• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014-2017 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 #include <linux/debugfs.h>
25 #include <linux/relay.h>
26 #include "i915_drv.h"
27 
28 static void guc_log_capture_logs(struct intel_guc *guc);
29 
30 /**
31  * DOC: GuC firmware log
32  *
33  * Firmware log is enabled by setting i915.guc_log_level to non-negative level.
34  * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from
35  * i915_guc_load_status will print out firmware loading status and scratch
36  * registers value.
37  *
38  */
39 
guc_log_flush_complete(struct intel_guc * guc)40 static int guc_log_flush_complete(struct intel_guc *guc)
41 {
42 	u32 action[] = {
43 		INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE
44 	};
45 
46 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
47 }
48 
guc_log_flush(struct intel_guc * guc)49 static int guc_log_flush(struct intel_guc *guc)
50 {
51 	u32 action[] = {
52 		INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH,
53 		0
54 	};
55 
56 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
57 }
58 
guc_log_control(struct intel_guc * guc,u32 control_val)59 static int guc_log_control(struct intel_guc *guc, u32 control_val)
60 {
61 	u32 action[] = {
62 		INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING,
63 		control_val
64 	};
65 
66 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
67 }
68 
69 /*
70  * Sub buffer switch callback. Called whenever relay has to switch to a new
71  * sub buffer, relay stays on the same sub buffer if 0 is returned.
72  */
subbuf_start_callback(struct rchan_buf * buf,void * subbuf,void * prev_subbuf,size_t prev_padding)73 static int subbuf_start_callback(struct rchan_buf *buf,
74 				 void *subbuf,
75 				 void *prev_subbuf,
76 				 size_t prev_padding)
77 {
78 	/* Use no-overwrite mode by default, where relay will stop accepting
79 	 * new data if there are no empty sub buffers left.
80 	 * There is no strict synchronization enforced by relay between Consumer
81 	 * and Producer. In overwrite mode, there is a possibility of getting
82 	 * inconsistent/garbled data, the producer could be writing on to the
83 	 * same sub buffer from which Consumer is reading. This can't be avoided
84 	 * unless Consumer is fast enough and can always run in tandem with
85 	 * Producer.
86 	 */
87 	if (relay_buf_full(buf))
88 		return 0;
89 
90 	return 1;
91 }
92 
93 /*
94  * file_create() callback. Creates relay file in debugfs.
95  */
create_buf_file_callback(const char * filename,struct dentry * parent,umode_t mode,struct rchan_buf * buf,int * is_global)96 static struct dentry *create_buf_file_callback(const char *filename,
97 					       struct dentry *parent,
98 					       umode_t mode,
99 					       struct rchan_buf *buf,
100 					       int *is_global)
101 {
102 	struct dentry *buf_file;
103 
104 	/* This to enable the use of a single buffer for the relay channel and
105 	 * correspondingly have a single file exposed to User, through which
106 	 * it can collect the logs in order without any post-processing.
107 	 * Need to set 'is_global' even if parent is NULL for early logging.
108 	 */
109 	*is_global = 1;
110 
111 	if (!parent)
112 		return NULL;
113 
114 	/* Not using the channel filename passed as an argument, since for each
115 	 * channel relay appends the corresponding CPU number to the filename
116 	 * passed in relay_open(). This should be fine as relay just needs a
117 	 * dentry of the file associated with the channel buffer and that file's
118 	 * name need not be same as the filename passed as an argument.
119 	 */
120 	buf_file = debugfs_create_file("guc_log", mode,
121 				       parent, buf, &relay_file_operations);
122 	return buf_file;
123 }
124 
125 /*
126  * file_remove() default callback. Removes relay file in debugfs.
127  */
remove_buf_file_callback(struct dentry * dentry)128 static int remove_buf_file_callback(struct dentry *dentry)
129 {
130 	debugfs_remove(dentry);
131 	return 0;
132 }
133 
134 /* relay channel callbacks */
135 static struct rchan_callbacks relay_callbacks = {
136 	.subbuf_start = subbuf_start_callback,
137 	.create_buf_file = create_buf_file_callback,
138 	.remove_buf_file = remove_buf_file_callback,
139 };
140 
guc_log_relay_file_create(struct intel_guc * guc)141 static int guc_log_relay_file_create(struct intel_guc *guc)
142 {
143 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
144 	struct dentry *log_dir;
145 	int ret;
146 
147 	if (i915.guc_log_level < 0)
148 		return 0;
149 
150 	/* For now create the log file in /sys/kernel/debug/dri/0 dir */
151 	log_dir = dev_priv->drm.primary->debugfs_root;
152 
153 	/* If /sys/kernel/debug/dri/0 location do not exist, then debugfs is
154 	 * not mounted and so can't create the relay file.
