if (__put_user(0, sp++))
333 		return -EFAULT;
334 	current->mm->env_end = p;
335 
336 	/* Put the elf_info on the stack in the right place.  */
337 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
338 		return -EFAULT;
339 	return 0;
340 }
341 
342 #ifndef elf_map
343 
elf_map(struct file * filep,unsigned long addr,struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)344 static unsigned long elf_map(struct file *filep, unsigned long addr,
345 		struct elf_phdr *eppnt, int prot, int type,
346 		unsigned long total_size)
347 {
348 	unsigned long map_addr;
349 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
350 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
351 	addr = ELF_PAGESTART(addr);
352 	size = ELF_PAGEALIGN(size);
353 
354 	/* mmap() will return -EINVAL if given a zero size, but a
355 	 * segment with zero filesize is perfectly valid */
356 	if (!size)
357 		return addr;
358 
359 	/*
360 	* total_size is the size of the ELF (interpreter) image.
361 	* The _first_ mmap needs to know the full size, otherwise
362 	* randomization might put this image into an overlapping
363 	* position with the ELF binary image. (since size < total_size)
364 	* So we first map the 'big' image - and unmap the remainder at
365 	* the end. (which unmap is needed for ELF images with holes.)
366 	*/
367 	if (total_size) {
368 		total_size = ELF_PAGEALIGN(total_size);
369 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
370 		if (!BAD_ADDR(map_addr))
371 			vm_munmap(map_addr+size, total_size-size);
372 	} else
373 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
374 
375 	return(map_addr);
376 }
377 
378 #endif /* !elf_map */
379 
total_mapping_size(struct elf_phdr * cmds,int nr)380 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
381 {
382 	int i, first_idx = -1, last_idx = -1;
383 
384 	for (i = 0; i < nr; i++) {
385 		if (cmds[i].p_type == PT_LOAD) {
386 			last_idx = i;
387 			if (first_idx == -1)
388 				first_idx = i;
389 		}
390 	}
391 	if (first_idx == -1)
392 		return 0;
393 
394 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
395 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
396 }
397 
398 /**
399  * load_elf_phdrs() - load ELF program headers
400  * @elf_ex:   ELF header of the binary whose program headers should be loaded
401  * @elf_file: the opened ELF binary file
402  *
403  * Loads ELF program headers from the binary file elf_file, which has the ELF
404  * header pointed to by elf_ex, into a newly allocated array. The caller is
405  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
406  */
load_elf_phdrs(struct elfhdr * elf_ex,struct file * elf_file)407 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
408 				       struct file *elf_file)
409 {
410 	struct elf_phdr *elf_phdata = NULL;
411 	int retval, size, err = -1;
412 	loff_t pos = elf_ex->e_phoff;
413 
414 	/*
415 	 * If the size of this structure has changed, then punt, since
416 	 * we will be doing the wrong thing.
417 	 */
418 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
419 		goto out;
420 
421 	/* Sanity check the number of program headers... */
422 	if (elf_ex->e_phnum < 1 ||
423 		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
424 		goto out;
425 
426 	/* ...and their total size. */
427 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
428 	if (size > ELF_MIN_ALIGN)
429 		goto out;
430 
431 	elf_phdata = kmalloc(size, GFP_KERNEL);
432 	if (!elf_phdata)
433 		goto out;
434 
435 	/* Read in the program headers */
436 	retval = kernel_read(elf_file, elf_phdata, size, &pos);
437 	if (retval != size) {
438 		err = (retval < 0) ? retval : -EIO;
439 		goto out;
440 	}
441 
442 	/* Success! */
443 	err = 0;
444 out:
445 	if (err) {
446 		kfree(elf_phdata);
447 		elf_phdata = NULL;
448 	}
449 	return elf_phdata;
450 }
451 
452 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
453 
454 /**
455  * struct arch_elf_state - arch-specific ELF loading state
456  *
457  * This structure is used to preserve architecture specific data during
458  * the loading of an ELF file, throughout the checking of architecture
459  * specific ELF headers & through to the point where the ELF load is
460  * known to be proceeding (ie. SET_PERSONALITY).
461  *
462  * This implementation is a dummy for architectures which require no
463  * specific state.
464  */
465 struct arch_elf_state {
466 };
467 
468 #define INIT_ARCH_ELF_STATE {}
469 
470 /**
471  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
472  * @ehdr:	The main ELF header
473  * @phdr:	The program header to check
474  * @elf:	The open ELF file
475  * @is_interp:	True if the phdr is from the interpreter of the ELF being
476  *		loaded, else false.
477  * @state:	Architecture-specific state preserved throughout the process
478  *		of loading the ELF.
479  *
480  * Inspects the program header phdr to validate its correctness and/or
481  * suitability for the system. Called once per ELF program header in the
482  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
483  * interpreter.
484  *
485  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
486  *         with that return code.
487  */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)488 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
489 				   struct elf_phdr *phdr,
490 				   struct file *elf, bool is_interp,
491 				   struct arch_elf_state *state)
492 {
493 	/* Dummy implementation, always proceed */
494 	return 0;
495 }
496 
497 /**
498  * arch_check_elf() - check an ELF executable
499  * @ehdr:	The main ELF header
500  * @has_interp:	True if the ELF has an interpreter, else false.
501  * @interp_ehdr: The interpreter's ELF header
502  * @state:	Architecture-specific state preserved throughout the process
503  *		of loading the ELF.
504  *
505  * Provides a final opportunity for architecture code to reject the loading
506  * of the ELF & cause an exec syscall to return an error. This is called after
507  * all program headers to be checked by arch_elf_pt_proc have been.
508  *
509  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
510  *         with that return code.
511  */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)512 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
513 				 struct elfhdr *interp_ehdr,
514 				 struct arch_elf_state *state)
515 {
516 	/* Dummy implementation, always proceed */
517 	return 0;
518 }
519 
520 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
521 
522 /* This is much more generalized than the library routine read function,
523    so we keep this separate.  Technically the library read function
524    is only provided so that we can read a.out libraries that have
525    an ELF header */
526 
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long * interp_map_addr,unsigned long no_base,struct elf_phdr * interp_elf_phdata)527 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
528 		struct file *interpreter, unsigned long *interp_map_addr,
529 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
530 {
531 	struct elf_phdr *eppnt;
532 	unsigned long load_addr = 0;
533 	int load_addr_set = 0;
534 	unsigned long last_bss = 0, elf_bss = 0;
535 	int bss_prot = 0;
536 	unsigned long error = ~0UL;
537 	unsigned long total_size;
538 	int i;
539 
540 	/* First of all, some simple consistency checks */
541 	if (interp_elf_ex->e_type != ET_EXEC &&
542 	    interp_elf_ex->e_type != ET_DYN)
543 		goto out;
544 	if (!elf_check_arch(interp_elf_ex))
545 		goto out;
546 	if (!interpreter->f_op->mmap)
547 		goto out;
548 
549 	total_size = total_mapping_size(interp_elf_phdata,
550 					interp_elf_ex->e_phnum);
551 	if (!total_size) {
552 		error = -EINVAL;
553 		goto out;
554 	}
555 
556 	eppnt = interp_elf_phdata;
557 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
558 		if (eppnt->p_type == PT_LOAD) {
559 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
560 			int elf_prot = 0;
561 			unsigned long vaddr = 0;
562 			unsigned long k, map_addr;
563 
564 			if (eppnt->p_flags & PF_R)
565 		    		elf_prot = PROT_READ;
566 			if (eppnt->p_flags & PF_W)
567 				elf_prot |= PROT_WRITE;
568 			if (eppnt->p_flags & PF_X)
569 				elf_prot |= PROT_EXEC;
570 			vaddr = eppnt->p_vaddr;
571 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
572 				elf_type |= MAP_FIXED;
573 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
574 				load_addr = -vaddr;
575 
576 			map_addr = elf_map(interpreter, load_addr + vaddr,
577 					eppnt, elf_prot, elf_type, total_size);
578 			total_size = 0;
579 			if (!*interp_map_addr)
580 				*interp_map_addr = map_addr;
581 			error = map_addr;
582 			if (BAD_ADDR(map_addr))
583 				goto out;
584 
585 			if (!load_addr_set &&
586 			    interp_elf_ex->e_type == ET_DYN) {
587 				load_addr = map_addr - ELF_PAGESTART(vaddr);
588 				load_addr_set = 1;
589 			}
590 
591 			/*
592 			 * Check to see if the section's size will overflow the
593 			 * allowed task size. Note that p_filesz must always be
594 			 * <= p_memsize so it's only necessary to check p_memsz.
