• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *
3  *  Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4  *
5  *  This program is free software; you can redistribute it and/or modify it
6  *  under the terms of version 2 of the GNU General Public License as
7  *  published by the Free Software Foundation.
8  *
9  *  This program is distributed in the hope that it will be useful, but WITHOUT
10  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  *  more details.
13  *
14  *  You should have received a copy of the GNU General Public License along with
15  *  this program; if not, write to the Free Software Foundation, Inc., 59
16  *  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17  *
18  *  The full GNU General Public License is included in this distribution in the
19  *  file called LICENSE.
20  *
21  *  Contact Information:
22  *  James P. Ketrenos <ipw2100-admin@linux.intel.com>
23  *  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24  *
25  *
26  *  Few modifications for Realtek's Wi-Fi drivers by
27  *  Andrea Merello <andrea.merello@gmail.com>
28  *
29  *  A special thanks goes to Realtek for their support !
30  *
31  ******************************************************************************/
32 
33 #include <linux/compiler.h>
34 #include <linux/errno.h>
35 #include <linux/if_arp.h>
36 #include <linux/in6.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/netdevice.h>
42 #include <linux/pci.h>
43 #include <linux/proc_fs.h>
44 #include <linux/skbuff.h>
45 #include <linux/slab.h>
46 #include <linux/tcp.h>
47 #include <linux/types.h>
48 #include <linux/wireless.h>
49 #include <linux/etherdevice.h>
50 #include <linux/uaccess.h>
51 #include <linux/if_vlan.h>
52 
53 #include "ieee80211.h"
54 
55 
56 /*
57  *
58  *
59  * 802.11 Data Frame
60  *
61  *
62  * 802.11 frame_contorl for data frames - 2 bytes
63  *      ,-----------------------------------------------------------------------------------------.
64  * bits | 0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  a  |  b  |  c  |  d  |  e   |
65  *      |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
66  * val  | 0  |  0  |  0  |  1  |  x  |  0  |  0  |  0  |  1  |  0  |  x  |  x  |  x  |  x  |  x   |
67  *      |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
68  * desc | ^-ver-^  |  ^type-^  |  ^-----subtype-----^  | to  |from |more |retry| pwr |more |wep   |
69  *      |          |           | x=0 data,x=1 data+ack | DS  | DS  |frag |     | mgm |data |      |
70  *      '-----------------------------------------------------------------------------------------'
71  *                                                    /\
72  *                                                    |
73  * 802.11 Data Frame                                  |
74  *           ,--------- 'ctrl' expands to >-----------'
75  *           |
76  *        ,--'---,-------------------------------------------------------------.
77  *  Bytes |  2   |  2   |    6    |    6    |    6    |  2   | 0..2312 |   4  |
78  *        |------|------|---------|---------|---------|------|---------|------|
79  *  Desc. | ctrl | dura |  DA/RA  |   TA    |    SA   | Sequ |  Frame  |  fcs |
80  *        |      | tion | (BSSID) |         |         | ence |  data   |      |
81  *        `--------------------------------------------------|         |------'
82  *  Total: 28 non-data bytes                                 `----.----'
83  *                                                                |
84  *         .- 'Frame data' expands to <---------------------------'
85  *         |
86  *         V
87  *        ,---------------------------------------------------.
88  *  Bytes |  1   |  1   |    1    |    3     |  2   |  0-2304 |
89  *        |------|------|---------|----------|------|---------|
90  *  Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP      |
91  *        | DSAP | SSAP |         |          |      | Packet  |
92  *        | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8|      |         |
93  *        `-----------------------------------------|         |
94  *  Total: 8 non-data bytes                         `----.----'
95  *                                                       |
96  *         .- 'IP Packet' expands, if WEP enabled, to <--'
97  *         |
98  *         V
99  *        ,-----------------------.
100  *  Bytes |  4  |   0-2296  |  4  |
101  *        |-----|-----------|-----|
102  *  Desc. | IV  | Encrypted | ICV |
103  *        |     | IP Packet |     |
104  *        `-----------------------'
105  *  Total: 8 non-data bytes
106  *
107  *
108  *  802.3 Ethernet Data Frame
109  *
110  *        ,-----------------------------------------.
111  *  Bytes |   6   |   6   |  2   |  Variable |   4  |
112  *        |-------|-------|------|-----------|------|
113  *  Desc. | Dest. | Source| Type | IP Packet |  fcs |
114  *        |  MAC  |  MAC  |      |           |      |
115  *        `-----------------------------------------'
116  *  Total: 18 non-data bytes
117  *
118  *  In the event that fragmentation is required, the incoming payload is split into
119  *  N parts of size ieee->fts.  The first fragment contains the SNAP header and the
120  *  remaining packets are just data.