155 	 * The relay API seems to fit well with debugfs only, for availing relay
156 	 * there are 3 requirements which can be met for debugfs file only in a
157 	 * straightforward/clean manner :-
158 	 * i)   Need the associated dentry pointer of the file, while opening the
159 	 *      relay channel.
160 	 * ii)  Should be able to use 'relay_file_operations' fops for the file.
161 	 * iii) Set the 'i_private' field of file's inode to the pointer of
162 	 *	relay channel buffer.
163 	 */
164 	if (!log_dir) {
165 		DRM_ERROR("Debugfs dir not available yet for GuC log file\n");
166 		return -ENODEV;
167 	}
168 
169 	ret = relay_late_setup_files(guc->log.runtime.relay_chan, "guc_log", log_dir);
170 	if (ret < 0 && ret != -EEXIST) {
171 		DRM_ERROR("Couldn't associate relay chan with file %d\n", ret);
172 		return ret;
173 	}
174 
175 	return 0;
176 }
177 
guc_move_to_next_buf(struct intel_guc * guc)178 static void guc_move_to_next_buf(struct intel_guc *guc)
179 {
180 	/* Make sure the updates made in the sub buffer are visible when
181 	 * Consumer sees the following update to offset inside the sub buffer.
182 	 */
183 	smp_wmb();
184 
185 	/* All data has been written, so now move the offset of sub buffer. */
186 	relay_reserve(guc->log.runtime.relay_chan, guc->log.vma->obj->base.size);
187 
188 	/* Switch to the next sub buffer */
189 	relay_flush(guc->log.runtime.relay_chan);
190 }
191 
guc_get_write_buffer(struct intel_guc * guc)192 static void *guc_get_write_buffer(struct intel_guc *guc)
193 {
194 	if (!guc->log.runtime.relay_chan)
195 		return NULL;
196 
197 	/* Just get the base address of a new sub buffer and copy data into it
198 	 * ourselves. NULL will be returned in no-overwrite mode, if all sub
199 	 * buffers are full. Could have used the relay_write() to indirectly
200 	 * copy the data, but that would have been bit convoluted, as we need to
201 	 * write to only certain locations inside a sub buffer which cannot be
202 	 * done without using relay_reserve() along with relay_write(). So its
203 	 * better to use relay_reserve() alone.
204 	 */
205 	return relay_reserve(guc->log.runtime.relay_chan, 0);
206 }
207 
guc_check_log_buf_overflow(struct intel_guc * guc,enum guc_log_buffer_type type,unsigned int full_cnt)208 static bool guc_check_log_buf_overflow(struct intel_guc *guc,
209 				       enum guc_log_buffer_type type,
210 				       unsigned int full_cnt)
211 {
212 	unsigned int prev_full_cnt = guc->log.prev_overflow_count[type];
213 	bool overflow = false;
214 
215 	if (full_cnt != prev_full_cnt) {
216 		overflow = true;
217 
218 		guc->log.prev_overflow_count[type] = full_cnt;
219 		guc->log.total_overflow_count[type] += full_cnt - prev_full_cnt;
220 
221 		if (full_cnt < prev_full_cnt) {
222 			/* buffer_full_cnt is a 4 bit counter */
223 			guc->log.total_overflow_count[type] += 16;
224 		}
225 		DRM_ERROR_RATELIMITED("GuC log buffer overflow\n");
226 	}
227 
228 	return overflow;
229 }
230 
guc_get_log_buffer_size(enum guc_log_buffer_type type)231 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type)
232 {
233 	switch (type) {
234 	case GUC_ISR_LOG_BUFFER:
235 		return (GUC_LOG_ISR_PAGES + 1) * PAGE_SIZE;
236 	case GUC_DPC_LOG_BUFFER:
237 		return (GUC_LOG_DPC_PAGES + 1) * PAGE_SIZE;
238 	case GUC_CRASH_DUMP_LOG_BUFFER:
239 		return (GUC_LOG_CRASH_PAGES + 1) * PAGE_SIZE;
240 	default:
241 		MISSING_CASE(type);
242 	}
243 
244 	return 0;
245 }
246 