595 			 */
596 			k = load_addr + eppnt->p_vaddr;
597 			if (BAD_ADDR(k) ||
598 			    eppnt->p_filesz > eppnt->p_memsz ||
599 			    eppnt->p_memsz > TASK_SIZE ||
600 			    TASK_SIZE - eppnt->p_memsz < k) {
601 				error = -ENOMEM;
602 				goto out;
603 			}
604 
605 			/*
606 			 * Find the end of the file mapping for this phdr, and
607 			 * keep track of the largest address we see for this.
608 			 */
609 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
610 			if (k > elf_bss)
611 				elf_bss = k;
612 
613 			/*
614 			 * Do the same thing for the memory mapping - between
615 			 * elf_bss and last_bss is the bss section.
616 			 */
617 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
618 			if (k > last_bss) {
619 				last_bss = k;
620 				bss_prot = elf_prot;
621 			}
622 		}
623 	}
624 
625 	/*
626 	 * Now fill out the bss section: first pad the last page from
627 	 * the file up to the page boundary, and zero it from elf_bss
628 	 * up to the end of the page.
629 	 */
630 	if (padzero(elf_bss)) {
631 		error = -EFAULT;
632 		goto out;
633 	}
634 	/*
635 	 * Next, align both the file and mem bss up to the page size,
636 	 * since this is where elf_bss was just zeroed up to, and where
637 	 * last_bss will end after the vm_brk_flags() below.
638 	 */
639 	elf_bss = ELF_PAGEALIGN(elf_bss);
640 	last_bss = ELF_PAGEALIGN(last_bss);
641 	/* Finally, if there is still more bss to allocate, do it. */
642 	if (last_bss > elf_bss) {
643 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
644 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
645 		if (error)
646 			goto out;
647 	}
648 
649 	error = load_addr;
650 out:
651 	return error;
652 }
653 
654 /*
655  * These are the functions used to load ELF style executables and shared
656  * libraries.  There is no binary dependent code anywhere else.
657  */
658 
659 #ifndef STACK_RND_MASK
660 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
661 #endif
662 
randomize_stack_top(unsigned long stack_top)663 static unsigned long randomize_stack_top(unsigned long stack_top)
664 {
665 	unsigned long random_variable = 0;
666 
667 	if (current->flags & PF_RANDOMIZE) {
668 		random_variable = get_random_long();
669 		random_variable &= STACK_RND_MASK;
670 		random_variable <<= PAGE_SHIFT;
671 	}
672 #ifdef CONFIG_STACK_GROWSUP
673 	return PAGE_ALIGN(stack_top) + random_variable;
674 #else
675 	return PAGE_ALIGN(stack_top) - random_variable;
676 #endif
677 }
678 
load_elf_binary(struct linux_binprm * bprm)679 static int load_elf_binary(struct linux_binprm *bprm)
680 {
681 	struct file *interpreter = NULL; /* to shut gcc up */
682  	unsigned long load_addr = 0, load_bias = 0;
683 	int load_addr_set = 0;
684 	char * elf_interpreter = NULL;
685 	unsigned long error;
686 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
687 	unsigned long elf_bss, elf_brk;
688 	int bss_prot = 0;
689 	int retval, i;
690 	unsigned long elf_entry;
691 	unsigned long interp_load_addr = 0;
692 	unsigned long start_code, end_code, start_data, end_data;
693 	unsigned long reloc_func_desc __maybe_unused = 0;
694 	int executable_stack = EXSTACK_DEFAULT;
695 	struct pt_regs *regs = current_pt_regs();
696 	struct {
697 		struct elfhdr elf_ex;
698 		struct elfhdr interp_elf_ex;
699 	} *loc;
700 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
701 	loff_t pos;
702 
703 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
704 	if (!loc) {
705 		retval = -ENOMEM;
706 		goto out_ret;
707 	}
708 
709 	/* Get the exec-header */
710 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
711 
712 	retval = -ENOEXEC;
713 	/* First of all, some simple consistency checks */
714 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
715 		goto out;
716 
717 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
718 		goto out;
719 	if (!elf_check_arch(&loc->elf_ex))
720 		goto out;
721 	if (!bprm->file->f_op->mmap)
722 		goto out;
723 
724 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
725 	if (!elf_phdata)
726 		goto out;
727 
728 	elf_ppnt = elf_phdata;
729 	elf_bss = 0;
730 	elf_brk = 0;
731 
732 	start_code = ~0UL;
733 	end_code = 0;
734 	start_data = 0;
735 	end_data = 0;
736 
737 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
738 		if (elf_ppnt->p_type == PT_INTERP) {
739 			/* This is the program interpreter used for
740 			 * shared libraries - for now assume that this
741 			 * is an a.out format binary
742 			 */
743 			retval = -ENOEXEC;
744 			if (elf_ppnt->p_filesz > PATH_MAX ||
745 			    elf_ppnt->p_filesz < 2)
746 				goto out_free_ph;
747 
748 			retval = -ENOMEM;
749 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
750 						  GFP_KERNEL);
751 			if (!elf_interpreter)
752 				goto out_free_ph;
753 
754 			pos = elf_ppnt->p_offset;
755 			retval = kernel_read(bprm->file, elf_interpreter,
756 					     elf_ppnt->p_filesz, &pos);
757 			if (retval != elf_ppnt->p_filesz) {
758 				if (retval >= 0)
759 					retval = -EIO;
760 				goto out_free_interp;
761 			}
762 			/* make sure path is NULL terminated */
763 			retval = -ENOEXEC;
764 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
765 				goto out_free_interp;
766 
767 			interpreter = open_exec(elf_interpreter);
768 			retval = PTR_ERR(interpreter);
769 			if (IS_ERR(interpreter))
770 				goto out_free_interp;
771 
772 			/*
773 			 * If the binary is not readable then enforce
774 			 * mm->dumpable = 0 regardless of the interpreter's
775 			 * permissions.
776 			 */
777 			would_dump(bprm, interpreter);
778 
779 			/* Get the exec headers */
780 			pos = 0;
781 			retval = kernel_read(interpreter, &loc->interp_elf_ex,
782 					     sizeof(loc->interp_elf_ex), &pos);
783 			if (retval != sizeof(loc->interp_elf_ex)) {
784 				if (retval >= 0)
785 					retval = -EIO;
786 				goto out_free_dentry;
787 			}
788 
789 			break;
790 		}
791 		elf_ppnt++;
792 	}
793 
794 	elf_ppnt = elf_phdata;
795 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
796 		switch (elf_ppnt->p_type) {
797 		case PT_GNU_STACK:
798 			if (elf_ppnt->p_flags & PF_X)
799 				executable_stack = EXSTACK_ENABLE_X;
800 			else
801 				executable_stack = EXSTACK_DISABLE_X;
802 			break;
803 
804 		case PT_LOPROC ... PT_HIPROC:
805 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
806 						  bprm->file, false,
807 						  &arch_state);
808 			if (retval)
809 				goto out_free_dentry;
810 			break;
811 		}
812 
813 	/* Some simple consistency checks for the interpreter */
814 	if (elf_interpreter) {
815 		retval = -ELIBBAD;
816 		/* Not an ELF interpreter */
817 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
818 			goto out_free_dentry;
819 		/* Verify the interpreter has a valid arch */
820 		if (!elf_check_arch(&loc->interp_elf_ex))
821 			goto out_free_dentry;
822 
823 		/* Load the interpreter program headers */
824 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
825 						   interpreter);
826 		if (!interp_elf_phdata)
827 			goto out_free_dentry;
828 
829 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
830 		elf_ppnt = interp_elf_phdata;
831 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
832 			switch (elf_ppnt->p_type) {
833 			case PT_LOPROC ... PT_HIPROC:
834 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
835 							  elf_ppnt, interpreter,
836 							  true, &arch_state);
837 				if (retval)
838 					goto out_free_dentry;
839 				break;
840 			}
841 	}
842 
843 	/*
844 	 * Allow arch code to reject the ELF at this point, whilst it's
845 	 * still possible to return an error to the code that invoked
846 	 * the exec syscall.
