1 /******************************************************************************
2 *
3 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 *
26 * Few modifications for Realtek's Wi-Fi drivers by
27 * Andrea Merello <andrea.merello@gmail.com>
28 *
29 * A special thanks goes to Realtek for their support !
30 *
31 ******************************************************************************/
32
33 #include <linux/compiler.h>
34 #include <linux/errno.h>
35 #include <linux/if_arp.h>
36 #include <linux/in6.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/netdevice.h>
42 #include <linux/pci.h>
43 #include <linux/proc_fs.h>
44 #include <linux/skbuff.h>
45 #include <linux/slab.h>
46 #include <linux/tcp.h>
47 #include <linux/types.h>
48 #include <linux/wireless.h>
49 #include <linux/etherdevice.h>
50 #include <linux/uaccess.h>
51 #include <linux/if_vlan.h>
52
53 #include "ieee80211.h"
54
55
56 /*
57 *
58 *
59 * 802.11 Data Frame
60 *
61 *
62 * 802.11 frame_contorl for data frames - 2 bytes
63 * ,-----------------------------------------------------------------------------------------.
64 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
65 * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
66 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
67 * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
68 * desc | ^-ver-^ | ^type-^ | ^-----subtype-----^ | to |from |more |retry| pwr |more |wep |
69 * | | | x=0 data,x=1 data+ack | DS | DS |frag | | mgm |data | |
70 * '-----------------------------------------------------------------------------------------'
71 * /\
72 * |
73 * 802.11 Data Frame |
74 * ,--------- 'ctrl' expands to >-----------'
75 * |
76 * ,--'---,-------------------------------------------------------------.
77 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
78 * |------|------|---------|---------|---------|------|---------|------|
79 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
80 * | | tion | (BSSID) | | | ence | data | |
81 * `--------------------------------------------------| |------'
82 * Total: 28 non-data bytes `----.----'
83 * |
84 * .- 'Frame data' expands to <---------------------------'
85 * |
86 * V
87 * ,---------------------------------------------------.
88 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
89 * |------|------|---------|----------|------|---------|
90 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
91 * | DSAP | SSAP | | | | Packet |
92 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
93 * `-----------------------------------------| |
94 * Total: 8 non-data bytes `----.----'
95 * |
96 * .- 'IP Packet' expands, if WEP enabled, to <--'
97 * |
98 * V
99 * ,-----------------------.
100 * Bytes | 4 | 0-2296 | 4 |
101 * |-----|-----------|-----|
102 * Desc. | IV | Encrypted | ICV |
103 * | | IP Packet | |
104 * `-----------------------'
105 * Total: 8 non-data bytes
106 *
107 *
108 * 802.3 Ethernet Data Frame
109 *
110 * ,-----------------------------------------.
111 * Bytes | 6 | 6 | 2 | Variable | 4 |
112 * |-------|-------|------|-----------|------|
113 * Desc. | Dest. | Source| Type | IP Packet | fcs |
114 * | MAC | MAC | | | |
115 * `-----------------------------------------'
116 * Total: 18 non-data bytes
117 *
118 * In the event that fragmentation is required, the incoming payload is split into
119 * N parts of size ieee->fts. The first fragment contains the SNAP header and the
120 * remaining packets are just data.
121 *
122 * If encryption is enabled, each fragment payload size is reduced by enough space
123 * to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
124 * So if you have 1500 bytes of payload with ieee->fts set to 500 without
125 * encryption it will take 3 frames. With WEP it will take 4 frames as the
126 * payload of each frame is reduced to 492 bytes.
