1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53
54 static int load_elf_binary(struct linux_binprm *bprm);
55 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
56 int, int, unsigned long);
57
58 #ifdef CONFIG_USELIB
59 static int load_elf_library(struct file *);
60 #else
61 #define load_elf_library NULL
62 #endif
63
64 /*
65 * If we don't support core dumping, then supply a NULL so we
66 * don't even try.
67 */
68 #ifdef CONFIG_ELF_CORE
69 static int elf_core_dump(struct coredump_params *cprm);
70 #else
71 #define elf_core_dump NULL
72 #endif
73
74 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
75 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
76 #else
77 #define ELF_MIN_ALIGN PAGE_SIZE
78 #endif
79
80 #ifndef ELF_CORE_EFLAGS
81 #define ELF_CORE_EFLAGS 0
82 #endif
83
84 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
85 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
86 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
87
88 static struct linux_binfmt elf_format = {
89 .module = THIS_MODULE,
90 .load_binary = load_elf_binary,
91 .load_shlib = load_elf_library,
92 .core_dump = elf_core_dump,
93 .min_coredump = ELF_EXEC_PAGESIZE,
94 };
95
96 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
97
set_brk(unsigned long start,unsigned long end,int prot)98 static int set_brk(unsigned long start, unsigned long end, int prot)
99 {
100 start = ELF_PAGEALIGN(start);
101 end = ELF_PAGEALIGN(end);
102 if (end > start) {
103 /*
104 * Map the last of the bss segment.
105 * If the header is requesting these pages to be
106 * executable, honour that (ppc32 needs this).
107 */
108 int error = vm_brk_flags(start, end - start,
109 prot & PROT_EXEC ? VM_EXEC : 0);
110 if (error)
111 return error;
112 }
113 current->mm->start_brk = current->mm->brk = end;
114 return 0;
115 }
116
117 /* We need to explicitly zero any fractional pages
118 after the data section (i.e. bss). This would
119 contain the junk from the file that should not
120 be in memory
121 */
padzero(unsigned long elf_bss)122 static int padzero(unsigned long elf_bss)
123 {
124 unsigned long nbyte;
125
126 nbyte = ELF_PAGEOFFSET(elf_bss);
127 if (nbyte) {
128 nbyte = ELF_MIN_ALIGN - nbyte;
129 if (clear_user((void __user *) elf_bss, nbyte))
130 return -EFAULT;
131 }
132 return 0;
133 }
134
135 /* Let's use some macros to make this stack manipulation a little clearer */
136 #ifdef CONFIG_STACK_GROWSUP
137 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
138 #define STACK_ROUND(sp, items) \
139 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
140 #define STACK_ALLOC(sp, len) ({ \
141 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
142 old_sp; })
143 #else
144 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
145 #define STACK_ROUND(sp, items) \
146 (((unsigned long) (sp - items)) &~ 15UL)
147 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
148 #endif
149
150 #ifndef ELF_BASE_PLATFORM
151 /*
152 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
153 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
154 * will be copied to the user stack in the same manner as AT_PLATFORM.
155 */
156 #define ELF_BASE_PLATFORM NULL
157 #endif
158
159 static int
create_elf_tables(struct linux_binprm * bprm,struct elfhdr * exec,unsigned long load_addr,unsigned long interp_load_addr)160 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
161 unsigned long load_addr, unsigned long interp_load_addr)
162 {
163 unsigned long p = bprm->p;
164 int argc = bprm->argc;
165 int envc = bprm->envc;
166 elf_addr_t __user *sp;
167 elf_addr_t __user *u_platform;
168 elf_addr_t __user *u_base_platform;
169 elf_addr_t __user *u_rand_bytes;
170 const char *k_platform = ELF_PLATFORM;
171 const char *k_base_platform = ELF_BASE_PLATFORM;
172 unsigned char k_rand_bytes[16];
173 int items;
174 elf_addr_t *elf_info;
175 int ei_index = 0;
176 const struct cred *cred = current_cred();
177 struct vm_area_struct *vma;
178
179 /*
180 * In some cases (e.g. Hyper-Threading), we want to avoid L1
181 * evictions by the processes running on the same package. One
182 * thing we can do is to shuffle the initial stack for them.
183 */
184
185 p = arch_align_stack(p);
186
187 /*
188 * If this architecture has a platform capability string, copy it
189 * to userspace. In some cases (Sparc), this info is impossible
190 * for userspace to get any other way, in others (i386) it is
191 * merely difficult.
192 */
193 u_platform = NULL;
194 if (k_platform) {
195 size_t len = strlen(k_platform) + 1;
196
197 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
198 if (__copy_to_user(u_platform, k_platform, len))
199 return -EFAULT;
200 }
201
202 /*
203 * If this architecture has a "base" platform capability
204 * string, copy it to userspace.
205 */
206 u_base_platform = NULL;
207 if (k_base_platform) {
208 size_t len = strlen(k_base_platform) + 1;
209
210 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
211 if (__copy_to_user(u_base_platform, k_base_platform, len))
212 return -EFAULT;
213 }
214
215 /*
216 * Generate 16 random bytes for userspace PRNG seeding.
217 */
218 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
219 u_rand_bytes = (elf_addr_t __user *)
220 STACK_ALLOC(p, sizeof(k_rand_bytes));
221 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
222 return -EFAULT;
223
224 /* Create the ELF interpreter info */
225 elf_info = (elf_addr_t *)current->mm->saved_auxv;
226 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
227 #define NEW_AUX_ENT(id, val) \
228 do { \
229 elf_info[ei_index++] = id; \
230 elf_info[ei_index++] = val; \
231 } while (0)
232
233 #ifdef ARCH_DLINFO
234 /*
235 * ARCH_DLINFO must come first so PPC can do its special alignment of
236 * AUXV.
237 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
238 * ARCH_DLINFO changes
239 */
240 ARCH_DLINFO;
241 #endif
242 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
243 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
244 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
245 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
246 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
247 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
248 NEW_AUX_ENT(AT_BASE, interp_load_addr);
249 NEW_AUX_ENT(AT_FLAGS, 0);
250 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
251 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
252 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
253 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
254 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
255 NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
256 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
257 #ifdef ELF_HWCAP2
258 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
259 #endif
260 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
261 if (k_platform) {
262 NEW_AUX_ENT(AT_PLATFORM,
263 (elf_addr_t)(unsigned long)u_platform);
264 }
265 if (k_base_platform) {
266 NEW_AUX_ENT(AT_BASE_PLATFORM,
267 (elf_addr_t)(unsigned long)u_base_platform);
268 }
269 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
270 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
271 }
272 #undef NEW_AUX_ENT
273 /* AT_NULL is zero; clear the rest too */
274 memset(&elf_info[ei_index], 0,
275 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
276
277 /* And advance past the AT_NULL entry. */
278 ei_index += 2;
279
280 sp = STACK_ADD(p, ei_index);
281
282 items = (argc + 1) + (envc + 1) + 1;
283 bprm->p = STACK_ROUND(sp, items);
284
285 /* Point sp at the lowest address on the stack */
286 #ifdef CONFIG_STACK_GROWSUP
287 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
288 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
289 #else
290 sp = (elf_addr_t __user *)bprm->p;
291 #endif
292
293
294 /*
295 * Grow the stack manually; some architectures have a limit on how
296 * far ahead a user-space access may be in order to grow the stack.
297 */
298 vma = find_extend_vma(current->mm, bprm->p);
299 if (!vma)
300 return -EFAULT;
301
302 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
303 if (__put_user(argc, sp++))
304 return -EFAULT;
305
306 /* Populate list of argv pointers back to argv strings. */
307 p = current->mm->arg_end = current->mm->arg_start;
308 while (argc-- > 0) {
309 size_t len;
310 if (__put_user((elf_addr_t)p, sp++))
311 return -EFAULT;
312 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
313 if (!len || len > MAX_ARG_STRLEN)
314 return -EINVAL;
315 p += len;
316 }
317 if (__put_user(0, sp++))
318 return -EFAULT;
319 current->mm->arg_end = p;
320
321 /* Populate list of envp pointers back to envp strings. */
322 current->mm->env_end = current->mm->env_start = p;
323 while (envc-- > 0) {
324 size_t len;
325 if (__put_user((elf_addr_t)p, sp++))
326 return -EFAULT;
327 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
328 if (!len || len > MAX_ARG_STRLEN)
329 return -EINVAL;
330 p += len;
331 }
332 if (__put_user(0, sp++))
333 return -EFAULT;
334 current->mm->env_end = p;
335
336 /* Put the elf_info on the stack in the right place. */
337 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
338 return -EFAULT;
339 return 0;
340 }
341
342 #ifndef elf_map
343
elf_map(struct file * filep,unsigned long addr,struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)344 static unsigned long elf_map(struct file *filep, unsigned long addr,
345 struct elf_phdr *eppnt, int prot, int type,
346 unsigned long total_size)
347 {
348 unsigned long map_addr;
349 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
350 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
351 addr = ELF_PAGESTART(addr);
352 size = ELF_PAGEALIGN(size);
353
354 /* mmap() will return -EINVAL if given a zero size, but a
355 * segment with zero filesize is perfectly valid */
356 if (!size)
357 return addr;
358
359 /*
360 * total_size is the size of the ELF (interpreter) image.