847 	 */
848 	retval = arch_check_elf(&loc->elf_ex,
849 				!!interpreter, &loc->interp_elf_ex,
850 				&arch_state);
851 	if (retval)
852 		goto out_free_dentry;
853 
854 	/* Flush all traces of the currently running executable */
855 	retval = flush_old_exec(bprm);
856 	if (retval)
857 		goto out_free_dentry;
858 
859 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
860 	   may depend on the personality.  */
861 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
862 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
863 		current->personality |= READ_IMPLIES_EXEC;
864 
865 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
866 		current->flags |= PF_RANDOMIZE;
867 
868 	setup_new_exec(bprm);
869 	install_exec_creds(bprm);
870 
871 	/* Do this so that we can load the interpreter, if need be.  We will
872 	   change some of these later */
873 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
874 				 executable_stack);
875 	if (retval < 0)
876 		goto out_free_dentry;
877 
878 	current->mm->start_stack = bprm->p;
879 
880 	/* Now we do a little grungy work by mmapping the ELF image into
881 	   the correct location in memory. */
882 	for(i = 0, elf_ppnt = elf_phdata;
883 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
884 		int elf_prot = 0, elf_flags;
885 		unsigned long k, vaddr;
886 		unsigned long total_size = 0;
887 
888 		if (elf_ppnt->p_type != PT_LOAD)
889 			continue;
890 
891 		if (unlikely (elf_brk > elf_bss)) {
892 			unsigned long nbyte;
893 
894 			/* There was a PT_LOAD segment with p_memsz > p_filesz
895 			   before this one. Map anonymous pages, if needed,
896 			   and clear the area.  */
897 			retval = set_brk(elf_bss + load_bias,
898 					 elf_brk + load_bias,
899 					 bss_prot);
900 			if (retval)
901 				goto out_free_dentry;
902 			nbyte = ELF_PAGEOFFSET(elf_bss);
903 			if (nbyte) {
904 				nbyte = ELF_MIN_ALIGN - nbyte;
905 				if (nbyte > elf_brk - elf_bss)
906 					nbyte = elf_brk - elf_bss;
907 				if (clear_user((void __user *)elf_bss +
908 							load_bias, nbyte)) {
909 					/*
910 					 * This bss-zeroing can fail if the ELF
911 					 * file specifies odd protections. So
912 					 * we don't check the return value
913 					 */
914 				}
915 			}
916 		}
917 
918 		if (elf_ppnt->p_flags & PF_R)
919 			elf_prot |= PROT_READ;
920 		if (elf_ppnt->p_flags & PF_W)
921 			elf_prot |= PROT_WRITE;
922 		if (elf_ppnt->p_flags & PF_X)
923 			elf_prot |= PROT_EXEC;
924 
925 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
926 
927 		vaddr = elf_ppnt->p_vaddr;
928 		/*
929 		 * If we are loading ET_EXEC or we have already performed
930 		 * the ET_DYN load_addr calculations, proceed normally.
931 		 */
932 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
933 			elf_flags |= MAP_FIXED;
934 		} else if (loc->elf_ex.e_type == ET_DYN) {
935 			/*
936 			 * This logic is run once for the first LOAD Program
937 			 * Header for ET_DYN binaries to calculate the
938 			 * randomization (load_bias) for all the LOAD
939 			 * Program Headers, and to calculate the entire
940 			 * size of the ELF mapping (total_size). (Note that
941 			 * load_addr_set is set to true later once the
942 			 * initial mapping is performed.)
943 			 *
944 			 * There are effectively two types of ET_DYN
945 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
946 			 * and loaders (ET_DYN without INTERP, since they
947 			 * _are_ the ELF interpreter). The loaders must
948 			 * be loaded away from programs since the program
949 			 * may otherwise collide with the loader (especially
950 			 * for ET_EXEC which does not have a randomized
951 			 * position). For example to handle invocations of
952 			 * "./ld.so someprog" to test out a new version of
953 			 * the loader, the subsequent program that the
954 			 * loader loads must avoid the loader itself, so
955 			 * they cannot share the same load range. Sufficient
956 			 * room for the brk must be allocated with the
957 			 * loader as well, since brk must be available with
958 			 * the loader.
959 			 *
960 			 * Therefore, programs are loaded offset from
961 			 * ELF_ET_DYN_BASE and loaders are loaded into the
962 			 * independently randomized mmap region (0 load_bias
963 			 * without MAP_FIXED).
964 			 */
965 			if (elf_interpreter) {
966 				load_bias = ELF_ET_DYN_BASE;
967 				if (current->flags & PF_RANDOMIZE)
968 					load_bias += arch_mmap_rnd();
969 				elf_flags |= MAP_FIXED;
970 			} else
971 				load_bias = 0;
972 
973 			/*
974 			 * Since load_bias is used for all subsequent loading
975 			 * calculations, we must lower it by the first vaddr
976 			 * so that the remaining calculations based on the
977 			 * ELF vaddrs will be correctly offset. The result
978 			 * is then page aligned.
979 			 */
980 			load_bias = ELF_PAGESTART(load_bias - vaddr);
981 
982 			total_size = total_mapping_size(elf_phdata,
983 							loc->elf_ex.e_phnum);
984 			if (!total_size) {
985 				retval = -EINVAL;
986 				goto out_free_dentry;
987 			}
988 		}
989 
990 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
991 				elf_prot, elf_flags, total_size);
992 		if (BAD_ADDR(error)) {
993 			retval = IS_ERR((void *)error) ?
994 				PTR_ERR((void*)error) : -EINVAL;
995 			goto out_free_dentry;
996 		}
997 
998 		if (!load_addr_set) {
999 			load_addr_set = 1;
1000 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1001 			if (loc->elf_ex.e_type == ET_DYN) {
1002 				load_bias += error -
1003 				             ELF_PAGESTART(load_bias + vaddr);
1004 				load_addr += load_bias;
1005 				reloc_func_desc = load_bias;
1006 			}
1007 		}
1008 		k = elf_ppnt->p_vaddr;
1009 		if (k < start_code)
1010 			start_code = k;
1011 		if (start_data < k)
1012 			start_data = k;
1013 
1014 		/*
1015 		 * Check to see if the section's size will overflow the
1016 		 * allowed task size. Note that p_filesz must always be
1017 		 * <= p_memsz so it is only necessary to check p_memsz.
1018 		 */
1019 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1020 		    elf_ppnt->p_memsz > TASK_SIZE ||
1021 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1022 			/* set_brk can never work. Avoid overflows. */
1023 			retval = -EINVAL;
1024 			goto out_free_dentry;
1025 		}
1026 
1027 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1028 
1029 		if (k > elf_bss)
1030 			elf_bss = k;
1031 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1032 			end_code = k;
1033 		if (end_data < k)
1034 			end_data = k;
1035 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1036 		if (k > elf_brk) {
1037 			bss_prot = elf_prot;
1038 			elf_brk = k;
1039 		}
1040 	}
1041 
1042 	loc->elf_ex.e_entry += load_bias;
1043 	elf_bss += load_bias;
1044 	elf_brk += load_bias;
1045 	start_code += load_bias;
1046 	end_code += load_bias;
1047 	start_data += load_bias;
1048 	end_data += load_bias;
1049 
1050 	/* Calling set_brk effectively mmaps the pages that we need
1051 	 * for the bss and break sections.  We must do this before
1052 	 * mapping in the interpreter, to make sure it doesn't wind
1053 	 * up getting placed where the bss needs to go.
1054 	 */
1055 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1056 	if (retval)
1057 		goto out_free_dentry;
1058 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1059 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1060 		goto out_free_dentry;
1061 	}
1062 
1063 	if (elf_interpreter) {
1064 		unsigned long interp_map_addr = 0;
1065 
1066 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1067 					    interpreter,
1068 					    &interp_map_addr,
1069 					    load_bias, interp_elf_phdata);
1070 		if (!IS_ERR((void *)elf_entry)) {
1071 			/*
1072 			 * load_elf_interp() returns relocation
1073 			 * adjustment
1074 			 */
1075 			interp_load_addr = elf_entry;
1076 			elf_entry += loc->interp_elf_ex.e_entry;
1077 		}
1078 		if (BAD_ADDR(elf_entry)) {
1079 			retval = IS_ERR((void *)elf_entry) ?
