• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 
54 #include "internal.h"
55 
56 #include <asm/irq_regs.h>
57 
58 typedef int (*remote_function_f)(void *);
59 
60 struct remote_function_call {
61 	struct task_struct	*p;
62 	remote_function_f	func;
63 	void			*info;
64 	int			ret;
65 };
66 
remote_function(void * data)67 static void remote_function(void *data)
68 {
69 	struct remote_function_call *tfc = data;
70 	struct task_struct *p = tfc->p;
71 
72 	if (p) {
73 		/* -EAGAIN */
74 		if (task_cpu(p) != smp_processor_id())
75 			return;
76 
77 		/*
78 		 * Now that we're on right CPU with IRQs disabled, we can test
79 		 * if we hit the right task without races.
80 		 */
81 
82 		tfc->ret = -ESRCH; /* No such (running) process */
83 		if (p != current)
84 			return;
85 	}
86 
87 	tfc->ret = tfc->func(tfc->info);
88 }
89 
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:		the task to evaluate
93  * @func:	the function to be called
94  * @info:	the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *	    -ESRCH  - when the process isn't running
101  *	    -EAGAIN - when the process moved away
102  */
103 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 	struct remote_function_call data = {
107 		.p	= p,
108 		.func	= func,
109 		.info	= info,
110 		.ret	= -EAGAIN,
111 	};
112 	int ret;
113 
114 	do {
115 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 		if (!ret)
117 			ret = data.ret;
118 	} while (ret == -EAGAIN);
119 
120 	return ret;
121 }
122 
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:	the function to be called
126  * @info:	the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
cpu_function_call(int cpu,remote_function_f func,void * info)132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 	struct remote_function_call data = {
135 		.p	= NULL,
136 		.func	= func,
137 		.info	= info,
138 		.ret	= -ENXIO, /* No such CPU */
139 	};
140 
141 	smp_call_function_single(cpu, remote_function, &data, 1);
142 
143 	return data.ret;
144 }
145 
146 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 			  struct perf_event_context *ctx)
154 {
155 	raw_spin_lock(&cpuctx->ctx.lock);
156 	if (ctx)
157 		raw_spin_lock(&ctx->lock);
158 }
159 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 			    struct perf_event_context *ctx)
162 {
163 	if (ctx)
164 		raw_spin_unlock(&ctx->lock);
165 	raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167 
168 #define TASK_TOMBSTONE ((void *)-1L)
169 
is_kernel_event(struct perf_event * event)170 static bool is_kernel_event(struct perf_event *event)
171 {
172 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174 
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193 
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 			struct perf_event_context *, void *);
196 
197 struct event_function_struct {
198 	struct perf_event *event;
199 	event_f func;
200 	void *data;
201 };
202 
event_function(void * info)203 static int event_function(void *info)
204 {
205 	struct event_function_struct *efs = info;
206 	struct perf_event *event = efs->event;
207 	struct perf_event_context *ctx = event->ctx;
208 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 	int ret = 0;
211 
212 	WARN_ON_ONCE(!irqs_disabled());
213 
214 	perf_ctx_lock(cpuctx, task_ctx);
215 	/*
216 	 * Since we do the IPI call without holding ctx->lock things can have
217 	 * changed, double check we hit the task we set out to hit.
218 	 */
219 	if (ctx->task) {
220 		if (ctx->task != current) {
221 			ret = -ESRCH;
222 			goto unlock;
223 		}
224 
225 		/*
226 		 * We only use event_function_call() on established contexts,
227 		 * and event_function() is only ever called when active (or
228 		 * rather, we'll have bailed in task_function_call() or the
229 		 * above ctx->task != current test), therefore we must have
230 		 * ctx->is_active here.
231 		 */
232 		WARN_ON_ONCE(!ctx->is_active);
233 		/*
234 		 * And since we have ctx->is_active, cpuctx->task_ctx must
235 		 * match.
236 		 */
237 		WARN_ON_ONCE(task_ctx != ctx);
238 	} else {
239 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 	}
241 
242 	efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 	perf_ctx_unlock(cpuctx, task_ctx);
245 
246 	return ret;
247 }
248 
event_function_call(struct perf_event * event,event_f func,void * data)249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 	struct perf_event_context *ctx = event->ctx;
252 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 	struct event_function_struct efs = {
254 		.event = event,
255 		.func = func,
256 		.data = data,
257 	};
258 
259 	if (!event->parent) {
260 		/*
261 		 * If this is a !child event, we must hold ctx::mutex to
262 		 * stabilize the the event->ctx relation. See
263 		 * perf_event_ctx_lock().
264 		 */
265 		lockdep_assert_held(&ctx->mutex);
266 	}
267 
268 	if (!task) {
269 		cpu_function_call(event->cpu, event_function, &efs);
270 		return;
271 	}
272 
273 	if (task == TASK_TOMBSTONE)
274 		return;
275 
276 again:
277 	if (!task_function_call(task, event_function, &efs))
278 		return;
279 
280 	raw_spin_lock_irq(&ctx->lock);
281 	/*
282 	 * Reload the task pointer, it might have been changed by
283 	 * a concurrent perf_event_context_sched_out().
284 	 */
285 	task = ctx->task;
286 	if (task == TASK_TOMBSTONE) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		return;
289 	}
290 	if (ctx->is_active) {
291 		raw_spin_unlock_irq(&ctx->lock);
292 		goto again;
293 	}
294 	func(event, NULL, ctx, data);
295 	raw_spin_unlock_irq(&ctx->lock);
296 }
297 
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
event_function_local(struct perf_event * event,event_f func,void * data)302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 	struct perf_event_context *ctx = event->ctx;
305 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 	struct task_struct *task = READ_ONCE(ctx->task);
307 	struct perf_event_context *task_ctx = NULL;
308 
309 	WARN_ON_ONCE(!irqs_disabled());
310 
311 	if (task) {
312 		if (task == TASK_TOMBSTONE)
313 			return;
314 
315 		task_ctx = ctx;
316 	}
317 
318 	perf_ctx_lock(cpuctx, task_ctx);
319 
320 	task = ctx->task;
321 	if (task == TASK_TOMBSTONE)
322 		goto unlock;
323 
324 	if (task) {
325 		/*
326 		 * We must be either inactive or active and the right task,
327 		 * otherwise we're screwed, since we cannot IPI to somewhere
328 		 * else.
329 		 */
330 		if (ctx->is_active) {
331 			if (WARN_ON_ONCE(task != current))
332 				goto unlock;
333 
334 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 				goto unlock;
336 		}
337 	} else {
338 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 	}
340 
341 	func(event, cpuctx, ctx, data);
342 unlock:
343 	perf_ctx_unlock(cpuctx, task_ctx);
344 }
345 
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 		       PERF_FLAG_FD_OUTPUT  |\
348 		       PERF_FLAG_PID_CGROUP |\
349 		       PERF_FLAG_FD_CLOEXEC)
350 
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 	(PERF_SAMPLE_BRANCH_KERNEL |\
356 	 PERF_SAMPLE_BRANCH_HV)
357 
358 enum event_type_t {
359 	EVENT_FLEXIBLE = 0x1,
360 	EVENT_PINNED = 0x2,
361 	EVENT_TIME = 0x4,
362 	/* see ctx_resched() for details */
363 	EVENT_CPU = 0x8,
364 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366 
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371 
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377 
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388 
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393 
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  *   3 - disallow all unpriv perf event use
401  */
402 #ifdef CONFIG_SECURITY_PERF_EVENTS_RESTRICT
403 int sysctl_perf_event_paranoid __read_mostly = 3;
404 #else
405 int sysctl_perf_event_paranoid __read_mostly = 2;
406 #endif
407 
408 /* Minimum for 512 kiB + 1 user control page */
409 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
410 
411 /*
412  * max perf event sample rate
413  */
414 #define DEFAULT_MAX_SAMPLE_RATE		100000
415 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
416 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
417 
418 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
419 
420 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
421 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
422 
423 static int perf_sample_allowed_ns __read_mostly =
424 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
425 
update_perf_cpu_limits(void)426 static void update_perf_cpu_limits(void)
427 {
428 	u64 tmp = perf_sample_period_ns;
429 
430 	tmp *= sysctl_perf_cpu_time_max_percent;
431 	tmp = div_u64(tmp, 100);
432 	if (!tmp)
433 		tmp = 1;
434 
435 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
436 }
437 
438 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
439 
perf_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)440 int perf_proc_update_handler(struct ctl_table *table, int write,
441 		void __user *buffer, size_t *lenp,
442 		loff_t *ppos)
443 {
444 	int ret;
445 	int perf_cpu = sysctl_perf_cpu_time_max_percent;
446 	/*
447 	 * If throttling is disabled don't allow the write:
448 	 */
449 	if (write && (perf_cpu == 100 || perf_cpu == 0))
450 		return -EINVAL;
451 
452 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
453 	if (ret || !write)
454 		return ret;
455 
456 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
457 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
458 	update_perf_cpu_limits();
459 
460 	return 0;
461 }
462 
463 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
464 
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)465 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
466 				void __user *buffer, size_t *lenp,
467 				loff_t *ppos)
468 {
469 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
470 
471 	if (ret || !write)
472 		return ret;
473 
474 	if (sysctl_perf_cpu_time_max_percent == 100 ||
475 	    sysctl_perf_cpu_time_max_percent == 0) {
476 		printk(KERN_WARNING
477 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
478 		WRITE_ONCE(perf_sample_allowed_ns, 0);
479 	} else {
480 		update_perf_cpu_limits();
481 	}
482 
483 	return 0;
484 }
485 
486 /*
487  * perf samples are done in some very critical code paths (NMIs).
488  * If they take too much CPU time, the system can lock up and not
489  * get any real work done.  This will drop the sample rate when
490  * we detect that events are taking too long.
491  */
492 #define NR_ACCUMULATED_SAMPLES 128
493 static DEFINE_PER_CPU(u64, running_sample_length);
494 
495 static u64 __report_avg;
496 static u64 __report_allowed;
497 
perf_duration_warn(struct irq_work * w)498 static void perf_duration_warn(struct irq_work *w)
499 {
500 	printk_ratelimited(KERN_INFO
501 		"perf: interrupt took too long (%lld > %lld), lowering "
502 		"kernel.perf_event_max_sample_rate to %d\n",
503 		__report_avg, __report_allowed,
504 		sysctl_perf_event_sample_rate);
505 }
506 
507 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
508 
perf_sample_event_took(u64 sample_len_ns)509 void perf_sample_event_took(u64 sample_len_ns)
510 {
511 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
512 	u64 running_len;
513 	u64 avg_len;
514 	u32 max;
515 
516 	if (max_len == 0)
517 		return;
518 
519 	/* Decay the counter by 1 average sample. */
520 	running_len = __this_cpu_read(running_sample_length);
521 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
522 	running_len += sample_len_ns;
523 	__this_cpu_write(running_sample_length, running_len);
524 
525 	/*
526 	 * Note: this will be biased artifically low until we have
527 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
528 	 * from having to maintain a count.
529 	 */
530 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
531 	if (avg_len <= max_len)
532 		return;
533 
534 	__report_avg = avg_len;
535 	__report_allowed = max_len;
536 
537 	/*
538 	 * Compute a throttle threshold 25% below the current duration.
539 	 */
540 	avg_len += avg_len / 4;
541 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
542 	if (avg_len < max)
543 		max /= (u32)avg_len;
544 	else
545 		max = 1;
546 
547 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
548 	WRITE_ONCE(max_samples_per_tick, max);
549 
550 	sysctl_perf_event_sample_rate = max * HZ;
551 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
552 
553 	if (!irq_work_queue(&perf_duration_work)) {
554 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
555 			     "kernel.perf_event_max_sample_rate to %d\n",
556 			     __report_avg, __report_allowed,
557 			     sysctl_perf_event_sample_rate);
558 	}
559 }
560 
561 static atomic64_t perf_event_id;
562 
563 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
564 			      enum event_type_t event_type);
565 
566 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
567 			     enum event_type_t event_type,
568 			     struct task_struct *task);
569 
570 static void update_context_time(struct perf_event_context *ctx);
571 static u64 perf_event_time(struct perf_event *event);
572 
perf_event_print_debug(void)573 void __weak perf_event_print_debug(void)	{ }
574 
perf_pmu_name(void)575 extern __weak const char *perf_pmu_name(void)
576 {
577 	return "pmu";
578 }
579 
perf_clock(void)580 static inline u64 perf_clock(void)
581 {
582 	return local_clock();
583 }
584 
perf_event_clock(struct perf_event * event)585 static inline u64 perf_event_clock(struct perf_event *event)
586 {
587 	return event->clock();
588 }
589 
590 #ifdef CONFIG_CGROUP_PERF
591 
592 static inline bool
perf_cgroup_match(struct perf_event * event)593 perf_cgroup_match(struct perf_event *event)
594 {
595 	struct perf_event_context *ctx = event->ctx;
596 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
597 
598 	/* @event doesn't care about cgroup */
599 	if (!event->cgrp)
600 		return true;
601 
602 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
603 	if (!cpuctx->cgrp)
604 		return false;
605 
606 	/*
607 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
608 	 * also enabled for all its descendant cgroups.  If @cpuctx's
609 	 * cgroup is a descendant of @event's (the test covers identity
610 	 * case), it's a match.
611 	 */
612 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
613 				    event->cgrp->css.cgroup);
614 }
615 
perf_detach_cgroup(struct perf_event * event)616 static inline void perf_detach_cgroup(struct perf_event *event)
617 {
618 	css_put(&event->cgrp->css);
619 	event->cgrp = NULL;
620 }
621 
is_cgroup_event(struct perf_event * event)622 static inline int is_cgroup_event(struct perf_event *event)
623 {
624 	return event->cgrp != NULL;
625 }
626 
perf_cgroup_event_time(struct perf_event * event)627 static inline u64 perf_cgroup_event_time(struct perf_event *event)
628 {
629 	struct perf_cgroup_info *t;
630 
631 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
632 	return t->time;
633 }
634 
__update_cgrp_time(struct perf_cgroup * cgrp)635 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
636 {
637 	struct perf_cgroup_info *info;
638 	u64 now;
639 
640 	now = perf_clock();
641 
642 	info = this_cpu_ptr(cgrp->info);
643 
644 	info->time += now - info->timestamp;
645 	info->timestamp = now;
646 }
647 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)648 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
649 {
650 	struct perf_cgroup *cgrp = cpuctx->cgrp;
651 	struct cgroup_subsys_state *css;
652 
653 	if (cgrp) {
654 		for (css = &cgrp->css; css; css = css->parent) {
655 			cgrp = container_of(css, struct perf_cgroup, css);
656 			__update_cgrp_time(cgrp);
657 		}
658 	}
659 }
660 
update_cgrp_time_from_event(struct perf_event * event)661 static inline void update_cgrp_time_from_event(struct perf_event *event)
662 {
663 	struct perf_cgroup *cgrp;
664 
665 	/*
666 	 * ensure we access cgroup data only when needed and
667 	 * when we know the cgroup is pinned (css_get)
668 	 */
669 	if (!is_cgroup_event(event))
670 		return;
671 
672 	cgrp = perf_cgroup_from_task(current, event->ctx);
673 	/*
674 	 * Do not update time when cgroup is not active
675 	 */
676        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
677 		__update_cgrp_time(event->cgrp);
678 }
679 
680 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)681 perf_cgroup_set_timestamp(struct task_struct *task,
682 			  struct perf_event_context *ctx)
683 {
684 	struct perf_cgroup *cgrp;
685 	struct perf_cgroup_info *info;
686 	struct cgroup_subsys_state *css;
687 
688 	/*
689 	 * ctx->lock held by caller
690 	 * ensure we do not access cgroup data
691 	 * unless we have the cgroup pinned (css_get)
692 	 */
693 	if (!task || !ctx->nr_cgroups)
694 		return;
695 
696 	cgrp = perf_cgroup_from_task(task, ctx);
697 
698 	for (css = &cgrp->css; css; css = css->parent) {
699 		cgrp = container_of(css, struct perf_cgroup, css);
700 		info = this_cpu_ptr(cgrp->info);
701 		info->timestamp = ctx->timestamp;
702 	}
703 }
704 
705 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
706 
707 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
708 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
709 
710 /*
711  * reschedule events based on the cgroup constraint of task.
712  *
713  * mode SWOUT : schedule out everything
714  * mode SWIN : schedule in based on cgroup for next
715  */
perf_cgroup_switch(struct task_struct * task,int mode)716 static void perf_cgroup_switch(struct task_struct *task, int mode)
717 {
718 	struct perf_cpu_context *cpuctx;
719 	struct list_head *list;
720 	unsigned long flags;
721 
722 	/*
723 	 * Disable interrupts and preemption to avoid this CPU's
724 	 * cgrp_cpuctx_entry to change under us.
725 	 */
726 	local_irq_save(flags);
727 
728 	list = this_cpu_ptr(&cgrp_cpuctx_list);
729 	list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
730 		WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
731 
732 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
733 		perf_pmu_disable(cpuctx->ctx.pmu);
734 
735 		if (mode & PERF_CGROUP_SWOUT) {
736 			cpu_ctx_sched_out(cpuctx, EVENT_ALL);
737 			/*
738 			 * must not be done before ctxswout due
739 			 * to event_filter_match() in event_sched_out()
740 			 */
741 			cpuctx->cgrp = NULL;
742 		}
743 
744 		if (mode & PERF_CGROUP_SWIN) {
745 			WARN_ON_ONCE(cpuctx->cgrp);
746 			/*
747 			 * set cgrp before ctxsw in to allow
748 			 * event_filter_match() to not have to pass
749 			 * task around
750 			 * we pass the cpuctx->ctx to perf_cgroup_from_task()
751 			 * because cgorup events are only per-cpu
752 			 */
753 			cpuctx->cgrp = perf_cgroup_from_task(task,
754 							     &cpuctx->ctx);
755 			cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
756 		}
757 		perf_pmu_enable(cpuctx->ctx.pmu);
758 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
759 	}
760 
761 	local_irq_restore(flags);
762 }
763 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)764 static inline void perf_cgroup_sched_out(struct task_struct *task,
765 					 struct task_struct *next)
766 {
767 	struct perf_cgroup *cgrp1;
768 	struct perf_cgroup *cgrp2 = NULL;
769 
770 	rcu_read_lock();
771 	/*
772 	 * we come here when we know perf_cgroup_events > 0
773 	 * we do not need to pass the ctx here because we know
774 	 * we are holding the rcu lock
775 	 */
776 	cgrp1 = perf_cgroup_from_task(task, NULL);
777 	cgrp2 = perf_cgroup_from_task(next, NULL);
778 
779 	/*
780 	 * only schedule out current cgroup events if we know
781 	 * that we are switching to a different cgroup. Otherwise,
782 	 * do no touch the cgroup events.
783 	 */
784 	if (cgrp1 != cgrp2)
785 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
786 
787 	rcu_read_unlock();
788 }
789 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)790 static inline void perf_cgroup_sched_in(struct task_struct *prev,
791 					struct task_struct *task)
792 {
793 	struct perf_cgroup *cgrp1;
794 	struct perf_cgroup *cgrp2 = NULL;
795 
796 	rcu_read_lock();
797 	/*
798 	 * we come here when we know perf_cgroup_events > 0
799 	 * we do not need to pass the ctx here because we know
800 	 * we are holding the rcu lock
801 	 */
802 	cgrp1 = perf_cgroup_from_task(task, NULL);
803 	cgrp2 = perf_cgroup_from_task(prev, NULL);
804 
805 	/*
806 	 * only need to schedule in cgroup events if we are changing
807 	 * cgroup during ctxsw. Cgroup events were not scheduled
808 	 * out of ctxsw out if that was not the case.
809 	 */
810 	if (cgrp1 != cgrp2)
811 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
812 
813 	rcu_read_unlock();
814 }
815 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)816 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
817 				      struct perf_event_attr *attr,
818 				      struct perf_event *group_leader)
819 {
820 	struct perf_cgroup *cgrp;
821 	struct cgroup_subsys_state *css;
822 	struct fd f = fdget(fd);
823 	int ret = 0;
824 
825 	if (!f.file)
826 		return -EBADF;
827 
828 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
829 					 &perf_event_cgrp_subsys);
830 	if (IS_ERR(css)) {
831 		ret = PTR_ERR(css);
832 		goto out;
833 	}
834 
835 	cgrp = container_of(css, struct perf_cgroup, css);
836 	event->cgrp = cgrp;
837 
838 	/*
839 	 * all events in a group must monitor
840 	 * the same cgroup because a task belongs
841 	 * to only one perf cgroup at a time
842 	 */
843 	if (group_leader && group_leader->cgrp != cgrp) {
844 		perf_detach_cgroup(event);
845 		ret = -EINVAL;
846 	}
847 out:
848 	fdput(f);
849 	return ret;
850 }
851 
852 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)853 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
854 {
855 	struct perf_cgroup_info *t;
856 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
857 	event->shadow_ctx_time = now - t->timestamp;
858 }
859 
860 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)861 perf_cgroup_defer_enabled(struct perf_event *event)
862 {
863 	/*
864 	 * when the current task's perf cgroup does not match
865 	 * the event's, we need to remember to call the
866 	 * perf_mark_enable() function the first time a task with
867 	 * a matching perf cgroup is scheduled in.
868 	 */
869 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
870 		event->cgrp_defer_enabled = 1;
871 }
872 
873 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)874 perf_cgroup_mark_enabled(struct perf_event *event,
875 			 struct perf_event_context *ctx)
876 {
877 	struct perf_event *sub;
878 	u64 tstamp = perf_event_time(event);
879 
880 	if (!event->cgrp_defer_enabled)
881 		return;
882 
883 	event->cgrp_defer_enabled = 0;
884 
885 	event->tstamp_enabled = tstamp - event->total_time_enabled;
886 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
887 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
888 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
889 			sub->cgrp_defer_enabled = 0;
890 		}
891 	}
892 }
893 
894 /*
895  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
896  * cleared when last cgroup event is removed.
897  */
898 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)899 list_update_cgroup_event(struct perf_event *event,
900 			 struct perf_event_context *ctx, bool add)
901 {
902 	struct perf_cpu_context *cpuctx;
903 	struct list_head *cpuctx_entry;
904 
905 	if (!is_cgroup_event(event))
906 		return;
907 
908 	/*
909 	 * Because cgroup events are always per-cpu events,
910 	 * this will always be called from the right CPU.
911 	 */
912 	cpuctx = __get_cpu_context(ctx);
913 
914 	/*
915 	 * Since setting cpuctx->cgrp is conditional on the current @cgrp
916 	 * matching the event's cgroup, we must do this for every new event,
917 	 * because if the first would mismatch, the second would not try again
918 	 * and we would leave cpuctx->cgrp unset.
919 	 */
920 	if (add && !cpuctx->cgrp) {
921 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
922 
923 		if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
924 			cpuctx->cgrp = cgrp;
925 	}
926 
927 	if (add && ctx->nr_cgroups++)
928 		return;
929 	else if (!add && --ctx->nr_cgroups)
930 		return;
931 
932 	/* no cgroup running */
933 	if (!add)
934 		cpuctx->cgrp = NULL;
935 
936 	cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
937 	if (add)
938 		list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
939 	else
940 		list_del(cpuctx_entry);
941 }
942 
943 #else /* !CONFIG_CGROUP_PERF */
944 
945 static inline bool
perf_cgroup_match(struct perf_event * event)946 perf_cgroup_match(struct perf_event *event)
947 {
948 	return true;
949 }
950 
perf_detach_cgroup(struct perf_event * event)951 static inline void perf_detach_cgroup(struct perf_event *event)
952 {}
953 
is_cgroup_event(struct perf_event * event)954 static inline int is_cgroup_event(struct perf_event *event)
955 {
956 	return 0;
957 }
958 
update_cgrp_time_from_event(struct perf_event * event)959 static inline void update_cgrp_time_from_event(struct perf_event *event)
960 {
961 }
962 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)963 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
964 {
965 }
966 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)967 static inline void perf_cgroup_sched_out(struct task_struct *task,
968 					 struct task_struct *next)
969 {
970 }
971 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)972 static inline void perf_cgroup_sched_in(struct task_struct *prev,
973 					struct task_struct *task)
974 {
975 }
976 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)977 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
978 				      struct perf_event_attr *attr,
979 				      struct perf_event *group_leader)
980 {
981 	return -EINVAL;
982 }
983 
984 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)985 perf_cgroup_set_timestamp(struct task_struct *task,
986 			  struct perf_event_context *ctx)
987 {
988 }
989 
990 void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)991 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
992 {
993 }
994 
995 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)996 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
997 {
998 }
999 
perf_cgroup_event_time(struct perf_event * event)1000 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1001 {
1002 	return 0;
1003 }
1004 
1005 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)1006 perf_cgroup_defer_enabled(struct perf_event *event)
1007 {
1008 }
1009 
1010 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)1011 perf_cgroup_mark_enabled(struct perf_event *event,
1012 			 struct perf_event_context *ctx)
1013 {
1014 }
1015 
1016 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)1017 list_update_cgroup_event(struct perf_event *event,
1018 			 struct perf_event_context *ctx, bool add)
1019 {
1020 }
1021 
1022 #endif
1023 
1024 /*
1025  * set default to be dependent on timer tick just
1026  * like original code
1027  */
1028 #define PERF_CPU_HRTIMER (1000 / HZ)
1029 /*
1030  * function must be called with interrupts disabled
1031  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1032 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1033 {
1034 	struct perf_cpu_context *cpuctx;
1035 	int rotations = 0;
1036 
1037 	WARN_ON(!irqs_disabled());
1038 
1039 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1040 	rotations = perf_rotate_context(cpuctx);
1041 
1042 	raw_spin_lock(&cpuctx->hrtimer_lock);
1043 	if (rotations)
1044 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1045 	else
1046 		cpuctx->hrtimer_active = 0;
1047 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1048 
1049 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1050 }
1051 
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1052 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1053 {
1054 	struct hrtimer *timer = &cpuctx->hrtimer;
1055 	struct pmu *pmu = cpuctx->ctx.pmu;
1056 	u64 interval;
1057 
1058 	/* no multiplexing needed for SW PMU */
1059 	if (pmu->task_ctx_nr == perf_sw_context)
1060 		return;
1061 
1062 	/*
1063 	 * check default is sane, if not set then force to
1064 	 * default interval (1/tick)
1065 	 */
1066 	interval = pmu->hrtimer_interval_ms;
1067 	if (interval < 1)
1068 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1069 
1070 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1071 
1072 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1073 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1074 	timer->function = perf_mux_hrtimer_handler;
1075 }
1076 
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1077 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1078 {
1079 	struct hrtimer *timer = &cpuctx->hrtimer;
1080 	struct pmu *pmu = cpuctx->ctx.pmu;
1081 	unsigned long flags;
1082 
1083 	/* not for SW PMU */
1084 	if (pmu->task_ctx_nr == perf_sw_context)
1085 		return 0;
1086 
1087 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1088 	if (!cpuctx->hrtimer_active) {
1089 		cpuctx->hrtimer_active = 1;
1090 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1091 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1092 	}
1093 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1094 
1095 	return 0;
1096 }
1097 
perf_pmu_disable(struct pmu * pmu)1098 void perf_pmu_disable(struct pmu *pmu)
1099 {
1100 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1101 	if (!(*count)++)
1102 		pmu->pmu_disable(pmu);
1103 }
1104 
perf_pmu_enable(struct pmu * pmu)1105 void perf_pmu_enable(struct pmu *pmu)
1106 {
1107 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1108 	if (!--(*count))
1109 		pmu->pmu_enable(pmu);
1110 }
1111 
1112 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1113 
1114 /*
1115  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1116  * perf_event_task_tick() are fully serialized because they're strictly cpu
1117  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1118  * disabled, while perf_event_task_tick is called from IRQ context.
1119  */
perf_event_ctx_activate(struct perf_event_context * ctx)1120 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1121 {
1122 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1123 
1124 	WARN_ON(!irqs_disabled());
1125 
1126 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1127 
1128 	list_add(&ctx->active_ctx_list, head);
1129 }
1130 
perf_event_ctx_deactivate(struct perf_event_context * ctx)1131 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1132 {
1133 	WARN_ON(!irqs_disabled());
1134 
1135 	WARN_ON(list_empty(&ctx->active_ctx_list));
1136 
1137 	list_del_init(&ctx->active_ctx_list);
1138 }
1139 
get_ctx(struct perf_event_context * ctx)1140 static void get_ctx(struct perf_event_context *ctx)
1141 {
1142 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1143 }
1144 
free_ctx(struct rcu_head * head)1145 static void free_ctx(struct rcu_head *head)
1146 {
1147 	struct perf_event_context *ctx;
1148 
1149 	ctx = container_of(head, struct perf_event_context, rcu_head);
1150 	kfree(ctx->task_ctx_data);
1151 	kfree(ctx);
1152 }
1153 
put_ctx(struct perf_event_context * ctx)1154 static void put_ctx(struct perf_event_context *ctx)
1155 {
1156 	if (atomic_dec_and_test(&ctx->refcount)) {
1157 		if (ctx->parent_ctx)
1158 			put_ctx(ctx->parent_ctx);
1159 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1160 			put_task_struct(ctx->task);
1161 		call_rcu(&ctx->rcu_head, free_ctx);
1162 	}
1163 }
1164 
1165 /*
1166  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1167  * perf_pmu_migrate_context() we need some magic.
1168  *
1169  * Those places that change perf_event::ctx will hold both
1170  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1171  *
1172  * Lock ordering is by mutex address. There are two other sites where
1173  * perf_event_context::mutex nests and those are:
1174  *
1175  *  - perf_event_exit_task_context()	[ child , 0 ]
1176  *      perf_event_exit_event()
1177  *        put_event()			[ parent, 1 ]
1178  *
1179  *  - perf_event_init_context()		[ parent, 0 ]
1180  *      inherit_task_group()
1181  *        inherit_group()
1182  *          inherit_event()
1183  *            perf_event_alloc()
1184  *              perf_init_event()
1185  *                perf_try_init_event()	[ child , 1 ]
1186  *
1187  * While it appears there is an obvious deadlock here -- the parent and child
1188  * nesting levels are inverted between the two. This is in fact safe because
1189  * life-time rules separate them. That is an exiting task cannot fork, and a
1190  * spawning task cannot (yet) exit.
1191  *
1192  * But remember that that these are parent<->child context relations, and
1193  * migration does not affect children, therefore these two orderings should not
1194  * interact.
1195  *
1196  * The change in perf_event::ctx does not affect children (as claimed above)
1197  * because the sys_perf_event_open() case will install a new event and break
1198  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1199  * concerned with cpuctx and that doesn't have children.
1200  *
1201  * The places that change perf_event::ctx will issue:
1202  *
1203  *   perf_remove_from_context();
1204  *   synchronize_rcu();
1205  *   perf_install_in_context();
1206  *
1207  * to affect the change. The remove_from_context() + synchronize_rcu() should
1208  * quiesce the event, after which we can install it in the new location. This
1209  * means that only external vectors (perf_fops, prctl) can perturb the event
1210  * while in transit. Therefore all such accessors should also acquire
1211  * perf_event_context::mutex to serialize against this.
1212  *
1213  * However; because event->ctx can change while we're waiting to acquire
1214  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1215  * function.
1216  *
1217  * Lock order:
1218  *    cred_guard_mutex
1219  *	task_struct::perf_event_mutex
1220  *	  perf_event_context::mutex
1221  *	    perf_event::child_mutex;
1222  *	      perf_event_context::lock
1223  *	    perf_event::mmap_mutex
1224  *	    mmap_sem
1225  */
1226 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1227 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1228 {
1229 	struct perf_event_context *ctx;
1230 
1231 again:
1232 	rcu_read_lock();
1233 	ctx = ACCESS_ONCE(event->ctx);
1234 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1235 		rcu_read_unlock();
1236 		goto again;
1237 	}
1238 	rcu_read_unlock();
1239 
1240 	mutex_lock_nested(&ctx->mutex, nesting);
1241 	if (event->ctx != ctx) {
1242 		mutex_unlock(&ctx->mutex);
1243 		put_ctx(ctx);
1244 		goto again;
1245 	}
1246 
1247 	return ctx;
1248 }
1249 
1250 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1251 perf_event_ctx_lock(struct perf_event *event)
1252 {
1253 	return perf_event_ctx_lock_nested(event, 0);
1254 }
1255 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1256 static void perf_event_ctx_unlock(struct perf_event *event,
1257 				  struct perf_event_context *ctx)
1258 {
1259 	mutex_unlock(&ctx->mutex);
1260 	put_ctx(ctx);
1261 }
1262 
1263 /*
1264  * This must be done under the ctx->lock, such as to serialize against
1265  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1266  * calling scheduler related locks and ctx->lock nests inside those.
1267  */
1268 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1269 unclone_ctx(struct perf_event_context *ctx)
1270 {
1271 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1272 
1273 	lockdep_assert_held(&ctx->lock);
1274 
1275 	if (parent_ctx)
1276 		ctx->parent_ctx = NULL;
1277 	ctx->generation++;
1278 
1279 	return parent_ctx;
1280 }
1281 
perf_event_pid_type(struct perf_event * event,struct task_struct * p,enum pid_type type)1282 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1283 				enum pid_type type)
1284 {
1285 	u32 nr;
1286 	/*
1287 	 * only top level events have the pid namespace they were created in
1288 	 */
1289 	if (event->parent)
1290 		event = event->parent;
1291 
1292 	nr = __task_pid_nr_ns(p, type, event->ns);
1293 	/* avoid -1 if it is idle thread or runs in another ns */
1294 	if (!nr && !pid_alive(p))
1295 		nr = -1;
1296 	return nr;
1297 }
1298 
perf_event_pid(struct perf_event * event,struct task_struct * p)1299 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1300 {
1301 	return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1302 }
1303 
perf_event_tid(struct perf_event * event,struct task_struct * p)1304 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1305 {
1306 	return perf_event_pid_type(event, p, PIDTYPE_PID);
1307 }
1308 
1309 /*
1310  * If we inherit events we want to return the parent event id
1311  * to userspace.
1312  */
primary_event_id(struct perf_event * event)1313 static u64 primary_event_id(struct perf_event *event)
1314 {
1315 	u64 id = event->id;
1316 
1317 	if (event->parent)
1318 		id = event->parent->id;
1319 
1320 	return id;
1321 }
1322 
1323 /*
1324  * Get the perf_event_context for a task and lock it.
1325  *
1326  * This has to cope with with the fact that until it is locked,
1327  * the context could get moved to another task.
1328  */
1329 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1330 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1331 {
1332 	struct perf_event_context *ctx;
1333 
1334 retry:
1335 	/*
1336 	 * One of the few rules of preemptible RCU is that one cannot do
1337 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1338 	 * part of the read side critical section was irqs-enabled -- see
1339 	 * rcu_read_unlock_special().
1340 	 *
1341 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1342 	 * side critical section has interrupts disabled.
1343 	 */
1344 	local_irq_save(*flags);
1345 	rcu_read_lock();
1346 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1347 	if (ctx) {
1348 		/*
1349 		 * If this context is a clone of another, it might
1350 		 * get swapped for another underneath us by
1351 		 * perf_event_task_sched_out, though the
1352 		 * rcu_read_lock() protects us from any context
1353 		 * getting freed.  Lock the context and check if it
1354 		 * got swapped before we could get the lock, and retry
1355 		 * if so.  If we locked the right context, then it
1356 		 * can't get swapped on us any more.
1357 		 */
1358 		raw_spin_lock(&ctx->lock);
1359 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1360 			raw_spin_unlock(&ctx->lock);
1361 			rcu_read_unlock();
1362 			local_irq_restore(*flags);
1363 			goto retry;
1364 		}
1365 
1366 		if (ctx->task == TASK_TOMBSTONE ||
1367 		    !atomic_inc_not_zero(&ctx->refcount)) {
1368 			raw_spin_unlock(&ctx->lock);
1369 			ctx = NULL;
1370 		} else {
1371 			WARN_ON_ONCE(ctx->task != task);
1372 		}
1373 	}
1374 	rcu_read_unlock();
1375 	if (!ctx)
1376 		local_irq_restore(*flags);
1377 	return ctx;
1378 }
1379 
1380 /*
1381  * Get the context for a task and increment its pin_count so it
1382  * can't get swapped to another task.  This also increments its
1383  * reference count so that the context can't get freed.
1384  */
1385 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1386 perf_pin_task_context(struct task_struct *task, int ctxn)
1387 {
1388 	struct perf_event_context *ctx;
1389 	unsigned long flags;
1390 
1391 	ctx = perf_lock_task_context(task, ctxn, &flags);
1392 	if (ctx) {
1393 		++ctx->pin_count;
1394 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1395 	}
1396 	return ctx;
1397 }
1398 
perf_unpin_context(struct perf_event_context * ctx)1399 static void perf_unpin_context(struct perf_event_context *ctx)
1400 {
1401 	unsigned long flags;
1402 
1403 	raw_spin_lock_irqsave(&ctx->lock, flags);
1404 	--ctx->pin_count;
1405 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1406 }
1407 
1408 /*
1409  * Update the record of the current time in a context.
1410  */
update_context_time(struct perf_event_context * ctx)1411 static void update_context_time(struct perf_event_context *ctx)
1412 {
1413 	u64 now = perf_clock();
1414 
1415 	ctx->time += now - ctx->timestamp;
1416 	ctx->timestamp = now;
1417 }
1418 
perf_event_time(struct perf_event * event)1419 static u64 perf_event_time(struct perf_event *event)
1420 {
1421 	struct perf_event_context *ctx = event->ctx;
1422 
1423 	if (is_cgroup_event(event))
1424 		return perf_cgroup_event_time(event);
1425 
1426 	return ctx ? ctx->time : 0;
1427 }
1428 
1429 /*
1430  * Update the total_time_enabled and total_time_running fields for a event.
1431  */
update_event_times(struct perf_event * event)1432 static void update_event_times(struct perf_event *event)
1433 {
1434 	struct perf_event_context *ctx = event->ctx;
1435 	u64 run_end;
1436 
1437 	lockdep_assert_held(&ctx->lock);
1438 
1439 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1440 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1441 		return;
1442 
1443 	/*
1444 	 * in cgroup mode, time_enabled represents
1445 	 * the time the event was enabled AND active
1446 	 * tasks were in the monitored cgroup. This is
1447 	 * independent of the activity of the context as
1448 	 * there may be a mix of cgroup and non-cgroup events.
1449 	 *
1450 	 * That is why we treat cgroup events differently
1451 	 * here.
1452 	 */
1453 	if (is_cgroup_event(event))
1454 		run_end = perf_cgroup_event_time(event);
1455 	else if (ctx->is_active)
1456 		run_end = ctx->time;
1457 	else
1458 		run_end = event->tstamp_stopped;
1459 
1460 	event->total_time_enabled = run_end - event->tstamp_enabled;
1461 
1462 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1463 		run_end = event->tstamp_stopped;
1464 	else
1465 		run_end = perf_event_time(event);
1466 
1467 	event->total_time_running = run_end - event->tstamp_running;
1468 
1469 }
1470 
1471 /*
1472  * Update total_time_enabled and total_time_running for all events in a group.
1473  */
update_group_times(struct perf_event * leader)1474 static void update_group_times(struct perf_event *leader)
1475 {
1476 	struct perf_event *event;
1477 
1478 	update_event_times(leader);
1479 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1480 		update_event_times(event);
1481 }
1482 
get_event_type(struct perf_event * event)1483 static enum event_type_t get_event_type(struct perf_event *event)
1484 {
1485 	struct perf_event_context *ctx = event->ctx;
1486 	enum event_type_t event_type;
1487 
1488 	lockdep_assert_held(&ctx->lock);
1489 
1490 	/*
1491 	 * It's 'group type', really, because if our group leader is
1492 	 * pinned, so are we.
1493 	 */
1494 	if (event->group_leader != event)
1495 		event = event->group_leader;
1496 
1497 	event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1498 	if (!ctx->task)
1499 		event_type |= EVENT_CPU;
1500 
1501 	return event_type;
1502 }
1503 
1504 static struct list_head *
ctx_group_list(struct perf_event * event,struct perf_event_context * ctx)1505 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1506 {
1507 	if (event->attr.pinned)
1508 		return &ctx->pinned_groups;
1509 	else
1510 		return &ctx->flexible_groups;
1511 }
1512 
1513 /*
1514  * Add a event from the lists for its context.
1515  * Must be called with ctx->mutex and ctx->lock held.