361 * The _first_ mmap needs to know the full size, otherwise
362 * randomization might put this image into an overlapping
363 * position with the ELF binary image. (since size < total_size)
364 * So we first map the 'big' image - and unmap the remainder at
365 * the end. (which unmap is needed for ELF images with holes.)
366 */
367 if (total_size) {
368 total_size = ELF_PAGEALIGN(total_size);
369 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
370 if (!BAD_ADDR(map_addr))
371 vm_munmap(map_addr+size, total_size-size);
372 } else
373 map_addr = vm_mmap(filep, addr, size, prot, type, off);
374
375 return(map_addr);
376 }
377
378 #endif /* !elf_map */
379
total_mapping_size(struct elf_phdr * cmds,int nr)380 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
381 {
382 int i, first_idx = -1, last_idx = -1;
383
384 for (i = 0; i < nr; i++) {
385 if (cmds[i].p_type == PT_LOAD) {
386 last_idx = i;
387 if (first_idx == -1)
388 first_idx = i;
389 }
390 }
391 if (first_idx == -1)
392 return 0;
393
394 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
395 ELF_PAGESTART(cmds[first_idx].p_vaddr);
396 }
397
398 /**
399 * load_elf_phdrs() - load ELF program headers
400 * @elf_ex: ELF header of the binary whose program headers should be loaded
401 * @elf_file: the opened ELF binary file
402 *
403 * Loads ELF program headers from the binary file elf_file, which has the ELF
404 * header pointed to by elf_ex, into a newly allocated array. The caller is
405 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
406 */
load_elf_phdrs(struct elfhdr * elf_ex,struct file * elf_file)407 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
408 struct file *elf_file)
409 {
410 struct elf_phdr *elf_phdata = NULL;
411 int retval, size, err = -1;
412 loff_t pos = elf_ex->e_phoff;
413
414 /*
415 * If the size of this structure has changed, then punt, since
416 * we will be doing the wrong thing.
417 */
418 if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
419 goto out;
420
421 /* Sanity check the number of program headers... */
422 if (elf_ex->e_phnum < 1 ||
423 elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
424 goto out;
425
426 /* ...and their total size. */
427 size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
428 if (size > ELF_MIN_ALIGN)
429 goto out;
430
431 elf_phdata = kmalloc(size, GFP_KERNEL);
432 if (!elf_phdata)
433 goto out;
434
435 /* Read in the program headers */
436 retval = kernel_read(elf_file, elf_phdata, size, &pos);
437 if (retval != size) {
438 err = (retval < 0) ? retval : -EIO;
439 goto out;
440 }
441
442 /* Success! */
443 err = 0;
444 out:
445 if (err) {
446 kfree(elf_phdata);
447 elf_phdata = NULL;
448 }
449 return elf_phdata;
450 }
451
452 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
453
454 /**
455 * struct arch_elf_state - arch-specific ELF loading state
456 *
457 * This structure is used to preserve architecture specific data during
458 * the loading of an ELF file, throughout the checking of architecture
459 * specific ELF headers & through to the point where the ELF load is
460 * known to be proceeding (ie. SET_PERSONALITY).
461 *
462 * This implementation is a dummy for architectures which require no
463 * specific state.
464 */
465 struct arch_elf_state {
466 };
467
468 #define INIT_ARCH_ELF_STATE {}
469
470 /**
471 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
472 * @ehdr: The main ELF header
473 * @phdr: The program header to check
474 * @elf: The open ELF file
475 * @is_interp: True if the phdr is from the interpreter of the ELF being
476 * loaded, else false.
477 * @state: Architecture-specific state preserved throughout the process
478 * of loading the ELF.
479 *
480 * Inspects the program header phdr to validate its correctness and/or
481 * suitability for the system. Called once per ELF program header in the
482 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
483 * interpreter.
484 *
485 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
486 * with that return code.
487 */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)488 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
489 struct elf_phdr *phdr,
490 struct file *elf, bool is_interp,
491 struct arch_elf_state *state)
492 {
493 /* Dummy implementation, always proceed */
494 return 0;
495 }
496
497 /**
498 * arch_check_elf() - check an ELF executable
499 * @ehdr: The main ELF header
500 * @has_interp: True if the ELF has an interpreter, else false.
501 * @interp_ehdr: The interpreter's ELF header
502 * @state: Architecture-specific state preserved throughout the process
503 * of loading the ELF.
504 *
505 * Provides a final opportunity for architecture code to reject the loading
506 * of the ELF & cause an exec syscall to return an error. This is called after
507 * all program headers to be checked by arch_elf_pt_proc have been.
508 *
509 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
510 * with that return code.
511 */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)512 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
513 struct elfhdr *interp_ehdr,
514 struct arch_elf_state *state)
515 {
516 /* Dummy implementation, always proceed */
517 return 0;
518 }
519
520 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
521
522 /* This is much more generalized than the library routine read function,
523 so we keep this separate. Technically the library read function
524 is only provided so that we can read a.out libraries that have
525 an ELF header */
526
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long * interp_map_addr,unsigned long no_base,struct elf_phdr * interp_elf_phdata)527 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
528 struct file *interpreter, unsigned long *interp_map_addr,
529 unsigned long no_base, struct elf_phdr *interp_elf_phdata)
530 {
531 struct elf_phdr *eppnt;
532 unsigned long load_addr = 0;
533 int load_addr_set = 0;
534 unsigned long last_bss = 0, elf_bss = 0;
535 int bss_prot = 0;
536 unsigned long error = ~0UL;
537 unsigned long total_size;
538 int i;
539
540 /* First of all, some simple consistency checks */
541 if (interp_elf_ex->e_type != ET_EXEC &&
542 interp_elf_ex->e_type != ET_DYN)
543 goto out;
544 if (!elf_check_arch(interp_elf_ex))
545 goto out;
546 if (!interpreter->f_op->mmap)
547 goto out;
548
549 total_size = total_mapping_size(interp_elf_phdata,
550 interp_elf_ex->e_phnum);
551 if (!total_size) {
552 error = -EINVAL;
553 goto out;
554 }
555
556 eppnt = interp_elf_phdata;
557 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
558 if (eppnt->p_type == PT_LOAD) {
559 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
560 int elf_prot = 0;
561 unsigned long vaddr = 0;
562 unsigned long k, map_addr;
563
564 if (eppnt->p_flags & PF_R)
565 elf_prot = PROT_READ;
566 if (eppnt->p_flags & PF_W)
567 elf_prot |= PROT_WRITE;
568 if (eppnt->p_flags & PF_X)
569 elf_prot |= PROT_EXEC;
570 vaddr = eppnt->p_vaddr;
571 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
572 elf_type |= MAP_FIXED;
573 else if (no_base && interp_elf_ex->e_type == ET_DYN)
574 load_addr = -vaddr;
575
576 map_addr = elf_map(interpreter, load_addr + vaddr,
577 eppnt, elf_prot, elf_type, total_size);
578 total_size = 0;
579 if (!*interp_map_addr)
580 *interp_map_addr = map_addr;
581 error = map_addr;
582 if (BAD_ADDR(map_addr))
583 goto out;
584
585 if (!load_addr_set &&
586 interp_elf_ex->e_type == ET_DYN) {
587 load_addr = map_addr - ELF_PAGESTART(vaddr);
588 load_addr_set = 1;
589 }
590
591 /*
592 * Check to see if the section's size will overflow the
593 * allowed task size. Note that p_filesz must always be
594 * <= p_memsize so it's only necessary to check p_memsz.
595 */
596 k = load_addr + eppnt->p_vaddr;
597 if (BAD_ADDR(k) ||
598 eppnt->p_filesz > eppnt->p_memsz ||
599 eppnt->p_memsz > TASK_SIZE ||
600 TASK_SIZE - eppnt->p_memsz < k) {
601 error = -ENOMEM;
602 goto out;
603 }
604
605 /*
606 * Find the end of the file mapping for this phdr, and
607 * keep track of the largest address we see for this.
608 */
609 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
610 if (k > elf_bss)
611 elf_bss = k;
612
613 /*
614 * Do the same thing for the memory mapping - between
615 * elf_bss and last_bss is the bss section.
616 */
617 k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
618 if (k > last_bss) {
619 last_bss = k;
620 bss_prot = elf_prot;
621 }
622 }
623 }
624
625 /*
626 * Now fill out the bss section: first pad the last page from
627 * the file up to the page boundary, and zero it from elf_bss
628 * up to the end of the page.
629 */
630 if (padzero(elf_bss)) {
631 error = -EFAULT;
632 goto out;
633 }
634 /*
635 * Next, align both the file and mem bss up to the page size,
636 * since this is where elf_bss was just zeroed up to, and where
637 * last_bss will end after the vm_brk_flags() below.
638 */
639 elf_bss = ELF_PAGEALIGN(elf_bss);
640 last_bss = ELF_PAGEALIGN(last_bss);
641 /* Finally, if there is still more bss to allocate, do it. */
642 if (last_bss > elf_bss) {
643 error = vm_brk_flags(elf_bss, last_bss - elf_bss,
644 bss_prot & PROT_EXEC ? VM_EXEC : 0);
645 if (error)
646 goto out;
647 }
648
649 error = load_addr;
650 out:
651 return error;
652 }
653
654 /*
655 * These are the functions used to load ELF style executables and shared
656 * libraries. There is no binary dependent code anywhere else.