121  *
122  *  If encryption is enabled, each fragment payload size is reduced by enough space
123  *  to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
124  *  So if you have 1500 bytes of payload with ieee->fts set to 500 without
125  *  encryption it will take 3 frames.  With WEP it will take 4 frames as the
126  *  payload of each frame is reduced to 492 bytes.
127  *
128  * SKB visualization
129  *
130  *  ,- skb->data
131  * |
132  * |    ETHERNET HEADER        ,-<-- PAYLOAD
133  * |                           |     14 bytes from skb->data
134  * |  2 bytes for Type --> ,T. |     (sizeof ethhdr)
135  * |                       | | |
136  * |,-Dest.--. ,--Src.---. | | |
137  * |  6 bytes| | 6 bytes | | | |
138  * v         | |         | | | |
139  * 0         | v       1 | v | v           2
140  * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
141  *     ^     | ^         | ^ |
142  *     |     | |         | | |
143  *     |     | |         | `T' <---- 2 bytes for Type
144  *     |     | |         |
145  *     |     | '---SNAP--' <-------- 6 bytes for SNAP
146  *     |     |
147  *     `-IV--' <-------------------- 4 bytes for IV (WEP)
148  *
149  *      SNAP HEADER
150  *
151  */
152 
153 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
154 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
155 
ieee80211_put_snap(u8 * data,u16 h_proto)156 static inline int ieee80211_put_snap(u8 *data, u16 h_proto)
157 {
158 	struct ieee80211_snap_hdr *snap;
159 	u8 *oui;
160 
161 	snap = (struct ieee80211_snap_hdr *)data;
162 	snap->dsap = 0xaa;
163 	snap->ssap = 0xaa;
164 	snap->ctrl = 0x03;
165 
166 	if (h_proto == 0x8137 || h_proto == 0x80f3)
167 		oui = P802_1H_OUI;
168 	else
169 		oui = RFC1042_OUI;
170 	snap->oui[0] = oui[0];
171 	snap->oui[1] = oui[1];
172 	snap->oui[2] = oui[2];
173 
174 	*(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
175 
176 	return SNAP_SIZE + sizeof(u16);
177 }
178 
ieee80211_encrypt_fragment(struct ieee80211_device * ieee,struct sk_buff * frag,int hdr_len)179 int ieee80211_encrypt_fragment(
180 	struct ieee80211_device *ieee,
181 	struct sk_buff *frag,
182 	int hdr_len)
183 {
184 	struct ieee80211_crypt_data *crypt = ieee->crypt[ieee->tx_keyidx];
185 	int res;
186 
187 	if (!(crypt && crypt->ops))
188 	{
189 		printk("=========>%s(), crypt is null\n", __func__);
190 		return -1;
191 	}
192 
193 	if (ieee->tkip_countermeasures &&
194 	    crypt && crypt->ops && strcmp(crypt->ops->name, "TKIP") == 0) {
195 		if (net_ratelimit()) {
196 			struct rtl_80211_hdr_3addrqos *header;
197 
198 			header = (struct rtl_80211_hdr_3addrqos *)frag->data;
199 			printk(KERN_DEBUG "%s: TKIP countermeasures: dropped "
200 			       "TX packet to %pM\n",
201 			       ieee->dev->name, header->addr1);
202 		}
203 		return -1;
204 	}
205 
206 	/* To encrypt, frame format is:
207 	 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
208 	 */
209 
210 	// PR: FIXME: Copied from hostap. Check fragmentation/MSDU/MPDU encryption.
211 	/* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
212 	 * call both MSDU and MPDU encryption functions from here.
