• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Brad Volkin <bradley.d.volkin@intel.com>
25  *
26  */
27 
28 #include "i915_drv.h"
29 #include "intel_ringbuffer.h"
30 
31 /**
32  * DOC: batch buffer command parser
33  *
34  * Motivation:
35  * Certain OpenGL features (e.g. transform feedback, performance monitoring)
36  * require userspace code to submit batches containing commands such as
37  * MI_LOAD_REGISTER_IMM to access various registers. Unfortunately, some
38  * generations of the hardware will noop these commands in "unsecure" batches
39  * (which includes all userspace batches submitted via i915) even though the
40  * commands may be safe and represent the intended programming model of the
41  * device.
42  *
43  * The software command parser is similar in operation to the command parsing
44  * done in hardware for unsecure batches. However, the software parser allows
45  * some operations that would be noop'd by hardware, if the parser determines
46  * the operation is safe, and submits the batch as "secure" to prevent hardware
47  * parsing.
48  *
49  * Threats:
50  * At a high level, the hardware (and software) checks attempt to prevent
51  * granting userspace undue privileges. There are three categories of privilege.
52  *
53  * First, commands which are explicitly defined as privileged or which should
54  * only be used by the kernel driver. The parser rejects such commands
55  *
56  * Second, commands which access registers. To support correct/enhanced
57  * userspace functionality, particularly certain OpenGL extensions, the parser
58  * provides a whitelist of registers which userspace may safely access
59  *
60  * Third, commands which access privileged memory (i.e. GGTT, HWS page, etc).
61  * The parser always rejects such commands.
62  *
63  * The majority of the problematic commands fall in the MI_* range, with only a
64  * few specific commands on each engine (e.g. PIPE_CONTROL and MI_FLUSH_DW).
65  *
66  * Implementation:
67  * Each engine maintains tables of commands and registers which the parser
68  * uses in scanning batch buffers submitted to that engine.
69  *
70  * Since the set of commands that the parser must check for is significantly
71  * smaller than the number of commands supported, the parser tables contain only
72  * those commands required by the parser. This generally works because command
73  * opcode ranges have standard command length encodings. So for commands that
74  * the parser does not need to check, it can easily skip them. This is
75  * implemented via a per-engine length decoding vfunc.
76  *
77  * Unfortunately, there are a number of commands that do not follow the standard
78  * length encoding for their opcode range, primarily amongst the MI_* commands.
79  * To handle this, the parser provides a way to define explicit "skip" entries
80  * in the per-engine command tables.
81  *
82  * Other command table entries map fairly directly to high level categories
83  * mentioned above: rejected, register whitelist. The parser implements a number
84  * of checks, including the privileged memory checks, via a general bitmasking
85  * mechanism.
86  */
87 
88 /*
89  * A command that requires special handling by the command parser.
90  */
91 struct drm_i915_cmd_descriptor {
92 	/*
93 	 * Flags describing how the command parser processes the command.
94 	 *
95 	 * CMD_DESC_FIXED: The command has a fixed length if this is set,
96 	 *                 a length mask if not set
97 	 * CMD_DESC_SKIP: The command is allowed but does not follow the
98 	 *                standard length encoding for the opcode range in
99 	 *                which it falls
100 	 * CMD_DESC_REJECT: The command is never allowed
101 	 * CMD_DESC_REGISTER: The command should be checked against the
102 	 *                    register whitelist for the appropriate ring
103 	 */
104 	u32 flags;
105 #define CMD_DESC_FIXED    (1<<0)
106 #define CMD_DESC_SKIP     (1<<1)
107 #define CMD_DESC_REJECT   (1<<2)
108 #define CMD_DESC_REGISTER (1<<3)
109 #define CMD_DESC_BITMASK  (1<<4)
110 
111 	/*
112 	 * The command's unique identification bits and the bitmask to get them.
113 	 * This isn't strictly the opcode field as defined in the spec and may
114 	 * also include type, subtype, and/or subop fields.
115 	 */
116 	struct {
117 		u32 value;
118 		u32 mask;
119 	} cmd;
120 
121 	/*
122 	 * The command's length. The command is either fixed length (i.e. does
123 	 * not include a length field) or has a length field mask. The flag
124 	 * CMD_DESC_FIXED indicates a fixed length. Otherwise, the command has
125 	 * a length mask. All command entries in a command table must include
126 	 * length information.
127 	 */
128 	union {
129 		u32 fixed;
130 		u32 mask;
131 	} length;
132 
133 	/*
134 	 * Describes where to find a register address in the command to check
135 	 * against the ring's register whitelist. Only valid if flags has the
136 	 * CMD_DESC_REGISTER bit set.
137 	 *
138 	 * A non-zero step value implies that the command may access multiple
139 	 * registers in sequence (e.g. LRI), in that case step gives the
140 	 * distance in dwords between individual offset fields.
141 	 */
142 	struct {
143 		u32 offset;
144 		u32 mask;
145 		u32 step;
146 	} reg;
147 
148 #define MAX_CMD_DESC_BITMASKS 3
149 	/*
150 	 * Describes command checks where a particular dword is masked and
151 	 * compared against an expected value. If the command does not match
152 	 * the expected value, the parser rejects it. Only valid if flags has
153 	 * the CMD_DESC_BITMASK bit set. Only entries where mask is non-zero
154 	 * are valid.
155 	 *
156 	 * If the check specifies a non-zero condition_mask then the parser
157 	 * only performs the check when the bits specified by condition_mask
158 	 * are non-zero.
159 	 */
160 	struct {
161 		u32 offset;
162 		u32 mask;
163 		u32 expected;
164 		u32 condition_offset;
165 		u32 condition_mask;
166 	} bits[MAX_CMD_DESC_BITMASKS];
167 };
168 
169 /*
170  * A table of commands requiring special handling by the command parser.
171  *
172  * Each engine has an array of tables. Each table consists of an array of
173  * command descriptors, which must be sorted with command opcodes in
174  * ascending order.
175  */
176 struct drm_i915_cmd_table {
177 	const struct drm_i915_cmd_descriptor *table;
178 	int count;
179 };
180 
181 #define STD_MI_OPCODE_SHIFT  (32 - 9)
182 #define STD_3D_OPCODE_SHIFT  (32 - 16)
183 #define STD_2D_OPCODE_SHIFT  (32 - 10)
184 #define STD_MFX_OPCODE_SHIFT (32 - 16)
185 #define MIN_OPCODE_SHIFT 16
186 
187 #define CMD(op, opm, f, lm, fl, ...)				\
188 	{							\
189 		.flags = (fl) | ((f) ? CMD_DESC_FIXED : 0),	\
190 		.cmd = { (op & ~0u << (opm)), ~0u << (opm) },	\
191 		.length = { (lm) },				\
192 		__VA_ARGS__					\
193 	}
194 
195 /* Convenience macros to compress the tables */
196 #define SMI STD_MI_OPCODE_SHIFT
197 #define S3D STD_3D_OPCODE_SHIFT
198 #define S2D STD_2D_OPCODE_SHIFT
199 #define SMFX STD_MFX_OPCODE_SHIFT
200 #define F true
201 #define S CMD_DESC_SKIP
202 #define R CMD_DESC_REJECT
203 #define W CMD_DESC_REGISTER
204 #define B CMD_DESC_BITMASK
205 
206 /*            Command                          Mask   Fixed Len   Action
207 	      ---------------------------------------------------------- */
208 static const struct drm_i915_cmd_descriptor gen7_common_cmds[] = {
209 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
210 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      R  ),
211 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      R  ),
212 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
213 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
214 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
215 	CMD(  MI_SEMAPHORE_MBOX,                SMI,   !F,  0xFF,   R  ),
216 	CMD(  MI_STORE_DWORD_INDEX,             SMI,   !F,  0xFF,   R  ),
217 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
218 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
219 	CMD(  MI_STORE_REGISTER_MEM,            SMI,    F,  3,     W | B,
220 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
221 	      .bits = {{
222 			.offset = 0,
223 			.mask = MI_GLOBAL_GTT,
224 			.expected = 0,
225 	      }},						       ),
226 	CMD(  MI_LOAD_REGISTER_MEM,             SMI,    F,  3,     W | B,
227 	      .reg = { .offset = 1, .mask = 0x007FFFFC },
228 	      .bits = {{
229 			.offset = 0,
230 			.mask = MI_GLOBAL_GTT,
231 			.expected = 0,
232 	      }},						       ),
233 	/*
234 	 * MI_BATCH_BUFFER_START requires some special handling. It's not
235 	 * really a 'skip' action but it doesn't seem like it's worth adding
236 	 * a new action. See i915_parse_cmds().