657 */
658
659 #ifndef STACK_RND_MASK
660 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
661 #endif
662
randomize_stack_top(unsigned long stack_top)663 static unsigned long randomize_stack_top(unsigned long stack_top)
664 {
665 unsigned long random_variable = 0;
666
667 if (current->flags & PF_RANDOMIZE) {
668 random_variable = get_random_long();
669 random_variable &= STACK_RND_MASK;
670 random_variable <<= PAGE_SHIFT;
671 }
672 #ifdef CONFIG_STACK_GROWSUP
673 return PAGE_ALIGN(stack_top) + random_variable;
674 #else
675 return PAGE_ALIGN(stack_top) - random_variable;
676 #endif
677 }
678
load_elf_binary(struct linux_binprm * bprm)679 static int load_elf_binary(struct linux_binprm *bprm)
680 {
681 struct file *interpreter = NULL; /* to shut gcc up */
682 unsigned long load_addr = 0, load_bias = 0;
683 int load_addr_set = 0;
684 char * elf_interpreter = NULL;
685 unsigned long error;
686 struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
687 unsigned long elf_bss, elf_brk;
688 int bss_prot = 0;
689 int retval, i;
690 unsigned long elf_entry;
691 unsigned long interp_load_addr = 0;
692 unsigned long start_code, end_code, start_data, end_data;
693 unsigned long reloc_func_desc __maybe_unused = 0;
694 int executable_stack = EXSTACK_DEFAULT;
695 struct pt_regs *regs = current_pt_regs();
696 struct {
697 struct elfhdr elf_ex;
698 struct elfhdr interp_elf_ex;
699 } *loc;
700 struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
701 loff_t pos;
702
703 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
704 if (!loc) {
705 retval = -ENOMEM;
706 goto out_ret;
707 }
708
709 /* Get the exec-header */
710 loc->elf_ex = *((struct elfhdr *)bprm->buf);
711
712 retval = -ENOEXEC;
713 /* First of all, some simple consistency checks */
714 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
715 goto out;
716
717 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
718 goto out;
719 if (!elf_check_arch(&loc->elf_ex))
720 goto out;
721 if (!bprm->file->f_op->mmap)
722 goto out;
723
724 elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
725 if (!elf_phdata)
726 goto out;
727
728 elf_ppnt = elf_phdata;
729 elf_bss = 0;
730 elf_brk = 0;
731
732 start_code = ~0UL;
733 end_code = 0;
734 start_data = 0;
735 end_data = 0;
736
737 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
738 if (elf_ppnt->p_type == PT_INTERP) {
739 /* This is the program interpreter used for
740 * shared libraries - for now assume that this
741 * is an a.out format binary
742 */
743 retval = -ENOEXEC;
744 if (elf_ppnt->p_filesz > PATH_MAX ||
745 elf_ppnt->p_filesz < 2)
746 goto out_free_ph;
747
748 retval = -ENOMEM;
749 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
750 GFP_KERNEL);
751 if (!elf_interpreter)
752 goto out_free_ph;
753
754 pos = elf_ppnt->p_offset;
755 retval = kernel_read(bprm->file, elf_interpreter,
756 elf_ppnt->p_filesz, &pos);
757 if (retval != elf_ppnt->p_filesz) {
758 if (retval >= 0)
759 retval = -EIO;
760 goto out_free_interp;
761 }
762 /* make sure path is NULL terminated */
763 retval = -ENOEXEC;
764 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
765 goto out_free_interp;
766
767 interpreter = open_exec(elf_interpreter);
768 retval = PTR_ERR(interpreter);
769 if (IS_ERR(interpreter))
770 goto out_free_interp;
771
772 /*
773 * If the binary is not readable then enforce
774 * mm->dumpable = 0 regardless of the interpreter's
775 * permissions.
776 */
777 would_dump(bprm, interpreter);
778
779 /* Get the exec headers */
780 pos = 0;
781 retval = kernel_read(interpreter, &loc->interp_elf_ex,
782 sizeof(loc->interp_elf_ex), &pos);
783 if (retval != sizeof(loc->interp_elf_ex)) {
784 if (retval >= 0)
785 retval = -EIO;
786 goto out_free_dentry;
787 }
788
789 break;
790 }
791 elf_ppnt++;
792 }
793
794 elf_ppnt = elf_phdata;
795 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
796 switch (elf_ppnt->p_type) {
797 case PT_GNU_STACK:
798 if (elf_ppnt->p_flags & PF_X)
799 executable_stack = EXSTACK_ENABLE_X;
800 else
801 executable_stack = EXSTACK_DISABLE_X;
802 break;
803
804 case PT_LOPROC ... PT_HIPROC:
805 retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
806 bprm->file, false,
807 &arch_state);
808 if (retval)
809 goto out_free_dentry;
810 break;
811 }
812
813 /* Some simple consistency checks for the interpreter */
814 if (elf_interpreter) {
815 retval = -ELIBBAD;
816 /* Not an ELF interpreter */
817 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
818 goto out_free_dentry;
819 /* Verify the interpreter has a valid arch */
820 if (!elf_check_arch(&loc->interp_elf_ex))
821 goto out_free_dentry;
822
823 /* Load the interpreter program headers */
824 interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
825 interpreter);
826 if (!interp_elf_phdata)
827 goto out_free_dentry;
828
829 /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
830 elf_ppnt = interp_elf_phdata;
831 for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
832 switch (elf_ppnt->p_type) {
833 case PT_LOPROC ... PT_HIPROC:
834 retval = arch_elf_pt_proc(&loc->interp_elf_ex,
835 elf_ppnt, interpreter,
836 true, &arch_state);
837 if (retval)
838 goto out_free_dentry;
839 break;
840 }
841 }
842
843 /*
844 * Allow arch code to reject the ELF at this point, whilst it's
845 * still possible to return an error to the code that invoked
846 * the exec syscall.
847 */
848 retval = arch_check_elf(&loc->elf_ex,
849 !!interpreter, &loc->interp_elf_ex,
850 &arch_state);
851 if (retval)
852 goto out_free_dentry;
853
854 /* Flush all traces of the currently running executable */
855 retval = flush_old_exec(bprm);
856 if (retval)
857 goto out_free_dentry;
858
859 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
860 may depend on the personality. */
861 SET_PERSONALITY2(loc->elf_ex, &arch_state);
862 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
863 current->personality |= READ_IMPLIES_EXEC;
864
865 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
866 current->flags |= PF_RANDOMIZE;
867
868 setup_new_exec(bprm);
869 install_exec_creds(bprm);
870
871 /* Do this so that we can load the interpreter, if need be. We will
872 change some of these later */
873 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
874 executable_stack);
875 if (retval < 0)
876 goto out_free_dentry;
877
878 current->mm->start_stack = bprm->p;
879
880 /* Now we do a little grungy work by mmapping the ELF image into
881 the correct location in memory. */
882 for(i = 0, elf_ppnt = elf_phdata;
883 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
884 int elf_prot = 0, elf_flags;
885 unsigned long k, vaddr;
886 unsigned long total_size = 0;
887
888 if (elf_ppnt->p_type != PT_LOAD)
889 continue;
890
891 if (unlikely (elf_brk > elf_bss)) {
892 unsigned long nbyte;
893
894 /* There was a PT_LOAD segment with p_memsz > p_filesz
895 before this one. Map anonymous pages, if needed,
896 and clear the area. */
897 retval = set_brk(elf_bss + load_bias,
898 elf_brk + load_bias,
899 bss_prot);
900 if (retval)
901 goto out_free_dentry;
902 nbyte = ELF_PAGEOFFSET(elf_bss);
903 if (nbyte) {
904 nbyte = ELF_MIN_ALIGN - nbyte;
905 if (nbyte > elf_brk - elf_bss)
906 nbyte = elf_brk - elf_bss;
907 if (clear_user((void __user *)elf_bss +
908 load_bias, nbyte)) {
909 /*
910 * This bss-zeroing can fail if the ELF
911 * file specifies odd protections. So
912 * we don't check the return value
913 */
914 }
915 }
916 }
917
918 if (elf_ppnt->p_flags & PF_R)
919 elf_prot |= PROT_READ;
920 if (elf_ppnt->p_flags & PF_W)
921 elf_prot |= PROT_WRITE;
922 if (elf_ppnt->p_flags & PF_X)
923 elf_prot |= PROT_EXEC;
924
925 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
926
927 vaddr = elf_ppnt->p_vaddr;
928 /*
929 * If we are loading ET_EXEC or we have already performed
930 * the ET_DYN load_addr calculations, proceed normally.
931 */
932 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
933 elf_flags |= MAP_FIXED;
934 } else if (loc->elf_ex.e_type == ET_DYN) {
935 /*
936 * This logic is run once for the first LOAD Program
937 * Header for ET_DYN binaries to calculate the
938 * randomization (load_bias) for all the LOAD
939 * Program Headers, and to calculate the entire
940 * size of the ELF mapping (total_size). (Note that
941 * load_addr_set is set to true later once the
942 * initial mapping is performed.)