213 	 */
214 	atomic_inc(&crypt->refcnt);
215 	res = 0;
216 	if (crypt->ops->encrypt_msdu)
217 		res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
218 	if (res == 0 && crypt->ops->encrypt_mpdu)
219 		res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
220 
221 	atomic_dec(&crypt->refcnt);
222 	if (res < 0) {
223 		printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
224 		       ieee->dev->name, frag->len);
225 		ieee->ieee_stats.tx_discards++;
226 		return -1;
227 	}
228 
229 	return 0;
230 }
231 
232 
ieee80211_txb_free(struct ieee80211_txb * txb)233 void ieee80211_txb_free(struct ieee80211_txb *txb) {
234 	//int i;
235 	if (unlikely(!txb))
236 		return;
237 	kfree(txb);
238 }
239 EXPORT_SYMBOL(ieee80211_txb_free);
240 
ieee80211_alloc_txb(int nr_frags,int txb_size,gfp_t gfp_mask)241 static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
242 						 gfp_t gfp_mask)
243 {
244 	struct ieee80211_txb *txb;
245 	int i;
246 	txb = kmalloc(
247 		sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
248 		gfp_mask);
249 	if (!txb)
250 		return NULL;
251 
252 	memset(txb, 0, sizeof(struct ieee80211_txb));
253 	txb->nr_frags = nr_frags;
254 	txb->frag_size = __cpu_to_le16(txb_size);
255 
256 	for (i = 0; i < nr_frags; i++) {
257 		txb->fragments[i] = dev_alloc_skb(txb_size);
258 		if (unlikely(!txb->fragments[i])) {
259 			i--;
260 			break;
261 		}
262 		memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
263 	}
264 	if (unlikely(i != nr_frags)) {
265 		while (i >= 0)
266 			dev_kfree_skb_any(txb->fragments[i--]);
267 		kfree(txb);
268 		return NULL;
269 	}
270 	return txb;
271 }
272 
273 // Classify the to-be send data packet
274 // Need to acquire the sent queue index.
275 static int
ieee80211_classify(struct sk_buff * skb,struct ieee80211_network * network)276 ieee80211_classify(struct sk_buff *skb, struct ieee80211_network *network)
277 {
278 	struct ethhdr *eth;
279 	struct iphdr *ip;
280 	eth = (struct ethhdr *)skb->data;
281 	if (eth->h_proto != htons(ETH_P_IP))
282 		return 0;
283 
284 	ip = ip_hdr(skb);
285 	switch (ip->tos & 0xfc) {
286 	case 0x20:
287 		return 2;
288 	case 0x40:
289 		return 1;
290 	case 0x60:
291 		return 3;
292 	case 0x80:
293 		return 4;
294 	case 0xa0:
295 		return 5;
296 	case 0xc0:
297 		return 6;
298 	case 0xe0:
299 		return 7;
300 	default:
301 		return 0;
302 	}
303 }
304 
305 #define SN_LESS(a, b)		(((a-b)&0x800)!=0)
ieee80211_tx_query_agg_cap(struct ieee80211_device * ieee,struct sk_buff * skb,struct cb_desc * tcb_desc)306 static void ieee80211_tx_query_agg_cap(struct ieee80211_device *ieee,
307 				       struct sk_buff *skb, struct cb_desc *tcb_desc)
308 {
309 	PRT_HIGH_THROUGHPUT	pHTInfo = ieee->pHTInfo;
310 	PTX_TS_RECORD			pTxTs = NULL;
311 	struct rtl_80211_hdr_1addr *hdr = (struct rtl_80211_hdr_1addr *)skb->data;
312 
313 	if (!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
314 		return;
315 	if (!IsQoSDataFrame(skb->data))
316 		return;
317 
318 	if (is_multicast_ether_addr(hdr->addr1))
319 		return;
320 	//check packet and mode later
321 #ifdef TO_DO_LIST
322 	if(pTcb->PacketLength >= 4096)
323 		return;
324 	// For RTL819X, if pairwisekey = wep/tkip, we don't aggrregation.
325 	if(!Adapter->HalFunc.GetNmodeSupportBySecCfgHandler(Adapter))
326 		return;
327 #endif
328 	if(!ieee->GetNmodeSupportBySecCfg(ieee->dev))
329 	{
330 		return;
331 	}
332 	if(pHTInfo->bCurrentAMPDUEnable)
333 	{
334 		if (!GetTs(ieee, (PTS_COMMON_INFO *)(&pTxTs), hdr->addr1, skb->priority, TX_DIR, true))
335 		{
336 			printk("===>can't get TS\n");
337 			return;
338 		}
339 		if (!pTxTs->TxAdmittedBARecord.bValid)
340 		{
341 			TsStartAddBaProcess(ieee, pTxTs);
342 			goto FORCED_AGG_SETTING;
343 		}
344 		else if (!pTxTs->bUsingBa)
345 		{
346 			if (SN_LESS(pTxTs->TxAdmittedBARecord.BaStartSeqCtrl.field.SeqNum, (pTxTs->TxCurSeq+1)%4096))
347 				pTxTs->bUsingBa = true;
348 			else
349 				goto FORCED_AGG_SETTING;
350 		}
351 
352 		if (ieee->iw_mode == IW_MODE_INFRA)
353 		{
354 			tcb_desc->bAMPDUEnable = true;
