• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * hcd.h - DesignWare HS OTG Controller host-mode declarations
3  *
4  * Copyright (C) 2004-2013 Synopsys, Inc.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions, and the following disclaimer,
11  *    without modification.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The names of the above-listed copyright holders may not be used
16  *    to endorse or promote products derived from this software without
17  *    specific prior written permission.
18  *
19  * ALTERNATIVELY, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") as published by the Free Software
21  * Foundation; either version 2 of the License, or (at your option) any
22  * later version.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  */
36 #ifndef __DWC2_HCD_H__
37 #define __DWC2_HCD_H__
38 
39 /*
40  * This file contains the structures, constants, and interfaces for the
41  * Host Contoller Driver (HCD)
42  *
43  * The Host Controller Driver (HCD) is responsible for translating requests
44  * from the USB Driver into the appropriate actions on the DWC_otg controller.
45  * It isolates the USBD from the specifics of the controller by providing an
46  * API to the USBD.
47  */
48 
49 struct dwc2_qh;
50 
51 /**
52  * struct dwc2_host_chan - Software host channel descriptor
53  *
54  * @hc_num:             Host channel number, used for register address lookup
55  * @dev_addr:           Address of the device
56  * @ep_num:             Endpoint of the device
57  * @ep_is_in:           Endpoint direction
58  * @speed:              Device speed. One of the following values:
59  *                       - USB_SPEED_LOW
60  *                       - USB_SPEED_FULL
61  *                       - USB_SPEED_HIGH
62  * @ep_type:            Endpoint type. One of the following values:
63  *                       - USB_ENDPOINT_XFER_CONTROL: 0
64  *                       - USB_ENDPOINT_XFER_ISOC:    1
65  *                       - USB_ENDPOINT_XFER_BULK:    2
66  *                       - USB_ENDPOINT_XFER_INTR:    3
67  * @max_packet:         Max packet size in bytes
68  * @data_pid_start:     PID for initial transaction.
69  *                       0: DATA0
70  *                       1: DATA2
71  *                       2: DATA1
72  *                       3: MDATA (non-Control EP),
73  *                          SETUP (Control EP)
74  * @multi_count:        Number of additional periodic transactions per
75  *                      (micro)frame
76  * @xfer_buf:           Pointer to current transfer buffer position
77  * @xfer_dma:           DMA address of xfer_buf
78  * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
79  *                      DWORD aligned
80  * @xfer_len:           Total number of bytes to transfer
81  * @xfer_count:         Number of bytes transferred so far
82  * @start_pkt_count:    Packet count at start of transfer
83  * @xfer_started:       True if the transfer has been started
84  * @ping:               True if a PING request should be issued on this channel
85  * @error_state:        True if the error count for this transaction is non-zero
86  * @halt_on_queue:      True if this channel should be halted the next time a
87  *                      request is queued for the channel. This is necessary in
88  *                      slave mode if no request queue space is available when
89  *                      an attempt is made to halt the channel.
90  * @halt_pending:       True if the host channel has been halted, but the core
91  *                      is not finished flushing queued requests
92  * @do_split:           Enable split for the channel
93  * @complete_split:     Enable complete split
94  * @hub_addr:           Address of high speed hub for the split
95  * @hub_port:           Port of the low/full speed device for the split
96  * @xact_pos:           Split transaction position. One of the following values:
97  *                       - DWC2_HCSPLT_XACTPOS_MID
98  *                       - DWC2_HCSPLT_XACTPOS_BEGIN
99  *                       - DWC2_HCSPLT_XACTPOS_END
100  *                       - DWC2_HCSPLT_XACTPOS_ALL
101  * @requests:           Number of requests issued for this channel since it was
102  *                      assigned to the current transfer (not counting PINGs)
103  * @schinfo:            Scheduling micro-frame bitmap
104  * @ntd:                Number of transfer descriptors for the transfer
105  * @halt_status:        Reason for halting the host channel
106  * @hcint               Contents of the HCINT register when the interrupt came
107  * @qh:                 QH for the transfer being processed by this channel
108  * @hc_list_entry:      For linking to list of host channels
109  * @desc_list_addr:     Current QH's descriptor list DMA address
110  * @desc_list_sz:       Current QH's descriptor list size
111  * @split_order_list_entry: List entry for keeping track of the order of splits
112  *
113  * This structure represents the state of a single host channel when acting in
114  * host mode. It contains the data items needed to transfer packets to an
115  * endpoint via a host channel.