943 *
944 * There are effectively two types of ET_DYN
945 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
946 * and loaders (ET_DYN without INTERP, since they
947 * _are_ the ELF interpreter). The loaders must
948 * be loaded away from programs since the program
949 * may otherwise collide with the loader (especially
950 * for ET_EXEC which does not have a randomized
951 * position). For example to handle invocations of
952 * "./ld.so someprog" to test out a new version of
953 * the loader, the subsequent program that the
954 * loader loads must avoid the loader itself, so
955 * they cannot share the same load range. Sufficient
956 * room for the brk must be allocated with the
957 * loader as well, since brk must be available with
958 * the loader.
959 *
960 * Therefore, programs are loaded offset from
961 * ELF_ET_DYN_BASE and loaders are loaded into the
962 * independently randomized mmap region (0 load_bias
963 * without MAP_FIXED).
964 */
965 if (elf_interpreter) {
966 load_bias = ELF_ET_DYN_BASE;
967 if (current->flags & PF_RANDOMIZE)
968 load_bias += arch_mmap_rnd();
969 elf_flags |= MAP_FIXED;
970 } else
971 load_bias = 0;
972
973 /*
974 * Since load_bias is used for all subsequent loading
975 * calculations, we must lower it by the first vaddr
976 * so that the remaining calculations based on the
977 * ELF vaddrs will be correctly offset. The result
978 * is then page aligned.
979 */
980 load_bias = ELF_PAGESTART(load_bias - vaddr);
981
982 total_size = total_mapping_size(elf_phdata,
983 loc->elf_ex.e_phnum);
984 if (!total_size) {
985 retval = -EINVAL;
986 goto out_free_dentry;
987 }
988 }
989
990 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
991 elf_prot, elf_flags, total_size);
992 if (BAD_ADDR(error)) {
993 retval = IS_ERR((void *)error) ?
994 PTR_ERR((void*)error) : -EINVAL;
995 goto out_free_dentry;
996 }
997
998 if (!load_addr_set) {
999 load_addr_set = 1;
1000 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1001 if (loc->elf_ex.e_type == ET_DYN) {
1002 load_bias += error -
1003 ELF_PAGESTART(load_bias + vaddr);
1004 load_addr += load_bias;
1005 reloc_func_desc = load_bias;
1006 }
1007 }
1008 k = elf_ppnt->p_vaddr;
1009 if (k < start_code)
1010 start_code = k;
1011 if (start_data < k)
1012 start_data = k;
1013
1014 /*
1015 * Check to see if the section's size will overflow the
1016 * allowed task size. Note that p_filesz must always be
1017 * <= p_memsz so it is only necessary to check p_memsz.
1018 */
1019 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1020 elf_ppnt->p_memsz > TASK_SIZE ||
1021 TASK_SIZE - elf_ppnt->p_memsz < k) {
1022 /* set_brk can never work. Avoid overflows. */
1023 retval = -EINVAL;
1024 goto out_free_dentry;
1025 }
1026
1027 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1028
1029 if (k > elf_bss)
1030 elf_bss = k;
1031 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1032 end_code = k;
1033 if (end_data < k)
1034 end_data = k;
1035 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1036 if (k > elf_brk) {
1037 bss_prot = elf_prot;
1038 elf_brk = k;
1039 }
1040 }
1041
1042 loc->elf_ex.e_entry += load_bias;
1043 elf_bss += load_bias;
1044 elf_brk += load_bias;
1045 start_code += load_bias;
1046 end_code += load_bias;
1047 start_data += load_bias;
1048 end_data += load_bias;
1049
1050 /* Calling set_brk effectively mmaps the pages that we need
1051 * for the bss and break sections. We must do this before
1052 * mapping in the interpreter, to make sure it doesn't wind
1053 * up getting placed where the bss needs to go.
1054 */
1055 retval = set_brk(elf_bss, elf_brk, bss_prot);
1056 if (retval)
1057 goto out_free_dentry;
1058 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1059 retval = -EFAULT; /* Nobody gets to see this, but.. */
1060 goto out_free_dentry;
1061 }
1062
1063 if (elf_interpreter) {
1064 unsigned long interp_map_addr = 0;
1065
1066 elf_entry = load_elf_interp(&loc->interp_elf_ex,
1067 interpreter,
1068 &interp_map_addr,
1069 load_bias, interp_elf_phdata);
1070 if (!IS_ERR((void *)elf_entry)) {
1071 /*
1072 * load_elf_interp() returns relocation
1073 * adjustment
1074 */
1075 interp_load_addr = elf_entry;
1076 elf_entry += loc->interp_elf_ex.e_entry;
1077 }
1078 if (BAD_ADDR(elf_entry)) {
1079 retval = IS_ERR((void *)elf_entry) ?
1080 (int)elf_entry : -EINVAL;
1081 goto out_free_dentry;
1082 }
1083 reloc_func_desc = interp_load_addr;
1084
1085 allow_write_access(interpreter);
1086 fput(interpreter);
1087 kfree(elf_interpreter);
1088 } else {
1089 elf_entry = loc->elf_ex.e_entry;
1090 if (BAD_ADDR(elf_entry)) {
1091 retval = -EINVAL;
1092 goto out_free_dentry;
1093 }
1094 }
1095
1096 kfree(interp_elf_phdata);
1097 kfree(elf_phdata);
1098
1099 set_binfmt(&elf_format);
1100
1101 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1102 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1103 if (retval < 0)
1104 goto out;
1105 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1106
1107 retval = create_elf_tables(bprm, &loc->elf_ex,
1108 load_addr, interp_load_addr);
1109 if (retval < 0)
1110 goto out;
1111 /* N.B. passed_fileno might not be initialized? */
1112 current->mm->end_code = end_code;
1113 current->mm->start_code = start_code;
1114 current->mm->start_data = start_data;
1115 current->mm->end_data = end_data;
1116 current->mm->start_stack = bprm->p;
1117
1118 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1119 /*
1120 * For architectures with ELF randomization, when executing
1121 * a loader directly (i.e. no interpreter listed in ELF
1122 * headers), move the brk area out of the mmap region
1123 * (since it grows up, and may collide early with the stack
1124 * growing down), and into the unused ELF_ET_DYN_BASE region.
1125 */
1126 if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1127 loc->elf_ex.e_type == ET_DYN && !interpreter)
1128 current->mm->brk = current->mm->start_brk =
1129 ELF_ET_DYN_BASE;
1130
1131 current->mm->brk = current->mm->start_brk =
1132 arch_randomize_brk(current->mm);
1133 #ifdef compat_brk_randomized
1134 current->brk_randomized = 1;
1135 #endif
1136 }
1137
1138 if (current->personality & MMAP_PAGE_ZERO) {
1139 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1140 and some applications "depend" upon this behavior.
1141 Since we do not have the power to recompile these, we
1142 emulate the SVr4 behavior. Sigh. */
1143 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1144 MAP_FIXED | MAP_PRIVATE, 0);
1145 }
1146
1147 #ifdef ELF_PLAT_INIT
1148 /*
1149 * The ABI may specify that certain registers be set up in special
1150 * ways (on i386 %edx is the address of a DT_FINI function, for
1151 * example. In addition, it may also specify (eg, PowerPC64 ELF)
1152 * that the e_entry field is the address of the function descriptor
1153 * for the startup routine, rather than the address of the startup
1154 * routine itself. This macro performs whatever initialization to
1155 * the regs structure is required as well as any relocations to the
1156 * function descriptor entries when executing dynamically links apps.
1157 */
1158 ELF_PLAT_INIT(regs, reloc_func_desc);
1159 #endif
1160
1161 start_thread(regs, elf_entry, bprm->p);
1162 retval = 0;
1163 out:
1164 kfree(loc);
1165 out_ret:
1166 return retval;
1167
1168 /* error cleanup */
1169 out_free_dentry:
1170 kfree(interp_elf_phdata);
1171 allow_write_access(interpreter);
1172 if (interpreter)
1173 fput(interpreter);
1174 out_free_interp:
1175 kfree(elf_interpreter);
1176 out_free_ph:
1177 kfree(elf_phdata);
1178 goto out;
1179 }
1180
1181 #ifdef CONFIG_USELIB
1182 /* This is really simpleminded and specialized - we are loading an
1183 a.out library that is given an ELF header. */
load_elf_library(struct file * file)1184 static int load_elf_library(struct file *file)
1185 {
1186 struct elf_phdr *elf_phdata;
1187 struct elf_phdr *eppnt;
1188 unsigned long elf_bss, bss, len;
1189 int retval, error, i, j;
1190 struct elfhdr elf_ex;
1191 loff_t pos = 0;
1192
1193 error = -ENOEXEC;
1194 retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1195 if (retval != sizeof(elf_ex))
1196 goto out;
1197
1198 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1199 goto out;
1200
1201 /* First of all, some simple consistency checks */
1202 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1203 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1204 goto out;
1205
1206 /* Now read in all of the header information */
1207
1208 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1209 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1210
1211 error = -ENOMEM;
1212 elf_phdata = kmalloc(j, GFP_KERNEL);
1213 if (!elf_phdata)
1214 goto out;
1215
1216 eppnt = elf_phdata;
1217 error = -ENOEXEC;
1218 pos = elf_ex.e_phoff;
1219 retval = kernel_read(file, eppnt, j, &pos);
1220 if (retval != j)
1221 goto out_free_ph;
1222
1223 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1224 if ((eppnt + i)->p_type == PT_LOAD)
1225 j++;
1226 if (j != 1)
1227 goto out_free_ph;
1228
1229 while (eppnt->p_type != PT_LOAD)
1230 eppnt++;
1231
1232 /* Now use mmap to map the library into memory. */
1233 error = vm_mmap(file,
1234 ELF_PAGESTART(eppnt->p_vaddr),
1235 (eppnt->p_filesz +
1236 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1237 PROT_READ | PROT_WRITE | PROT_EXEC,
1238 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1239 (eppnt->p_offset -
1240 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1241 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1242 goto out_free_ph;
1243
1244 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1245 if (padzero(elf_bss)) {
1246 error = -EFAULT;
1247 goto out_free_ph;
1248 }
1249
1250 len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1251 bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1252 if (bss > len) {
1253 error = vm_brk(len, bss - len);
1254 if (error)
1255 goto out_free_ph;
1256 }
1257 error = 0;
1258
1259 out_free_ph:
1260 kfree(elf_phdata);
1261 out:
1262 return error;
1263 }
1264 #endif /* #ifdef CONFIG_USELIB */
1265
1266 #ifdef CONFIG_ELF_CORE
1267 /*
1268 * ELF core dumper
1269 *
1270 * Modelled on fs/exec.c:aout_core_dump()
1271 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1272 */
1273
1274 /*
1275 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1276 * that are useful for post-mortem analysis are included in every core dump.