237 	 */
238 	CMD(  MI_BATCH_BUFFER_START,            SMI,   !F,  0xFF,   S  ),
239 };
240 
241 static const struct drm_i915_cmd_descriptor gen7_render_cmds[] = {
242 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
243 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
244 	CMD(  MI_PREDICATE,                     SMI,    F,  1,      S  ),
245 	CMD(  MI_TOPOLOGY_FILTER,               SMI,    F,  1,      S  ),
246 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
247 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
248 	CMD(  MI_SET_CONTEXT,                   SMI,   !F,  0xFF,   R  ),
249 	CMD(  MI_URB_CLEAR,                     SMI,   !F,  0xFF,   S  ),
250 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3F,   B,
251 	      .bits = {{
252 			.offset = 0,
253 			.mask = MI_GLOBAL_GTT,
254 			.expected = 0,
255 	      }},						       ),
256 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0xFF,   R  ),
257 	CMD(  MI_CLFLUSH,                       SMI,   !F,  0x3FF,  B,
258 	      .bits = {{
259 			.offset = 0,
260 			.mask = MI_GLOBAL_GTT,
261 			.expected = 0,
262 	      }},						       ),
263 	CMD(  MI_REPORT_PERF_COUNT,             SMI,   !F,  0x3F,   B,
264 	      .bits = {{
265 			.offset = 1,
266 			.mask = MI_REPORT_PERF_COUNT_GGTT,
267 			.expected = 0,
268 	      }},						       ),
269 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
270 	      .bits = {{
271 			.offset = 0,
272 			.mask = MI_GLOBAL_GTT,
273 			.expected = 0,
274 	      }},						       ),
275 	CMD(  GFX_OP_3DSTATE_VF_STATISTICS,     S3D,    F,  1,      S  ),
276 	CMD(  PIPELINE_SELECT,                  S3D,    F,  1,      S  ),
277 	CMD(  MEDIA_VFE_STATE,			S3D,   !F,  0xFFFF, B,
278 	      .bits = {{
279 			.offset = 2,
280 			.mask = MEDIA_VFE_STATE_MMIO_ACCESS_MASK,
281 			.expected = 0,
282 	      }},						       ),
283 	CMD(  GPGPU_OBJECT,                     S3D,   !F,  0xFF,   S  ),
284 	CMD(  GPGPU_WALKER,                     S3D,   !F,  0xFF,   S  ),
285 	CMD(  GFX_OP_3DSTATE_SO_DECL_LIST,      S3D,   !F,  0x1FF,  S  ),
286 	CMD(  GFX_OP_PIPE_CONTROL(5),           S3D,   !F,  0xFF,   B,
287 	      .bits = {{
288 			.offset = 1,
289 			.mask = (PIPE_CONTROL_MMIO_WRITE | PIPE_CONTROL_NOTIFY),
290 			.expected = 0,
291 	      },
292 	      {
293 			.offset = 1,
294 		        .mask = (PIPE_CONTROL_GLOBAL_GTT_IVB |
295 				 PIPE_CONTROL_STORE_DATA_INDEX),
296 			.expected = 0,
297 			.condition_offset = 1,
298 			.condition_mask = PIPE_CONTROL_POST_SYNC_OP_MASK,
299 	      }},						       ),
300 };
301 
302 static const struct drm_i915_cmd_descriptor hsw_render_cmds[] = {
303 	CMD(  MI_SET_PREDICATE,                 SMI,    F,  1,      S  ),
304 	CMD(  MI_RS_CONTROL,                    SMI,    F,  1,      S  ),
305 	CMD(  MI_URB_ATOMIC_ALLOC,              SMI,    F,  1,      S  ),
306 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
307 	CMD(  MI_RS_CONTEXT,                    SMI,    F,  1,      S  ),
308 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
309 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
310 	CMD(  MI_LOAD_REGISTER_REG,             SMI,   !F,  0xFF,   W,
311 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
312 	CMD(  MI_RS_STORE_DATA_IMM,             SMI,   !F,  0xFF,   S  ),
313 	CMD(  MI_LOAD_URB_MEM,                  SMI,   !F,  0xFF,   S  ),
314 	CMD(  MI_STORE_URB_MEM,                 SMI,   !F,  0xFF,   S  ),
315 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_VS,  S3D,   !F,  0x7FF,  S  ),
316 	CMD(  GFX_OP_3DSTATE_DX9_CONSTANTF_PS,  S3D,   !F,  0x7FF,  S  ),
317 
318 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_VS,  S3D,   !F,  0x1FF,  S  ),
319 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_GS,  S3D,   !F,  0x1FF,  S  ),
320 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_HS,  S3D,   !F,  0x1FF,  S  ),
321 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_DS,  S3D,   !F,  0x1FF,  S  ),
322 	CMD(  GFX_OP_3DSTATE_BINDING_TABLE_EDIT_PS,  S3D,   !F,  0x1FF,  S  ),
323 };
324 
325 static const struct drm_i915_cmd_descriptor gen7_video_cmds[] = {
326 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
327 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
328 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
329 	      .bits = {{
330 			.offset = 0,
331 			.mask = MI_GLOBAL_GTT,
332 			.expected = 0,
333 	      }},						       ),
334 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
335 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
336 	      .bits = {{
337 			.offset = 0,
338 			.mask = MI_FLUSH_DW_NOTIFY,
339 			.expected = 0,
340 	      },
341 	      {
342 			.offset = 1,
343 			.mask = MI_FLUSH_DW_USE_GTT,
344 			.expected = 0,
345 			.condition_offset = 0,
346 			.condition_mask = MI_FLUSH_DW_OP_MASK,
347 	      },
348 	      {
349 			.offset = 0,
350 			.mask = MI_FLUSH_DW_STORE_INDEX,
351 			.expected = 0,
352 			.condition_offset = 0,
353 			.condition_mask = MI_FLUSH_DW_OP_MASK,
354 	      }},						       ),
355 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
356 	      .bits = {{
357 			.offset = 0,
358 			.mask = MI_GLOBAL_GTT,
359 			.expected = 0,
360 	      }},						       ),
361 	/*
362 	 * MFX_WAIT doesn't fit the way we handle length for most commands.
363 	 * It has a length field but it uses a non-standard length bias.
364 	 * It is always 1 dword though, so just treat it as fixed length.
