1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (c) 2000-2001, 2010, Code Aurora Forum. All rights reserved.
4
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
10
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
23 */
24
25 #ifndef __HCI_CORE_H
26 #define __HCI_CORE_H
27
28 #include <linux/leds.h>
29 #include <linux/rculist.h>
30
31 #include <net/bluetooth/hci.h>
32 #include <net/bluetooth/hci_sock.h>
33
34 /* HCI priority */
35 #define HCI_PRIO_MAX 7
36
37 /* HCI Core structures */
38 struct inquiry_data {
39 bdaddr_t bdaddr;
40 __u8 pscan_rep_mode;
41 __u8 pscan_period_mode;
42 __u8 pscan_mode;
43 __u8 dev_class[3];
44 __le16 clock_offset;
45 __s8 rssi;
46 __u8 ssp_mode;
47 };
48
49 struct inquiry_entry {
50 struct list_head all; /* inq_cache.all */
51 struct list_head list; /* unknown or resolve */
52 enum {
53 NAME_NOT_KNOWN,
54 NAME_NEEDED,
55 NAME_PENDING,
56 NAME_KNOWN,
57 } name_state;
58 __u32 timestamp;
59 struct inquiry_data data;
60 };
61
62 struct discovery_state {
63 int type;
64 enum {
65 DISCOVERY_STOPPED,
66 DISCOVERY_STARTING,
67 DISCOVERY_FINDING,
68 DISCOVERY_RESOLVING,
69 DISCOVERY_STOPPING,
70 } state;
71 struct list_head all; /* All devices found during inquiry */
72 struct list_head unknown; /* Name state not known */
73 struct list_head resolve; /* Name needs to be resolved */
74 __u32 timestamp;
75 bdaddr_t last_adv_addr;
76 u8 last_adv_addr_type;
77 s8 last_adv_rssi;
78 u32 last_adv_flags;
79 u8 last_adv_data[HCI_MAX_AD_LENGTH];
80 u8 last_adv_data_len;
81 bool report_invalid_rssi;
82 bool result_filtering;
83 bool limited;
84 s8 rssi;
85 u16 uuid_count;
86 u8 (*uuids)[16];
87 unsigned long scan_start;
88 unsigned long scan_duration;
89 };
90
91 struct hci_conn_hash {
92 struct list_head list;
93 unsigned int acl_num;
94 unsigned int amp_num;
95 unsigned int sco_num;
96 unsigned int le_num;
97 unsigned int le_num_slave;
98 };
99
100 struct bdaddr_list {
101 struct list_head list;
102 bdaddr_t bdaddr;
103 u8 bdaddr_type;
104 };
105
106 struct bt_uuid {
107 struct list_head list;
108 u8 uuid[16];
109 u8 size;
110 u8 svc_hint;
111 };
112
113 struct smp_csrk {
114 bdaddr_t bdaddr;
115 u8 bdaddr_type;
116 u8 type;
117 u8 val[16];
118 };
119
120 struct smp_ltk {
121 struct list_head list;
122 struct rcu_head rcu;
123 bdaddr_t bdaddr;
124 u8 bdaddr_type;
125 u8 authenticated;
126 u8 type;
127 u8 enc_size;
128 __le16 ediv;
129 __le64 rand;
130 u8 val[16];
131 };
132
133 struct smp_irk {
134 struct list_head list;
135 struct rcu_head rcu;
136 bdaddr_t rpa;
137 bdaddr_t bdaddr;
138 u8 addr_type;
139 u8 val[16];
140 };
141
142 struct link_key {
143 struct list_head list;
144 struct rcu_head rcu;
145 bdaddr_t bdaddr;
146 u8 type;
147 u8 val[HCI_LINK_KEY_SIZE];
148 u8 pin_len;
149 };
150
151 struct oob_data {
152 struct list_head list;
153 bdaddr_t bdaddr;
154 u8 bdaddr_type;
155 u8 present;
156 u8 hash192[16];
157 u8 rand192[16];
158 u8 hash256[16];
159 u8 rand256[16];
160 };
161
162 struct adv_info {
163 struct list_head list;
164 bool pending;
165 __u8 instance;
166 __u32 flags;
167 __u16 timeout;
168 __u16 remaining_time;
169 __u16 duration;
170 __u16 adv_data_len;
171 __u8 adv_data[HCI_MAX_AD_LENGTH];
172 __u16 scan_rsp_len;
173 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
174 };
175
176 #define HCI_MAX_ADV_INSTANCES 5
177 #define HCI_DEFAULT_ADV_DURATION 2
178
179 #define HCI_MAX_SHORT_NAME_LENGTH 10
180
181 /* Min encryption key size to match with SMP */
182 #define HCI_MIN_ENC_KEY_SIZE 7
183
184 /* Default LE RPA expiry time, 15 minutes */
185 #define HCI_DEFAULT_RPA_TIMEOUT (15 * 60)
186
187 /* Default min/max age of connection information (1s/3s) */
188 #define DEFAULT_CONN_INFO_MIN_AGE 1000
189 #define DEFAULT_CONN_INFO_MAX_AGE 3000
190
191 struct amp_assoc {
192 __u16 len;
193 __u16 offset;
194 __u16 rem_len;
195 __u16 len_so_far;
196 __u8 data[HCI_MAX_AMP_ASSOC_SIZE];
197 };
198
199 #define HCI_MAX_PAGES 3
200
201 struct hci_dev {
202 struct list_head list;
203 struct mutex lock;
204
205 char name[8];
206 unsigned long flags;
207 __u16 id;
208 __u8 bus;
209 __u8 dev_type;
210 bdaddr_t bdaddr;
211 bdaddr_t setup_addr;
212 bdaddr_t public_addr;
213 bdaddr_t random_addr;
214 bdaddr_t static_addr;
215 __u8 adv_addr_type;
216 __u8 dev_name[HCI_MAX_NAME_LENGTH];
217 __u8 short_name[HCI_MAX_SHORT_NAME_LENGTH];
218 __u8 eir[HCI_MAX_EIR_LENGTH];
219 __u16 appearance;
220 __u8 dev_class[3];
221 __u8 major_class;
222 __u8 minor_class;
223 __u8 max_page;
224 __u8 features[HCI_MAX_PAGES][8];
225 __u8 le_features[8];
226 __u8 le_white_list_size;
227 __u8 le_states[8];
228 __u8 commands[64];
229 __u8 hci_ver;
230 __u16 hci_rev;
231 __u8 lmp_ver;
232 __u16 manufacturer;
233 __u16 lmp_subver;
234 __u16 voice_setting;
235 __u8 num_iac;
236 __u8 stored_max_keys;
237 __u8 stored_num_keys;
238 __u8 io_capability;
239 __s8 inq_tx_power;
240 __u16 page_scan_interval;
241 __u16 page_scan_window;
242 __u8 page_scan_type;
243 __u8 le_adv_channel_map;
244 __u16 le_adv_min_interval;
245 __u16 le_adv_max_interval;
246 __u8 le_scan_type;
247 __u16 le_scan_interval;
248 __u16 le_scan_window;
249 __u16 le_conn_min_interval;
250 __u16 le_conn_max_interval;
251 __u16 le_conn_latency;
252 __u16 le_supv_timeout;
253 __u16 le_def_tx_len;
254 __u16 le_def_tx_time;
255 __u16 le_max_tx_len;
256 __u16 le_max_tx_time;
257 __u16 le_max_rx_len;
258 __u16 le_max_rx_time;
259 __u16 discov_interleaved_timeout;
260 __u16 conn_info_min_age;
261 __u16 conn_info_max_age;
262 __u8 ssp_debug_mode;
263 __u8 hw_error_code;
264 __u32 clock;
265
266 __u16 devid_source;
267 __u16 devid_vendor;
268 __u16 devid_product;
269 __u16 devid_version;
270
271 __u16 pkt_type;
272 __u16 esco_type;
273 __u16 link_policy;
274 __u16 link_mode;
275
276 __u32 idle_timeout;
277 __u16 sniff_min_interval;
278 __u16 sniff_max_interval;
279
280 __u8 amp_status;
281 __u32 amp_total_bw;
282 __u32 amp_max_bw;
283 __u32 amp_min_latency;
284 __u32 amp_max_pdu;
285 __u8 amp_type;
286 __u16 amp_pal_cap;