355 			tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor;
356 			tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity;
357 		}
358 	}
359 FORCED_AGG_SETTING:
360 	switch (pHTInfo->ForcedAMPDUMode )
361 	{
362 		case HT_AGG_AUTO:
363 			break;
364 
365 		case HT_AGG_FORCE_ENABLE:
366 			tcb_desc->bAMPDUEnable = true;
367 			tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity;
368 			tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor;
369 			break;
370 
371 		case HT_AGG_FORCE_DISABLE:
372 			tcb_desc->bAMPDUEnable = false;
373 			tcb_desc->ampdu_density = 0;
374 			tcb_desc->ampdu_factor = 0;
375 			break;
376 
377 	}
378 		return;
379 }
380 
ieee80211_qurey_ShortPreambleMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)381 static void ieee80211_qurey_ShortPreambleMode(struct ieee80211_device *ieee,
382 					      struct cb_desc *tcb_desc)
383 {
384 	tcb_desc->bUseShortPreamble = false;
385 	if (tcb_desc->data_rate == 2)
386 	{//// 1M can only use Long Preamble. 11B spec
387 		return;
388 	}
389 	else if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
390 	{
391 		tcb_desc->bUseShortPreamble = true;
392 	}
393 	return;
394 }
395 static void
ieee80211_query_HTCapShortGI(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)396 ieee80211_query_HTCapShortGI(struct ieee80211_device *ieee, struct cb_desc *tcb_desc)
397 {
398 	PRT_HIGH_THROUGHPUT		pHTInfo = ieee->pHTInfo;
399 
400 	tcb_desc->bUseShortGI		= false;
401 
402 	if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
403 		return;
404 
405 	if(pHTInfo->bForcedShortGI)
406 	{
407 		tcb_desc->bUseShortGI = true;
408 		return;
409 	}
410 
411 	if((pHTInfo->bCurBW40MHz==true) && pHTInfo->bCurShortGI40MHz)
412 		tcb_desc->bUseShortGI = true;
413 	else if((pHTInfo->bCurBW40MHz==false) && pHTInfo->bCurShortGI20MHz)
414 		tcb_desc->bUseShortGI = true;
415 }
416 
ieee80211_query_BandwidthMode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)417 static void ieee80211_query_BandwidthMode(struct ieee80211_device *ieee,
418 					  struct cb_desc *tcb_desc)
419 {
420 	PRT_HIGH_THROUGHPUT	pHTInfo = ieee->pHTInfo;
421 
422 	tcb_desc->bPacketBW = false;
423 
424 	if(!pHTInfo->bCurrentHTSupport||!pHTInfo->bEnableHT)
425 		return;
426 
427 	if(tcb_desc->bMulticast || tcb_desc->bBroadcast)
428 		return;
429 
430 	if((tcb_desc->data_rate & 0x80)==0) // If using legacy rate, it shall use 20MHz channel.
431 		return;
432 	//BandWidthAutoSwitch is for auto switch to 20 or 40 in long distance
433 	if(pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
434 		tcb_desc->bPacketBW = true;
435 	return;
436 }
437 
ieee80211_query_protectionmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc,struct sk_buff * skb)438 static void ieee80211_query_protectionmode(struct ieee80211_device *ieee,
439 					   struct cb_desc *tcb_desc,
440 					   struct sk_buff *skb)
441 {
442 	// Common Settings
443 	tcb_desc->bRTSSTBC			= false;
444 	tcb_desc->bRTSUseShortGI		= false; // Since protection frames are always sent by legacy rate, ShortGI will never be used.
445 	tcb_desc->bCTSEnable			= false; // Most of protection using RTS/CTS
446 	tcb_desc->RTSSC				= 0;		// 20MHz: Don't care;  40MHz: Duplicate.
447 	tcb_desc->bRTSBW			= false; // RTS frame bandwidth is always 20MHz
448 
449 	if(tcb_desc->bBroadcast || tcb_desc->bMulticast)//only unicast frame will use rts/cts
450 		return;
451 
452 	if (is_broadcast_ether_addr(skb->data+16))  //check addr3 as infrastructure add3 is DA.
453 		return;
454 
455 	if (ieee->mode < IEEE_N_24G) //b, g mode
456 	{
457 			// (1) RTS_Threshold is compared to the MPDU, not MSDU.
458 			// (2) If there are more than one frag in  this MSDU, only the first frag uses protection frame.
459 			//		Other fragments are protected by previous fragment.
460 			//		So we only need to check the length of first fragment.
461 		if (skb->len > ieee->rts)
462 		{
463 			tcb_desc->bRTSEnable = true;
464 			tcb_desc->rts_rate = MGN_24M;
465 		}
466 		else if (ieee->current_network.buseprotection)
467 		{
468 			// Use CTS-to-SELF in protection mode.