365 	 */
366 	CMD(  MFX_WAIT,                         SMFX,   F,  1,      S  ),
367 };
368 
369 static const struct drm_i915_cmd_descriptor gen7_vecs_cmds[] = {
370 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      R  ),
371 	CMD(  MI_SET_APPID,                     SMI,    F,  1,      S  ),
372 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0xFF,   B,
373 	      .bits = {{
374 			.offset = 0,
375 			.mask = MI_GLOBAL_GTT,
376 			.expected = 0,
377 	      }},						       ),
378 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
379 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
380 	      .bits = {{
381 			.offset = 0,
382 			.mask = MI_FLUSH_DW_NOTIFY,
383 			.expected = 0,
384 	      },
385 	      {
386 			.offset = 1,
387 			.mask = MI_FLUSH_DW_USE_GTT,
388 			.expected = 0,
389 			.condition_offset = 0,
390 			.condition_mask = MI_FLUSH_DW_OP_MASK,
391 	      },
392 	      {
393 			.offset = 0,
394 			.mask = MI_FLUSH_DW_STORE_INDEX,
395 			.expected = 0,
396 			.condition_offset = 0,
397 			.condition_mask = MI_FLUSH_DW_OP_MASK,
398 	      }},						       ),
399 	CMD(  MI_CONDITIONAL_BATCH_BUFFER_END,  SMI,   !F,  0xFF,   B,
400 	      .bits = {{
401 			.offset = 0,
402 			.mask = MI_GLOBAL_GTT,
403 			.expected = 0,
404 	      }},						       ),
405 };
406 
407 static const struct drm_i915_cmd_descriptor gen7_blt_cmds[] = {
408 	CMD(  MI_DISPLAY_FLIP,                  SMI,   !F,  0xFF,   R  ),
409 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  B,
410 	      .bits = {{
411 			.offset = 0,
412 			.mask = MI_GLOBAL_GTT,
413 			.expected = 0,
414 	      }},						       ),
415 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3F,   R  ),
416 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   B,
417 	      .bits = {{
418 			.offset = 0,
419 			.mask = MI_FLUSH_DW_NOTIFY,
420 			.expected = 0,
421 	      },
422 	      {
423 			.offset = 1,
424 			.mask = MI_FLUSH_DW_USE_GTT,
425 			.expected = 0,
426 			.condition_offset = 0,
427 			.condition_mask = MI_FLUSH_DW_OP_MASK,
428 	      },
429 	      {
430 			.offset = 0,
431 			.mask = MI_FLUSH_DW_STORE_INDEX,
432 			.expected = 0,
433 			.condition_offset = 0,
434 			.condition_mask = MI_FLUSH_DW_OP_MASK,
435 	      }},						       ),
436 	CMD(  COLOR_BLT,                        S2D,   !F,  0x3F,   S  ),
437 	CMD(  SRC_COPY_BLT,                     S2D,   !F,  0x3F,   S  ),
438 };
439 
440 static const struct drm_i915_cmd_descriptor hsw_blt_cmds[] = {
441 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   R  ),
442 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   R  ),
443 };
444 
445 /*
446  * For Gen9 we can still rely on the h/w to enforce cmd security, and only
447  * need to re-enforce the register access checks. We therefore only need to
448  * teach the cmdparser how to find the end of each command, and identify
449  * register accesses. The table doesn't need to reject any commands, and so
450  * the only commands listed here are:
451  *   1) Those that touch registers
452  *   2) Those that do not have the default 8-bit length
453  *
454  * Note that the default MI length mask chosen for this table is 0xFF, not
455  * the 0x3F used on older devices. This is because the vast majority of MI
456  * cmds on Gen9 use a standard 8-bit Length field.
457  * All the Gen9 blitter instructions are standard 0xFF length mask, and
458  * none allow access to non-general registers, so in fact no BLT cmds are
459  * included in the table at all.
460  *
461  */
462 static const struct drm_i915_cmd_descriptor gen9_blt_cmds[] = {
463 	CMD(  MI_NOOP,                          SMI,    F,  1,      S  ),
464 	CMD(  MI_USER_INTERRUPT,                SMI,    F,  1,      S  ),
465 	CMD(  MI_WAIT_FOR_EVENT,                SMI,    F,  1,      S  ),
466 	CMD(  MI_FLUSH,                         SMI,    F,  1,      S  ),
467 	CMD(  MI_ARB_CHECK,                     SMI,    F,  1,      S  ),
468 	CMD(  MI_REPORT_HEAD,                   SMI,    F,  1,      S  ),
469 	CMD(  MI_ARB_ON_OFF,                    SMI,    F,  1,      S  ),
470 	CMD(  MI_SUSPEND_FLUSH,                 SMI,    F,  1,      S  ),
471 	CMD(  MI_LOAD_SCAN_LINES_INCL,          SMI,   !F,  0x3F,   S  ),
472 	CMD(  MI_LOAD_SCAN_LINES_EXCL,          SMI,   !F,  0x3F,   S  ),
473 	CMD(  MI_STORE_DWORD_IMM,               SMI,   !F,  0x3FF,  S  ),
474 	CMD(  MI_LOAD_REGISTER_IMM(1),          SMI,   !F,  0xFF,   W,
475 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 2 }    ),
476 	CMD(  MI_UPDATE_GTT,                    SMI,   !F,  0x3FF,  S  ),
477 	CMD(  MI_STORE_REGISTER_MEM_GEN8,       SMI,    F,  4,      W,
478 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
479 	CMD(  MI_FLUSH_DW,                      SMI,   !F,  0x3F,   S  ),
480 	CMD(  MI_LOAD_REGISTER_MEM_GEN8,        SMI,    F,  4,      W,
481 	      .reg = { .offset = 1, .mask = 0x007FFFFC }               ),
482 	CMD(  MI_LOAD_REGISTER_REG,             SMI,    !F,  0xFF,  W,
483 	      .reg = { .offset = 1, .mask = 0x007FFFFC, .step = 1 }    ),
484 
485 	/*
486 	 * We allow BB_START but apply further checks. We just sanitize the
487 	 * basic fields here.
488 	 */
489 #define MI_BB_START_OPERAND_MASK   GENMASK(SMI-1, 0)
490 #define MI_BB_START_OPERAND_EXPECT (MI_BATCH_PPGTT_HSW | 1)
491 	CMD(  MI_BATCH_BUFFER_START_GEN8,       SMI,    !F,  0xFF,  B,
492 	      .bits = {{
493 			.offset = 0,
494 			.mask = MI_BB_START_OPERAND_MASK,
495 			.expected = MI_BB_START_OPERAND_EXPECT,
496 	      }},						       ),
497 };
498 
499 static const struct drm_i915_cmd_descriptor noop_desc =
500 	CMD(MI_NOOP, SMI, F, 1, S);
501 
502 #undef CMD
503 #undef SMI
504 #undef S3D
505 #undef S2D
506 #undef SMFX
507 #undef F
508 #undef S
509 #undef R
510 #undef W
511 #undef B
512 
513 static const struct drm_i915_cmd_table gen7_render_cmd_table[] = {
514 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
515 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
516 };
517 
518 static const struct drm_i915_cmd_table hsw_render_ring_cmd_table[] = {
519 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
520 	{ gen7_render_cmds, ARRAY_SIZE(gen7_render_cmds) },
521 	{ hsw_render_cmds, ARRAY_SIZE(hsw_render_cmds) },
522 };
523 
524 static const struct drm_i915_cmd_table gen7_video_cmd_table[] = {
525 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
526 	{ gen7_video_cmds, ARRAY_SIZE(gen7_video_cmds) },
527 };
528 
529 static const struct drm_i915_cmd_table hsw_vebox_cmd_table[] = {
530 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
531 	{ gen7_vecs_cmds, ARRAY_SIZE(gen7_vecs_cmds) },
532 };
533 
534 static const struct drm_i915_cmd_table gen7_blt_cmd_table[] = {
535 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
536 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
537 };
538 
539 static const struct drm_i915_cmd_table hsw_blt_ring_cmd_table[] = {
540 	{ gen7_common_cmds, ARRAY_SIZE(gen7_common_cmds) },
541 	{ gen7_blt_cmds, ARRAY_SIZE(gen7_blt_cmds) },
542 	{ hsw_blt_cmds, ARRAY_SIZE(hsw_blt_cmds) },
543 };
544 
545 static const struct drm_i915_cmd_table gen9_blt_cmd_table[] = {
546 	{ gen9_blt_cmds, ARRAY_SIZE(gen9_blt_cmds) },
547 };
548 
549 
550 /*
551  * Register whitelists, sorted by increasing register offset.
552  */
553 
554 /*
555  * An individual whitelist entry granting access to register addr.  If
556  * mask is non-zero the argument of immediate register writes will be
557  * AND-ed with mask, and the command will be rejected if the result
558  * doesn't match value.
559  *
560  * Registers with non-zero mask are only allowed to be written using
561  * LRI.
562  */
563 struct drm_i915_reg_descriptor {
564 	i915_reg_t addr;
565 	u32 mask;
566 	u32 value;
567 };
568 
569 /* Convenience macro for adding 32-bit registers. */
570 #define REG32(_reg, ...) \
571 	{ .addr = (_reg), __VA_ARGS__ }
572 
573 /*
574  * Convenience macro for adding 64-bit registers.
575  *
576  * Some registers that userspace accesses are 64 bits. The register
577  * access commands only allow 32-bit accesses. Hence, we have to include
578  * entries for both halves of the 64-bit registers.