1277 * In that way we ensure that the core dump is fully interpretable later
1278 * without matching up the same kernel and hardware config to see what PC values
1279 * meant. These special mappings include - vDSO, vsyscall, and other
1280 * architecture specific mappings
1281 */
always_dump_vma(struct vm_area_struct * vma)1282 static bool always_dump_vma(struct vm_area_struct *vma)
1283 {
1284 /* Any vsyscall mappings? */
1285 if (vma == get_gate_vma(vma->vm_mm))
1286 return true;
1287
1288 /*
1289 * Assume that all vmas with a .name op should always be dumped.
1290 * If this changes, a new vm_ops field can easily be added.
1291 */
1292 if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1293 return true;
1294
1295 /*
1296 * arch_vma_name() returns non-NULL for special architecture mappings,
1297 * such as vDSO sections.
1298 */
1299 if (arch_vma_name(vma))
1300 return true;
1301
1302 return false;
1303 }
1304
1305 /*
1306 * Decide what to dump of a segment, part, all or none.
1307 */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1308 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1309 unsigned long mm_flags)
1310 {
1311 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1312
1313 /* always dump the vdso and vsyscall sections */
1314 if (always_dump_vma(vma))
1315 goto whole;
1316
1317 if (vma->vm_flags & VM_DONTDUMP)
1318 return 0;
1319
1320 /* support for DAX */
1321 if (vma_is_dax(vma)) {
1322 if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1323 goto whole;
1324 if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1325 goto whole;
1326 return 0;
1327 }
1328
1329 /* Hugetlb memory check */
1330 if (vma->vm_flags & VM_HUGETLB) {
1331 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1332 goto whole;
1333 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1334 goto whole;
1335 return 0;
1336 }
1337
1338 /* Do not dump I/O mapped devices or special mappings */
1339 if (vma->vm_flags & VM_IO)
1340 return 0;
1341
1342 /* By default, dump shared memory if mapped from an anonymous file. */
1343 if (vma->vm_flags & VM_SHARED) {
1344 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1345 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1346 goto whole;
1347 return 0;
1348 }
1349
1350 /* Dump segments that have been written to. */
1351 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1352 goto whole;
1353 if (vma->vm_file == NULL)
1354 return 0;
1355
1356 if (FILTER(MAPPED_PRIVATE))
1357 goto whole;
1358
1359 /*
1360 * If this looks like the beginning of a DSO or executable mapping,
1361 * check for an ELF header. If we find one, dump the first page to
1362 * aid in determining what was mapped here.
1363 */
1364 if (FILTER(ELF_HEADERS) &&
1365 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1366 u32 __user *header = (u32 __user *) vma->vm_start;
1367 u32 word;
1368 mm_segment_t fs = get_fs();
1369 /*
1370 * Doing it this way gets the constant folded by GCC.
1371 */
1372 union {
1373 u32 cmp;
1374 char elfmag[SELFMAG];
1375 } magic;
1376 BUILD_BUG_ON(SELFMAG != sizeof word);
1377 magic.elfmag[EI_MAG0] = ELFMAG0;
1378 magic.elfmag[EI_MAG1] = ELFMAG1;
1379 magic.elfmag[EI_MAG2] = ELFMAG2;
1380 magic.elfmag[EI_MAG3] = ELFMAG3;
1381 /*
1382 * Switch to the user "segment" for get_user(),
1383 * then put back what elf_core_dump() had in place.
1384 */
1385 set_fs(USER_DS);
1386 if (unlikely(get_user(word, header)))
1387 word = 0;
1388 set_fs(fs);
1389 if (word == magic.cmp)
1390 return PAGE_SIZE;
1391 }
1392
1393 #undef FILTER
1394
1395 return 0;
1396
1397 whole:
1398 return vma->vm_end - vma->vm_start;
1399 }
1400
1401 /* An ELF note in memory */
1402 struct memelfnote
1403 {
1404 const char *name;
1405 int type;
1406 unsigned int datasz;
1407 void *data;
1408 };
1409
notesize(struct memelfnote * en)1410 static int notesize(struct memelfnote *en)
1411 {
1412 int sz;
1413
1414 sz = sizeof(struct elf_note);
1415 sz += roundup(strlen(en->name) + 1, 4);
1416 sz += roundup(en->datasz, 4);
1417
1418 return sz;
1419 }
1420
writenote(struct memelfnote * men,struct coredump_params * cprm)1421 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1422 {
1423 struct elf_note en;
1424 en.n_namesz = strlen(men->name) + 1;
1425 en.n_descsz = men->datasz;
1426 en.n_type = men->type;
1427
1428 return dump_emit(cprm, &en, sizeof(en)) &&
1429 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1430 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1431 }
1432
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1433 static void fill_elf_header(struct elfhdr *elf, int segs,
1434 u16 machine, u32 flags)
1435 {
1436 memset(elf, 0, sizeof(*elf));
1437
1438 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1439 elf->e_ident[EI_CLASS] = ELF_CLASS;
1440 elf->e_ident[EI_DATA] = ELF_DATA;
1441 elf->e_ident[EI_VERSION] = EV_CURRENT;
1442 elf->e_ident[EI_OSABI] = ELF_OSABI;
1443
1444 elf->e_type = ET_CORE;
1445 elf->e_machine = machine;
1446 elf->e_version = EV_CURRENT;
1447 elf->e_phoff = sizeof(struct elfhdr);
1448 elf->e_flags = flags;
1449 elf->e_ehsize = sizeof(struct elfhdr);
1450 elf->e_phentsize = sizeof(struct elf_phdr);
1451 elf->e_phnum = segs;
1452
1453 return;
1454 }
1455
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1456 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1457 {
1458 phdr->p_type = PT_NOTE;
1459 phdr->p_offset = offset;
1460 phdr->p_vaddr = 0;
1461 phdr->p_paddr = 0;
1462 phdr->p_filesz = sz;
1463 phdr->p_memsz = 0;
1464 phdr->p_flags = 0;
1465 phdr->p_align = 0;
1466 return;
1467 }
1468
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1469 static void fill_note(struct memelfnote *note, const char *name, int type,
1470 unsigned int sz, void *data)
1471 {
1472 note->name = name;
1473 note->type = type;
1474 note->datasz = sz;
1475 note->data = data;
1476 return;
1477 }
1478
1479 /*
1480 * fill up all the fields in prstatus from the given task struct, except
1481 * registers which need to be filled up separately.
1482 */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1483 static void fill_prstatus(struct elf_prstatus *prstatus,
1484 struct task_struct *p, long signr)
1485 {
1486 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1487 prstatus->pr_sigpend = p->pending.signal.sig[0];
1488 prstatus->pr_sighold = p->blocked.sig[0];
1489 rcu_read_lock();
1490 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1491 rcu_read_unlock();
1492 prstatus->pr_pid = task_pid_vnr(p);
1493 prstatus->pr_pgrp = task_pgrp_vnr(p);
1494 prstatus->pr_sid = task_session_vnr(p);
1495 if (thread_group_leader(p)) {
1496 struct task_cputime cputime;
1497
1498 /*
1499 * This is the record for the group leader. It shows the
1500 * group-wide total, not its individual thread total.