127 *
128 * SKB visualization
129 *
130 * ,- skb->data
131 * |
132 * | ETHERNET HEADER ,-<-- PAYLOAD
133 * | | 14 bytes from skb->data
134 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
135 * | | | |
136 * |,-Dest.--. ,--Src.---. | | |
137 * | 6 bytes| | 6 bytes | | | |
138 * v | | | | | |
139 * 0 | v 1 | v | v 2
140 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
141 * ^ | ^ | ^ |
142 * | | | | | |
143 * | | | | `T' <---- 2 bytes for Type
144 * | | | |
145 * | | '---SNAP--' <-------- 6 bytes for SNAP
146 * | |
147 * `-IV--' <-------------------- 4 bytes for IV (WEP)
148 *
149 * SNAP HEADER
150 *
151 */
152
153 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
154 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
155
ieee80211_put_snap(u8 * data,u16 h_proto)156 static inline int ieee80211_put_snap(u8 *data, u16 h_proto)
157 {
158 struct ieee80211_snap_hdr *snap;
159 u8 *oui;
160
161 snap = (struct ieee80211_snap_hdr *)data;
162 snap->dsap = 0xaa;
163 snap->ssap = 0xaa;
164 snap->ctrl = 0x03;
165
166 if (h_proto == 0x8137 || h_proto == 0x80f3)
167 oui = P802_1H_OUI;
168 else
169 oui = RFC1042_OUI;
170 snap->oui[0] = oui[0];
171 snap->oui[1] = oui[1];
172 snap->oui[2] = oui[2];
173
174 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
175
176 return SNAP_SIZE + sizeof(u16);
177 }
178
ieee80211_encrypt_fragment(struct ieee80211_device * ieee,struct sk_buff * frag,int hdr_len)179 int ieee80211_encrypt_fragment(
180 struct ieee80211_device *ieee,
181 struct sk_buff *frag,
182 int hdr_len)
183 {
184 struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
185 int res;
186
187 if (!(crypt && crypt->ops))
188 {
189 printk("=========>%s(), crypt is null\n", __func__);
190 return -1;
191 }
192
193 if (ieee->tkip_countermeasures &&
194 crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) {
195 if (net_ratelimit()) {
196 struct rtl_80211_hdr_3addrqos *header;
197
198 header = (struct rtl_80211_hdr_3addrqos *)frag->data;
199 printk(KERN_DEBUG "%s: TKIP countermeasures: dropped "
200 "TX packet to %pM\n",
201 ieee->dev->name, header->addr1);
202 }
203 return -1;
204 }
205
206 /* To encrypt, frame format is:
207 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
208 */
209
210 // PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption.
211 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
212 * call both MSDU and MPDU encryption functions from here.
213 */
214 atomic_inc(&crypt->refcnt);
215 res = 0;
216 if (crypt->ops->encrypt_msdu)
217 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
218 if (res == 0 && crypt->ops->encrypt_mpdu)
219 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
220
221 atomic_dec(&crypt->refcnt);
222 if (res < 0) {
223 printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
224 ieee->dev->name, frag->len);
225 ieee->ieee_stats.tx_discards++;
226 return -1;
227 }
228
229 return 0;
230 }
231
232
ieee80211_txb_free(struct ieee80211_txb * txb)233 void ieee80211_txb_free(struct ieee80211_txb *txb) {
234 //int i;
235 if (unlikely(!txb))
236 return;
237 kfree(txb);
238 }
239 EXPORT_SYMBOL(ieee80211_txb_free);
240
ieee80211_alloc_txb(int nr_frags,int txb_size,gfp_t gfp_mask)241 static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
242 gfp_t gfp_mask)
243 {
244 struct ieee80211_txb *txb;
245 int i;
246 txb = kmalloc(
247 sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
248 gfp_mask);
249 if (!txb)
250 return NULL;
251
252 memset(txb, 0, sizeof(struct ieee80211_txb));
253 txb->nr_frags = nr_frags;
254 txb->frag_size = __cpu_to_le16(txb_size);
255
256 for (i = 0; i < nr_frags; i++) {
257 txb->fragments[i] = dev_alloc_skb(txb_size);
258 if (unlikely(!txb->fragments[i])) {
259 i--;
260 break;
261 }
262 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
263 }
264 if (unlikely(i != nr_frags)) {
265 while (i >= 0)
266 dev_kfree_skb_any(txb->fragments[i--]);
267 kfree(txb);
268 return NULL;
269 }
270 return txb;
271 }
272
273 // Classify the to-be send data packet
274 // Need to acquire the sent queue index.