1080 					(int)elf_entry : -EINVAL;
1081 			goto out_free_dentry;
1082 		}
1083 		reloc_func_desc = interp_load_addr;
1084 
1085 		allow_write_access(interpreter);
1086 		fput(interpreter);
1087 		kfree(elf_interpreter);
1088 	} else {
1089 		elf_entry = loc->elf_ex.e_entry;
1090 		if (BAD_ADDR(elf_entry)) {
1091 			retval = -EINVAL;
1092 			goto out_free_dentry;
1093 		}
1094 	}
1095 
1096 	kfree(interp_elf_phdata);
1097 	kfree(elf_phdata);
1098 
1099 	set_binfmt(&elf_format);
1100 
1101 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1102 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1103 	if (retval < 0)
1104 		goto out;
1105 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1106 
1107 	retval = create_elf_tables(bprm, &loc->elf_ex,
1108 			  load_addr, interp_load_addr);
1109 	if (retval < 0)
1110 		goto out;
1111 	/* N.B. passed_fileno might not be initialized? */
1112 	current->mm->end_code = end_code;
1113 	current->mm->start_code = start_code;
1114 	current->mm->start_data = start_data;
1115 	current->mm->end_data = end_data;
1116 	current->mm->start_stack = bprm->p;
1117 
1118 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1119 		/*
1120 		 * For architectures with ELF randomization, when executing
1121 		 * a loader directly (i.e. no interpreter listed in ELF
1122 		 * headers), move the brk area out of the mmap region
1123 		 * (since it grows up, and may collide early with the stack
1124 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1125 		 */
1126 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1127 		    loc->elf_ex.e_type == ET_DYN && !interpreter)
1128 			current->mm->brk = current->mm->start_brk =
1129 				ELF_ET_DYN_BASE;
1130 
1131 		current->mm->brk = current->mm->start_brk =
1132 			arch_randomize_brk(current->mm);
1133 #ifdef compat_brk_randomized
1134 		current->brk_randomized = 1;
1135 #endif
1136 	}
1137 
1138 	if (current->personality & MMAP_PAGE_ZERO) {
1139 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1140 		   and some applications "depend" upon this behavior.
1141 		   Since we do not have the power to recompile these, we
1142 		   emulate the SVr4 behavior. Sigh. */
1143 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1144 				MAP_FIXED | MAP_PRIVATE, 0);
1145 	}
1146 
1147 #ifdef ELF_PLAT_INIT
1148 	/*
1149 	 * The ABI may specify that certain registers be set up in special
1150 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1151 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1152 	 * that the e_entry field is the address of the function descriptor
1153 	 * for the startup routine, rather than the address of the startup
1154 	 * routine itself.  This macro performs whatever initialization to
1155 	 * the regs structure is required as well as any relocations to the
1156 	 * function descriptor entries when executing dynamically links apps.
1157 	 */
1158 	ELF_PLAT_INIT(regs, reloc_func_desc);
1159 #endif
1160 
1161 	start_thread(regs, elf_entry, bprm->p);
1162 	retval = 0;
1163 out:
1164 	kfree(loc);
1165 out_ret:
1166 	return retval;
1167 
1168 	/* error cleanup */
1169 out_free_dentry:
1170 	kfree(interp_elf_phdata);
1171 	allow_write_access(interpreter);
1172 	if (interpreter)
1173 		fput(interpreter);
1174 out_free_interp:
1175 	kfree(elf_interpreter);
1176 out_free_ph:
1177 	kfree(elf_phdata);
1178 	goto out;
1179 }
1180 
1181 #ifdef CONFIG_USELIB
1182 /* This is really simpleminded and specialized - we are loading an
1183    a.out library that is given an ELF header. */
load_elf_library(struct file * file)1184 static int load_elf_library(struct file *file)
1185 {
1186 	struct elf_phdr *elf_phdata;
1187 	struct elf_phdr *eppnt;
1188 	unsigned long elf_bss, bss, len;
1189 	int retval, error, i, j;
1190 	struct elfhdr elf_ex;
1191 	loff_t pos = 0;
1192 
1193 	error = -ENOEXEC;
1194 	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1195 	if (retval != sizeof(elf_ex))
1196 		goto out;
1197 
1198 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1199 		goto out;
1200 
1201 	/* First of all, some simple consistency checks */
1202 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1203 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1204 		goto out;
1205 
1206 	/* Now read in all of the header information */
1207 
1208 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1209 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1210 
1211 	error = -ENOMEM;
1212 	elf_phdata = kmalloc(j, GFP_KERNEL);
1213 	if (!elf_phdata)
1214 		goto out;
1215 
1216 	eppnt = elf_phdata;
1217 	error = -ENOEXEC;
1218 	pos =  elf_ex.e_phoff;
1219 	retval = kernel_read(file, eppnt, j, &pos);
1220 	if (retval != j)
1221 		goto out_free_ph;
1222 
1223 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1224 		if ((eppnt + i)->p_type == PT_LOAD)
1225 			j++;
1226 	if (j != 1)
1227 		goto out_free_ph;
1228 
1229 	while (eppnt->p_type != PT_LOAD)
1230 		eppnt++;
1231 
1232 	/* Now use mmap to map the library into memory. */
1233 	error = vm_mmap(file,
1234 			ELF_PAGESTART(eppnt->p_vaddr),
1235 			(eppnt->p_filesz +
1236 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1237 			PROT_READ | PROT_WRITE | PROT_EXEC,
1238 			MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1239 			(eppnt->p_offset -
1240 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1241 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1242 		goto out_free_ph;
1243 
1244 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1245 	if (padzero(elf_bss)) {
1246 		error = -EFAULT;
1247 		goto out_free_ph;
1248 	}
1249 
1250 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1251 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1252 	if (bss > len) {
1253 		error = vm_brk(len, bss - len);
1254 		if (error)
1255 			goto out_free_ph;
1256 	}
1257 	error = 0;
1258 
1259 out_free_ph:
1260 	kfree(elf_phdata);
1261 out:
1262 	return error;
1263 }
1264 #endif /* #ifdef CONFIG_USELIB */
1265 
1266 #ifdef CONFIG_ELF_CORE
1267 /*
1268  * ELF core dumper
1269  *
1270  * Modelled on fs/exec.c:aout_core_dump()
1271  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1272  */
1273 
1274 /*
1275  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1276  * that are useful for post-mortem analysis are included in every core dump.
1277  * In that way we ensure that the core dump is fully interpretable later
1278  * without matching up the same kernel and hardware config to see what PC values
1279  * meant. These special mappings include - vDSO, vsyscall, and other
1280  * architecture specific mappings
1281  */
always_dump_vma(struct vm_area_struct * vma)1282 static bool always_dump_vma(struct vm_area_struct *vma)
1283 {
1284 	/* Any vsyscall mappings? */
1285 	if (vma == get_gate_vma(vma->vm_mm))
1286 		return true;
1287 
1288 	/*
1289 	 * Assume that all vmas with a .name op should always be dumped.
1290 	 * If this changes, a new vm_ops field can easily be added.
1291 	 */
1292 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1293 		return true;
1294 
1295 	/*
1296 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1297 	 * such as vDSO sections.
1298 	 */
1299 	if (arch_vma_name(vma))
1300 		return true;
1301 
1302 	return false;
1303 }
1304 
1305 /*
1306  * Decide what to dump of a segment, part, all or none.
1307  */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1308 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1309 				   unsigned long mm_flags)
1310 {
1311 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1312 
1313 	/* always dump the vdso and vsyscall sections */
1314 	if (always_dump_vma(vma))
1315 		goto whole;
1316 
1317 	if (vma->vm_flags & VM_DONTDUMP)
1318 		return 0;
1319 
1320 	/* support for DAX */
1321 	if (vma_is_dax(vma)) {
1322 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1323 			goto whole;
1324 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1325 			goto whole;
1326 		return 0;
1327 	}
1328 
1329 	/* Hugetlb memory check */
1330 	if (vma->vm_flags & VM_HUGETLB) {
1331 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1332 			goto whole;
1333 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1334 			goto whole;
1335 		return 0;
1336 	}
1337 
1338 	/* Do not dump I/O mapped devices or special mappings */
1339 	if (vma->vm_flags & VM_IO)
1340 		return 0;
1341 
1342 	/* By default, dump shared memory if mapped from an anonymous file. */
1343 	if (vma->vm_flags & VM_SHARED) {
1344 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1345 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1346 			goto whole;
1347 		return 0;
1348 	}
1349 
1350 	/* Dump segments that have been written to.  */
1351 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1352 		goto whole;
1353 	if (vma->vm_file == NULL)
1354 		return 0;
1355 
1356 	if (FILTER(MAPPED_PRIVATE))
1357 		goto whole;
1358 
1359 	/*
1360 	 * If this looks like the beginning of a DSO or executable mapping,
1361 	 * check for an ELF header.  If we find one, dump the first page to
1362 	 * aid in determining what was mapped here.