1501 */
1502 thread_group_cputime(p, &cputime);
1503 prstatus->pr_utime = ns_to_timeval(cputime.utime);
1504 prstatus->pr_stime = ns_to_timeval(cputime.stime);
1505 } else {
1506 u64 utime, stime;
1507
1508 task_cputime(p, &utime, &stime);
1509 prstatus->pr_utime = ns_to_timeval(utime);
1510 prstatus->pr_stime = ns_to_timeval(stime);
1511 }
1512
1513 prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1514 prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1515 }
1516
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1517 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1518 struct mm_struct *mm)
1519 {
1520 const struct cred *cred;
1521 unsigned int i, len;
1522
1523 /* first copy the parameters from user space */
1524 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1525
1526 len = mm->arg_end - mm->arg_start;
1527 if (len >= ELF_PRARGSZ)
1528 len = ELF_PRARGSZ-1;
1529 if (copy_from_user(&psinfo->pr_psargs,
1530 (const char __user *)mm->arg_start, len))
1531 return -EFAULT;
1532 for(i = 0; i < len; i++)
1533 if (psinfo->pr_psargs[i] == 0)
1534 psinfo->pr_psargs[i] = ' ';
1535 psinfo->pr_psargs[len] = 0;
1536
1537 rcu_read_lock();
1538 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1539 rcu_read_unlock();
1540 psinfo->pr_pid = task_pid_vnr(p);
1541 psinfo->pr_pgrp = task_pgrp_vnr(p);
1542 psinfo->pr_sid = task_session_vnr(p);
1543
1544 i = p->state ? ffz(~p->state) + 1 : 0;
1545 psinfo->pr_state = i;
1546 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1547 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1548 psinfo->pr_nice = task_nice(p);
1549 psinfo->pr_flag = p->flags;
1550 rcu_read_lock();
1551 cred = __task_cred(p);
1552 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1553 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1554 rcu_read_unlock();
1555 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1556
1557 return 0;
1558 }
1559
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1560 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1561 {
1562 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1563 int i = 0;
1564 do
1565 i += 2;
1566 while (auxv[i - 2] != AT_NULL);
1567 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1568 }
1569
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const siginfo_t * siginfo)1570 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1571 const siginfo_t *siginfo)
1572 {
1573 mm_segment_t old_fs = get_fs();
1574 set_fs(KERNEL_DS);
1575 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1576 set_fs(old_fs);
1577 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1578 }
1579
1580 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1581 /*
1582 * Format of NT_FILE note:
1583 *
1584 * long count -- how many files are mapped
1585 * long page_size -- units for file_ofs
1586 * array of [COUNT] elements of
1587 * long start
1588 * long end
1589 * long file_ofs
1590 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1591 */
fill_files_note(struct memelfnote * note)1592 static int fill_files_note(struct memelfnote *note)
1593 {
1594 struct vm_area_struct *vma;
1595 unsigned count, size, names_ofs, remaining, n;
1596 user_long_t *data;
1597 user_long_t *start_end_ofs;
1598 char *name_base, *name_curpos;
1599
1600 /* *Estimated* file count and total data size needed */
1601 count = current->mm->map_count;
1602 size = count * 64;
1603
1604 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1605 alloc:
1606 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1607 return -EINVAL;
1608 size = round_up(size, PAGE_SIZE);
1609 data = vmalloc(size);
1610 if (!data)
1611 return -ENOMEM;
1612
1613 start_end_ofs = data + 2;
1614 name_base = name_curpos = ((char *)data) + names_ofs;
1615 remaining = size - names_ofs;
1616 count = 0;
1617 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1618 struct file *file;
1619 const char *filename;
1620
1621 file = vma->vm_file;
1622 if (!file)
1623 continue;
1624 filename = file_path(file, name_curpos, remaining);
1625 if (IS_ERR(filename)) {
1626 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1627 vfree(data);
1628 size = size * 5 / 4;
1629 goto alloc;
1630 }
1631 continue;
1632 }
1633
1634 /* file_path() fills at the end, move name down */
1635 /* n = strlen(filename) + 1: */
1636 n = (name_curpos + remaining) - filename;
1637 remaining = filename - name_curpos;
1638 memmove(name_curpos, filename, n);
1639 name_curpos += n;
1640
1641 *start_end_ofs++ = vma->vm_start;
1642 *start_end_ofs++ = vma->vm_end;
1643 *start_end_ofs++ = vma->vm_pgoff;
1644 count++;
1645 }
1646
1647 /* Now we know exact count of files, can store it */
1648 data[0] = count;
1649 data[1] = PAGE_SIZE;
1650 /*
1651 * Count usually is less than current->mm->map_count,
1652 * we need to move filenames down.
1653 */
1654 n = current->mm->map_count - count;
1655 if (n != 0) {
1656 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1657 memmove(name_base - shift_bytes, name_base,
1658 name_curpos - name_base);
1659 name_curpos -= shift_bytes;
1660 }
1661
1662 size = name_curpos - (char *)data;
1663 fill_note(note, "CORE", NT_FILE, size, data);
1664 return 0;
1665 }
1666
1667 #ifdef CORE_DUMP_USE_REGSET
1668 #include <linux/regset.h>
1669
1670 struct elf_thread_core_info {
1671 struct elf_thread_core_info *next;
1672 struct task_struct *task;
1673 struct elf_prstatus prstatus;
1674 struct memelfnote notes[0];
1675 };
1676
1677 struct elf_note_info {
1678 struct elf_thread_core_info *thread;
1679 struct memelfnote psinfo;
1680 struct memelfnote signote;
1681 struct memelfnote auxv;
1682 struct memelfnote files;
1683 user_siginfo_t csigdata;
1684 size_t size;
1685 int thread_notes;
1686 };
1687
1688 /*
1689 * When a regset has a writeback hook, we call it on each thread before
1690 * dumping user memory. On register window machines, this makes sure the
1691 * user memory backing the register data is up to date before we read it.
1692 */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1693 static void do_thread_regset_writeback(struct task_struct *task,
1694 const struct user_regset *regset)
1695 {
1696 if (regset->writeback)
1697 regset->writeback(task, regset, 1);
1698 }
1699
1700 #ifndef PRSTATUS_SIZE
1701 #define PRSTATUS_SIZE(S, R) sizeof(S)
1702 #endif
1703
1704 #ifndef SET_PR_FPVALID
1705 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1706 #endif
1707
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1708 static int fill_thread_core_info(struct elf_thread_core_info *t,
1709 const struct user_regset_view *view,
1710 long signr, size_t *total)
1711 {
1712 unsigned int i;
1713 unsigned int regset_size = view->regsets[0].n * view->regsets[0].size;
1714
1715 /*
1716 * NT_PRSTATUS is the one special case, because the regset data
1717 * goes into the pr_reg field inside the note contents, rather
1718 * than being the whole note contents. We fill the reset in here.
1719 * We assume that regset 0 is NT_PRSTATUS.
1720 */
1721 fill_prstatus(&t->prstatus, t->task, signr);
1722 (void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset_size,
1723 &t->prstatus.pr_reg, NULL);
1724
1725 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1726 PRSTATUS_SIZE(t->prstatus, regset_size), &t->prstatus);
1727 *total += notesize(&t->notes[0]);
1728
1729 do_thread_regset_writeback(t->task, &view->regsets[0]);
1730
1731 /*
1732 * Each other regset might generate a note too. For each regset
1733 * that has no core_note_type or is inactive, we leave t->notes[i]
1734 * all zero and we'll know to skip writing it later.
1735 */
1736 for (i = 1; i < view->n; ++i) {
1737 const struct user_regset *regset = &view->regsets[i];
1738 do_thread_regset_writeback(t->task, regset);
1739 if (regset->core_note_type && regset->get &&
1740 (!regset->active || regset->active(t->task, regset) > 0)) {
1741 int ret;
1742 size_t size = regset->n * regset->size;
1743 void *data = kmalloc(size, GFP_KERNEL);
1744 if (unlikely(!data))
1745 return 0;
1746 ret = regset->get(t->task, regset,
1747 0, size, data, NULL);
1748 if (unlikely(ret))
1749 kfree(data);
1750 else {
1751 if (regset->core_note_type != NT_PRFPREG)
1752 fill_note(&t->notes[i], "LINUX",
1753 regset->core_note_type,
1754 size, data);
1755 else {
1756 SET_PR_FPVALID(&t->prstatus,
1757 1, regset_size);
1758 fill_note(&t->notes[i], "CORE",
1759 NT_PRFPREG, size, data);
1760 }
1761 *total += notesize(&t->notes[i]);
1762 }
1763 }
1764 }
1765
1766 return 1;
1767 }
1768
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)1769 static int fill_note_info(struct elfhdr *elf, int phdrs,
1770 struct elf_note_info *info,
1771 const siginfo_t *siginfo, struct pt_regs *regs)
1772 {
1773 struct task_struct *dump_task = current;
1774 const struct user_regset_view *view = task_user_regset_view(dump_task);
1775 struct elf_thread_core_info *t;
1776 struct elf_prpsinfo *psinfo;
1777 struct core_thread *ct;
1778 unsigned int i;
1779
1780 info->size = 0;
1781 info->thread = NULL;
1782
1783 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1784 if (psinfo == NULL) {
1785 info->psinfo.data = NULL; /* So we don't free this wrongly */
1786 return 0;
1787 }
1788
1789 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1790
1791 /*
1792 * Figure out how many notes we're going to need for each thread.
1793 */
1794 info->thread_notes = 0;
1795 for (i = 0; i < view->n; ++i)
1796 if (view->regsets[i].core_note_type != 0)
1797 ++info->thread_notes;
1798
1799 /*
1800 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1801 * since it is our one special case.
1802 */
1803 if (unlikely(info->thread_notes == 0) ||
1804 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1805 WARN_ON(1);
1806 return 0;
1807 }
1808
1809 /*
1810 * Initialize the ELF file header.