287 __u16 amp_assoc_size;
288 __u32 amp_max_flush_to;
289 __u32 amp_be_flush_to;
290
291 struct amp_assoc loc_assoc;
292
293 __u8 flow_ctl_mode;
294
295 unsigned int auto_accept_delay;
296
297 unsigned long quirks;
298
299 atomic_t cmd_cnt;
300 unsigned int acl_cnt;
301 unsigned int sco_cnt;
302 unsigned int le_cnt;
303
304 unsigned int acl_mtu;
305 unsigned int sco_mtu;
306 unsigned int le_mtu;
307 unsigned int acl_pkts;
308 unsigned int sco_pkts;
309 unsigned int le_pkts;
310
311 __u16 block_len;
312 __u16 block_mtu;
313 __u16 num_blocks;
314 __u16 block_cnt;
315
316 unsigned long acl_last_tx;
317 unsigned long sco_last_tx;
318 unsigned long le_last_tx;
319
320 struct workqueue_struct *workqueue;
321 struct workqueue_struct *req_workqueue;
322
323 struct work_struct power_on;
324 struct delayed_work power_off;
325 struct work_struct error_reset;
326
327 __u16 discov_timeout;
328 struct delayed_work discov_off;
329
330 struct delayed_work service_cache;
331
332 struct delayed_work cmd_timer;
333
334 struct work_struct rx_work;
335 struct work_struct cmd_work;
336 struct work_struct tx_work;
337
338 struct work_struct discov_update;
339 struct work_struct bg_scan_update;
340 struct work_struct scan_update;
341 struct work_struct connectable_update;
342 struct work_struct discoverable_update;
343 struct delayed_work le_scan_disable;
344 struct delayed_work le_scan_restart;
345
346 struct sk_buff_head rx_q;
347 struct sk_buff_head raw_q;
348 struct sk_buff_head cmd_q;
349
350 struct sk_buff *sent_cmd;
351
352 struct mutex req_lock;
353 wait_queue_head_t req_wait_q;
354 __u32 req_status;
355 __u32 req_result;
356 struct sk_buff *req_skb;
357
358 void *smp_data;
359 void *smp_bredr_data;
360
361 struct discovery_state discovery;
362 struct hci_conn_hash conn_hash;
363
364 struct list_head mgmt_pending;
365 struct list_head blacklist;
366 struct list_head whitelist;
367 struct list_head uuids;
368 struct list_head link_keys;
369 struct list_head long_term_keys;
370 struct list_head identity_resolving_keys;
371 struct list_head remote_oob_data;
372 struct list_head le_white_list;
373 struct list_head le_conn_params;
374 struct list_head pend_le_conns;
375 struct list_head pend_le_reports;
376
377 struct hci_dev_stats stat;
378
379 atomic_t promisc;
380
381 const char *hw_info;
382 const char *fw_info;
383 struct dentry *debugfs;
384
385 struct device dev;
386
387 struct rfkill *rfkill;
388
389 DECLARE_BITMAP(dev_flags, __HCI_NUM_FLAGS);
390
391 __s8 adv_tx_power;
392 __u8 adv_data[HCI_MAX_AD_LENGTH];
393 __u8 adv_data_len;
394 __u8 scan_rsp_data[HCI_MAX_AD_LENGTH];
395 __u8 scan_rsp_data_len;
396
397 struct list_head adv_instances;
398 unsigned int adv_instance_cnt;
399 __u8 cur_adv_instance;
400 __u16 adv_instance_timeout;
401 struct delayed_work adv_instance_expire;
402
403 __u8 irk[16];
404 __u32 rpa_timeout;
405 struct delayed_work rpa_expired;
406 bdaddr_t rpa;
407
408 #if IS_ENABLED(CONFIG_BT_LEDS)
409 struct led_trigger *power_led;
410 #endif
411
412 int (*open)(struct hci_dev *hdev);
413 int (*close)(struct hci_dev *hdev);
414 int (*flush)(struct hci_dev *hdev);
415 int (*setup)(struct hci_dev *hdev);
416 int (*shutdown)(struct hci_dev *hdev);
417 int (*send)(struct hci_dev *hdev, struct sk_buff *skb);
418 void (*notify)(struct hci_dev *hdev, unsigned int evt);
419 void (*hw_error)(struct hci_dev *hdev, u8 code);
420 int (*post_init)(struct hci_dev *hdev);
421 int (*set_diag)(struct hci_dev *hdev, bool enable);
422 int (*set_bdaddr)(struct hci_dev *hdev, const bdaddr_t *bdaddr);
423 };
424
425 #define HCI_PHY_HANDLE(handle) (handle & 0xff)
426
427 struct hci_conn {
428 struct list_head list;
429
430 atomic_t refcnt;
431
432 bdaddr_t dst;
433 __u8 dst_type;
434 bdaddr_t src;
435 __u8 src_type;
436 bdaddr_t init_addr;
437 __u8 init_addr_type;
438 bdaddr_t resp_addr;
439 __u8 resp_addr_type;
440 __u16 handle;
441 __u16 state;
442 __u8 mode;
443 __u8 type;
444 __u8 role;
445 bool out;
446 __u8 attempt;
447 __u8 dev_class[3];
448 __u8 features[HCI_MAX_PAGES][8];
449 __u16 pkt_type;
450 __u16 link_policy;
451 __u8 key_type;
452 __u8 auth_type;
453 __u8 sec_level;
454 __u8 pending_sec_level;
455 __u8 pin_length;
456 __u8 enc_key_size;
457 __u8 io_capability;
458 __u32 passkey_notify;
459 __u8 passkey_entered;
460 __u16 disc_timeout;
461 __u16 conn_timeout;
462 __u16 setting;
463 __u16 le_conn_min_interval;
464 __u16 le_conn_max_interval;
465 __u16 le_conn_interval;
466 __u16 le_conn_latency;
467 __u16 le_supv_timeout;
468 __u8 le_adv_data[HCI_MAX_AD_LENGTH];
469 __u8 le_adv_data_len;
470 __s8 rssi;
471 __s8 tx_power;
472 __s8 max_tx_power;
473 unsigned long flags;
474
475 __u32 clock;
476 __u16 clock_accuracy;
477
478 unsigned long conn_info_timestamp;
479
480 __u8 remote_cap;
481 __u8 remote_auth;
482 __u8 remote_id;
483
484 unsigned int sent;
485
486 struct sk_buff_head data_q;
487 struct list_head chan_list;
488
489 struct delayed_work disc_work;
490 struct delayed_work auto_accept_work;
491 struct delayed_work idle_work;
492 struct delayed_work le_conn_timeout;
493 struct work_struct le_scan_cleanup;
494
495 struct device dev;
496 struct dentry *debugfs;
497
498 struct hci_dev *hdev;
499 void *l2cap_data;
500 void *sco_data;
501 struct amp_mgr *amp_mgr;
502
503 struct hci_conn *link;
504
505 void (*connect_cfm_cb) (struct hci_conn *conn, u8 status);
506 void (*security_cfm_cb) (struct hci_conn *conn, u8 status);
507 void (*disconn_cfm_cb) (struct hci_conn *conn, u8 reason);
508 };
509
510 struct hci_chan {
511 struct list_head list;
512 __u16 handle;
513 struct hci_conn *conn;
514 struct sk_buff_head data_q;
515 unsigned int sent;
516 __u8 state;
517 };
518
519 struct hci_conn_params {
520 struct list_head list;
521 struct list_head action;
522
523 bdaddr_t addr;
524 u8 addr_type;
525
526 u16 conn_min_interval;
527 u16 conn_max_interval;
528 u16 conn_latency;
529 u16 supervision_timeout;
530
531 enum {
532 HCI_AUTO_CONN_DISABLED,
533 HCI_AUTO_CONN_REPORT,
534 HCI_AUTO_CONN_DIRECT,