1516  */
1517 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1518 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1519 {
1520 	lockdep_assert_held(&ctx->lock);
1521 
1522 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1523 	event->attach_state |= PERF_ATTACH_CONTEXT;
1524 
1525 	/*
1526 	 * If we're a stand alone event or group leader, we go to the context
1527 	 * list, group events are kept attached to the group so that
1528 	 * perf_group_detach can, at all times, locate all siblings.
1529 	 */
1530 	if (event->group_leader == event) {
1531 		struct list_head *list;
1532 
1533 		event->group_caps = event->event_caps;
1534 
1535 		list = ctx_group_list(event, ctx);
1536 		list_add_tail(&event->group_entry, list);
1537 	}
1538 
1539 	list_update_cgroup_event(event, ctx, true);
1540 
1541 	list_add_rcu(&event->event_entry, &ctx->event_list);
1542 	ctx->nr_events++;
1543 	if (event->attr.inherit_stat)
1544 		ctx->nr_stat++;
1545 
1546 	ctx->generation++;
1547 }
1548 
1549 /*
1550  * Initialize event state based on the perf_event_attr::disabled.
1551  */
perf_event__state_init(struct perf_event * event)1552 static inline void perf_event__state_init(struct perf_event *event)
1553 {
1554 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1555 					      PERF_EVENT_STATE_INACTIVE;
1556 }
1557 
__perf_event_read_size(struct perf_event * event,int nr_siblings)1558 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1559 {
1560 	int entry = sizeof(u64); /* value */
1561 	int size = 0;
1562 	int nr = 1;
1563 
1564 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1565 		size += sizeof(u64);
1566 
1567 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1568 		size += sizeof(u64);
1569 
1570 	if (event->attr.read_format & PERF_FORMAT_ID)
1571 		entry += sizeof(u64);
1572 
1573 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1574 		nr += nr_siblings;
1575 		size += sizeof(u64);
1576 	}
1577 
1578 	size += entry * nr;
1579 	event->read_size = size;
1580 }
1581 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1582 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1583 {
1584 	struct perf_sample_data *data;
1585 	u16 size = 0;
1586 
1587 	if (sample_type & PERF_SAMPLE_IP)
1588 		size += sizeof(data->ip);
1589 
1590 	if (sample_type & PERF_SAMPLE_ADDR)
1591 		size += sizeof(data->addr);
1592 
1593 	if (sample_type & PERF_SAMPLE_PERIOD)
1594 		size += sizeof(data->period);
1595 
1596 	if (sample_type & PERF_SAMPLE_WEIGHT)
1597 		size += sizeof(data->weight);
1598 
1599 	if (sample_type & PERF_SAMPLE_READ)
1600 		size += event->read_size;
1601 
1602 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1603 		size += sizeof(data->data_src.val);
1604 
1605 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1606 		size += sizeof(data->txn);
1607 
1608 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1609 		size += sizeof(data->phys_addr);
1610 
1611 	event->header_size = size;
1612 }
1613 
1614 /*
1615  * Called at perf_event creation and when events are attached/detached from a
1616  * group.
1617  */
perf_event__header_size(struct perf_event * event)1618 static void perf_event__header_size(struct perf_event *event)
1619 {
1620 	__perf_event_read_size(event,
1621 			       event->group_leader->nr_siblings);
1622 	__perf_event_header_size(event, event->attr.sample_type);
1623 }
1624 
perf_event__id_header_size(struct perf_event * event)1625 static void perf_event__id_header_size(struct perf_event *event)
1626 {
1627 	struct perf_sample_data *data;
1628 	u64 sample_type = event->attr.sample_type;
1629 	u16 size = 0;
1630 
1631 	if (sample_type & PERF_SAMPLE_TID)
1632 		size += sizeof(data->tid_entry);
1633 
1634 	if (sample_type & PERF_SAMPLE_TIME)
1635 		size += sizeof(data->time);
1636 
1637 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1638 		size += sizeof(data->id);
1639 
1640 	if (sample_type & PERF_SAMPLE_ID)
1641 		size += sizeof(data->id);
1642 
1643 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1644 		size += sizeof(data->stream_id);
1645 
1646 	if (sample_type & PERF_SAMPLE_CPU)
1647 		size += sizeof(data->cpu_entry);
1648 
1649 	event->id_header_size = size;
1650 }
1651 
perf_event_validate_size(struct perf_event * event)1652 static bool perf_event_validate_size(struct perf_event *event)
1653 {
1654 	/*
1655 	 * The values computed here will be over-written when we actually
1656 	 * attach the event.
1657 	 */
1658 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1659 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1660 	perf_event__id_header_size(event);
1661 
1662 	/*
1663 	 * Sum the lot; should not exceed the 64k limit we have on records.
1664 	 * Conservative limit to allow for callchains and other variable fields.
1665 	 */
1666 	if (event->read_size + event->header_size +
1667 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1668 		return false;
1669 
1670 	return true;
1671 }
1672 
perf_group_attach(struct perf_event * event)1673 static void perf_group_attach(struct perf_event *event)
1674 {
1675 	struct perf_event *group_leader = event->group_leader, *pos;
1676 
1677 	lockdep_assert_held(&event->ctx->lock);
1678 
1679 	/*
1680 	 * We can have double attach due to group movement in perf_event_open.
1681 	 */
1682 	if (event->attach_state & PERF_ATTACH_GROUP)
1683 		return;
1684 
1685 	event->attach_state |= PERF_ATTACH_GROUP;
1686 
1687 	if (group_leader == event)
1688 		return;
1689 
1690 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1691 
1692 	group_leader->group_caps &= event->event_caps;
1693 
1694 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1695 	group_leader->nr_siblings++;
1696 
1697 	perf_event__header_size(group_leader);
1698 
1699 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1700 		perf_event__header_size(pos);
1701 }
1702 
1703 /*
1704  * Remove a event from the lists for its context.
1705  * Must be called with ctx->mutex and ctx->lock held.
1706  */
1707 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1708 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1709 {
1710 	WARN_ON_ONCE(event->ctx != ctx);
1711 	lockdep_assert_held(&ctx->lock);
1712 
1713 	/*
1714 	 * We can have double detach due to exit/hot-unplug + close.
1715 	 */
1716 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1717 		return;
1718 
1719 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1720 
1721 	list_update_cgroup_event(event, ctx, false);
1722 
1723 	ctx->nr_events--;
1724 	if (event->attr.inherit_stat)
1725 		ctx->nr_stat--;
1726 
1727 	list_del_rcu(&event->event_entry);
1728 
1729 	if (event->group_leader == event)
1730 		list_del_init(&event->group_entry);
1731 
1732 	update_group_times(event);
1733 
1734 	/*
1735 	 * If event was in error state, then keep it
1736 	 * that way, otherwise bogus counts will be
1737 	 * returned on read(). The only way to get out
1738 	 * of error state is by explicit re-enabling
1739 	 * of the event
1740 	 */
1741 	if (event->state > PERF_EVENT_STATE_OFF)
1742 		event->state = PERF_EVENT_STATE_OFF;
1743 
1744 	ctx->generation++;
1745 }
1746 
perf_group_detach(struct perf_event * event)1747 static void perf_group_detach(struct perf_event *event)
1748 {
1749 	struct perf_event *sibling, *tmp;
1750 	struct list_head *list = NULL;
1751 
1752 	lockdep_assert_held(&event->ctx->lock);
1753 
1754 	/*
1755 	 * We can have double detach due to exit/hot-unplug + close.
1756 	 */
1757 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1758 		return;
1759 
1760 	event->attach_state &= ~PERF_ATTACH_GROUP;
1761 
1762 	/*
1763 	 * If this is a sibling, remove it from its group.
1764 	 */
1765 	if (event->group_leader != event) {
1766 		list_del_init(&event->group_entry);
1767 		event->group_leader->nr_siblings--;
1768 		goto out;
1769 	}
1770 
1771 	if (!list_empty(&event->group_entry))
1772 		list = &event->group_entry;
1773 
1774 	/*
1775 	 * If this was a group event with sibling events then
1776 	 * upgrade the siblings to singleton events by adding them
1777 	 * to whatever list we are on.
1778 	 */
1779 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1780 		if (list)
1781 			list_move_tail(&sibling->group_entry, list);
1782 		sibling->group_leader = sibling;
1783 
1784 		/* Inherit group flags from the previous leader */
1785 		sibling->group_caps = event->group_caps;
1786 
1787 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1788 	}
1789 
1790 out:
1791 	perf_event__header_size(event->group_leader);
1792 
1793 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1794 		perf_event__header_size(tmp);
1795 }
1796 
is_orphaned_event(struct perf_event * event)1797 static bool is_orphaned_event(struct perf_event *event)
1798 {
1799 	return event->state == PERF_EVENT_STATE_DEAD;
1800 }
1801 
__pmu_filter_match(struct perf_event * event)1802 static inline int __pmu_filter_match(struct perf_event *event)
1803 {
1804 	struct pmu *pmu = event->pmu;
1805 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1806 }
1807 
1808 /*
1809  * Check whether we should attempt to schedule an event group based on
1810  * PMU-specific filtering. An event group can consist of HW and SW events,
1811  * potentially with a SW leader, so we must check all the filters, to
1812  * determine whether a group is schedulable:
1813  */
pmu_filter_match(struct perf_event * event)1814 static inline int pmu_filter_match(struct perf_event *event)
1815 {
1816 	struct perf_event *child;
1817 
1818 	if (!__pmu_filter_match(event))
1819 		return 0;
1820 
1821 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1822 		if (!__pmu_filter_match(child))
1823 			return 0;
1824 	}
1825 
1826 	return 1;
1827 }
1828 
1829 static inline int
event_filter_match(struct perf_event * event)1830 event_filter_match(struct perf_event *event)
1831 {
1832 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1833 	       perf_cgroup_match(event) && pmu_filter_match(event);
1834 }
1835 
1836 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1837 event_sched_out(struct perf_event *event,
1838 		  struct perf_cpu_context *cpuctx,
1839 		  struct perf_event_context *ctx)
1840 {
1841 	u64 tstamp = perf_event_time(event);
1842 	u64 delta;
1843 
1844 	WARN_ON_ONCE(event->ctx != ctx);
1845 	lockdep_assert_held(&ctx->lock);
1846 
1847 	/*
1848 	 * An event which could not be activated because of
1849 	 * filter mismatch still needs to have its timings
1850 	 * maintained, otherwise bogus information is return
1851 	 * via read() for time_enabled, time_running:
1852 	 */
1853 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1854 	    !event_filter_match(event)) {
1855 		delta = tstamp - event->tstamp_stopped;
1856 		event->tstamp_running += delta;
1857 		event->tstamp_stopped = tstamp;
1858 	}
1859 
1860 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1861 		return;
1862 
1863 	perf_pmu_disable(event->pmu);
1864 
1865 	event->tstamp_stopped = tstamp;
1866 	event->pmu->del(event, 0);
1867 	event->oncpu = -1;
1868 	event->state = PERF_EVENT_STATE_INACTIVE;
1869 	if (event->pending_disable) {
1870 		event->pending_disable = 0;
1871 		event->state = PERF_EVENT_STATE_OFF;
1872 	}
1873 
1874 	if (!is_software_event(event))
1875 		cpuctx->active_oncpu--;
1876 	if (!--ctx->nr_active)
1877 		perf_event_ctx_deactivate(ctx);
1878 	if (event->attr.freq && event->attr.sample_freq)
1879 		ctx->nr_freq--;
1880 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1881 		cpuctx->exclusive = 0;
1882 
1883 	perf_pmu_enable(event->pmu);
1884 }
1885 
1886 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1887 group_sched_out(struct perf_event *group_event,
1888 		struct perf_cpu_context *cpuctx,
1889 		struct perf_event_context *ctx)
1890 {
1891 	struct perf_event *event;
1892 	int state = group_event->state;
1893 
1894 	perf_pmu_disable(ctx->pmu);
1895 
1896 	event_sched_out(group_event, cpuctx, ctx);
1897 
1898 	/*
1899 	 * Schedule out siblings (if any):
1900 	 */
1901 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1902 		event_sched_out(event, cpuctx, ctx);
1903 
1904 	perf_pmu_enable(ctx->pmu);
1905 
1906 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1907 		cpuctx->exclusive = 0;
1908 }
1909 
1910 #define DETACH_GROUP	0x01UL
1911 
1912 /*
1913  * Cross CPU call to remove a performance event
1914  *
1915  * We disable the event on the hardware level first. After that we
1916  * remove it from the context list.
1917  */
1918 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)1919 __perf_remove_from_context(struct perf_event *event,
1920 			   struct perf_cpu_context *cpuctx,
1921 			   struct perf_event_context *ctx,
1922 			   void *info)
1923 {
1924 	unsigned long flags = (unsigned long)info;
1925 
1926 	event_sched_out(event, cpuctx, ctx);
1927 	if (flags & DETACH_GROUP)
1928 		perf_group_detach(event);
1929 	list_del_event(event, ctx);
1930 
1931 	if (!ctx->nr_events && ctx->is_active) {
1932 		ctx->is_active = 0;
1933 		if (ctx->task) {
1934 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1935 			cpuctx->task_ctx = NULL;
1936 		}
1937 	}
1938 }
1939 
1940 /*
1941  * Remove the event from a task's (or a CPU's) list of events.
1942  *
1943  * If event->ctx is a cloned context, callers must make sure that
1944  * every task struct that event->ctx->task could possibly point to
1945  * remains valid.  This is OK when called from perf_release since
1946  * that only calls us on the top-level context, which can't be a clone.
1947  * When called from perf_event_exit_task, it's OK because the
1948  * context has been detached from its task.
1949  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)1950 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1951 {
1952 	struct perf_event_context *ctx = event->ctx;
1953 
1954 	lockdep_assert_held(&ctx->mutex);
1955 
1956 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1957 
1958 	/*
1959 	 * The above event_function_call() can NO-OP when it hits
1960 	 * TASK_TOMBSTONE. In that case we must already have been detached
1961 	 * from the context (by perf_event_exit_event()) but the grouping
1962 	 * might still be in-tact.
1963 	 */
1964 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1965 	if ((flags & DETACH_GROUP) &&
1966 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1967 		/*
1968 		 * Since in that case we cannot possibly be scheduled, simply
1969 		 * detach now.
1970 		 */
1971 		raw_spin_lock_irq(&ctx->lock);
1972 		perf_group_detach(event);
1973 		raw_spin_unlock_irq(&ctx->lock);
1974 	}
1975 }
1976 
1977 /*
1978  * Cross CPU call to disable a performance event
1979  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)1980 static void __perf_event_disable(struct perf_event *event,
1981 				 struct perf_cpu_context *cpuctx,
1982 				 struct perf_event_context *ctx,
1983 				 void *info)
1984 {
1985 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1986 		return;
1987 
1988 	update_context_time(ctx);
1989 	update_cgrp_time_from_event(event);
1990 	update_group_times(event);
1991 	if (event == event->group_leader)
1992 		group_sched_out(event, cpuctx, ctx);
1993 	else
1994 		event_sched_out(event, cpuctx, ctx);
1995 	event->state = PERF_EVENT_STATE_OFF;
1996 }
1997 
1998 /*
1999  * Disable a event.
2000  *
2001  * If event->ctx is a cloned context, callers must make sure that
2002  * every task struct that event->ctx->task could possibly point to
2003  * remains valid.  This condition is satisifed when called through
2004  * perf_event_for_each_child or perf_event_for_each because they
2005  * hold the top-level event's child_mutex, so any descendant that
2006  * goes to exit will block in perf_event_exit_event().
2007  *
2008  * When called from perf_pending_event it's OK because event->ctx
2009  * is the current context on this CPU and preemption is disabled,
2010  * hence we can't get into perf_event_task_sched_out for this context.
2011  */
_perf_event_disable(struct perf_event * event)2012 static void _perf_event_disable(struct perf_event *event)
2013 {
2014 	struct perf_event_context *ctx = event->ctx;
2015 
2016 	raw_spin_lock_irq(&ctx->lock);
2017 	if (event->state <= PERF_EVENT_STATE_OFF) {
2018 		raw_spin_unlock_irq(&ctx->lock);
2019 		return;
2020 	}
2021 	raw_spin_unlock_irq(&ctx->lock);
2022 
2023 	event_function_call(event, __perf_event_disable, NULL);
2024 }
2025 
perf_event_disable_local(struct perf_event * event)2026 void perf_event_disable_local(struct perf_event *event)
2027 {
2028 	event_function_local(event, __perf_event_disable, NULL);
2029 }
2030 
2031 /*
2032  * Strictly speaking kernel users cannot create groups and therefore this
2033  * interface does not need the perf_event_ctx_lock() magic.
2034  */
perf_event_disable(struct perf_event * event)2035 void perf_event_disable(struct perf_event *event)
2036 {
2037 	struct perf_event_context *ctx;
2038 
2039 	ctx = perf_event_ctx_lock(event);
2040 	_perf_event_disable(event);
2041 	perf_event_ctx_unlock(event, ctx);
2042 }
2043 EXPORT_SYMBOL_GPL(perf_event_disable);
2044 
perf_event_disable_inatomic(struct perf_event * event)2045 void perf_event_disable_inatomic(struct perf_event *event)
2046 {
2047 	event->pending_disable = 1;
2048 	irq_work_queue(&event->pending);
2049 }
2050 
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx,u64 tstamp)2051 static void perf_set_shadow_time(struct perf_event *event,
2052 				 struct perf_event_context *ctx,
2053 				 u64 tstamp)
2054 {
2055 	/*
2056 	 * use the correct time source for the time snapshot
2057 	 *
2058 	 * We could get by without this by leveraging the
2059 	 * fact that to get to this function, the caller
2060 	 * has most likely already called update_context_time()
2061 	 * and update_cgrp_time_xx() and thus both timestamp
2062 	 * are identical (or very close). Given that tstamp is,
2063 	 * already adjusted for cgroup, we could say that:
2064 	 *    tstamp - ctx->timestamp
2065 	 * is equivalent to
2066 	 *    tstamp - cgrp->timestamp.
2067 	 *
2068 	 * Then, in perf_output_read(), the calculation would
2069 	 * work with no changes because:
2070 	 * - event is guaranteed scheduled in
2071 	 * - no scheduled out in between
2072 	 * - thus the timestamp would be the same
2073 	 *
2074 	 * But this is a bit hairy.
2075 	 *
2076 	 * So instead, we have an explicit cgroup call to remain
2077 	 * within the time time source all along. We believe it
2078 	 * is cleaner and simpler to understand.
2079 	 */
2080 	if (is_cgroup_event(event))
2081 		perf_cgroup_set_shadow_time(event, tstamp);
2082 	else
2083 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2084 }
2085 
2086 #define MAX_INTERRUPTS (~0ULL)
2087 
2088 static void perf_log_throttle(struct perf_event *event, int enable);
2089 static void perf_log_itrace_start(struct perf_event *event);
2090 
2091 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2092 event_sched_in(struct perf_event *event,
2093 		 struct perf_cpu_context *cpuctx,
2094 		 struct perf_event_context *ctx)
2095 {
2096 	u64 tstamp = perf_event_time(event);
2097 	int ret = 0;
2098 
2099 	lockdep_assert_held(&ctx->lock);
2100 
2101 	if (event->state <= PERF_EVENT_STATE_OFF)
2102 		return 0;
2103 
2104 	WRITE_ONCE(event->oncpu, smp_processor_id());
2105 	/*
2106 	 * Order event::oncpu write to happen before the ACTIVE state
2107 	 * is visible.
2108 	 */
2109 	smp_wmb();
2110 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2111 
2112 	/*
2113 	 * Unthrottle events, since we scheduled we might have missed several
2114 	 * ticks already, also for a heavily scheduling task there is little
2115 	 * guarantee it'll get a tick in a timely manner.
2116 	 */
2117 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2118 		perf_log_throttle(event, 1);
2119 		event->hw.interrupts = 0;
2120 	}
2121 
2122 	/*
2123 	 * The new state must be visible before we turn it on in the hardware:
2124 	 */
2125 	smp_wmb();
2126 
2127 	perf_pmu_disable(event->pmu);
2128 
2129 	perf_set_shadow_time(event, ctx, tstamp);
2130 
2131 	perf_log_itrace_start(event);
2132 
2133 	if (event->pmu->add(event, PERF_EF_START)) {
2134 		event->state = PERF_EVENT_STATE_INACTIVE;
2135 		event->oncpu = -1;
2136 		ret = -EAGAIN;
2137 		goto out;
2138 	}
2139 
2140 	event->tstamp_running += tstamp - event->tstamp_stopped;
2141 
2142 	if (!is_software_event(event))
2143 		cpuctx->active_oncpu++;
2144 	if (!ctx->nr_active++)
2145 		perf_event_ctx_activate(ctx);
2146 	if (event->attr.freq && event->attr.sample_freq)
2147 		ctx->nr_freq++;
2148 
2149 	if (event->attr.exclusive)
2150 		cpuctx->exclusive = 1;
2151 
2152 out:
2153 	perf_pmu_enable(event->pmu);
2154 
2155 	return ret;
2156 }
2157 
2158 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2159 group_sched_in(struct perf_event *group_event,
2160 	       struct perf_cpu_context *cpuctx,
2161 	       struct perf_event_context *ctx)
2162 {
2163 	struct perf_event *event, *partial_group = NULL;
2164 	struct pmu *pmu = ctx->pmu;
2165 	u64 now = ctx->time;
2166 	bool simulate = false;
2167 
2168 	if (group_event->state == PERF_EVENT_STATE_OFF)
2169 		return 0;
2170 
2171 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2172 
2173 	if (event_sched_in(group_event, cpuctx, ctx)) {
2174 		pmu->cancel_txn(pmu);
2175 		perf_mux_hrtimer_restart(cpuctx);
2176 		return -EAGAIN;
2177 	}
2178 
2179 	/*
2180 	 * Schedule in siblings as one group (if any):
2181 	 */
2182 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2183 		if (event_sched_in(event, cpuctx, ctx)) {
2184 			partial_group = event;
2185 			goto group_error;
2186 		}
2187 	}
2188 
2189 	if (!pmu->commit_txn(pmu))
2190 		return 0;
2191 
2192 group_error:
2193 	/*
2194 	 * Groups can be scheduled in as one unit only, so undo any
2195 	 * partial group before returning:
2196 	 * The events up to the failed event are scheduled out normally,
2197 	 * tstamp_stopped will be updated.
2198 	 *
2199 	 * The failed events and the remaining siblings need to have
2200 	 * their timings updated as if they had gone thru event_sched_in()
2201 	 * and event_sched_out(). This is required to get consistent timings
2202 	 * across the group. This also takes care of the case where the group
2203 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2204 	 * the time the event was actually stopped, such that time delta
2205 	 * calculation in update_event_times() is correct.
2206 	 */
2207 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2208 		if (event == partial_group)
2209 			simulate = true;
2210 
2211 		if (simulate) {
2212 			event->tstamp_running += now - event->tstamp_stopped;
2213 			event->tstamp_stopped = now;
2214 		} else {
2215 			event_sched_out(event, cpuctx, ctx);
2216 		}
2217 	}
2218 	event_sched_out(group_event, cpuctx, ctx);
2219 
2220 	pmu->cancel_txn(pmu);
2221 
2222 	perf_mux_hrtimer_restart(cpuctx);
2223 
2224 	return -EAGAIN;
2225 }
2226 
2227 /*
2228  * Work out whether we can put this event group on the CPU now.
2229  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2230 static int group_can_go_on(struct perf_event *event,
2231 			   struct perf_cpu_context *cpuctx,
2232 			   int can_add_hw)
2233 {
2234 	/*
2235 	 * Groups consisting entirely of software events can always go on.
2236 	 */
2237 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2238 		return 1;
2239 	/*
2240 	 * If an exclusive group is already on, no other hardware
2241 	 * events can go on.
2242 	 */
2243 	if (cpuctx->exclusive)
2244 		return 0;
2245 	/*
2246 	 * If this group is exclusive and there are already
2247 	 * events on the CPU, it can't go on.
2248 	 */
2249 	if (event->attr.exclusive && cpuctx->active_oncpu)
2250 		return 0;
2251 	/*
2252 	 * Otherwise, try to add it if all previous groups were able
2253 	 * to go on.
2254 	 */
2255 	return can_add_hw;
2256 }
2257 
2258 /*
2259  * Complement to update_event_times(). This computes the tstamp_* values to
2260  * continue 'enabled' state from @now, and effectively discards the time
2261  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2262  * just switched (context) time base).
2263  *
2264  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2265  * cannot have been scheduled in yet. And going into INACTIVE state means
2266  * '@event->tstamp_stopped = @now'.
2267  *
2268  * Thus given the rules of update_event_times():
2269  *
2270  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2271  *   total_time_running = tstamp_stopped - tstamp_running
2272  *
2273  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2274  * tstamp_* values.
2275  */
__perf_event_enable_time(struct perf_event * event,u64 now)2276 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2277 {
2278 	WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2279 
2280 	event->tstamp_stopped = now;
2281 	event->tstamp_enabled = now - event->total_time_enabled;
2282 	event->tstamp_running = now - event->total_time_running;
2283 }
2284 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2285 static void add_event_to_ctx(struct perf_event *event,
2286 			       struct perf_event_context *ctx)
2287 {
2288 	u64 tstamp = perf_event_time(event);
2289 
2290 	list_add_event(event, ctx);
2291 	perf_group_attach(event);
2292 	/*
2293 	 * We can be called with event->state == STATE_OFF when we create with
2294 	 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2295 	 */
2296 	if (event->state == PERF_EVENT_STATE_INACTIVE)
2297 		__perf_event_enable_time(event, tstamp);
2298 }
2299 
2300 static void ctx_sched_out(struct perf_event_context *ctx,
2301 			  struct perf_cpu_context *cpuctx,
2302 			  enum event_type_t event_type);
2303 static void
2304 ctx_sched_in(struct perf_event_context *ctx,
2305 	     struct perf_cpu_context *cpuctx,
2306 	     enum event_type_t event_type,
2307 	     struct task_struct *task);
2308 
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,enum event_type_t event_type)2309 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2310 			       struct perf_event_context *ctx,
2311 			       enum event_type_t event_type)
2312 {
2313 	if (!cpuctx->task_ctx)
2314 		return;
2315 
2316 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2317 		return;
2318 
2319 	ctx_sched_out(ctx, cpuctx, event_type);
2320 }
2321 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2322 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2323 				struct perf_event_context *ctx,
2324 				struct task_struct *task)
2325 {
2326 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2327 	if (ctx)
2328 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2329 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2330 	if (ctx)
2331 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2332 }
2333 
2334 /*
2335  * We want to maintain the following priority of scheduling:
2336  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2337  *  - task pinned (EVENT_PINNED)
2338  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2339  *  - task flexible (EVENT_FLEXIBLE).
2340  *
2341  * In order to avoid unscheduling and scheduling back in everything every
2342  * time an event is added, only do it for the groups of equal priority and
2343  * below.
2344  *
2345  * This can be called after a batch operation on task events, in which case
2346  * event_type is a bit mask of the types of events involved. For CPU events,
2347  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2348  */
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx,enum event_type_t event_type)2349 static void ctx_resched(struct perf_cpu_context *cpuctx,
2350 			struct perf_event_context *task_ctx,
2351 			enum event_type_t event_type)
2352 {
2353 	enum event_type_t ctx_event_type;
2354 	bool cpu_event = !!(event_type & EVENT_CPU);
2355 
2356 	/*
2357 	 * If pinned groups are involved, flexible groups also need to be
2358 	 * scheduled out.
2359 	 */
2360 	if (event_type & EVENT_PINNED)
2361 		event_type |= EVENT_FLEXIBLE;
2362 
2363 	ctx_event_type = event_type & EVENT_ALL;
2364 
2365 	perf_pmu_disable(cpuctx->ctx.pmu);
2366 	if (task_ctx)
2367 		task_ctx_sched_out(cpuctx, task_ctx, event_type);
2368 
2369 	/*
2370 	 * Decide which cpu ctx groups to schedule out based on the types
2371 	 * of events that caused rescheduling:
2372 	 *  - EVENT_CPU: schedule out corresponding groups;
2373 	 *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2374 	 *  - otherwise, do nothing more.
2375 	 */
2376 	if (cpu_event)
2377 		cpu_ctx_sched_out(cpuctx, ctx_event_type);
2378 	else if (ctx_event_type & EVENT_PINNED)
2379 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2380 
2381 	perf_event_sched_in(cpuctx, task_ctx, current);
2382 	perf_pmu_enable(cpuctx->ctx.pmu);
2383 }
2384 
2385 /*
2386  * Cross CPU call to install and enable a performance event
2387  *
2388  * Very similar to remote_function() + event_function() but cannot assume that
2389  * things like ctx->is_active and cpuctx->task_ctx are set.
2390  */
__perf_install_in_context(void * info)2391 static int  __perf_install_in_context(void *info)
2392 {
2393 	struct perf_event *event = info;
2394 	struct perf_event_context *ctx = event->ctx;
2395 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2396 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2397 	bool reprogram = true;
2398 	int ret = 0;
2399 
2400 	raw_spin_lock(&cpuctx->ctx.lock);
2401 	if (ctx->task) {
2402 		raw_spin_lock(&ctx->lock);
2403 		task_ctx = ctx;
2404 
2405 		reprogram = (ctx->task == current);
2406 
2407 		/*
2408 		 * If the task is running, it must be running on this CPU,
2409 		 * otherwise we cannot reprogram things.
2410 		 *
2411 		 * If its not running, we don't care, ctx->lock will
2412 		 * serialize against it becoming runnable.
2413 		 */
2414 		if (task_curr(ctx->task) && !reprogram) {
2415 			ret = -ESRCH;
2416 			goto unlock;
2417 		}
2418 
2419 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2420 	} else if (task_ctx) {
2421 		raw_spin_lock(&task_ctx->lock);
2422 	}
2423 
2424 #ifdef CONFIG_CGROUP_PERF
2425 	if (is_cgroup_event(event)) {
2426 		/*
2427 		 * If the current cgroup doesn't match the event's
2428 		 * cgroup, we should not try to schedule it.
2429 		 */
2430 		struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2431 		reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2432 					event->cgrp->css.cgroup);
2433 	}
2434 #endif
2435 
2436 	if (reprogram) {
2437 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2438 		add_event_to_ctx(event, ctx);
2439 		ctx_resched(cpuctx, task_ctx, get_event_type(event));
2440 	} else {
2441 		add_event_to_ctx(event, ctx);
2442 	}
2443 
2444 unlock:
2445 	perf_ctx_unlock(cpuctx, task_ctx);
2446 
2447 	return ret;
2448 }
2449 
2450 /*
2451  * Attach a performance event to a context.
2452  *
2453  * Very similar to event_function_call, see comment there.
2454  */
2455 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2456 perf_install_in_context(struct perf_event_context *ctx,
2457 			struct perf_event *event,
2458 			int cpu)
2459 {
2460 	struct task_struct *task = READ_ONCE(ctx->task);
2461 
2462 	lockdep_assert_held(&ctx->mutex);
2463 
2464 	if (event->cpu != -1)
2465 		event->cpu = cpu;
2466 
2467 	/*
2468 	 * Ensures that if we can observe event->ctx, both the event and ctx
2469 	 * will be 'complete'. See perf_iterate_sb_cpu().
2470 	 */
2471 	smp_store_release(&event->ctx, ctx);
2472 
2473 	if (!task) {
2474 		cpu_function_call(cpu, __perf_install_in_context, event);
2475 		return;
2476 	}
2477 
2478 	/*
2479 	 * Should not happen, we validate the ctx is still alive before calling.
2480 	 */
2481 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2482 		return;
2483 
2484 	/*
2485 	 * Installing events is tricky because we cannot rely on ctx->is_active
2486 	 * to be set in case this is the nr_events 0 -> 1 transition.
2487 	 *
2488 	 * Instead we use task_curr(), which tells us if the task is running.
2489 	 * However, since we use task_curr() outside of rq::lock, we can race
2490 	 * against the actual state. This means the result can be wrong.
2491 	 *
2492 	 * If we get a false positive, we retry, this is harmless.
2493 	 *
2494 	 * If we get a false negative, things are complicated. If we are after
2495 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2496 	 * value must be correct. If we're before, it doesn't matter since
2497 	 * perf_event_context_sched_in() will program the counter.
2498 	 *
2499 	 * However, this hinges on the remote context switch having observed
2500 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2501 	 * ctx::lock in perf_event_context_sched_in().
2502 	 *
2503 	 * We do this by task_function_call(), if the IPI fails to hit the task
2504 	 * we know any future context switch of task must see the
2505 	 * perf_event_ctpx[] store.
2506 	 */
2507 
2508 	/*
2509 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2510 	 * task_cpu() load, such that if the IPI then does not find the task
2511 	 * running, a future context switch of that task must observe the
2512 	 * store.
2513 	 */
2514 	smp_mb();
2515 again:
2516 	if (!task_function_call(task, __perf_install_in_context, event))
2517 		return;
2518 
2519 	raw_spin_lock_irq(&ctx->lock);
2520 	task = ctx->task;
2521 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2522 		/*
2523 		 * Cannot happen because we already checked above (which also
2524 		 * cannot happen), and we hold ctx->mutex, which serializes us
2525 		 * against perf_event_exit_task_context().
2526 		 */
2527 		raw_spin_unlock_irq(&ctx->lock);
2528 		return;
2529 	}
2530 	/*
2531 	 * If the task is not running, ctx->lock will avoid it becoming so,
2532 	 * thus we can safely install the event.
2533 	 */
2534 	if (task_curr(task)) {
2535 		raw_spin_unlock_irq(&ctx->lock);
2536 		goto again;
2537 	}
2538 	add_event_to_ctx(event, ctx);
2539 	raw_spin_unlock_irq(&ctx->lock);
2540 }
2541 
2542 /*
2543  * Put a event into inactive state and update time fields.
2544  * Enabling the leader of a group effectively enables all
2545  * the group members that aren't explicitly disabled, so we
2546  * have to update their ->tstamp_enabled also.
2547  * Note: this works for group members as well as group leaders
2548  * since the non-leader members' sibling_lists will be empty.
2549  */
__perf_event_mark_enabled(struct perf_event * event)2550 static void __perf_event_mark_enabled(struct perf_event *event)
2551 {
2552 	struct perf_event *sub;
2553 	u64 tstamp = perf_event_time(event);
2554 
2555 	event->state = PERF_EVENT_STATE_INACTIVE;
2556 	__perf_event_enable_time(event, tstamp);
2557 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2558 		/* XXX should not be > INACTIVE if event isn't */
2559 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2560 			__perf_event_enable_time(sub, tstamp);
2561 	}
2562 }
2563 
2564 /*
2565  * Cross CPU call to enable a performance event
2566  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2567 static void __perf_event_enable(struct perf_event *event,
2568 				struct perf_cpu_context *cpuctx,
2569 				struct perf_event_context *ctx,
2570 				void *info)
2571 {
2572 	struct perf_event *leader = event->group_leader;
2573 	struct perf_event_context *task_ctx;
2574 
2575 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2576 	    event->state <= PERF_EVENT_STATE_ERROR)
2577 		return;
2578 
2579 	if (ctx->is_active)
2580 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2581 
2582 	__perf_event_mark_enabled(event);
2583 
2584 	if (!ctx->is_active)
2585 		return;
2586 
2587 	if (!event_filter_match(event)) {
2588 		if (is_cgroup_event(event))
2589 			perf_cgroup_defer_enabled(event);
2590 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2591 		return;
2592 	}
2593 
2594 	/*
2595 	 * If the event is in a group and isn't the group leader,
2596 	 * then don't put it on unless the group is on.
2597 	 */
2598 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2599 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2600 		return;
2601 	}
2602 
2603 	task_ctx = cpuctx->task_ctx;
2604 	if (ctx->task)
2605 		WARN_ON_ONCE(task_ctx != ctx);
2606 
2607 	ctx_resched(cpuctx, task_ctx, get_event_type(event));
2608 }
2609 
2610 /*
2611  * Enable a event.
2612  *
2613  * If event->ctx is a cloned context, callers must make sure that
2614  * every task struct that event->ctx->task could possibly point to
2615  * remains valid.  This condition is satisfied when called through
2616  * perf_event_for_each_child or perf_event_for_each as described
2617  * for perf_event_disable.
2618  */
_perf_event_enable(struct perf_event * event)2619 static void _perf_event_enable(struct perf_event *event)
2620 {
2621 	struct perf_event_context *ctx = event->ctx;
2622 
2623 	raw_spin_lock_irq(&ctx->lock);
2624 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2625 	    event->state <  PERF_EVENT_STATE_ERROR) {
2626 		raw_spin_unlock_irq(&ctx->lock);
2627 		return;
2628 	}
2629 
2630 	/*
2631 	 * If the event is in error state, clear that first.
2632 	 *
2633 	 * That way, if we see the event in error state below, we know that it
2634 	 * has gone back into error state, as distinct from the task having
2635 	 * been scheduled away before the cross-call arrived.
2636 	 */
2637 	if (event->state == PERF_EVENT_STATE_ERROR)
2638 		event->state = PERF_EVENT_STATE_OFF;
2639 	raw_spin_unlock_irq(&ctx->lock);
2640 
2641 	event_function_call(event, __perf_event_enable, NULL);
2642 }
2643 
2644 /*
2645  * See perf_event_disable();
2646  */
perf_event_enable(struct perf_event * event)2647 void perf_event_enable(struct perf_event *event)
2648 {
2649 	struct perf_event_context *ctx;
2650 
2651 	ctx = perf_event_ctx_lock(event);
2652 	_perf_event_enable(event);
2653 	perf_event_ctx_unlock(event, ctx);
2654 }
2655 EXPORT_SYMBOL_GPL(perf_event_enable);
2656 
2657 struct stop_event_data {
2658 	struct perf_event	*event;
2659 	unsigned int		restart;
2660 };
2661 
__perf_event_stop(void * info)2662 static int __perf_event_stop(void *info)
2663 {
2664 	struct stop_event_data *sd = info;
2665 	struct perf_event *event = sd->event;
2666 
2667 	/* if it's already INACTIVE, do nothing */
2668 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2669 		return 0;
2670 
2671 	/* matches smp_wmb() in event_sched_in() */
2672 	smp_rmb();
2673 
2674 	/*
2675 	 * There is a window with interrupts enabled before we get here,
2676 	 * so we need to check again lest we try to stop another CPU's event.
2677 	 */
2678 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2679 		return -EAGAIN;
2680 
2681 	event->pmu->stop(event, PERF_EF_UPDATE);
2682 
2683 	/*
2684 	 * May race with the actual stop (through perf_pmu_output_stop()),
2685 	 * but it is only used for events with AUX ring buffer, and such
2686 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2687 	 * see comments in perf_aux_output_begin().
2688 	 *
2689 	 * Since this is happening on a event-local CPU, no trace is lost
2690 	 * while restarting.
2691 	 */
2692 	if (sd->restart)
2693 		event->pmu->start(event, 0);
2694 
2695 	return 0;
2696 }
2697 
perf_event_stop(struct perf_event * event,int restart)2698 static int perf_event_stop(struct perf_event *event, int restart)
2699 {
2700 	struct stop_event_data sd = {
2701 		.event		= event,
2702 		.restart	= restart,
2703 	};
2704 	int ret = 0;
2705 
2706 	do {
2707 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2708 			return 0;
2709 
2710 		/* matches smp_wmb() in event_sched_in() */
2711 		smp_rmb();
2712 
2713 		/*
2714 		 * We only want to restart ACTIVE events, so if the event goes
2715 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2716 		 * fall through with ret==-ENXIO.
2717 		 */
2718 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2719 					__perf_event_stop, &sd);
2720 	} while (ret == -EAGAIN);
2721 
2722 	return ret;
2723 }
2724 
2725 /*
2726  * In order to contain the amount of racy and tricky in the address filter
2727  * configuration management, it is a two part process:
2728  *
2729  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2730  *      we update the addresses of corresponding vmas in
2731  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2732  * (p2) when an event is scheduled in (pmu::add), it calls
2733  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2734  *      if the generation has changed since the previous call.
2735  *
2736  * If (p1) happens while the event is active, we restart it to force (p2).
2737  *
2738  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2739  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2740  *     ioctl;
2741  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2742  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2743  *     for reading;
2744  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2745  *     of exec.