1811 */
1812 fill_elf_header(elf, phdrs,
1813 view->e_machine, view->e_flags);
1814
1815 /*
1816 * Allocate a structure for each thread.
1817 */
1818 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1819 t = kzalloc(offsetof(struct elf_thread_core_info,
1820 notes[info->thread_notes]),
1821 GFP_KERNEL);
1822 if (unlikely(!t))
1823 return 0;
1824
1825 t->task = ct->task;
1826 if (ct->task == dump_task || !info->thread) {
1827 t->next = info->thread;
1828 info->thread = t;
1829 } else {
1830 /*
1831 * Make sure to keep the original task at
1832 * the head of the list.
1833 */
1834 t->next = info->thread->next;
1835 info->thread->next = t;
1836 }
1837 }
1838
1839 /*
1840 * Now fill in each thread's information.
1841 */
1842 for (t = info->thread; t != NULL; t = t->next)
1843 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1844 return 0;
1845
1846 /*
1847 * Fill in the two process-wide notes.
1848 */
1849 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1850 info->size += notesize(&info->psinfo);
1851
1852 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1853 info->size += notesize(&info->signote);
1854
1855 fill_auxv_note(&info->auxv, current->mm);
1856 info->size += notesize(&info->auxv);
1857
1858 if (fill_files_note(&info->files) == 0)
1859 info->size += notesize(&info->files);
1860
1861 return 1;
1862 }
1863
get_note_info_size(struct elf_note_info * info)1864 static size_t get_note_info_size(struct elf_note_info *info)
1865 {
1866 return info->size;
1867 }
1868
1869 /*
1870 * Write all the notes for each thread. When writing the first thread, the
1871 * process-wide notes are interleaved after the first thread-specific note.
1872 */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1873 static int write_note_info(struct elf_note_info *info,
1874 struct coredump_params *cprm)
1875 {
1876 bool first = true;
1877 struct elf_thread_core_info *t = info->thread;
1878
1879 do {
1880 int i;
1881
1882 if (!writenote(&t->notes[0], cprm))
1883 return 0;
1884
1885 if (first && !writenote(&info->psinfo, cprm))
1886 return 0;
1887 if (first && !writenote(&info->signote, cprm))
1888 return 0;
1889 if (first && !writenote(&info->auxv, cprm))
1890 return 0;
1891 if (first && info->files.data &&
1892 !writenote(&info->files, cprm))
1893 return 0;
1894
1895 for (i = 1; i < info->thread_notes; ++i)
1896 if (t->notes[i].data &&
1897 !writenote(&t->notes[i], cprm))
1898 return 0;
1899
1900 first = false;
1901 t = t->next;
1902 } while (t);
1903
1904 return 1;
1905 }
1906
free_note_info(struct elf_note_info * info)1907 static void free_note_info(struct elf_note_info *info)
1908 {
1909 struct elf_thread_core_info *threads = info->thread;
1910 while (threads) {
1911 unsigned int i;
1912 struct elf_thread_core_info *t = threads;
1913 threads = t->next;
1914 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1915 for (i = 1; i < info->thread_notes; ++i)
1916 kfree(t->notes[i].data);
1917 kfree(t);
1918 }
1919 kfree(info->psinfo.data);
1920 vfree(info->files.data);
1921 }
1922
1923 #else
1924
1925 /* Here is the structure in which status of each thread is captured. */
1926 struct elf_thread_status
1927 {
1928 struct list_head list;
1929 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1930 elf_fpregset_t fpu; /* NT_PRFPREG */
1931 struct task_struct *thread;
1932 #ifdef ELF_CORE_COPY_XFPREGS
1933 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1934 #endif
1935 struct memelfnote notes[3];
1936 int num_notes;
1937 };
1938
1939 /*
1940 * In order to add the specific thread information for the elf file format,
1941 * we need to keep a linked list of every threads pr_status and then create
1942 * a single section for them in the final core file.
1943 */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1944 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1945 {
1946 int sz = 0;
1947 struct task_struct *p = t->thread;
1948 t->num_notes = 0;
1949
1950 fill_prstatus(&t->prstatus, p, signr);
1951 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1952
1953 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1954 &(t->prstatus));
1955 t->num_notes++;
1956 sz += notesize(&t->notes[0]);
1957
1958 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1959 &t->fpu))) {
1960 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1961 &(t->fpu));
1962 t->num_notes++;
1963 sz += notesize(&t->notes[1]);
1964 }
1965
1966 #ifdef ELF_CORE_COPY_XFPREGS
1967 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1968 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1969 sizeof(t->xfpu), &t->xfpu);
1970 t->num_notes++;
1971 sz += notesize(&t->notes[2]);
1972 }
1973 #endif
1974 return sz;
1975 }
1976
1977 struct elf_note_info {
1978 struct memelfnote *notes;
1979 struct memelfnote *notes_files;
1980 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1981 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1982 struct list_head thread_list;
1983 elf_fpregset_t *fpu;
1984 #ifdef ELF_CORE_COPY_XFPREGS
1985 elf_fpxregset_t *xfpu;
1986 #endif
1987 user_siginfo_t csigdata;
1988 int thread_status_size;
1989 int numnote;
1990 };
1991
elf_note_info_init(struct elf_note_info * info)1992 static int elf_note_info_init(struct elf_note_info *info)
1993 {
1994 memset(info, 0, sizeof(*info));
1995 INIT_LIST_HEAD(&info->thread_list);
1996
1997 /* Allocate space for ELF notes */
1998 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1999 if (!info->notes)
2000 return 0;
2001 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2002 if (!info->psinfo)
2003 return 0;
2004 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2005 if (!info->prstatus)
2006 return 0;
2007 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2008 if (!info->fpu)
2009 return 0;
2010 #ifdef ELF_CORE_COPY_XFPREGS
2011 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2012 if (!info->xfpu)
2013 return 0;
2014 #endif
2015 return 1;
2016 }
2017
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)2018 static int fill_note_info(struct elfhdr *elf, int phdrs,
2019 struct elf_note_info *info,
2020 const siginfo_t *siginfo, struct pt_regs *regs)
2021 {
2022 struct list_head *t;
2023 struct core_thread *ct;
2024 struct elf_thread_status *ets;
2025
2026 if (!elf_note_info_init(info))
2027 return 0;
2028
2029 for (ct = current->mm->core_state->dumper.next;
2030 ct; ct = ct->next) {
2031 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2032 if (!ets)
2033 return 0;
2034
2035 ets->thread = ct->task;
2036 list_add(&ets->list, &info->thread_list);
2037 }
2038
2039 list_for_each(t, &info->thread_list) {
2040 int sz;
2041
2042 ets = list_entry(t, struct elf_thread_status, list);
2043 sz = elf_dump_thread_status(siginfo->si_signo, ets);
2044 info->thread_status_size += sz;
2045 }
2046 /* now collect the dump for the current */
2047 memset(info->prstatus, 0, sizeof(*info->prstatus));
2048 fill_prstatus(info->prstatus, current, siginfo->si_signo);
2049 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2050
2051 /* Set up header */
2052 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2053
2054 /*
2055 * Set up the notes in similar form to SVR4 core dumps made
2056 * with info from their /proc.
2057 */
2058
2059 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2060 sizeof(*info->prstatus), info->prstatus);
2061 fill_psinfo(info->psinfo, current->group_leader, current->mm);
2062 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2063 sizeof(*info->psinfo), info->psinfo);
2064
2065 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2066 fill_auxv_note(info->notes + 3, current->mm);
2067 info->numnote = 4;
2068
2069 if (fill_files_note(info->notes + info->numnote) == 0) {
2070 info->notes_files = info->notes + info->numnote;
2071 info->numnote++;
2072 }
2073
2074 /* Try to dump the FPU. */
2075 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2076 info->fpu);
2077 if (info->prstatus->pr_fpvalid)
2078 fill_note(info->notes + info->numnote++,
2079 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2080 #ifdef ELF_CORE_COPY_XFPREGS
2081 if (elf_core_copy_task_xfpregs(current, info->xfpu))
2082 fill_note(info->notes + info->numnote++,
2083 "LINUX", ELF_CORE_XFPREG_TYPE,
2084 sizeof(*info->xfpu), info->xfpu);
2085 #endif
2086
2087 return 1;
2088 }
2089
get_note_info_size(struct elf_note_info * info)2090 static size_t get_note_info_size(struct elf_note_info *info)
2091 {
2092 int sz = 0;
2093 int i;
2094
2095 for (i = 0; i < info->numnote; i++)
2096 sz += notesize(info->notes + i);
2097
2098 sz += info->thread_status_size;
2099
2100 return sz;
2101 }
2102
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)2103 static int write_note_info(struct elf_note_info *info,
2104 struct coredump_params *cprm)
2105 {
2106 int i;
2107 struct list_head *t;
2108
2109 for (i = 0; i < info->numnote; i++)
2110 if (!writenote(info->notes + i, cprm))
2111 return 0;
2112
2113 /* write out the thread status notes section */
2114 list_for_each(t, &info->thread_list) {
2115 struct elf_thread_status *tmp =
2116 list_entry(t, struct elf_thread_status, list);
2117
2118 for (i = 0; i < tmp->num_notes; i++)
2119 if (!writenote(&tmp->notes[i], cprm))
2120 return 0;
2121 }
2122
2123 return 1;
2124 }
2125
free_note_info(struct elf_note_info * info)2126 static void free_note_info(struct elf_note_info *info)
2127 {
2128 while (!list_empty(&info->thread_list)) {
2129 struct list_head *tmp = info->thread_list.next;
2130 list_del(tmp);
2131 kfree(list_entry(tmp, struct elf_thread_status, list));
2132 }
2133
2134 /* Free data possibly allocated by fill_files_note(): */
2135 if (info->notes_files)
2136 vfree(info->notes_files->data);
2137
2138 kfree(info->prstatus);
2139 kfree(info->psinfo);
2140 kfree(info->notes);
2141 kfree(info->fpu);
2142 #ifdef ELF_CORE_COPY_XFPREGS
2143 kfree(info->xfpu);
2144 #endif
2145 }
2146
2147 #endif
2148
first_vma(struct task_struct * tsk,struct vm_area_struct * gate_vma)2149 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2150 struct vm_area_struct *gate_vma)
2151 {
2152 struct vm_area_struct *ret = tsk->mm->mmap;
2153
2154 if (ret)
2155 return ret;
2156 return gate_vma;
2157 }
2158 /*
2159 * Helper function for iterating across a vma list. It ensures that the caller
2160 * will visit `gate_vma' prior to terminating the search.