116  */
117 struct dwc2_host_chan {
118 	u8 hc_num;
119 
120 	unsigned dev_addr:7;
121 	unsigned ep_num:4;
122 	unsigned ep_is_in:1;
123 	unsigned speed:4;
124 	unsigned ep_type:2;
125 	unsigned max_packet:11;
126 	unsigned data_pid_start:2;
127 #define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
128 #define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
129 #define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
130 #define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
131 #define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
132 
133 	unsigned multi_count:2;
134 
135 	u8 *xfer_buf;
136 	dma_addr_t xfer_dma;
137 	dma_addr_t align_buf;
138 	u32 xfer_len;
139 	u32 xfer_count;
140 	u16 start_pkt_count;
141 	u8 xfer_started;
142 	u8 do_ping;
143 	u8 error_state;
144 	u8 halt_on_queue;
145 	u8 halt_pending;
146 	u8 do_split;
147 	u8 complete_split;
148 	u8 hub_addr;
149 	u8 hub_port;
150 	u8 xact_pos;
151 #define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
152 #define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
153 #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
154 #define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
155 
156 	u8 requests;
157 	u8 schinfo;
158 	u16 ntd;
159 	enum dwc2_halt_status halt_status;
160 	u32 hcint;
161 	struct dwc2_qh *qh;
162 	struct list_head hc_list_entry;
163 	dma_addr_t desc_list_addr;
164 	u32 desc_list_sz;
165 	struct list_head split_order_list_entry;
166 };
167 
168 struct dwc2_hcd_pipe_info {
169 	u8 dev_addr;
170 	u8 ep_num;
171 	u8 pipe_type;
172 	u8 pipe_dir;
173 	u16 maxp;
174 	u16 maxp_mult;
175 };
176 
177 struct dwc2_hcd_iso_packet_desc {
178 	u32 offset;
179 	u32 length;
180 	u32 actual_length;
181 	u32 status;
182 };
183 
184 struct dwc2_qtd;
185 
186 struct dwc2_hcd_urb {
187 	void *priv;
188 	struct dwc2_qtd *qtd;
189 	void *buf;
190 	dma_addr_t dma;
191 	void *setup_packet;
192 	dma_addr_t setup_dma;
193 	u32 length;
194 	u32 actual_length;
195 	u32 status;
196 	u32 error_count;
197 	u32 packet_count;
198 	u32 flags;
199 	u16 interval;
200 	struct dwc2_hcd_pipe_info pipe_info;
201 	struct dwc2_hcd_iso_packet_desc iso_descs[0];
202 };
203 
204 /* Phases for control transfers */
205 enum dwc2_control_phase {
206 	DWC2_CONTROL_SETUP,
207 	DWC2_CONTROL_DATA,
208 	DWC2_CONTROL_STATUS,
209 };
210 
211 /* Transaction types */
212 enum dwc2_transaction_type {
213 	DWC2_TRANSACTION_NONE,
214 	DWC2_TRANSACTION_PERIODIC,
215 	DWC2_TRANSACTION_NON_PERIODIC,
216 	DWC2_TRANSACTION_ALL,
217 };
218 
219 /* The number of elements per LS bitmap (per port on multi_tt) */
220 #define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
221 						     BITS_PER_LONG)
222 
223 /**
224  * struct dwc2_tt - dwc2 data associated with a usb_tt
225  *
226  * @refcount:           Number of Queue Heads (QHs) holding a reference.
227  * @usb_tt:             Pointer back to the official usb_tt.
228  * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
229  *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
230  *			elements (so sizeof(long) times that in bytes).
231  *
232  * This structure is stored in the hcpriv of the official usb_tt.
233  */
234 struct dwc2_tt {
235 	int refcount;
236 	struct usb_tt *usb_tt;
237 	unsigned long periodic_bitmaps[];
238 };
239 
240 /**
241  * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
242  *
243  * @start_schedule_usecs:  The start time on the main bus schedule.  Note that
244  *                         the main bus schedule is tightly packed and this
245  *			   time should be interpreted as tightly packed (so
246  *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
247  *			   instead of 125 us).