2746  */
perf_event_addr_filters_sync(struct perf_event * event)2747 void perf_event_addr_filters_sync(struct perf_event *event)
2748 {
2749 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2750 
2751 	if (!has_addr_filter(event))
2752 		return;
2753 
2754 	raw_spin_lock(&ifh->lock);
2755 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2756 		event->pmu->addr_filters_sync(event);
2757 		event->hw.addr_filters_gen = event->addr_filters_gen;
2758 	}
2759 	raw_spin_unlock(&ifh->lock);
2760 }
2761 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2762 
_perf_event_refresh(struct perf_event * event,int refresh)2763 static int _perf_event_refresh(struct perf_event *event, int refresh)
2764 {
2765 	/*
2766 	 * not supported on inherited events
2767 	 */
2768 	if (event->attr.inherit || !is_sampling_event(event))
2769 		return -EINVAL;
2770 
2771 	atomic_add(refresh, &event->event_limit);
2772 	_perf_event_enable(event);
2773 
2774 	return 0;
2775 }
2776 
2777 /*
2778  * See perf_event_disable()
2779  */
perf_event_refresh(struct perf_event * event,int refresh)2780 int perf_event_refresh(struct perf_event *event, int refresh)
2781 {
2782 	struct perf_event_context *ctx;
2783 	int ret;
2784 
2785 	ctx = perf_event_ctx_lock(event);
2786 	ret = _perf_event_refresh(event, refresh);
2787 	perf_event_ctx_unlock(event, ctx);
2788 
2789 	return ret;
2790 }
2791 EXPORT_SYMBOL_GPL(perf_event_refresh);
2792 
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)2793 static void ctx_sched_out(struct perf_event_context *ctx,
2794 			  struct perf_cpu_context *cpuctx,
2795 			  enum event_type_t event_type)
2796 {
2797 	int is_active = ctx->is_active;
2798 	struct perf_event *event;
2799 
2800 	lockdep_assert_held(&ctx->lock);
2801 
2802 	if (likely(!ctx->nr_events)) {
2803 		/*
2804 		 * See __perf_remove_from_context().
2805 		 */
2806 		WARN_ON_ONCE(ctx->is_active);
2807 		if (ctx->task)
2808 			WARN_ON_ONCE(cpuctx->task_ctx);
2809 		return;
2810 	}
2811 
2812 	ctx->is_active &= ~event_type;
2813 	if (!(ctx->is_active & EVENT_ALL))
2814 		ctx->is_active = 0;
2815 
2816 	if (ctx->task) {
2817 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2818 		if (!ctx->is_active)
2819 			cpuctx->task_ctx = NULL;
2820 	}
2821 
2822 	/*
2823 	 * Always update time if it was set; not only when it changes.
2824 	 * Otherwise we can 'forget' to update time for any but the last
2825 	 * context we sched out. For example:
2826 	 *
2827 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2828 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2829 	 *
2830 	 * would only update time for the pinned events.
2831 	 */
2832 	if (is_active & EVENT_TIME) {
2833 		/* update (and stop) ctx time */
2834 		update_context_time(ctx);
2835 		update_cgrp_time_from_cpuctx(cpuctx);
2836 	}
2837 
2838 	is_active ^= ctx->is_active; /* changed bits */
2839 
2840 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2841 		return;
2842 
2843 	perf_pmu_disable(ctx->pmu);
2844 	if (is_active & EVENT_PINNED) {
2845 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2846 			group_sched_out(event, cpuctx, ctx);
2847 	}
2848 
2849 	if (is_active & EVENT_FLEXIBLE) {
2850 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2851 			group_sched_out(event, cpuctx, ctx);
2852 	}
2853 	perf_pmu_enable(ctx->pmu);
2854 }
2855 
2856 /*
2857  * Test whether two contexts are equivalent, i.e. whether they have both been
2858  * cloned from the same version of the same context.
2859  *
2860  * Equivalence is measured using a generation number in the context that is
2861  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2862  * and list_del_event().
2863  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)2864 static int context_equiv(struct perf_event_context *ctx1,
2865 			 struct perf_event_context *ctx2)
2866 {
2867 	lockdep_assert_held(&ctx1->lock);
2868 	lockdep_assert_held(&ctx2->lock);
2869 
2870 	/* Pinning disables the swap optimization */
2871 	if (ctx1->pin_count || ctx2->pin_count)
2872 		return 0;
2873 
2874 	/* If ctx1 is the parent of ctx2 */
2875 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2876 		return 1;
2877 
2878 	/* If ctx2 is the parent of ctx1 */
2879 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2880 		return 1;
2881 
2882 	/*
2883 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2884 	 * hierarchy, see perf_event_init_context().
2885 	 */
2886 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2887 			ctx1->parent_gen == ctx2->parent_gen)
2888 		return 1;
2889 
2890 	/* Unmatched */
2891 	return 0;
2892 }
2893 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)2894 static void __perf_event_sync_stat(struct perf_event *event,
2895 				     struct perf_event *next_event)
2896 {
2897 	u64 value;
2898 
2899 	if (!event->attr.inherit_stat)
2900 		return;
2901 
2902 	/*
2903 	 * Update the event value, we cannot use perf_event_read()
2904 	 * because we're in the middle of a context switch and have IRQs
2905 	 * disabled, which upsets smp_call_function_single(), however
2906 	 * we know the event must be on the current CPU, therefore we
2907 	 * don't need to use it.
2908 	 */
2909 	switch (event->state) {
2910 	case PERF_EVENT_STATE_ACTIVE:
2911 		event->pmu->read(event);
2912 		/* fall-through */
2913 
2914 	case PERF_EVENT_STATE_INACTIVE:
2915 		update_event_times(event);
2916 		break;
2917 
2918 	default:
2919 		break;
2920 	}
2921 
2922 	/*
2923 	 * In order to keep per-task stats reliable we need to flip the event
2924 	 * values when we flip the contexts.
2925 	 */
2926 	value = local64_read(&next_event->count);
2927 	value = local64_xchg(&event->count, value);
2928 	local64_set(&next_event->count, value);
2929 
2930 	swap(event->total_time_enabled, next_event->total_time_enabled);
2931 	swap(event->total_time_running, next_event->total_time_running);
2932 
2933 	/*
2934 	 * Since we swizzled the values, update the user visible data too.
2935 	 */
2936 	perf_event_update_userpage(event);
2937 	perf_event_update_userpage(next_event);
2938 }
2939 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)2940 static void perf_event_sync_stat(struct perf_event_context *ctx,
2941 				   struct perf_event_context *next_ctx)
2942 {
2943 	struct perf_event *event, *next_event;
2944 
2945 	if (!ctx->nr_stat)
2946 		return;
2947 
2948 	update_context_time(ctx);
2949 
2950 	event = list_first_entry(&ctx->event_list,
2951 				   struct perf_event, event_entry);
2952 
2953 	next_event = list_first_entry(&next_ctx->event_list,
2954 					struct perf_event, event_entry);
2955 
2956 	while (&event->event_entry != &ctx->event_list &&
2957 	       &next_event->event_entry != &next_ctx->event_list) {
2958 
2959 		__perf_event_sync_stat(event, next_event);
2960 
2961 		event = list_next_entry(event, event_entry);
2962 		next_event = list_next_entry(next_event, event_entry);
2963 	}
2964 }
2965 
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)2966 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2967 					 struct task_struct *next)
2968 {
2969 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2970 	struct perf_event_context *next_ctx;
2971 	struct perf_event_context *parent, *next_parent;
2972 	struct perf_cpu_context *cpuctx;
2973 	int do_switch = 1;
2974 
2975 	if (likely(!ctx))
2976 		return;
2977 
2978 	cpuctx = __get_cpu_context(ctx);
2979 	if (!cpuctx->task_ctx)
2980 		return;
2981 
2982 	rcu_read_lock();
2983 	next_ctx = next->perf_event_ctxp[ctxn];
2984 	if (!next_ctx)
2985 		goto unlock;
2986 
2987 	parent = rcu_dereference(ctx->parent_ctx);
2988 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2989 
2990 	/* If neither context have a parent context; they cannot be clones. */
2991 	if (!parent && !next_parent)
2992 		goto unlock;
2993 
2994 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2995 		/*
2996 		 * Looks like the two contexts are clones, so we might be
2997 		 * able to optimize the context switch.  We lock both
2998 		 * contexts and check that they are clones under the
2999 		 * lock (including re-checking that neither has been
3000 		 * uncloned in the meantime).  It doesn't matter which
3001 		 * order we take the locks because no other cpu could
3002 		 * be trying to lock both of these tasks.
3003 		 */
3004 		raw_spin_lock(&ctx->lock);
3005 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3006 		if (context_equiv(ctx, next_ctx)) {
3007 			WRITE_ONCE(ctx->task, next);
3008 			WRITE_ONCE(next_ctx->task, task);
3009 
3010 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3011 
3012 			/*
3013 			 * RCU_INIT_POINTER here is safe because we've not
3014 			 * modified the ctx and the above modification of
3015 			 * ctx->task and ctx->task_ctx_data are immaterial
3016 			 * since those values are always verified under
3017 			 * ctx->lock which we're now holding.
3018 			 */
3019 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3020 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3021 
3022 			do_switch = 0;
3023 
3024 			perf_event_sync_stat(ctx, next_ctx);
3025 		}
3026 		raw_spin_unlock(&next_ctx->lock);
3027 		raw_spin_unlock(&ctx->lock);
3028 	}
3029 unlock:
3030 	rcu_read_unlock();
3031 
3032 	if (do_switch) {
3033 		raw_spin_lock(&ctx->lock);
3034 		task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3035 		raw_spin_unlock(&ctx->lock);
3036 	}
3037 }
3038 
3039 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3040 
perf_sched_cb_dec(struct pmu * pmu)3041 void perf_sched_cb_dec(struct pmu *pmu)
3042 {
3043 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3044 
3045 	this_cpu_dec(perf_sched_cb_usages);
3046 
3047 	if (!--cpuctx->sched_cb_usage)
3048 		list_del(&cpuctx->sched_cb_entry);
3049 }
3050 
3051 
perf_sched_cb_inc(struct pmu * pmu)3052 void perf_sched_cb_inc(struct pmu *pmu)
3053 {
3054 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3055 
3056 	if (!cpuctx->sched_cb_usage++)
3057 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3058 
3059 	this_cpu_inc(perf_sched_cb_usages);
3060 }
3061 
3062 /*
3063  * This function provides the context switch callback to the lower code
3064  * layer. It is invoked ONLY when the context switch callback is enabled.
3065  *
3066  * This callback is relevant even to per-cpu events; for example multi event
3067  * PEBS requires this to provide PID/TID information. This requires we flush
3068  * all queued PEBS records before we context switch to a new task.
3069  */
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)3070 static void perf_pmu_sched_task(struct task_struct *prev,
3071 				struct task_struct *next,
3072 				bool sched_in)
3073 {
3074 	struct perf_cpu_context *cpuctx;
3075 	struct pmu *pmu;
3076 
3077 	if (prev == next)
3078 		return;
3079 
3080 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3081 		pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3082 
3083 		if (WARN_ON_ONCE(!pmu->sched_task))
3084 			continue;
3085 
3086 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3087 		perf_pmu_disable(pmu);
3088 
3089 		pmu->sched_task(cpuctx->task_ctx, sched_in);
3090 
3091 		perf_pmu_enable(pmu);
3092 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3093 	}
3094 }
3095 
3096 static void perf_event_switch(struct task_struct *task,
3097 			      struct task_struct *next_prev, bool sched_in);
3098 
3099 #define for_each_task_context_nr(ctxn)					\
3100 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3101 
3102 /*
3103  * Called from scheduler to remove the events of the current task,
3104  * with interrupts disabled.
3105  *
3106  * We stop each event and update the event value in event->count.
3107  *
3108  * This does not protect us against NMI, but disable()
3109  * sets the disabled bit in the control field of event _before_
3110  * accessing the event control register. If a NMI hits, then it will
3111  * not restart the event.
3112  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)3113 void __perf_event_task_sched_out(struct task_struct *task,
3114 				 struct task_struct *next)
3115 {
3116 	int ctxn;
3117 
3118 	if (__this_cpu_read(perf_sched_cb_usages))
3119 		perf_pmu_sched_task(task, next, false);
3120 
3121 	if (atomic_read(&nr_switch_events))
3122 		perf_event_switch(task, next, false);
3123 
3124 	for_each_task_context_nr(ctxn)
3125 		perf_event_context_sched_out(task, ctxn, next);
3126 
3127 	/*
3128 	 * if cgroup events exist on this CPU, then we need
3129 	 * to check if we have to switch out PMU state.
3130 	 * cgroup event are system-wide mode only
3131 	 */
3132 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3133 		perf_cgroup_sched_out(task, next);
3134 }
3135 
3136 /*
3137  * Called with IRQs disabled
3138  */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3139 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3140 			      enum event_type_t event_type)
3141 {
3142 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3143 }
3144 
3145 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3146 ctx_pinned_sched_in(struct perf_event_context *ctx,
3147 		    struct perf_cpu_context *cpuctx)
3148 {
3149 	struct perf_event *event;
3150 
3151 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3152 		if (event->state <= PERF_EVENT_STATE_OFF)
3153 			continue;
3154 		if (!event_filter_match(event))
3155 			continue;
3156 
3157 		/* may need to reset tstamp_enabled */
3158 		if (is_cgroup_event(event))
3159 			perf_cgroup_mark_enabled(event, ctx);
3160 
3161 		if (group_can_go_on(event, cpuctx, 1))
3162 			group_sched_in(event, cpuctx, ctx);
3163 
3164 		/*
3165 		 * If this pinned group hasn't been scheduled,
3166 		 * put it in error state.
3167 		 */
3168 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3169 			update_group_times(event);
3170 			event->state = PERF_EVENT_STATE_ERROR;
3171 		}
3172 	}
3173 }
3174 
3175 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3176 ctx_flexible_sched_in(struct perf_event_context *ctx,
3177 		      struct perf_cpu_context *cpuctx)
3178 {
3179 	struct perf_event *event;
3180 	int can_add_hw = 1;
3181 
3182 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3183 		/* Ignore events in OFF or ERROR state */
3184 		if (event->state <= PERF_EVENT_STATE_OFF)
3185 			continue;
3186 		/*
3187 		 * Listen to the 'cpu' scheduling filter constraint
3188 		 * of events:
3189 		 */
3190 		if (!event_filter_match(event))
3191 			continue;
3192 
3193 		/* may need to reset tstamp_enabled */
3194 		if (is_cgroup_event(event))
3195 			perf_cgroup_mark_enabled(event, ctx);
3196 
3197 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3198 			if (group_sched_in(event, cpuctx, ctx))
3199 				can_add_hw = 0;
3200 		}
3201 	}
3202 }
3203 
3204 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3205 ctx_sched_in(struct perf_event_context *ctx,
3206 	     struct perf_cpu_context *cpuctx,
3207 	     enum event_type_t event_type,
3208 	     struct task_struct *task)
3209 {
3210 	int is_active = ctx->is_active;
3211 	u64 now;
3212 
3213 	lockdep_assert_held(&ctx->lock);
3214 
3215 	if (likely(!ctx->nr_events))
3216 		return;
3217 
3218 	ctx->is_active |= (event_type | EVENT_TIME);
3219 	if (ctx->task) {
3220 		if (!is_active)
3221 			cpuctx->task_ctx = ctx;
3222 		else
3223 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3224 	}
3225 
3226 	is_active ^= ctx->is_active; /* changed bits */
3227 
3228 	if (is_active & EVENT_TIME) {
3229 		/* start ctx time */
3230 		now = perf_clock();
3231 		ctx->timestamp = now;
3232 		perf_cgroup_set_timestamp(task, ctx);
3233 	}
3234 
3235 	/*
3236 	 * First go through the list and put on any pinned groups
3237 	 * in order to give them the best chance of going on.
3238 	 */
3239 	if (is_active & EVENT_PINNED)
3240 		ctx_pinned_sched_in(ctx, cpuctx);
3241 
3242 	/* Then walk through the lower prio flexible groups */
3243 	if (is_active & EVENT_FLEXIBLE)
3244 		ctx_flexible_sched_in(ctx, cpuctx);
3245 }
3246 
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3247 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3248 			     enum event_type_t event_type,
3249 			     struct task_struct *task)
3250 {
3251 	struct perf_event_context *ctx = &cpuctx->ctx;
3252 
3253 	ctx_sched_in(ctx, cpuctx, event_type, task);
3254 }
3255 
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3256 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3257 					struct task_struct *task)
3258 {
3259 	struct perf_cpu_context *cpuctx;
3260 
3261 	cpuctx = __get_cpu_context(ctx);
3262 	if (cpuctx->task_ctx == ctx)
3263 		return;
3264 
3265 	perf_ctx_lock(cpuctx, ctx);
3266 	/*
3267 	 * We must check ctx->nr_events while holding ctx->lock, such
3268 	 * that we serialize against perf_install_in_context().
3269 	 */
3270 	if (!ctx->nr_events)
3271 		goto unlock;
3272 
3273 	perf_pmu_disable(ctx->pmu);
3274 	/*
3275 	 * We want to keep the following priority order:
3276 	 * cpu pinned (that don't need to move), task pinned,
3277 	 * cpu flexible, task flexible.
3278 	 *
3279 	 * However, if task's ctx is not carrying any pinned
3280 	 * events, no need to flip the cpuctx's events around.
3281 	 */
3282 	if (!list_empty(&ctx->pinned_groups))
3283 		cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3284 	perf_event_sched_in(cpuctx, ctx, task);
3285 	perf_pmu_enable(ctx->pmu);
3286 
3287 unlock:
3288 	perf_ctx_unlock(cpuctx, ctx);
3289 }
3290 
3291 /*
3292  * Called from scheduler to add the events of the current task
3293  * with interrupts disabled.
3294  *
3295  * We restore the event value and then enable it.
3296  *
3297  * This does not protect us against NMI, but enable()
3298  * sets the enabled bit in the control field of event _before_
3299  * accessing the event control register. If a NMI hits, then it will
3300  * keep the event running.
3301  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3302 void __perf_event_task_sched_in(struct task_struct *prev,
3303 				struct task_struct *task)
3304 {
3305 	struct perf_event_context *ctx;
3306 	int ctxn;
3307 
3308 	/*
3309 	 * If cgroup events exist on this CPU, then we need to check if we have
3310 	 * to switch in PMU state; cgroup event are system-wide mode only.
3311 	 *
3312 	 * Since cgroup events are CPU events, we must schedule these in before
3313 	 * we schedule in the task events.
3314 	 */
3315 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3316 		perf_cgroup_sched_in(prev, task);
3317 
3318 	for_each_task_context_nr(ctxn) {
3319 		ctx = task->perf_event_ctxp[ctxn];
3320 		if (likely(!ctx))
3321 			continue;
3322 
3323 		perf_event_context_sched_in(ctx, task);
3324 	}
3325 
3326 	if (atomic_read(&nr_switch_events))
3327 		perf_event_switch(task, prev, true);
3328 
3329 	if (__this_cpu_read(perf_sched_cb_usages))
3330 		perf_pmu_sched_task(prev, task, true);
3331 }
3332 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3333 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3334 {
3335 	u64 frequency = event->attr.sample_freq;
3336 	u64 sec = NSEC_PER_SEC;
3337 	u64 divisor, dividend;
3338 
3339 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3340 
3341 	count_fls = fls64(count);
3342 	nsec_fls = fls64(nsec);
3343 	frequency_fls = fls64(frequency);
3344 	sec_fls = 30;
3345 
3346 	/*
3347 	 * We got @count in @nsec, with a target of sample_freq HZ
3348 	 * the target period becomes:
3349 	 *
3350 	 *             @count * 10^9
3351 	 * period = -------------------
3352 	 *          @nsec * sample_freq
3353 	 *
3354 	 */
3355 
3356 	/*
3357 	 * Reduce accuracy by one bit such that @a and @b converge
3358 	 * to a similar magnitude.
3359 	 */
3360 #define REDUCE_FLS(a, b)		\
3361 do {					\
3362 	if (a##_fls > b##_fls) {	\
3363 		a >>= 1;		\
3364 		a##_fls--;		\
3365 	} else {			\
3366 		b >>= 1;		\
3367 		b##_fls--;		\
3368 	}				\
3369 } while (0)
3370 
3371 	/*
3372 	 * Reduce accuracy until either term fits in a u64, then proceed with
3373 	 * the other, so that finally we can do a u64/u64 division.
3374 	 */
3375 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3376 		REDUCE_FLS(nsec, frequency);
3377 		REDUCE_FLS(sec, count);
3378 	}
3379 
3380 	if (count_fls + sec_fls > 64) {
3381 		divisor = nsec * frequency;
3382 
3383 		while (count_fls + sec_fls > 64) {
3384 			REDUCE_FLS(count, sec);
3385 			divisor >>= 1;
3386 		}
3387 
3388 		dividend = count * sec;
3389 	} else {
3390 		dividend = count * sec;
3391 
3392 		while (nsec_fls + frequency_fls > 64) {
3393 			REDUCE_FLS(nsec, frequency);
3394 			dividend >>= 1;
3395 		}
3396 
3397 		divisor = nsec * frequency;
3398 	}
3399 
3400 	if (!divisor)
3401 		return dividend;
3402 
3403 	return div64_u64(dividend, divisor);
3404 }
3405 
3406 static DEFINE_PER_CPU(int, perf_throttled_count);
3407 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3408 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)3409 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3410 {
3411 	struct hw_perf_event *hwc = &event->hw;
3412 	s64 period, sample_period;
3413 	s64 delta;
3414 
3415 	period = perf_calculate_period(event, nsec, count);
3416 
3417 	delta = (s64)(period - hwc->sample_period);
3418 	delta = (delta + 7) / 8; /* low pass filter */
3419 
3420 	sample_period = hwc->sample_period + delta;
3421 
3422 	if (!sample_period)
3423 		sample_period = 1;
3424 
3425 	hwc->sample_period = sample_period;
3426 
3427 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3428 		if (disable)
3429 			event->pmu->stop(event, PERF_EF_UPDATE);
3430 
3431 		local64_set(&hwc->period_left, 0);
3432 
3433 		if (disable)
3434 			event->pmu->start(event, PERF_EF_RELOAD);
3435 	}
3436 }
3437 
3438 /*
3439  * combine freq adjustment with unthrottling to avoid two passes over the
3440  * events. At the same time, make sure, having freq events does not change
3441  * the rate of unthrottling as that would introduce bias.
3442  */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)3443 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3444 					   int needs_unthr)
3445 {
3446 	struct perf_event *event;
3447 	struct hw_perf_event *hwc;
3448 	u64 now, period = TICK_NSEC;
3449 	s64 delta;
3450 
3451 	/*
3452 	 * only need to iterate over all events iff:
3453 	 * - context have events in frequency mode (needs freq adjust)
3454 	 * - there are events to unthrottle on this cpu
3455 	 */
3456 	if (!(ctx->nr_freq || needs_unthr))
3457 		return;
3458 
3459 	raw_spin_lock(&ctx->lock);
3460 	perf_pmu_disable(ctx->pmu);
3461 
3462 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3463 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3464 			continue;
3465 
3466 		if (!event_filter_match(event))
3467 			continue;
3468 
3469 		perf_pmu_disable(event->pmu);
3470 
3471 		hwc = &event->hw;
3472 
3473 		if (hwc->interrupts == MAX_INTERRUPTS) {
3474 			hwc->interrupts = 0;
3475 			perf_log_throttle(event, 1);
3476 			event->pmu->start(event, 0);
3477 		}
3478 
3479 		if (!event->attr.freq || !event->attr.sample_freq)
3480 			goto next;
3481 
3482 		/*
3483 		 * stop the event and update event->count
3484 		 */
3485 		event->pmu->stop(event, PERF_EF_UPDATE);
3486 
3487 		now = local64_read(&event->count);
3488 		delta = now - hwc->freq_count_stamp;
3489 		hwc->freq_count_stamp = now;
3490 
3491 		/*
3492 		 * restart the event
3493 		 * reload only if value has changed
3494 		 * we have stopped the event so tell that
3495 		 * to perf_adjust_period() to avoid stopping it
3496 		 * twice.
3497 		 */
3498 		if (delta > 0)
3499 			perf_adjust_period(event, period, delta, false);
3500 
3501 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3502 	next:
3503 		perf_pmu_enable(event->pmu);
3504 	}
3505 
3506 	perf_pmu_enable(ctx->pmu);
3507 	raw_spin_unlock(&ctx->lock);
3508 }
3509 
3510 /*
3511  * Round-robin a context's events:
3512  */
rotate_ctx(struct perf_event_context * ctx)3513 static void rotate_ctx(struct perf_event_context *ctx)
3514 {
3515 	/*
3516 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3517 	 * disabled by the inheritance code.
3518 	 */
3519 	if (!ctx->rotate_disable)
3520 		list_rotate_left(&ctx->flexible_groups);
3521 }
3522 
perf_rotate_context(struct perf_cpu_context * cpuctx)3523 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3524 {
3525 	struct perf_event_context *ctx = NULL;
3526 	int rotate = 0;
3527 
3528 	if (cpuctx->ctx.nr_events) {
3529 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3530 			rotate = 1;
3531 	}
3532 
3533 	ctx = cpuctx->task_ctx;
3534 	if (ctx && ctx->nr_events) {
3535 		if (ctx->nr_events != ctx->nr_active)
3536 			rotate = 1;
3537 	}
3538 
3539 	if (!rotate)
3540 		goto done;
3541 
3542 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3543 	perf_pmu_disable(cpuctx->ctx.pmu);
3544 
3545 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3546 	if (ctx)
3547 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3548 
3549 	rotate_ctx(&cpuctx->ctx);
3550 	if (ctx)
3551 		rotate_ctx(ctx);
3552 
3553 	perf_event_sched_in(cpuctx, ctx, current);
3554 
3555 	perf_pmu_enable(cpuctx->ctx.pmu);
3556 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3557 done:
3558 
3559 	return rotate;
3560 }
3561 
perf_event_task_tick(void)3562 void perf_event_task_tick(void)
3563 {
3564 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3565 	struct perf_event_context *ctx, *tmp;
3566 	int throttled;
3567 
3568 	WARN_ON(!irqs_disabled());
3569 
3570 	__this_cpu_inc(perf_throttled_seq);
3571 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3572 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3573 
3574 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3575 		perf_adjust_freq_unthr_context(ctx, throttled);
3576 }
3577 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)3578 static int event_enable_on_exec(struct perf_event *event,
3579 				struct perf_event_context *ctx)
3580 {
3581 	if (!event->attr.enable_on_exec)
3582 		return 0;
3583 
3584 	event->attr.enable_on_exec = 0;
3585 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3586 		return 0;
3587 
3588 	__perf_event_mark_enabled(event);
3589 
3590 	return 1;
3591 }
3592 
3593 /*
3594  * Enable all of a task's events that have been marked enable-on-exec.
3595  * This expects task == current.
3596  */
perf_event_enable_on_exec(int ctxn)3597 static void perf_event_enable_on_exec(int ctxn)
3598 {
3599 	struct perf_event_context *ctx, *clone_ctx = NULL;
3600 	enum event_type_t event_type = 0;
3601 	struct perf_cpu_context *cpuctx;
3602 	struct perf_event *event;
3603 	unsigned long flags;
3604 	int enabled = 0;
3605 
3606 	local_irq_save(flags);
3607 	ctx = current->perf_event_ctxp[ctxn];
3608 	if (!ctx || !ctx->nr_events)
3609 		goto out;
3610 
3611 	cpuctx = __get_cpu_context(ctx);
3612 	perf_ctx_lock(cpuctx, ctx);
3613 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3614 	list_for_each_entry(event, &ctx->event_list, event_entry) {
3615 		enabled |= event_enable_on_exec(event, ctx);
3616 		event_type |= get_event_type(event);
3617 	}
3618 
3619 	/*
3620 	 * Unclone and reschedule this context if we enabled any event.
3621 	 */
3622 	if (enabled) {
3623 		clone_ctx = unclone_ctx(ctx);
3624 		ctx_resched(cpuctx, ctx, event_type);
3625 	} else {
3626 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3627 	}
3628 	perf_ctx_unlock(cpuctx, ctx);
3629 
3630 out:
3631 	local_irq_restore(flags);
3632 
3633 	if (clone_ctx)
3634 		put_ctx(clone_ctx);
3635 }
3636 
3637 struct perf_read_data {
3638 	struct perf_event *event;
3639 	bool group;
3640 	int ret;
3641 };
3642 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)3643 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3644 {
3645 	u16 local_pkg, event_pkg;
3646 
3647 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3648 		int local_cpu = smp_processor_id();
3649 
3650 		event_pkg = topology_physical_package_id(event_cpu);
3651 		local_pkg = topology_physical_package_id(local_cpu);
3652 
3653 		if (event_pkg == local_pkg)
3654 			return local_cpu;
3655 	}
3656 
3657 	return event_cpu;
3658 }
3659 
3660 /*
3661  * Cross CPU call to read the hardware event
3662  */
__perf_event_read(void * info)3663 static void __perf_event_read(void *info)
3664 {
3665 	struct perf_read_data *data = info;
3666 	struct perf_event *sub, *event = data->event;
3667 	struct perf_event_context *ctx = event->ctx;
3668 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3669 	struct pmu *pmu = event->pmu;
3670 
3671 	/*
3672 	 * If this is a task context, we need to check whether it is
3673 	 * the current task context of this cpu.  If not it has been
3674 	 * scheduled out before the smp call arrived.  In that case
3675 	 * event->count would have been updated to a recent sample
3676 	 * when the event was scheduled out.
3677 	 */
3678 	if (ctx->task && cpuctx->task_ctx != ctx)
3679 		return;
3680 
3681 	raw_spin_lock(&ctx->lock);
3682 	if (ctx->is_active) {
3683 		update_context_time(ctx);
3684 		update_cgrp_time_from_event(event);
3685 	}
3686 
3687 	update_event_times(event);
3688 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3689 		goto unlock;
3690 
3691 	if (!data->group) {
3692 		pmu->read(event);
3693 		data->ret = 0;
3694 		goto unlock;
3695 	}
3696 
3697 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3698 
3699 	pmu->read(event);
3700 
3701 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3702 		update_event_times(sub);
3703 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3704 			/*
3705 			 * Use sibling's PMU rather than @event's since
3706 			 * sibling could be on different (eg: software) PMU.
3707 			 */
3708 			sub->pmu->read(sub);
3709 		}
3710 	}
3711 
3712 	data->ret = pmu->commit_txn(pmu);
3713 
3714 unlock:
3715 	raw_spin_unlock(&ctx->lock);
3716 }
3717 
perf_event_count(struct perf_event * event)3718 static inline u64 perf_event_count(struct perf_event *event)
3719 {
3720 	return local64_read(&event->count) + atomic64_read(&event->child_count);
3721 }
3722 
3723 /*
3724  * NMI-safe method to read a local event, that is an event that
3725  * is:
3726  *   - either for the current task, or for this CPU
3727  *   - does not have inherit set, for inherited task events
3728  *     will not be local and we cannot read them atomically
3729  *   - must not have a pmu::count method
3730  */
perf_event_read_local(struct perf_event * event,u64 * value)3731 int perf_event_read_local(struct perf_event *event, u64 *value)
3732 {
3733 	unsigned long flags;
3734 	int ret = 0;
3735 
3736 	/*
3737 	 * Disabling interrupts avoids all counter scheduling (context
3738 	 * switches, timer based rotation and IPIs).
3739 	 */
3740 	local_irq_save(flags);
3741 
3742 	/*
3743 	 * It must not be an event with inherit set, we cannot read
3744 	 * all child counters from atomic context.
3745 	 */
3746 	if (event->attr.inherit) {
3747 		ret = -EOPNOTSUPP;
3748 		goto out;
3749 	}
3750 
3751 	/* If this is a per-task event, it must be for current */
3752 	if ((event->attach_state & PERF_ATTACH_TASK) &&
3753 	    event->hw.target != current) {
3754 		ret = -EINVAL;
3755 		goto out;
3756 	}
3757 
3758 	/* If this is a per-CPU event, it must be for this CPU */
3759 	if (!(event->attach_state & PERF_ATTACH_TASK) &&
3760 	    event->cpu != smp_processor_id()) {
3761 		ret = -EINVAL;
3762 		goto out;
3763 	}
3764 
3765 	/* If this is a pinned event it must be running on this CPU */
3766 	if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3767 		ret = -EBUSY;
3768 		goto out;
3769 	}
3770 
3771 	/*
3772 	 * If the event is currently on this CPU, its either a per-task event,
3773 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3774 	 * oncpu == -1).
3775 	 */
3776 	if (event->oncpu == smp_processor_id())
3777 		event->pmu->read(event);
3778 
3779 	*value = local64_read(&event->count);
3780 out:
3781 	local_irq_restore(flags);
3782 
3783 	return ret;
3784 }
3785 
perf_event_read(struct perf_event * event,bool group)3786 static int perf_event_read(struct perf_event *event, bool group)
3787 {
3788 	int event_cpu, ret = 0;
3789 
3790 	/*
3791 	 * If event is enabled and currently active on a CPU, update the
3792 	 * value in the event structure:
3793 	 */
3794 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3795 		struct perf_read_data data = {
3796 			.event = event,
3797 			.group = group,
3798 			.ret = 0,
3799 		};
3800 
3801 		event_cpu = READ_ONCE(event->oncpu);
3802 		if ((unsigned)event_cpu >= nr_cpu_ids)
3803 			return 0;
3804 
3805 		preempt_disable();
3806 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3807 
3808 		/*
3809 		 * Purposely ignore the smp_call_function_single() return
3810 		 * value.
3811 		 *
3812 		 * If event_cpu isn't a valid CPU it means the event got
3813 		 * scheduled out and that will have updated the event count.
3814 		 *
3815 		 * Therefore, either way, we'll have an up-to-date event count
3816 		 * after this.
3817 		 */
3818 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3819 		preempt_enable();
3820 		ret = data.ret;
3821 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3822 		struct perf_event_context *ctx = event->ctx;
3823 		unsigned long flags;
3824 
3825 		raw_spin_lock_irqsave(&ctx->lock, flags);
3826 		/*
3827 		 * may read while context is not active
3828 		 * (e.g., thread is blocked), in that case
3829 		 * we cannot update context time
3830 		 */
3831 		if (ctx->is_active) {
3832 			update_context_time(ctx);
3833 			update_cgrp_time_from_event(event);
3834 		}
3835 		if (group)
3836 			update_group_times(event);
3837 		else
3838 			update_event_times(event);
3839 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3840 	}
3841 
3842 	return ret;
3843 }
3844 
3845 /*
3846  * Initialize the perf_event context in a task_struct:
3847  */
__perf_event_init_context(struct perf_event_context * ctx)3848 static void __perf_event_init_context(struct perf_event_context *ctx)
3849 {
3850 	raw_spin_lock_init(&ctx->lock);
3851 	mutex_init(&ctx->mutex);
3852 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3853 	INIT_LIST_HEAD(&ctx->pinned_groups);
3854 	INIT_LIST_HEAD(&ctx->flexible_groups);
3855 	INIT_LIST_HEAD(&ctx->event_list);
3856 	atomic_set(&ctx->refcount, 1);
3857 }
3858 
3859 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)3860 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3861 {
3862 	struct perf_event_context *ctx;
3863 
3864 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3865 	if (!ctx)
3866 		return NULL;
3867 
3868 	__perf_event_init_context(ctx);
3869 	if (task) {
3870 		ctx->task = task;
3871 		get_task_struct(task);
3872 	}
3873 	ctx->pmu = pmu;
3874 
3875 	return ctx;
3876 }
3877 
3878 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)3879 find_lively_task_by_vpid(pid_t vpid)
3880 {
3881 	struct task_struct *task;
3882 
3883 	rcu_read_lock();
3884 	if (!vpid)
3885 		task = current;
3886 	else
3887 		task = find_task_by_vpid(vpid);
3888 	if (task)
3889 		get_task_struct(task);
3890 	rcu_read_unlock();
3891 
3892 	if (!task)
3893 		return ERR_PTR(-ESRCH);
3894 
3895 	return task;
3896 }
3897 
3898 /*
3899  * Returns a matching context with refcount and pincount.
3900  */
3901 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)3902 find_get_context(struct pmu *pmu, struct task_struct *task,
3903 		struct perf_event *event)
3904 {
3905 	struct perf_event_context *ctx, *clone_ctx = NULL;
3906 	struct perf_cpu_context *cpuctx;
3907 	void *task_ctx_data = NULL;
3908 	unsigned long flags;
3909 	int ctxn, err;
3910 	int cpu = event->cpu;
3911 
3912 	if (!task) {
3913 		/* Must be root to operate on a CPU event: */
3914 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3915 			return ERR_PTR(-EACCES);
3916 
3917 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3918 		ctx = &cpuctx->ctx;
3919 		get_ctx(ctx);
3920 		++ctx->pin_count;
3921 
3922 		return ctx;
3923 	}
3924 
3925 	err = -EINVAL;
3926 	ctxn = pmu->task_ctx_nr;
3927 	if (ctxn < 0)
3928 		goto errout;
3929 
3930 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3931 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3932 		if (!task_ctx_data) {
3933 			err = -ENOMEM;
3934 			goto errout;
3935 		}
3936 	}
3937 
3938 retry:
3939 	ctx = perf_lock_task_context(task, ctxn, &flags);
3940 	if (ctx) {
3941 		clone_ctx = unclone_ctx(ctx);
3942 		++ctx->pin_count;
3943 
3944 		if (task_ctx_data && !ctx->task_ctx_data) {
3945 			ctx->task_ctx_data = task_ctx_data;
3946 			task_ctx_data = NULL;
3947 		}
3948 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3949 
3950 		if (clone_ctx)
3951 			put_ctx(clone_ctx);
3952 	} else {
3953 		ctx = alloc_perf_context(pmu, task);
3954 		err = -ENOMEM;
3955 		if (!ctx)
3956 			goto errout;
3957 
3958 		if (task_ctx_data) {
3959 			ctx->task_ctx_data = task_ctx_data;
3960 			task_ctx_data = NULL;
3961 		}
3962 
3963 		err = 0;
3964 		mutex_lock(&task->perf_event_mutex);
3965 		/*
3966 		 * If it has already passed perf_event_exit_task().
3967 		 * we must see PF_EXITING, it takes this mutex too.