guc_read_update_log_buffer(struct intel_guc * guc)247 static void guc_read_update_log_buffer(struct intel_guc *guc)
248 {
249 	unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt;
250 	struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state;
251 	struct guc_log_buffer_state log_buf_state_local;
252 	enum guc_log_buffer_type type;
253 	void *src_data, *dst_data;
254 	bool new_overflow;
255 
256 	if (WARN_ON(!guc->log.runtime.buf_addr))
257 		return;
258 
259 	/* Get the pointer to shared GuC log buffer */
260 	log_buf_state = src_data = guc->log.runtime.buf_addr;
261 
262 	/* Get the pointer to local buffer to store the logs */
263 	log_buf_snapshot_state = dst_data = guc_get_write_buffer(guc);
264 
265 	/* Actual logs are present from the 2nd page */
266 	src_data += PAGE_SIZE;
267 	dst_data += PAGE_SIZE;
268 
269 	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
270 		/* Make a copy of the state structure, inside GuC log buffer
271 		 * (which is uncached mapped), on the stack to avoid reading
272 		 * from it multiple times.
273 		 */
274 		memcpy(&log_buf_state_local, log_buf_state,
275 		       sizeof(struct guc_log_buffer_state));
276 		buffer_size = guc_get_log_buffer_size(type);
277 		read_offset = log_buf_state_local.read_ptr;
278 		write_offset = log_buf_state_local.sampled_write_ptr;
279 		full_cnt = log_buf_state_local.buffer_full_cnt;
280 
281 		/* Bookkeeping stuff */
282 		guc->log.flush_count[type] += log_buf_state_local.flush_to_file;
283 		new_overflow = guc_check_log_buf_overflow(guc, type, full_cnt);
284 
285 		/* Update the state of shared log buffer */
286 		log_buf_state->read_ptr = write_offset;
287 		log_buf_state->flush_to_file = 0;
288 		log_buf_state++;
289 
290 		if (unlikely(!log_buf_snapshot_state))
291 			continue;
292 
293 		/* First copy the state structure in snapshot buffer */
294 		memcpy(log_buf_snapshot_state, &log_buf_state_local,
295 		       sizeof(struct guc_log_buffer_state));
296 
297 		/* The write pointer could have been updated by GuC firmware,
298 		 * after sending the flush interrupt to Host, for consistency
299 		 * set write pointer value to same value of sampled_write_ptr
300 		 * in the snapshot buffer.
301 		 */
302 		log_buf_snapshot_state->write_ptr = write_offset;
303 		log_buf_snapshot_state++;
304 
305 		/* Now copy the actual logs. */
306 		if (unlikely(new_overflow)) {
307 			/* copy the whole buffer in case of overflow */
308 			read_offset = 0;
309 			write_offset = buffer_size;
310 		} else if (unlikely((read_offset > buffer_size) ||
311 				    (write_offset > buffer_size))) {
312 			DRM_ERROR("invalid log buffer state\n");
313 			/* copy whole buffer as offsets are unreliable */
314 			read_offset = 0;
315 			write_offset = buffer_size;
316 		}
317 
318 		/* Just copy the newly written data */
319 		if (read_offset > write_offset) {
320 			i915_memcpy_from_wc(dst_data, src_data, write_offset);
321 			bytes_to_copy = buffer_size - read_offset;
322 		} else {
323 			bytes_to_copy = write_offset - read_offset;
324 		}
325 		i915_memcpy_from_wc(dst_data + read_offset,
326 				    src_data + read_offset, bytes_to_copy);
327 
328 		src_data += buffer_size;
329 		dst_data += buffer_size;
330 	}
331 
332 	if (log_buf_snapshot_state)
333 		guc_move_to_next_buf(guc);
334 	else {
335 		/* Used rate limited to avoid deluge of messages, logs might be
336 		 * getting consumed by User at a slow rate.