469 			tcb_desc->bRTSEnable = true;
470 			tcb_desc->bCTSEnable = true;
471 			tcb_desc->rts_rate = MGN_24M;
472 		}
473 		//otherwise return;
474 		return;
475 	}
476 	else
477 	{// 11n High throughput case.
478 		PRT_HIGH_THROUGHPUT pHTInfo = ieee->pHTInfo;
479 		while (true)
480 		{
481 			//check ERP protection
482 			if (ieee->current_network.buseprotection)
483 			{// CTS-to-SELF
484 				tcb_desc->bRTSEnable = true;
485 				tcb_desc->bCTSEnable = true;
486 				tcb_desc->rts_rate = MGN_24M;
487 				break;
488 			}
489 			//check HT op mode
490 			if(pHTInfo->bCurrentHTSupport  && pHTInfo->bEnableHT)
491 			{
492 				u8 HTOpMode = pHTInfo->CurrentOpMode;
493 				if((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || HTOpMode == 3)) ||
494 							(!pHTInfo->bCurBW40MHz && HTOpMode == 3) )
495 				{
496 					tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
497 					tcb_desc->bRTSEnable = true;
498 					break;
499 				}
500 			}
501 			//check rts
502 			if (skb->len > ieee->rts)
503 			{
504 				tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
505 				tcb_desc->bRTSEnable = true;
506 				break;
507 			}
508 			//to do list: check MIMO power save condition.
509 			//check AMPDU aggregation for TXOP
510 			if(tcb_desc->bAMPDUEnable)
511 			{
512 				tcb_desc->rts_rate = MGN_24M; // Rate is 24Mbps.
513 				// According to 8190 design, firmware sends CF-End only if RTS/CTS is enabled. However, it degrads
514 				// throughput around 10M, so we disable of this mechanism. 2007.08.03 by Emily
515 				tcb_desc->bRTSEnable = false;
516 				break;
517 			}
518 			//check IOT action
519 			if(pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF)
520 			{
521 				tcb_desc->bCTSEnable	= true;
522 				tcb_desc->rts_rate  =	MGN_24M;
523 				tcb_desc->bRTSEnable = true;
524 				break;
525 			}
526 			// Totally no protection case!!
527 			goto NO_PROTECTION;
528 		}
529 		}
530 	// For test , CTS replace with RTS
531 	if (0) {
532 		tcb_desc->bCTSEnable	= true;
533 		tcb_desc->rts_rate = MGN_24M;
534 		tcb_desc->bRTSEnable	= true;
535 	}
536 	if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
537 		tcb_desc->bUseShortPreamble = true;
538 	if (ieee->mode == IW_MODE_MASTER)
539 			goto NO_PROTECTION;
540 	return;
541 NO_PROTECTION:
542 	tcb_desc->bRTSEnable	= false;
543 	tcb_desc->bCTSEnable	= false;
544 	tcb_desc->rts_rate		= 0;
545 	tcb_desc->RTSSC		= 0;
546 	tcb_desc->bRTSBW		= false;
547 }
548 
549 
ieee80211_txrate_selectmode(struct ieee80211_device * ieee,struct cb_desc * tcb_desc)550 static void ieee80211_txrate_selectmode(struct ieee80211_device *ieee,
551 					struct cb_desc *tcb_desc)
552 {
553 #ifdef TO_DO_LIST
554 	if(!IsDataFrame(pFrame))
555 	{
556 		pTcb->bTxDisableRateFallBack = true;
557 		pTcb->bTxUseDriverAssingedRate = true;
558 		pTcb->RATRIndex = 7;
559 		return;
560 	}
561 
562 	if(pMgntInfo->ForcedDataRate!= 0)
563 	{
564 		pTcb->bTxDisableRateFallBack = true;
565 		pTcb->bTxUseDriverAssingedRate = true;
566 		return;
567 	}
568 #endif
569 	if(ieee->bTxDisableRateFallBack)
570 		tcb_desc->bTxDisableRateFallBack = true;
571 
572 	if(ieee->bTxUseDriverAssingedRate)
573 		tcb_desc->bTxUseDriverAssingedRate = true;
574 	if(!tcb_desc->bTxDisableRateFallBack || !tcb_desc->bTxUseDriverAssingedRate)
575 	{
576 		if (ieee->iw_mode == IW_MODE_INFRA || ieee->iw_mode == IW_MODE_ADHOC)
577 			tcb_desc->RATRIndex = 0;
578 	}
579 }
580 
ieee80211_query_seqnum(struct ieee80211_device * ieee,struct sk_buff * skb,u8 * dst)581 static void ieee80211_query_seqnum(struct ieee80211_device *ieee,
582 				   struct sk_buff *skb, u8 *dst)
583 {
584 	if (is_multicast_ether_addr(dst))
585 		return;
586 	if (IsQoSDataFrame(skb->data)) //we deal qos data only