275 static int
ieee80211_classify(struct sk_buff * skb,struct ieee80211_network * network)276 ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network)
277 {
278 struct ethhdr *eth;
279 struct iphdr *ip;
280 eth = (struct ethhdr *)skb->data;
281 if (eth->h_proto != htons(ETH_P_IP))
282 return 0;
283
284 ip = ip_hdr(skb);
285 switch (ip->tos & 0xfc) {
286 case 0x20:
287 return 2;
288 case 0x40:
289 return 1;
290 case 0x60:
291 return 3;
292 case 0x80:
293 return 4;
294 case 0xa0:
295 return 5;
296 case 0xc0:
297 return 6;
298 case 0xe0:
299 return 7;
300 default:
301 return 0;
302 }
303 }
304
305 #define SN_LESS(a, b) (((a-b)&0x800)!=0)
ieee80211_tx_query_agg_cap(struct ieee80211_device * ieee,struct sk_buff * skb,struct cb_desc * tcb_desc)306 static void ieee80211_tx_query_agg_cap(struct ieee80211_device *ieee,
307 struct sk_buff *skb, struct cb_desc *tcb_desc)
308 {
309 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
310 PTX_TS_RECORD pTxTs = NULL;
311 struct rtl_80211_hdr_1addr *hdr = (struct rtl_80211_hdr_1addr *)skb->data;
312
313 if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
314 return;
315 if (!IsQoSDataFrame(skb->data))
316 return;
317
318 if (is_multicast_ether_addr(hdr->addr1))
319 return;
320 //check packet and mode later
321 #ifdef TO_DO_LIST
322 if(pTcb->PacketLength >= 4096)
323 return;
324 // For RTL819X, if pairwisekey = wep/tkip, we don't aggrregation.
325 if(!Adapter->HalFunc.GetNmodeSupportBySecCfgHandler(Adapter))
326 return;
327 #endif
328 if(!ieee->GetNmodeSupportBySecCfg(ieee->dev))
329 {
330 return;
331 }
332 if(pHTInfo->bCurrentAMPDUEnable)
333 {
334 if (!GetTs(ieee, (PTS_COMMON_INFO *)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true))
335 {
336 printk("===>can't get TS\n");
337 return;
338 }
339 if (!pTxTs->TxAdmittedBARecord.bValid)
340 {
341 TsStartAddBaProcess(ieee, pTxTs);
342 goto FORCED_AGG_SETTING;
343 }
344 else if (!pTxTs->bUsingBa)
345 {
346 if (SN_LESS(pTxTs->TxAdmittedBARecord.BaStartSeqCtrl.field.SeqNum, (pTxTs->TxCurSeq+1)%4096))
347 pTxTs->bUsingBa = true;
348 else
349 goto FORCED_AGG_SETTING;
350 }
351
352 if (ieee->iw_mode == IW_MODE_INFRA)
353 {
354 tcb_desc->bAMPDUEnable = true;
355 tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
356 tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
357 }
358 }
359 FORCED_AGG_SETTING:
360 switch (pHTInfo->ForcedAMPDUMode )
361 {
362 case HT_AGG_AUTO:
363 break;
364
365 case HT_AGG_FORCE_ENABLE:
366 tcb_desc->bAMPDUEnable = true;
367 tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
368 tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
369 break;
370
371 case HT_AGG_FORCE_DISABLE:
372 tcb_desc->bAMPDUEnable = false;
373 tcb_desc->ampdu_density = 0;
374 tcb_desc->ampdu_factor = 0;
375 break;
376
377 }
378 return;
379 }
380
ieee80211_qurey_ShortPreambleMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)381 static void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device *ieee,
382 struct cb_desc *tcb_desc)
383 {
384 tcb_desc->bUseShortPreamble = false;
385 if (tcb_desc->data_rate == 2)
386 {//// 1M can only use Long Preamble. 11B spec
387 return;
388 }
389 else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
390 {
391 tcb_desc->bUseShortPreamble = true;
392 }
393 return;
394 }
395 static void
ieee80211_query_HTCapShortGI(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)396 ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, struct cb_desc *tcb_desc)
397 {
398 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
399
400 tcb_desc->bUseShortGI = false;
401
402 if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
403 return;
404
405 if(pHTInfo->bForcedShortGI)
406 {
407 tcb_desc->bUseShortGI = true;
408 return;
409 }
410
411 if((pHTInfo->bCurBW40MHz==true) && pHTInfo->bCurShortGI40MHz)
412 tcb_desc->bUseShortGI = true;
413 else if((pHTInfo->bCurBW40MHz==false) && pHTInfo->bCurShortGI20MHz)
414 tcb_desc->bUseShortGI = true;
415 }
416
ieee80211_query_BandwidthMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)417 static void ieee80211_query_BandwidthMode(struct ieee80211_device *ieee,
418 struct cb_desc *tcb_desc)
419 {
420 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
421
422 tcb_desc->bPacketBW = false;
423
424 if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
425 return;
426
427 if(tcb_desc->bMulticast || tcb_desc->bBroadcast)
428 return;
429
430 if((tcb_desc->data_rate & 0x80)==0) // If using legacy rate, it shall use 20MHz channel.