248  * @duration_us:           How long this transfer goes.
249  */
250 
251 struct dwc2_hs_transfer_time {
252 	u32 start_schedule_us;
253 	u16 duration_us;
254 };
255 
256 /**
257  * struct dwc2_qh - Software queue head structure
258  *
259  * @hsotg:              The HCD state structure for the DWC OTG controller
260  * @ep_type:            Endpoint type. One of the following values:
261  *                       - USB_ENDPOINT_XFER_CONTROL
262  *                       - USB_ENDPOINT_XFER_BULK
263  *                       - USB_ENDPOINT_XFER_INT
264  *                       - USB_ENDPOINT_XFER_ISOC
265  * @ep_is_in:           Endpoint direction
266  * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
267  * @maxp_mult:          Multiplier for maxp
268  * @dev_speed:          Device speed. One of the following values:
269  *                       - USB_SPEED_LOW
270  *                       - USB_SPEED_FULL
271  *                       - USB_SPEED_HIGH
272  * @data_toggle:        Determines the PID of the next data packet for
273  *                      non-controltransfers. Ignored for control transfers.
274  *                      One of the following values:
275  *                       - DWC2_HC_PID_DATA0
276  *                       - DWC2_HC_PID_DATA1
277  * @ping_state:         Ping state
278  * @do_split:           Full/low speed endpoint on high-speed hub requires split
279  * @td_first:           Index of first activated isochronous transfer descriptor
280  * @td_last:            Index of last activated isochronous transfer descriptor
281  * @host_us:            Bandwidth in microseconds per transfer as seen by host
282  * @device_us:          Bandwidth in microseconds per transfer as seen by device
283  * @host_interval:      Interval between transfers as seen by the host.  If
284  *                      the host is high speed and the device is low speed this
285  *                      will be 8 times device interval.
286  * @device_interval:    Interval between transfers as seen by the device.
287  *                      interval.
288  * @next_active_frame:  (Micro)frame _before_ we next need to put something on
289  *                      the bus.  We'll move the qh to active here.  If the
290  *                      host is in high speed mode this will be a uframe.  If
291  *                      the host is in low speed mode this will be a full frame.
292  * @start_active_frame: If we are partway through a split transfer, this will be
293  *			what next_active_frame was when we started.  Otherwise
294  *			it should always be the same as next_active_frame.
295  * @num_hs_transfers:   Number of transfers in hs_transfers.
296  *                      Normally this is 1 but can be more than one for splits.
297  *                      Always >= 1 unless the host is in low/full speed mode.
298  * @hs_transfers:       Transfers that are scheduled as seen by the high speed
299  *                      bus.  Not used if host is in low or full speed mode (but
300  *                      note that it IS USED if the device is low or full speed
301  *                      as long as the HOST is in high speed mode).
302  * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
303  *                           schedule that's being used by this device.  This
304  *			     will be on the periodic_bitmap in a
305  *                           "struct dwc2_tt".  Not used if this device is high
306  *                           speed.  Note that this is in "schedule slice" which
307  *                           is tightly packed.
308  * @ls_duration_us:     Duration on the low speed bus schedule.
309  * @ntd:                Actual number of transfer descriptors in a list
310  * @dw_align_buf:       Used instead of original buffer if its physical address
311  *                      is not dword-aligned
312  * @dw_align_buf_dma:   DMA address for dw_align_buf
313  * @qtd_list:           List of QTDs for this QH
314  * @channel:            Host channel currently processing transfers for this QH
315  * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
316  *                      schedule
317  * @desc_list:          List of transfer descriptors
318  * @desc_list_dma:      Physical address of desc_list
319  * @desc_list_sz:       Size of descriptors list
320  * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
321  *                      descriptor and indicates original XferSize value for the
322  *                      descriptor
323  * @unreserve_timer:    Timer for releasing periodic reservation.
324  * @dwc2_tt:            Pointer to our tt info (or NULL if no tt).
325  * @ttport:             Port number within our tt.
326  * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
327  * @unreserve_pending:  True if we planned to unreserve but haven't yet.
328  * @schedule_low_speed: True if we have a low/full speed component (either the
329  *			host is in low/full speed mode or do_split).