535 HCI_AUTO_CONN_ALWAYS,
536 HCI_AUTO_CONN_LINK_LOSS,
537 HCI_AUTO_CONN_EXPLICIT,
538 } auto_connect;
539
540 struct hci_conn *conn;
541 bool explicit_connect;
542 };
543
544 extern struct list_head hci_dev_list;
545 extern struct list_head hci_cb_list;
546 extern rwlock_t hci_dev_list_lock;
547 extern struct mutex hci_cb_list_lock;
548
549 #define hci_dev_set_flag(hdev, nr) set_bit((nr), (hdev)->dev_flags)
550 #define hci_dev_clear_flag(hdev, nr) clear_bit((nr), (hdev)->dev_flags)
551 #define hci_dev_change_flag(hdev, nr) change_bit((nr), (hdev)->dev_flags)
552 #define hci_dev_test_flag(hdev, nr) test_bit((nr), (hdev)->dev_flags)
553 #define hci_dev_test_and_set_flag(hdev, nr) test_and_set_bit((nr), (hdev)->dev_flags)
554 #define hci_dev_test_and_clear_flag(hdev, nr) test_and_clear_bit((nr), (hdev)->dev_flags)
555 #define hci_dev_test_and_change_flag(hdev, nr) test_and_change_bit((nr), (hdev)->dev_flags)
556
557 #define hci_dev_clear_volatile_flags(hdev) \
558 do { \
559 hci_dev_clear_flag(hdev, HCI_LE_SCAN); \
560 hci_dev_clear_flag(hdev, HCI_LE_ADV); \
561 hci_dev_clear_flag(hdev, HCI_PERIODIC_INQ); \
562 } while (0)
563
564 /* ----- HCI interface to upper protocols ----- */
565 int l2cap_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr);
566 int l2cap_disconn_ind(struct hci_conn *hcon);
567 void l2cap_recv_acldata(struct hci_conn *hcon, struct sk_buff *skb, u16 flags);
568
569 #if IS_ENABLED(CONFIG_BT_BREDR)
570 int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr, __u8 *flags);
571 void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb);
572 #else
sco_connect_ind(struct hci_dev * hdev,bdaddr_t * bdaddr,__u8 * flags)573 static inline int sco_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
574 __u8 *flags)
575 {
576 return 0;
577 }
578
sco_recv_scodata(struct hci_conn * hcon,struct sk_buff * skb)579 static inline void sco_recv_scodata(struct hci_conn *hcon, struct sk_buff *skb)
580 {
581 }
582 #endif
583
584 /* ----- Inquiry cache ----- */
585 #define INQUIRY_CACHE_AGE_MAX (HZ*30) /* 30 seconds */
586 #define INQUIRY_ENTRY_AGE_MAX (HZ*60) /* 60 seconds */
587
discovery_init(struct hci_dev * hdev)588 static inline void discovery_init(struct hci_dev *hdev)
589 {
590 hdev->discovery.state = DISCOVERY_STOPPED;
591 INIT_LIST_HEAD(&hdev->discovery.all);
592 INIT_LIST_HEAD(&hdev->discovery.unknown);
593 INIT_LIST_HEAD(&hdev->discovery.resolve);
594 hdev->discovery.report_invalid_rssi = true;
595 hdev->discovery.rssi = HCI_RSSI_INVALID;
596 }
597
hci_discovery_filter_clear(struct hci_dev * hdev)598 static inline void hci_discovery_filter_clear(struct hci_dev *hdev)
599 {
600 hdev->discovery.result_filtering = false;
601 hdev->discovery.report_invalid_rssi = true;
602 hdev->discovery.rssi = HCI_RSSI_INVALID;
603 hdev->discovery.uuid_count = 0;
604 kfree(hdev->discovery.uuids);
605 hdev->discovery.uuids = NULL;
606 hdev->discovery.scan_start = 0;
607 hdev->discovery.scan_duration = 0;
608 }
609
610 bool hci_discovery_active(struct hci_dev *hdev);
611
612 void hci_discovery_set_state(struct hci_dev *hdev, int state);
613
inquiry_cache_empty(struct hci_dev * hdev)614 static inline int inquiry_cache_empty(struct hci_dev *hdev)
615 {
616 return list_empty(&hdev->discovery.all);
617 }
618
inquiry_cache_age(struct hci_dev * hdev)619 static inline long inquiry_cache_age(struct hci_dev *hdev)
620 {
621 struct discovery_state *c = &hdev->discovery;
622 return jiffies - c->timestamp;
623 }
624
inquiry_entry_age(struct inquiry_entry * e)625 static inline long inquiry_entry_age(struct inquiry_entry *e)
626 {
627 return jiffies - e->timestamp;
628 }
629
630 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
631 bdaddr_t *bdaddr);
632 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
633 bdaddr_t *bdaddr);
634 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
635 bdaddr_t *bdaddr,
636 int state);
637 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
638 struct inquiry_entry *ie);
639 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
640 bool name_known);
641 void hci_inquiry_cache_flush(struct hci_dev *hdev);
642
643 /* ----- HCI Connections ----- */
644 enum {
645 HCI_CONN_AUTH_PEND,
646 HCI_CONN_REAUTH_PEND,
647 HCI_CONN_ENCRYPT_PEND,
648 HCI_CONN_RSWITCH_PEND,
649 HCI_CONN_MODE_CHANGE_PEND,
650 HCI_CONN_SCO_SETUP_PEND,
651 HCI_CONN_MGMT_CONNECTED,
652 HCI_CONN_SSP_ENABLED,
653 HCI_CONN_SC_ENABLED,
654 HCI_CONN_AES_CCM,
655 HCI_CONN_POWER_SAVE,
656 HCI_CONN_FLUSH_KEY,
657 HCI_CONN_ENCRYPT,
658 HCI_CONN_AUTH,
659 HCI_CONN_SECURE,
660 HCI_CONN_FIPS,
661 HCI_CONN_STK_ENCRYPT,
662 HCI_CONN_AUTH_INITIATOR,
663 HCI_CONN_DROP,
664 HCI_CONN_PARAM_REMOVAL_PEND,
665 HCI_CONN_NEW_LINK_KEY,
666 HCI_CONN_SCANNING,
667 HCI_CONN_AUTH_FAILURE,
668 };
669
hci_conn_ssp_enabled(struct hci_conn * conn)670 static inline bool hci_conn_ssp_enabled(struct hci_conn *conn)
671 {
672 struct hci_dev *hdev = conn->hdev;
673 return hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
674 test_bit(HCI_CONN_SSP_ENABLED, &conn->flags);
675 }
676
hci_conn_sc_enabled(struct hci_conn * conn)677 static inline bool hci_conn_sc_enabled(struct hci_conn *conn)
678 {
679 struct hci_dev *hdev = conn->hdev;
680 return hci_dev_test_flag(hdev, HCI_SC_ENABLED) &&
681 test_bit(HCI_CONN_SC_ENABLED, &conn->flags);
682 }
683
hci_conn_hash_add(struct hci_dev * hdev,struct hci_conn * c)684 static inline void hci_conn_hash_add(struct hci_dev *hdev, struct hci_conn *c)
685 {
686 struct hci_conn_hash *h = &hdev->conn_hash;
687 list_add_rcu(&c->list, &h->list);
688 switch (c->type) {
689 case ACL_LINK:
690 h->acl_num++;
691 break;
692 case AMP_LINK:
693 h->amp_num++;
694 break;
695 case LE_LINK:
696 h->le_num++;
697 if (c->role == HCI_ROLE_SLAVE)
698 h->le_num_slave++;
699 break;
700 case SCO_LINK:
701 case ESCO_LINK:
702 h->sco_num++;
703 break;
704 }
705 }
706
hci_conn_hash_del(struct hci_dev * hdev,struct hci_conn * c)707 static inline void hci_conn_hash_del(struct hci_dev *hdev, struct hci_conn *c)
708 {