579  */
580 #define REG64(_reg) \
581 	{ .addr = _reg }, \
582 	{ .addr = _reg ## _UDW }
583 
584 #define REG64_IDX(_reg, idx) \
585 	{ .addr = _reg(idx) }, \
586 	{ .addr = _reg ## _UDW(idx) }
587 
588 static const struct drm_i915_reg_descriptor gen7_render_regs[] = {
589 	REG64(GPGPU_THREADS_DISPATCHED),
590 	REG64(HS_INVOCATION_COUNT),
591 	REG64(DS_INVOCATION_COUNT),
592 	REG64(IA_VERTICES_COUNT),
593 	REG64(IA_PRIMITIVES_COUNT),
594 	REG64(VS_INVOCATION_COUNT),
595 	REG64(GS_INVOCATION_COUNT),
596 	REG64(GS_PRIMITIVES_COUNT),
597 	REG64(CL_INVOCATION_COUNT),
598 	REG64(CL_PRIMITIVES_COUNT),
599 	REG64(PS_INVOCATION_COUNT),
600 	REG64(PS_DEPTH_COUNT),
601 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
602 	REG64(MI_PREDICATE_SRC0),
603 	REG64(MI_PREDICATE_SRC1),
604 	REG32(GEN7_3DPRIM_END_OFFSET),
605 	REG32(GEN7_3DPRIM_START_VERTEX),
606 	REG32(GEN7_3DPRIM_VERTEX_COUNT),
607 	REG32(GEN7_3DPRIM_INSTANCE_COUNT),
608 	REG32(GEN7_3DPRIM_START_INSTANCE),
609 	REG32(GEN7_3DPRIM_BASE_VERTEX),
610 	REG32(GEN7_GPGPU_DISPATCHDIMX),
611 	REG32(GEN7_GPGPU_DISPATCHDIMY),
612 	REG32(GEN7_GPGPU_DISPATCHDIMZ),
613 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
614 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 0),
615 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 1),
616 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 2),
617 	REG64_IDX(GEN7_SO_NUM_PRIMS_WRITTEN, 3),
618 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 0),
619 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 1),
620 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 2),
621 	REG64_IDX(GEN7_SO_PRIM_STORAGE_NEEDED, 3),
622 	REG32(GEN7_SO_WRITE_OFFSET(0)),
623 	REG32(GEN7_SO_WRITE_OFFSET(1)),
624 	REG32(GEN7_SO_WRITE_OFFSET(2)),
625 	REG32(GEN7_SO_WRITE_OFFSET(3)),
626 	REG32(GEN7_L3SQCREG1),
627 	REG32(GEN7_L3CNTLREG2),
628 	REG32(GEN7_L3CNTLREG3),
629 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
630 };
631 
632 static const struct drm_i915_reg_descriptor hsw_render_regs[] = {
633 	REG64_IDX(HSW_CS_GPR, 0),
634 	REG64_IDX(HSW_CS_GPR, 1),
635 	REG64_IDX(HSW_CS_GPR, 2),
636 	REG64_IDX(HSW_CS_GPR, 3),
637 	REG64_IDX(HSW_CS_GPR, 4),
638 	REG64_IDX(HSW_CS_GPR, 5),
639 	REG64_IDX(HSW_CS_GPR, 6),
640 	REG64_IDX(HSW_CS_GPR, 7),
641 	REG64_IDX(HSW_CS_GPR, 8),
642 	REG64_IDX(HSW_CS_GPR, 9),
643 	REG64_IDX(HSW_CS_GPR, 10),
644 	REG64_IDX(HSW_CS_GPR, 11),
645 	REG64_IDX(HSW_CS_GPR, 12),
646 	REG64_IDX(HSW_CS_GPR, 13),
647 	REG64_IDX(HSW_CS_GPR, 14),
648 	REG64_IDX(HSW_CS_GPR, 15),
649 	REG32(HSW_SCRATCH1,
650 	      .mask = ~HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE,
651 	      .value = 0),
652 	REG32(HSW_ROW_CHICKEN3,
653 	      .mask = ~(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE << 16 |
654                         HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
655 	      .value = 0),
656 };
657 
658 static const struct drm_i915_reg_descriptor gen7_blt_regs[] = {
659 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
660 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
661 	REG32(BCS_SWCTRL),
662 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
663 };
664 
665 static const struct drm_i915_reg_descriptor gen9_blt_regs[] = {
666 	REG64_IDX(RING_TIMESTAMP, RENDER_RING_BASE),
667 	REG64_IDX(RING_TIMESTAMP, BSD_RING_BASE),
668 	REG32(BCS_SWCTRL),
669 	REG64_IDX(RING_TIMESTAMP, BLT_RING_BASE),
670 	REG64_IDX(BCS_GPR, 0),
671 	REG64_IDX(BCS_GPR, 1),
672 	REG64_IDX(BCS_GPR, 2),
673 	REG64_IDX(BCS_GPR, 3),
674 	REG64_IDX(BCS_GPR, 4),
675 	REG64_IDX(BCS_GPR, 5),
676 	REG64_IDX(BCS_GPR, 6),
677 	REG64_IDX(BCS_GPR, 7),
678 	REG64_IDX(BCS_GPR, 8),
679 	REG64_IDX(BCS_GPR, 9),
680 	REG64_IDX(BCS_GPR, 10),
681 	REG64_IDX(BCS_GPR, 11),
682 	REG64_IDX(BCS_GPR, 12),
683 	REG64_IDX(BCS_GPR, 13),
684 	REG64_IDX(BCS_GPR, 14),
685 	REG64_IDX(BCS_GPR, 15),
686 };
687 
688 #undef REG64
689 #undef REG32
690 
691 struct drm_i915_reg_table {
692 	const struct drm_i915_reg_descriptor *regs;
693 	int num_regs;
694 };
695 
696 static const struct drm_i915_reg_table ivb_render_reg_tables[] = {
697 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
698 };
699 
700 static const struct drm_i915_reg_table ivb_blt_reg_tables[] = {
701 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
702 };
703 
704 static const struct drm_i915_reg_table hsw_render_reg_tables[] = {
705 	{ gen7_render_regs, ARRAY_SIZE(gen7_render_regs) },
706 	{ hsw_render_regs, ARRAY_SIZE(hsw_render_regs) },
707 };
708 
709 static const struct drm_i915_reg_table hsw_blt_reg_tables[] = {
710 	{ gen7_blt_regs, ARRAY_SIZE(gen7_blt_regs) },
711 };
712 
713 static const struct drm_i915_reg_table gen9_blt_reg_tables[] = {
714 	{ gen9_blt_regs, ARRAY_SIZE(gen9_blt_regs) },
715 };
716 
gen7_render_get_cmd_length_mask(u32 cmd_header)717 static u32 gen7_render_get_cmd_length_mask(u32 cmd_header)
718 {
719 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
720 	u32 subclient =
721 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
722 
723 	if (client == INSTR_MI_CLIENT)
724 		return 0x3F;
725 	else if (client == INSTR_RC_CLIENT) {
726 		if (subclient == INSTR_MEDIA_SUBCLIENT)
727 			return 0xFFFF;
728 		else
729 			return 0xFF;
730 	}
731 
732 	DRM_DEBUG_DRIVER("CMD: Abnormal rcs cmd length! 0x%08X\n", cmd_header);
733 	return 0;
734 }
735 
gen7_bsd_get_cmd_length_mask(u32 cmd_header)736 static u32 gen7_bsd_get_cmd_length_mask(u32 cmd_header)
737 {
738 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
739 	u32 subclient =
740 		(cmd_header & INSTR_SUBCLIENT_MASK) >> INSTR_SUBCLIENT_SHIFT;
741 	u32 op = (cmd_header & INSTR_26_TO_24_MASK) >> INSTR_26_TO_24_SHIFT;
742 
743 	if (client == INSTR_MI_CLIENT)
744 		return 0x3F;
745 	else if (client == INSTR_RC_CLIENT) {
746 		if (subclient == INSTR_MEDIA_SUBCLIENT) {
747 			if (op == 6)
748 				return 0xFFFF;
749 			else
750 				return 0xFFF;
751 		} else
752 			return 0xFF;
753 	}
754 
755 	DRM_DEBUG_DRIVER("CMD: Abnormal bsd cmd length! 0x%08X\n", cmd_header);
756 	return 0;
757 }
758 
gen7_blt_get_cmd_length_mask(u32 cmd_header)759 static u32 gen7_blt_get_cmd_length_mask(u32 cmd_header)
760 {
761 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
762 
763 	if (client == INSTR_MI_CLIENT)
764 		return 0x3F;
765 	else if (client == INSTR_BC_CLIENT)
766 		return 0xFF;
767 
768 	DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
769 	return 0;
770 }
771 
gen9_blt_get_cmd_length_mask(u32 cmd_header)772 static u32 gen9_blt_get_cmd_length_mask(u32 cmd_header)
773 {
774 	u32 client = cmd_header >> INSTR_CLIENT_SHIFT;
775 
776 	if (client == INSTR_MI_CLIENT || client == INSTR_BC_CLIENT)
777 		return 0xFF;
778 
779 	DRM_DEBUG_DRIVER("CMD: Abnormal blt cmd length! 0x%08X\n", cmd_header);
780 	return 0;
781 }
782 
validate_cmds_sorted(const struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)783 static bool validate_cmds_sorted(const struct intel_engine_cs *engine,
784 				 const struct drm_i915_cmd_table *cmd_tables,
785 				 int cmd_table_count)
786 {
787 	int i;
788 	bool ret = true;
789 
790 	if (!cmd_tables || cmd_table_count == 0)
791 		return true;
792 
793 	for (i = 0; i < cmd_table_count; i++) {
794 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
795 		u32 previous = 0;
796 		int j;
797 
798 		for (j = 0; j < table->count; j++) {
799 			const struct drm_i915_cmd_descriptor *desc =
800 				&table->table[j];
801 			u32 curr = desc->cmd.value & desc->cmd.mask;
802 
803 			if (curr < previous) {
804 				DRM_ERROR("CMD: %s [%d] command table not sorted: "