431 return;
432 //BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance
433 if(pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
434 tcb_desc->bPacketBW = true;
435 return;
436 }
437
ieee80211_query_protectionmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc,struct sk_buff * skb)438 static void ieee80211_query_protectionmode(struct ieee80211_device *ieee,
439 struct cb_desc *tcb_desc,
440 struct sk_buff *skb)
441 {
442 // Common Settings
443 tcb_desc->bRTSSTBC = false;
444 tcb_desc->bRTSUseShortGI = false; // Since protection frames are always sent by legacy rate, ShortGI will never be used.
445 tcb_desc->bCTSEnable = false; // Most of protection using RTS/CTS
446 tcb_desc->RTSSC = 0; // 20MHz: Don't care; 40MHz: Duplicate.
447 tcb_desc->bRTSBW = false; // RTS frame bandwidth is always 20MHz
448
449 if(tcb_desc->bBroadcast || tcb_desc->bMulticast)//only unicast frame will use rts/cts
450 return;
451
452 if (is_broadcast_ether_addr(skb->data+16)) //check addr3 as infrastructure add3 is DA.
453 return;
454
455 if (ieee->mode < IEEE_N_24G) //b, g mode
456 {
457 // (1) RTS_Threshold is compared to the MPDU, not MSDU.
458 // (2) If there are more than one frag in this MSDU, only the first frag uses protection frame.
459 // Other fragments are protected by previous fragment.
460 // So we only need to check the length of first fragment.
461 if (skb->len > ieee->rts)
462 {
463 tcb_desc->bRTSEnable = true;
464 tcb_desc->rts_rate = MGN_24M;
465 }
466 else if (ieee->current_network.buseprotection)
467 {
468 // Use CTS-to-SELF in protection mode.
469 tcb_desc->bRTSEnable = true;
470 tcb_desc->bCTSEnable = true;
471 tcb_desc->rts_rate = MGN_24M;
472 }
473 //otherwise return;
474 return;
475 }
476 else
477 {// 11n High throughput case.
478 PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
479 while (true)
480 {
481 //check ERP protection
482 if (ieee->current_network.buseprotection)
483 {// CTS-to-SELF
484 tcb_desc->bRTSEnable = true;
485 tcb_desc->bCTSEnable = true;
486 tcb_desc->rts_rate = MGN_24M;
487 break;
488 }
489 //check HT op mode
490 if(pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT)
491 {
492 u8 HTOpMode = pHTInfo->CurrentOpMode;
493 if((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) ||
494 (!pHTInfo->bCurBW40MHz && HTOpMode == 3) )
495 {
496 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
497 tcb_desc->bRTSEnable = true;
498 break;
499 }
500 }
501 //check rts
502 if (skb->len > ieee->rts)
503 {
504 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
505 tcb_desc->bRTSEnable = true;
506 break;
507 }
508 //to do list: check MIMO power save condition.
509 //check AMPDU aggregation for TXOP
510 if(tcb_desc->bAMPDUEnable)
511 {
512 tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
513 // According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads
514 // throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily
515 tcb_desc->bRTSEnable = false;
516 break;
517 }
518 //check IOT action
519 if(pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF)
520 {
521 tcb_desc->bCTSEnable = true;
522 tcb_desc->rts_rate = MGN_24M;
523 tcb_desc->bRTSEnable = true;
524 break;
525 }
526 // Totally no protection case!!