3968 		 */
3969 		if (task->flags & PF_EXITING)
3970 			err = -ESRCH;
3971 		else if (task->perf_event_ctxp[ctxn])
3972 			err = -EAGAIN;
3973 		else {
3974 			get_ctx(ctx);
3975 			++ctx->pin_count;
3976 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3977 		}
3978 		mutex_unlock(&task->perf_event_mutex);
3979 
3980 		if (unlikely(err)) {
3981 			put_ctx(ctx);
3982 
3983 			if (err == -EAGAIN)
3984 				goto retry;
3985 			goto errout;
3986 		}
3987 	}
3988 
3989 	kfree(task_ctx_data);
3990 	return ctx;
3991 
3992 errout:
3993 	kfree(task_ctx_data);
3994 	return ERR_PTR(err);
3995 }
3996 
3997 static void perf_event_free_filter(struct perf_event *event);
3998 static void perf_event_free_bpf_prog(struct perf_event *event);
3999 
free_event_rcu(struct rcu_head * head)4000 static void free_event_rcu(struct rcu_head *head)
4001 {
4002 	struct perf_event *event;
4003 
4004 	event = container_of(head, struct perf_event, rcu_head);
4005 	if (event->ns)
4006 		put_pid_ns(event->ns);
4007 	perf_event_free_filter(event);
4008 	kfree(event);
4009 }
4010 
4011 static void ring_buffer_attach(struct perf_event *event,
4012 			       struct ring_buffer *rb);
4013 
detach_sb_event(struct perf_event * event)4014 static void detach_sb_event(struct perf_event *event)
4015 {
4016 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4017 
4018 	raw_spin_lock(&pel->lock);
4019 	list_del_rcu(&event->sb_list);
4020 	raw_spin_unlock(&pel->lock);
4021 }
4022 
is_sb_event(struct perf_event * event)4023 static bool is_sb_event(struct perf_event *event)
4024 {
4025 	struct perf_event_attr *attr = &event->attr;
4026 
4027 	if (event->parent)
4028 		return false;
4029 
4030 	if (event->attach_state & PERF_ATTACH_TASK)
4031 		return false;
4032 
4033 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4034 	    attr->comm || attr->comm_exec ||
4035 	    attr->task ||
4036 	    attr->context_switch)
4037 		return true;
4038 	return false;
4039 }
4040 
unaccount_pmu_sb_event(struct perf_event * event)4041 static void unaccount_pmu_sb_event(struct perf_event *event)
4042 {
4043 	if (is_sb_event(event))
4044 		detach_sb_event(event);
4045 }
4046 
unaccount_event_cpu(struct perf_event * event,int cpu)4047 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4048 {
4049 	if (event->parent)
4050 		return;
4051 
4052 	if (is_cgroup_event(event))
4053 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4054 }
4055 
4056 #ifdef CONFIG_NO_HZ_FULL
4057 static DEFINE_SPINLOCK(nr_freq_lock);
4058 #endif
4059 
unaccount_freq_event_nohz(void)4060 static void unaccount_freq_event_nohz(void)
4061 {
4062 #ifdef CONFIG_NO_HZ_FULL
4063 	spin_lock(&nr_freq_lock);
4064 	if (atomic_dec_and_test(&nr_freq_events))
4065 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4066 	spin_unlock(&nr_freq_lock);
4067 #endif
4068 }
4069 
unaccount_freq_event(void)4070 static void unaccount_freq_event(void)
4071 {
4072 	if (tick_nohz_full_enabled())
4073 		unaccount_freq_event_nohz();
4074 	else
4075 		atomic_dec(&nr_freq_events);
4076 }
4077 
unaccount_event(struct perf_event * event)4078 static void unaccount_event(struct perf_event *event)
4079 {
4080 	bool dec = false;
4081 
4082 	if (event->parent)
4083 		return;
4084 
4085 	if (event->attach_state & PERF_ATTACH_TASK)
4086 		dec = true;
4087 	if (event->attr.mmap || event->attr.mmap_data)
4088 		atomic_dec(&nr_mmap_events);
4089 	if (event->attr.comm)
4090 		atomic_dec(&nr_comm_events);
4091 	if (event->attr.namespaces)
4092 		atomic_dec(&nr_namespaces_events);
4093 	if (event->attr.task)
4094 		atomic_dec(&nr_task_events);
4095 	if (event->attr.freq)
4096 		unaccount_freq_event();
4097 	if (event->attr.context_switch) {
4098 		dec = true;
4099 		atomic_dec(&nr_switch_events);
4100 	}
4101 	if (is_cgroup_event(event))
4102 		dec = true;
4103 	if (has_branch_stack(event))
4104 		dec = true;
4105 
4106 	if (dec) {
4107 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
4108 			schedule_delayed_work(&perf_sched_work, HZ);
4109 	}
4110 
4111 	unaccount_event_cpu(event, event->cpu);
4112 
4113 	unaccount_pmu_sb_event(event);
4114 }
4115 
perf_sched_delayed(struct work_struct * work)4116 static void perf_sched_delayed(struct work_struct *work)
4117 {
4118 	mutex_lock(&perf_sched_mutex);
4119 	if (atomic_dec_and_test(&perf_sched_count))
4120 		static_branch_disable(&perf_sched_events);
4121 	mutex_unlock(&perf_sched_mutex);
4122 }
4123 
4124 /*
4125  * The following implement mutual exclusion of events on "exclusive" pmus
4126  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4127  * at a time, so we disallow creating events that might conflict, namely:
4128  *
4129  *  1) cpu-wide events in the presence of per-task events,
4130  *  2) per-task events in the presence of cpu-wide events,
4131  *  3) two matching events on the same context.
4132  *
4133  * The former two cases are handled in the allocation path (perf_event_alloc(),
4134  * _free_event()), the latter -- before the first perf_install_in_context().
4135  */
exclusive_event_init(struct perf_event * event)4136 static int exclusive_event_init(struct perf_event *event)
4137 {
4138 	struct pmu *pmu = event->pmu;
4139 
4140 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4141 		return 0;
4142 
4143 	/*
4144 	 * Prevent co-existence of per-task and cpu-wide events on the
4145 	 * same exclusive pmu.
4146 	 *
4147 	 * Negative pmu::exclusive_cnt means there are cpu-wide
4148 	 * events on this "exclusive" pmu, positive means there are
4149 	 * per-task events.
4150 	 *
4151 	 * Since this is called in perf_event_alloc() path, event::ctx
4152 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4153 	 * to mean "per-task event", because unlike other attach states it
4154 	 * never gets cleared.
4155 	 */
4156 	if (event->attach_state & PERF_ATTACH_TASK) {
4157 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4158 			return -EBUSY;
4159 	} else {
4160 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4161 			return -EBUSY;
4162 	}
4163 
4164 	return 0;
4165 }
4166 
exclusive_event_destroy(struct perf_event * event)4167 static void exclusive_event_destroy(struct perf_event *event)
4168 {
4169 	struct pmu *pmu = event->pmu;
4170 
4171 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4172 		return;
4173 
4174 	/* see comment in exclusive_event_init() */
4175 	if (event->attach_state & PERF_ATTACH_TASK)
4176 		atomic_dec(&pmu->exclusive_cnt);
4177 	else
4178 		atomic_inc(&pmu->exclusive_cnt);
4179 }
4180 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4181 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4182 {
4183 	if ((e1->pmu == e2->pmu) &&
4184 	    (e1->cpu == e2->cpu ||
4185 	     e1->cpu == -1 ||
4186 	     e2->cpu == -1))
4187 		return true;
4188 	return false;
4189 }
4190 
4191 /* Called under the same ctx::mutex as perf_install_in_context() */
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4192 static bool exclusive_event_installable(struct perf_event *event,
4193 					struct perf_event_context *ctx)
4194 {
4195 	struct perf_event *iter_event;
4196 	struct pmu *pmu = event->pmu;
4197 
4198 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4199 		return true;
4200 
4201 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4202 		if (exclusive_event_match(iter_event, event))
4203 			return false;
4204 	}
4205 
4206 	return true;
4207 }
4208 
4209 static void perf_addr_filters_splice(struct perf_event *event,
4210 				       struct list_head *head);
4211 
_free_event(struct perf_event * event)4212 static void _free_event(struct perf_event *event)
4213 {
4214 	irq_work_sync(&event->pending);
4215 
4216 	unaccount_event(event);
4217 
4218 	if (event->rb) {
4219 		/*
4220 		 * Can happen when we close an event with re-directed output.
4221 		 *
4222 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4223 		 * over us; possibly making our ring_buffer_put() the last.
4224 		 */
4225 		mutex_lock(&event->mmap_mutex);
4226 		ring_buffer_attach(event, NULL);
4227 		mutex_unlock(&event->mmap_mutex);
4228 	}
4229 
4230 	if (is_cgroup_event(event))
4231 		perf_detach_cgroup(event);
4232 
4233 	if (!event->parent) {
4234 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4235 			put_callchain_buffers();
4236 	}
4237 
4238 	perf_event_free_bpf_prog(event);
4239 	perf_addr_filters_splice(event, NULL);
4240 	kfree(event->addr_filters_offs);
4241 
4242 	if (event->destroy)
4243 		event->destroy(event);
4244 
4245 	if (event->ctx)
4246 		put_ctx(event->ctx);
4247 
4248 	if (event->hw.target)
4249 		put_task_struct(event->hw.target);
4250 
4251 	exclusive_event_destroy(event);
4252 	module_put(event->pmu->module);
4253 
4254 	call_rcu(&event->rcu_head, free_event_rcu);
4255 }
4256 
4257 /*
4258  * Used to free events which have a known refcount of 1, such as in error paths
4259  * where the event isn't exposed yet and inherited events.
4260  */
free_event(struct perf_event * event)4261 static void free_event(struct perf_event *event)
4262 {
4263 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4264 				"unexpected event refcount: %ld; ptr=%p\n",
4265 				atomic_long_read(&event->refcount), event)) {
4266 		/* leak to avoid use-after-free */
4267 		return;
4268 	}
4269 
4270 	_free_event(event);
4271 }
4272 
4273 /*
4274  * Remove user event from the owner task.
4275  */
perf_remove_from_owner(struct perf_event * event)4276 static void perf_remove_from_owner(struct perf_event *event)
4277 {
4278 	struct task_struct *owner;
4279 
4280 	rcu_read_lock();
4281 	/*
4282 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4283 	 * observe !owner it means the list deletion is complete and we can
4284 	 * indeed free this event, otherwise we need to serialize on
4285 	 * owner->perf_event_mutex.
4286 	 */
4287 	owner = READ_ONCE(event->owner);
4288 	if (owner) {
4289 		/*
4290 		 * Since delayed_put_task_struct() also drops the last
4291 		 * task reference we can safely take a new reference
4292 		 * while holding the rcu_read_lock().
4293 		 */
4294 		get_task_struct(owner);
4295 	}
4296 	rcu_read_unlock();
4297 
4298 	if (owner) {
4299 		/*
4300 		 * If we're here through perf_event_exit_task() we're already
4301 		 * holding ctx->mutex which would be an inversion wrt. the
4302 		 * normal lock order.
4303 		 *
4304 		 * However we can safely take this lock because its the child
4305 		 * ctx->mutex.
4306 		 */
4307 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4308 
4309 		/*
4310 		 * We have to re-check the event->owner field, if it is cleared
4311 		 * we raced with perf_event_exit_task(), acquiring the mutex
4312 		 * ensured they're done, and we can proceed with freeing the
4313 		 * event.
4314 		 */
4315 		if (event->owner) {
4316 			list_del_init(&event->owner_entry);
4317 			smp_store_release(&event->owner, NULL);
4318 		}
4319 		mutex_unlock(&owner->perf_event_mutex);
4320 		put_task_struct(owner);
4321 	}
4322 }
4323 
put_event(struct perf_event * event)4324 static void put_event(struct perf_event *event)
4325 {
4326 	if (!atomic_long_dec_and_test(&event->refcount))
4327 		return;
4328 
4329 	_free_event(event);
4330 }
4331 
4332 /*
4333  * Kill an event dead; while event:refcount will preserve the event
4334  * object, it will not preserve its functionality. Once the last 'user'
4335  * gives up the object, we'll destroy the thing.
4336  */
perf_event_release_kernel(struct perf_event * event)4337 int perf_event_release_kernel(struct perf_event *event)
4338 {
4339 	struct perf_event_context *ctx = event->ctx;
4340 	struct perf_event *child, *tmp;
4341 
4342 	/*
4343 	 * If we got here through err_file: fput(event_file); we will not have
4344 	 * attached to a context yet.
4345 	 */
4346 	if (!ctx) {
4347 		WARN_ON_ONCE(event->attach_state &
4348 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4349 		goto no_ctx;
4350 	}
4351 
4352 	if (!is_kernel_event(event))
4353 		perf_remove_from_owner(event);
4354 
4355 	ctx = perf_event_ctx_lock(event);
4356 	WARN_ON_ONCE(ctx->parent_ctx);
4357 	perf_remove_from_context(event, DETACH_GROUP);
4358 
4359 	raw_spin_lock_irq(&ctx->lock);
4360 	/*
4361 	 * Mark this event as STATE_DEAD, there is no external reference to it
4362 	 * anymore.
4363 	 *
4364 	 * Anybody acquiring event->child_mutex after the below loop _must_
4365 	 * also see this, most importantly inherit_event() which will avoid
4366 	 * placing more children on the list.
4367 	 *
4368 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4369 	 * child events.
4370 	 */
4371 	event->state = PERF_EVENT_STATE_DEAD;
4372 	raw_spin_unlock_irq(&ctx->lock);
4373 
4374 	perf_event_ctx_unlock(event, ctx);
4375 
4376 again:
4377 	mutex_lock(&event->child_mutex);
4378 	list_for_each_entry(child, &event->child_list, child_list) {
4379 
4380 		/*
4381 		 * Cannot change, child events are not migrated, see the
4382 		 * comment with perf_event_ctx_lock_nested().
4383 		 */
4384 		ctx = READ_ONCE(child->ctx);
4385 		/*
4386 		 * Since child_mutex nests inside ctx::mutex, we must jump
4387 		 * through hoops. We start by grabbing a reference on the ctx.
4388 		 *
4389 		 * Since the event cannot get freed while we hold the
4390 		 * child_mutex, the context must also exist and have a !0
4391 		 * reference count.
4392 		 */
4393 		get_ctx(ctx);
4394 
4395 		/*
4396 		 * Now that we have a ctx ref, we can drop child_mutex, and
4397 		 * acquire ctx::mutex without fear of it going away. Then we
4398 		 * can re-acquire child_mutex.
4399 		 */
4400 		mutex_unlock(&event->child_mutex);
4401 		mutex_lock(&ctx->mutex);
4402 		mutex_lock(&event->child_mutex);
4403 
4404 		/*
4405 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4406 		 * state, if child is still the first entry, it didn't get freed
4407 		 * and we can continue doing so.
4408 		 */
4409 		tmp = list_first_entry_or_null(&event->child_list,
4410 					       struct perf_event, child_list);
4411 		if (tmp == child) {
4412 			perf_remove_from_context(child, DETACH_GROUP);
4413 			list_del(&child->child_list);
4414 			free_event(child);
4415 			/*
4416 			 * This matches the refcount bump in inherit_event();
4417 			 * this can't be the last reference.
4418 			 */
4419 			put_event(event);
4420 		}
4421 
4422 		mutex_unlock(&event->child_mutex);
4423 		mutex_unlock(&ctx->mutex);
4424 		put_ctx(ctx);
4425 		goto again;
4426 	}
4427 	mutex_unlock(&event->child_mutex);
4428 
4429 no_ctx:
4430 	put_event(event); /* Must be the 'last' reference */
4431 	return 0;
4432 }
4433 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4434 
4435 /*
4436  * Called when the last reference to the file is gone.
4437  */
perf_release(struct inode * inode,struct file * file)4438 static int perf_release(struct inode *inode, struct file *file)
4439 {
4440 	perf_event_release_kernel(file->private_data);
4441 	return 0;
4442 }
4443 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)4444 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4445 {
4446 	struct perf_event *child;
4447 	u64 total = 0;
4448 
4449 	*enabled = 0;
4450 	*running = 0;
4451 
4452 	mutex_lock(&event->child_mutex);
4453 
4454 	(void)perf_event_read(event, false);
4455 	total += perf_event_count(event);
4456 
4457 	*enabled += event->total_time_enabled +
4458 			atomic64_read(&event->child_total_time_enabled);
4459 	*running += event->total_time_running +
4460 			atomic64_read(&event->child_total_time_running);
4461 
4462 	list_for_each_entry(child, &event->child_list, child_list) {
4463 		(void)perf_event_read(child, false);
4464 		total += perf_event_count(child);
4465 		*enabled += child->total_time_enabled;
4466 		*running += child->total_time_running;
4467 	}
4468 	mutex_unlock(&event->child_mutex);
4469 
4470 	return total;
4471 }
4472 EXPORT_SYMBOL_GPL(perf_event_read_value);
4473 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)4474 static int __perf_read_group_add(struct perf_event *leader,
4475 					u64 read_format, u64 *values)
4476 {
4477 	struct perf_event_context *ctx = leader->ctx;
4478 	struct perf_event *sub;
4479 	unsigned long flags;
4480 	int n = 1; /* skip @nr */
4481 	int ret;
4482 
4483 	ret = perf_event_read(leader, true);
4484 	if (ret)
4485 		return ret;
4486 
4487 	raw_spin_lock_irqsave(&ctx->lock, flags);
4488 
4489 	/*
4490 	 * Since we co-schedule groups, {enabled,running} times of siblings
4491 	 * will be identical to those of the leader, so we only publish one
4492 	 * set.
4493 	 */
4494 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4495 		values[n++] += leader->total_time_enabled +
4496 			atomic64_read(&leader->child_total_time_enabled);
4497 	}
4498 
4499 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4500 		values[n++] += leader->total_time_running +
4501 			atomic64_read(&leader->child_total_time_running);
4502 	}
4503 
4504 	/*
4505 	 * Write {count,id} tuples for every sibling.
4506 	 */
4507 	values[n++] += perf_event_count(leader);
4508 	if (read_format & PERF_FORMAT_ID)
4509 		values[n++] = primary_event_id(leader);
4510 
4511 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4512 		values[n++] += perf_event_count(sub);
4513 		if (read_format & PERF_FORMAT_ID)
4514 			values[n++] = primary_event_id(sub);
4515 	}
4516 
4517 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
4518 	return 0;
4519 }
4520 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)4521 static int perf_read_group(struct perf_event *event,
4522 				   u64 read_format, char __user *buf)
4523 {
4524 	struct perf_event *leader = event->group_leader, *child;
4525 	struct perf_event_context *ctx = leader->ctx;
4526 	int ret;
4527 	u64 *values;
4528 
4529 	lockdep_assert_held(&ctx->mutex);
4530 
4531 	values = kzalloc(event->read_size, GFP_KERNEL);
4532 	if (!values)
4533 		return -ENOMEM;
4534 
4535 	values[0] = 1 + leader->nr_siblings;
4536 
4537 	/*
4538 	 * By locking the child_mutex of the leader we effectively
4539 	 * lock the child list of all siblings.. XXX explain how.
4540 	 */
4541 	mutex_lock(&leader->child_mutex);
4542 
4543 	ret = __perf_read_group_add(leader, read_format, values);
4544 	if (ret)
4545 		goto unlock;
4546 
4547 	list_for_each_entry(child, &leader->child_list, child_list) {
4548 		ret = __perf_read_group_add(child, read_format, values);
4549 		if (ret)
4550 			goto unlock;
4551 	}
4552 
4553 	mutex_unlock(&leader->child_mutex);
4554 
4555 	ret = event->read_size;
4556 	if (copy_to_user(buf, values, event->read_size))
4557 		ret = -EFAULT;
4558 	goto out;
4559 
4560 unlock:
4561 	mutex_unlock(&leader->child_mutex);
4562 out:
4563 	kfree(values);
4564 	return ret;
4565 }
4566 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)4567 static int perf_read_one(struct perf_event *event,
4568 				 u64 read_format, char __user *buf)
4569 {
4570 	u64 enabled, running;
4571 	u64 values[4];
4572 	int n = 0;
4573 
4574 	values[n++] = perf_event_read_value(event, &enabled, &running);
4575 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4576 		values[n++] = enabled;
4577 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4578 		values[n++] = running;
4579 	if (read_format & PERF_FORMAT_ID)
4580 		values[n++] = primary_event_id(event);
4581 
4582 	if (copy_to_user(buf, values, n * sizeof(u64)))
4583 		return -EFAULT;
4584 
4585 	return n * sizeof(u64);
4586 }
4587 
is_event_hup(struct perf_event * event)4588 static bool is_event_hup(struct perf_event *event)
4589 {
4590 	bool no_children;
4591 
4592 	if (event->state > PERF_EVENT_STATE_EXIT)
4593 		return false;
4594 
4595 	mutex_lock(&event->child_mutex);
4596 	no_children = list_empty(&event->child_list);
4597 	mutex_unlock(&event->child_mutex);
4598 	return no_children;
4599 }
4600 
4601 /*
4602  * Read the performance event - simple non blocking version for now
4603  */
4604 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)4605 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4606 {
4607 	u64 read_format = event->attr.read_format;
4608 	int ret;
4609 
4610 	/*
4611 	 * Return end-of-file for a read on a event that is in
4612 	 * error state (i.e. because it was pinned but it couldn't be
4613 	 * scheduled on to the CPU at some point).
4614 	 */
4615 	if (event->state == PERF_EVENT_STATE_ERROR)
4616 		return 0;
4617 
4618 	if (count < event->read_size)
4619 		return -ENOSPC;
4620 
4621 	WARN_ON_ONCE(event->ctx->parent_ctx);
4622 	if (read_format & PERF_FORMAT_GROUP)
4623 		ret = perf_read_group(event, read_format, buf);
4624 	else
4625 		ret = perf_read_one(event, read_format, buf);
4626 
4627 	return ret;
4628 }
4629 
4630 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)4631 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4632 {
4633 	struct perf_event *event = file->private_data;
4634 	struct perf_event_context *ctx;
4635 	int ret;
4636 
4637 	ctx = perf_event_ctx_lock(event);
4638 	ret = __perf_read(event, buf, count);
4639 	perf_event_ctx_unlock(event, ctx);
4640 
4641 	return ret;
4642 }
4643 
perf_poll(struct file * file,poll_table * wait)4644 static unsigned int perf_poll(struct file *file, poll_table *wait)
4645 {
4646 	struct perf_event *event = file->private_data;
4647 	struct ring_buffer *rb;
4648 	unsigned int events = POLLHUP;
4649 
4650 	poll_wait(file, &event->waitq, wait);
4651 
4652 	if (is_event_hup(event))
4653 		return events;
4654 
4655 	/*
4656 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4657 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4658 	 */
4659 	mutex_lock(&event->mmap_mutex);
4660 	rb = event->rb;
4661 	if (rb)
4662 		events = atomic_xchg(&rb->poll, 0);
4663 	mutex_unlock(&event->mmap_mutex);
4664 	return events;
4665 }
4666 
_perf_event_reset(struct perf_event * event)4667 static void _perf_event_reset(struct perf_event *event)
4668 {
4669 	(void)perf_event_read(event, false);
4670 	local64_set(&event->count, 0);
4671 	perf_event_update_userpage(event);
4672 }
4673 
4674 /*
4675  * Holding the top-level event's child_mutex means that any
4676  * descendant process that has inherited this event will block
4677  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4678  * task existence requirements of perf_event_enable/disable.
4679  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))4680 static void perf_event_for_each_child(struct perf_event *event,
4681 					void (*func)(struct perf_event *))
4682 {
4683 	struct perf_event *child;
4684 
4685 	WARN_ON_ONCE(event->ctx->parent_ctx);
4686 
4687 	mutex_lock(&event->child_mutex);
4688 	func(event);
4689 	list_for_each_entry(child, &event->child_list, child_list)
4690 		func(child);
4691 	mutex_unlock(&event->child_mutex);
4692 }
4693 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))4694 static void perf_event_for_each(struct perf_event *event,
4695 				  void (*func)(struct perf_event *))
4696 {
4697 	struct perf_event_context *ctx = event->ctx;
4698 	struct perf_event *sibling;
4699 
4700 	lockdep_assert_held(&ctx->mutex);
4701 
4702 	event = event->group_leader;
4703 
4704 	perf_event_for_each_child(event, func);
4705 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4706 		perf_event_for_each_child(sibling, func);
4707 }
4708 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)4709 static void __perf_event_period(struct perf_event *event,
4710 				struct perf_cpu_context *cpuctx,
4711 				struct perf_event_context *ctx,
4712 				void *info)
4713 {
4714 	u64 value = *((u64 *)info);
4715 	bool active;
4716 
4717 	if (event->attr.freq) {
4718 		event->attr.sample_freq = value;
4719 	} else {
4720 		event->attr.sample_period = value;
4721 		event->hw.sample_period = value;
4722 	}
4723 
4724 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4725 	if (active) {
4726 		perf_pmu_disable(ctx->pmu);
4727 		/*
4728 		 * We could be throttled; unthrottle now to avoid the tick
4729 		 * trying to unthrottle while we already re-started the event.
4730 		 */
4731 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4732 			event->hw.interrupts = 0;
4733 			perf_log_throttle(event, 1);
4734 		}
4735 		event->pmu->stop(event, PERF_EF_UPDATE);
4736 	}
4737 
4738 	local64_set(&event->hw.period_left, 0);
4739 
4740 	if (active) {
4741 		event->pmu->start(event, PERF_EF_RELOAD);
4742 		perf_pmu_enable(ctx->pmu);
4743 	}
4744 }
4745 
perf_event_check_period(struct perf_event * event,u64 value)4746 static int perf_event_check_period(struct perf_event *event, u64 value)
4747 {
4748 	return event->pmu->check_period(event, value);
4749 }
4750 
perf_event_period(struct perf_event * event,u64 __user * arg)4751 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4752 {
4753 	u64 value;
4754 
4755 	if (!is_sampling_event(event))
4756 		return -EINVAL;
4757 
4758 	if (copy_from_user(&value, arg, sizeof(value)))
4759 		return -EFAULT;
4760 
4761 	if (!value)
4762 		return -EINVAL;
4763 
4764 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4765 		return -EINVAL;
4766 
4767 	if (perf_event_check_period(event, value))
4768 		return -EINVAL;
4769 
4770 	if (!event->attr.freq && (value & (1ULL << 63)))
4771 		return -EINVAL;
4772 
4773 	event_function_call(event, __perf_event_period, &value);
4774 
4775 	return 0;
4776 }
4777 
4778 static const struct file_operations perf_fops;
4779 
perf_fget_light(int fd,struct fd * p)4780 static inline int perf_fget_light(int fd, struct fd *p)
4781 {
4782 	struct fd f = fdget(fd);
4783 	if (!f.file)
4784 		return -EBADF;
4785 
4786 	if (f.file->f_op != &perf_fops) {
4787 		fdput(f);
4788 		return -EBADF;
4789 	}
4790 	*p = f;
4791 	return 0;
4792 }
4793 
4794 static int perf_event_set_output(struct perf_event *event,
4795 				 struct perf_event *output_event);
4796 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4797 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4798 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)4799 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4800 {
4801 	void (*func)(struct perf_event *);
4802 	u32 flags = arg;
4803 
4804 	switch (cmd) {
4805 	case PERF_EVENT_IOC_ENABLE:
4806 		func = _perf_event_enable;
4807 		break;
4808 	case PERF_EVENT_IOC_DISABLE:
4809 		func = _perf_event_disable;
4810 		break;
4811 	case PERF_EVENT_IOC_RESET:
4812 		func = _perf_event_reset;
4813 		break;
4814 
4815 	case PERF_EVENT_IOC_REFRESH:
4816 		return _perf_event_refresh(event, arg);
4817 
4818 	case PERF_EVENT_IOC_PERIOD:
4819 		return perf_event_period(event, (u64 __user *)arg);
4820 
4821 	case PERF_EVENT_IOC_ID:
4822 	{
4823 		u64 id = primary_event_id(event);
4824 
4825 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4826 			return -EFAULT;
4827 		return 0;
4828 	}
4829 
4830 	case PERF_EVENT_IOC_SET_OUTPUT:
4831 	{
4832 		int ret;
4833 		if (arg != -1) {
4834 			struct perf_event *output_event;
4835 			struct fd output;
4836 			ret = perf_fget_light(arg, &output);
4837 			if (ret)
4838 				return ret;
4839 			output_event = output.file->private_data;
4840 			ret = perf_event_set_output(event, output_event);
4841 			fdput(output);
4842 		} else {
4843 			ret = perf_event_set_output(event, NULL);
4844 		}
4845 		return ret;
4846 	}
4847 
4848 	case PERF_EVENT_IOC_SET_FILTER:
4849 		return perf_event_set_filter(event, (void __user *)arg);
4850 
4851 	case PERF_EVENT_IOC_SET_BPF:
4852 		return perf_event_set_bpf_prog(event, arg);
4853 
4854 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4855 		struct ring_buffer *rb;
4856 
4857 		rcu_read_lock();
4858 		rb = rcu_dereference(event->rb);
4859 		if (!rb || !rb->nr_pages) {
4860 			rcu_read_unlock();
4861 			return -EINVAL;
4862 		}
4863 		rb_toggle_paused(rb, !!arg);
4864 		rcu_read_unlock();
4865 		return 0;
4866 	}
4867 	default:
4868 		return -ENOTTY;
4869 	}
4870 
4871 	if (flags & PERF_IOC_FLAG_GROUP)
4872 		perf_event_for_each(event, func);
4873 	else
4874 		perf_event_for_each_child(event, func);
4875 
4876 	return 0;
4877 }
4878 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4879 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4880 {
4881 	struct perf_event *event = file->private_data;
4882 	struct perf_event_context *ctx;
4883 	long ret;
4884 
4885 	ctx = perf_event_ctx_lock(event);
4886 	ret = _perf_ioctl(event, cmd, arg);
4887 	perf_event_ctx_unlock(event, ctx);
4888 
4889 	return ret;
4890 }
4891 
4892 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4893 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4894 				unsigned long arg)
4895 {
4896 	switch (_IOC_NR(cmd)) {
4897 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4898 	case _IOC_NR(PERF_EVENT_IOC_ID):
4899 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4900 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4901 			cmd &= ~IOCSIZE_MASK;
4902 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4903 		}
4904 		break;
4905 	}
4906 	return perf_ioctl(file, cmd, arg);
4907 }
4908 #else
4909 # define perf_compat_ioctl NULL
4910 #endif
4911 
perf_event_task_enable(void)4912 int perf_event_task_enable(void)
4913 {
4914 	struct perf_event_context *ctx;
4915 	struct perf_event *event;
4916 
4917 	mutex_lock(&current->perf_event_mutex);
4918 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4919 		ctx = perf_event_ctx_lock(event);
4920 		perf_event_for_each_child(event, _perf_event_enable);
4921 		perf_event_ctx_unlock(event, ctx);
4922 	}
4923 	mutex_unlock(&current->perf_event_mutex);
4924 
4925 	return 0;
4926 }
4927 
perf_event_task_disable(void)4928 int perf_event_task_disable(void)
4929 {
4930 	struct perf_event_context *ctx;
4931 	struct perf_event *event;
4932 
4933 	mutex_lock(&current->perf_event_mutex);
4934 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4935 		ctx = perf_event_ctx_lock(event);
4936 		perf_event_for_each_child(event, _perf_event_disable);
4937 		perf_event_ctx_unlock(event, ctx);
4938 	}
4939 	mutex_unlock(&current->perf_event_mutex);
4940 
4941 	return 0;
4942 }
4943 
perf_event_index(struct perf_event * event)4944 static int perf_event_index(struct perf_event *event)
4945 {
4946 	if (event->hw.state & PERF_HES_STOPPED)
4947 		return 0;
4948 
4949 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4950 		return 0;
4951 
4952 	return event->pmu->event_idx(event);
4953 }
4954 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4955 static void calc_timer_values(struct perf_event *event,
4956 				u64 *now,
4957 				u64 *enabled,
4958 				u64 *running)
4959 {
4960 	u64 ctx_time;
4961 
4962 	*now = perf_clock();
4963 	ctx_time = event->shadow_ctx_time + *now;
4964 	*enabled = ctx_time - event->tstamp_enabled;
4965 	*running = ctx_time - event->tstamp_running;
4966 }
4967 
perf_event_init_userpage(struct perf_event * event)4968 static void perf_event_init_userpage(struct perf_event *event)
4969 {
4970 	struct perf_event_mmap_page *userpg;
4971 	struct ring_buffer *rb;
4972 
4973 	rcu_read_lock();
4974 	rb = rcu_dereference(event->rb);
4975 	if (!rb)
4976 		goto unlock;
4977 
4978 	userpg = rb->user_page;
4979 
4980 	/* Allow new userspace to detect that bit 0 is deprecated */
4981 	userpg->cap_bit0_is_deprecated = 1;
4982 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4983 	userpg->data_offset = PAGE_SIZE;
4984 	userpg->data_size = perf_data_size(rb);
4985 
4986 unlock:
4987 	rcu_read_unlock();
4988 }
4989 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)4990 void __weak arch_perf_update_userpage(
4991 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4992 {
4993 }
4994 
4995 /*
4996  * Callers need to ensure there can be no nesting of this function, otherwise
4997  * the seqlock logic goes bad. We can not serialize this because the arch
4998  * code calls this from NMI context.
4999  */
perf_event_update_userpage(struct perf_event * event)5000 void perf_event_update_userpage(struct perf_event *event)
5001 {
5002 	struct perf_event_mmap_page *userpg;
5003 	struct ring_buffer *rb;
5004 	u64 enabled, running, now;
5005 
5006 	rcu_read_lock();
5007 	rb = rcu_dereference(event->rb);
5008 	if (!rb)
5009 		goto unlock;
5010 
5011 	/*
5012 	 * compute total_time_enabled, total_time_running
5013 	 * based on snapshot values taken when the event
5014 	 * was last scheduled in.
5015 	 *
5016 	 * we cannot simply called update_context_time()
5017 	 * because of locking issue as we can be called in
5018 	 * NMI context
5019 	 */
5020 	calc_timer_values(event, &now, &enabled, &running);
5021 
5022 	userpg = rb->user_page;
5023 	/*
5024 	 * Disable preemption so as to not let the corresponding user-space
5025 	 * spin too long if we get preempted.
5026 	 */
5027 	preempt_disable();
5028 	++userpg->lock;
5029 	barrier();
5030 	userpg->index = perf_event_index(event);
5031 	userpg->offset = perf_event_count(event);
5032 	if (userpg->index)
5033 		userpg->offset -= local64_read(&event->hw.prev_count);
5034 
5035 	userpg->time_enabled = enabled +
5036 			atomic64_read(&event->child_total_time_enabled);
5037 
5038 	userpg->time_running = running +
5039 			atomic64_read(&event->child_total_time_running);
5040 
5041 	arch_perf_update_userpage(event, userpg, now);
5042 
5043 	barrier();
5044 	++userpg->lock;
5045 	preempt_enable();
5046 unlock:
5047 	rcu_read_unlock();
5048 }
5049 
perf_mmap_fault(struct vm_fault * vmf)5050 static int perf_mmap_fault(struct vm_fault *vmf)
5051 {
5052 	struct perf_event *event = vmf->vma->vm_file->private_data;
5053 	struct ring_buffer *rb;
5054 	int ret = VM_FAULT_SIGBUS;
5055 
5056 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
5057 		if (vmf->pgoff == 0)
5058 			ret = 0;
5059 		return ret;
5060 	}
5061 
5062 	rcu_read_lock();
5063 	rb = rcu_dereference(event->rb);
5064 	if (!rb)
5065 		goto unlock;
5066 
5067 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5068 		goto unlock;
5069 
5070 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5071 	if (!vmf->page)
5072 		goto unlock;
5073 
5074 	get_page(vmf->page);
5075 	vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5076 	vmf->page->index   = vmf->pgoff;
5077 
5078 	ret = 0;
5079 unlock:
5080 	rcu_read_unlock();
5081 
5082 	return ret;
5083 }
5084 
ring_buffer_attach(struct perf_event * event,struct ring_buffer * rb)5085 static void ring_buffer_attach(struct perf_event *event,
5086 			       struct ring_buffer *rb)
5087 {
5088 	struct ring_buffer *old_rb = NULL;
5089 	unsigned long flags;
5090 
5091 	if (event->rb) {
5092 		/*
5093 		 * Should be impossible, we set this when removing
5094 		 * event->rb_entry and wait/clear when adding event->rb_entry.
5095 		 */
5096 		WARN_ON_ONCE(event->rcu_pending);
5097 
5098 		old_rb = event->rb;
5099 		spin_lock_irqsave(&old_rb->event_lock, flags);
5100 		list_del_rcu(&event->rb_entry);
5101 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
5102 
5103 		event->rcu_batches = get_state_synchronize_rcu();
5104 		event->rcu_pending = 1;
5105 	}
5106 
5107 	if (rb) {
5108 		if (event->rcu_pending) {
5109 			cond_synchronize_rcu(event->rcu_batches);
5110 			event->rcu_pending = 0;
5111 		}
5112 
5113 		spin_lock_irqsave(&rb->event_lock, flags);
5114 		list_add_rcu(&event->rb_entry, &rb->event_list);
5115 		spin_unlock_irqrestore(&rb->event_lock, flags);
5116 	}
5117 
5118 	/*
5119 	 * Avoid racing with perf_mmap_close(AUX): stop the event
5120 	 * before swizzling the event::rb pointer; if it's getting
5121 	 * unmapped, its aux_mmap_count will be 0 and it won't
5122 	 * restart. See the comment in __perf_pmu_output_stop().
5123 	 *
5124 	 * Data will inevitably be lost when set_output is done in
5125 	 * mid-air, but then again, whoever does it like this is
5126 	 * not in for the data anyway.
5127 	 */
5128 	if (has_aux(event))
5129 		perf_event_stop(event, 0);
5130 
5131 	rcu_assign_pointer(event->rb, rb);
5132 
5133 	if (old_rb) {
5134 		ring_buffer_put(old_rb);
5135 		/*
5136 		 * Since we detached before setting the new rb, so that we
5137 		 * could attach the new rb, we could have missed a wakeup.
5138 		 * Provide it now.
5139 		 */
5140 		wake_up_all(&event->waitq);
5141 	}
5142 }
5143 
ring_buffer_wakeup(struct perf_event * event)5144 static void ring_buffer_wakeup(struct perf_event *event)
5145 {
5146 	struct ring_buffer *rb;
5147 
5148 	rcu_read_lock();
5149 	rb = rcu_dereference(event->rb);
5150 	if (rb) {
5151 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5152 			wake_up_all(&event->waitq);
5153 	}
5154 	rcu_read_unlock();
5155 }
5156 
ring_buffer_get(struct perf_event * event)5157 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5158 {
5159 	struct ring_buffer *rb;
5160 
5161 	rcu_read_lock();
5162 	rb = rcu_dereference(event->rb);
5163 	if (rb) {
5164 		if (!atomic_inc_not_zero(&rb->refcount))
5165 			rb = NULL;
5166 	}
5167 	rcu_read_unlock();
5168 
5169 	return rb;
5170 }
5171 
ring_buffer_put(struct ring_buffer * rb)5172 void ring_buffer_put(struct ring_buffer *rb)
5173 {
5174 	if (!atomic_dec_and_test(&rb->refcount))
5175 		return;
5176 
5177 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5178 
5179 	call_rcu(&rb->rcu_head, rb_free_rcu);
5180 }
5181 
perf_mmap_open(struct vm_area_struct * vma)5182 static void perf_mmap_open(struct vm_area_struct *vma)
5183 {
5184 	struct perf_event *event = vma->vm_file->private_data;
5185 
5186 	atomic_inc(&event->mmap_count);
5187 	atomic_inc(&event->rb->mmap_count);
5188 
5189 	if (vma->vm_pgoff)
5190 		atomic_inc(&event->rb->aux_mmap_count);
5191 
5192 	if (event->pmu->event_mapped)
5193 		event->pmu->event_mapped(event, vma->vm_mm);
5194 }
5195 
5196 static void perf_pmu_output_stop(struct perf_event *event);
5197 
5198 /*
5199  * A buffer can be mmap()ed multiple times; either directly through the same
5200  * event, or through other events by use of perf_event_set_output().
5201  *
5202  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5203  * the buffer here, where we still have a VM context. This means we need
5204  * to detach all events redirecting to us.
5205  */
perf_mmap_close(struct vm_area_struct * vma)5206 static void perf_mmap_close(struct vm_area_struct *vma)
5207 {
5208 	struct perf_event *event = vma->vm_file->private_data;
5209 
5210 	struct ring_buffer *rb = ring_buffer_get(event);
5211 	struct user_struct *mmap_user = rb->mmap_user;
5212 	int mmap_locked = rb->mmap_locked;
5213 	unsigned long size = perf_data_size(rb);
5214 
5215 	if (event->pmu->event_unmapped)
5216 		event->pmu->event_unmapped(event, vma->vm_mm);
5217 
5218 	/*
5219 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5220 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5221 	 * serialize with perf_mmap here.
5222 	 */
5223 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5224 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5225 		/*
5226 		 * Stop all AUX events that are writing to this buffer,
5227 		 * so that we can free its AUX pages and corresponding PMU
5228 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5229 		 * they won't start any more (see perf_aux_output_begin()).
5230 		 */
5231 		perf_pmu_output_stop(event);
5232 
5233 		/* now it's safe to free the pages */
5234 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5235 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5236 
5237 		/* this has to be the last one */
5238 		rb_free_aux(rb);
5239 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5240 
5241 		mutex_unlock(&event->mmap_mutex);
5242 	}
5243 
5244 	atomic_dec(&rb->mmap_count);
5245 
5246 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5247 		goto out_put;
5248 
5249 	ring_buffer_attach(event, NULL);
5250 	mutex_unlock(&event->mmap_mutex);
5251 
5252 	/* If there's still other mmap()s of this buffer, we're done. */
5253 	if (atomic_read(&rb->mmap_count))
5254 		goto out_put;
5255 
5256 	/*
5257 	 * No other mmap()s, detach from all other events that might redirect
5258 	 * into the now unreachable buffer. Somewhat complicated by the
5259 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5260 	 */
5261 again:
5262 	rcu_read_lock();
5263 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5264 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5265 			/*
5266 			 * This event is en-route to free_event() which will
5267 			 * detach it and remove it from the list.
5268 			 */
5269 			continue;
5270 		}
5271 		rcu_read_unlock();
5272 
5273 		mutex_lock(&event->mmap_mutex);
5274 		/*
5275 		 * Check we didn't race with perf_event_set_output() which can
5276 		 * swizzle the rb from under us while we were waiting to
5277 		 * acquire mmap_mutex.