1363 	 */
1364 	if (FILTER(ELF_HEADERS) &&
1365 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1366 		u32 __user *header = (u32 __user *) vma->vm_start;
1367 		u32 word;
1368 		mm_segment_t fs = get_fs();
1369 		/*
1370 		 * Doing it this way gets the constant folded by GCC.
1371 		 */
1372 		union {
1373 			u32 cmp;
1374 			char elfmag[SELFMAG];
1375 		} magic;
1376 		BUILD_BUG_ON(SELFMAG != sizeof word);
1377 		magic.elfmag[EI_MAG0] = ELFMAG0;
1378 		magic.elfmag[EI_MAG1] = ELFMAG1;
1379 		magic.elfmag[EI_MAG2] = ELFMAG2;
1380 		magic.elfmag[EI_MAG3] = ELFMAG3;
1381 		/*
1382 		 * Switch to the user "segment" for get_user(),
1383 		 * then put back what elf_core_dump() had in place.
1384 		 */
1385 		set_fs(USER_DS);
1386 		if (unlikely(get_user(word, header)))
1387 			word = 0;
1388 		set_fs(fs);
1389 		if (word == magic.cmp)
1390 			return PAGE_SIZE;
1391 	}
1392 
1393 #undef	FILTER
1394 
1395 	return 0;
1396 
1397 whole:
1398 	return vma->vm_end - vma->vm_start;
1399 }
1400 
1401 /* An ELF note in memory */
1402 struct memelfnote
1403 {
1404 	const char *name;
1405 	int type;
1406 	unsigned int datasz;
1407 	void *data;
1408 };
1409 
notesize(struct memelfnote * en)1410 static int notesize(struct memelfnote *en)
1411 {
1412 	int sz;
1413 
1414 	sz = sizeof(struct elf_note);
1415 	sz += roundup(strlen(en->name) + 1, 4);
1416 	sz += roundup(en->datasz, 4);
1417 
1418 	return sz;
1419 }
1420 
writenote(struct memelfnote * men,struct coredump_params * cprm)1421 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1422 {
1423 	struct elf_note en;
1424 	en.n_namesz = strlen(men->name) + 1;
1425 	en.n_descsz = men->datasz;
1426 	en.n_type = men->type;
1427 
1428 	return dump_emit(cprm, &en, sizeof(en)) &&
1429 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1430 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1431 }
1432 
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1433 static void fill_elf_header(struct elfhdr *elf, int segs,
1434 			    u16 machine, u32 flags)
1435 {
1436 	memset(elf, 0, sizeof(*elf));
1437 
1438 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1439 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1440 	elf->e_ident[EI_DATA] = ELF_DATA;
1441 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1442 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1443 
1444 	elf->e_type = ET_CORE;
1445 	elf->e_machine = machine;
1446 	elf->e_version = EV_CURRENT;
1447 	elf->e_phoff = sizeof(struct elfhdr);
1448 	elf->e_flags = flags;
1449 	elf->e_ehsize = sizeof(struct elfhdr);
1450 	elf->e_phentsize = sizeof(struct elf_phdr);
1451 	elf->e_phnum = segs;
1452 
1453 	return;
1454 }
1455 
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1456 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1457 {
1458 	phdr->p_type = PT_NOTE;
1459 	phdr->p_offset = offset;
1460 	phdr->p_vaddr = 0;
1461 	phdr->p_paddr = 0;
1462 	phdr->p_filesz = sz;
1463 	phdr->p_memsz = 0;
1464 	phdr->p_flags = 0;
1465 	phdr->p_align = 0;
1466 	return;
1467 }
1468 
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1469 static void fill_note(struct memelfnote *note, const char *name, int type,
1470 		unsigned int sz, void *data)
1471 {
1472 	note->name = name;
1473 	note->type = type;
1474 	note->datasz = sz;
1475 	note->data = data;
1476 	return;
1477 }
1478 
1479 /*
1480  * fill up all the fields in prstatus from the given task struct, except
1481  * registers which need to be filled up separately.
1482  */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1483 static void fill_prstatus(struct elf_prstatus *prstatus,
1484 		struct task_struct *p, long signr)
1485 {
1486 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1487 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1488 	prstatus->pr_sighold = p->blocked.sig[0];
1489 	rcu_read_lock();
1490 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1491 	rcu_read_unlock();
1492 	prstatus->pr_pid = task_pid_vnr(p);
1493 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1494 	prstatus->pr_sid = task_session_vnr(p);
1495 	if (thread_group_leader(p)) {
1496 		struct task_cputime cputime;
1497 
1498 		/*
1499 		 * This is the record for the group leader.  It shows the
1500 		 * group-wide total, not its individual thread total.
1501 		 */
1502 		thread_group_cputime(p, &cputime);
1503 		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1504 		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1505 	} else {
1506 		u64 utime, stime;
1507 
1508 		task_cputime(p, &utime, &stime);
1509 		prstatus->pr_utime = ns_to_timeval(utime);
1510 		prstatus->pr_stime = ns_to_timeval(stime);
1511 	}
1512 
1513 	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1514 	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1515 }
1516 
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1517 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1518 		       struct mm_struct *mm)
1519 {
1520 	const struct cred *cred;
1521 	unsigned int i, len;
1522 
1523 	/* first copy the parameters from user space */
1524 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1525 
1526 	len = mm->arg_end - mm->arg_start;
1527 	if (len >= ELF_PRARGSZ)
1528 		len = ELF_PRARGSZ-1;
1529 	if (copy_from_user(&psinfo->pr_psargs,
1530 		           (const char __user *)mm->arg_start, len))
1531 		return -EFAULT;
1532 	for(i = 0; i < len; i++)
1533 		if (psinfo->pr_psargs[i] == 0)
1534 			psinfo->pr_psargs[i] = ' ';
1535 	psinfo->pr_psargs[len] = 0;
1536 
1537 	rcu_read_lock();
1538 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1539 	rcu_read_unlock();
1540 	psinfo->pr_pid = task_pid_vnr(p);
1541 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1542 	psinfo->pr_sid = task_session_vnr(p);
1543 
1544 	i = p->state ? ffz(~p->state) + 1 : 0;
1545 	psinfo->pr_state = i;
1546 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1547 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1548 	psinfo->pr_nice = task_nice(p);
1549 	psinfo->pr_flag = p->flags;
1550 	rcu_read_lock();
1551 	cred = __task_cred(p);
1552 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1553 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1554 	rcu_read_unlock();
1555 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1556 
1557 	return 0;
1558 }
1559 
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1560 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1561 {
1562 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1563 	int i = 0;
1564 	do
1565 		i += 2;
1566 	while (auxv[i - 2] != AT_NULL);
1567 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1568 }
1569 
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const siginfo_t * siginfo)1570 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1571 		const siginfo_t *siginfo)
1572 {
1573 	mm_segment_t old_fs = get_fs();
1574 	set_fs(KERNEL_DS);
1575 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1576 	set_fs(old_fs);
1577 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1578 }
1579 
1580 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1581 /*
1582  * Format of NT_FILE note:
1583  *
1584  * long count     -- how many files are mapped
1585  * long page_size -- units for file_ofs
1586  * array of [COUNT] elements of
1587  *   long start
1588  *   long end
1589  *   long file_ofs
1590  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1591  */
fill_files_note(struct memelfnote * note)1592 static int fill_files_note(struct memelfnote *note)
1593 {
1594 	struct vm_area_struct *vma;
1595 	unsigned count, size, names_ofs, remaining, n;
1596 	user_long_t *data;
1597 	user_long_t *start_end_ofs;
1598 	char *name_base, *name_curpos;
1599 
1600 	/* *Estimated* file count and total data size needed */
1601 	count = current->mm->map_count;
1602 	size = count * 64;
1603 
1604 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1605  alloc:
1606 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1607 		return -EINVAL;
1608 	size = round_up(size, PAGE_SIZE);
1609 	data = vmalloc(size);
1610 	if (!data)
1611 		return -ENOMEM;
1612 
1613 	start_end_ofs = data + 2;
1614 	name_base = name_curpos = ((char *)data) + names_ofs;
1615 	remaining = size - names_ofs;
1616 	count = 0;
1617 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1618 		struct file *file;
1619 		const char *filename;
1620 
1621 		file = vma->vm_file;
1622 		if (!file)
1623 			continue;
1624 		filename = file_path(file, name_curpos, remaining);
1625 		if (IS_ERR(filename)) {
1626 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1627 				vfree(data);
1628 				size = size * 5 / 4;
1629 				goto alloc;
1630 			}
1631 			continue;
1632 		}
1633 
1634 		/* file_path() fills at the end, move name down */
1635 		/* n = strlen(filename) + 1: */
1636 		n = (name_curpos + remaining) - filename;
1637 		remaining = filename - name_curpos;
1638 		memmove(name_curpos, filename, n);
1639 		name_curpos += n;
1640 
1641 		*start_end_ofs++ = vma->vm_start;
1642 		*start_end_ofs++ = vma->vm_end;
1643 		*start_end_ofs++ = vma->vm_pgoff;
1644 		count++;
1645 	}
1646 
1647 	/* Now we know exact count of files, can store it */
1648 	data[0] = count;
1649 	data[1] = PAGE_SIZE;
1650 	/*
1651 	 * Count usually is less than current->mm->map_count,
1652 	 * we need to move filenames down.