330  *
331  * A Queue Head (QH) holds the static characteristics of an endpoint and
332  * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
333  * be entered in either the non-periodic or periodic schedule.
334  */
335 struct dwc2_qh {
336 	struct dwc2_hsotg *hsotg;
337 	u8 ep_type;
338 	u8 ep_is_in;
339 	u16 maxp;
340 	u16 maxp_mult;
341 	u8 dev_speed;
342 	u8 data_toggle;
343 	u8 ping_state;
344 	u8 do_split;
345 	u8 td_first;
346 	u8 td_last;
347 	u16 host_us;
348 	u16 device_us;
349 	u16 host_interval;
350 	u16 device_interval;
351 	u16 next_active_frame;
352 	u16 start_active_frame;
353 	s16 num_hs_transfers;
354 	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
355 	u32 ls_start_schedule_slice;
356 	u16 ntd;
357 	u8 *dw_align_buf;
358 	dma_addr_t dw_align_buf_dma;
359 	struct list_head qtd_list;
360 	struct dwc2_host_chan *channel;
361 	struct list_head qh_list_entry;
362 	struct dwc2_dma_desc *desc_list;
363 	dma_addr_t desc_list_dma;
364 	u32 desc_list_sz;
365 	u32 *n_bytes;
366 	struct timer_list unreserve_timer;
367 	struct dwc2_tt *dwc_tt;
368 	int ttport;
369 	unsigned tt_buffer_dirty:1;
370 	unsigned unreserve_pending:1;
371 	unsigned schedule_low_speed:1;
372 };
373 
374 /**
375  * struct dwc2_qtd - Software queue transfer descriptor (QTD)
376  *
377  * @control_phase:      Current phase for control transfers (Setup, Data, or
378  *                      Status)
379  * @in_process:         Indicates if this QTD is currently processed by HW
380  * @data_toggle:        Determines the PID of the next data packet for the
381  *                      data phase of control transfers. Ignored for other
382  *                      transfer types. One of the following values:
383  *                       - DWC2_HC_PID_DATA0
384  *                       - DWC2_HC_PID_DATA1
385  * @complete_split:     Keeps track of the current split type for FS/LS
386  *                      endpoints on a HS Hub
387  * @isoc_split_pos:     Position of the ISOC split in full/low speed
388  * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
389  *                      transfer. A frame descriptor describes the buffer
390  *                      position and length of the data to be transferred in the
391  *                      next scheduled (micro)frame of an isochronous transfer.
392  *                      It also holds status for that transaction. The frame
393  *                      index starts at 0.
394  * @isoc_split_offset:  Position of the ISOC split in the buffer for the
395  *                      current frame
396  * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
397  * @error_count:        Holds the number of bus errors that have occurred for
398  *                      a transaction within this transfer
399  * @n_desc:             Number of DMA descriptors for this QTD
400  * @isoc_frame_index_last: Last activated frame (packet) index, used in
401  *                      descriptor DMA mode only
402  * @urb:                URB for this transfer
403  * @qh:                 Queue head for this QTD
404  * @qtd_list_entry:     For linking to the QH's list of QTDs
405  *
406  * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
407  * interrupt, or isochronous transfer. A single QTD is created for each URB
408  * (of one of these types) submitted to the HCD. The transfer associated with
409  * a QTD may require one or multiple transactions.
410  *
411  * A QTD is linked to a Queue Head, which is entered in either the
412  * non-periodic or periodic schedule for execution. When a QTD is chosen for
413  * execution, some or all of its transactions may be executed. After
414  * execution, the state of the QTD is updated. The QTD may be retired if all
415  * its transactions are complete or if an error occurred. Otherwise, it
416  * remains in the schedule so more transactions can be executed later.