587 	{
588 		PTX_TS_RECORD pTS = NULL;
589 		if (!GetTs(ieee, (PTS_COMMON_INFO *)(&pTS), dst, skb->priority, TX_DIR, true))
590 		{
591 			return;
592 		}
593 		pTS->TxCurSeq = (pTS->TxCurSeq+1)%4096;
594 	}
595 }
596 
ieee80211_xmit(struct sk_buff * skb,struct net_device * dev)597 int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
598 {
599 	struct ieee80211_device *ieee = netdev_priv(dev);
600 	struct ieee80211_txb *txb = NULL;
601 	struct rtl_80211_hdr_3addrqos *frag_hdr;
602 	int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
603 	unsigned long flags;
604 	struct net_device_stats *stats = &ieee->stats;
605 	int ether_type = 0, encrypt;
606 	int bytes, fc, qos_ctl = 0, hdr_len;
607 	struct sk_buff *skb_frag;
608 	struct rtl_80211_hdr_3addrqos header = { /* Ensure zero initialized */
609 		.duration_id = 0,
610 		.seq_ctl = 0,
611 		.qos_ctl = 0
612 	};
613 	u8 dest[ETH_ALEN], src[ETH_ALEN];
614 	int qos_actived = ieee->current_network.qos_data.active;
615 
616 	struct ieee80211_crypt_data *crypt;
617 
618 	struct cb_desc *tcb_desc;
619 
620 	spin_lock_irqsave(&ieee->lock, flags);
621 
622 	/* If there is no driver handler to take the TXB, dont' bother
623 	 * creating it...
624 	 */
625 	if ((!ieee->hard_start_xmit && !(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE))||
626 	   ((!ieee->softmac_data_hard_start_xmit && (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
627 		printk(KERN_WARNING "%s: No xmit handler.\n",
628 		       ieee->dev->name);
629 		goto success;
630 	}
631 
632 
633 	if(likely(ieee->raw_tx == 0)){
634 		if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
635 			printk(KERN_WARNING "%s: skb too small (%d).\n",
636 			ieee->dev->name, skb->len);
637 			goto success;
638 		}
639 
640 		memset(skb->cb, 0, sizeof(skb->cb));
641 		ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
642 
643 		crypt = ieee->crypt[ieee->tx_keyidx];
644 
645 		encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) &&
646 			ieee->host_encrypt && crypt && crypt->ops;
647 
648 		if (!encrypt && ieee->ieee802_1x &&
649 		ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
650 			stats->tx_dropped++;
651 			goto success;
652 		}
653 	#ifdef CONFIG_IEEE80211_DEBUG
654 		if (crypt && !encrypt && ether_type == ETH_P_PAE) {
655 			struct eapol *eap = (struct eapol *)(skb->data +
656 				sizeof(struct ethhdr) - SNAP_SIZE - sizeof(u16));
657 			IEEE80211_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n",
658 				eap_get_type(eap->type));
659 		}
660 	#endif
661 
662 		/* Save source and destination addresses */
663 		memcpy(&dest, skb->data, ETH_ALEN);
664 		memcpy(&src, skb->data+ETH_ALEN, ETH_ALEN);
665 
666 		/* Advance the SKB to the start of the payload */
667 		skb_pull(skb, sizeof(struct ethhdr));
668 
669 		/* Determine total amount of storage required for TXB packets */
670 		bytes = skb->len + SNAP_SIZE + sizeof(u16);
671 
672 		if (encrypt)
673 			fc = IEEE80211_FTYPE_DATA | IEEE80211_FCTL_WEP;
674 		else
675 
676 			fc = IEEE80211_FTYPE_DATA;
677 
678 		//if(ieee->current_network.QoS_Enable)
679 		if(qos_actived)
680 			fc |= IEEE80211_STYPE_QOS_DATA;
681 		else
682 			fc |= IEEE80211_STYPE_DATA;
683 
684 		if (ieee->iw_mode == IW_MODE_INFRA) {
685 			fc |= IEEE80211_FCTL_TODS;
686 			/* To DS: Addr1 = BSSID, Addr2 = SA,
687 			 * Addr3 = DA
688 			 */
689 			memcpy(&header.addr1, ieee->current_network.bssid, ETH_ALEN);
690 			memcpy(&header.addr2, &src, ETH_ALEN);
691 			memcpy(&header.addr3, &dest, ETH_ALEN);
692 		} else if (ieee->iw_mode == IW_MODE_ADHOC) {
693 			/* not From/To DS: Addr1 = DA, Addr2 = SA,
694 			 * Addr3 = BSSID
695 			 */
696 			memcpy(&header.addr1, dest, ETH_ALEN);