337 		 */
338 		DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n");
339 		guc->log.capture_miss_count++;
340 	}
341 }
342 
capture_logs_work(struct work_struct * work)343 static void capture_logs_work(struct work_struct *work)
344 {
345 	struct intel_guc *guc =
346 		container_of(work, struct intel_guc, log.runtime.flush_work);
347 
348 	guc_log_capture_logs(guc);
349 }
350 
guc_log_has_runtime(struct intel_guc * guc)351 static bool guc_log_has_runtime(struct intel_guc *guc)
352 {
353 	return guc->log.runtime.buf_addr != NULL;
354 }
355 
guc_log_runtime_create(struct intel_guc * guc)356 static int guc_log_runtime_create(struct intel_guc *guc)
357 {
358 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
359 	void *vaddr;
360 	struct rchan *guc_log_relay_chan;
361 	size_t n_subbufs, subbuf_size;
362 	int ret;
363 
364 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
365 
366 	GEM_BUG_ON(guc_log_has_runtime(guc));
367 
368 	ret = i915_gem_object_set_to_wc_domain(guc->log.vma->obj, true);
369 	if (ret)
370 		return ret;
371 
372 	/* Create a WC (Uncached for read) vmalloc mapping of log
373 	 * buffer pages, so that we can directly get the data
374 	 * (up-to-date) from memory.
375 	 */
376 	vaddr = i915_gem_object_pin_map(guc->log.vma->obj, I915_MAP_WC);
377 	if (IS_ERR(vaddr)) {
378 		DRM_ERROR("Couldn't map log buffer pages %d\n", ret);
379 		return PTR_ERR(vaddr);
380 	}
381 
382 	guc->log.runtime.buf_addr = vaddr;
383 
384 	 /* Keep the size of sub buffers same as shared log buffer */
385 	subbuf_size = guc->log.vma->obj->base.size;
386 
387 	/* Store up to 8 snapshots, which is large enough to buffer sufficient
388 	 * boot time logs and provides enough leeway to User, in terms of
389 	 * latency, for consuming the logs from relay. Also doesn't take
390 	 * up too much memory.
391 	 */
392 	n_subbufs = 8;
393 
394 	/* Create a relay channel, so that we have buffers for storing
395 	 * the GuC firmware logs, the channel will be linked with a file
396 	 * later on when debugfs is registered.
397 	 */
398 	guc_log_relay_chan = relay_open(NULL, NULL, subbuf_size,
399 					n_subbufs, &relay_callbacks, dev_priv);
400 	if (!guc_log_relay_chan) {
401 		DRM_ERROR("Couldn't create relay chan for GuC logging\n");
402 
403 		ret = -ENOMEM;
404 		goto err_vaddr;
405 	}
406 
407 	GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size);
408 	guc->log.runtime.relay_chan = guc_log_relay_chan;
409 
410 	INIT_WORK(&guc->log.runtime.flush_work, capture_logs_work);
411 
412 	/*
413 	 * GuC log buffer flush work item has to do register access to
414 	 * send the ack to GuC and this work item, if not synced before
415 	 * suspend, can potentially get executed after the GFX device is
416 	 * suspended.
417 	 * By marking the WQ as freezable, we don't have to bother about
418 	 * flushing of this work item from the suspend hooks, the pending
419 	 * work item if any will be either executed before the suspend
420 	 * or scheduled later on resume. This way the handling of work
421 	 * item can be kept same between system suspend & rpm suspend.
422 	 */
423 	guc->log.runtime.flush_wq = alloc_ordered_workqueue("i915-guc_log",
424 						WQ_HIGHPRI | WQ_FREEZABLE);
425 	if (!guc->log.runtime.flush_wq) {
426 		DRM_ERROR("Couldn't allocate the wq for GuC logging\n");
427 		ret = -ENOMEM;
428 		goto err_relaychan;
429 	}
430 
431 	return 0;
432 
433 err_relaychan:
434 	relay_close(guc->log.runtime.relay_chan);
435 err_vaddr:
436 	i915_gem_object_unpin_map(guc->log.vma->obj);
437 	guc->log.runtime.buf_addr = NULL;
438 	return ret;
439 }
440 
guc_log_runtime_destroy(struct intel_guc * guc)441 static void guc_log_runtime_destroy(struct intel_guc *guc)
442 {
443 	/*
444 	 * It's possible that the runtime stuff was never allocated because
445 	 * guc_log_level was < 0 at the time
446 	 **/
447 	if (!guc_log_has_runtime(guc))
448 		return;
449 
450 	destroy_workqueue(guc->log.runtime.flush_wq);
451 	relay_close(guc->log.runtime.relay_chan);
452 	i915_gem_object_unpin_map(guc->log.vma->obj);
453 	guc->log.runtime.buf_addr = NULL;
454 }
455 
guc_log_late_setup(struct intel_guc * guc)456 static int guc_log_late_setup(struct intel_guc *guc)
457 {
458 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
459 	int ret;
460 
461 	lockdep_assert_held(&dev_priv->drm.struct_mutex);
462 
463 	if (!guc_log_has_runtime(guc)) {
464 		/* If log_level was set as -1 at boot time, then setup needed to
465 		 * handle log buffer flush interrupts would not have been done yet,
466 		 * so do that now.