417  */
418 struct dwc2_qtd {
419 	enum dwc2_control_phase control_phase;
420 	u8 in_process;
421 	u8 data_toggle;
422 	u8 complete_split;
423 	u8 isoc_split_pos;
424 	u16 isoc_frame_index;
425 	u16 isoc_split_offset;
426 	u16 isoc_td_last;
427 	u16 isoc_td_first;
428 	u32 ssplit_out_xfer_count;
429 	u8 error_count;
430 	u8 n_desc;
431 	u16 isoc_frame_index_last;
432 	struct dwc2_hcd_urb *urb;
433 	struct dwc2_qh *qh;
434 	struct list_head qtd_list_entry;
435 };
436 
437 #ifdef DEBUG
438 struct hc_xfer_info {
439 	struct dwc2_hsotg *hsotg;
440 	struct dwc2_host_chan *chan;
441 };
442 #endif
443 
444 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
445 
446 /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
dwc2_hsotg_to_hcd(struct dwc2_hsotg * hsotg)447 static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
448 {
449 	return (struct usb_hcd *)hsotg->priv;
450 }
451 
452 /*
453  * Inline used to disable one channel interrupt. Channel interrupts are
454  * disabled when the channel is halted or released by the interrupt handler.
455  * There is no need to handle further interrupts of that type until the
456  * channel is re-assigned. In fact, subsequent handling may cause crashes
457  * because the channel structures are cleaned up when the channel is released.
458  */
disable_hc_int(struct dwc2_hsotg * hsotg,int chnum,u32 intr)459 static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
460 {
461 	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
462 
463 	mask &= ~intr;
464 	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
465 }
466 
467 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
468 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
469 		  enum dwc2_halt_status halt_status);
470 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
471 				 struct dwc2_host_chan *chan);
472 
473 /*
474  * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
475  * are read as 1, they won't clear when written back.
476  */
dwc2_read_hprt0(struct dwc2_hsotg * hsotg)477 static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
478 {
479 	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
480 
481 	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
482 	return hprt0;
483 }
484 
dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info * pipe)485 static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
486 {
487 	return pipe->ep_num;
488 }
489 
dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info * pipe)490 static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
491 {
492 	return pipe->pipe_type;
493 }
494 
dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info * pipe)495 static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
496 {
497 	return pipe->maxp;
498 }
499 
dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info * pipe)500 static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
501 {
502 	return pipe->maxp_mult;
503 }
504 
dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info * pipe)505 static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
506 {
507 	return pipe->dev_addr;
508 }
509 
dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info * pipe)510 static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
511 {
512 	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
513 }
514 
dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info * pipe)515 static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
516 {
517 	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
518 }
519 
dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info * pipe)520 static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
521 {
522 	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
523 }
524 
dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info * pipe)525 static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
526 {
527 	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
528 }
529 
dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info * pipe)530 static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
531 {
532 	return pipe->pipe_dir == USB_DIR_IN;
533 }
534 
dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info * pipe)535 static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
536 {
537 	return !dwc2_hcd_is_pipe_in(pipe);
538 }
539 
540 int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
541 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
542 
543 /* Transaction Execution Functions */
544 enum dwc2_transaction_type dwc2_hcd_select_transactions(
545 						struct dwc2_hsotg *hsotg);
546 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
547 				 enum dwc2_transaction_type tr_type);
548 
549 /* Schedule Queue Functions */
550 /* Implemented in hcd_queue.c */
551 struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
552 				   struct dwc2_hcd_urb *urb,
553 					  gfp_t mem_flags);
554 void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
555 int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
556 void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
557 void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
558 			    int sched_csplit);
559 
560 void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
561 int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
562 		     struct dwc2_qh *qh);
563 
564 /* Unlinks and frees a QTD */
dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg * hsotg,struct dwc2_qtd * qtd,struct dwc2_qh * qh)565 static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
566 						struct dwc2_qtd *qtd,
567 						struct dwc2_qh *qh)
568 {
569 	list_del(&qtd->qtd_list_entry);
570 	kfree(qtd);
571 	qtd = NULL;
572 }
573 
574 /* Descriptor DMA support functions */
575 void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
576 			      struct dwc2_qh *qh);
577 void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
578 				 struct dwc2_host_chan *chan, int chnum,
579 					enum dwc2_halt_status halt_status);
580 
581 int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
582 			  gfp_t mem_flags);
583 void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
584 
585 /* Check if QH is non-periodic */
586 #define dwc2_qh_is_non_per(_qh_ptr_) \
587 	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
588 	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
589 
590 #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
dbg_hc(struct dwc2_host_chan * hc)591 static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
dbg_qh(struct dwc2_qh * qh)592 static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
dbg_urb(struct urb * urb)593 static inline bool dbg_urb(struct urb *urb) { return true; }
dbg_perio(void)594 static inline bool dbg_perio(void) { return true; }
595 #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
dbg_hc(struct dwc2_host_chan * hc)596 static inline bool dbg_hc(struct dwc2_host_chan *hc)
597 {
598 	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
599 	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
600 }
601 
dbg_qh(struct dwc2_qh * qh)602 static inline bool dbg_qh(struct dwc2_qh *qh)
603 {
604 	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
605 	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
606 }
607 
dbg_urb(struct urb * urb)608 static inline bool dbg_urb(struct urb *urb)
609 {
610 	return usb_pipetype(urb->pipe) == PIPE_BULK ||
611 	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
612 }
613 
dbg_perio(void)614 static inline bool dbg_perio(void) { return false; }
615 #endif
616 
617 /*
618  * Returns true if frame1 index is greater than frame2 index. The comparison
619  * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
620  * frame number when the max index frame number is reached.