2161 */
next_vma(struct vm_area_struct * this_vma,struct vm_area_struct * gate_vma)2162 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2163 struct vm_area_struct *gate_vma)
2164 {
2165 struct vm_area_struct *ret;
2166
2167 ret = this_vma->vm_next;
2168 if (ret)
2169 return ret;
2170 if (this_vma == gate_vma)
2171 return NULL;
2172 return gate_vma;
2173 }
2174
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)2175 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2176 elf_addr_t e_shoff, int segs)
2177 {
2178 elf->e_shoff = e_shoff;
2179 elf->e_shentsize = sizeof(*shdr4extnum);
2180 elf->e_shnum = 1;
2181 elf->e_shstrndx = SHN_UNDEF;
2182
2183 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2184
2185 shdr4extnum->sh_type = SHT_NULL;
2186 shdr4extnum->sh_size = elf->e_shnum;
2187 shdr4extnum->sh_link = elf->e_shstrndx;
2188 shdr4extnum->sh_info = segs;
2189 }
2190
2191 /*
2192 * Actual dumper
2193 *
2194 * This is a two-pass process; first we find the offsets of the bits,
2195 * and then they are actually written out. If we run out of core limit
2196 * we just truncate.
2197 */
elf_core_dump(struct coredump_params * cprm)2198 static int elf_core_dump(struct coredump_params *cprm)
2199 {
2200 int has_dumped = 0;
2201 mm_segment_t fs;
2202 int segs, i;
2203 size_t vma_data_size = 0;
2204 struct vm_area_struct *vma, *gate_vma;
2205 struct elfhdr *elf = NULL;
2206 loff_t offset = 0, dataoff;
2207 struct elf_note_info info = { };
2208 struct elf_phdr *phdr4note = NULL;
2209 struct elf_shdr *shdr4extnum = NULL;
2210 Elf_Half e_phnum;
2211 elf_addr_t e_shoff;
2212 elf_addr_t *vma_filesz = NULL;
2213
2214 /*
2215 * We no longer stop all VM operations.
2216 *
2217 * This is because those proceses that could possibly change map_count
2218 * or the mmap / vma pages are now blocked in do_exit on current
2219 * finishing this core dump.
2220 *
2221 * Only ptrace can touch these memory addresses, but it doesn't change
2222 * the map_count or the pages allocated. So no possibility of crashing
2223 * exists while dumping the mm->vm_next areas to the core file.
2224 */
2225
2226 /* alloc memory for large data structures: too large to be on stack */
2227 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2228 if (!elf)
2229 goto out;
2230 /*
2231 * The number of segs are recored into ELF header as 16bit value.
2232 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2233 */
2234 segs = current->mm->map_count;
2235 segs += elf_core_extra_phdrs();
2236
2237 gate_vma = get_gate_vma(current->mm);
2238 if (gate_vma != NULL)
2239 segs++;
2240
2241 /* for notes section */
2242 segs++;
2243
2244 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2245 * this, kernel supports extended numbering. Have a look at
2246 * include/linux/elf.h for further information. */
2247 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2248
2249 /*
2250 * Collect all the non-memory information about the process for the
2251 * notes. This also sets up the file header.
2252 */
2253 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2254 goto cleanup;
2255
2256 has_dumped = 1;
2257
2258 fs = get_fs();
2259 set_fs(KERNEL_DS);
2260
2261 offset += sizeof(*elf); /* Elf header */
2262 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2263
2264 /* Write notes phdr entry */
2265 {
2266 size_t sz = get_note_info_size(&info);
2267
2268 sz += elf_coredump_extra_notes_size();
2269
2270 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2271 if (!phdr4note)
2272 goto end_coredump;
2273
2274 fill_elf_note_phdr(phdr4note, sz, offset);
2275 offset += sz;
2276 }
2277
2278 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2279
2280 if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2281 goto end_coredump;
2282 vma_filesz = vmalloc((segs - 1) * sizeof(*vma_filesz));
2283 if (!vma_filesz)
2284 goto end_coredump;
2285
2286 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2287 vma = next_vma(vma, gate_vma)) {
2288 unsigned long dump_size;
2289
2290 dump_size = vma_dump_size(vma, cprm->mm_flags);
2291 vma_filesz[i++] = dump_size;
2292 vma_data_size += dump_size;
2293 }
2294
2295 offset += vma_data_size;
2296 offset += elf_core_extra_data_size();
2297 e_shoff = offset;
2298
2299 if (e_phnum == PN_XNUM) {
2300 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2301 if (!shdr4extnum)
2302 goto end_coredump;
2303 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2304 }
2305
2306 offset = dataoff;
2307
2308 if (!dump_emit(cprm, elf, sizeof(*elf)))
2309 goto end_coredump;
2310
2311 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2312 goto end_coredump;
2313
2314 /* Write program headers for segments dump */
2315 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2316 vma = next_vma(vma, gate_vma)) {
2317 struct elf_phdr phdr;
2318
2319 phdr.p_type = PT_LOAD;
2320 phdr.p_offset = offset;
2321 phdr.p_vaddr = vma->vm_start;
2322 phdr.p_paddr = 0;
2323 phdr.p_filesz = vma_filesz[i++];
2324 phdr.p_memsz = vma->vm_end - vma->vm_start;
2325 offset += phdr.p_filesz;
2326 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2327 if (vma->vm_flags & VM_WRITE)
2328 phdr.p_flags |= PF_W;
2329 if (vma->vm_flags & VM_EXEC)
2330 phdr.p_flags |= PF_X;
2331 phdr.p_align = ELF_EXEC_PAGESIZE;
2332
2333 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2334 goto end_coredump;
2335 }
2336
2337 if (!elf_core_write_extra_phdrs(cprm, offset))
2338 goto end_coredump;
2339
2340 /* write out the notes section */
2341 if (!write_note_info(&info, cprm))
2342 goto end_coredump;
2343
2344 if (elf_coredump_extra_notes_write(cprm))
2345 goto end_coredump;
2346
2347 /* Align to page */
2348 if (!dump_skip(cprm, dataoff - cprm->pos))
2349 goto end_coredump;
2350
2351 for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2352 vma = next_vma(vma, gate_vma)) {
2353 unsigned long addr;
2354 unsigned long end;
2355
2356 end = vma->vm_start + vma_filesz[i++];
2357
2358 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2359 struct page *page;
2360 int stop;
2361
2362 page = get_dump_page(addr);
2363 if (page) {
2364 void *kaddr = kmap(page);
2365 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2366 kunmap(page);
2367 put_page(page);
2368 } else
2369 stop = !dump_skip(cprm, PAGE_SIZE);
2370 if (stop)
2371 goto end_coredump;
2372 }
2373 }
2374 dump_truncate(cprm);
2375
2376 if (!elf_core_write_extra_data(cprm))
2377 goto end_coredump;
2378
2379 if (e_phnum == PN_XNUM) {
2380 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2381 goto end_coredump;
2382 }
2383
2384 end_coredump:
2385 set_fs(fs);
2386
2387 cleanup:
2388 free_note_info(&info);
2389 kfree(shdr4extnum);
2390 vfree(vma_filesz);
2391 kfree(phdr4note);
2392 kfree(elf);
2393 out:
2394 return has_dumped;
2395 }
2396
2397 #endif /* CONFIG_ELF_CORE */
2398
init_elf_binfmt(void)2399 static int __init init_elf_binfmt(void)
2400 {
2401 register_binfmt(&elf_format);
2402 return 0;
2403 }
2404
exit_elf_binfmt(void)2405 static void __exit exit_elf_binfmt(void)
2406 {
2407 /* Remove the COFF and ELF loaders. */
2408 unregister_binfmt(&elf_format);
2409 }
2410
2411 core_initcall(init_elf_binfmt);
2412 module_exit(exit_elf_binfmt);
2413 MODULE_LICENSE("GPL");
2414