1653 	 */
1654 	n = current->mm->map_count - count;
1655 	if (n != 0) {
1656 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1657 		memmove(name_base - shift_bytes, name_base,
1658 			name_curpos - name_base);
1659 		name_curpos -= shift_bytes;
1660 	}
1661 
1662 	size = name_curpos - (char *)data;
1663 	fill_note(note, "CORE", NT_FILE, size, data);
1664 	return 0;
1665 }
1666 
1667 #ifdef CORE_DUMP_USE_REGSET
1668 #include <linux/regset.h>
1669 
1670 struct elf_thread_core_info {
1671 	struct elf_thread_core_info *next;
1672 	struct task_struct *task;
1673 	struct elf_prstatus prstatus;
1674 	struct memelfnote notes[0];
1675 };
1676 
1677 struct elf_note_info {
1678 	struct elf_thread_core_info *thread;
1679 	struct memelfnote psinfo;
1680 	struct memelfnote signote;
1681 	struct memelfnote auxv;
1682 	struct memelfnote files;
1683 	user_siginfo_t csigdata;
1684 	size_t size;
1685 	int thread_notes;
1686 };
1687 
1688 /*
1689  * When a regset has a writeback hook, we call it on each thread before
1690  * dumping user memory.  On register window machines, this makes sure the
1691  * user memory backing the register data is up to date before we read it.
1692  */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1693 static void do_thread_regset_writeback(struct task_struct *task,
1694 				       const struct user_regset *regset)
1695 {
1696 	if (regset->writeback)
1697 		regset->writeback(task, regset, 1);
1698 }
1699 
1700 #ifndef PRSTATUS_SIZE
1701 #define PRSTATUS_SIZE(S, R) sizeof(S)
1702 #endif
1703 
1704 #ifndef SET_PR_FPVALID
1705 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1706 #endif
1707 
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1708 static int fill_thread_core_info(struct elf_thread_core_info *t,
1709 				 const struct user_regset_view *view,
1710 				 long signr, size_t *total)
1711 {
1712 	unsigned int i;
1713 	unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1714 
1715 	/*
1716 	 * NT_PRSTATUS is the one special case, because the regset data
1717 	 * goes into the pr_reg field inside the note contents, rather
1718 	 * than being the whole note contents.  We fill the reset in here.
1719 	 * We assume that regset 0 is NT_PRSTATUS.
1720 	 */
1721 	fill_prstatus(&t->prstatus, t->task, signr);
1722 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1723 				    &t->prstatus.pr_reg, NULL);
1724 
1725 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1726 		  PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1727 	*total += notesize(&t->notes[0]);
1728 
1729 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1730 
1731 	/*
1732 	 * Each other regset might generate a note too.  For each regset
1733 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1734 	 * all zero and we'll know to skip writing it later.
1735 	 */
1736 	for (i = 1; i < view->n; ++i) {
1737 		const struct user_regset *regset = &view->regsets[i];
1738 		do_thread_regset_writeback(t->task, regset);
1739 		if (regset->core_note_type && regset->get &&
1740 		    (!regset->active || regset->active(t->task, regset) > 0)) {
1741 			int ret;
1742 			size_t size = regset->n * regset->size;
1743 			void *data = kmalloc(size, GFP_KERNEL);
1744 			if (unlikely(!data))
1745 				return 0;
1746 			ret = regset->get(t->task, regset,
1747 					  0, size, data, NULL);
1748 			if (unlikely(ret))
1749 				kfree(data);
1750 			else {
1751 				if (regset->core_note_type != NT_PRFPREG)
1752 					fill_note(&t->notes[i], "LINUX",
1753 						  regset->core_note_type,
1754 						  size, data);
1755 				else {
1756 					SET_PR_FPVALID(&t->prstatus,
1757 							1, regset_size);
1758 					fill_note(&t->notes[i], "CORE",
1759 						  NT_PRFPREG, size, data);
1760 				}
1761 				*total += notesize(&t->notes[i]);
1762 			}
1763 		}
1764 	}
1765 
1766 	return 1;
1767 }
1768 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)1769 static int fill_note_info(struct elfhdr *elf, int phdrs,
1770 			  struct elf_note_info *info,
1771 			  const siginfo_t *siginfo, struct pt_regs *regs)
1772 {
1773 	struct task_struct *dump_task = current;
1774 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1775 	struct elf_thread_core_info *t;
1776 	struct elf_prpsinfo *psinfo;
1777 	struct core_thread *ct;
1778 	unsigned int i;
1779 
1780 	info->size = 0;
1781 	info->thread = NULL;
1782 
1783 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1784 	if (psinfo == NULL) {
1785 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1786 		return 0;
1787 	}
1788 
1789 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1790 
1791 	/*
1792 	 * Figure out how many notes we're going to need for each thread.
1793 	 */
1794 	info->thread_notes = 0;
1795 	for (i = 0; i < view->n; ++i)
1796 		if (view->regsets[i].core_note_type != 0)
1797 			++info->thread_notes;
1798 
1799 	/*
1800 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1801 	 * since it is our one special case.
1802 	 */
1803 	if (unlikely(info->thread_notes == 0) ||
1804 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1805 		WARN_ON(1);
1806 		return 0;
1807 	}
1808 
1809 	/*
1810 	 * Initialize the ELF file header.
1811 	 */
1812 	fill_elf_header(elf, phdrs,
1813 			view->e_machine, view->e_flags);
1814 
1815 	/*
1816 	 * Allocate a structure for each thread.
1817 	 */
1818 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1819 		t = kzalloc(offsetof(struct elf_thread_core_info,
1820 				     notes[info->thread_notes]),
1821 			    GFP_KERNEL);
1822 		if (unlikely(!t))
1823 			return 0;
1824 
1825 		t->task = ct->task;
1826 		if (ct->task == dump_task || !info->thread) {
1827 			t->next = info->thread;
1828 			info->thread = t;
1829 		} else {
1830 			/*
1831 			 * Make sure to keep the original task at
1832 			 * the head of the list.
1833 			 */
1834 			t->next = info->thread->next;
1835 			info->thread->next = t;
1836 		}
1837 	}
1838 
1839 	/*
1840 	 * Now fill in each thread's information.
1841 	 */
1842 	for (t = info->thread; t != NULL; t = t->next)
1843 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1844 			return 0;
1845 
1846 	/*
1847 	 * Fill in the two process-wide notes.
1848 	 */
1849 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1850 	info->size += notesize(&info->psinfo);
1851 
1852 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1853 	info->size += notesize(&info->signote);
1854 
1855 	fill_auxv_note(&info->auxv, current->mm);
1856 	info->size += notesize(&info->auxv);
1857 
1858 	if (fill_files_note(&info->files) == 0)
1859 		info->size += notesize(&info->files);
1860 
1861 	return 1;
1862 }
1863 
get_note_info_size(struct elf_note_info * info)1864 static size_t get_note_info_size(struct elf_note_info *info)
1865 {
1866 	return info->size;
1867 }
1868 
1869 /*
1870  * Write all the notes for each thread.  When writing the first thread, the
1871  * process-wide notes are interleaved after the first thread-specific note.