805 					  "table=%d entry=%d cmd=0x%08X prev=0x%08X\n",
806 					  engine->name, engine->id,
807 					  i, j, curr, previous);
808 				ret = false;
809 			}
810 
811 			previous = curr;
812 		}
813 	}
814 
815 	return ret;
816 }
817 
check_sorted(const struct intel_engine_cs * engine,const struct drm_i915_reg_descriptor * reg_table,int reg_count)818 static bool check_sorted(const struct intel_engine_cs *engine,
819 			 const struct drm_i915_reg_descriptor *reg_table,
820 			 int reg_count)
821 {
822 	int i;
823 	u32 previous = 0;
824 	bool ret = true;
825 
826 	for (i = 0; i < reg_count; i++) {
827 		u32 curr = i915_mmio_reg_offset(reg_table[i].addr);
828 
829 		if (curr < previous) {
830 			DRM_ERROR("CMD: %s [%d] register table not sorted: "
831 				  "entry=%d reg=0x%08X prev=0x%08X\n",
832 				  engine->name, engine->id,
833 				  i, curr, previous);
834 			ret = false;
835 		}
836 
837 		previous = curr;
838 	}
839 
840 	return ret;
841 }
842 
validate_regs_sorted(struct intel_engine_cs * engine)843 static bool validate_regs_sorted(struct intel_engine_cs *engine)
844 {
845 	int i;
846 	const struct drm_i915_reg_table *table;
847 
848 	for (i = 0; i < engine->reg_table_count; i++) {
849 		table = &engine->reg_tables[i];
850 		if (!check_sorted(engine, table->regs, table->num_regs))
851 			return false;
852 	}
853 
854 	return true;
855 }
856 
857 struct cmd_node {
858 	const struct drm_i915_cmd_descriptor *desc;
859 	struct hlist_node node;
860 };
861 
862 /*
863  * Different command ranges have different numbers of bits for the opcode. For
864  * example, MI commands use bits 31:23 while 3D commands use bits 31:16. The
865  * problem is that, for example, MI commands use bits 22:16 for other fields
866  * such as GGTT vs PPGTT bits. If we include those bits in the mask then when
867  * we mask a command from a batch it could hash to the wrong bucket due to
868  * non-opcode bits being set. But if we don't include those bits, some 3D
869  * commands may hash to the same bucket due to not including opcode bits that
870  * make the command unique. For now, we will risk hashing to the same bucket.
871  */
cmd_header_key(u32 x)872 static inline u32 cmd_header_key(u32 x)
873 {
874 	switch (x >> INSTR_CLIENT_SHIFT) {
875 	default:
876 	case INSTR_MI_CLIENT:
877 		return x >> STD_MI_OPCODE_SHIFT;
878 	case INSTR_RC_CLIENT:
879 		return x >> STD_3D_OPCODE_SHIFT;
880 	case INSTR_BC_CLIENT:
881 		return x >> STD_2D_OPCODE_SHIFT;
882 	}
883 }
884 
init_hash_table(struct intel_engine_cs * engine,const struct drm_i915_cmd_table * cmd_tables,int cmd_table_count)885 static int init_hash_table(struct intel_engine_cs *engine,
886 			   const struct drm_i915_cmd_table *cmd_tables,
887 			   int cmd_table_count)
888 {
889 	int i, j;
890 
891 	hash_init(engine->cmd_hash);
892 
893 	for (i = 0; i < cmd_table_count; i++) {
894 		const struct drm_i915_cmd_table *table = &cmd_tables[i];
895 
896 		for (j = 0; j < table->count; j++) {
897 			const struct drm_i915_cmd_descriptor *desc =
898 				&table->table[j];
899 			struct cmd_node *desc_node =
900 				kmalloc(sizeof(*desc_node), GFP_KERNEL);
901 
902 			if (!desc_node)
903 				return -ENOMEM;
904 
905 			desc_node->desc = desc;
906 			hash_add(engine->cmd_hash, &desc_node->node,
907 				 cmd_header_key(desc->cmd.value));
908 		}
909 	}
910 
911 	return 0;
912 }
913 
fini_hash_table(struct intel_engine_cs * engine)914 static void fini_hash_table(struct intel_engine_cs *engine)
915 {
916 	struct hlist_node *tmp;
917 	struct cmd_node *desc_node;
918 	int i;
919 
920 	hash_for_each_safe(engine->cmd_hash, i, tmp, desc_node, node) {
921 		hash_del(&desc_node->node);
922 		kfree(desc_node);
923 	}
924 }
925 
926 /**
927  * intel_engine_init_cmd_parser() - set cmd parser related fields for an engine
928  * @engine: the engine to initialize
929  *
930  * Optionally initializes fields related to batch buffer command parsing in the
931  * struct intel_engine_cs based on whether the platform requires software
932  * command parsing.
933  */
intel_engine_init_cmd_parser(struct intel_engine_cs * engine)934 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine)
935 {
936 	const struct drm_i915_cmd_table *cmd_tables;
937 	int cmd_table_count;
938 	int ret;
939 
940 	if (!IS_GEN7(engine->i915) && !(IS_GEN9(engine->i915) &&
941 					engine->id == BCS))
942 		return;
943 
944 	switch (engine->id) {
945 	case RCS:
946 		if (IS_HASWELL(engine->i915)) {
947 			cmd_tables = hsw_render_ring_cmd_table;
948 			cmd_table_count =
949 				ARRAY_SIZE(hsw_render_ring_cmd_table);
950 		} else {
951 			cmd_tables = gen7_render_cmd_table;
952 			cmd_table_count = ARRAY_SIZE(gen7_render_cmd_table);
953 		}
954 
955 		if (IS_HASWELL(engine->i915)) {
956 			engine->reg_tables = hsw_render_reg_tables;
957 			engine->reg_table_count = ARRAY_SIZE(hsw_render_reg_tables);
958 		} else {
959 			engine->reg_tables = ivb_render_reg_tables;
960 			engine->reg_table_count = ARRAY_SIZE(ivb_render_reg_tables);
961 		}
962 		engine->get_cmd_length_mask = gen7_render_get_cmd_length_mask;
963 		break;
964 	case VCS:
965 		cmd_tables = gen7_video_cmd_table;
966 		cmd_table_count = ARRAY_SIZE(gen7_video_cmd_table);
967 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
968 		break;
969 	case BCS:
970 		engine->get_cmd_length_mask = gen7_blt_get_cmd_length_mask;
971 		if (IS_GEN9(engine->i915)) {
972 			cmd_tables = gen9_blt_cmd_table;
973 			cmd_table_count = ARRAY_SIZE(gen9_blt_cmd_table);
974 			engine->get_cmd_length_mask =
975 				gen9_blt_get_cmd_length_mask;
976 
977 			/* BCS Engine unsafe without parser */
978 			engine->flags |= I915_ENGINE_REQUIRES_CMD_PARSER;
979 		} else if (IS_HASWELL(engine->i915)) {
980 			cmd_tables = hsw_blt_ring_cmd_table;
981 			cmd_table_count = ARRAY_SIZE(hsw_blt_ring_cmd_table);
982 		} else {
983 			cmd_tables = gen7_blt_cmd_table;
984 			cmd_table_count = ARRAY_SIZE(gen7_blt_cmd_table);
985 		}
986 
987 		if (IS_GEN9(engine->i915)) {
988 			engine->reg_tables = gen9_blt_reg_tables;
989 			engine->reg_table_count =
990 				ARRAY_SIZE(gen9_blt_reg_tables);
991 		} else if (IS_HASWELL(engine->i915)) {
992 			engine->reg_tables = hsw_blt_reg_tables;
993 			engine->reg_table_count = ARRAY_SIZE(hsw_blt_reg_tables);
994 		} else {
995 			engine->reg_tables = ivb_blt_reg_tables;
996 			engine->reg_table_count = ARRAY_SIZE(ivb_blt_reg_tables);
997 		}
998 		break;
999 	case VECS:
1000 		cmd_tables = hsw_vebox_cmd_table;
1001 		cmd_table_count = ARRAY_SIZE(hsw_vebox_cmd_table);
1002 		/* VECS can use the same length_mask function as VCS */
1003 		engine->get_cmd_length_mask = gen7_bsd_get_cmd_length_mask;
1004 		break;
1005 	default:
1006 		MISSING_CASE(engine->id);
1007 		return;
1008 	}
1009 
1010 	if (!validate_cmds_sorted(engine, cmd_tables, cmd_table_count)) {
1011 		DRM_ERROR("%s: command descriptions are not sorted\n",
1012 			  engine->name);
1013 		return;
1014 	}
1015 	if (!validate_regs_sorted(engine)) {
1016 		DRM_ERROR("%s: registers are not sorted\n", engine->name);
1017 		return;
1018 	}
1019 
1020 	ret = init_hash_table(engine, cmd_tables, cmd_table_count);
1021 	if (ret) {
1022 		DRM_ERROR("%s: initialised failed!\n", engine->name);
1023 		fini_hash_table(engine);
1024 		return;
1025 	}
1026 
1027 	engine->flags |= I915_ENGINE_USING_CMD_PARSER;
1028 }
1029 
1030 /**
1031  * intel_engine_cleanup_cmd_parser() - clean up cmd parser related fields
1032  * @engine: the engine to clean up
1033  *
1034  * Releases any resources related to command parsing that may have been
1035  * initialized for the specified engine.