527 goto NO_PROTECTION;
528 }
529 }
530 // For test , CTS replace with RTS
531 if (0) {
532 tcb_desc->bCTSEnable = true;
533 tcb_desc->rts_rate = MGN_24M;
534 tcb_desc->bRTSEnable = true;
535 }
536 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
537 tcb_desc->bUseShortPreamble = true;
538 if (ieee->mode == IW_MODE_MASTER)
539 goto NO_PROTECTION;
540 return;
541 NO_PROTECTION:
542 tcb_desc->bRTSEnable = false;
543 tcb_desc->bCTSEnable = false;
544 tcb_desc->rts_rate = 0;
545 tcb_desc->RTSSC = 0;
546 tcb_desc->bRTSBW = false;
547 }
548
549
ieee80211_txrate_selectmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)550 static void ieee80211_txrate_selectmode(struct ieee80211_device *ieee,
551 struct cb_desc *tcb_desc)
552 {
553 #ifdef TO_DO_LIST
554 if(!IsDataFrame(pFrame))
555 {
556 pTcb->bTxDisableRateFallBack = true;
557 pTcb->bTxUseDriverAssingedRate = true;
558 pTcb->RATRIndex = 7;
559 return;
560 }
561
562 if(pMgntInfo->ForcedDataRate!= 0)
563 {
564 pTcb->bTxDisableRateFallBack = true;
565 pTcb->bTxUseDriverAssingedRate = true;
566 return;
567 }
568 #endif
569 if(ieee->bTxDisableRateFallBack)
570 tcb_desc->bTxDisableRateFallBack = true;
571
572 if(ieee->bTxUseDriverAssingedRate)
573 tcb_desc->bTxUseDriverAssingedRate = true;
574 if(!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate)
575 {
576 if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
577 tcb_desc->RATRIndex = 0;
578 }
579 }
580
ieee80211_query_seqnum(struct ieee80211_device * ieee,struct sk_buff * skb,u8 * dst)581 static void ieee80211_query_seqnum(struct ieee80211_device *ieee,
582 struct sk_buff *skb, u8 *dst)
583 {
584 if (is_multicast_ether_addr(dst))
585 return;
586 if (IsQoSDataFrame(skb->data)) //we deal qos data only
587 {
588 PTX_TS_RECORD pTS = NULL;
589 if (!GetTs(ieee, (PTS_COMMON_INFO *)(&pTS), dst, skb->priority, TX_DIR, true))
590 {
591 return;
592 }
593 pTS->TxCurSeq = (pTS->TxCurSeq+1)%4096;
594 }
595 }
596
ieee80211_xmit(struct sk_buff * skb,struct net_device * dev)597 int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
598 {
599 struct ieee80211_device *ieee = netdev_priv(dev);
600 struct ieee80211_txb *txb = NULL;
601 struct rtl_80211_hdr_3addrqos *frag_hdr;
602 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
603 unsigned long flags;
604 struct net_device_stats *stats = &ieee->stats;
605 int ether_type = 0, encrypt;
606 int bytes, fc, qos_ctl = 0, hdr_len;
607 struct sk_buff *skb_frag;
608 struct rtl_80211_hdr_3addrqos header = { /* Ensure zero initialized */
609 .duration_id = 0,
610 .seq_ctl = 0,
611 .qos_ctl = 0
612 };
613 u8 dest[ETH_ALEN], src[ETH_ALEN];
614 int qos_actived = ieee->current_network.qos_data.active;
615
616 struct ieee80211_crypt_data *crypt;
617
618 struct cb_desc *tcb_desc;
619
620 spin_lock_irqsave(&ieee->lock, flags);
621
622 /* If there is no driver handler to take the TXB, dont' bother
623 * creating it...