709 struct hci_conn_hash *h = &hdev->conn_hash;
710
711 list_del_rcu(&c->list);
712 synchronize_rcu();
713
714 switch (c->type) {
715 case ACL_LINK:
716 h->acl_num--;
717 break;
718 case AMP_LINK:
719 h->amp_num--;
720 break;
721 case LE_LINK:
722 h->le_num--;
723 if (c->role == HCI_ROLE_SLAVE)
724 h->le_num_slave--;
725 break;
726 case SCO_LINK:
727 case ESCO_LINK:
728 h->sco_num--;
729 break;
730 }
731 }
732
hci_conn_num(struct hci_dev * hdev,__u8 type)733 static inline unsigned int hci_conn_num(struct hci_dev *hdev, __u8 type)
734 {
735 struct hci_conn_hash *h = &hdev->conn_hash;
736 switch (type) {
737 case ACL_LINK:
738 return h->acl_num;
739 case AMP_LINK:
740 return h->amp_num;
741 case LE_LINK:
742 return h->le_num;
743 case SCO_LINK:
744 case ESCO_LINK:
745 return h->sco_num;
746 default:
747 return 0;
748 }
749 }
750
hci_conn_count(struct hci_dev * hdev)751 static inline unsigned int hci_conn_count(struct hci_dev *hdev)
752 {
753 struct hci_conn_hash *c = &hdev->conn_hash;
754
755 return c->acl_num + c->amp_num + c->sco_num + c->le_num;
756 }
757
hci_conn_lookup_type(struct hci_dev * hdev,__u16 handle)758 static inline __u8 hci_conn_lookup_type(struct hci_dev *hdev, __u16 handle)
759 {
760 struct hci_conn_hash *h = &hdev->conn_hash;
761 struct hci_conn *c;
762 __u8 type = INVALID_LINK;
763
764 rcu_read_lock();
765
766 list_for_each_entry_rcu(c, &h->list, list) {
767 if (c->handle == handle) {
768 type = c->type;
769 break;
770 }
771 }
772
773 rcu_read_unlock();
774
775 return type;
776 }
777
hci_conn_hash_lookup_handle(struct hci_dev * hdev,__u16 handle)778 static inline struct hci_conn *hci_conn_hash_lookup_handle(struct hci_dev *hdev,
779 __u16 handle)
780 {
781 struct hci_conn_hash *h = &hdev->conn_hash;
782 struct hci_conn *c;
783
784 rcu_read_lock();
785
786 list_for_each_entry_rcu(c, &h->list, list) {
787 if (c->handle == handle) {
788 rcu_read_unlock();
789 return c;
790 }
791 }
792 rcu_read_unlock();
793
794 return NULL;
795 }
796
hci_conn_hash_lookup_ba(struct hci_dev * hdev,__u8 type,bdaddr_t * ba)797 static inline struct hci_conn *hci_conn_hash_lookup_ba(struct hci_dev *hdev,
798 __u8 type, bdaddr_t *ba)
799 {
800 struct hci_conn_hash *h = &hdev->conn_hash;
801 struct hci_conn *c;
802
803 rcu_read_lock();
804
805 list_for_each_entry_rcu(c, &h->list, list) {
806 if (c->type == type && !bacmp(&c->dst, ba)) {
807 rcu_read_unlock();
808 return c;
809 }
810 }
811
812 rcu_read_unlock();
813
814 return NULL;
815 }
816
hci_conn_hash_lookup_le(struct hci_dev * hdev,bdaddr_t * ba,__u8 ba_type)817 static inline struct hci_conn *hci_conn_hash_lookup_le(struct hci_dev *hdev,
818 bdaddr_t *ba,
819 __u8 ba_type)
820 {
821 struct hci_conn_hash *h = &hdev->conn_hash;
822 struct hci_conn *c;
823
824 rcu_read_lock();
825
826 list_for_each_entry_rcu(c, &h->list, list) {
827 if (c->type != LE_LINK)
828 continue;
829
830 if (ba_type == c->dst_type && !bacmp(&c->dst, ba)) {
831 rcu_read_unlock();
832 return c;
833 }
834 }
835
836 rcu_read_unlock();
837
838 return NULL;
839 }
840
hci_conn_hash_lookup_state(struct hci_dev * hdev,__u8 type,__u16 state)841 static inline struct hci_conn *hci_conn_hash_lookup_state(struct hci_dev *hdev,
842 __u8 type, __u16 state)
843 {
844 struct hci_conn_hash *h = &hdev->conn_hash;
845 struct hci_conn *c;
846
847 rcu_read_lock();
848
849 list_for_each_entry_rcu(c, &h->list, list) {
850 if (c->type == type && c->state == state) {
851 rcu_read_unlock();
852 return c;
853 }
854 }
855
856 rcu_read_unlock();
857
858 return NULL;
859 }
860
hci_lookup_le_connect(struct hci_dev * hdev)861 static inline struct hci_conn *hci_lookup_le_connect(struct hci_dev *hdev)
862 {
863 struct hci_conn_hash *h = &hdev->conn_hash;
864 struct hci_conn *c;
865
866 rcu_read_lock();
867
868 list_for_each_entry_rcu(c, &h->list, list) {
869 if (c->type == LE_LINK && c->state == BT_CONNECT &&
870 !test_bit(HCI_CONN_SCANNING, &c->flags)) {
871 rcu_read_unlock();
872 return c;
873 }
874 }
875
876 rcu_read_unlock();
877
878 return NULL;
879 }
880
881 int hci_disconnect(struct hci_conn *conn, __u8 reason);
882 bool hci_setup_sync(struct hci_conn *conn, __u16 handle);
883 void hci_sco_setup(struct hci_conn *conn, __u8 status);
884
885 struct hci_conn *hci_conn_add(struct hci_dev *hdev, int type, bdaddr_t *dst,
886 u8 role);
887 int hci_conn_del(struct hci_conn *conn);
888 void hci_conn_hash_flush(struct hci_dev *hdev);
889 void hci_conn_check_pending(struct hci_dev *hdev);
890
891 struct hci_chan *hci_chan_create(struct hci_conn *conn);
892 void hci_chan_del(struct hci_chan *chan);
893 void hci_chan_list_flush(struct hci_conn *conn);
894 struct hci_chan *hci_chan_lookup_handle(struct hci_dev *hdev, __u16 handle);
895
896 struct hci_conn *hci_connect_le_scan(struct hci_dev *hdev, bdaddr_t *dst,
897 u8 dst_type, u8 sec_level,
898 u16 conn_timeout);
899 struct hci_conn *hci_connect_le(struct hci_dev *hdev, bdaddr_t *dst,
900 u8 dst_type, u8 sec_level, u16 conn_timeout,
901 u8 role, bdaddr_t *direct_rpa);
902 struct hci_conn *hci_connect_acl(struct hci_dev *hdev, bdaddr_t *dst,
903 u8 sec_level, u8 auth_type);
904 struct hci_conn *hci_connect_sco(struct hci_dev *hdev, int type, bdaddr_t *dst,
905 __u16 setting);
906 int hci_conn_check_link_mode(struct hci_conn *conn);
907 int hci_conn_check_secure(struct hci_conn *conn, __u8 sec_level);
908 int hci_conn_security(struct hci_conn *conn, __u8 sec_level, __u8 auth_type,
909 bool initiator);
910 int hci_conn_switch_role(struct hci_conn *conn, __u8 role);
911
912 void hci_conn_enter_active_mode(struct hci_conn *conn, __u8 force_active);
913
914 void hci_le_conn_failed(struct hci_conn *conn, u8 status);
915
916 /*
917 * hci_conn_get() and hci_conn_put() are used to control the life-time of an
918 * "hci_conn" object. They do not guarantee that the hci_conn object is running,
919 * working or anything else. They just guarantee that the object is available
920 * and can be dereferenced. So you can use its locks, local variables and any
921 * other constant data.