1036  */
intel_engine_cleanup_cmd_parser(struct intel_engine_cs * engine)1037 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine)
1038 {
1039 	if (!intel_engine_using_cmd_parser(engine))
1040 		return;
1041 
1042 	fini_hash_table(engine);
1043 }
1044 
1045 static const struct drm_i915_cmd_descriptor*
find_cmd_in_table(struct intel_engine_cs * engine,u32 cmd_header)1046 find_cmd_in_table(struct intel_engine_cs *engine,
1047 		  u32 cmd_header)
1048 {
1049 	struct cmd_node *desc_node;
1050 
1051 	hash_for_each_possible(engine->cmd_hash, desc_node, node,
1052 			       cmd_header_key(cmd_header)) {
1053 		const struct drm_i915_cmd_descriptor *desc = desc_node->desc;
1054 		if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1055 			return desc;
1056 	}
1057 
1058 	return NULL;
1059 }
1060 
1061 /*
1062  * Returns a pointer to a descriptor for the command specified by cmd_header.
1063  *
1064  * The caller must supply space for a default descriptor via the default_desc
1065  * parameter. If no descriptor for the specified command exists in the engine's
1066  * command parser tables, this function fills in default_desc based on the
1067  * engine's default length encoding and returns default_desc.
1068  */
1069 static const struct drm_i915_cmd_descriptor*
find_cmd(struct intel_engine_cs * engine,u32 cmd_header,const struct drm_i915_cmd_descriptor * desc,struct drm_i915_cmd_descriptor * default_desc)1070 find_cmd(struct intel_engine_cs *engine,
1071 	 u32 cmd_header,
1072 	 const struct drm_i915_cmd_descriptor *desc,
1073 	 struct drm_i915_cmd_descriptor *default_desc)
1074 {
1075 	u32 mask;
1076 
1077 	if (((cmd_header ^ desc->cmd.value) & desc->cmd.mask) == 0)
1078 		return desc;
1079 
1080 	desc = find_cmd_in_table(engine, cmd_header);
1081 	if (desc)
1082 		return desc;
1083 
1084 	mask = engine->get_cmd_length_mask(cmd_header);
1085 	if (!mask)
1086 		return NULL;
1087 
1088 	default_desc->cmd.value = cmd_header;
1089 	default_desc->cmd.mask = ~0u << MIN_OPCODE_SHIFT;
1090 	default_desc->length.mask = mask;
1091 	default_desc->flags = CMD_DESC_SKIP;
1092 	return default_desc;
1093 }
1094 
1095 static const struct drm_i915_reg_descriptor *
__find_reg(const struct drm_i915_reg_descriptor * table,int count,u32 addr)1096 __find_reg(const struct drm_i915_reg_descriptor *table, int count, u32 addr)
1097 {
1098 	int start = 0, end = count;
1099 	while (start < end) {
1100 		int mid = start + (end - start) / 2;
1101 		int ret = addr - i915_mmio_reg_offset(table[mid].addr);
1102 		if (ret < 0)
1103 			end = mid;
1104 		else if (ret > 0)
1105 			start = mid + 1;
1106 		else
1107 			return &table[mid];
1108 	}
1109 	return NULL;
1110 }
1111 
1112 static const struct drm_i915_reg_descriptor *
find_reg(const struct intel_engine_cs * engine,u32 addr)1113 find_reg(const struct intel_engine_cs *engine, u32 addr)
1114 {
1115 	const struct drm_i915_reg_table *table = engine->reg_tables;
1116 	const struct drm_i915_reg_descriptor *reg = NULL;
1117 	int count = engine->reg_table_count;
1118 
1119 	for (; !reg && (count > 0); ++table, --count)
1120 		reg = __find_reg(table->regs, table->num_regs, addr);
1121 
1122 	return reg;
1123 }
1124 
1125 /* Returns a vmap'd pointer to dst_obj, which the caller must unmap */
copy_batch(struct drm_i915_gem_object * dst_obj,struct drm_i915_gem_object * src_obj,u32 batch_start_offset,u32 batch_len,bool * needs_clflush_after)1126 static u32 *copy_batch(struct drm_i915_gem_object *dst_obj,
1127 		       struct drm_i915_gem_object *src_obj,
1128 		       u32 batch_start_offset,
1129 		       u32 batch_len,
1130 		       bool *needs_clflush_after)
1131 {
1132 	unsigned int src_needs_clflush;
1133 	unsigned int dst_needs_clflush;
1134 	void *dst, *src;
1135 	int ret;
1136 
1137 	ret = i915_gem_obj_prepare_shmem_read(src_obj, &src_needs_clflush);
1138 	if (ret)
1139 		return ERR_PTR(ret);
1140 
1141 	ret = i915_gem_obj_prepare_shmem_write(dst_obj, &dst_needs_clflush);
1142 	if (ret) {
1143 		dst = ERR_PTR(ret);
1144 		goto unpin_src;
1145 	}
1146 
1147 	dst = i915_gem_object_pin_map(dst_obj, I915_MAP_FORCE_WB);
1148 	if (IS_ERR(dst))
1149 		goto unpin_dst;
1150 
1151 	src = ERR_PTR(-ENODEV);
1152 	if (src_needs_clflush &&
1153 	    i915_can_memcpy_from_wc(NULL, batch_start_offset, 0)) {
1154 		src = i915_gem_object_pin_map(src_obj, I915_MAP_WC);
1155 		if (!IS_ERR(src)) {
1156 			i915_memcpy_from_wc(dst,
1157 					    src + batch_start_offset,
1158 					    ALIGN(batch_len, 16));
1159 			i915_gem_object_unpin_map(src_obj);
1160 		}
1161 	}
1162 	if (IS_ERR(src)) {
1163 		void *ptr;
1164 		int offset, n;
1165 
1166 		offset = offset_in_page(batch_start_offset);
1167 
1168 		/* We can avoid clflushing partial cachelines before the write
1169 		 * if we only every write full cache-lines. Since we know that
1170 		 * both the source and destination are in multiples of
1171 		 * PAGE_SIZE, we can simply round up to the next cacheline.
1172 		 * We don't care about copying too much here as we only
1173 		 * validate up to the end of the batch.