5278 		 *
5279 		 * If we find a different rb; ignore this event, a next
5280 		 * iteration will no longer find it on the list. We have to
5281 		 * still restart the iteration to make sure we're not now
5282 		 * iterating the wrong list.
5283 		 */
5284 		if (event->rb == rb)
5285 			ring_buffer_attach(event, NULL);
5286 
5287 		mutex_unlock(&event->mmap_mutex);
5288 		put_event(event);
5289 
5290 		/*
5291 		 * Restart the iteration; either we're on the wrong list or
5292 		 * destroyed its integrity by doing a deletion.
5293 		 */
5294 		goto again;
5295 	}
5296 	rcu_read_unlock();
5297 
5298 	/*
5299 	 * It could be there's still a few 0-ref events on the list; they'll
5300 	 * get cleaned up by free_event() -- they'll also still have their
5301 	 * ref on the rb and will free it whenever they are done with it.
5302 	 *
5303 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5304 	 * undo the VM accounting.
5305 	 */
5306 
5307 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5308 	vma->vm_mm->pinned_vm -= mmap_locked;
5309 	free_uid(mmap_user);
5310 
5311 out_put:
5312 	ring_buffer_put(rb); /* could be last */
5313 }
5314 
5315 static const struct vm_operations_struct perf_mmap_vmops = {
5316 	.open		= perf_mmap_open,
5317 	.close		= perf_mmap_close, /* non mergable */
5318 	.fault		= perf_mmap_fault,
5319 	.page_mkwrite	= perf_mmap_fault,
5320 };
5321 
perf_mmap(struct file * file,struct vm_area_struct * vma)5322 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5323 {
5324 	struct perf_event *event = file->private_data;
5325 	unsigned long user_locked, user_lock_limit;
5326 	struct user_struct *user = current_user();
5327 	unsigned long locked, lock_limit;
5328 	struct ring_buffer *rb = NULL;
5329 	unsigned long vma_size;
5330 	unsigned long nr_pages;
5331 	long user_extra = 0, extra = 0;
5332 	int ret = 0, flags = 0;
5333 
5334 	/*
5335 	 * Don't allow mmap() of inherited per-task counters. This would
5336 	 * create a performance issue due to all children writing to the
5337 	 * same rb.
5338 	 */
5339 	if (event->cpu == -1 && event->attr.inherit)
5340 		return -EINVAL;
5341 
5342 	if (!(vma->vm_flags & VM_SHARED))
5343 		return -EINVAL;
5344 
5345 	vma_size = vma->vm_end - vma->vm_start;
5346 
5347 	if (vma->vm_pgoff == 0) {
5348 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5349 	} else {
5350 		/*
5351 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5352 		 * mapped, all subsequent mappings should have the same size
5353 		 * and offset. Must be above the normal perf buffer.
5354 		 */
5355 		u64 aux_offset, aux_size;
5356 
5357 		if (!event->rb)
5358 			return -EINVAL;
5359 
5360 		nr_pages = vma_size / PAGE_SIZE;
5361 
5362 		mutex_lock(&event->mmap_mutex);
5363 		ret = -EINVAL;
5364 
5365 		rb = event->rb;
5366 		if (!rb)
5367 			goto aux_unlock;
5368 
5369 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5370 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5371 
5372 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5373 			goto aux_unlock;
5374 
5375 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5376 			goto aux_unlock;
5377 
5378 		/* already mapped with a different offset */
5379 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5380 			goto aux_unlock;
5381 
5382 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5383 			goto aux_unlock;
5384 
5385 		/* already mapped with a different size */
5386 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5387 			goto aux_unlock;
5388 
5389 		if (!is_power_of_2(nr_pages))
5390 			goto aux_unlock;
5391 
5392 		if (!atomic_inc_not_zero(&rb->mmap_count))
5393 			goto aux_unlock;
5394 
5395 		if (rb_has_aux(rb)) {
5396 			atomic_inc(&rb->aux_mmap_count);
5397 			ret = 0;
5398 			goto unlock;
5399 		}
5400 
5401 		atomic_set(&rb->aux_mmap_count, 1);
5402 		user_extra = nr_pages;
5403 
5404 		goto accounting;
5405 	}
5406 
5407 	/*
5408 	 * If we have rb pages ensure they're a power-of-two number, so we
5409 	 * can do bitmasks instead of modulo.
5410 	 */
5411 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5412 		return -EINVAL;
5413 
5414 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5415 		return -EINVAL;
5416 
5417 	WARN_ON_ONCE(event->ctx->parent_ctx);
5418 again:
5419 	mutex_lock(&event->mmap_mutex);
5420 	if (event->rb) {
5421 		if (event->rb->nr_pages != nr_pages) {
5422 			ret = -EINVAL;
5423 			goto unlock;
5424 		}
5425 
5426 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5427 			/*
5428 			 * Raced against perf_mmap_close() through
5429 			 * perf_event_set_output(). Try again, hope for better
5430 			 * luck.
5431 			 */
5432 			mutex_unlock(&event->mmap_mutex);
5433 			goto again;
5434 		}
5435 
5436 		goto unlock;
5437 	}
5438 
5439 	user_extra = nr_pages + 1;
5440 
5441 accounting:
5442 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5443 
5444 	/*
5445 	 * Increase the limit linearly with more CPUs:
5446 	 */
5447 	user_lock_limit *= num_online_cpus();
5448 
5449 	user_locked = atomic_long_read(&user->locked_vm);
5450 
5451 	/*
5452 	 * sysctl_perf_event_mlock may have changed, so that
5453 	 *     user->locked_vm > user_lock_limit
5454 	 */
5455 	if (user_locked > user_lock_limit)
5456 		user_locked = user_lock_limit;
5457 	user_locked += user_extra;
5458 
5459 	if (user_locked > user_lock_limit)
5460 		extra = user_locked - user_lock_limit;
5461 
5462 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5463 	lock_limit >>= PAGE_SHIFT;
5464 	locked = vma->vm_mm->pinned_vm + extra;
5465 
5466 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5467 		!capable(CAP_IPC_LOCK)) {
5468 		ret = -EPERM;
5469 		goto unlock;
5470 	}
5471 
5472 	WARN_ON(!rb && event->rb);
5473 
5474 	if (vma->vm_flags & VM_WRITE)
5475 		flags |= RING_BUFFER_WRITABLE;
5476 
5477 	if (!rb) {
5478 		rb = rb_alloc(nr_pages,
5479 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5480 			      event->cpu, flags);
5481 
5482 		if (!rb) {
5483 			ret = -ENOMEM;
5484 			goto unlock;
5485 		}
5486 
5487 		atomic_set(&rb->mmap_count, 1);
5488 		rb->mmap_user = get_current_user();
5489 		rb->mmap_locked = extra;
5490 
5491 		ring_buffer_attach(event, rb);
5492 
5493 		perf_event_init_userpage(event);
5494 		perf_event_update_userpage(event);
5495 	} else {
5496 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5497 				   event->attr.aux_watermark, flags);
5498 		if (!ret)
5499 			rb->aux_mmap_locked = extra;
5500 	}
5501 
5502 unlock:
5503 	if (!ret) {
5504 		atomic_long_add(user_extra, &user->locked_vm);
5505 		vma->vm_mm->pinned_vm += extra;
5506 
5507 		atomic_inc(&event->mmap_count);
5508 	} else if (rb) {
5509 		atomic_dec(&rb->mmap_count);
5510 	}
5511 aux_unlock:
5512 	mutex_unlock(&event->mmap_mutex);
5513 
5514 	/*
5515 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5516 	 * vma.
5517 	 */
5518 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5519 	vma->vm_ops = &perf_mmap_vmops;
5520 
5521 	if (event->pmu->event_mapped)
5522 		event->pmu->event_mapped(event, vma->vm_mm);
5523 
5524 	return ret;
5525 }
5526 
perf_fasync(int fd,struct file * filp,int on)5527 static int perf_fasync(int fd, struct file *filp, int on)
5528 {
5529 	struct inode *inode = file_inode(filp);
5530 	struct perf_event *event = filp->private_data;
5531 	int retval;
5532 
5533 	inode_lock(inode);
5534 	retval = fasync_helper(fd, filp, on, &event->fasync);
5535 	inode_unlock(inode);
5536 
5537 	if (retval < 0)
5538 		return retval;
5539 
5540 	return 0;
5541 }
5542 
5543 static const struct file_operations perf_fops = {
5544 	.llseek			= no_llseek,
5545 	.release		= perf_release,
5546 	.read			= perf_read,
5547 	.poll			= perf_poll,
5548 	.unlocked_ioctl		= perf_ioctl,
5549 	.compat_ioctl		= perf_compat_ioctl,
5550 	.mmap			= perf_mmap,
5551 	.fasync			= perf_fasync,
5552 };
5553 
5554 /*
5555  * Perf event wakeup
5556  *
5557  * If there's data, ensure we set the poll() state and publish everything
5558  * to user-space before waking everybody up.
5559  */
5560 
perf_event_fasync(struct perf_event * event)5561 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5562 {
5563 	/* only the parent has fasync state */
5564 	if (event->parent)
5565 		event = event->parent;
5566 	return &event->fasync;
5567 }
5568 
perf_event_wakeup(struct perf_event * event)5569 void perf_event_wakeup(struct perf_event *event)
5570 {
5571 	ring_buffer_wakeup(event);
5572 
5573 	if (event->pending_kill) {
5574 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5575 		event->pending_kill = 0;
5576 	}
5577 }
5578 
perf_pending_event(struct irq_work * entry)5579 static void perf_pending_event(struct irq_work *entry)
5580 {
5581 	struct perf_event *event = container_of(entry,
5582 			struct perf_event, pending);
5583 	int rctx;
5584 
5585 	rctx = perf_swevent_get_recursion_context();
5586 	/*
5587 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5588 	 * and we won't recurse 'further'.
5589 	 */
5590 
5591 	if (event->pending_disable) {
5592 		event->pending_disable = 0;
5593 		perf_event_disable_local(event);
5594 	}
5595 
5596 	if (event->pending_wakeup) {
5597 		event->pending_wakeup = 0;
5598 		perf_event_wakeup(event);
5599 	}
5600 
5601 	if (rctx >= 0)
5602 		perf_swevent_put_recursion_context(rctx);
5603 }
5604 
5605 /*
5606  * We assume there is only KVM supporting the callbacks.
5607  * Later on, we might change it to a list if there is
5608  * another virtualization implementation supporting the callbacks.
5609  */
5610 struct perf_guest_info_callbacks *perf_guest_cbs;
5611 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)5612 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5613 {
5614 	perf_guest_cbs = cbs;
5615 	return 0;
5616 }
5617 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5618 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)5619 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5620 {
5621 	perf_guest_cbs = NULL;
5622 	return 0;
5623 }
5624 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5625 
5626 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)5627 perf_output_sample_regs(struct perf_output_handle *handle,
5628 			struct pt_regs *regs, u64 mask)
5629 {
5630 	int bit;
5631 	DECLARE_BITMAP(_mask, 64);
5632 
5633 	bitmap_from_u64(_mask, mask);
5634 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5635 		u64 val;
5636 
5637 		val = perf_reg_value(regs, bit);
5638 		perf_output_put(handle, val);
5639 	}
5640 }
5641 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs,struct pt_regs * regs_user_copy)5642 static void perf_sample_regs_user(struct perf_regs *regs_user,
5643 				  struct pt_regs *regs,
5644 				  struct pt_regs *regs_user_copy)
5645 {
5646 	if (user_mode(regs)) {
5647 		regs_user->abi = perf_reg_abi(current);
5648 		regs_user->regs = regs;
5649 	} else if (!(current->flags & PF_KTHREAD)) {
5650 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5651 	} else {
5652 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5653 		regs_user->regs = NULL;
5654 	}
5655 }
5656 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)5657 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5658 				  struct pt_regs *regs)
5659 {
5660 	regs_intr->regs = regs;
5661 	regs_intr->abi  = perf_reg_abi(current);
5662 }
5663 
5664 
5665 /*
5666  * Get remaining task size from user stack pointer.
5667  *
5668  * It'd be better to take stack vma map and limit this more
5669  * precisly, but there's no way to get it safely under interrupt,
5670  * so using TASK_SIZE as limit.
5671  */
perf_ustack_task_size(struct pt_regs * regs)5672 static u64 perf_ustack_task_size(struct pt_regs *regs)
5673 {
5674 	unsigned long addr = perf_user_stack_pointer(regs);
5675 
5676 	if (!addr || addr >= TASK_SIZE)
5677 		return 0;
5678 
5679 	return TASK_SIZE - addr;
5680 }
5681 
5682 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)5683 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5684 			struct pt_regs *regs)
5685 {
5686 	u64 task_size;
5687 
5688 	/* No regs, no stack pointer, no dump. */
5689 	if (!regs)
5690 		return 0;
5691 
5692 	/*
5693 	 * Check if we fit in with the requested stack size into the:
5694 	 * - TASK_SIZE
5695 	 *   If we don't, we limit the size to the TASK_SIZE.
5696 	 *
5697 	 * - remaining sample size
5698 	 *   If we don't, we customize the stack size to
5699 	 *   fit in to the remaining sample size.
5700 	 */
5701 
5702 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5703 	stack_size = min(stack_size, (u16) task_size);
5704 
5705 	/* Current header size plus static size and dynamic size. */
5706 	header_size += 2 * sizeof(u64);
5707 
5708 	/* Do we fit in with the current stack dump size? */
5709 	if ((u16) (header_size + stack_size) < header_size) {
5710 		/*
5711 		 * If we overflow the maximum size for the sample,
5712 		 * we customize the stack dump size to fit in.
5713 		 */
5714 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5715 		stack_size = round_up(stack_size, sizeof(u64));
5716 	}
5717 
5718 	return stack_size;
5719 }
5720 
5721 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)5722 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5723 			  struct pt_regs *regs)
5724 {
5725 	/* Case of a kernel thread, nothing to dump */
5726 	if (!regs) {
5727 		u64 size = 0;
5728 		perf_output_put(handle, size);
5729 	} else {
5730 		unsigned long sp;
5731 		unsigned int rem;
5732 		u64 dyn_size;
5733 		mm_segment_t fs;
5734 
5735 		/*
5736 		 * We dump:
5737 		 * static size
5738 		 *   - the size requested by user or the best one we can fit
5739 		 *     in to the sample max size
5740 		 * data
5741 		 *   - user stack dump data
5742 		 * dynamic size
5743 		 *   - the actual dumped size
5744 		 */
5745 
5746 		/* Static size. */
5747 		perf_output_put(handle, dump_size);
5748 
5749 		/* Data. */
5750 		sp = perf_user_stack_pointer(regs);
5751 		fs = get_fs();
5752 		set_fs(USER_DS);
5753 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5754 		set_fs(fs);
5755 		dyn_size = dump_size - rem;
5756 
5757 		perf_output_skip(handle, rem);
5758 
5759 		/* Dynamic size. */
5760 		perf_output_put(handle, dyn_size);
5761 	}
5762 }
5763 
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5764 static void __perf_event_header__init_id(struct perf_event_header *header,
5765 					 struct perf_sample_data *data,
5766 					 struct perf_event *event)
5767 {
5768 	u64 sample_type = event->attr.sample_type;
5769 
5770 	data->type = sample_type;
5771 	header->size += event->id_header_size;
5772 
5773 	if (sample_type & PERF_SAMPLE_TID) {
5774 		/* namespace issues */
5775 		data->tid_entry.pid = perf_event_pid(event, current);
5776 		data->tid_entry.tid = perf_event_tid(event, current);
5777 	}
5778 
5779 	if (sample_type & PERF_SAMPLE_TIME)
5780 		data->time = perf_event_clock(event);
5781 
5782 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5783 		data->id = primary_event_id(event);
5784 
5785 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5786 		data->stream_id = event->id;
5787 
5788 	if (sample_type & PERF_SAMPLE_CPU) {
5789 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5790 		data->cpu_entry.reserved = 0;
5791 	}
5792 }
5793 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5794 void perf_event_header__init_id(struct perf_event_header *header,
5795 				struct perf_sample_data *data,
5796 				struct perf_event *event)
5797 {
5798 	if (event->attr.sample_id_all)
5799 		__perf_event_header__init_id(header, data, event);
5800 }
5801 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)5802 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5803 					   struct perf_sample_data *data)
5804 {
5805 	u64 sample_type = data->type;
5806 
5807 	if (sample_type & PERF_SAMPLE_TID)
5808 		perf_output_put(handle, data->tid_entry);
5809 
5810 	if (sample_type & PERF_SAMPLE_TIME)
5811 		perf_output_put(handle, data->time);
5812 
5813 	if (sample_type & PERF_SAMPLE_ID)
5814 		perf_output_put(handle, data->id);
5815 
5816 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5817 		perf_output_put(handle, data->stream_id);
5818 
5819 	if (sample_type & PERF_SAMPLE_CPU)
5820 		perf_output_put(handle, data->cpu_entry);
5821 
5822 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5823 		perf_output_put(handle, data->id);
5824 }
5825 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)5826 void perf_event__output_id_sample(struct perf_event *event,
5827 				  struct perf_output_handle *handle,
5828 				  struct perf_sample_data *sample)
5829 {
5830 	if (event->attr.sample_id_all)
5831 		__perf_event__output_id_sample(handle, sample);
5832 }
5833 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)5834 static void perf_output_read_one(struct perf_output_handle *handle,
5835 				 struct perf_event *event,
5836 				 u64 enabled, u64 running)
5837 {
5838 	u64 read_format = event->attr.read_format;
5839 	u64 values[4];
5840 	int n = 0;
5841 
5842 	values[n++] = perf_event_count(event);
5843 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5844 		values[n++] = enabled +
5845 			atomic64_read(&event->child_total_time_enabled);
5846 	}
5847 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5848 		values[n++] = running +
5849 			atomic64_read(&event->child_total_time_running);
5850 	}
5851 	if (read_format & PERF_FORMAT_ID)
5852 		values[n++] = primary_event_id(event);
5853 
5854 	__output_copy(handle, values, n * sizeof(u64));
5855 }
5856 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)5857 static void perf_output_read_group(struct perf_output_handle *handle,
5858 			    struct perf_event *event,
5859 			    u64 enabled, u64 running)
5860 {
5861 	struct perf_event *leader = event->group_leader, *sub;
5862 	u64 read_format = event->attr.read_format;
5863 	u64 values[5];
5864 	int n = 0;
5865 
5866 	values[n++] = 1 + leader->nr_siblings;
5867 
5868 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5869 		values[n++] = enabled;
5870 
5871 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5872 		values[n++] = running;
5873 
5874 	if ((leader != event) &&
5875 	    (leader->state == PERF_EVENT_STATE_ACTIVE))
5876 		leader->pmu->read(leader);
5877 
5878 	values[n++] = perf_event_count(leader);
5879 	if (read_format & PERF_FORMAT_ID)
5880 		values[n++] = primary_event_id(leader);
5881 
5882 	__output_copy(handle, values, n * sizeof(u64));
5883 
5884 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5885 		n = 0;
5886 
5887 		if ((sub != event) &&
5888 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5889 			sub->pmu->read(sub);
5890 
5891 		values[n++] = perf_event_count(sub);
5892 		if (read_format & PERF_FORMAT_ID)
5893 			values[n++] = primary_event_id(sub);
5894 
5895 		__output_copy(handle, values, n * sizeof(u64));
5896 	}
5897 }
5898 
5899 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5900 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5901 
5902 /*
5903  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5904  *
5905  * The problem is that its both hard and excessively expensive to iterate the
5906  * child list, not to mention that its impossible to IPI the children running
5907  * on another CPU, from interrupt/NMI context.
5908  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)5909 static void perf_output_read(struct perf_output_handle *handle,
5910 			     struct perf_event *event)
5911 {
5912 	u64 enabled = 0, running = 0, now;
5913 	u64 read_format = event->attr.read_format;
5914 
5915 	/*
5916 	 * compute total_time_enabled, total_time_running
5917 	 * based on snapshot values taken when the event
5918 	 * was last scheduled in.
5919 	 *
5920 	 * we cannot simply called update_context_time()
5921 	 * because of locking issue as we are called in
5922 	 * NMI context
5923 	 */
5924 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5925 		calc_timer_values(event, &now, &enabled, &running);
5926 
5927 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5928 		perf_output_read_group(handle, event, enabled, running);
5929 	else
5930 		perf_output_read_one(handle, event, enabled, running);
5931 }
5932 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5933 void perf_output_sample(struct perf_output_handle *handle,
5934 			struct perf_event_header *header,
5935 			struct perf_sample_data *data,
5936 			struct perf_event *event)
5937 {
5938 	u64 sample_type = data->type;
5939 
5940 	perf_output_put(handle, *header);
5941 
5942 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5943 		perf_output_put(handle, data->id);
5944 
5945 	if (sample_type & PERF_SAMPLE_IP)
5946 		perf_output_put(handle, data->ip);
5947 
5948 	if (sample_type & PERF_SAMPLE_TID)
5949 		perf_output_put(handle, data->tid_entry);
5950 
5951 	if (sample_type & PERF_SAMPLE_TIME)
5952 		perf_output_put(handle, data->time);
5953 
5954 	if (sample_type & PERF_SAMPLE_ADDR)
5955 		perf_output_put(handle, data->addr);
5956 
5957 	if (sample_type & PERF_SAMPLE_ID)
5958 		perf_output_put(handle, data->id);
5959 
5960 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5961 		perf_output_put(handle, data->stream_id);
5962 
5963 	if (sample_type & PERF_SAMPLE_CPU)
5964 		perf_output_put(handle, data->cpu_entry);
5965 
5966 	if (sample_type & PERF_SAMPLE_PERIOD)
5967 		perf_output_put(handle, data->period);
5968 
5969 	if (sample_type & PERF_SAMPLE_READ)
5970 		perf_output_read(handle, event);
5971 
5972 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5973 		if (data->callchain) {
5974 			int size = 1;
5975 
5976 			if (data->callchain)
5977 				size += data->callchain->nr;
5978 
5979 			size *= sizeof(u64);
5980 
5981 			__output_copy(handle, data->callchain, size);
5982 		} else {
5983 			u64 nr = 0;
5984 			perf_output_put(handle, nr);
5985 		}
5986 	}
5987 
5988 	if (sample_type & PERF_SAMPLE_RAW) {
5989 		struct perf_raw_record *raw = data->raw;
5990 
5991 		if (raw) {
5992 			struct perf_raw_frag *frag = &raw->frag;
5993 
5994 			perf_output_put(handle, raw->size);
5995 			do {
5996 				if (frag->copy) {
5997 					__output_custom(handle, frag->copy,
5998 							frag->data, frag->size);
5999 				} else {
6000 					__output_copy(handle, frag->data,
6001 						      frag->size);
6002 				}
6003 				if (perf_raw_frag_last(frag))
6004 					break;
6005 				frag = frag->next;
6006 			} while (1);
6007 			if (frag->pad)
6008 				__output_skip(handle, NULL, frag->pad);
6009 		} else {
6010 			struct {
6011 				u32	size;
6012 				u32	data;
6013 			} raw = {
6014 				.size = sizeof(u32),
6015 				.data = 0,
6016 			};
6017 			perf_output_put(handle, raw);
6018 		}
6019 	}
6020 
6021 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6022 		if (data->br_stack) {
6023 			size_t size;
6024 
6025 			size = data->br_stack->nr
6026 			     * sizeof(struct perf_branch_entry);
6027 
6028 			perf_output_put(handle, data->br_stack->nr);
6029 			perf_output_copy(handle, data->br_stack->entries, size);
6030 		} else {
6031 			/*
6032 			 * we always store at least the value of nr
6033 			 */
6034 			u64 nr = 0;
6035 			perf_output_put(handle, nr);
6036 		}
6037 	}
6038 
6039 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6040 		u64 abi = data->regs_user.abi;
6041 
6042 		/*
6043 		 * If there are no regs to dump, notice it through
6044 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6045 		 */
6046 		perf_output_put(handle, abi);
6047 
6048 		if (abi) {
6049 			u64 mask = event->attr.sample_regs_user;
6050 			perf_output_sample_regs(handle,
6051 						data->regs_user.regs,
6052 						mask);
6053 		}
6054 	}
6055 
6056 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6057 		perf_output_sample_ustack(handle,
6058 					  data->stack_user_size,
6059 					  data->regs_user.regs);
6060 	}
6061 
6062 	if (sample_type & PERF_SAMPLE_WEIGHT)
6063 		perf_output_put(handle, data->weight);
6064 
6065 	if (sample_type & PERF_SAMPLE_DATA_SRC)
6066 		perf_output_put(handle, data->data_src.val);
6067 
6068 	if (sample_type & PERF_SAMPLE_TRANSACTION)
6069 		perf_output_put(handle, data->txn);
6070 
6071 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6072 		u64 abi = data->regs_intr.abi;
6073 		/*
6074 		 * If there are no regs to dump, notice it through
6075 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6076 		 */
6077 		perf_output_put(handle, abi);
6078 
6079 		if (abi) {
6080 			u64 mask = event->attr.sample_regs_intr;
6081 
6082 			perf_output_sample_regs(handle,
6083 						data->regs_intr.regs,
6084 						mask);
6085 		}
6086 	}
6087 
6088 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6089 		perf_output_put(handle, data->phys_addr);
6090 
6091 	if (!event->attr.watermark) {
6092 		int wakeup_events = event->attr.wakeup_events;
6093 
6094 		if (wakeup_events) {
6095 			struct ring_buffer *rb = handle->rb;
6096 			int events = local_inc_return(&rb->events);
6097 
6098 			if (events >= wakeup_events) {
6099 				local_sub(wakeup_events, &rb->events);
6100 				local_inc(&rb->wakeup);
6101 			}
6102 		}
6103 	}
6104 }
6105 
perf_virt_to_phys(u64 virt)6106 static u64 perf_virt_to_phys(u64 virt)
6107 {
6108 	u64 phys_addr = 0;
6109 	struct page *p = NULL;
6110 
6111 	if (!virt)
6112 		return 0;
6113 
6114 	if (virt >= TASK_SIZE) {
6115 		/* If it's vmalloc()d memory, leave phys_addr as 0 */
6116 		if (virt_addr_valid((void *)(uintptr_t)virt) &&
6117 		    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6118 			phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6119 	} else {
6120 		/*
6121 		 * Walking the pages tables for user address.
6122 		 * Interrupts are disabled, so it prevents any tear down
6123 		 * of the page tables.
6124 		 * Try IRQ-safe __get_user_pages_fast first.
6125 		 * If failed, leave phys_addr as 0.
6126 		 */
6127 		if ((current->mm != NULL) &&
6128 		    (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6129 			phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6130 
6131 		if (p)
6132 			put_page(p);
6133 	}
6134 
6135 	return phys_addr;
6136 }
6137 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)6138 void perf_prepare_sample(struct perf_event_header *header,
6139 			 struct perf_sample_data *data,
6140 			 struct perf_event *event,
6141 			 struct pt_regs *regs)
6142 {
6143 	u64 sample_type = event->attr.sample_type;
6144 
6145 	header->type = PERF_RECORD_SAMPLE;
6146 	header->size = sizeof(*header) + event->header_size;
6147 
6148 	header->misc = 0;
6149 	header->misc |= perf_misc_flags(regs);
6150 
6151 	__perf_event_header__init_id(header, data, event);
6152 
6153 	if (sample_type & PERF_SAMPLE_IP)
6154 		data->ip = perf_instruction_pointer(regs);
6155 
6156 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6157 		int size = 1;
6158 
6159 		data->callchain = perf_callchain(event, regs);
6160 
6161 		if (data->callchain)
6162 			size += data->callchain->nr;
6163 
6164 		header->size += size * sizeof(u64);
6165 	}
6166 
6167 	if (sample_type & PERF_SAMPLE_RAW) {
6168 		struct perf_raw_record *raw = data->raw;
6169 		int size;
6170 
6171 		if (raw) {
6172 			struct perf_raw_frag *frag = &raw->frag;
6173 			u32 sum = 0;
6174 
6175 			do {
6176 				sum += frag->size;
6177 				if (perf_raw_frag_last(frag))
6178 					break;
6179 				frag = frag->next;
6180 			} while (1);
6181 
6182 			size = round_up(sum + sizeof(u32), sizeof(u64));
6183 			raw->size = size - sizeof(u32);
6184 			frag->pad = raw->size - sum;
6185 		} else {
6186 			size = sizeof(u64);
6187 		}
6188 
6189 		header->size += size;
6190 	}
6191 
6192 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6193 		int size = sizeof(u64); /* nr */
6194 		if (data->br_stack) {
6195 			size += data->br_stack->nr
6196 			      * sizeof(struct perf_branch_entry);
6197 		}
6198 		header->size += size;
6199 	}
6200 
6201 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6202 		perf_sample_regs_user(&data->regs_user, regs,
6203 				      &data->regs_user_copy);
6204 
6205 	if (sample_type & PERF_SAMPLE_REGS_USER) {
6206 		/* regs dump ABI info */
6207 		int size = sizeof(u64);
6208 
6209 		if (data->regs_user.regs) {
6210 			u64 mask = event->attr.sample_regs_user;
6211 			size += hweight64(mask) * sizeof(u64);
6212 		}
6213 
6214 		header->size += size;
6215 	}
6216 
6217 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6218 		/*
6219 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6220 		 * processed as the last one or have additional check added
6221 		 * in case new sample type is added, because we could eat
6222 		 * up the rest of the sample size.
6223 		 */
6224 		u16 stack_size = event->attr.sample_stack_user;
6225 		u16 size = sizeof(u64);
6226 
6227 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6228 						     data->regs_user.regs);
6229 
6230 		/*
6231 		 * If there is something to dump, add space for the dump
6232 		 * itself and for the field that tells the dynamic size,
6233 		 * which is how many have been actually dumped.
6234 		 */
6235 		if (stack_size)
6236 			size += sizeof(u64) + stack_size;
6237 
6238 		data->stack_user_size = stack_size;
6239 		header->size += size;
6240 	}
6241 
6242 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6243 		/* regs dump ABI info */
6244 		int size = sizeof(u64);
6245 
6246 		perf_sample_regs_intr(&data->regs_intr, regs);
6247 
6248 		if (data->regs_intr.regs) {
6249 			u64 mask = event->attr.sample_regs_intr;
6250 
6251 			size += hweight64(mask) * sizeof(u64);
6252 		}
6253 
6254 		header->size += size;
6255 	}
6256 
6257 	if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6258 		data->phys_addr = perf_virt_to_phys(data->addr);
6259 }
6260 
6261 static void __always_inline
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_event *,unsigned int))6262 __perf_event_output(struct perf_event *event,
6263 		    struct perf_sample_data *data,
6264 		    struct pt_regs *regs,
6265 		    int (*output_begin)(struct perf_output_handle *,
6266 					struct perf_event *,
6267 					unsigned int))
6268 {
6269 	struct perf_output_handle handle;
6270 	struct perf_event_header header;
6271 
6272 	/* protect the callchain buffers */
6273 	rcu_read_lock();
6274 
6275 	perf_prepare_sample(&header, data, event, regs);
6276 
6277 	if (output_begin(&handle, event, header.size))
6278 		goto exit;
6279 
6280 	perf_output_sample(&handle, &header, data, event);
6281 
6282 	perf_output_end(&handle);
6283 
6284 exit:
6285 	rcu_read_unlock();
6286 }
6287 
6288 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6289 perf_event_output_forward(struct perf_event *event,
6290 			 struct perf_sample_data *data,
6291 			 struct pt_regs *regs)
6292 {
6293 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6294 }
6295 
6296 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6297 perf_event_output_backward(struct perf_event *event,
6298 			   struct perf_sample_data *data,
6299 			   struct pt_regs *regs)
6300 {
6301 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6302 }
6303 
6304 void
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6305 perf_event_output(struct perf_event *event,
6306 		  struct perf_sample_data *data,
6307 		  struct pt_regs *regs)
6308 {
6309 	__perf_event_output(event, data, regs, perf_output_begin);
6310 }
6311 
6312 /*
6313  * read event_id
6314  */
6315 
6316 struct perf_read_event {
6317 	struct perf_event_header	header;
6318 
6319 	u32				pid;
6320 	u32				tid;
6321 };
6322 
6323 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)6324 perf_event_read_event(struct perf_event *event,
6325 			struct task_struct *task)
6326 {
6327 	struct perf_output_handle handle;
6328 	struct perf_sample_data sample;
6329 	struct perf_read_event read_event = {
6330 		.header = {
6331 			.type = PERF_RECORD_READ,
6332 			.misc = 0,
6333 			.size = sizeof(read_event) + event->read_size,
6334 		},
6335 		.pid = perf_event_pid(event, task),
6336 		.tid = perf_event_tid(event, task),
6337 	};
6338 	int ret;
6339 
6340 	perf_event_header__init_id(&read_event.header, &sample, event);
6341 	ret = perf_output_begin(&handle, event, read_event.header.size);
6342 	if (ret)
6343 		return;
6344 
6345 	perf_output_put(&handle, read_event);
6346 	perf_output_read(&handle, event);
6347 	perf_event__output_id_sample(event, &handle, &sample);
6348 
6349 	perf_output_end(&handle);
6350 }
6351 
6352 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6353 
6354 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)6355 perf_iterate_ctx(struct perf_event_context *ctx,
6356 		   perf_iterate_f output,
6357 		   void *data, bool all)
6358 {
6359 	struct perf_event *event;
6360 
6361 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6362 		if (!all) {
6363 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6364 				continue;
6365 			if (!event_filter_match(event))
6366 				continue;
6367 		}
6368 
6369 		output(event, data);
6370 	}
6371 }
6372 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)6373 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6374 {
6375 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6376 	struct perf_event *event;
6377 
6378 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6379 		/*
6380 		 * Skip events that are not fully formed yet; ensure that
6381 		 * if we observe event->ctx, both event and ctx will be
6382 		 * complete enough. See perf_install_in_context().
6383 		 */
6384 		if (!smp_load_acquire(&event->ctx))
6385 			continue;
6386 
6387 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6388 			continue;
6389 		if (!event_filter_match(event))
6390 			continue;
6391 		output(event, data);
6392 	}
6393 }
6394 
6395 /*
6396  * Iterate all events that need to receive side-band events.
6397  *
6398  * For new callers; ensure that account_pmu_sb_event() includes
6399  * your event, otherwise it might not get delivered.
6400  */
6401 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)6402 perf_iterate_sb(perf_iterate_f output, void *data,
6403 	       struct perf_event_context *task_ctx)
6404 {
6405 	struct perf_event_context *ctx;
6406 	int ctxn;
6407 
6408 	rcu_read_lock();
6409 	preempt_disable();
6410 
6411 	/*
6412 	 * If we have task_ctx != NULL we only notify the task context itself.
6413 	 * The task_ctx is set only for EXIT events before releasing task
6414 	 * context.
6415 	 */
6416 	if (task_ctx) {
6417 		perf_iterate_ctx(task_ctx, output, data, false);
6418 		goto done;
6419 	}
6420 
6421 	perf_iterate_sb_cpu(output, data);
6422 
6423 	for_each_task_context_nr(ctxn) {
6424 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6425 		if (ctx)
6426 			perf_iterate_ctx(ctx, output, data, false);
6427 	}
6428 done:
6429 	preempt_enable();
6430 	rcu_read_unlock();
6431 }
6432 
6433 /*
6434  * Clear all file-based filters at exec, they'll have to be
6435  * re-instated when/if these objects are mmapped again.
6436  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)6437 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6438 {
6439 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6440 	struct perf_addr_filter *filter;
6441 	unsigned int restart = 0, count = 0;
6442 	unsigned long flags;
6443 
6444 	if (!has_addr_filter(event))
6445 		return;
6446 
6447 	raw_spin_lock_irqsave(&ifh->lock, flags);
6448 	list_for_each_entry(filter, &ifh->list, entry) {
6449 		if (filter->inode) {
6450 			event->addr_filters_offs[count] = 0;
6451 			restart++;
6452 		}
6453 
6454 		count++;
6455 	}
6456 
6457 	if (restart)
6458 		event->addr_filters_gen++;
6459 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6460 
6461 	if (restart)
6462 		perf_event_stop(event, 1);
6463 }
6464 
perf_event_exec(void)6465 void perf_event_exec(void)
6466 {
6467 	struct perf_event_context *ctx;
6468 	int ctxn;
6469 
6470 	rcu_read_lock();
6471 	for_each_task_context_nr(ctxn) {
6472 		ctx = current->perf_event_ctxp[ctxn];
6473 		if (!ctx)
6474 			continue;
6475 
6476 		perf_event_enable_on_exec(ctxn);
6477 
6478 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6479 				   true);
6480 	}
6481 	rcu_read_unlock();
6482 }
6483 
6484 struct remote_output {
6485 	struct ring_buffer	*rb;
6486 	int			err;
6487 };
6488 
__perf_event_output_stop(struct perf_event * event,void * data)6489 static void __perf_event_output_stop(struct perf_event *event, void *data)
6490 {
6491 	struct perf_event *parent = event->parent;
6492 	struct remote_output *ro = data;
6493 	struct ring_buffer *rb = ro->rb;
6494 	struct stop_event_data sd = {
6495 		.event	= event,
6496 	};
6497 
6498 	if (!has_aux(event))
6499 		return;
6500 
6501 	if (!parent)
6502 		parent = event;
6503 
6504 	/*
6505 	 * In case of inheritance, it will be the parent that links to the
6506 	 * ring-buffer, but it will be the child that's actually using it.
6507 	 *
6508 	 * We are using event::rb to determine if the event should be stopped,
6509 	 * however this may race with ring_buffer_attach() (through set_output),
6510 	 * which will make us skip the event that actually needs to be stopped.
6511 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6512 	 * its rb pointer.
6513 	 */
6514 	if (rcu_dereference(parent->rb) == rb)
6515 		ro->err = __perf_event_stop(&sd);
6516 }
6517 
__perf_pmu_output_stop(void * info)6518 static int __perf_pmu_output_stop(void *info)
6519 {
6520 	struct perf_event *event = info;
6521 	struct pmu *pmu = event->pmu;
6522 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6523 	struct remote_output ro = {
6524 		.rb	= event->rb,
6525 	};
6526 
6527 	rcu_read_lock();
6528 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6529 	if (cpuctx->task_ctx)
6530 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6531 				   &ro, false);
6532 	rcu_read_unlock();
6533 
6534 	return ro.err;
6535 }
6536 
perf_pmu_output_stop(struct perf_event * event)6537 static void perf_pmu_output_stop(struct perf_event *event)
6538 {
6539 	struct perf_event *iter;
6540 	int err, cpu;
6541 
6542 restart:
6543 	rcu_read_lock();
6544 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6545 		/*
6546 		 * For per-CPU events, we need to make sure that neither they
6547 		 * nor their children are running; for cpu==-1 events it's
6548 		 * sufficient to stop the event itself if it's active, since
6549 		 * it can't have children.