624 */
625 if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE))||
626 ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
627 printk(KERN_WARNING "%s: No xmit handler.\n",
628 ieee->dev->name);
629 goto success;
630 }
631
632
633 if(likely(ieee->raw_tx == 0)){
634 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
635 printk(KERN_WARNING "%s: skb too small (%d).\n",
636 ieee->dev->name, skb->len);
637 goto success;
638 }
639
640 memset(skb->cb, 0, sizeof(skb->cb));
641 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
642
643 crypt = ieee->crypt[ieee->tx_keyidx];
644
645 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
646 ieee->host_encrypt && crypt && crypt->ops;
647
648 if (!encrypt && ieee->ieee802_1x &&
649 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
650 stats->tx_dropped++;
651 goto success;
652 }
653 #ifdef CONFIG_IEEE80211_DEBUG
654 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
655 struct eapol *eap = (struct eapol *)(skb->data +
656 sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16));
657 IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n",
658 eap_get_type(eap->type));
659 }
660 #endif
661
662 /* Save source and destination addresses */
663 memcpy(&dest, skb->data, ETH_ALEN);
664 memcpy(&src, skb->data+ETH_ALEN, ETH_ALEN);
665
666 /* Advance the SKB to the start of the payload */
667 skb_pull(skb, sizeof(struct ethhdr));
668
669 /* Determine total amount of storage required for TXB packets */
670 bytes = skb->len + SNAP_SIZE + sizeof(u16);
671
672 if (encrypt)
673 fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP;
674 else
675
676 fc = IEEE80211_FTYPE_DATA;
677
678 //if(ieee->current_network.QoS_Enable)
679 if(qos_actived)
680 fc |= IEEE80211_STYPE_QOS_DATA;
681 else
682 fc |= IEEE80211_STYPE_DATA;
683
684 if (ieee->iw_mode == IW_MODE_INFRA) {
685 fc |= IEEE80211_FCTL_TODS;
686 /* To DS: Addr1 = BSSID, Addr2 = SA,
687 * Addr3 = DA
688 */
689 memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN);
690 memcpy(&header.addr2, &src, ETH_ALEN);
691 memcpy(&header.addr3, &dest, ETH_ALEN);
692 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
693 /* not From/To DS: Addr1 = DA, Addr2 = SA,
694 * Addr3 = BSSID
695 */
696 memcpy(&header.addr1, dest, ETH_ALEN);
697 memcpy(&header.addr2, src, ETH_ALEN);
698 memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN);
699 }
700
701 header.frame_ctl = cpu_to_le16(fc);
702
703 /* Determine fragmentation size based on destination (multicast
704 * and broadcast are not fragmented)
705 */
706 if (is_multicast_ether_addr(header.addr1)) {
707 frag_size = MAX_FRAG_THRESHOLD;
708 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
709 }
710 else {
711 frag_size = ieee->fts;//default:392
712 qos_ctl = 0;
713 }
714
715 //if (ieee->current_network.QoS_Enable)
716 if(qos_actived)
717 {
718 hdr_len = IEEE80211_3ADDR_LEN + 2;
719
720 skb->priority = ieee80211_classify(skb, &ieee->current_network);
721 qos_ctl |= skb->priority; //set in the ieee80211_classify
722 header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID);
723 } else {
724 hdr_len = IEEE80211_3ADDR_LEN;
725 }
726 /* Determine amount of payload per fragment. Regardless of if
727 * this stack is providing the full 802.11 header, one will
728 * eventually be affixed to this fragment -- so we must account for
729 * it when determining the amount of payload space.
730 */
731 bytes_per_frag = frag_size - hdr_len;
732 if (ieee->config &
733 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
734 bytes_per_frag -= IEEE80211_FCS_LEN;
735
736 /* Each fragment may need to have room for encryption pre/postfix */
737 if (encrypt)
738 bytes_per_frag -= crypt->ops->extra_prefix_len +
739 crypt->ops->extra_postfix_len;
740
741 /* Number of fragments is the total bytes_per_frag /
742 * payload_per_fragment
743 */
744 nr_frags = bytes / bytes_per_frag;
745 bytes_last_frag = bytes % bytes_per_frag;
746 if (bytes_last_frag)
747 nr_frags++;
748 else
749 bytes_last_frag = bytes_per_frag;
750
751 /* When we allocate the TXB we allocate enough space for the reserve
752 * and full fragment bytes (bytes_per_frag doesn't include prefix,
753 * postfix, header, FCS, etc.)