1174 		 */
1175 		if (dst_needs_clflush & CLFLUSH_BEFORE)
1176 			batch_len = roundup(batch_len,
1177 					    boot_cpu_data.x86_clflush_size);
1178 
1179 		ptr = dst;
1180 		for (n = batch_start_offset >> PAGE_SHIFT; batch_len; n++) {
1181 			int len = min_t(int, batch_len, PAGE_SIZE - offset);
1182 
1183 			src = kmap_atomic(i915_gem_object_get_page(src_obj, n));
1184 			if (src_needs_clflush)
1185 				drm_clflush_virt_range(src + offset, len);
1186 			memcpy(ptr, src + offset, len);
1187 			kunmap_atomic(src);
1188 
1189 			ptr += len;
1190 			batch_len -= len;
1191 			offset = 0;
1192 		}
1193 	}
1194 
1195 	/* dst_obj is returned with vmap pinned */
1196 	*needs_clflush_after = dst_needs_clflush & CLFLUSH_AFTER;
1197 
1198 unpin_dst:
1199 	i915_gem_obj_finish_shmem_access(dst_obj);
1200 unpin_src:
1201 	i915_gem_obj_finish_shmem_access(src_obj);
1202 	return dst;
1203 }
1204 
check_cmd(const struct intel_engine_cs * engine,const struct drm_i915_cmd_descriptor * desc,const u32 * cmd,u32 length)1205 static bool check_cmd(const struct intel_engine_cs *engine,
1206 		      const struct drm_i915_cmd_descriptor *desc,
1207 		      const u32 *cmd, u32 length)
1208 {
1209 	if (desc->flags & CMD_DESC_SKIP)
1210 		return true;
1211 
1212 	if (desc->flags & CMD_DESC_REJECT) {
1213 		DRM_DEBUG_DRIVER("CMD: Rejected command: 0x%08X\n", *cmd);
1214 		return false;
1215 	}
1216 
1217 	if (desc->flags & CMD_DESC_REGISTER) {
1218 		/*
1219 		 * Get the distance between individual register offset
1220 		 * fields if the command can perform more than one
1221 		 * access at a time.
1222 		 */
1223 		const u32 step = desc->reg.step ? desc->reg.step : length;
1224 		u32 offset;
1225 
1226 		for (offset = desc->reg.offset; offset < length;
1227 		     offset += step) {
1228 			const u32 reg_addr = cmd[offset] & desc->reg.mask;
1229 			const struct drm_i915_reg_descriptor *reg =
1230 				find_reg(engine, reg_addr);
1231 
1232 			if (!reg) {
1233 				DRM_DEBUG_DRIVER("CMD: Rejected register 0x%08X in command: 0x%08X (%s)\n",
1234 						 reg_addr, *cmd, engine->name);
1235 				return false;
1236 			}
1237 
1238 			/*
1239 			 * Check the value written to the register against the
1240 			 * allowed mask/value pair given in the whitelist entry.
1241 			 */
1242 			if (reg->mask) {
1243 				if (desc->cmd.value == MI_LOAD_REGISTER_MEM) {
1244 					DRM_DEBUG_DRIVER("CMD: Rejected LRM to masked register 0x%08X\n",
1245 							 reg_addr);
1246 					return false;
1247 				}
1248 
1249 				if (desc->cmd.value == MI_LOAD_REGISTER_REG) {
1250 					DRM_DEBUG_DRIVER("CMD: Rejected LRR to masked register 0x%08X\n",
1251 							 reg_addr);
1252 					return false;
1253 				}
1254 
1255 				if (desc->cmd.value == MI_LOAD_REGISTER_IMM(1) &&
1256 				    (offset + 2 > length ||
1257 				     (cmd[offset + 1] & reg->mask) != reg->value)) {
1258 					DRM_DEBUG_DRIVER("CMD: Rejected LRI to masked register 0x%08X\n",
1259 							 reg_addr);
1260 					return false;
1261 				}
1262 			}
1263 		}
1264 	}
1265 
1266 	if (desc->flags & CMD_DESC_BITMASK) {
1267 		int i;
1268 
1269 		for (i = 0; i < MAX_CMD_DESC_BITMASKS; i++) {
1270 			u32 dword;
1271 
1272 			if (desc->bits[i].mask == 0)
1273 				break;
1274 
1275 			if (desc->bits[i].condition_mask != 0) {
1276 				u32 offset =
1277 					desc->bits[i].condition_offset;
1278 				u32 condition = cmd[offset] &
1279 					desc->bits[i].condition_mask;
1280 
1281 				if (condition == 0)
1282 					continue;
1283 			}
1284 
1285 			if (desc->bits[i].offset >= length) {
1286 				DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X, too short to check bitmask (%s)\n",
1287 						 *cmd, engine->name);
1288 				return false;
1289 			}
1290 
1291 			dword = cmd[desc->bits[i].offset] &
1292 				desc->bits[i].mask;
1293 
1294 			if (dword != desc->bits[i].expected) {
1295 				DRM_DEBUG_DRIVER("CMD: Rejected command 0x%08X for bitmask 0x%08X (exp=0x%08X act=0x%08X) (%s)\n",
1296 						 *cmd,
1297 						 desc->bits[i].mask,
1298 						 desc->bits[i].expected,
1299 						 dword, engine->name);
1300 				return false;
1301 			}
1302 		}
1303 	}
1304 
1305 	return true;
1306 }
1307 
check_bbstart(const struct i915_gem_context * ctx,u32 * cmd,u32 offset,u32 length,u32 batch_len,u64 batch_start,u64 shadow_batch_start)1308 static int check_bbstart(const struct i915_gem_context *ctx,
1309 			 u32 *cmd, u32 offset, u32 length,
1310 			 u32 batch_len,
1311 			 u64 batch_start,
1312 			 u64 shadow_batch_start)
1313 {
1314 	u64 jump_offset, jump_target;
1315 	u32 target_cmd_offset, target_cmd_index;
1316 
1317 	/* For igt compatibility on older platforms */
1318 	if (CMDPARSER_USES_GGTT(ctx->i915)) {
1319 		DRM_DEBUG("CMD: Rejecting BB_START for ggtt based submission\n");
1320 		return -EACCES;
1321 	}
1322 
1323 	if (length != 3) {
1324 		DRM_DEBUG("CMD: Recursive BB_START with bad length(%u)\n",
1325 			  length);
1326 		return -EINVAL;
1327 	}
1328 
1329 	jump_target = *(u64*)(cmd+1);
1330 	jump_offset = jump_target - batch_start;
1331 
1332 	/*
1333 	 * Any underflow of jump_target is guaranteed to be outside the range
1334 	 * of a u32, so >= test catches both too large and too small
1335 	 */
1336 	if (jump_offset >= batch_len) {
1337 		DRM_DEBUG("CMD: BB_START to 0x%llx jumps out of BB\n",
1338 			  jump_target);
1339 		return -EINVAL;
1340 	}
1341 
1342 	/*
1343 	 * This cannot overflow a u32 because we already checked jump_offset
1344 	 * is within the BB, and the batch_len is a u32
1345 	 */
1346 	target_cmd_offset = lower_32_bits(jump_offset);
1347 	target_cmd_index = target_cmd_offset / sizeof(u32);
1348 
1349 	*(u64*)(cmd + 1) = shadow_batch_start + target_cmd_offset;
1350 
1351 	if (target_cmd_index == offset)
1352 		return 0;
1353 
1354 	if (ctx->jump_whitelist_cmds <= target_cmd_index) {
1355 		DRM_DEBUG("CMD: Rejecting BB_START - truncated whitelist array\n");
1356 		return -EINVAL;
1357 	} else if (!test_bit(target_cmd_index, ctx->jump_whitelist)) {
1358 		DRM_DEBUG("CMD: BB_START to 0x%llx not a previously executed cmd\n",
1359 			  jump_target);
1360 		return -EINVAL;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
init_whitelist(struct i915_gem_context * ctx,u32 batch_len)1366 static void init_whitelist(struct i915_gem_context *ctx, u32 batch_len)
1367 {
1368 	const u32 batch_cmds = DIV_ROUND_UP(batch_len, sizeof(u32));
1369 	const u32 exact_size = BITS_TO_LONGS(batch_cmds);
1370 	u32 next_size = BITS_TO_LONGS(roundup_pow_of_two(batch_cmds));
1371 	unsigned long *next_whitelist;
1372 
1373 	if (CMDPARSER_USES_GGTT(ctx->i915))
1374 		return;
1375 
1376 	if (batch_cmds <= ctx->jump_whitelist_cmds) {
1377 		bitmap_zero(ctx->jump_whitelist, batch_cmds);
1378 		return;
1379 	}
1380 
1381 again:
1382 	next_whitelist = kcalloc(next_size, sizeof(long), GFP_KERNEL);
1383 	if (next_whitelist) {
1384 		kfree(ctx->jump_whitelist);
1385 		ctx->jump_whitelist = next_whitelist;
1386 		ctx->jump_whitelist_cmds =
1387 			next_size * BITS_PER_BYTE * sizeof(long);
1388 		return;
1389 	}
1390 
1391 	if (next_size > exact_size) {
1392 		next_size = exact_size;
1393 		goto again;
1394 	}
1395 
1396 	DRM_DEBUG("CMD: Failed to extend whitelist. BB_START may be disallowed\n");
1397 	bitmap_zero(ctx->jump_whitelist, ctx->jump_whitelist_cmds);
1398 
1399 	return;
1400 }
1401 
1402 #define LENGTH_BIAS 2
1403 
1404 /**
1405  * i915_parse_cmds() - parse a submitted batch buffer for privilege violations
1406  * @ctx: the context in which the batch is to execute
1407  * @engine: the engine on which the batch is to execute
1408  * @batch_obj: the batch buffer in question
1409  * @batch_start: Canonical base address of batch
1410  * @batch_start_offset: byte offset in the batch at which execution starts
1411  * @batch_len: length of the commands in batch_obj
1412  * @shadow_batch_obj: copy of the batch buffer in question
1413  * @shadow_batch_start: Canonical base address of shadow_batch_obj
1414  *
1415  * Parses the specified batch buffer looking for privilege violations as
1416  * described in the overview.