922 * Before accessing runtime data, you _must_ lock the object and then check that
923 * it is still running. As soon as you release the locks, the connection might
924 * get dropped, though.
925 *
926 * On the other hand, hci_conn_hold() and hci_conn_drop() are used to control
927 * how long the underlying connection is held. So every channel that runs on the
928 * hci_conn object calls this to prevent the connection from disappearing. As
929 * long as you hold a device, you must also guarantee that you have a valid
930 * reference to the device via hci_conn_get() (or the initial reference from
931 * hci_conn_add()).
932 * The hold()/drop() ref-count is known to drop below 0 sometimes, which doesn't
933 * break because nobody cares for that. But this means, we cannot use
934 * _get()/_drop() in it, but require the caller to have a valid ref (FIXME).
935 */
936
hci_conn_get(struct hci_conn * conn)937 static inline struct hci_conn *hci_conn_get(struct hci_conn *conn)
938 {
939 get_device(&conn->dev);
940 return conn;
941 }
942
hci_conn_put(struct hci_conn * conn)943 static inline void hci_conn_put(struct hci_conn *conn)
944 {
945 put_device(&conn->dev);
946 }
947
hci_conn_hold(struct hci_conn * conn)948 static inline void hci_conn_hold(struct hci_conn *conn)
949 {
950 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
951
952 atomic_inc(&conn->refcnt);
953 cancel_delayed_work(&conn->disc_work);
954 }
955
hci_conn_drop(struct hci_conn * conn)956 static inline void hci_conn_drop(struct hci_conn *conn)
957 {
958 BT_DBG("hcon %p orig refcnt %d", conn, atomic_read(&conn->refcnt));
959
960 if (atomic_dec_and_test(&conn->refcnt)) {
961 unsigned long timeo;
962
963 switch (conn->type) {
964 case ACL_LINK:
965 case LE_LINK:
966 cancel_delayed_work(&conn->idle_work);
967 if (conn->state == BT_CONNECTED) {
968 timeo = conn->disc_timeout;
969 if (!conn->out)
970 timeo *= 2;
971 } else {
972 timeo = 0;
973 }
974 break;
975
976 case AMP_LINK:
977 timeo = conn->disc_timeout;
978 break;
979
980 default:
981 timeo = 0;
982 break;
983 }
984
985 cancel_delayed_work(&conn->disc_work);
986 queue_delayed_work(conn->hdev->workqueue,
987 &conn->disc_work, timeo);
988 }
989 }
990
991 /* ----- HCI Devices ----- */
hci_dev_put(struct hci_dev * d)992 static inline void hci_dev_put(struct hci_dev *d)
993 {
994 BT_DBG("%s orig refcnt %d", d->name,
995 kref_read(&d->dev.kobj.kref));
996
997 put_device(&d->dev);
998 }
999
hci_dev_hold(struct hci_dev * d)1000 static inline struct hci_dev *hci_dev_hold(struct hci_dev *d)
1001 {
1002 BT_DBG("%s orig refcnt %d", d->name,
1003 kref_read(&d->dev.kobj.kref));
1004
1005 get_device(&d->dev);
1006 return d;
1007 }
1008
1009 #define hci_dev_lock(d) mutex_lock(&d->lock)
1010 #define hci_dev_unlock(d) mutex_unlock(&d->lock)
1011
1012 #define to_hci_dev(d) container_of(d, struct hci_dev, dev)
1013 #define to_hci_conn(c) container_of(c, struct hci_conn, dev)
1014
hci_get_drvdata(struct hci_dev * hdev)1015 static inline void *hci_get_drvdata(struct hci_dev *hdev)
1016 {
1017 return dev_get_drvdata(&hdev->dev);
1018 }
1019
hci_set_drvdata(struct hci_dev * hdev,void * data)1020 static inline void hci_set_drvdata(struct hci_dev *hdev, void *data)
1021 {
1022 dev_set_drvdata(&hdev->dev, data);
1023 }
1024
1025 struct hci_dev *hci_dev_get(int index);
1026 struct hci_dev *hci_get_route(bdaddr_t *dst, bdaddr_t *src, u8 src_type);
1027
1028 struct hci_dev *hci_alloc_dev(void);
1029 void hci_free_dev(struct hci_dev *hdev);
1030 int hci_register_dev(struct hci_dev *hdev);
1031 void hci_unregister_dev(struct hci_dev *hdev);
1032 int hci_suspend_dev(struct hci_dev *hdev);
1033 int hci_resume_dev(struct hci_dev *hdev);
1034 int hci_reset_dev(struct hci_dev *hdev);
1035 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb);
1036 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb);
1037 __printf(2, 3) void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...);
1038 __printf(2, 3) void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...);
1039 int hci_dev_open(__u16 dev);
1040 int hci_dev_close(__u16 dev);
1041 int hci_dev_do_close(struct hci_dev *hdev);
1042 int hci_dev_reset(__u16 dev);
1043 int hci_dev_reset_stat(__u16 dev);
1044 int hci_dev_cmd(unsigned int cmd, void __user *arg);
1045 int hci_get_dev_list(void __user *arg);
1046 int hci_get_dev_info(void __user *arg);
1047 int hci_get_conn_list(void __user *arg);
1048 int hci_get_conn_info(struct hci_dev *hdev, void __user *arg);
1049 int hci_get_auth_info(struct hci_dev *hdev, void __user *arg);
1050 int hci_inquiry(void __user *arg);
1051
1052 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *list,
1053 bdaddr_t *bdaddr, u8 type);
1054 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1055 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type);
1056 void hci_bdaddr_list_clear(struct list_head *list);
1057
1058 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
1059 bdaddr_t *addr, u8 addr_type);
1060 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
1061 bdaddr_t *addr, u8 addr_type);
1062 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type);
1063 void hci_conn_params_clear_disabled(struct hci_dev *hdev);
1064
1065 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
1066 bdaddr_t *addr,
1067 u8 addr_type);
1068
1069 void hci_uuids_clear(struct hci_dev *hdev);
1070
1071 void hci_link_keys_clear(struct hci_dev *hdev);
1072 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1073 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
1074 bdaddr_t *bdaddr, u8 *val, u8 type,
1075 u8 pin_len, bool *persistent);
1076 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1077 u8 addr_type, u8 type, u8 authenticated,
1078 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand);
1079 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1080 u8 addr_type, u8 role);
1081 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type);
1082 void hci_smp_ltks_clear(struct hci_dev *hdev);
1083 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr);
1084
1085 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa);
1086 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
1087 u8 addr_type);
1088 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
1089 u8 addr_type, u8 val[16], bdaddr_t *rpa);
1090 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type);