6550 		 */
6551 		cpu = iter->cpu;
6552 		if (cpu == -1)
6553 			cpu = READ_ONCE(iter->oncpu);
6554 
6555 		if (cpu == -1)
6556 			continue;
6557 
6558 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6559 		if (err == -EAGAIN) {
6560 			rcu_read_unlock();
6561 			goto restart;
6562 		}
6563 	}
6564 	rcu_read_unlock();
6565 }
6566 
6567 /*
6568  * task tracking -- fork/exit
6569  *
6570  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6571  */
6572 
6573 struct perf_task_event {
6574 	struct task_struct		*task;
6575 	struct perf_event_context	*task_ctx;
6576 
6577 	struct {
6578 		struct perf_event_header	header;
6579 
6580 		u32				pid;
6581 		u32				ppid;
6582 		u32				tid;
6583 		u32				ptid;
6584 		u64				time;
6585 	} event_id;
6586 };
6587 
perf_event_task_match(struct perf_event * event)6588 static int perf_event_task_match(struct perf_event *event)
6589 {
6590 	return event->attr.comm  || event->attr.mmap ||
6591 	       event->attr.mmap2 || event->attr.mmap_data ||
6592 	       event->attr.task;
6593 }
6594 
perf_event_task_output(struct perf_event * event,void * data)6595 static void perf_event_task_output(struct perf_event *event,
6596 				   void *data)
6597 {
6598 	struct perf_task_event *task_event = data;
6599 	struct perf_output_handle handle;
6600 	struct perf_sample_data	sample;
6601 	struct task_struct *task = task_event->task;
6602 	int ret, size = task_event->event_id.header.size;
6603 
6604 	if (!perf_event_task_match(event))
6605 		return;
6606 
6607 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6608 
6609 	ret = perf_output_begin(&handle, event,
6610 				task_event->event_id.header.size);
6611 	if (ret)
6612 		goto out;
6613 
6614 	task_event->event_id.pid = perf_event_pid(event, task);
6615 	task_event->event_id.ppid = perf_event_pid(event, current);
6616 
6617 	task_event->event_id.tid = perf_event_tid(event, task);
6618 	task_event->event_id.ptid = perf_event_tid(event, current);
6619 
6620 	task_event->event_id.time = perf_event_clock(event);
6621 
6622 	perf_output_put(&handle, task_event->event_id);
6623 
6624 	perf_event__output_id_sample(event, &handle, &sample);
6625 
6626 	perf_output_end(&handle);
6627 out:
6628 	task_event->event_id.header.size = size;
6629 }
6630 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)6631 static void perf_event_task(struct task_struct *task,
6632 			      struct perf_event_context *task_ctx,
6633 			      int new)
6634 {
6635 	struct perf_task_event task_event;
6636 
6637 	if (!atomic_read(&nr_comm_events) &&
6638 	    !atomic_read(&nr_mmap_events) &&
6639 	    !atomic_read(&nr_task_events))
6640 		return;
6641 
6642 	task_event = (struct perf_task_event){
6643 		.task	  = task,
6644 		.task_ctx = task_ctx,
6645 		.event_id    = {
6646 			.header = {
6647 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6648 				.misc = 0,
6649 				.size = sizeof(task_event.event_id),
6650 			},
6651 			/* .pid  */
6652 			/* .ppid */
6653 			/* .tid  */
6654 			/* .ptid */
6655 			/* .time */
6656 		},
6657 	};
6658 
6659 	perf_iterate_sb(perf_event_task_output,
6660 		       &task_event,
6661 		       task_ctx);
6662 }
6663 
perf_event_fork(struct task_struct * task)6664 void perf_event_fork(struct task_struct *task)
6665 {
6666 	perf_event_task(task, NULL, 1);
6667 	perf_event_namespaces(task);
6668 }
6669 
6670 /*
6671  * comm tracking
6672  */
6673 
6674 struct perf_comm_event {
6675 	struct task_struct	*task;
6676 	char			*comm;
6677 	int			comm_size;
6678 
6679 	struct {
6680 		struct perf_event_header	header;
6681 
6682 		u32				pid;
6683 		u32				tid;
6684 	} event_id;
6685 };
6686 
perf_event_comm_match(struct perf_event * event)6687 static int perf_event_comm_match(struct perf_event *event)
6688 {
6689 	return event->attr.comm;
6690 }
6691 
perf_event_comm_output(struct perf_event * event,void * data)6692 static void perf_event_comm_output(struct perf_event *event,
6693 				   void *data)
6694 {
6695 	struct perf_comm_event *comm_event = data;
6696 	struct perf_output_handle handle;
6697 	struct perf_sample_data sample;
6698 	int size = comm_event->event_id.header.size;
6699 	int ret;
6700 
6701 	if (!perf_event_comm_match(event))
6702 		return;
6703 
6704 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6705 	ret = perf_output_begin(&handle, event,
6706 				comm_event->event_id.header.size);
6707 
6708 	if (ret)
6709 		goto out;
6710 
6711 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6712 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6713 
6714 	perf_output_put(&handle, comm_event->event_id);
6715 	__output_copy(&handle, comm_event->comm,
6716 				   comm_event->comm_size);
6717 
6718 	perf_event__output_id_sample(event, &handle, &sample);
6719 
6720 	perf_output_end(&handle);
6721 out:
6722 	comm_event->event_id.header.size = size;
6723 }
6724 
perf_event_comm_event(struct perf_comm_event * comm_event)6725 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6726 {
6727 	char comm[TASK_COMM_LEN];
6728 	unsigned int size;
6729 
6730 	memset(comm, 0, sizeof(comm));
6731 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6732 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6733 
6734 	comm_event->comm = comm;
6735 	comm_event->comm_size = size;
6736 
6737 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6738 
6739 	perf_iterate_sb(perf_event_comm_output,
6740 		       comm_event,
6741 		       NULL);
6742 }
6743 
perf_event_comm(struct task_struct * task,bool exec)6744 void perf_event_comm(struct task_struct *task, bool exec)
6745 {
6746 	struct perf_comm_event comm_event;
6747 
6748 	if (!atomic_read(&nr_comm_events))
6749 		return;
6750 
6751 	comm_event = (struct perf_comm_event){
6752 		.task	= task,
6753 		/* .comm      */
6754 		/* .comm_size */
6755 		.event_id  = {
6756 			.header = {
6757 				.type = PERF_RECORD_COMM,
6758 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6759 				/* .size */
6760 			},
6761 			/* .pid */
6762 			/* .tid */
6763 		},
6764 	};
6765 
6766 	perf_event_comm_event(&comm_event);
6767 }
6768 
6769 /*
6770  * namespaces tracking
6771  */
6772 
6773 struct perf_namespaces_event {
6774 	struct task_struct		*task;
6775 
6776 	struct {
6777 		struct perf_event_header	header;
6778 
6779 		u32				pid;
6780 		u32				tid;
6781 		u64				nr_namespaces;
6782 		struct perf_ns_link_info	link_info[NR_NAMESPACES];
6783 	} event_id;
6784 };
6785 
perf_event_namespaces_match(struct perf_event * event)6786 static int perf_event_namespaces_match(struct perf_event *event)
6787 {
6788 	return event->attr.namespaces;
6789 }
6790 
perf_event_namespaces_output(struct perf_event * event,void * data)6791 static void perf_event_namespaces_output(struct perf_event *event,
6792 					 void *data)
6793 {
6794 	struct perf_namespaces_event *namespaces_event = data;
6795 	struct perf_output_handle handle;
6796 	struct perf_sample_data sample;
6797 	u16 header_size = namespaces_event->event_id.header.size;
6798 	int ret;
6799 
6800 	if (!perf_event_namespaces_match(event))
6801 		return;
6802 
6803 	perf_event_header__init_id(&namespaces_event->event_id.header,
6804 				   &sample, event);
6805 	ret = perf_output_begin(&handle, event,
6806 				namespaces_event->event_id.header.size);
6807 	if (ret)
6808 		goto out;
6809 
6810 	namespaces_event->event_id.pid = perf_event_pid(event,
6811 							namespaces_event->task);
6812 	namespaces_event->event_id.tid = perf_event_tid(event,
6813 							namespaces_event->task);
6814 
6815 	perf_output_put(&handle, namespaces_event->event_id);
6816 
6817 	perf_event__output_id_sample(event, &handle, &sample);
6818 
6819 	perf_output_end(&handle);
6820 out:
6821 	namespaces_event->event_id.header.size = header_size;
6822 }
6823 
perf_fill_ns_link_info(struct perf_ns_link_info * ns_link_info,struct task_struct * task,const struct proc_ns_operations * ns_ops)6824 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6825 				   struct task_struct *task,
6826 				   const struct proc_ns_operations *ns_ops)
6827 {
6828 	struct path ns_path;
6829 	struct inode *ns_inode;
6830 	void *error;
6831 
6832 	error = ns_get_path(&ns_path, task, ns_ops);
6833 	if (!error) {
6834 		ns_inode = ns_path.dentry->d_inode;
6835 		ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6836 		ns_link_info->ino = ns_inode->i_ino;
6837 		path_put(&ns_path);
6838 	}
6839 }
6840 
perf_event_namespaces(struct task_struct * task)6841 void perf_event_namespaces(struct task_struct *task)
6842 {
6843 	struct perf_namespaces_event namespaces_event;
6844 	struct perf_ns_link_info *ns_link_info;
6845 
6846 	if (!atomic_read(&nr_namespaces_events))
6847 		return;
6848 
6849 	namespaces_event = (struct perf_namespaces_event){
6850 		.task	= task,
6851 		.event_id  = {
6852 			.header = {
6853 				.type = PERF_RECORD_NAMESPACES,
6854 				.misc = 0,
6855 				.size = sizeof(namespaces_event.event_id),
6856 			},
6857 			/* .pid */
6858 			/* .tid */
6859 			.nr_namespaces = NR_NAMESPACES,
6860 			/* .link_info[NR_NAMESPACES] */
6861 		},
6862 	};
6863 
6864 	ns_link_info = namespaces_event.event_id.link_info;
6865 
6866 	perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6867 			       task, &mntns_operations);
6868 
6869 #ifdef CONFIG_USER_NS
6870 	perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6871 			       task, &userns_operations);
6872 #endif
6873 #ifdef CONFIG_NET_NS
6874 	perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6875 			       task, &netns_operations);
6876 #endif
6877 #ifdef CONFIG_UTS_NS
6878 	perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6879 			       task, &utsns_operations);
6880 #endif
6881 #ifdef CONFIG_IPC_NS
6882 	perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6883 			       task, &ipcns_operations);
6884 #endif
6885 #ifdef CONFIG_PID_NS
6886 	perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6887 			       task, &pidns_operations);
6888 #endif
6889 #ifdef CONFIG_CGROUPS
6890 	perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6891 			       task, &cgroupns_operations);
6892 #endif
6893 
6894 	perf_iterate_sb(perf_event_namespaces_output,
6895 			&namespaces_event,
6896 			NULL);
6897 }
6898 
6899 /*
6900  * mmap tracking
6901  */
6902 
6903 struct perf_mmap_event {
6904 	struct vm_area_struct	*vma;
6905 
6906 	const char		*file_name;
6907 	int			file_size;
6908 	int			maj, min;
6909 	u64			ino;
6910 	u64			ino_generation;
6911 	u32			prot, flags;
6912 
6913 	struct {
6914 		struct perf_event_header	header;
6915 
6916 		u32				pid;
6917 		u32				tid;
6918 		u64				start;
6919 		u64				len;
6920 		u64				pgoff;
6921 	} event_id;
6922 };
6923 
perf_event_mmap_match(struct perf_event * event,void * data)6924 static int perf_event_mmap_match(struct perf_event *event,
6925 				 void *data)
6926 {
6927 	struct perf_mmap_event *mmap_event = data;
6928 	struct vm_area_struct *vma = mmap_event->vma;
6929 	int executable = vma->vm_flags & VM_EXEC;
6930 
6931 	return (!executable && event->attr.mmap_data) ||
6932 	       (executable && (event->attr.mmap || event->attr.mmap2));
6933 }
6934 
perf_event_mmap_output(struct perf_event * event,void * data)6935 static void perf_event_mmap_output(struct perf_event *event,
6936 				   void *data)
6937 {
6938 	struct perf_mmap_event *mmap_event = data;
6939 	struct perf_output_handle handle;
6940 	struct perf_sample_data sample;
6941 	int size = mmap_event->event_id.header.size;
6942 	u32 type = mmap_event->event_id.header.type;
6943 	int ret;
6944 
6945 	if (!perf_event_mmap_match(event, data))
6946 		return;
6947 
6948 	if (event->attr.mmap2) {
6949 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6950 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6951 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6952 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6953 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6954 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6955 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6956 	}
6957 
6958 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6959 	ret = perf_output_begin(&handle, event,
6960 				mmap_event->event_id.header.size);
6961 	if (ret)
6962 		goto out;
6963 
6964 	mmap_event->event_id.pid = perf_event_pid(event, current);
6965 	mmap_event->event_id.tid = perf_event_tid(event, current);
6966 
6967 	perf_output_put(&handle, mmap_event->event_id);
6968 
6969 	if (event->attr.mmap2) {
6970 		perf_output_put(&handle, mmap_event->maj);
6971 		perf_output_put(&handle, mmap_event->min);
6972 		perf_output_put(&handle, mmap_event->ino);
6973 		perf_output_put(&handle, mmap_event->ino_generation);
6974 		perf_output_put(&handle, mmap_event->prot);
6975 		perf_output_put(&handle, mmap_event->flags);
6976 	}
6977 
6978 	__output_copy(&handle, mmap_event->file_name,
6979 				   mmap_event->file_size);
6980 
6981 	perf_event__output_id_sample(event, &handle, &sample);
6982 
6983 	perf_output_end(&handle);
6984 out:
6985 	mmap_event->event_id.header.size = size;
6986 	mmap_event->event_id.header.type = type;
6987 }
6988 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)6989 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6990 {
6991 	struct vm_area_struct *vma = mmap_event->vma;
6992 	struct file *file = vma->vm_file;
6993 	int maj = 0, min = 0;
6994 	u64 ino = 0, gen = 0;
6995 	u32 prot = 0, flags = 0;
6996 	unsigned int size;
6997 	char tmp[16];
6998 	char *buf = NULL;
6999 	char *name;
7000 
7001 	if (vma->vm_flags & VM_READ)
7002 		prot |= PROT_READ;
7003 	if (vma->vm_flags & VM_WRITE)
7004 		prot |= PROT_WRITE;
7005 	if (vma->vm_flags & VM_EXEC)
7006 		prot |= PROT_EXEC;
7007 
7008 	if (vma->vm_flags & VM_MAYSHARE)
7009 		flags = MAP_SHARED;
7010 	else
7011 		flags = MAP_PRIVATE;
7012 
7013 	if (vma->vm_flags & VM_DENYWRITE)
7014 		flags |= MAP_DENYWRITE;
7015 	if (vma->vm_flags & VM_MAYEXEC)
7016 		flags |= MAP_EXECUTABLE;
7017 	if (vma->vm_flags & VM_LOCKED)
7018 		flags |= MAP_LOCKED;
7019 	if (vma->vm_flags & VM_HUGETLB)
7020 		flags |= MAP_HUGETLB;
7021 
7022 	if (file) {
7023 		struct inode *inode;
7024 		dev_t dev;
7025 
7026 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
7027 		if (!buf) {
7028 			name = "//enomem";
7029 			goto cpy_name;
7030 		}
7031 		/*
7032 		 * d_path() works from the end of the rb backwards, so we
7033 		 * need to add enough zero bytes after the string to handle
7034 		 * the 64bit alignment we do later.
7035 		 */
7036 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
7037 		if (IS_ERR(name)) {
7038 			name = "//toolong";
7039 			goto cpy_name;
7040 		}
7041 		inode = file_inode(vma->vm_file);
7042 		dev = inode->i_sb->s_dev;
7043 		ino = inode->i_ino;
7044 		gen = inode->i_generation;
7045 		maj = MAJOR(dev);
7046 		min = MINOR(dev);
7047 
7048 		goto got_name;
7049 	} else {
7050 		if (vma->vm_ops && vma->vm_ops->name) {
7051 			name = (char *) vma->vm_ops->name(vma);
7052 			if (name)
7053 				goto cpy_name;
7054 		}
7055 
7056 		name = (char *)arch_vma_name(vma);
7057 		if (name)
7058 			goto cpy_name;
7059 
7060 		if (vma->vm_start <= vma->vm_mm->start_brk &&
7061 				vma->vm_end >= vma->vm_mm->brk) {
7062 			name = "[heap]";
7063 			goto cpy_name;
7064 		}
7065 		if (vma->vm_start <= vma->vm_mm->start_stack &&
7066 				vma->vm_end >= vma->vm_mm->start_stack) {
7067 			name = "[stack]";
7068 			goto cpy_name;
7069 		}
7070 
7071 		name = "//anon";
7072 		goto cpy_name;
7073 	}
7074 
7075 cpy_name:
7076 	strlcpy(tmp, name, sizeof(tmp));
7077 	name = tmp;
7078 got_name:
7079 	/*
7080 	 * Since our buffer works in 8 byte units we need to align our string
7081 	 * size to a multiple of 8. However, we must guarantee the tail end is
7082 	 * zero'd out to avoid leaking random bits to userspace.
7083 	 */
7084 	size = strlen(name)+1;
7085 	while (!IS_ALIGNED(size, sizeof(u64)))
7086 		name[size++] = '\0';
7087 
7088 	mmap_event->file_name = name;
7089 	mmap_event->file_size = size;
7090 	mmap_event->maj = maj;
7091 	mmap_event->min = min;
7092 	mmap_event->ino = ino;
7093 	mmap_event->ino_generation = gen;
7094 	mmap_event->prot = prot;
7095 	mmap_event->flags = flags;
7096 
7097 	if (!(vma->vm_flags & VM_EXEC))
7098 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7099 
7100 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7101 
7102 	perf_iterate_sb(perf_event_mmap_output,
7103 		       mmap_event,
7104 		       NULL);
7105 
7106 	kfree(buf);
7107 }
7108 
7109 /*
7110  * Check whether inode and address range match filter criteria.
7111  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)7112 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7113 				     struct file *file, unsigned long offset,
7114 				     unsigned long size)
7115 {
7116 	if (filter->inode != file_inode(file))
7117 		return false;
7118 
7119 	if (filter->offset > offset + size)
7120 		return false;
7121 
7122 	if (filter->offset + filter->size < offset)
7123 		return false;
7124 
7125 	return true;
7126 }
7127 
__perf_addr_filters_adjust(struct perf_event * event,void * data)7128 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7129 {
7130 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7131 	struct vm_area_struct *vma = data;
7132 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7133 	struct file *file = vma->vm_file;
7134 	struct perf_addr_filter *filter;
7135 	unsigned int restart = 0, count = 0;
7136 
7137 	if (!has_addr_filter(event))
7138 		return;
7139 
7140 	if (!file)
7141 		return;
7142 
7143 	raw_spin_lock_irqsave(&ifh->lock, flags);
7144 	list_for_each_entry(filter, &ifh->list, entry) {
7145 		if (perf_addr_filter_match(filter, file, off,
7146 					     vma->vm_end - vma->vm_start)) {
7147 			event->addr_filters_offs[count] = vma->vm_start;
7148 			restart++;
7149 		}
7150 
7151 		count++;
7152 	}
7153 
7154 	if (restart)
7155 		event->addr_filters_gen++;
7156 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
7157 
7158 	if (restart)
7159 		perf_event_stop(event, 1);
7160 }
7161 
7162 /*
7163  * Adjust all task's events' filters to the new vma
7164  */
perf_addr_filters_adjust(struct vm_area_struct * vma)7165 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7166 {
7167 	struct perf_event_context *ctx;
7168 	int ctxn;
7169 
7170 	/*
7171 	 * Data tracing isn't supported yet and as such there is no need
7172 	 * to keep track of anything that isn't related to executable code:
7173 	 */
7174 	if (!(vma->vm_flags & VM_EXEC))
7175 		return;
7176 
7177 	rcu_read_lock();
7178 	for_each_task_context_nr(ctxn) {
7179 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7180 		if (!ctx)
7181 			continue;
7182 
7183 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7184 	}
7185 	rcu_read_unlock();
7186 }
7187 
perf_event_mmap(struct vm_area_struct * vma)7188 void perf_event_mmap(struct vm_area_struct *vma)
7189 {
7190 	struct perf_mmap_event mmap_event;
7191 
7192 	if (!atomic_read(&nr_mmap_events))
7193 		return;
7194 
7195 	mmap_event = (struct perf_mmap_event){
7196 		.vma	= vma,
7197 		/* .file_name */
7198 		/* .file_size */
7199 		.event_id  = {
7200 			.header = {
7201 				.type = PERF_RECORD_MMAP,
7202 				.misc = PERF_RECORD_MISC_USER,
7203 				/* .size */
7204 			},
7205 			/* .pid */
7206 			/* .tid */
7207 			.start  = vma->vm_start,
7208 			.len    = vma->vm_end - vma->vm_start,
7209 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7210 		},
7211 		/* .maj (attr_mmap2 only) */
7212 		/* .min (attr_mmap2 only) */
7213 		/* .ino (attr_mmap2 only) */
7214 		/* .ino_generation (attr_mmap2 only) */
7215 		/* .prot (attr_mmap2 only) */
7216 		/* .flags (attr_mmap2 only) */
7217 	};
7218 
7219 	perf_addr_filters_adjust(vma);
7220 	perf_event_mmap_event(&mmap_event);
7221 }
7222 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)7223 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7224 			  unsigned long size, u64 flags)
7225 {
7226 	struct perf_output_handle handle;
7227 	struct perf_sample_data sample;
7228 	struct perf_aux_event {
7229 		struct perf_event_header	header;
7230 		u64				offset;
7231 		u64				size;
7232 		u64				flags;
7233 	} rec = {
7234 		.header = {
7235 			.type = PERF_RECORD_AUX,
7236 			.misc = 0,
7237 			.size = sizeof(rec),
7238 		},
7239 		.offset		= head,
7240 		.size		= size,
7241 		.flags		= flags,
7242 	};
7243 	int ret;
7244 
7245 	perf_event_header__init_id(&rec.header, &sample, event);
7246 	ret = perf_output_begin(&handle, event, rec.header.size);
7247 
7248 	if (ret)
7249 		return;
7250 
7251 	perf_output_put(&handle, rec);
7252 	perf_event__output_id_sample(event, &handle, &sample);
7253 
7254 	perf_output_end(&handle);
7255 }
7256 
7257 /*
7258  * Lost/dropped samples logging
7259  */
perf_log_lost_samples(struct perf_event * event,u64 lost)7260 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7261 {
7262 	struct perf_output_handle handle;
7263 	struct perf_sample_data sample;
7264 	int ret;
7265 
7266 	struct {
7267 		struct perf_event_header	header;
7268 		u64				lost;
7269 	} lost_samples_event = {
7270 		.header = {
7271 			.type = PERF_RECORD_LOST_SAMPLES,
7272 			.misc = 0,
7273 			.size = sizeof(lost_samples_event),
7274 		},
7275 		.lost		= lost,
7276 	};
7277 
7278 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7279 
7280 	ret = perf_output_begin(&handle, event,
7281 				lost_samples_event.header.size);
7282 	if (ret)
7283 		return;
7284 
7285 	perf_output_put(&handle, lost_samples_event);
7286 	perf_event__output_id_sample(event, &handle, &sample);
7287 	perf_output_end(&handle);
7288 }
7289 
7290 /*
7291  * context_switch tracking
7292  */
7293 
7294 struct perf_switch_event {
7295 	struct task_struct	*task;
7296 	struct task_struct	*next_prev;
7297 
7298 	struct {
7299 		struct perf_event_header	header;
7300 		u32				next_prev_pid;
7301 		u32				next_prev_tid;
7302 	} event_id;
7303 };
7304 
perf_event_switch_match(struct perf_event * event)7305 static int perf_event_switch_match(struct perf_event *event)
7306 {
7307 	return event->attr.context_switch;
7308 }
7309 
perf_event_switch_output(struct perf_event * event,void * data)7310 static void perf_event_switch_output(struct perf_event *event, void *data)
7311 {
7312 	struct perf_switch_event *se = data;
7313 	struct perf_output_handle handle;
7314 	struct perf_sample_data sample;
7315 	int ret;
7316 
7317 	if (!perf_event_switch_match(event))
7318 		return;
7319 
7320 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
7321 	if (event->ctx->task) {
7322 		se->event_id.header.type = PERF_RECORD_SWITCH;
7323 		se->event_id.header.size = sizeof(se->event_id.header);
7324 	} else {
7325 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7326 		se->event_id.header.size = sizeof(se->event_id);
7327 		se->event_id.next_prev_pid =
7328 					perf_event_pid(event, se->next_prev);
7329 		se->event_id.next_prev_tid =
7330 					perf_event_tid(event, se->next_prev);
7331 	}
7332 
7333 	perf_event_header__init_id(&se->event_id.header, &sample, event);
7334 
7335 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
7336 	if (ret)
7337 		return;
7338 
7339 	if (event->ctx->task)
7340 		perf_output_put(&handle, se->event_id.header);
7341 	else
7342 		perf_output_put(&handle, se->event_id);
7343 
7344 	perf_event__output_id_sample(event, &handle, &sample);
7345 
7346 	perf_output_end(&handle);
7347 }
7348 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)7349 static void perf_event_switch(struct task_struct *task,
7350 			      struct task_struct *next_prev, bool sched_in)
7351 {
7352 	struct perf_switch_event switch_event;
7353 
7354 	/* N.B. caller checks nr_switch_events != 0 */
7355 
7356 	switch_event = (struct perf_switch_event){
7357 		.task		= task,
7358 		.next_prev	= next_prev,
7359 		.event_id	= {
7360 			.header = {
7361 				/* .type */
7362 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7363 				/* .size */
7364 			},
7365 			/* .next_prev_pid */
7366 			/* .next_prev_tid */
7367 		},
7368 	};
7369 
7370 	perf_iterate_sb(perf_event_switch_output,
7371 		       &switch_event,
7372 		       NULL);
7373 }
7374 
7375 /*
7376  * IRQ throttle logging
7377  */
7378 
perf_log_throttle(struct perf_event * event,int enable)7379 static void perf_log_throttle(struct perf_event *event, int enable)
7380 {
7381 	struct perf_output_handle handle;
7382 	struct perf_sample_data sample;
7383 	int ret;
7384 
7385 	struct {
7386 		struct perf_event_header	header;
7387 		u64				time;
7388 		u64				id;
7389 		u64				stream_id;
7390 	} throttle_event = {
7391 		.header = {
7392 			.type = PERF_RECORD_THROTTLE,
7393 			.misc = 0,
7394 			.size = sizeof(throttle_event),
7395 		},
7396 		.time		= perf_event_clock(event),
7397 		.id		= primary_event_id(event),
7398 		.stream_id	= event->id,
7399 	};
7400 
7401 	if (enable)
7402 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7403 
7404 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7405 
7406 	ret = perf_output_begin(&handle, event,
7407 				throttle_event.header.size);
7408 	if (ret)
7409 		return;
7410 
7411 	perf_output_put(&handle, throttle_event);
7412 	perf_event__output_id_sample(event, &handle, &sample);
7413 	perf_output_end(&handle);
7414 }
7415 
perf_event_itrace_started(struct perf_event * event)7416 void perf_event_itrace_started(struct perf_event *event)
7417 {
7418 	event->attach_state |= PERF_ATTACH_ITRACE;
7419 }
7420 
perf_log_itrace_start(struct perf_event * event)7421 static void perf_log_itrace_start(struct perf_event *event)
7422 {
7423 	struct perf_output_handle handle;
7424 	struct perf_sample_data sample;
7425 	struct perf_aux_event {
7426 		struct perf_event_header        header;
7427 		u32				pid;
7428 		u32				tid;
7429 	} rec;
7430 	int ret;
7431 
7432 	if (event->parent)
7433 		event = event->parent;
7434 
7435 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7436 	    event->attach_state & PERF_ATTACH_ITRACE)
7437 		return;
7438 
7439 	rec.header.type	= PERF_RECORD_ITRACE_START;
7440 	rec.header.misc	= 0;
7441 	rec.header.size	= sizeof(rec);
7442 	rec.pid	= perf_event_pid(event, current);
7443 	rec.tid	= perf_event_tid(event, current);
7444 
7445 	perf_event_header__init_id(&rec.header, &sample, event);
7446 	ret = perf_output_begin(&handle, event, rec.header.size);
7447 
7448 	if (ret)
7449 		return;
7450 
7451 	perf_output_put(&handle, rec);
7452 	perf_event__output_id_sample(event, &handle, &sample);
7453 
7454 	perf_output_end(&handle);
7455 }
7456 
7457 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)7458 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7459 {
7460 	struct hw_perf_event *hwc = &event->hw;
7461 	int ret = 0;
7462 	u64 seq;
7463 
7464 	seq = __this_cpu_read(perf_throttled_seq);
7465 	if (seq != hwc->interrupts_seq) {
7466 		hwc->interrupts_seq = seq;
7467 		hwc->interrupts = 1;
7468 	} else {
7469 		hwc->interrupts++;
7470 		if (unlikely(throttle
7471 			     && hwc->interrupts >= max_samples_per_tick)) {
7472 			__this_cpu_inc(perf_throttled_count);
7473 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7474 			hwc->interrupts = MAX_INTERRUPTS;
7475 			perf_log_throttle(event, 0);
7476 			ret = 1;
7477 		}
7478 	}
7479 
7480 	if (event->attr.freq) {
7481 		u64 now = perf_clock();
7482 		s64 delta = now - hwc->freq_time_stamp;
7483 
7484 		hwc->freq_time_stamp = now;
7485 
7486 		if (delta > 0 && delta < 2*TICK_NSEC)
7487 			perf_adjust_period(event, delta, hwc->last_period, true);
7488 	}
7489 
7490 	return ret;
7491 }
7492 
perf_event_account_interrupt(struct perf_event * event)7493 int perf_event_account_interrupt(struct perf_event *event)
7494 {
7495 	return __perf_event_account_interrupt(event, 1);
7496 }
7497 
7498 /*
7499  * Generic event overflow handling, sampling.
7500  */
7501 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)7502 static int __perf_event_overflow(struct perf_event *event,
7503 				   int throttle, struct perf_sample_data *data,
7504 				   struct pt_regs *regs)
7505 {
7506 	int events = atomic_read(&event->event_limit);
7507 	int ret = 0;
7508 
7509 	/*
7510 	 * Non-sampling counters might still use the PMI to fold short
7511 	 * hardware counters, ignore those.
7512 	 */
7513 	if (unlikely(!is_sampling_event(event)))
7514 		return 0;
7515 
7516 	ret = __perf_event_account_interrupt(event, throttle);
7517 
7518 	/*
7519 	 * XXX event_limit might not quite work as expected on inherited
7520 	 * events
7521 	 */
7522 
7523 	event->pending_kill = POLL_IN;
7524 	if (events && atomic_dec_and_test(&event->event_limit)) {
7525 		ret = 1;
7526 		event->pending_kill = POLL_HUP;
7527 
7528 		perf_event_disable_inatomic(event);
7529 	}
7530 
7531 	READ_ONCE(event->overflow_handler)(event, data, regs);
7532 
7533 	if (*perf_event_fasync(event) && event->pending_kill) {
7534 		event->pending_wakeup = 1;
7535 		irq_work_queue(&event->pending);
7536 	}
7537 
7538 	return ret;
7539 }
7540 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7541 int perf_event_overflow(struct perf_event *event,
7542 			  struct perf_sample_data *data,
7543 			  struct pt_regs *regs)
7544 {
7545 	return __perf_event_overflow(event, 1, data, regs);
7546 }
7547 
7548 /*
7549  * Generic software event infrastructure
7550  */
7551 
7552 struct swevent_htable {
7553 	struct swevent_hlist		*swevent_hlist;
7554 	struct mutex			hlist_mutex;
7555 	int				hlist_refcount;
7556 
7557 	/* Recursion avoidance in each contexts */
7558 	int				recursion[PERF_NR_CONTEXTS];
7559 };
7560 
7561 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7562 
7563 /*
7564  * We directly increment event->count and keep a second value in
7565  * event->hw.period_left to count intervals. This period event
7566  * is kept in the range [-sample_period, 0] so that we can use the
7567  * sign as trigger.
7568  */
7569 
perf_swevent_set_period(struct perf_event * event)7570 u64 perf_swevent_set_period(struct perf_event *event)
7571 {
7572 	struct hw_perf_event *hwc = &event->hw;
7573 	u64 period = hwc->last_period;
7574 	u64 nr, offset;
7575 	s64 old, val;
7576 
7577 	hwc->last_period = hwc->sample_period;
7578 
7579 again:
7580 	old = val = local64_read(&hwc->period_left);
7581 	if (val < 0)
7582 		return 0;
7583 
7584 	nr = div64_u64(period + val, period);
7585 	offset = nr * period;
7586 	val -= offset;
7587 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7588 		goto again;
7589 
7590 	return nr;
7591 }
7592 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)7593 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7594 				    struct perf_sample_data *data,
7595 				    struct pt_regs *regs)
7596 {
7597 	struct hw_perf_event *hwc = &event->hw;
7598 	int throttle = 0;
7599 
7600 	if (!overflow)
7601 		overflow = perf_swevent_set_period(event);
7602 
7603 	if (hwc->interrupts == MAX_INTERRUPTS)
7604 		return;
7605 
7606 	for (; overflow; overflow--) {
7607 		if (__perf_event_overflow(event, throttle,
7608 					    data, regs)) {
7609 			/*
7610 			 * We inhibit the overflow from happening when
7611 			 * hwc->interrupts == MAX_INTERRUPTS.
7612 			 */
7613 			break;
7614 		}
7615 		throttle = 1;
7616 	}
7617 }
7618 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)7619 static void perf_swevent_event(struct perf_event *event, u64 nr,
7620 			       struct perf_sample_data *data,
7621 			       struct pt_regs *regs)
7622 {
7623 	struct hw_perf_event *hwc = &event->hw;
7624 
7625 	local64_add(nr, &event->count);
7626 
7627 	if (!regs)
7628 		return;
7629 
7630 	if (!is_sampling_event(event))
7631 		return;
7632 
7633 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7634 		data->period = nr;
7635 		return perf_swevent_overflow(event, 1, data, regs);
7636 	} else
7637 		data->period = event->hw.last_period;
7638 
7639 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7640 		return perf_swevent_overflow(event, 1, data, regs);
7641 
7642 	if (local64_add_negative(nr, &hwc->period_left))
7643 		return;
7644 
7645 	perf_swevent_overflow(event, 0, data, regs);
7646 }
7647 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)7648 static int perf_exclude_event(struct perf_event *event,
7649 			      struct pt_regs *regs)
7650 {
7651 	if (event->hw.state & PERF_HES_STOPPED)
7652 		return 1;
7653 
7654 	if (regs) {
7655 		if (event->attr.exclude_user && user_mode(regs))
7656 			return 1;
7657 
7658 		if (event->attr.exclude_kernel && !user_mode(regs))
7659 			return 1;
7660 	}
7661 
7662 	return 0;
7663 }
7664 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)7665 static int perf_swevent_match(struct perf_event *event,
7666 				enum perf_type_id type,
7667 				u32 event_id,
7668 				struct perf_sample_data *data,
7669 				struct pt_regs *regs)
7670 {
7671 	if (event->attr.type != type)
7672 		return 0;
7673 
7674 	if (event->attr.config != event_id)
7675 		return 0;
7676 
7677 	if (perf_exclude_event(event, regs))
7678 		return 0;
7679 
7680 	return 1;
7681 }
7682 
swevent_hash(u64 type,u32 event_id)7683 static inline u64 swevent_hash(u64 type, u32 event_id)
7684 {
7685 	u64 val = event_id | (type << 32);
7686 
7687 	return hash_64(val, SWEVENT_HLIST_BITS);
7688 }
7689 
7690 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)7691 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7692 {
7693 	u64 hash = swevent_hash(type, event_id);
7694 
7695 	return &hlist->heads[hash];
7696 }
7697 
7698 /* For the read side: events when they trigger */
7699 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)7700 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7701 {
7702 	struct swevent_hlist *hlist;
7703 
7704 	hlist = rcu_dereference(swhash->swevent_hlist);
7705 	if (!hlist)
7706 		return NULL;
7707 
7708 	return __find_swevent_head(hlist, type, event_id);
7709 }
7710 
7711 /* For the event head insertion and removal in the hlist */
7712 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)7713 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7714 {
7715 	struct swevent_hlist *hlist;
7716 	u32 event_id = event->attr.config;
7717 	u64 type = event->attr.type;
7718 
7719 	/*
7720 	 * Event scheduling is always serialized against hlist allocation
7721 	 * and release. Which makes the protected version suitable here.
7722 	 * The context lock guarantees that.
7723 	 */
7724 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7725 					  lockdep_is_held(&event->ctx->lock));
7726 	if (!hlist)
7727 		return NULL;
7728 
7729 	return __find_swevent_head(hlist, type, event_id);
7730 }
7731 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)7732 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7733 				    u64 nr,
7734 				    struct perf_sample_data *data,
7735 				    struct pt_regs *regs)
7736 {
7737 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7738 	struct perf_event *event;
7739 	struct hlist_head *head;
7740 
7741 	rcu_read_lock();
7742 	head = find_swevent_head_rcu(swhash, type, event_id);
7743 	if (!head)
7744 		goto end;
7745 
7746 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7747 		if (perf_swevent_match(event, type, event_id, data, regs))
7748 			perf_swevent_event(event, nr, data, regs);
7749 	}
7750 end:
7751 	rcu_read_unlock();
7752 }
7753 
7754 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7755 
perf_swevent_get_recursion_context(void)7756 int perf_swevent_get_recursion_context(void)
7757 {
7758 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7759 
7760 	return get_recursion_context(swhash->recursion);
7761 }
7762 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7763 
perf_swevent_put_recursion_context(int rctx)7764 void perf_swevent_put_recursion_context(int rctx)
7765 {
7766 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7767 
7768 	put_recursion_context(swhash->recursion, rctx);
7769 }
7770 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)7771 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7772 {
7773 	struct perf_sample_data data;
7774 
7775 	if (WARN_ON_ONCE(!regs))
7776 		return;
7777 
7778 	perf_sample_data_init(&data, addr, 0);
7779 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7780 }
7781 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)7782 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7783 {
7784 	int rctx;
7785 
7786 	preempt_disable_notrace();
7787 	rctx = perf_swevent_get_recursion_context();
7788 	if (unlikely(rctx < 0))
7789 		goto fail;
7790 
7791 	___perf_sw_event(event_id, nr, regs, addr);
7792 
7793 	perf_swevent_put_recursion_context(rctx);
7794 fail:
7795 	preempt_enable_notrace();
7796 }
7797 
perf_swevent_read(struct perf_event * event)7798 static void perf_swevent_read(struct perf_event *event)
7799 {
7800 }
7801 
perf_swevent_add(struct perf_event * event,int flags)7802 static int perf_swevent_add(struct perf_event *event, int flags)
7803 {
7804 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7805 	struct hw_perf_event *hwc = &event->hw;
7806 	struct hlist_head *head;
7807 
7808 	if (is_sampling_event(event)) {
7809 		hwc->last_period = hwc->sample_period;
7810 		perf_swevent_set_period(event);
7811 	}
7812 
7813 	hwc->state = !(flags & PERF_EF_START);
7814 
7815 	head = find_swevent_head(swhash, event);
7816 	if (WARN_ON_ONCE(!head))
7817 		return -EINVAL;
7818 
7819 	hlist_add_head_rcu(&event->hlist_entry, head);
7820 	perf_event_update_userpage(event);
7821 
7822 	return 0;
7823 }
7824 
perf_swevent_del(struct perf_event * event,int flags)7825 static void perf_swevent_del(struct perf_event *event, int flags)
7826 {
7827 	hlist_del_rcu(&event->hlist_entry);
7828 }
7829 
perf_swevent_start(struct perf_event * event,int flags)7830 static void perf_swevent_start(struct perf_event *event, int flags)
7831 {
7832 	event->hw.state = 0;
7833 }
7834 
perf_swevent_stop(struct perf_event * event,int flags)7835 static void perf_swevent_stop(struct perf_event *event, int flags)
7836 {
7837 	event->hw.state = PERF_HES_STOPPED;
7838 }
7839 
7840 /* Deref the hlist from the update side */
7841 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)7842 swevent_hlist_deref(struct swevent_htable *swhash)
7843 {
7844 	return rcu_dereference_protected(swhash->swevent_hlist,
7845 					 lockdep_is_held(&swhash->hlist_mutex));
7846 }
7847 
swevent_hlist_release(struct swevent_htable * swhash)7848 static void swevent_hlist_release(struct swevent_htable *swhash)
7849 {
7850 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7851 
7852 	if (!hlist)
7853 		return;
7854 
7855 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7856 	kfree_rcu(hlist, rcu_head);
7857 }
7858 
swevent_hlist_put_cpu(int cpu)7859 static void swevent_hlist_put_cpu(int cpu)
7860 {
7861 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7862 
7863 	mutex_lock(&swhash->hlist_mutex);
7864 
7865 	if (!--swhash->hlist_refcount)
7866 		swevent_hlist_release(swhash);
7867 
7868 	mutex_unlock(&swhash->hlist_mutex);
7869 }
7870 
swevent_hlist_put(void)7871 static void swevent_hlist_put(void)
7872 {
7873 	int cpu;
7874 
7875 	for_each_possible_cpu(cpu)
7876 		swevent_hlist_put_cpu(cpu);
7877 }
7878 
swevent_hlist_get_cpu(int cpu)7879 static int swevent_hlist_get_cpu(int cpu)
7880 {
7881 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7882 	int err = 0;
7883 
7884 	mutex_lock(&swhash->hlist_mutex);
7885 	if (!swevent_hlist_deref(swhash) &&
7886 	    cpumask_test_cpu(cpu, perf_online_mask)) {
7887 		struct swevent_hlist *hlist;
7888 
7889 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7890 		if (!hlist) {
7891 			err = -ENOMEM;
7892 			goto exit;
7893 		}
7894 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7895 	}
7896 	swhash->hlist_refcount++;
7897 exit:
7898 	mutex_unlock(&swhash->hlist_mutex);
7899 
7900 	return err;
7901 }
7902 
swevent_hlist_get(void)7903 static int swevent_hlist_get(void)
7904 {
7905 	int err, cpu, failed_cpu;
7906 
7907 	mutex_lock(&pmus_lock);
7908 	for_each_possible_cpu(cpu) {
7909 		err = swevent_hlist_get_cpu(cpu);
7910 		if (err) {
7911 			failed_cpu = cpu;
7912 			goto fail;
7913 		}
7914 	}
7915 	mutex_unlock(&pmus_lock);
7916 	return 0;
7917 fail:
7918 	for_each_possible_cpu(cpu) {
7919 		if (cpu == failed_cpu)
7920 			break;
7921 		swevent_hlist_put_cpu(cpu);
7922 	}
7923 	mutex_unlock(&pmus_lock);
7924 	return err;
7925 }
7926 
7927 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7928 
sw_perf_event_destroy(struct perf_event * event)7929 static void sw_perf_event_destroy(struct perf_event *event)
7930 {
7931 	u64 event_id = event->attr.config;
7932 
7933 	WARN_ON(event->parent);
7934 
7935 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7936 	swevent_hlist_put();
7937 }
7938 
perf_swevent_init(struct perf_event * event)7939 static int perf_swevent_init(struct perf_event *event)
7940 {
7941 	u64 event_id = event->attr.config;
7942 
7943 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7944 		return -ENOENT;
7945 
7946 	/*
7947 	 * no branch sampling for software events
7948 	 */
7949 	if (has_branch_stack(event))
7950 		return -EOPNOTSUPP;
7951 
7952 	switch (event_id) {
7953 	case PERF_COUNT_SW_CPU_CLOCK:
7954 	case PERF_COUNT_SW_TASK_CLOCK:
7955 		return -ENOENT;
7956 
7957 	default:
7958 		break;
7959 	}
7960 
7961 	if (event_id >= PERF_COUNT_SW_MAX)
7962 		return -ENOENT;
7963 
7964 	if (!event->parent) {
7965 		int err;
7966 
7967 		err = swevent_hlist_get();
7968 		if (err)
7969 			return err;
7970 
7971 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7972 		event->destroy = sw_perf_event_destroy;
7973 	}
7974 
7975 	return 0;
7976 }
7977 
7978 static struct pmu perf_swevent = {
7979 	.task_ctx_nr	= perf_sw_context,
7980 
7981 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7982 
7983 	.event_init	= perf_swevent_init,
7984 	.add		= perf_swevent_add,
7985 	.del		= perf_swevent_del,
7986 	.start		= perf_swevent_start,
7987 	.stop		= perf_swevent_stop,
7988 	.read		= perf_swevent_read,
7989 };
7990 
7991 #ifdef CONFIG_EVENT_TRACING
7992 
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)7993 static int perf_tp_filter_match(struct perf_event *event,
7994 				struct perf_sample_data *data)
7995 {
7996 	void *record = data->raw->frag.data;
7997 
7998 	/* only top level events have filters set */
7999 	if (event->parent)
8000 		event = event->parent;
8001 
8002 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
8003 		return 1;
8004 	return 0;
8005 }
8006 
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8007 static int perf_tp_event_match(struct perf_event *event,
8008 				struct perf_sample_data *data,
8009 				struct pt_regs *regs)
8010 {
8011 	if (event->hw.state & PERF_HES_STOPPED)
8012 		return 0;
8013 	/*
8014 	 * All tracepoints are from kernel-space.