1417  *
1418  * Return: non-zero if the parser finds violations or otherwise fails; -EACCES
1419  * if the batch appears legal but should use hardware parsing
1420  */
1421 
intel_engine_cmd_parser(struct i915_gem_context * ctx,struct intel_engine_cs * engine,struct drm_i915_gem_object * batch_obj,u64 batch_start,u32 batch_start_offset,u32 batch_len,struct drm_i915_gem_object * shadow_batch_obj,u64 shadow_batch_start)1422 int intel_engine_cmd_parser(struct i915_gem_context *ctx,
1423 			    struct intel_engine_cs *engine,
1424 			    struct drm_i915_gem_object *batch_obj,
1425 			    u64 batch_start,
1426 			    u32 batch_start_offset,
1427 			    u32 batch_len,
1428 			    struct drm_i915_gem_object *shadow_batch_obj,
1429 			    u64 shadow_batch_start)
1430 {
1431 	u32 *cmd, *batch_end, offset = 0;
1432 	struct drm_i915_cmd_descriptor default_desc = noop_desc;
1433 	const struct drm_i915_cmd_descriptor *desc = &default_desc;
1434 	bool needs_clflush_after = false;
1435 	int ret = 0;
1436 
1437 	cmd = copy_batch(shadow_batch_obj, batch_obj,
1438 			 batch_start_offset, batch_len,
1439 			 &needs_clflush_after);
1440 	if (IS_ERR(cmd)) {
1441 		DRM_DEBUG_DRIVER("CMD: Failed to copy batch\n");
1442 		return PTR_ERR(cmd);
1443 	}
1444 
1445 	init_whitelist(ctx, batch_len);
1446 
1447 	/*
1448 	 * We use the batch length as size because the shadow object is as
1449 	 * large or larger and copy_batch() will write MI_NOPs to the extra
1450 	 * space. Parsing should be faster in some cases this way.
1451 	 */
1452 	batch_end = cmd + (batch_len / sizeof(*batch_end));
1453 	do {
1454 		u32 length;
1455 
1456 		if (*cmd == MI_BATCH_BUFFER_END)
1457 			break;
1458 
1459 		desc = find_cmd(engine, *cmd, desc, &default_desc);
1460 		if (!desc) {
1461 			DRM_DEBUG_DRIVER("CMD: Unrecognized command: 0x%08X\n",
1462 					 *cmd);
1463 			ret = -EINVAL;
1464 			goto err;
1465 		}
1466 
1467 		if (desc->flags & CMD_DESC_FIXED)
1468 			length = desc->length.fixed;
1469 		else
1470 			length = ((*cmd & desc->length.mask) + LENGTH_BIAS);
1471 
1472 		if ((batch_end - cmd) < length) {
1473 			DRM_DEBUG_DRIVER("CMD: Command length exceeds batch length: 0x%08X length=%u batchlen=%td\n",
1474 					 *cmd,
1475 					 length,
1476 					 batch_end - cmd);
1477 			ret = -EINVAL;
1478 			goto err;
1479 		}
1480 
1481 		if (!check_cmd(engine, desc, cmd, length)) {
1482 			ret = -EACCES;
1483 			goto err;
1484 		}
1485 
1486 		if (desc->cmd.value == MI_BATCH_BUFFER_START) {
1487 			ret = check_bbstart(ctx, cmd, offset, length,
1488 					    batch_len, batch_start,
1489 					    shadow_batch_start);
1490 
1491 			if (ret)
1492 				goto err;
1493 			break;
1494 		}
1495 
1496 		if (ctx->jump_whitelist_cmds > offset)
1497 			set_bit(offset, ctx->jump_whitelist);
1498 
1499 		cmd += length;
1500 		offset += length;
1501 		if  (cmd >= batch_end) {
1502 			DRM_DEBUG_DRIVER("CMD: Got to the end of the buffer w/o a BBE cmd!\n");
1503 			ret = -EINVAL;
1504 			goto err;
1505 		}
1506 	} while (1);
1507 
1508 	if (needs_clflush_after) {
1509 		void *ptr = page_mask_bits(shadow_batch_obj->mm.mapping);
1510 
1511 		drm_clflush_virt_range(ptr, (void *)(cmd + 1) - ptr);
1512 	}
1513 
1514 err:
1515 	i915_gem_object_unpin_map(shadow_batch_obj);
1516 	return ret;
1517 }
1518 
1519 /**
1520  * i915_cmd_parser_get_version() - get the cmd parser version number
1521  * @dev_priv: i915 device private
1522  *
1523  * The cmd parser maintains a simple increasing integer version number suitable
1524  * for passing to userspace clients to determine what operations are permitted.
1525  *
1526  * Return: the current version number of the cmd parser
1527  */
i915_cmd_parser_get_version(struct drm_i915_private * dev_priv)1528 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv)
1529 {
1530 	struct intel_engine_cs *engine;
1531 	enum intel_engine_id id;
1532 	bool active = false;
1533 
1534 	/* If the command parser is not enabled, report 0 - unsupported */
1535 	for_each_engine(engine, dev_priv, id) {
1536 		if (intel_engine_using_cmd_parser(engine)) {
1537 			active = true;
1538 			break;
1539 		}
1540 	}
1541 	if (!active)
1542 		return 0;
1543 
1544 	/*
1545 	 * Command parser version history
1546 	 *
1547 	 * 1. Initial version. Checks batches and reports violations, but leaves
1548 	 *    hardware parsing enabled (so does not allow new use cases).
1549 	 * 2. Allow access to the MI_PREDICATE_SRC0 and
1550 	 *    MI_PREDICATE_SRC1 registers.
1551 	 * 3. Allow access to the GPGPU_THREADS_DISPATCHED register.
1552 	 * 4. L3 atomic chicken bits of HSW_SCRATCH1 and HSW_ROW_CHICKEN3.
1553 	 * 5. GPGPU dispatch compute indirect registers.
1554 	 * 6. TIMESTAMP register and Haswell CS GPR registers
1555 	 * 7. Allow MI_LOAD_REGISTER_REG between whitelisted registers.
1556 	 * 8. Don't report cmd_check() failures as EINVAL errors to userspace;
1557 	 *    rely on the HW to NOOP disallowed commands as it would without
1558 	 *    the parser enabled.
1559 	 * 9. Don't whitelist or handle oacontrol specially, as ownership
1560 	 *    for oacontrol state is moving to i915-perf.
1561 	 * 10. Support for Gen9 BCS Parsing
1562 	 */
1563 	return 10;
1564 }
1565