1091 void hci_smp_irks_clear(struct hci_dev *hdev);
1092
1093 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type);
1094
1095 void hci_remote_oob_data_clear(struct hci_dev *hdev);
1096 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
1097 bdaddr_t *bdaddr, u8 bdaddr_type);
1098 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1099 u8 bdaddr_type, u8 *hash192, u8 *rand192,
1100 u8 *hash256, u8 *rand256);
1101 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
1102 u8 bdaddr_type);
1103
1104 void hci_adv_instances_clear(struct hci_dev *hdev);
1105 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance);
1106 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance);
1107 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
1108 u16 adv_data_len, u8 *adv_data,
1109 u16 scan_rsp_len, u8 *scan_rsp_data,
1110 u16 timeout, u16 duration);
1111 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance);
1112
1113 void hci_event_packet(struct hci_dev *hdev, struct sk_buff *skb);
1114
1115 void hci_init_sysfs(struct hci_dev *hdev);
1116 void hci_conn_init_sysfs(struct hci_conn *conn);
1117 void hci_conn_add_sysfs(struct hci_conn *conn);
1118 void hci_conn_del_sysfs(struct hci_conn *conn);
1119
1120 #define SET_HCIDEV_DEV(hdev, pdev) ((hdev)->dev.parent = (pdev))
1121
1122 /* ----- LMP capabilities ----- */
1123 #define lmp_encrypt_capable(dev) ((dev)->features[0][0] & LMP_ENCRYPT)
1124 #define lmp_rswitch_capable(dev) ((dev)->features[0][0] & LMP_RSWITCH)
1125 #define lmp_hold_capable(dev) ((dev)->features[0][0] & LMP_HOLD)
1126 #define lmp_sniff_capable(dev) ((dev)->features[0][0] & LMP_SNIFF)
1127 #define lmp_park_capable(dev) ((dev)->features[0][1] & LMP_PARK)
1128 #define lmp_inq_rssi_capable(dev) ((dev)->features[0][3] & LMP_RSSI_INQ)
1129 #define lmp_esco_capable(dev) ((dev)->features[0][3] & LMP_ESCO)
1130 #define lmp_bredr_capable(dev) (!((dev)->features[0][4] & LMP_NO_BREDR))
1131 #define lmp_le_capable(dev) ((dev)->features[0][4] & LMP_LE)
1132 #define lmp_sniffsubr_capable(dev) ((dev)->features[0][5] & LMP_SNIFF_SUBR)
1133 #define lmp_pause_enc_capable(dev) ((dev)->features[0][5] & LMP_PAUSE_ENC)
1134 #define lmp_ext_inq_capable(dev) ((dev)->features[0][6] & LMP_EXT_INQ)
1135 #define lmp_le_br_capable(dev) (!!((dev)->features[0][6] & LMP_SIMUL_LE_BR))
1136 #define lmp_ssp_capable(dev) ((dev)->features[0][6] & LMP_SIMPLE_PAIR)
1137 #define lmp_no_flush_capable(dev) ((dev)->features[0][6] & LMP_NO_FLUSH)
1138 #define lmp_lsto_capable(dev) ((dev)->features[0][7] & LMP_LSTO)
1139 #define lmp_inq_tx_pwr_capable(dev) ((dev)->features[0][7] & LMP_INQ_TX_PWR)
1140 #define lmp_ext_feat_capable(dev) ((dev)->features[0][7] & LMP_EXTFEATURES)
1141 #define lmp_transp_capable(dev) ((dev)->features[0][2] & LMP_TRANSPARENT)
1142
1143 /* ----- Extended LMP capabilities ----- */
1144 #define lmp_csb_master_capable(dev) ((dev)->features[2][0] & LMP_CSB_MASTER)
1145 #define lmp_csb_slave_capable(dev) ((dev)->features[2][0] & LMP_CSB_SLAVE)
1146 #define lmp_sync_train_capable(dev) ((dev)->features[2][0] & LMP_SYNC_TRAIN)
1147 #define lmp_sync_scan_capable(dev) ((dev)->features[2][0] & LMP_SYNC_SCAN)
1148 #define lmp_sc_capable(dev) ((dev)->features[2][1] & LMP_SC)
1149 #define lmp_ping_capable(dev) ((dev)->features[2][1] & LMP_PING)
1150
1151 /* ----- Host capabilities ----- */
1152 #define lmp_host_ssp_capable(dev) ((dev)->features[1][0] & LMP_HOST_SSP)
1153 #define lmp_host_sc_capable(dev) ((dev)->features[1][0] & LMP_HOST_SC)
1154 #define lmp_host_le_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE))
1155 #define lmp_host_le_br_capable(dev) (!!((dev)->features[1][0] & LMP_HOST_LE_BREDR))
1156
1157 #define hdev_is_powered(dev) (test_bit(HCI_UP, &(dev)->flags) && \
1158 !hci_dev_test_flag(dev, HCI_AUTO_OFF))
1159 #define bredr_sc_enabled(dev) (lmp_sc_capable(dev) && \
1160 hci_dev_test_flag(dev, HCI_SC_ENABLED))
1161
1162 /* ----- HCI protocols ----- */
1163 #define HCI_PROTO_DEFER 0x01
1164
hci_proto_connect_ind(struct hci_dev * hdev,bdaddr_t * bdaddr,__u8 type,__u8 * flags)1165 static inline int hci_proto_connect_ind(struct hci_dev *hdev, bdaddr_t *bdaddr,
1166 __u8 type, __u8 *flags)
1167 {
1168 switch (type) {
1169 case ACL_LINK:
1170 return l2cap_connect_ind(hdev, bdaddr);
1171
1172 case SCO_LINK:
1173 case ESCO_LINK:
1174 return sco_connect_ind(hdev, bdaddr, flags);
1175
1176 default:
1177 BT_ERR("unknown link type %d", type);
1178 return -EINVAL;
1179 }
1180 }
1181
hci_proto_disconn_ind(struct hci_conn * conn)1182 static inline int hci_proto_disconn_ind(struct hci_conn *conn)
1183 {
1184 if (conn->type != ACL_LINK && conn->type != LE_LINK)
1185 return HCI_ERROR_REMOTE_USER_TERM;
1186
1187 return l2cap_disconn_ind(conn);
1188 }
1189
1190 /* ----- HCI callbacks ----- */
1191 struct hci_cb {
1192 struct list_head list;
1193
1194 char *name;
1195
1196 void (*connect_cfm) (struct hci_conn *conn, __u8 status);
1197 void (*disconn_cfm) (struct hci_conn *conn, __u8 status);
1198 void (*security_cfm) (struct hci_conn *conn, __u8 status,
1199 __u8 encrypt);
1200 void (*key_change_cfm) (struct hci_conn *conn, __u8 status);
1201 void (*role_switch_cfm) (struct hci_conn *conn, __u8 status, __u8 role);
1202 };
1203
hci_connect_cfm(struct hci_conn * conn,__u8 status)1204 static inline void hci_connect_cfm(struct hci_conn *conn, __u8 status)
1205 {
1206 struct hci_cb *cb;
1207
1208 mutex_lock(&hci_cb_list_lock);
1209 list_for_each_entry(cb, &hci_cb_list, list) {
1210 if (cb->connect_cfm)
1211 cb->connect_cfm(conn, status);
1212 }
1213 mutex_unlock(&hci_cb_list_lock);
1214
1215 if (conn->connect_cfm_cb)
1216 conn->connect_cfm_cb(conn, status);
1217 }
1218
hci_disconn_cfm(struct hci_conn * conn,__u8 reason)1219 static inline void hci_disconn_cfm(struct hci_conn *conn, __u8 reason)
1220 {
1221 struct hci_cb *cb;
1222
1223 mutex_lock(&hci_cb_list_lock);
1224 list_for_each_entry(cb, &hci_cb_list, list) {
1225 if (cb->disconn_cfm)
1226 cb->disconn_cfm(conn, reason);
1227 }
1228 mutex_unlock(&hci_cb_list_lock);
1229
1230 if (conn->disconn_cfm_cb)
1231 conn->disconn_cfm_cb(conn, reason);
1232 }
1233
hci_auth_cfm(struct hci_conn * conn,__u8 status)1234 static inline void hci_auth_cfm(struct hci_conn *conn, __u8 status)
1235 {
1236 struct hci_cb *cb;
1237 __u8 encrypt;
1238
1239 if (test_bit(HCI_CONN_ENCRYPT_PEND, &conn->flags))
1240 return;