1872  */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1873 static int write_note_info(struct elf_note_info *info,
1874 			   struct coredump_params *cprm)
1875 {
1876 	bool first = true;
1877 	struct elf_thread_core_info *t = info->thread;
1878 
1879 	do {
1880 		int i;
1881 
1882 		if (!writenote(&t->notes[0], cprm))
1883 			return 0;
1884 
1885 		if (first && !writenote(&info->psinfo, cprm))
1886 			return 0;
1887 		if (first && !writenote(&info->signote, cprm))
1888 			return 0;
1889 		if (first && !writenote(&info->auxv, cprm))
1890 			return 0;
1891 		if (first && info->files.data &&
1892 				!writenote(&info->files, cprm))
1893 			return 0;
1894 
1895 		for (i = 1; i < info->thread_notes; ++i)
1896 			if (t->notes[i].data &&
1897 			    !writenote(&t->notes[i], cprm))
1898 				return 0;
1899 
1900 		first = false;
1901 		t = t->next;
1902 	} while (t);
1903 
1904 	return 1;
1905 }
1906 
free_note_info(struct elf_note_info * info)1907 static void free_note_info(struct elf_note_info *info)
1908 {
1909 	struct elf_thread_core_info *threads = info->thread;
1910 	while (threads) {
1911 		unsigned int i;
1912 		struct elf_thread_core_info *t = threads;
1913 		threads = t->next;
1914 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1915 		for (i = 1; i < info->thread_notes; ++i)
1916 			kfree(t->notes[i].data);
1917 		kfree(t);
1918 	}
1919 	kfree(info->psinfo.data);
1920 	vfree(info->files.data);
1921 }
1922 
1923 #else
1924 
1925 /* Here is the structure in which status of each thread is captured. */
1926 struct elf_thread_status
1927 {
1928 	struct list_head list;
1929 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1930 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1931 	struct task_struct *thread;
1932 #ifdef ELF_CORE_COPY_XFPREGS
1933 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1934 #endif
1935 	struct memelfnote notes[3];
1936 	int num_notes;
1937 };
1938 
1939 /*
1940  * In order to add the specific thread information for the elf file format,
1941  * we need to keep a linked list of every threads pr_status and then create
1942  * a single section for them in the final core file.
1943  */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1944 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1945 {
1946 	int sz = 0;
1947 	struct task_struct *p = t->thread;
1948 	t->num_notes = 0;
1949 
1950 	fill_prstatus(&t->prstatus, p, signr);
1951 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1952 
1953 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1954 		  &(t->prstatus));
1955 	t->num_notes++;
1956 	sz += notesize(&t->notes[0]);
1957 
1958 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1959 								&t->fpu))) {
1960 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1961 			  &(t->fpu));
1962 		t->num_notes++;
1963 		sz += notesize(&t->notes[1]);
1964 	}
1965 
1966 #ifdef ELF_CORE_COPY_XFPREGS
1967 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1968 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1969 			  sizeof(t->xfpu), &t->xfpu);
1970 		t->num_notes++;
1971 		sz += notesize(&t->notes[2]);
1972 	}
1973 #endif
1974 	return sz;
1975 }
1976 
1977 struct elf_note_info {
1978 	struct memelfnote *notes;
1979 	struct memelfnote *notes_files;
1980 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1981 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1982 	struct list_head thread_list;
1983 	elf_fpregset_t *fpu;
1984 #ifdef ELF_CORE_COPY_XFPREGS
1985 	elf_fpxregset_t *xfpu;
1986 #endif
1987 	user_siginfo_t csigdata;
1988 	int thread_status_size;
1989 	int numnote;
1990 };
1991 
elf_note_info_init(struct elf_note_info * info)1992 static int elf_note_info_init(struct elf_note_info *info)
1993 {
1994 	memset(info, 0, sizeof(*info));
1995 	INIT_LIST_HEAD(&info->thread_list);
1996 
1997 	/* Allocate space for ELF notes */
1998 	info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1999 	if (!info->notes)
2000 		return 0;
2001 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2002 	if (!info->psinfo)
2003 		return 0;
2004 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2005 	if (!info->prstatus)
2006 		return 0;
2007 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2008 	if (!info->fpu)
2009 		return 0;
2010 #ifdef ELF_CORE_COPY_XFPREGS
2011 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2012 	if (!info->xfpu)
2013 		return 0;
2014 #endif
2015 	return 1;
2016 }
2017 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)2018 static int fill_note_info(struct elfhdr *elf, int phdrs,
2019 			  struct elf_note_info *info,
2020 			  const siginfo_t *siginfo, struct pt_regs *regs)
2021 {
2022 	struct list_head *t;
2023 	struct core_thread *ct;
2024 	struct elf_thread_status *ets;
2025 
2026 	if (!elf_note_info_init(info))
2027 		return 0;
2028 
2029 	for (ct = current->mm->core_state->dumper.next;
2030 					ct; ct = ct->next) {
2031 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2032 		if (!ets)
2033 			return 0;
2034 
2035 		ets->thread = ct->task;
2036 		list_add(&ets->list, &info->thread_list);
2037 	}
2038 
2039 	list_for_each(t, &info->thread_list) {
2040 		int sz;
2041 
2042 		ets = list_entry(t, struct elf_thread_status, list);
2043 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2044 		info->thread_status_size += sz;
2045 	}
2046 	/* now collect the dump for the current */
2047 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2048 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2049 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2050 
2051 	/* Set up header */
2052 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2053 
2054 	/*
2055 	 * Set up the notes in similar form to SVR4 core dumps made
2056 	 * with info from their /proc.
2057 	 */
2058 
2059 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2060 		  sizeof(*info->prstatus), info->prstatus);
2061 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2062 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2063 		  sizeof(*info->psinfo), info->psinfo);
2064 
2065 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2066 	fill_auxv_note(info->notes + 3, current->mm);
2067 	info->numnote = 4;
2068 
2069 	if (fill_files_note(info->notes + info->numnote) == 0) {
2070 		info->notes_files = info->notes + info->numnote;
2071 		info->numnote++;
2072 	}
2073 
2074 	/* Try to dump the FPU. */
2075 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2076 							       info->fpu);
2077 	if (info->prstatus->pr_fpvalid)
2078 		fill_note(info->notes + info->numnote++,
2079 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2080 #ifdef ELF_CORE_COPY_XFPREGS
2081 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2082 		fill_note(info->notes + info->numnote++,
2083 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2084 			  sizeof(*info->xfpu), info->xfpu);
2085 #endif
2086 
2087 	return 1;
2088 }
2089 
get_note_info_size(struct elf_note_info * info)2090 static size_t get_note_info_size(struct elf_note_info *info)
2091 {
2092 	int sz = 0;
2093 	int i;
2094 
2095 	for (i = 0; i < info->numnote; i++)
2096 		sz += notesize(info->notes + i);
2097 
2098 	sz += info->thread_status_size;
2099 
2100 	return sz;
2101 }
2102 
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)2103 static int write_note_info(struct elf_note_info *info,
2104 			   struct coredump_params *cprm)
2105 {
2106 	int i;
2107 	struct list_head *t;
2108 
2109 	for (i = 0; i < info->numnote; i++)
2110 		if (!writenote(info->notes + i, cprm))
2111 			return 0;
2112 
2113 	/* write out the thread status notes section */
2114 	list_for_each(t, &info->thread_list) {
2115 		struct elf_thread_status *tmp =
2116 				list_entry(t, struct elf_thread_status, list);
2117 
2118 		for (i = 0; i < tmp->num_notes; i++)
2119 			if (!writenote(&tmp->notes[i], cprm))
2120 				return 0;
2121 	}
2122 
2123 	return 1;
2124 }
2125 
free_note_info(struct elf_note_info * info)2126 static void free_note_info(struct elf_note_info *info)
2127 {
2128 	while (!list_empty(&info->thread_list)) {
2129 		struct list_head *tmp = info->thread_list.next;
2130 		list_del(tmp);
2131 		kfree(list_entry(tmp, struct elf_thread_status, list));
2132 	}
2133 
2134 	/* Free data possibly allocated by fill_files_note(): */
2135 	if (info->notes_files)
2136 		vfree(info->notes_files->data);
2137 
2138 	kfree(info->prstatus);
2139 	kfree(info->psinfo);
2140 	kfree(info->notes);
2141 	kfree(info->fpu);
2142 #ifdef ELF_CORE_COPY_XFPREGS
2143 	kfree(info->xfpu);
2144 #endif
2145 }
2146 
2147 #endif
2148 
first_vma(struct task_struct * tsk,struct vm_area_struct * gate_vma)2149 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2150 					struct vm_area_struct *gate_vma)
2151 {
2152 	struct vm_area_struct *ret = tsk->mm->mmap;
2153 
2154 	if (ret)
2155 		return ret;
2156 	return gate_vma;
2157 }
2158 /*
2159  * Helper function for iterating across a vma list.  It ensures that the caller
2160  * will visit `gate_vma' prior to terminating the search.