467 		 */
468 		ret = guc_log_runtime_create(guc);
469 		if (ret)
470 			goto err;
471 	}
472 
473 	ret = guc_log_relay_file_create(guc);
474 	if (ret)
475 		goto err_runtime;
476 
477 	return 0;
478 
479 err_runtime:
480 	guc_log_runtime_destroy(guc);
481 err:
482 	/* logging will remain off */
483 	i915.guc_log_level = -1;
484 	return ret;
485 }
486 
guc_log_capture_logs(struct intel_guc * guc)487 static void guc_log_capture_logs(struct intel_guc *guc)
488 {
489 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
490 
491 	guc_read_update_log_buffer(guc);
492 
493 	/* Generally device is expected to be active only at this
494 	 * time, so get/put should be really quick.
495 	 */
496 	intel_runtime_pm_get(dev_priv);
497 	guc_log_flush_complete(guc);
498 	intel_runtime_pm_put(dev_priv);
499 }
500 
guc_flush_logs(struct intel_guc * guc)501 static void guc_flush_logs(struct intel_guc *guc)
502 {
503 	struct drm_i915_private *dev_priv = guc_to_i915(guc);
504 
505 	if (!i915.enable_guc_submission || (i915.guc_log_level < 0))
506 		return;
507 
508 	/* First disable the interrupts, will be renabled afterwards */
509 	gen9_disable_guc_interrupts(dev_priv);
510 
511 	/* Before initiating the forceful flush, wait for any pending/ongoing
512 	 * flush to complete otherwise forceful flush may not actually happen.
513 	 */
514 	flush_work(&guc->log.runtime.flush_work);
515 
516 	/* Ask GuC to update the log buffer state */
517 	guc_log_flush(guc);
518 
519 	/* GuC would have updated log buffer by now, so capture it */
520 	guc_log_capture_logs(guc);
521 }
522 
intel_guc_log_create(struct intel_guc * guc)523 int intel_guc_log_create(struct intel_guc *guc)
524 {
525 	struct i915_vma *vma;
526 	unsigned long offset;
527 	uint32_t size, flags;
528 	int ret;
529 
530 	GEM_BUG_ON(guc->log.vma);
531 
532 	if (i915.guc_log_level > GUC_LOG_VERBOSITY_MAX)
533 		i915.guc_log_level = GUC_LOG_VERBOSITY_MAX;
534 
535 	/* The first page is to save log buffer state. Allocate one
536 	 * extra page for others in case for overlap */
537 	size = (1 + GUC_LOG_DPC_PAGES + 1 +
538 		GUC_LOG_ISR_PAGES + 1 +
539 		GUC_LOG_CRASH_PAGES + 1) << PAGE_SHIFT;
540 
541 	/* We require SSE 4.1 for fast reads from the GuC log buffer and
542 	 * it should be present on the chipsets supporting GuC based
543 	 * submisssions.