1241
1242 encrypt = test_bit(HCI_CONN_ENCRYPT, &conn->flags) ? 0x01 : 0x00;
1243
1244 mutex_lock(&hci_cb_list_lock);
1245 list_for_each_entry(cb, &hci_cb_list, list) {
1246 if (cb->security_cfm)
1247 cb->security_cfm(conn, status, encrypt);
1248 }
1249 mutex_unlock(&hci_cb_list_lock);
1250
1251 if (conn->security_cfm_cb)
1252 conn->security_cfm_cb(conn, status);
1253 }
1254
hci_encrypt_cfm(struct hci_conn * conn,__u8 status,__u8 encrypt)1255 static inline void hci_encrypt_cfm(struct hci_conn *conn, __u8 status,
1256 __u8 encrypt)
1257 {
1258 struct hci_cb *cb;
1259
1260 if (conn->sec_level == BT_SECURITY_SDP)
1261 conn->sec_level = BT_SECURITY_LOW;
1262
1263 if (conn->pending_sec_level > conn->sec_level)
1264 conn->sec_level = conn->pending_sec_level;
1265
1266 mutex_lock(&hci_cb_list_lock);
1267 list_for_each_entry(cb, &hci_cb_list, list) {
1268 if (cb->security_cfm)
1269 cb->security_cfm(conn, status, encrypt);
1270 }
1271 mutex_unlock(&hci_cb_list_lock);
1272
1273 if (conn->security_cfm_cb)
1274 conn->security_cfm_cb(conn, status);
1275 }
1276
hci_key_change_cfm(struct hci_conn * conn,__u8 status)1277 static inline void hci_key_change_cfm(struct hci_conn *conn, __u8 status)
1278 {
1279 struct hci_cb *cb;
1280
1281 mutex_lock(&hci_cb_list_lock);
1282 list_for_each_entry(cb, &hci_cb_list, list) {
1283 if (cb->key_change_cfm)
1284 cb->key_change_cfm(conn, status);
1285 }
1286 mutex_unlock(&hci_cb_list_lock);
1287 }
1288
hci_role_switch_cfm(struct hci_conn * conn,__u8 status,__u8 role)1289 static inline void hci_role_switch_cfm(struct hci_conn *conn, __u8 status,
1290 __u8 role)
1291 {
1292 struct hci_cb *cb;
1293
1294 mutex_lock(&hci_cb_list_lock);
1295 list_for_each_entry(cb, &hci_cb_list, list) {
1296 if (cb->role_switch_cfm)
1297 cb->role_switch_cfm(conn, status, role);
1298 }
1299 mutex_unlock(&hci_cb_list_lock);
1300 }
1301
eir_get_data(u8 * eir,size_t eir_len,u8 type,size_t * data_len)1302 static inline void *eir_get_data(u8 *eir, size_t eir_len, u8 type,
1303 size_t *data_len)
1304 {
1305 size_t parsed = 0;
1306
1307 if (eir_len < 2)
1308 return NULL;
1309
1310 while (parsed < eir_len - 1) {
1311 u8 field_len = eir[0];
1312
1313 if (field_len == 0)
1314 break;
1315
1316 parsed += field_len + 1;
1317
1318 if (parsed > eir_len)
1319 break;
1320
1321 if (eir[1] != type) {
1322 eir += field_len + 1;
1323 continue;
1324 }
1325
1326 /* Zero length data */
1327 if (field_len == 1)
1328 return NULL;
1329
1330 if (data_len)
1331 *data_len = field_len - 1;
1332
1333 return &eir[2];
1334 }
1335
1336 return NULL;
1337 }
1338
hci_bdaddr_is_rpa(bdaddr_t * bdaddr,u8 addr_type)1339 static inline bool hci_bdaddr_is_rpa(bdaddr_t *bdaddr, u8 addr_type)
1340 {
1341 if (addr_type != ADDR_LE_DEV_RANDOM)
1342 return false;
1343
1344 if ((bdaddr->b[5] & 0xc0) == 0x40)
1345 return true;
1346
1347 return false;
1348 }
1349
hci_is_identity_address(bdaddr_t * addr,u8 addr_type)1350 static inline bool hci_is_identity_address(bdaddr_t *addr, u8 addr_type)
1351 {
1352 if (addr_type == ADDR_LE_DEV_PUBLIC)
1353 return true;
1354
1355 /* Check for Random Static address type */
1356 if ((addr->b[5] & 0xc0) == 0xc0)
1357 return true;
1358
1359 return false;
1360 }
1361
hci_get_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)1362 static inline struct smp_irk *hci_get_irk(struct hci_dev *hdev,
1363 bdaddr_t *bdaddr, u8 addr_type)
1364 {
1365 if (!hci_bdaddr_is_rpa(bdaddr, addr_type))
1366 return NULL;
1367
1368 return hci_find_irk_by_rpa(hdev, bdaddr);
1369 }
1370
hci_check_conn_params(u16 min,u16 max,u16 latency,u16 to_multiplier)1371 static inline int hci_check_conn_params(u16 min, u16 max, u16 latency,
1372 u16 to_multiplier)
1373 {
1374 u16 max_latency;
1375
1376 if (min > max || min < 6 || max > 3200)
1377 return -EINVAL;
1378
1379 if (to_multiplier < 10 || to_multiplier > 3200)
1380 return -EINVAL;
1381
1382 if (max >= to_multiplier * 8)
1383 return -EINVAL;
1384
1385 max_latency = (to_multiplier * 4 / max) - 1;
1386 if (latency > 499 || latency > max_latency)
1387 return -EINVAL;
1388
1389 return 0;
1390 }
1391
1392 int hci_register_cb(struct hci_cb *hcb);
1393 int hci_unregister_cb(struct hci_cb *hcb);
1394
1395 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1396 const void *param, u32 timeout);
1397 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
1398 const void *param, u8 event, u32 timeout);
1399
1400 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
1401 const void *param);
1402 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags);
1403 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb);
1404
1405 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode);
1406
1407 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
1408 const void *param, u32 timeout);
1409
1410 /* ----- HCI Sockets ----- */
1411 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb);
1412 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
1413 int flag, struct sock *skip_sk);
1414 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb);
1415 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
1416 void *data, u16 data_len, ktime_t tstamp,
1417 int flag, struct sock *skip_sk);
1418
1419 void hci_sock_dev_event(struct hci_dev *hdev, int event);
1420
1421 #define HCI_MGMT_VAR_LEN BIT(0)
1422 #define HCI_MGMT_NO_HDEV BIT(1)
1423 #define HCI_MGMT_UNTRUSTED BIT(2)
1424 #define HCI_MGMT_UNCONFIGURED BIT(3)
1425
1426 struct hci_mgmt_handler {
1427 int (*func) (struct sock *sk, struct hci_dev *hdev, void *data,
1428 u16 data_len);
1429 size_t data_len;
1430 unsigned long flags;
1431 };
1432
1433 struct hci_mgmt_chan {
1434 struct list_head list;
1435 unsigned short channel;
1436 size_t handler_count;
1437 const struct hci_mgmt_handler *handlers;
1438 void (*hdev_init) (struct sock *sk, struct hci_dev *hdev);
1439 };
1440
1441 int hci_mgmt_chan_register(struct hci_mgmt_chan *c);
1442 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c);
1443
1444 /* Management interface */
1445 #define DISCOV_TYPE_BREDR (BIT(BDADDR_BREDR))
1446 #define DISCOV_TYPE_LE (BIT(BDADDR_LE_PUBLIC) | \
1447 BIT(BDADDR_LE_RANDOM))
1448 #define DISCOV_TYPE_INTERLEAVED (BIT(BDADDR_BREDR) | \
1449 BIT(BDADDR_LE_PUBLIC) | \
1450 BIT(BDADDR_LE_RANDOM))
1451
1452 /* These LE scan and inquiry parameters were chosen according to LE General
1453 * Discovery Procedure specification.