697 			memcpy(&header.addr2, src, ETH_ALEN);
698 			memcpy(&header.addr3, ieee->current_network.bssid, ETH_ALEN);
699 		}
700 
701 		header.frame_ctl = cpu_to_le16(fc);
702 
703 		/* Determine fragmentation size based on destination (multicast
704 		 * and broadcast are not fragmented)
705 		 */
706 		if (is_multicast_ether_addr(header.addr1)) {
707 			frag_size = MAX_FRAG_THRESHOLD;
708 			qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
709 		}
710 		else {
711 			frag_size = ieee->fts;//default:392
712 			qos_ctl = 0;
713 		}
714 
715 		//if (ieee->current_network.QoS_Enable)
716 		if(qos_actived)
717 		{
718 			hdr_len = IEEE80211_3ADDR_LEN + 2;
719 
720 			skb->priority = ieee80211_classify(skb, &ieee->current_network);
721 			qos_ctl |= skb->priority; //set in the ieee80211_classify
722 			header.qos_ctl = cpu_to_le16(qos_ctl & IEEE80211_QOS_TID);
723 		} else {
724 			hdr_len = IEEE80211_3ADDR_LEN;
725 		}
726 		/* Determine amount of payload per fragment.  Regardless of if
727 		 * this stack is providing the full 802.11 header, one will
728 		 * eventually be affixed to this fragment -- so we must account for
729 		 * it when determining the amount of payload space.
730 		 */
731 		bytes_per_frag = frag_size - hdr_len;
732 		if (ieee->config &
733 		(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
734 			bytes_per_frag -= IEEE80211_FCS_LEN;
735 
736 		/* Each fragment may need to have room for encryption pre/postfix */
737 		if (encrypt)
738 			bytes_per_frag -= crypt->ops->extra_prefix_len +
739 				crypt->ops->extra_postfix_len;
740 
741 		/* Number of fragments is the total bytes_per_frag /
742 		 * payload_per_fragment
743 		 */
744 		nr_frags = bytes / bytes_per_frag;
745 		bytes_last_frag = bytes % bytes_per_frag;
746 		if (bytes_last_frag)
747 			nr_frags++;
748 		else
749 			bytes_last_frag = bytes_per_frag;
750 
751 		/* When we allocate the TXB we allocate enough space for the reserve
752 		 * and full fragment bytes (bytes_per_frag doesn't include prefix,
753 		 * postfix, header, FCS, etc.)
754 		 */
755 		txb = ieee80211_alloc_txb(nr_frags, frag_size + ieee->tx_headroom, GFP_ATOMIC);
756 		if (unlikely(!txb)) {
757 			printk(KERN_WARNING "%s: Could not allocate TXB\n",
758 			ieee->dev->name);
759 			goto failed;
760 		}
761 		txb->encrypted = encrypt;
762 		txb->payload_size = __cpu_to_le16(bytes);
763 
764 		//if (ieee->current_network.QoS_Enable)
765 		if(qos_actived)
766 		{
767 			txb->queue_index = UP2AC(skb->priority);
768 		} else {
769 			txb->queue_index = WME_AC_BK;
770 		}
771 
772 
773 
774 		for (i = 0; i < nr_frags; i++) {
775 			skb_frag = txb->fragments[i];
776 			tcb_desc = (struct cb_desc *)(skb_frag->cb + MAX_DEV_ADDR_SIZE);
777 			if(qos_actived){
778 				skb_frag->priority = skb->priority;//UP2AC(skb->priority);
779 				tcb_desc->queue_index =  UP2AC(skb->priority);
780 			} else {
781 				skb_frag->priority = WME_AC_BK;
782 				tcb_desc->queue_index = WME_AC_BK;
783 			}
784 			skb_reserve(skb_frag, ieee->tx_headroom);
785 
786 			if (encrypt){
787 				if (ieee->hwsec_active)
788 					tcb_desc->bHwSec = 1;
789 				else
790 					tcb_desc->bHwSec = 0;
791 				skb_reserve(skb_frag, crypt->ops->extra_prefix_len);
792 			}
793 			else
794 			{
795 				tcb_desc->bHwSec = 0;
796 			}
797 			frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
798 
799 			/* If this is not the last fragment, then add the MOREFRAGS
800 			 * bit to the frame control
801 			 */
802 			if (i != nr_frags - 1) {
803 				frag_hdr->frame_ctl = cpu_to_le16(
804 					fc | IEEE80211_FCTL_MOREFRAGS);
805 				bytes = bytes_per_frag;
806 
807 			} else {
808 				/* The last fragment takes the remaining length */