754 */
755 txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC);
756 if (unlikely(!txb)) {
757 printk(KERN_WARNING "%s: Could not allocate TXB\n",
758 ieee->dev->name);
759 goto failed;
760 }
761 txb->encrypted = encrypt;
762 txb->payload_size = __cpu_to_le16(bytes);
763
764 //if (ieee->current_network.QoS_Enable)
765 if(qos_actived)
766 {
767 txb->queue_index = UP2AC(skb->priority);
768 } else {
769 txb->queue_index = WME_AC_BK;
770 }
771
772
773
774 for (i = 0; i < nr_frags; i++) {
775 skb_frag = txb->fragments[i];
776 tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE);
777 if(qos_actived){
778 skb_frag->priority = skb->priority;//UP2AC(skb->priority);
779 tcb_desc->queue_index = UP2AC(skb->priority);
780 } else {
781 skb_frag->priority = WME_AC_BK;
782 tcb_desc->queue_index = WME_AC_BK;
783 }
784 skb_reserve(skb_frag, ieee->tx_headroom);
785
786 if (encrypt){
787 if (ieee->hwsec_active)
788 tcb_desc->bHwSec = 1;
789 else
790 tcb_desc->bHwSec = 0;
791 skb_reserve(skb_frag, crypt->ops->extra_prefix_len);
792 }
793 else
794 {
795 tcb_desc->bHwSec = 0;
796 }
797 frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
798
799 /* If this is not the last fragment, then add the MOREFRAGS
800 * bit to the frame control
801 */
802 if (i != nr_frags - 1) {
803 frag_hdr->frame_ctl = cpu_to_le16(
804 fc | IEEE80211_FCTL_MOREFRAGS);
805 bytes = bytes_per_frag;
806
807 } else {
808 /* The last fragment takes the remaining length */
809 bytes = bytes_last_frag;
810 }
811 //if(ieee->current_network.QoS_Enable)
812 if(qos_actived)
813 {
814 // add 1 only indicate to corresponding seq number control 2006/7/12
815 frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority)+1]<<4 | i);
816 } else {
817 frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
818 }
819
820 /* Put a SNAP header on the first fragment */
821 if (i == 0) {
822 ieee80211_put_snap(
823 skb_put(skb_frag, SNAP_SIZE + sizeof(u16)),
824 ether_type);
825 bytes -= SNAP_SIZE + sizeof(u16);
826 }
827
828 skb_put_data(skb_frag, skb->data, bytes);
829
830 /* Advance the SKB... */
831 skb_pull(skb, bytes);
832
833 /* Encryption routine will move the header forward in order
834 * to insert the IV between the header and the payload
835 */
836 if (encrypt)
837 ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
838 if (ieee->config &
839 (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
840 skb_put(skb_frag, 4);
841 }
842
843 if(qos_actived)
844 {
845 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
846 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
847 else
848 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
849 } else {
850 if (ieee->seq_ctrl[0] == 0xFFF)
851 ieee->seq_ctrl[0] = 0;
852 else
853 ieee->seq_ctrl[0]++;
854 }
855 }else{
856 if (unlikely(skb->len < sizeof(struct rtl_80211_hdr_3addr))) {
857 printk(KERN_WARNING "%s: skb too small (%d).\n",
858 ieee->dev->name, skb->len);
859 goto success;
860 }
861
862 txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC);
863 if(!txb){
864 printk(KERN_WARNING "%s: Could not allocate TXB\n",
865 ieee->dev->name);
866 goto failed;
867 }
868
869 txb->encrypted = 0;
870 txb->payload_size = __cpu_to_le16(skb->len);
871 skb_put_data(txb->fragments[0], skb->data, skb->len);
872 }
873
874 success:
875 //WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place.
876 if (txb)
877 {
878 struct cb_desc *tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
879 tcb_desc->bTxEnableFwCalcDur = 1;
880 if (is_multicast_ether_addr(header.addr1))
881 tcb_desc->bMulticast = 1;
882 if (is_broadcast_ether_addr(header.addr1))
883 tcb_desc->bBroadcast = 1;
884 ieee80211_txrate_selectmode(ieee, tcb_desc);
885 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
886 tcb_desc->data_rate = ieee->basic_rate;
887 else
888 tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate);
889 ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc);
890 ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc);
891 ieee80211_query_HTCapShortGI(ieee, tcb_desc);
892 ieee80211_query_BandwidthMode(ieee, tcb_desc);
893 ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]);
894 ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1);
895 }
896 spin_unlock_irqrestore(&ieee->lock, flags);
897 dev_kfree_skb_any(skb);
898 if (txb) {
899 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE){
900 ieee80211_softmac_xmit(txb, ieee);
901 }else{
902 if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
903 stats->tx_packets++;
904 stats->tx_bytes += __le16_to_cpu(txb->payload_size);
905 return 0;
906 }
907 ieee80211_txb_free(txb);
908 }
909 }
910
911 return 0;
912
913 failed:
914 spin_unlock_irqrestore(&ieee->lock, flags);
915 netif_stop_queue(dev);
916 stats->tx_errors++;
917 return 1;
918
919 }
920