8015 	 */
8016 	if (event->attr.exclude_kernel)
8017 		return 0;
8018 
8019 	if (!perf_tp_filter_match(event, data))
8020 		return 0;
8021 
8022 	return 1;
8023 }
8024 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)8025 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8026 			       struct trace_event_call *call, u64 count,
8027 			       struct pt_regs *regs, struct hlist_head *head,
8028 			       struct task_struct *task)
8029 {
8030 	struct bpf_prog *prog = call->prog;
8031 
8032 	if (prog) {
8033 		*(struct pt_regs **)raw_data = regs;
8034 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
8035 			perf_swevent_put_recursion_context(rctx);
8036 			return;
8037 		}
8038 	}
8039 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8040 		      rctx, task, NULL);
8041 }
8042 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8043 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task,struct perf_event * event)8044 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8045 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
8046 		   struct task_struct *task, struct perf_event *event)
8047 {
8048 	struct perf_sample_data data;
8049 
8050 	struct perf_raw_record raw = {
8051 		.frag = {
8052 			.size = entry_size,
8053 			.data = record,
8054 		},
8055 	};
8056 
8057 	perf_sample_data_init(&data, 0, 0);
8058 	data.raw = &raw;
8059 
8060 	perf_trace_buf_update(record, event_type);
8061 
8062 	/* Use the given event instead of the hlist */
8063 	if (event) {
8064 		if (perf_tp_event_match(event, &data, regs))
8065 			perf_swevent_event(event, count, &data, regs);
8066 	} else {
8067 		hlist_for_each_entry_rcu(event, head, hlist_entry) {
8068 			if (perf_tp_event_match(event, &data, regs))
8069 				perf_swevent_event(event, count, &data, regs);
8070 		}
8071 	}
8072 
8073 	/*
8074 	 * If we got specified a target task, also iterate its context and
8075 	 * deliver this event there too.
8076 	 */
8077 	if (task && task != current) {
8078 		struct perf_event_context *ctx;
8079 		struct trace_entry *entry = record;
8080 
8081 		rcu_read_lock();
8082 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8083 		if (!ctx)
8084 			goto unlock;
8085 
8086 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8087 			if (event->cpu != smp_processor_id())
8088 				continue;
8089 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
8090 				continue;
8091 			if (event->attr.config != entry->type)
8092 				continue;
8093 			if (perf_tp_event_match(event, &data, regs))
8094 				perf_swevent_event(event, count, &data, regs);
8095 		}
8096 unlock:
8097 		rcu_read_unlock();
8098 	}
8099 
8100 	perf_swevent_put_recursion_context(rctx);
8101 }
8102 EXPORT_SYMBOL_GPL(perf_tp_event);
8103 
tp_perf_event_destroy(struct perf_event * event)8104 static void tp_perf_event_destroy(struct perf_event *event)
8105 {
8106 	perf_trace_destroy(event);
8107 }
8108 
perf_tp_event_init(struct perf_event * event)8109 static int perf_tp_event_init(struct perf_event *event)
8110 {
8111 	int err;
8112 
8113 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8114 		return -ENOENT;
8115 
8116 	/*
8117 	 * no branch sampling for tracepoint events
8118 	 */
8119 	if (has_branch_stack(event))
8120 		return -EOPNOTSUPP;
8121 
8122 	err = perf_trace_init(event);
8123 	if (err)
8124 		return err;
8125 
8126 	event->destroy = tp_perf_event_destroy;
8127 
8128 	return 0;
8129 }
8130 
8131 static struct pmu perf_tracepoint = {
8132 	.task_ctx_nr	= perf_sw_context,
8133 
8134 	.event_init	= perf_tp_event_init,
8135 	.add		= perf_trace_add,
8136 	.del		= perf_trace_del,
8137 	.start		= perf_swevent_start,
8138 	.stop		= perf_swevent_stop,
8139 	.read		= perf_swevent_read,
8140 };
8141 
perf_tp_register(void)8142 static inline void perf_tp_register(void)
8143 {
8144 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8145 }
8146 
perf_event_free_filter(struct perf_event * event)8147 static void perf_event_free_filter(struct perf_event *event)
8148 {
8149 	ftrace_profile_free_filter(event);
8150 }
8151 
8152 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)8153 static void bpf_overflow_handler(struct perf_event *event,
8154 				 struct perf_sample_data *data,
8155 				 struct pt_regs *regs)
8156 {
8157 	struct bpf_perf_event_data_kern ctx = {
8158 		.data = data,
8159 		.regs = regs,
8160 	};
8161 	int ret = 0;
8162 
8163 	preempt_disable();
8164 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8165 		goto out;
8166 	rcu_read_lock();
8167 	ret = BPF_PROG_RUN(event->prog, &ctx);
8168 	rcu_read_unlock();
8169 out:
8170 	__this_cpu_dec(bpf_prog_active);
8171 	preempt_enable();
8172 	if (!ret)
8173 		return;
8174 
8175 	event->orig_overflow_handler(event, data, regs);
8176 }
8177 
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)8178 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8179 {
8180 	struct bpf_prog *prog;
8181 
8182 	if (event->overflow_handler_context)
8183 		/* hw breakpoint or kernel counter */
8184 		return -EINVAL;
8185 
8186 	if (event->prog)
8187 		return -EEXIST;
8188 
8189 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8190 	if (IS_ERR(prog))
8191 		return PTR_ERR(prog);
8192 
8193 	event->prog = prog;
8194 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8195 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8196 	return 0;
8197 }
8198 
perf_event_free_bpf_handler(struct perf_event * event)8199 static void perf_event_free_bpf_handler(struct perf_event *event)
8200 {
8201 	struct bpf_prog *prog = event->prog;
8202 
8203 	if (!prog)
8204 		return;
8205 
8206 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8207 	event->prog = NULL;
8208 	bpf_prog_put(prog);
8209 }
8210 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)8211 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8212 {
8213 	return -EOPNOTSUPP;
8214 }
perf_event_free_bpf_handler(struct perf_event * event)8215 static void perf_event_free_bpf_handler(struct perf_event *event)
8216 {
8217 }
8218 #endif
8219 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)8220 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8221 {
8222 	bool is_kprobe, is_tracepoint, is_syscall_tp;
8223 	struct bpf_prog *prog;
8224 
8225 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
8226 		return perf_event_set_bpf_handler(event, prog_fd);
8227 
8228 	if (event->tp_event->prog)
8229 		return -EEXIST;
8230 
8231 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8232 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8233 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
8234 	if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8235 		/* bpf programs can only be attached to u/kprobe or tracepoint */
8236 		return -EINVAL;
8237 
8238 	prog = bpf_prog_get(prog_fd);
8239 	if (IS_ERR(prog))
8240 		return PTR_ERR(prog);
8241 
8242 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8243 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8244 	    (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8245 		/* valid fd, but invalid bpf program type */
8246 		bpf_prog_put(prog);
8247 		return -EINVAL;
8248 	}
8249 
8250 	if (is_tracepoint || is_syscall_tp) {
8251 		int off = trace_event_get_offsets(event->tp_event);
8252 
8253 		if (prog->aux->max_ctx_offset > off) {
8254 			bpf_prog_put(prog);
8255 			return -EACCES;
8256 		}
8257 	}
8258 	event->tp_event->prog = prog;
8259 	event->tp_event->bpf_prog_owner = event;
8260 
8261 	return 0;
8262 }
8263 
perf_event_free_bpf_prog(struct perf_event * event)8264 static void perf_event_free_bpf_prog(struct perf_event *event)
8265 {
8266 	struct bpf_prog *prog;
8267 
8268 	perf_event_free_bpf_handler(event);
8269 
8270 	if (!event->tp_event)
8271 		return;
8272 
8273 	prog = event->tp_event->prog;
8274 	if (prog && event->tp_event->bpf_prog_owner == event) {
8275 		event->tp_event->prog = NULL;
8276 		bpf_prog_put(prog);
8277 	}
8278 }
8279 
8280 #else
8281 
perf_tp_register(void)8282 static inline void perf_tp_register(void)
8283 {
8284 }
8285 
perf_event_free_filter(struct perf_event * event)8286 static void perf_event_free_filter(struct perf_event *event)
8287 {
8288 }
8289 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)8290 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8291 {
8292 	return -ENOENT;
8293 }
8294 
perf_event_free_bpf_prog(struct perf_event * event)8295 static void perf_event_free_bpf_prog(struct perf_event *event)
8296 {
8297 }
8298 #endif /* CONFIG_EVENT_TRACING */
8299 
8300 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)8301 void perf_bp_event(struct perf_event *bp, void *data)
8302 {
8303 	struct perf_sample_data sample;
8304 	struct pt_regs *regs = data;
8305 
8306 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8307 
8308 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
8309 		perf_swevent_event(bp, 1, &sample, regs);
8310 }
8311 #endif
8312 
8313 /*
8314  * Allocate a new address filter
8315  */
8316 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)8317 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8318 {
8319 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8320 	struct perf_addr_filter *filter;
8321 
8322 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8323 	if (!filter)
8324 		return NULL;
8325 
8326 	INIT_LIST_HEAD(&filter->entry);
8327 	list_add_tail(&filter->entry, filters);
8328 
8329 	return filter;
8330 }
8331 
free_filters_list(struct list_head * filters)8332 static void free_filters_list(struct list_head *filters)
8333 {
8334 	struct perf_addr_filter *filter, *iter;
8335 
8336 	list_for_each_entry_safe(filter, iter, filters, entry) {
8337 		if (filter->inode)
8338 			iput(filter->inode);
8339 		list_del(&filter->entry);
8340 		kfree(filter);
8341 	}
8342 }
8343 
8344 /*
8345  * Free existing address filters and optionally install new ones
8346  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)8347 static void perf_addr_filters_splice(struct perf_event *event,
8348 				     struct list_head *head)
8349 {
8350 	unsigned long flags;
8351 	LIST_HEAD(list);
8352 
8353 	if (!has_addr_filter(event))
8354 		return;
8355 
8356 	/* don't bother with children, they don't have their own filters */
8357 	if (event->parent)
8358 		return;
8359 
8360 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8361 
8362 	list_splice_init(&event->addr_filters.list, &list);
8363 	if (head)
8364 		list_splice(head, &event->addr_filters.list);
8365 
8366 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8367 
8368 	free_filters_list(&list);
8369 }
8370 
8371 /*
8372  * Scan through mm's vmas and see if one of them matches the
8373  * @filter; if so, adjust filter's address range.
8374  * Called with mm::mmap_sem down for reading.
8375  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm)8376 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8377 					    struct mm_struct *mm)
8378 {
8379 	struct vm_area_struct *vma;
8380 
8381 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8382 		struct file *file = vma->vm_file;
8383 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8384 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8385 
8386 		if (!file)
8387 			continue;
8388 
8389 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8390 			continue;
8391 
8392 		return vma->vm_start;
8393 	}
8394 
8395 	return 0;
8396 }
8397 
8398 /*
8399  * Update event's address range filters based on the
8400  * task's existing mappings, if any.
8401  */
perf_event_addr_filters_apply(struct perf_event * event)8402 static void perf_event_addr_filters_apply(struct perf_event *event)
8403 {
8404 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8405 	struct task_struct *task = READ_ONCE(event->ctx->task);
8406 	struct perf_addr_filter *filter;
8407 	struct mm_struct *mm = NULL;
8408 	unsigned int count = 0;
8409 	unsigned long flags;
8410 
8411 	/*
8412 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8413 	 * will stop on the parent's child_mutex that our caller is also holding
8414 	 */
8415 	if (task == TASK_TOMBSTONE)
8416 		return;
8417 
8418 	if (!ifh->nr_file_filters)
8419 		return;
8420 
8421 	mm = get_task_mm(event->ctx->task);
8422 	if (!mm)
8423 		goto restart;
8424 
8425 	down_read(&mm->mmap_sem);
8426 
8427 	raw_spin_lock_irqsave(&ifh->lock, flags);
8428 	list_for_each_entry(filter, &ifh->list, entry) {
8429 		event->addr_filters_offs[count] = 0;
8430 
8431 		/*
8432 		 * Adjust base offset if the filter is associated to a binary
8433 		 * that needs to be mapped:
8434 		 */
8435 		if (filter->inode)
8436 			event->addr_filters_offs[count] =
8437 				perf_addr_filter_apply(filter, mm);
8438 
8439 		count++;
8440 	}
8441 
8442 	event->addr_filters_gen++;
8443 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8444 
8445 	up_read(&mm->mmap_sem);
8446 
8447 	mmput(mm);
8448 
8449 restart:
8450 	perf_event_stop(event, 1);
8451 }
8452 
8453 /*
8454  * Address range filtering: limiting the data to certain
8455  * instruction address ranges. Filters are ioctl()ed to us from
8456  * userspace as ascii strings.
8457  *
8458  * Filter string format:
8459  *
8460  * ACTION RANGE_SPEC
8461  * where ACTION is one of the
8462  *  * "filter": limit the trace to this region
8463  *  * "start": start tracing from this address
8464  *  * "stop": stop tracing at this address/region;
8465  * RANGE_SPEC is
8466  *  * for kernel addresses: <start address>[/<size>]
8467  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8468  *
8469  * if <size> is not specified, the range is treated as a single address.
8470  */
8471 enum {
8472 	IF_ACT_NONE = -1,
8473 	IF_ACT_FILTER,
8474 	IF_ACT_START,
8475 	IF_ACT_STOP,
8476 	IF_SRC_FILE,
8477 	IF_SRC_KERNEL,
8478 	IF_SRC_FILEADDR,
8479 	IF_SRC_KERNELADDR,
8480 };
8481 
8482 enum {
8483 	IF_STATE_ACTION = 0,
8484 	IF_STATE_SOURCE,
8485 	IF_STATE_END,
8486 };
8487 
8488 static const match_table_t if_tokens = {
8489 	{ IF_ACT_FILTER,	"filter" },
8490 	{ IF_ACT_START,		"start" },
8491 	{ IF_ACT_STOP,		"stop" },
8492 	{ IF_SRC_FILE,		"%u/%u@%s" },
8493 	{ IF_SRC_KERNEL,	"%u/%u" },
8494 	{ IF_SRC_FILEADDR,	"%u@%s" },
8495 	{ IF_SRC_KERNELADDR,	"%u" },
8496 	{ IF_ACT_NONE,		NULL },
8497 };
8498 
8499 /*
8500  * Address filter string parser
8501  */
8502 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)8503 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8504 			     struct list_head *filters)
8505 {
8506 	struct perf_addr_filter *filter = NULL;
8507 	char *start, *orig, *filename = NULL;
8508 	struct path path;
8509 	substring_t args[MAX_OPT_ARGS];
8510 	int state = IF_STATE_ACTION, token;
8511 	unsigned int kernel = 0;
8512 	int ret = -EINVAL;
8513 
8514 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8515 	if (!fstr)
8516 		return -ENOMEM;
8517 
8518 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8519 		ret = -EINVAL;
8520 
8521 		if (!*start)
8522 			continue;
8523 
8524 		/* filter definition begins */
8525 		if (state == IF_STATE_ACTION) {
8526 			filter = perf_addr_filter_new(event, filters);
8527 			if (!filter)
8528 				goto fail;
8529 		}
8530 
8531 		token = match_token(start, if_tokens, args);
8532 		switch (token) {
8533 		case IF_ACT_FILTER:
8534 		case IF_ACT_START:
8535 			filter->filter = 1;
8536 
8537 		case IF_ACT_STOP:
8538 			if (state != IF_STATE_ACTION)
8539 				goto fail;
8540 
8541 			state = IF_STATE_SOURCE;
8542 			break;
8543 
8544 		case IF_SRC_KERNELADDR:
8545 		case IF_SRC_KERNEL:
8546 			kernel = 1;
8547 
8548 		case IF_SRC_FILEADDR:
8549 		case IF_SRC_FILE:
8550 			if (state != IF_STATE_SOURCE)
8551 				goto fail;
8552 
8553 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8554 				filter->range = 1;
8555 
8556 			*args[0].to = 0;
8557 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8558 			if (ret)
8559 				goto fail;
8560 
8561 			if (filter->range) {
8562 				*args[1].to = 0;
8563 				ret = kstrtoul(args[1].from, 0, &filter->size);
8564 				if (ret)
8565 					goto fail;
8566 			}
8567 
8568 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8569 				int fpos = filter->range ? 2 : 1;
8570 
8571 				filename = match_strdup(&args[fpos]);
8572 				if (!filename) {
8573 					ret = -ENOMEM;
8574 					goto fail;
8575 				}
8576 			}
8577 
8578 			state = IF_STATE_END;
8579 			break;
8580 
8581 		default:
8582 			goto fail;
8583 		}
8584 
8585 		/*
8586 		 * Filter definition is fully parsed, validate and install it.
8587 		 * Make sure that it doesn't contradict itself or the event's
8588 		 * attribute.
8589 		 */
8590 		if (state == IF_STATE_END) {
8591 			ret = -EINVAL;
8592 			if (kernel && event->attr.exclude_kernel)
8593 				goto fail;
8594 
8595 			if (!kernel) {
8596 				if (!filename)
8597 					goto fail;
8598 
8599 				/*
8600 				 * For now, we only support file-based filters
8601 				 * in per-task events; doing so for CPU-wide
8602 				 * events requires additional context switching
8603 				 * trickery, since same object code will be
8604 				 * mapped at different virtual addresses in
8605 				 * different processes.
8606 				 */
8607 				ret = -EOPNOTSUPP;
8608 				if (!event->ctx->task)
8609 					goto fail_free_name;
8610 
8611 				/* look up the path and grab its inode */
8612 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8613 				if (ret)
8614 					goto fail_free_name;
8615 
8616 				filter->inode = igrab(d_inode(path.dentry));
8617 				path_put(&path);
8618 				kfree(filename);
8619 				filename = NULL;
8620 
8621 				ret = -EINVAL;
8622 				if (!filter->inode ||
8623 				    !S_ISREG(filter->inode->i_mode))
8624 					/* free_filters_list() will iput() */
8625 					goto fail;
8626 
8627 				event->addr_filters.nr_file_filters++;
8628 			}
8629 
8630 			/* ready to consume more filters */
8631 			state = IF_STATE_ACTION;
8632 			filter = NULL;
8633 		}
8634 	}
8635 
8636 	if (state != IF_STATE_ACTION)
8637 		goto fail;
8638 
8639 	kfree(orig);
8640 
8641 	return 0;
8642 
8643 fail_free_name:
8644 	kfree(filename);
8645 fail:
8646 	free_filters_list(filters);
8647 	kfree(orig);
8648 
8649 	return ret;
8650 }
8651 
8652 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)8653 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8654 {
8655 	LIST_HEAD(filters);
8656 	int ret;
8657 
8658 	/*
8659 	 * Since this is called in perf_ioctl() path, we're already holding
8660 	 * ctx::mutex.
8661 	 */
8662 	lockdep_assert_held(&event->ctx->mutex);
8663 
8664 	if (WARN_ON_ONCE(event->parent))
8665 		return -EINVAL;
8666 
8667 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8668 	if (ret)
8669 		goto fail_clear_files;
8670 
8671 	ret = event->pmu->addr_filters_validate(&filters);
8672 	if (ret)
8673 		goto fail_free_filters;
8674 
8675 	/* remove existing filters, if any */
8676 	perf_addr_filters_splice(event, &filters);
8677 
8678 	/* install new filters */
8679 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8680 
8681 	return ret;
8682 
8683 fail_free_filters:
8684 	free_filters_list(&filters);
8685 
8686 fail_clear_files:
8687 	event->addr_filters.nr_file_filters = 0;
8688 
8689 	return ret;
8690 }
8691 
perf_event_set_filter(struct perf_event * event,void __user * arg)8692 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8693 {
8694 	char *filter_str;
8695 	int ret = -EINVAL;
8696 
8697 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8698 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8699 	    !has_addr_filter(event))
8700 		return -EINVAL;
8701 
8702 	filter_str = strndup_user(arg, PAGE_SIZE);
8703 	if (IS_ERR(filter_str))
8704 		return PTR_ERR(filter_str);
8705 
8706 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8707 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8708 		ret = ftrace_profile_set_filter(event, event->attr.config,
8709 						filter_str);
8710 	else if (has_addr_filter(event))
8711 		ret = perf_event_set_addr_filter(event, filter_str);
8712 
8713 	kfree(filter_str);
8714 	return ret;
8715 }
8716 
8717 /*
8718  * hrtimer based swevent callback
8719  */
8720 
perf_swevent_hrtimer(struct hrtimer * hrtimer)8721 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8722 {
8723 	enum hrtimer_restart ret = HRTIMER_RESTART;
8724 	struct perf_sample_data data;
8725 	struct pt_regs *regs;
8726 	struct perf_event *event;
8727 	u64 period;
8728 
8729 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8730 
8731 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8732 		return HRTIMER_NORESTART;
8733 
8734 	event->pmu->read(event);
8735 
8736 	perf_sample_data_init(&data, 0, event->hw.last_period);
8737 	regs = get_irq_regs();
8738 
8739 	if (regs && !perf_exclude_event(event, regs)) {
8740 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8741 			if (__perf_event_overflow(event, 1, &data, regs))
8742 				ret = HRTIMER_NORESTART;
8743 	}
8744 
8745 	period = max_t(u64, 10000, event->hw.sample_period);
8746 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8747 
8748 	return ret;
8749 }
8750 
perf_swevent_start_hrtimer(struct perf_event * event)8751 static void perf_swevent_start_hrtimer(struct perf_event *event)
8752 {
8753 	struct hw_perf_event *hwc = &event->hw;
8754 	s64 period;
8755 
8756 	if (!is_sampling_event(event))
8757 		return;
8758 
8759 	period = local64_read(&hwc->period_left);
8760 	if (period) {
8761 		if (period < 0)
8762 			period = 10000;
8763 
8764 		local64_set(&hwc->period_left, 0);
8765 	} else {
8766 		period = max_t(u64, 10000, hwc->sample_period);
8767 	}
8768 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8769 		      HRTIMER_MODE_REL_PINNED);
8770 }
8771 
perf_swevent_cancel_hrtimer(struct perf_event * event)8772 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8773 {
8774 	struct hw_perf_event *hwc = &event->hw;
8775 
8776 	if (is_sampling_event(event)) {
8777 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8778 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8779 
8780 		hrtimer_cancel(&hwc->hrtimer);
8781 	}
8782 }
8783 
perf_swevent_init_hrtimer(struct perf_event * event)8784 static void perf_swevent_init_hrtimer(struct perf_event *event)
8785 {
8786 	struct hw_perf_event *hwc = &event->hw;
8787 
8788 	if (!is_sampling_event(event))
8789 		return;
8790 
8791 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8792 	hwc->hrtimer.function = perf_swevent_hrtimer;
8793 
8794 	/*
8795 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8796 	 * mapping and avoid the whole period adjust feedback stuff.
8797 	 */
8798 	if (event->attr.freq) {
8799 		long freq = event->attr.sample_freq;
8800 
8801 		event->attr.sample_period = NSEC_PER_SEC / freq;
8802 		hwc->sample_period = event->attr.sample_period;
8803 		local64_set(&hwc->period_left, hwc->sample_period);
8804 		hwc->last_period = hwc->sample_period;
8805 		event->attr.freq = 0;
8806 	}
8807 }
8808 
8809 /*
8810  * Software event: cpu wall time clock
8811  */
8812 
cpu_clock_event_update(struct perf_event * event)8813 static void cpu_clock_event_update(struct perf_event *event)
8814 {
8815 	s64 prev;
8816 	u64 now;
8817 
8818 	now = local_clock();
8819 	prev = local64_xchg(&event->hw.prev_count, now);
8820 	local64_add(now - prev, &event->count);
8821 }
8822 
cpu_clock_event_start(struct perf_event * event,int flags)8823 static void cpu_clock_event_start(struct perf_event *event, int flags)
8824 {
8825 	local64_set(&event->hw.prev_count, local_clock());
8826 	perf_swevent_start_hrtimer(event);
8827 }
8828 
cpu_clock_event_stop(struct perf_event * event,int flags)8829 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8830 {
8831 	perf_swevent_cancel_hrtimer(event);
8832 	cpu_clock_event_update(event);
8833 }
8834 
cpu_clock_event_add(struct perf_event * event,int flags)8835 static int cpu_clock_event_add(struct perf_event *event, int flags)
8836 {
8837 	if (flags & PERF_EF_START)
8838 		cpu_clock_event_start(event, flags);
8839 	perf_event_update_userpage(event);
8840 
8841 	return 0;
8842 }
8843 
cpu_clock_event_del(struct perf_event * event,int flags)8844 static void cpu_clock_event_del(struct perf_event *event, int flags)
8845 {
8846 	cpu_clock_event_stop(event, flags);
8847 }
8848 
cpu_clock_event_read(struct perf_event * event)8849 static void cpu_clock_event_read(struct perf_event *event)
8850 {
8851 	cpu_clock_event_update(event);
8852 }
8853 
cpu_clock_event_init(struct perf_event * event)8854 static int cpu_clock_event_init(struct perf_event *event)
8855 {
8856 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8857 		return -ENOENT;
8858 
8859 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8860 		return -ENOENT;
8861 
8862 	/*
8863 	 * no branch sampling for software events
8864 	 */
8865 	if (has_branch_stack(event))
8866 		return -EOPNOTSUPP;
8867 
8868 	perf_swevent_init_hrtimer(event);
8869 
8870 	return 0;
8871 }
8872 
8873 static struct pmu perf_cpu_clock = {
8874 	.task_ctx_nr	= perf_sw_context,
8875 
8876 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8877 
8878 	.event_init	= cpu_clock_event_init,
8879 	.add		= cpu_clock_event_add,
8880 	.del		= cpu_clock_event_del,
8881 	.start		= cpu_clock_event_start,
8882 	.stop		= cpu_clock_event_stop,
8883 	.read		= cpu_clock_event_read,
8884 };
8885 
8886 /*
8887  * Software event: task time clock
8888  */
8889 
task_clock_event_update(struct perf_event * event,u64 now)8890 static void task_clock_event_update(struct perf_event *event, u64 now)
8891 {
8892 	u64 prev;
8893 	s64 delta;
8894 
8895 	prev = local64_xchg(&event->hw.prev_count, now);
8896 	delta = now - prev;
8897 	local64_add(delta, &event->count);
8898 }
8899 
task_clock_event_start(struct perf_event * event,int flags)8900 static void task_clock_event_start(struct perf_event *event, int flags)
8901 {
8902 	local64_set(&event->hw.prev_count, event->ctx->time);
8903 	perf_swevent_start_hrtimer(event);
8904 }
8905 
task_clock_event_stop(struct perf_event * event,int flags)8906 static void task_clock_event_stop(struct perf_event *event, int flags)
8907 {
8908 	perf_swevent_cancel_hrtimer(event);
8909 	task_clock_event_update(event, event->ctx->time);
8910 }
8911 
task_clock_event_add(struct perf_event * event,int flags)8912 static int task_clock_event_add(struct perf_event *event, int flags)
8913 {
8914 	if (flags & PERF_EF_START)
8915 		task_clock_event_start(event, flags);
8916 	perf_event_update_userpage(event);
8917 
8918 	return 0;
8919 }
8920 
task_clock_event_del(struct perf_event * event,int flags)8921 static void task_clock_event_del(struct perf_event *event, int flags)
8922 {
8923 	task_clock_event_stop(event, PERF_EF_UPDATE);
8924 }
8925 
task_clock_event_read(struct perf_event * event)8926 static void task_clock_event_read(struct perf_event *event)
8927 {
8928 	u64 now = perf_clock();
8929 	u64 delta = now - event->ctx->timestamp;
8930 	u64 time = event->ctx->time + delta;
8931 
8932 	task_clock_event_update(event, time);
8933 }
8934 
task_clock_event_init(struct perf_event * event)8935 static int task_clock_event_init(struct perf_event *event)
8936 {
8937 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8938 		return -ENOENT;
8939 
8940 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8941 		return -ENOENT;
8942 
8943 	/*
8944 	 * no branch sampling for software events
8945 	 */
8946 	if (has_branch_stack(event))
8947 		return -EOPNOTSUPP;
8948 
8949 	perf_swevent_init_hrtimer(event);
8950 
8951 	return 0;
8952 }
8953 
8954 static struct pmu perf_task_clock = {
8955 	.task_ctx_nr	= perf_sw_context,
8956 
8957 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8958 
8959 	.event_init	= task_clock_event_init,
8960 	.add		= task_clock_event_add,
8961 	.del		= task_clock_event_del,
8962 	.start		= task_clock_event_start,
8963 	.stop		= task_clock_event_stop,
8964 	.read		= task_clock_event_read,
8965 };
8966 
perf_pmu_nop_void(struct pmu * pmu)8967 static void perf_pmu_nop_void(struct pmu *pmu)
8968 {
8969 }
8970 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)8971 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8972 {
8973 }
8974 
perf_pmu_nop_int(struct pmu * pmu)8975 static int perf_pmu_nop_int(struct pmu *pmu)
8976 {
8977 	return 0;
8978 }
8979 
perf_event_nop_int(struct perf_event * event,u64 value)8980 static int perf_event_nop_int(struct perf_event *event, u64 value)
8981 {
8982 	return 0;
8983 }
8984 
8985 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8986 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)8987 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8988 {
8989 	__this_cpu_write(nop_txn_flags, flags);
8990 
8991 	if (flags & ~PERF_PMU_TXN_ADD)
8992 		return;
8993 
8994 	perf_pmu_disable(pmu);
8995 }
8996 
perf_pmu_commit_txn(struct pmu * pmu)8997 static int perf_pmu_commit_txn(struct pmu *pmu)
8998 {
8999 	unsigned int flags = __this_cpu_read(nop_txn_flags);
9000 
9001 	__this_cpu_write(nop_txn_flags, 0);
9002 
9003 	if (flags & ~PERF_PMU_TXN_ADD)
9004 		return 0;
9005 
9006 	perf_pmu_enable(pmu);
9007 	return 0;
9008 }
9009 
perf_pmu_cancel_txn(struct pmu * pmu)9010 static void perf_pmu_cancel_txn(struct pmu *pmu)
9011 {
9012 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
9013 
9014 	__this_cpu_write(nop_txn_flags, 0);
9015 
9016 	if (flags & ~PERF_PMU_TXN_ADD)
9017 		return;
9018 
9019 	perf_pmu_enable(pmu);
9020 }
9021 
perf_event_idx_default(struct perf_event * event)9022 static int perf_event_idx_default(struct perf_event *event)
9023 {
9024 	return 0;
9025 }
9026 
9027 /*
9028  * Ensures all contexts with the same task_ctx_nr have the same
9029  * pmu_cpu_context too.
9030  */
find_pmu_context(int ctxn)9031 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9032 {
9033 	struct pmu *pmu;
9034 
9035 	if (ctxn < 0)
9036 		return NULL;
9037 
9038 	list_for_each_entry(pmu, &pmus, entry) {
9039 		if (pmu->task_ctx_nr == ctxn)
9040 			return pmu->pmu_cpu_context;
9041 	}
9042 
9043 	return NULL;
9044 }
9045 
free_pmu_context(struct pmu * pmu)9046 static void free_pmu_context(struct pmu *pmu)
9047 {
9048 	/*
9049 	 * Static contexts such as perf_sw_context have a global lifetime
9050 	 * and may be shared between different PMUs. Avoid freeing them
9051 	 * when a single PMU is going away.
9052 	 */
9053 	if (pmu->task_ctx_nr > perf_invalid_context)
9054 		return;
9055 
9056 	free_percpu(pmu->pmu_cpu_context);
9057 }
9058 
9059 /*
9060  * Let userspace know that this PMU supports address range filtering:
9061  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)9062 static ssize_t nr_addr_filters_show(struct device *dev,
9063 				    struct device_attribute *attr,
9064 				    char *page)
9065 {
9066 	struct pmu *pmu = dev_get_drvdata(dev);
9067 
9068 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9069 }
9070 DEVICE_ATTR_RO(nr_addr_filters);
9071 
9072 static struct idr pmu_idr;
9073 
9074 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)9075 type_show(struct device *dev, struct device_attribute *attr, char *page)
9076 {
9077 	struct pmu *pmu = dev_get_drvdata(dev);
9078 
9079 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9080 }
9081 static DEVICE_ATTR_RO(type);
9082 
9083 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)9084 perf_event_mux_interval_ms_show(struct device *dev,
9085 				struct device_attribute *attr,
9086 				char *page)
9087 {
9088 	struct pmu *pmu = dev_get_drvdata(dev);
9089 
9090 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9091 }
9092 
9093 static DEFINE_MUTEX(mux_interval_mutex);
9094 
9095 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)9096 perf_event_mux_interval_ms_store(struct device *dev,
9097 				 struct device_attribute *attr,
9098 				 const char *buf, size_t count)
9099 {
9100 	struct pmu *pmu = dev_get_drvdata(dev);
9101 	int timer, cpu, ret;
9102 
9103 	ret = kstrtoint(buf, 0, &timer);
9104 	if (ret)
9105 		return ret;
9106 
9107 	if (timer < 1)
9108 		return -EINVAL;
9109 
9110 	/* same value, noting to do */
9111 	if (timer == pmu->hrtimer_interval_ms)
9112 		return count;
9113 
9114 	mutex_lock(&mux_interval_mutex);
9115 	pmu->hrtimer_interval_ms = timer;
9116 
9117 	/* update all cpuctx for this PMU */
9118 	cpus_read_lock();
9119 	for_each_online_cpu(cpu) {
9120 		struct perf_cpu_context *cpuctx;
9121 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9122 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9123 
9124 		cpu_function_call(cpu,
9125 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9126 	}
9127 	cpus_read_unlock();
9128 	mutex_unlock(&mux_interval_mutex);
9129 
9130 	return count;
9131 }
9132 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9133 
9134 static struct attribute *pmu_dev_attrs[] = {
9135 	&dev_attr_type.attr,
9136 	&dev_attr_perf_event_mux_interval_ms.attr,
9137 	NULL,
9138 };
9139 ATTRIBUTE_GROUPS(pmu_dev);
9140 
9141 static int pmu_bus_running;
9142 static struct bus_type pmu_bus = {
9143 	.name		= "event_source",
9144 	.dev_groups	= pmu_dev_groups,
9145 };
9146 
pmu_dev_release(struct device * dev)9147 static void pmu_dev_release(struct device *dev)
9148 {
9149 	kfree(dev);
9150 }
9151 
pmu_dev_alloc(struct pmu * pmu)9152 static int pmu_dev_alloc(struct pmu *pmu)
9153 {
9154 	int ret = -ENOMEM;
9155 
9156 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9157 	if (!pmu->dev)
9158 		goto out;
9159 
9160 	pmu->dev->groups = pmu->attr_groups;
9161 	device_initialize(pmu->dev);
9162 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
9163 	if (ret)
9164 		goto free_dev;
9165 
9166 	dev_set_drvdata(pmu->dev, pmu);
9167 	pmu->dev->bus = &pmu_bus;
9168 	pmu->dev->release = pmu_dev_release;
9169 	ret = device_add(pmu->dev);
9170 	if (ret)
9171 		goto free_dev;
9172 
9173 	/* For PMUs with address filters, throw in an extra attribute: */
9174 	if (pmu->nr_addr_filters)
9175 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9176 
9177 	if (ret)
9178 		goto del_dev;
9179 
9180 out:
9181 	return ret;
9182 
9183 del_dev:
9184 	device_del(pmu->dev);
9185 
9186 free_dev:
9187 	put_device(pmu->dev);
9188 	goto out;
9189 }
9190 
9191 static struct lock_class_key cpuctx_mutex;
9192 static struct lock_class_key cpuctx_lock;
9193 
perf_pmu_register(struct pmu * pmu,const char * name,int type)9194 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9195 {
9196 	int cpu, ret;
9197 
9198 	mutex_lock(&pmus_lock);
9199 	ret = -ENOMEM;
9200 	pmu->pmu_disable_count = alloc_percpu(int);
9201 	if (!pmu->pmu_disable_count)
9202 		goto unlock;
9203 
9204 	pmu->type = -1;
9205 	if (!name)
9206 		goto skip_type;
9207 	pmu->name = name;
9208 
9209 	if (type < 0) {
9210 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9211 		if (type < 0) {
9212 			ret = type;
9213 			goto free_pdc;
9214 		}
9215 	}
9216 	pmu->type = type;
9217 
9218 	if (pmu_bus_running) {
9219 		ret = pmu_dev_alloc(pmu);
9220 		if (ret)
9221 			goto free_idr;
9222 	}
9223 
9224 skip_type:
9225 	if (pmu->task_ctx_nr == perf_hw_context) {
9226 		static int hw_context_taken = 0;
9227 
9228 		/*
9229 		 * Other than systems with heterogeneous CPUs, it never makes
9230 		 * sense for two PMUs to share perf_hw_context. PMUs which are
9231 		 * uncore must use perf_invalid_context.