809 				bytes = bytes_last_frag;
810 			}
811 			//if(ieee->current_network.QoS_Enable)
812 			if(qos_actived)
813 			{
814 				// add 1 only indicate to corresponding seq number control 2006/7/12
815 				frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[UP2AC(skb->priority)+1]<<4 | i);
816 			} else {
817 				frag_hdr->seq_ctl = cpu_to_le16(ieee->seq_ctrl[0]<<4 | i);
818 			}
819 
820 			/* Put a SNAP header on the first fragment */
821 			if (i == 0) {
822 				ieee80211_put_snap(
823 					skb_put(skb_frag, SNAP_SIZE + sizeof(u16)),
824 					ether_type);
825 				bytes -= SNAP_SIZE + sizeof(u16);
826 			}
827 
828 			skb_put_data(skb_frag, skb->data, bytes);
829 
830 			/* Advance the SKB... */
831 			skb_pull(skb, bytes);
832 
833 			/* Encryption routine will move the header forward in order
834 			 * to insert the IV between the header and the payload
835 			 */
836 			if (encrypt)
837 				ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
838 			if (ieee->config &
839 			(CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
840 				skb_put(skb_frag, 4);
841 		}
842 
843 		if(qos_actived)
844 		{
845 		  if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
846 			ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
847 		  else
848 			ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
849 		} else {
850 		  if (ieee->seq_ctrl[0] == 0xFFF)
851 			ieee->seq_ctrl[0] = 0;
852 		  else
853 			ieee->seq_ctrl[0]++;
854 		}
855 	}else{
856 		if (unlikely(skb->len < sizeof(struct rtl_80211_hdr_3addr))) {
857 			printk(KERN_WARNING "%s: skb too small (%d).\n",
858 			ieee->dev->name, skb->len);
859 			goto success;
860 		}
861 
862 		txb = ieee80211_alloc_txb(1, skb->len, GFP_ATOMIC);
863 		if(!txb){
864 			printk(KERN_WARNING "%s: Could not allocate TXB\n",
865 			ieee->dev->name);
866 			goto failed;
867 		}
868 
869 		txb->encrypted = 0;
870 		txb->payload_size = __cpu_to_le16(skb->len);
871 		skb_put_data(txb->fragments[0], skb->data, skb->len);
872 	}
873 
874  success:
875 //WB add to fill data tcb_desc here. only first fragment is considered, need to change, and you may remove to other place.
876 	if (txb)
877 	{
878 		struct cb_desc *tcb_desc = (struct cb_desc *)(txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
879 		tcb_desc->bTxEnableFwCalcDur = 1;
880 		if (is_multicast_ether_addr(header.addr1))
881 			tcb_desc->bMulticast = 1;
882 		if (is_broadcast_ether_addr(header.addr1))
883 			tcb_desc->bBroadcast = 1;
884 		ieee80211_txrate_selectmode(ieee, tcb_desc);
885 		if (tcb_desc->bMulticast ||  tcb_desc->bBroadcast)
886 			tcb_desc->data_rate = ieee->basic_rate;
887 		else
888 			tcb_desc->data_rate = CURRENT_RATE(ieee->mode, ieee->rate, ieee->HTCurrentOperaRate);
889 		ieee80211_qurey_ShortPreambleMode(ieee, tcb_desc);
890 		ieee80211_tx_query_agg_cap(ieee, txb->fragments[0], tcb_desc);
891 		ieee80211_query_HTCapShortGI(ieee, tcb_desc);
892 		ieee80211_query_BandwidthMode(ieee, tcb_desc);
893 		ieee80211_query_protectionmode(ieee, tcb_desc, txb->fragments[0]);
894 		ieee80211_query_seqnum(ieee, txb->fragments[0], header.addr1);
895 	}
896 	spin_unlock_irqrestore(&ieee->lock, flags);
897 	dev_kfree_skb_any(skb);
898 	if (txb) {
899 		if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE){
900 			ieee80211_softmac_xmit(txb, ieee);
901 		}else{
902 			if ((*ieee->hard_start_xmit)(txb, dev) == 0) {
903 				stats->tx_packets++;
904 				stats->tx_bytes += __le16_to_cpu(txb->payload_size);
905 				return 0;
906 			}
907 			ieee80211_txb_free(txb);
908 		}
909 	}
910 
911 	return 0;
912 
913  failed:
914 	spin_unlock_irqrestore(&ieee->lock, flags);
915 	netif_stop_queue(dev);
916 	stats->tx_errors++;
917 	return 1;
918 
919 }
920