544 	 */
545 	if (WARN_ON(!i915_has_memcpy_from_wc())) {
546 		ret = -EINVAL;
547 		goto err;
548 	}
549 
550 	vma = intel_guc_allocate_vma(guc, size);
551 	if (IS_ERR(vma)) {
552 		ret = PTR_ERR(vma);
553 		goto err;
554 	}
555 
556 	guc->log.vma = vma;
557 
558 	if (i915.guc_log_level >= 0) {
559 		ret = guc_log_runtime_create(guc);
560 		if (ret < 0)
561 			goto err_vma;
562 	}
563 
564 	/* each allocated unit is a page */
565 	flags = GUC_LOG_VALID | GUC_LOG_NOTIFY_ON_HALF_FULL |
566 		(GUC_LOG_DPC_PAGES << GUC_LOG_DPC_SHIFT) |
567 		(GUC_LOG_ISR_PAGES << GUC_LOG_ISR_SHIFT) |
568 		(GUC_LOG_CRASH_PAGES << GUC_LOG_CRASH_SHIFT);
569 
570 	offset = guc_ggtt_offset(vma) >> PAGE_SHIFT; /* in pages */
571 	guc->log.flags = (offset << GUC_LOG_BUF_ADDR_SHIFT) | flags;
572 
573 	return 0;
574 
575 err_vma:
576 	i915_vma_unpin_and_release(&guc->log.vma);
577 err:
578 	/* logging will be off */
579 	i915.guc_log_level = -1;
580 	return ret;
581 }
582 
intel_guc_log_destroy(struct intel_guc * guc)583 void intel_guc_log_destroy(struct intel_guc *guc)
584 {
585 	guc_log_runtime_destroy(guc);
586 	i915_vma_unpin_and_release(&guc->log.vma);
587 }
588 
i915_guc_log_control(struct drm_i915_private * dev_priv,u64 control_val)589 int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val)
590 {
591 	struct intel_guc *guc = &dev_priv->guc;
592 
593 	union guc_log_control log_param;
594 	int ret;
595 
596 	log_param.value = control_val;
597 
598 	if (log_param.verbosity < GUC_LOG_VERBOSITY_MIN ||
599 	    log_param.verbosity > GUC_LOG_VERBOSITY_MAX)
600 		return -EINVAL;
601 
602 	/* This combination doesn't make sense & won't have any effect */
603 	if (!log_param.logging_enabled && (i915.guc_log_level < 0))
604 		return 0;
605 
606 	ret = guc_log_control(guc, log_param.value);
607 	if (ret < 0) {
608 		DRM_DEBUG_DRIVER("guc_logging_control action failed %d\n", ret);
609 		return ret;
610 	}
611 
612 	if (log_param.logging_enabled) {
613 		i915.guc_log_level = log_param.verbosity;
614 
615 		/* If log_level was set as -1 at boot time, then the relay channel file
616 		 * wouldn't have been created by now and interrupts also would not have
617 		 * been enabled. Try again now, just in case.
618 		 */
619 		ret = guc_log_late_setup(guc);
620 		if (ret < 0) {
621 			DRM_DEBUG_DRIVER("GuC log late setup failed %d\n", ret);
622 			return ret;
623 		}
624 
625 		/* GuC logging is currently the only user of Guc2Host interrupts */
626 		gen9_enable_guc_interrupts(dev_priv);
627 	} else {
628 		/* Once logging is disabled, GuC won't generate logs & send an
629 		 * interrupt. But there could be some data in the log buffer
630 		 * which is yet to be captured. So request GuC to update the log
631 		 * buffer state and then collect the left over logs.
632 		 */
633 		guc_flush_logs(guc);
634 
635 		/* As logging is disabled, update log level to reflect that */
636 		i915.guc_log_level = -1;
637 	}
638 
639 	return ret;
640 }
641 
i915_guc_log_register(struct drm_i915_private * dev_priv)642 void i915_guc_log_register(struct drm_i915_private *dev_priv)
643 {
644 	if (!i915.enable_guc_submission || i915.guc_log_level < 0)
645 		return;
646 
647 	mutex_lock(&dev_priv->drm.struct_mutex);
648 	guc_log_late_setup(&dev_priv->guc);
649 	mutex_unlock(&dev_priv->drm.struct_mutex);
650 }
651 
i915_guc_log_unregister(struct drm_i915_private * dev_priv)652 void i915_guc_log_unregister(struct drm_i915_private *dev_priv)
653 {
654 	if (!i915.enable_guc_submission)
655 		return;
656 
657 	mutex_lock(&dev_priv->drm.struct_mutex);
658 	/* GuC logging is currently the only user of Guc2Host interrupts */
659 	gen9_disable_guc_interrupts(dev_priv);
660 	guc_log_runtime_destroy(&dev_priv->guc);
661 	mutex_unlock(&dev_priv->drm.struct_mutex);
662 }
663