621  */
dwc2_frame_idx_num_gt(u16 fr_idx1,u16 fr_idx2)622 static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
623 {
624 	u16 diff = fr_idx1 - fr_idx2;
625 	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
626 
627 	return diff && !sign;
628 }
629 
630 /*
631  * Returns true if frame1 is less than or equal to frame2. The comparison is
632  * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
633  * frame number when the max frame number is reached.
634  */
dwc2_frame_num_le(u16 frame1,u16 frame2)635 static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
636 {
637 	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
638 }
639 
640 /*
641  * Returns true if frame1 is greater than frame2. The comparison is done
642  * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
643  * number when the max frame number is reached.
644  */
dwc2_frame_num_gt(u16 frame1,u16 frame2)645 static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
646 {
647 	return (frame1 != frame2) &&
648 	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
649 }
650 
651 /*
652  * Increments frame by the amount specified by inc. The addition is done
653  * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
654  */
dwc2_frame_num_inc(u16 frame,u16 inc)655 static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
656 {
657 	return (frame + inc) & HFNUM_MAX_FRNUM;
658 }
659 
dwc2_frame_num_dec(u16 frame,u16 dec)660 static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
661 {
662 	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
663 }
664 
dwc2_full_frame_num(u16 frame)665 static inline u16 dwc2_full_frame_num(u16 frame)
666 {
667 	return (frame & HFNUM_MAX_FRNUM) >> 3;
668 }
669 
dwc2_micro_frame_num(u16 frame)670 static inline u16 dwc2_micro_frame_num(u16 frame)
671 {
672 	return frame & 0x7;
673 }
674 
675 /*
676  * Returns the Core Interrupt Status register contents, ANDed with the Core
677  * Interrupt Mask register contents
678  */
dwc2_read_core_intr(struct dwc2_hsotg * hsotg)679 static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
680 {
681 	return dwc2_readl(hsotg->regs + GINTSTS) &
682 	       dwc2_readl(hsotg->regs + GINTMSK);
683 }
684 
dwc2_hcd_urb_get_status(struct dwc2_hcd_urb * dwc2_urb)685 static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
686 {
687 	return dwc2_urb->status;
688 }
689 
dwc2_hcd_urb_get_actual_length(struct dwc2_hcd_urb * dwc2_urb)690 static inline u32 dwc2_hcd_urb_get_actual_length(
691 		struct dwc2_hcd_urb *dwc2_urb)
692 {
693 	return dwc2_urb->actual_length;
694 }
695 
dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb * dwc2_urb)696 static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
697 {
698 	return dwc2_urb->error_count;
699 }
700 
dwc2_hcd_urb_set_iso_desc_params(struct dwc2_hcd_urb * dwc2_urb,int desc_num,u32 offset,u32 length)701 static inline void dwc2_hcd_urb_set_iso_desc_params(
702 		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
703 		u32 length)
704 {
705 	dwc2_urb->iso_descs[desc_num].offset = offset;
706 	dwc2_urb->iso_descs[desc_num].length = length;
707 }
708 
dwc2_hcd_urb_get_iso_desc_status(struct dwc2_hcd_urb * dwc2_urb,int desc_num)709 static inline u32 dwc2_hcd_urb_get_iso_desc_status(
710 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
711 {
712 	return dwc2_urb->iso_descs[desc_num].status;
713 }
714 
dwc2_hcd_urb_get_iso_desc_actual_length(struct dwc2_hcd_urb * dwc2_urb,int desc_num)715 static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
716 		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
717 {
718 	return dwc2_urb->iso_descs[desc_num].actual_length;
719 }
720 
dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)721 static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
722 						  struct usb_host_endpoint *ep)
723 {
724 	struct dwc2_qh *qh = ep->hcpriv;
725 
726 	if (qh && !list_empty(&qh->qh_list_entry))
727 		return 1;
728 
729 	return 0;
730 }
731 
dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg * hsotg,struct usb_host_endpoint * ep)732 static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