1454 */
1455 #define DISCOV_LE_SCAN_WIN 0x12
1456 #define DISCOV_LE_SCAN_INT 0x12
1457 #define DISCOV_LE_TIMEOUT 10240 /* msec */
1458 #define DISCOV_INTERLEAVED_TIMEOUT 5120 /* msec */
1459 #define DISCOV_INTERLEAVED_INQUIRY_LEN 0x04
1460 #define DISCOV_BREDR_INQUIRY_LEN 0x08
1461 #define DISCOV_LE_RESTART_DELAY msecs_to_jiffies(200) /* msec */
1462
1463 void mgmt_fill_version_info(void *ver);
1464 int mgmt_new_settings(struct hci_dev *hdev);
1465 void mgmt_index_added(struct hci_dev *hdev);
1466 void mgmt_index_removed(struct hci_dev *hdev);
1467 void mgmt_set_powered_failed(struct hci_dev *hdev, int err);
1468 void mgmt_power_on(struct hci_dev *hdev, int err);
1469 void __mgmt_power_off(struct hci_dev *hdev);
1470 void mgmt_new_link_key(struct hci_dev *hdev, struct link_key *key,
1471 bool persistent);
1472 void mgmt_device_connected(struct hci_dev *hdev, struct hci_conn *conn,
1473 u32 flags, u8 *name, u8 name_len);
1474 void mgmt_device_disconnected(struct hci_dev *hdev, bdaddr_t *bdaddr,
1475 u8 link_type, u8 addr_type, u8 reason,
1476 bool mgmt_connected);
1477 void mgmt_disconnect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr,
1478 u8 link_type, u8 addr_type, u8 status);
1479 void mgmt_connect_failed(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1480 u8 addr_type, u8 status);
1481 void mgmt_pin_code_request(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 secure);
1482 void mgmt_pin_code_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1483 u8 status);
1484 void mgmt_pin_code_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1485 u8 status);
1486 int mgmt_user_confirm_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1487 u8 link_type, u8 addr_type, u32 value,
1488 u8 confirm_hint);
1489 int mgmt_user_confirm_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1490 u8 link_type, u8 addr_type, u8 status);
1491 int mgmt_user_confirm_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1492 u8 link_type, u8 addr_type, u8 status);
1493 int mgmt_user_passkey_request(struct hci_dev *hdev, bdaddr_t *bdaddr,
1494 u8 link_type, u8 addr_type);
1495 int mgmt_user_passkey_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1496 u8 link_type, u8 addr_type, u8 status);
1497 int mgmt_user_passkey_neg_reply_complete(struct hci_dev *hdev, bdaddr_t *bdaddr,
1498 u8 link_type, u8 addr_type, u8 status);
1499 int mgmt_user_passkey_notify(struct hci_dev *hdev, bdaddr_t *bdaddr,
1500 u8 link_type, u8 addr_type, u32 passkey,
1501 u8 entered);
1502 void mgmt_auth_failed(struct hci_conn *conn, u8 status);
1503 void mgmt_auth_enable_complete(struct hci_dev *hdev, u8 status);
1504 void mgmt_ssp_enable_complete(struct hci_dev *hdev, u8 enable, u8 status);
1505 void mgmt_set_class_of_dev_complete(struct hci_dev *hdev, u8 *dev_class,
1506 u8 status);
1507 void mgmt_set_local_name_complete(struct hci_dev *hdev, u8 *name, u8 status);
1508 void mgmt_start_discovery_complete(struct hci_dev *hdev, u8 status);
1509 void mgmt_stop_discovery_complete(struct hci_dev *hdev, u8 status);
1510 void mgmt_device_found(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1511 u8 addr_type, u8 *dev_class, s8 rssi, u32 flags,
1512 u8 *eir, u16 eir_len, u8 *scan_rsp, u8 scan_rsp_len);
1513 void mgmt_remote_name(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 link_type,
1514 u8 addr_type, s8 rssi, u8 *name, u8 name_len);
1515 void mgmt_discovering(struct hci_dev *hdev, u8 discovering);
1516 bool mgmt_powering_down(struct hci_dev *hdev);
1517 void mgmt_new_ltk(struct hci_dev *hdev, struct smp_ltk *key, bool persistent);
1518 void mgmt_new_irk(struct hci_dev *hdev, struct smp_irk *irk, bool persistent);
1519 void mgmt_new_csrk(struct hci_dev *hdev, struct smp_csrk *csrk,
1520 bool persistent);
1521 void mgmt_new_conn_param(struct hci_dev *hdev, bdaddr_t *bdaddr,
1522 u8 bdaddr_type, u8 store_hint, u16 min_interval,
1523 u16 max_interval, u16 latency, u16 timeout);
1524 void mgmt_smp_complete(struct hci_conn *conn, bool complete);
1525 bool mgmt_get_connectable(struct hci_dev *hdev);
1526 void mgmt_set_connectable_complete(struct hci_dev *hdev, u8 status);
1527 void mgmt_set_discoverable_complete(struct hci_dev *hdev, u8 status);
1528 u8 mgmt_get_adv_discov_flags(struct hci_dev *hdev);
1529 void mgmt_advertising_added(struct sock *sk, struct hci_dev *hdev,
1530 u8 instance);
1531 void mgmt_advertising_removed(struct sock *sk, struct hci_dev *hdev,
1532 u8 instance);
1533
1534 u8 hci_le_conn_update(struct hci_conn *conn, u16 min, u16 max, u16 latency,
1535 u16 to_multiplier);
1536 void hci_le_start_enc(struct hci_conn *conn, __le16 ediv, __le64 rand,
1537 __u8 ltk[16], __u8 key_size);
1538
1539 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
1540 u8 *bdaddr_type);
1541
1542 #define SCO_AIRMODE_MASK 0x0003
1543 #define SCO_AIRMODE_CVSD 0x0000
1544 #define SCO_AIRMODE_TRANSP 0x0003
1545
1546 #endif /* __HCI_CORE_H */
1547