2161  */
next_vma(struct vm_area_struct * this_vma,struct vm_area_struct * gate_vma)2162 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2163 					struct vm_area_struct *gate_vma)
2164 {
2165 	struct vm_area_struct *ret;
2166 
2167 	ret = this_vma->vm_next;
2168 	if (ret)
2169 		return ret;
2170 	if (this_vma == gate_vma)
2171 		return NULL;
2172 	return gate_vma;
2173 }
2174 
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)2175 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2176 			     elf_addr_t e_shoff, int segs)
2177 {
2178 	elf->e_shoff = e_shoff;
2179 	elf->e_shentsize = sizeof(*shdr4extnum);
2180 	elf->e_shnum = 1;
2181 	elf->e_shstrndx = SHN_UNDEF;
2182 
2183 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2184 
2185 	shdr4extnum->sh_type = SHT_NULL;
2186 	shdr4extnum->sh_size = elf->e_shnum;
2187 	shdr4extnum->sh_link = elf->e_shstrndx;
2188 	shdr4extnum->sh_info = segs;
2189 }
2190 
2191 /*
2192  * Actual dumper
2193  *
2194  * This is a two-pass process; first we find the offsets of the bits,
2195  * and then they are actually written out.  If we run out of core limit
2196  * we just truncate.
2197  */
elf_core_dump(struct coredump_params * cprm)2198 static int elf_core_dump(struct coredump_params *cprm)
2199 {
2200 	int has_dumped = 0;
2201 	mm_segment_t fs;
2202 	int segs, i;
2203 	size_t vma_data_size = 0;
2204 	struct vm_area_struct *vma, *gate_vma;
2205 	struct elfhdr *elf = NULL;
2206 	loff_t offset = 0, dataoff;
2207 	struct elf_note_info info = { };
2208 	struct elf_phdr *phdr4note = NULL;
2209 	struct elf_shdr *shdr4extnum = NULL;
2210 	Elf_Half e_phnum;
2211 	elf_addr_t e_shoff;
2212 	elf_addr_t *vma_filesz = NULL;
2213 
2214 	/*
2215 	 * We no longer stop all VM operations.
2216 	 *
2217 	 * This is because those proceses that could possibly change map_count
2218 	 * or the mmap / vma pages are now blocked in do_exit on current
2219 	 * finishing this core dump.
2220 	 *
2221 	 * Only ptrace can touch these memory addresses, but it doesn't change
2222 	 * the map_count or the pages allocated. So no possibility of crashing
2223 	 * exists while dumping the mm->vm_next areas to the core file.
2224 	 */
2225 
2226 	/* alloc memory for large data structures: too large to be on stack */
2227 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2228 	if (!elf)
2229 		goto out;
2230 	/*
2231 	 * The number of segs are recored into ELF header as 16bit value.
2232 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2233 	 */
2234 	segs = current->mm->map_count;
2235 	segs += elf_core_extra_phdrs();
2236 
2237 	gate_vma = get_gate_vma(current->mm);
2238 	if (gate_vma != NULL)
2239 		segs++;
2240 
2241 	/* for notes section */
2242 	segs++;
2243 
2244 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2245 	 * this, kernel supports extended numbering. Have a look at
2246 	 * include/linux/elf.h for further information. */
2247 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2248 
2249 	/*
2250 	 * Collect all the non-memory information about the process for the
2251 	 * notes.  This also sets up the file header.
2252 	 */
2253 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2254 		goto cleanup;
2255 
2256 	has_dumped = 1;
2257 
2258 	fs = get_fs();
2259 	set_fs(KERNEL_DS);
2260 
2261 	offset += sizeof(*elf);				/* Elf header */
2262 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2263 
2264 	/* Write notes phdr entry */
2265 	{
2266 		size_t sz = get_note_info_size(&info);
2267 
2268 		sz += elf_coredump_extra_notes_size();
2269 
2270 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2271 		if (!phdr4note)
2272 			goto end_coredump;
2273 
2274 		fill_elf_note_phdr(phdr4note, sz, offset);
2275 		offset += sz;
2276 	}
2277 
2278 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2279 
2280 	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2281 		goto end_coredump;
2282 	vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2283 	if (!vma_filesz)
2284 		goto end_coredump;
2285 
2286 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2287 			vma = next_vma(vma, gate_vma)) {
2288 		unsigned long dump_size;
2289 
2290 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2291 		vma_filesz[i++] = dump_size;
2292 		vma_data_size += dump_size;
2293 	}
2294 
2295 	offset += vma_data_size;
2296 	offset += elf_core_extra_data_size();
2297 	e_shoff = offset;
2298 
2299 	if (e_phnum == PN_XNUM) {
2300 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2301 		if (!shdr4extnum)
2302 			goto end_coredump;
2303 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2304 	}
2305 
2306 	offset = dataoff;
2307 
2308 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2309 		goto end_coredump;
2310 
2311 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2312 		goto end_coredump;
2313 
2314 	/* Write program headers for segments dump */
2315 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2316 			vma = next_vma(vma, gate_vma)) {
2317 		struct elf_phdr phdr;
2318 
2319 		phdr.p_type = PT_LOAD;
2320 		phdr.p_offset = offset;
2321 		phdr.p_vaddr = vma->vm_start;
2322 		phdr.p_paddr = 0;
2323 		phdr.p_filesz = vma_filesz[i++];
2324 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2325 		offset += phdr.p_filesz;
2326 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2327 		if (vma->vm_flags & VM_WRITE)
2328 			phdr.p_flags |= PF_W;
2329 		if (vma->vm_flags & VM_EXEC)
2330 			phdr.p_flags |= PF_X;
2331 		phdr.p_align = ELF_EXEC_PAGESIZE;
2332 
2333 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2334 			goto end_coredump;
2335 	}
2336 
2337 	if (!elf_core_write_extra_phdrs(cprm, offset))
2338 		goto end_coredump;
2339 
2340  	/* write out the notes section */
2341 	if (!write_note_info(&info, cprm))
2342 		goto end_coredump;
2343 
2344 	if (elf_coredump_extra_notes_write(cprm))
2345 		goto end_coredump;
2346 
2347 	/* Align to page */
2348 	if (!dump_skip(cprm, dataoff - cprm->pos))
2349 		goto end_coredump;
2350 
2351 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2352 			vma = next_vma(vma, gate_vma)) {
2353 		unsigned long addr;
2354 		unsigned long end;
2355 
2356 		end = vma->vm_start + vma_filesz[i++];
2357 
2358 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2359 			struct page *page;
2360 			int stop;
2361 
2362 			page = get_dump_page(addr);
2363 			if (page) {
2364 				void *kaddr = kmap(page);
2365 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2366 				kunmap(page);
2367 				put_page(page);
2368 			} else
2369 				stop = !dump_skip(cprm, PAGE_SIZE);
2370 			if (stop)
2371 				goto end_coredump;
2372 		}
2373 	}
2374 	dump_truncate(cprm);
2375 
2376 	if (!elf_core_write_extra_data(cprm))
2377 		goto end_coredump;
2378 
2379 	if (e_phnum == PN_XNUM) {
2380 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2381 			goto end_coredump;
2382 	}
2383 
2384 end_coredump:
2385 	set_fs(fs);
2386 
2387 cleanup:
2388 	free_note_info(&info);
2389 	kfree(shdr4extnum);
2390 	vfree(vma_filesz);
2391 	kfree(phdr4note);
2392 	kfree(elf);
2393 out:
2394 	return has_dumped;
2395 }
2396 
2397 #endif		/* CONFIG_ELF_CORE */
2398 
init_elf_binfmt(void)2399 static int __init init_elf_binfmt(void)
2400 {
2401 	register_binfmt(&elf_format);
2402 	return 0;
2403 }
2404 
exit_elf_binfmt(void)2405 static void __exit exit_elf_binfmt(void)
2406 {
2407 	/* Remove the COFF and ELF loaders. */
2408 	unregister_binfmt(&elf_format);
2409 }
2410 
2411 core_initcall(init_elf_binfmt);
2412 module_exit(exit_elf_binfmt);
2413 MODULE_LICENSE("GPL");
2414