733 					    struct usb_host_endpoint *ep)
734 {
735 	struct dwc2_qh *qh = ep->hcpriv;
736 
737 	if (!qh) {
738 		WARN_ON(1);
739 		return 0;
740 	}
741 
742 	return qh->host_us;
743 }
744 
745 void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
746 			       struct dwc2_host_chan *chan, int chnum,
747 				      struct dwc2_qtd *qtd);
748 
749 /* HCD Core API */
750 
751 /**
752  * dwc2_handle_hcd_intr() - Called on every hardware interrupt
753  *
754  * @hsotg: The DWC2 HCD
755  *
756  * Returns IRQ_HANDLED if interrupt is handled
757  * Return IRQ_NONE if interrupt is not handled
758  */
759 irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
760 
761 /**
762  * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
763  *
764  * @hsotg: The DWC2 HCD
765  */
766 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
767 
768 /**
769  * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
770  * and 0 otherwise
771  *
772  * @hsotg: The DWC2 HCD
773  */
774 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
775 
776 /**
777  * dwc2_hcd_dump_state() - Dumps hsotg state
778  *
779  * @hsotg: The DWC2 HCD
780  *
781  * NOTE: This function will be removed once the peripheral controller code
782  * is integrated and the driver is stable
783  */
784 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
785 
786 /**
787  * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
788  *
789  * @hsotg: The DWC2 HCD
790  *
791  * This can be used to determine average interrupt latency. Frame remaining is
792  * also shown for start transfer and two additional sample points.
793  *
794  * NOTE: This function will be removed once the peripheral controller code
795  * is integrated and the driver is stable
796  */
797 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
798 
799 /* URB interface */
800 
801 /* Transfer flags */
802 #define URB_GIVEBACK_ASAP	0x1
803 #define URB_SEND_ZERO_PACKET	0x2
804 
805 /* Host driver callbacks */
806 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
807 				      void *context, gfp_t mem_flags,
808 				      int *ttport);
809 
810 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
811 			   struct dwc2_tt *dwc_tt);
812 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
813 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
814 			int status);
815 
816 #ifdef DEBUG
817 /*
818  * Macro to sample the remaining PHY clocks left in the current frame. This
819  * may be used during debugging to determine the average time it takes to
820  * execute sections of code. There are two possible sample points, "a" and
821  * "b", so the _letter_ argument must be one of these values.
822  *
823  * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
824  * example, "cat /sys/devices/lm0/hcd_frrem".
825  */
826 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
827 do {									\
828 	struct hfnum_data _hfnum_;					\
829 	struct dwc2_qtd *_qtd_;						\
830 									\
831 	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
832 			   qtd_list_entry);				\
833 	if (usb_pipeint(_qtd_->urb->pipe) &&				\
834 	    (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
835 		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
836 		switch (_hfnum_.b.frnum & 0x7) {			\
837 		case 7:							\
838 			(_hcd_)->hfnum_7_samples_##_letter_++;		\
839 			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
840 				_hfnum_.b.frrem;			\
841 			break;						\
842 		case 0:							\
843 			(_hcd_)->hfnum_0_samples_##_letter_++;		\
844 			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
845 				_hfnum_.b.frrem;			\
846 			break;						\
847 		default:						\
848 			(_hcd_)->hfnum_other_samples_##_letter_++;	\
849 			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
850 				_hfnum_.b.frrem;			\
851 			break;						\
852 		}							\
853 	}								\
854 } while (0)
855 #else
856 #define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
857 #endif
858 
859 #endif /* __DWC2_HCD_H__ */
860