9232 		 */
9233 		if (WARN_ON_ONCE(hw_context_taken &&
9234 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9235 			pmu->task_ctx_nr = perf_invalid_context;
9236 
9237 		hw_context_taken = 1;
9238 	}
9239 
9240 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9241 	if (pmu->pmu_cpu_context)
9242 		goto got_cpu_context;
9243 
9244 	ret = -ENOMEM;
9245 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9246 	if (!pmu->pmu_cpu_context)
9247 		goto free_dev;
9248 
9249 	for_each_possible_cpu(cpu) {
9250 		struct perf_cpu_context *cpuctx;
9251 
9252 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9253 		__perf_event_init_context(&cpuctx->ctx);
9254 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9255 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9256 		cpuctx->ctx.pmu = pmu;
9257 		cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9258 
9259 		__perf_mux_hrtimer_init(cpuctx, cpu);
9260 	}
9261 
9262 got_cpu_context:
9263 	if (!pmu->start_txn) {
9264 		if (pmu->pmu_enable) {
9265 			/*
9266 			 * If we have pmu_enable/pmu_disable calls, install
9267 			 * transaction stubs that use that to try and batch
9268 			 * hardware accesses.
9269 			 */
9270 			pmu->start_txn  = perf_pmu_start_txn;
9271 			pmu->commit_txn = perf_pmu_commit_txn;
9272 			pmu->cancel_txn = perf_pmu_cancel_txn;
9273 		} else {
9274 			pmu->start_txn  = perf_pmu_nop_txn;
9275 			pmu->commit_txn = perf_pmu_nop_int;
9276 			pmu->cancel_txn = perf_pmu_nop_void;
9277 		}
9278 	}
9279 
9280 	if (!pmu->pmu_enable) {
9281 		pmu->pmu_enable  = perf_pmu_nop_void;
9282 		pmu->pmu_disable = perf_pmu_nop_void;
9283 	}
9284 
9285 	if (!pmu->check_period)
9286 		pmu->check_period = perf_event_nop_int;
9287 
9288 	if (!pmu->event_idx)
9289 		pmu->event_idx = perf_event_idx_default;
9290 
9291 	list_add_rcu(&pmu->entry, &pmus);
9292 	atomic_set(&pmu->exclusive_cnt, 0);
9293 	ret = 0;
9294 unlock:
9295 	mutex_unlock(&pmus_lock);
9296 
9297 	return ret;
9298 
9299 free_dev:
9300 	device_del(pmu->dev);
9301 	put_device(pmu->dev);
9302 
9303 free_idr:
9304 	if (pmu->type >= PERF_TYPE_MAX)
9305 		idr_remove(&pmu_idr, pmu->type);
9306 
9307 free_pdc:
9308 	free_percpu(pmu->pmu_disable_count);
9309 	goto unlock;
9310 }
9311 EXPORT_SYMBOL_GPL(perf_pmu_register);
9312 
perf_pmu_unregister(struct pmu * pmu)9313 void perf_pmu_unregister(struct pmu *pmu)
9314 {
9315 	mutex_lock(&pmus_lock);
9316 	list_del_rcu(&pmu->entry);
9317 
9318 	/*
9319 	 * We dereference the pmu list under both SRCU and regular RCU, so
9320 	 * synchronize against both of those.
9321 	 */
9322 	synchronize_srcu(&pmus_srcu);
9323 	synchronize_rcu();
9324 
9325 	free_percpu(pmu->pmu_disable_count);
9326 	if (pmu->type >= PERF_TYPE_MAX)
9327 		idr_remove(&pmu_idr, pmu->type);
9328 	if (pmu_bus_running) {
9329 		if (pmu->nr_addr_filters)
9330 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9331 		device_del(pmu->dev);
9332 		put_device(pmu->dev);
9333 	}
9334 	free_pmu_context(pmu);
9335 	mutex_unlock(&pmus_lock);
9336 }
9337 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9338 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)9339 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9340 {
9341 	struct perf_event_context *ctx = NULL;
9342 	int ret;
9343 
9344 	if (!try_module_get(pmu->module))
9345 		return -ENODEV;
9346 
9347 	if (event->group_leader != event) {
9348 		/*
9349 		 * This ctx->mutex can nest when we're called through
9350 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
9351 		 */
9352 		ctx = perf_event_ctx_lock_nested(event->group_leader,
9353 						 SINGLE_DEPTH_NESTING);
9354 		BUG_ON(!ctx);
9355 	}
9356 
9357 	event->pmu = pmu;
9358 	ret = pmu->event_init(event);
9359 
9360 	if (ctx)
9361 		perf_event_ctx_unlock(event->group_leader, ctx);
9362 
9363 	if (ret)
9364 		module_put(pmu->module);
9365 
9366 	return ret;
9367 }
9368 
perf_init_event(struct perf_event * event)9369 static struct pmu *perf_init_event(struct perf_event *event)
9370 {
9371 	struct pmu *pmu;
9372 	int idx;
9373 	int ret;
9374 
9375 	idx = srcu_read_lock(&pmus_srcu);
9376 
9377 	/* Try parent's PMU first: */
9378 	if (event->parent && event->parent->pmu) {
9379 		pmu = event->parent->pmu;
9380 		ret = perf_try_init_event(pmu, event);
9381 		if (!ret)
9382 			goto unlock;
9383 	}
9384 
9385 	rcu_read_lock();
9386 	pmu = idr_find(&pmu_idr, event->attr.type);
9387 	rcu_read_unlock();
9388 	if (pmu) {
9389 		ret = perf_try_init_event(pmu, event);
9390 		if (ret)
9391 			pmu = ERR_PTR(ret);
9392 		goto unlock;
9393 	}
9394 
9395 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9396 		ret = perf_try_init_event(pmu, event);
9397 		if (!ret)
9398 			goto unlock;
9399 
9400 		if (ret != -ENOENT) {
9401 			pmu = ERR_PTR(ret);
9402 			goto unlock;
9403 		}
9404 	}
9405 	pmu = ERR_PTR(-ENOENT);
9406 unlock:
9407 	srcu_read_unlock(&pmus_srcu, idx);
9408 
9409 	return pmu;
9410 }
9411 
attach_sb_event(struct perf_event * event)9412 static void attach_sb_event(struct perf_event *event)
9413 {
9414 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9415 
9416 	raw_spin_lock(&pel->lock);
9417 	list_add_rcu(&event->sb_list, &pel->list);
9418 	raw_spin_unlock(&pel->lock);
9419 }
9420 
9421 /*
9422  * We keep a list of all !task (and therefore per-cpu) events
9423  * that need to receive side-band records.
9424  *
9425  * This avoids having to scan all the various PMU per-cpu contexts
9426  * looking for them.
9427  */
account_pmu_sb_event(struct perf_event * event)9428 static void account_pmu_sb_event(struct perf_event *event)
9429 {
9430 	if (is_sb_event(event))
9431 		attach_sb_event(event);
9432 }
9433 
account_event_cpu(struct perf_event * event,int cpu)9434 static void account_event_cpu(struct perf_event *event, int cpu)
9435 {
9436 	if (event->parent)
9437 		return;
9438 
9439 	if (is_cgroup_event(event))
9440 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9441 }
9442 
9443 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)9444 static void account_freq_event_nohz(void)
9445 {
9446 #ifdef CONFIG_NO_HZ_FULL
9447 	/* Lock so we don't race with concurrent unaccount */
9448 	spin_lock(&nr_freq_lock);
9449 	if (atomic_inc_return(&nr_freq_events) == 1)
9450 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9451 	spin_unlock(&nr_freq_lock);
9452 #endif
9453 }
9454 
account_freq_event(void)9455 static void account_freq_event(void)
9456 {
9457 	if (tick_nohz_full_enabled())
9458 		account_freq_event_nohz();
9459 	else
9460 		atomic_inc(&nr_freq_events);
9461 }
9462 
9463 
account_event(struct perf_event * event)9464 static void account_event(struct perf_event *event)
9465 {
9466 	bool inc = false;
9467 
9468 	if (event->parent)
9469 		return;
9470 
9471 	if (event->attach_state & PERF_ATTACH_TASK)
9472 		inc = true;
9473 	if (event->attr.mmap || event->attr.mmap_data)
9474 		atomic_inc(&nr_mmap_events);
9475 	if (event->attr.comm)
9476 		atomic_inc(&nr_comm_events);
9477 	if (event->attr.namespaces)
9478 		atomic_inc(&nr_namespaces_events);
9479 	if (event->attr.task)
9480 		atomic_inc(&nr_task_events);
9481 	if (event->attr.freq)
9482 		account_freq_event();
9483 	if (event->attr.context_switch) {
9484 		atomic_inc(&nr_switch_events);
9485 		inc = true;
9486 	}
9487 	if (has_branch_stack(event))
9488 		inc = true;
9489 	if (is_cgroup_event(event))
9490 		inc = true;
9491 
9492 	if (inc) {
9493 		if (atomic_inc_not_zero(&perf_sched_count))
9494 			goto enabled;
9495 
9496 		mutex_lock(&perf_sched_mutex);
9497 		if (!atomic_read(&perf_sched_count)) {
9498 			static_branch_enable(&perf_sched_events);
9499 			/*
9500 			 * Guarantee that all CPUs observe they key change and
9501 			 * call the perf scheduling hooks before proceeding to
9502 			 * install events that need them.
9503 			 */
9504 			synchronize_sched();
9505 		}
9506 		/*
9507 		 * Now that we have waited for the sync_sched(), allow further
9508 		 * increments to by-pass the mutex.
9509 		 */
9510 		atomic_inc(&perf_sched_count);
9511 		mutex_unlock(&perf_sched_mutex);
9512 	}
9513 enabled:
9514 
9515 	account_event_cpu(event, event->cpu);
9516 
9517 	account_pmu_sb_event(event);
9518 }
9519 
9520 /*
9521  * Allocate and initialize a event structure
9522  */
9523 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)9524 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9525 		 struct task_struct *task,
9526 		 struct perf_event *group_leader,
9527 		 struct perf_event *parent_event,
9528 		 perf_overflow_handler_t overflow_handler,
9529 		 void *context, int cgroup_fd)
9530 {
9531 	struct pmu *pmu;
9532 	struct perf_event *event;
9533 	struct hw_perf_event *hwc;
9534 	long err = -EINVAL;
9535 
9536 	if ((unsigned)cpu >= nr_cpu_ids) {
9537 		if (!task || cpu != -1)
9538 			return ERR_PTR(-EINVAL);
9539 	}
9540 
9541 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9542 	if (!event)
9543 		return ERR_PTR(-ENOMEM);
9544 
9545 	/*
9546 	 * Single events are their own group leaders, with an
9547 	 * empty sibling list:
9548 	 */
9549 	if (!group_leader)
9550 		group_leader = event;
9551 
9552 	mutex_init(&event->child_mutex);
9553 	INIT_LIST_HEAD(&event->child_list);
9554 
9555 	INIT_LIST_HEAD(&event->group_entry);
9556 	INIT_LIST_HEAD(&event->event_entry);
9557 	INIT_LIST_HEAD(&event->sibling_list);
9558 	INIT_LIST_HEAD(&event->rb_entry);
9559 	INIT_LIST_HEAD(&event->active_entry);
9560 	INIT_LIST_HEAD(&event->addr_filters.list);
9561 	INIT_HLIST_NODE(&event->hlist_entry);
9562 
9563 
9564 	init_waitqueue_head(&event->waitq);
9565 	init_irq_work(&event->pending, perf_pending_event);
9566 
9567 	mutex_init(&event->mmap_mutex);
9568 	raw_spin_lock_init(&event->addr_filters.lock);
9569 
9570 	atomic_long_set(&event->refcount, 1);
9571 	event->cpu		= cpu;
9572 	event->attr		= *attr;
9573 	event->group_leader	= group_leader;
9574 	event->pmu		= NULL;
9575 	event->oncpu		= -1;
9576 
9577 	event->parent		= parent_event;
9578 
9579 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9580 	event->id		= atomic64_inc_return(&perf_event_id);
9581 
9582 	event->state		= PERF_EVENT_STATE_INACTIVE;
9583 
9584 	if (task) {
9585 		event->attach_state = PERF_ATTACH_TASK;
9586 		/*
9587 		 * XXX pmu::event_init needs to know what task to account to
9588 		 * and we cannot use the ctx information because we need the
9589 		 * pmu before we get a ctx.
9590 		 */
9591 		get_task_struct(task);
9592 		event->hw.target = task;
9593 	}
9594 
9595 	event->clock = &local_clock;
9596 	if (parent_event)
9597 		event->clock = parent_event->clock;
9598 
9599 	if (!overflow_handler && parent_event) {
9600 		overflow_handler = parent_event->overflow_handler;
9601 		context = parent_event->overflow_handler_context;
9602 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9603 		if (overflow_handler == bpf_overflow_handler) {
9604 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9605 
9606 			if (IS_ERR(prog)) {
9607 				err = PTR_ERR(prog);
9608 				goto err_ns;
9609 			}
9610 			event->prog = prog;
9611 			event->orig_overflow_handler =
9612 				parent_event->orig_overflow_handler;
9613 		}
9614 #endif
9615 	}
9616 
9617 	if (overflow_handler) {
9618 		event->overflow_handler	= overflow_handler;
9619 		event->overflow_handler_context = context;
9620 	} else if (is_write_backward(event)){
9621 		event->overflow_handler = perf_event_output_backward;
9622 		event->overflow_handler_context = NULL;
9623 	} else {
9624 		event->overflow_handler = perf_event_output_forward;
9625 		event->overflow_handler_context = NULL;
9626 	}
9627 
9628 	perf_event__state_init(event);
9629 
9630 	pmu = NULL;
9631 
9632 	hwc = &event->hw;
9633 	hwc->sample_period = attr->sample_period;
9634 	if (attr->freq && attr->sample_freq)
9635 		hwc->sample_period = 1;
9636 	hwc->last_period = hwc->sample_period;
9637 
9638 	local64_set(&hwc->period_left, hwc->sample_period);
9639 
9640 	/*
9641 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9642 	 * See perf_output_read().
9643 	 */
9644 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9645 		goto err_ns;
9646 
9647 	if (!has_branch_stack(event))
9648 		event->attr.branch_sample_type = 0;
9649 
9650 	if (cgroup_fd != -1) {
9651 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9652 		if (err)
9653 			goto err_ns;
9654 	}
9655 
9656 	pmu = perf_init_event(event);
9657 	if (IS_ERR(pmu)) {
9658 		err = PTR_ERR(pmu);
9659 		goto err_ns;
9660 	}
9661 
9662 	err = exclusive_event_init(event);
9663 	if (err)
9664 		goto err_pmu;
9665 
9666 	if (has_addr_filter(event)) {
9667 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9668 						   sizeof(unsigned long),
9669 						   GFP_KERNEL);
9670 		if (!event->addr_filters_offs) {
9671 			err = -ENOMEM;
9672 			goto err_per_task;
9673 		}
9674 
9675 		/* force hw sync on the address filters */
9676 		event->addr_filters_gen = 1;
9677 	}
9678 
9679 	if (!event->parent) {
9680 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9681 			err = get_callchain_buffers(attr->sample_max_stack);
9682 			if (err)
9683 				goto err_addr_filters;
9684 		}
9685 	}
9686 
9687 	/* symmetric to unaccount_event() in _free_event() */
9688 	account_event(event);
9689 
9690 	return event;
9691 
9692 err_addr_filters:
9693 	kfree(event->addr_filters_offs);
9694 
9695 err_per_task:
9696 	exclusive_event_destroy(event);
9697 
9698 err_pmu:
9699 	if (event->destroy)
9700 		event->destroy(event);
9701 	module_put(pmu->module);
9702 err_ns:
9703 	if (is_cgroup_event(event))
9704 		perf_detach_cgroup(event);
9705 	if (event->ns)
9706 		put_pid_ns(event->ns);
9707 	if (event->hw.target)
9708 		put_task_struct(event->hw.target);
9709 	kfree(event);
9710 
9711 	return ERR_PTR(err);
9712 }
9713 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)9714 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9715 			  struct perf_event_attr *attr)
9716 {
9717 	u32 size;
9718 	int ret;
9719 
9720 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9721 		return -EFAULT;
9722 
9723 	/*
9724 	 * zero the full structure, so that a short copy will be nice.
9725 	 */
9726 	memset(attr, 0, sizeof(*attr));
9727 
9728 	ret = get_user(size, &uattr->size);
9729 	if (ret)
9730 		return ret;
9731 
9732 	if (size > PAGE_SIZE)	/* silly large */
9733 		goto err_size;
9734 
9735 	if (!size)		/* abi compat */
9736 		size = PERF_ATTR_SIZE_VER0;
9737 
9738 	if (size < PERF_ATTR_SIZE_VER0)
9739 		goto err_size;
9740 
9741 	/*
9742 	 * If we're handed a bigger struct than we know of,
9743 	 * ensure all the unknown bits are 0 - i.e. new
9744 	 * user-space does not rely on any kernel feature
9745 	 * extensions we dont know about yet.
9746 	 */
9747 	if (size > sizeof(*attr)) {
9748 		unsigned char __user *addr;
9749 		unsigned char __user *end;
9750 		unsigned char val;
9751 
9752 		addr = (void __user *)uattr + sizeof(*attr);
9753 		end  = (void __user *)uattr + size;
9754 
9755 		for (; addr < end; addr++) {
9756 			ret = get_user(val, addr);
9757 			if (ret)
9758 				return ret;
9759 			if (val)
9760 				goto err_size;
9761 		}
9762 		size = sizeof(*attr);
9763 	}
9764 
9765 	ret = copy_from_user(attr, uattr, size);
9766 	if (ret)
9767 		return -EFAULT;
9768 
9769 	attr->size = size;
9770 
9771 	if (attr->__reserved_1)
9772 		return -EINVAL;
9773 
9774 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9775 		return -EINVAL;
9776 
9777 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9778 		return -EINVAL;
9779 
9780 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9781 		u64 mask = attr->branch_sample_type;
9782 
9783 		/* only using defined bits */
9784 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9785 			return -EINVAL;
9786 
9787 		/* at least one branch bit must be set */
9788 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9789 			return -EINVAL;
9790 
9791 		/* propagate priv level, when not set for branch */
9792 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9793 
9794 			/* exclude_kernel checked on syscall entry */
9795 			if (!attr->exclude_kernel)
9796 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9797 
9798 			if (!attr->exclude_user)
9799 				mask |= PERF_SAMPLE_BRANCH_USER;
9800 
9801 			if (!attr->exclude_hv)
9802 				mask |= PERF_SAMPLE_BRANCH_HV;
9803 			/*
9804 			 * adjust user setting (for HW filter setup)
9805 			 */
9806 			attr->branch_sample_type = mask;
9807 		}
9808 		/* privileged levels capture (kernel, hv): check permissions */
9809 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9810 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9811 			return -EACCES;
9812 	}
9813 
9814 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9815 		ret = perf_reg_validate(attr->sample_regs_user);
9816 		if (ret)
9817 			return ret;
9818 	}
9819 
9820 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9821 		if (!arch_perf_have_user_stack_dump())
9822 			return -ENOSYS;
9823 
9824 		/*
9825 		 * We have __u32 type for the size, but so far
9826 		 * we can only use __u16 as maximum due to the
9827 		 * __u16 sample size limit.
9828 		 */
9829 		if (attr->sample_stack_user >= USHRT_MAX)
9830 			return -EINVAL;
9831 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9832 			return -EINVAL;
9833 	}
9834 
9835 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9836 		ret = perf_reg_validate(attr->sample_regs_intr);
9837 out:
9838 	return ret;
9839 
9840 err_size:
9841 	put_user(sizeof(*attr), &uattr->size);
9842 	ret = -E2BIG;
9843 	goto out;
9844 }
9845 
9846 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)9847 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9848 {
9849 	struct ring_buffer *rb = NULL;
9850 	int ret = -EINVAL;
9851 
9852 	if (!output_event)
9853 		goto set;
9854 
9855 	/* don't allow circular references */
9856 	if (event == output_event)
9857 		goto out;
9858 
9859 	/*
9860 	 * Don't allow cross-cpu buffers
9861 	 */
9862 	if (output_event->cpu != event->cpu)
9863 		goto out;
9864 
9865 	/*
9866 	 * If its not a per-cpu rb, it must be the same task.
9867 	 */
9868 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9869 		goto out;
9870 
9871 	/*
9872 	 * Mixing clocks in the same buffer is trouble you don't need.
9873 	 */
9874 	if (output_event->clock != event->clock)
9875 		goto out;
9876 
9877 	/*
9878 	 * Either writing ring buffer from beginning or from end.
9879 	 * Mixing is not allowed.
9880 	 */
9881 	if (is_write_backward(output_event) != is_write_backward(event))
9882 		goto out;
9883 
9884 	/*
9885 	 * If both events generate aux data, they must be on the same PMU
9886 	 */
9887 	if (has_aux(event) && has_aux(output_event) &&
9888 	    event->pmu != output_event->pmu)
9889 		goto out;
9890 
9891 set:
9892 	mutex_lock(&event->mmap_mutex);
9893 	/* Can't redirect output if we've got an active mmap() */
9894 	if (atomic_read(&event->mmap_count))
9895 		goto unlock;
9896 
9897 	if (output_event) {
9898 		/* get the rb we want to redirect to */
9899 		rb = ring_buffer_get(output_event);
9900 		if (!rb)
9901 			goto unlock;
9902 	}
9903 
9904 	ring_buffer_attach(event, rb);
9905 
9906 	ret = 0;
9907 unlock:
9908 	mutex_unlock(&event->mmap_mutex);
9909 
9910 out:
9911 	return ret;
9912 }
9913 
mutex_lock_double(struct mutex * a,struct mutex * b)9914 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9915 {
9916 	if (b < a)
9917 		swap(a, b);
9918 
9919 	mutex_lock(a);
9920 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9921 }
9922 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)9923 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9924 {
9925 	bool nmi_safe = false;
9926 
9927 	switch (clk_id) {
9928 	case CLOCK_MONOTONIC:
9929 		event->clock = &ktime_get_mono_fast_ns;
9930 		nmi_safe = true;
9931 		break;
9932 
9933 	case CLOCK_MONOTONIC_RAW:
9934 		event->clock = &ktime_get_raw_fast_ns;
9935 		nmi_safe = true;
9936 		break;
9937 
9938 	case CLOCK_REALTIME:
9939 		event->clock = &ktime_get_real_ns;
9940 		break;
9941 
9942 	case CLOCK_BOOTTIME:
9943 		event->clock = &ktime_get_boot_ns;
9944 		break;
9945 
9946 	case CLOCK_TAI:
9947 		event->clock = &ktime_get_tai_ns;
9948 		break;
9949 
9950 	default:
9951 		return -EINVAL;
9952 	}
9953 
9954 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9955 		return -EINVAL;
9956 
9957 	return 0;
9958 }
9959 
9960 /*
9961  * Variation on perf_event_ctx_lock_nested(), except we take two context
9962  * mutexes.
9963  */
9964 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)9965 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9966 			     struct perf_event_context *ctx)
9967 {
9968 	struct perf_event_context *gctx;
9969 
9970 again:
9971 	rcu_read_lock();
9972 	gctx = READ_ONCE(group_leader->ctx);
9973 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9974 		rcu_read_unlock();
9975 		goto again;
9976 	}
9977 	rcu_read_unlock();
9978 
9979 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9980 
9981 	if (group_leader->ctx != gctx) {
9982 		mutex_unlock(&ctx->mutex);
9983 		mutex_unlock(&gctx->mutex);
9984 		put_ctx(gctx);
9985 		goto again;
9986 	}
9987 
9988 	return gctx;
9989 }
9990 
9991 /**
9992  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9993  *
9994  * @attr_uptr:	event_id type attributes for monitoring/sampling
9995  * @pid:		target pid
9996  * @cpu:		target cpu
9997  * @group_fd:		group leader event fd
9998  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)9999 SYSCALL_DEFINE5(perf_event_open,
10000 		struct perf_event_attr __user *, attr_uptr,
10001 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10002 {
10003 	struct perf_event *group_leader = NULL, *output_event = NULL;
10004 	struct perf_event *event, *sibling;
10005 	struct perf_event_attr attr;
10006 	struct perf_event_context *ctx, *uninitialized_var(gctx);
10007 	struct file *event_file = NULL;
10008 	struct fd group = {NULL, 0};
10009 	struct task_struct *task = NULL;
10010 	struct pmu *pmu;
10011 	int event_fd;
10012 	int move_group = 0;
10013 	int err;
10014 	int f_flags = O_RDWR;
10015 	int cgroup_fd = -1;
10016 
10017 	/* for future expandability... */
10018 	if (flags & ~PERF_FLAG_ALL)
10019 		return -EINVAL;
10020 
10021 	if (perf_paranoid_any() && !capable(CAP_SYS_ADMIN))
10022 		return -EACCES;
10023 
10024 	err = perf_copy_attr(attr_uptr, &attr);
10025 	if (err)
10026 		return err;
10027 
10028 	if (!attr.exclude_kernel) {
10029 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10030 			return -EACCES;
10031 	}
10032 
10033 	if (attr.namespaces) {
10034 		if (!capable(CAP_SYS_ADMIN))
10035 			return -EACCES;
10036 	}
10037 
10038 	if (attr.freq) {
10039 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
10040 			return -EINVAL;
10041 	} else {
10042 		if (attr.sample_period & (1ULL << 63))
10043 			return -EINVAL;
10044 	}
10045 
10046 	/* Only privileged users can get physical addresses */
10047 	if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10048 	    perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10049 		return -EACCES;
10050 
10051 	if (!attr.sample_max_stack)
10052 		attr.sample_max_stack = sysctl_perf_event_max_stack;
10053 
10054 	/*
10055 	 * In cgroup mode, the pid argument is used to pass the fd
10056 	 * opened to the cgroup directory in cgroupfs. The cpu argument
10057 	 * designates the cpu on which to monitor threads from that
10058 	 * cgroup.
10059 	 */
10060 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10061 		return -EINVAL;
10062 
10063 	if (flags & PERF_FLAG_FD_CLOEXEC)
10064 		f_flags |= O_CLOEXEC;
10065 
10066 	event_fd = get_unused_fd_flags(f_flags);
10067 	if (event_fd < 0)
10068 		return event_fd;
10069 
10070 	if (group_fd != -1) {
10071 		err = perf_fget_light(group_fd, &group);
10072 		if (err)
10073 			goto err_fd;
10074 		group_leader = group.file->private_data;
10075 		if (flags & PERF_FLAG_FD_OUTPUT)
10076 			output_event = group_leader;
10077 		if (flags & PERF_FLAG_FD_NO_GROUP)
10078 			group_leader = NULL;
10079 	}
10080 
10081 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10082 		task = find_lively_task_by_vpid(pid);
10083 		if (IS_ERR(task)) {
10084 			err = PTR_ERR(task);
10085 			goto err_group_fd;
10086 		}
10087 	}
10088 
10089 	if (task && group_leader &&
10090 	    group_leader->attr.inherit != attr.inherit) {
10091 		err = -EINVAL;
10092 		goto err_task;
10093 	}
10094 
10095 	if (task) {
10096 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10097 		if (err)
10098 			goto err_task;
10099 
10100 		/*
10101 		 * Reuse ptrace permission checks for now.
10102 		 *
10103 		 * We must hold cred_guard_mutex across this and any potential
10104 		 * perf_install_in_context() call for this new event to
10105 		 * serialize against exec() altering our credentials (and the
10106 		 * perf_event_exit_task() that could imply).
10107 		 */
10108 		err = -EACCES;
10109 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10110 			goto err_cred;
10111 	}
10112 
10113 	if (flags & PERF_FLAG_PID_CGROUP)
10114 		cgroup_fd = pid;
10115 
10116 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10117 				 NULL, NULL, cgroup_fd);
10118 	if (IS_ERR(event)) {
10119 		err = PTR_ERR(event);
10120 		goto err_cred;
10121 	}
10122 
10123 	if (is_sampling_event(event)) {
10124 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10125 			err = -EOPNOTSUPP;
10126 			goto err_alloc;
10127 		}
10128 	}
10129 
10130 	/*
10131 	 * Special case software events and allow them to be part of
10132 	 * any hardware group.
10133 	 */
10134 	pmu = event->pmu;
10135 
10136 	if (attr.use_clockid) {
10137 		err = perf_event_set_clock(event, attr.clockid);
10138 		if (err)
10139 			goto err_alloc;
10140 	}
10141 
10142 	if (pmu->task_ctx_nr == perf_sw_context)
10143 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
10144 
10145 	if (group_leader &&
10146 	    (is_software_event(event) != is_software_event(group_leader))) {
10147 		if (is_software_event(event)) {
10148 			/*
10149 			 * If event and group_leader are not both a software
10150 			 * event, and event is, then group leader is not.
10151 			 *
10152 			 * Allow the addition of software events to !software
10153 			 * groups, this is safe because software events never
10154 			 * fail to schedule.
10155 			 */
10156 			pmu = group_leader->pmu;
10157 		} else if (is_software_event(group_leader) &&
10158 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10159 			/*
10160 			 * In case the group is a pure software group, and we
10161 			 * try to add a hardware event, move the whole group to
10162 			 * the hardware context.
10163 			 */
10164 			move_group = 1;
10165 		}
10166 	}
10167 
10168 	/*
10169 	 * Get the target context (task or percpu):
10170 	 */
10171 	ctx = find_get_context(pmu, task, event);
10172 	if (IS_ERR(ctx)) {
10173 		err = PTR_ERR(ctx);
10174 		goto err_alloc;
10175 	}
10176 
10177 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10178 		err = -EBUSY;
10179 		goto err_context;
10180 	}
10181 
10182 	/*
10183 	 * Look up the group leader (we will attach this event to it):
10184 	 */
10185 	if (group_leader) {
10186 		err = -EINVAL;
10187 
10188 		/*
10189 		 * Do not allow a recursive hierarchy (this new sibling
10190 		 * becoming part of another group-sibling):
10191 		 */
10192 		if (group_leader->group_leader != group_leader)
10193 			goto err_context;
10194 
10195 		/* All events in a group should have the same clock */
10196 		if (group_leader->clock != event->clock)
10197 			goto err_context;
10198 
10199 		/*
10200 		 * Make sure we're both events for the same CPU;
10201 		 * grouping events for different CPUs is broken; since
10202 		 * you can never concurrently schedule them anyhow.
10203 		 */
10204 		if (group_leader->cpu != event->cpu)
10205 			goto err_context;
10206 
10207 		/*
10208 		 * Make sure we're both on the same task, or both
10209 		 * per-CPU events.
10210 		 */
10211 		if (group_leader->ctx->task != ctx->task)
10212 			goto err_context;
10213 
10214 		/*
10215 		 * Do not allow to attach to a group in a different task
10216 		 * or CPU context. If we're moving SW events, we'll fix
10217 		 * this up later, so allow that.
10218 		 */
10219 		if (!move_group && group_leader->ctx != ctx)
10220 			goto err_context;
10221 
10222 		/*
10223 		 * Only a group leader can be exclusive or pinned
10224 		 */
10225 		if (attr.exclusive || attr.pinned)
10226 			goto err_context;
10227 	}
10228 
10229 	if (output_event) {
10230 		err = perf_event_set_output(event, output_event);
10231 		if (err)
10232 			goto err_context;
10233 	}
10234 
10235 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10236 					f_flags);
10237 	if (IS_ERR(event_file)) {
10238 		err = PTR_ERR(event_file);
10239 		event_file = NULL;
10240 		goto err_context;
10241 	}
10242 
10243 	if (move_group) {
10244 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10245 
10246 		if (gctx->task == TASK_TOMBSTONE) {
10247 			err = -ESRCH;
10248 			goto err_locked;
10249 		}
10250 
10251 		/*
10252 		 * Check if we raced against another sys_perf_event_open() call
10253 		 * moving the software group underneath us.
10254 		 */
10255 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10256 			/*
10257 			 * If someone moved the group out from under us, check
10258 			 * if this new event wound up on the same ctx, if so
10259 			 * its the regular !move_group case, otherwise fail.
10260 			 */
10261 			if (gctx != ctx) {
10262 				err = -EINVAL;
10263 				goto err_locked;
10264 			} else {
10265 				perf_event_ctx_unlock(group_leader, gctx);
10266 				move_group = 0;
10267 			}
10268 		}
10269 	} else {
10270 		mutex_lock(&ctx->mutex);
10271 	}
10272 
10273 	if (ctx->task == TASK_TOMBSTONE) {
10274 		err = -ESRCH;
10275 		goto err_locked;
10276 	}
10277 
10278 	if (!perf_event_validate_size(event)) {
10279 		err = -E2BIG;
10280 		goto err_locked;
10281 	}
10282 
10283 	if (!task) {
10284 		/*
10285 		 * Check if the @cpu we're creating an event for is online.
10286 		 *
10287 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10288 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10289 		 */
10290 		struct perf_cpu_context *cpuctx =
10291 			container_of(ctx, struct perf_cpu_context, ctx);
10292 
10293 		if (!cpuctx->online) {
10294 			err = -ENODEV;
10295 			goto err_locked;
10296 		}
10297 	}
10298 
10299 
10300 	/*
10301 	 * Must be under the same ctx::mutex as perf_install_in_context(),
10302 	 * because we need to serialize with concurrent event creation.
10303 	 */
10304 	if (!exclusive_event_installable(event, ctx)) {
10305 		/* exclusive and group stuff are assumed mutually exclusive */
10306 		WARN_ON_ONCE(move_group);
10307 
10308 		err = -EBUSY;
10309 		goto err_locked;
10310 	}
10311 
10312 	WARN_ON_ONCE(ctx->parent_ctx);
10313 
10314 	/*
10315 	 * This is the point on no return; we cannot fail hereafter. This is
10316 	 * where we start modifying current state.
10317 	 */
10318 
10319 	if (move_group) {
10320 		/*
10321 		 * See perf_event_ctx_lock() for comments on the details
10322 		 * of swizzling perf_event::ctx.
10323 		 */
10324 		perf_remove_from_context(group_leader, 0);
10325 		put_ctx(gctx);
10326 
10327 		list_for_each_entry(sibling, &group_leader->sibling_list,
10328 				    group_entry) {
10329 			perf_remove_from_context(sibling, 0);
10330 			put_ctx(gctx);
10331 		}
10332 
10333 		/*
10334 		 * Wait for everybody to stop referencing the events through
10335 		 * the old lists, before installing it on new lists.
10336 		 */
10337 		synchronize_rcu();
10338 
10339 		/*
10340 		 * Install the group siblings before the group leader.
10341 		 *
10342 		 * Because a group leader will try and install the entire group
10343 		 * (through the sibling list, which is still in-tact), we can
10344 		 * end up with siblings installed in the wrong context.
10345 		 *
10346 		 * By installing siblings first we NO-OP because they're not
10347 		 * reachable through the group lists.
10348 		 */
10349 		list_for_each_entry(sibling, &group_leader->sibling_list,
10350 				    group_entry) {
10351 			perf_event__state_init(sibling);
10352 			perf_install_in_context(ctx, sibling, sibling->cpu);
10353 			get_ctx(ctx);
10354 		}
10355 
10356 		/*
10357 		 * Removing from the context ends up with disabled
10358 		 * event. What we want here is event in the initial
10359 		 * startup state, ready to be add into new context.
10360 		 */
10361 		perf_event__state_init(group_leader);
10362 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
10363 		get_ctx(ctx);
10364 	}
10365 
10366 	/*
10367 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
10368 	 * that we're serialized against further additions and before
10369 	 * perf_install_in_context() which is the point the event is active and
10370 	 * can use these values.
10371 	 */
10372 	perf_event__header_size(event);
10373 	perf_event__id_header_size(event);
10374 
10375 	event->owner = current;
10376 
10377 	perf_install_in_context(ctx, event, event->cpu);
10378 	perf_unpin_context(ctx);
10379 
10380 	if (move_group)
10381 		perf_event_ctx_unlock(group_leader, gctx);
10382 	mutex_unlock(&ctx->mutex);
10383 
10384 	if (task) {
10385 		mutex_unlock(&task->signal->cred_guard_mutex);
10386 		put_task_struct(task);
10387 	}
10388 
10389 	mutex_lock(&current->perf_event_mutex);
10390 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10391 	mutex_unlock(&current->perf_event_mutex);
10392 
10393 	/*
10394 	 * Drop the reference on the group_event after placing the
10395 	 * new event on the sibling_list. This ensures destruction
10396 	 * of the group leader will find the pointer to itself in
10397 	 * perf_group_detach().
10398 	 */
10399 	fdput(group);
10400 	fd_install(event_fd, event_file);
10401 	return event_fd;
10402 
10403 err_locked:
10404 	if (move_group)
10405 		perf_event_ctx_unlock(group_leader, gctx);
10406 	mutex_unlock(&ctx->mutex);
10407 /* err_file: */
10408 	fput(event_file);
10409 err_context:
10410 	perf_unpin_context(ctx);
10411 	put_ctx(ctx);
10412 err_alloc:
10413 	/*
10414 	 * If event_file is set, the fput() above will have called ->release()
10415 	 * and that will take care of freeing the event.
10416 	 */
10417 	if (!event_file)
10418 		free_event(event);
10419 err_cred:
10420 	if (task)
10421 		mutex_unlock(&task->signal->cred_guard_mutex);
10422 err_task:
10423 	if (task)
10424 		put_task_struct(task);
10425 err_group_fd:
10426 	fdput(group);
10427 err_fd:
10428 	put_unused_fd(event_fd);
10429 	return err;
10430 }
10431 
10432 /**
10433  * perf_event_create_kernel_counter
10434  *
10435  * @attr: attributes of the counter to create
10436  * @cpu: cpu in which the counter is bound
10437  * @task: task to profile (NULL for percpu)
10438  */
10439 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)10440 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10441 				 struct task_struct *task,
10442 				 perf_overflow_handler_t overflow_handler,
10443 				 void *context)
10444 {
10445 	struct perf_event_context *ctx;
10446 	struct perf_event *event;
10447 	int err;
10448 
10449 	/*
10450 	 * Get the target context (task or percpu):
10451 	 */
10452 
10453 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10454 				 overflow_handler, context, -1);
10455 	if (IS_ERR(event)) {
10456 		err = PTR_ERR(event);
10457 		goto err;
10458 	}
10459 
10460 	/* Mark owner so we could distinguish it from user events. */
10461 	event->owner = TASK_TOMBSTONE;
10462 
10463 	ctx = find_get_context(event->pmu, task, event);
10464 	if (IS_ERR(ctx)) {
10465 		err = PTR_ERR(ctx);
10466 		goto err_free;
10467 	}
10468 
10469 	WARN_ON_ONCE(ctx->parent_ctx);
10470 	mutex_lock(&ctx->mutex);
10471 	if (ctx->task == TASK_TOMBSTONE) {
10472 		err = -ESRCH;
10473 		goto err_unlock;
10474 	}
10475 
10476 	if (!task) {
10477 		/*
10478 		 * Check if the @cpu we're creating an event for is online.
10479 		 *
10480 		 * We use the perf_cpu_context::ctx::mutex to serialize against
10481 		 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10482 		 */
10483 		struct perf_cpu_context *cpuctx =
10484 			container_of(ctx, struct perf_cpu_context, ctx);
10485 		if (!cpuctx->online) {
10486 			err = -ENODEV;
10487 			goto err_unlock;
10488 		}
10489 	}
10490 
10491 	if (!exclusive_event_installable(event, ctx)) {
10492 		err = -EBUSY;
10493 		goto err_unlock;
10494 	}
10495 
10496 	perf_install_in_context(ctx, event, event->cpu);
10497 	perf_unpin_context(ctx);
10498 	mutex_unlock(&ctx->mutex);
10499 
10500 	return event;
10501 
10502 err_unlock:
10503 	mutex_unlock(&ctx->mutex);
10504 	perf_unpin_context(ctx);
10505 	put_ctx(ctx);
10506 err_free:
10507 	free_event(event);
10508 err:
10509 	return ERR_PTR(err);
10510 }
10511 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10512 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)10513 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10514 {
10515 	struct perf_event_context *src_ctx;
10516 	struct perf_event_context *dst_ctx;
10517 	struct perf_event *event, *tmp;
10518 	LIST_HEAD(events);
10519 
10520 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10521 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10522 
10523 	/*
10524 	 * See perf_event_ctx_lock() for comments on the details
10525 	 * of swizzling perf_event::ctx.
10526 	 */
10527 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10528 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10529 				 event_entry) {
10530 		perf_remove_from_context(event, 0);
10531 		unaccount_event_cpu(event, src_cpu);
10532 		put_ctx(src_ctx);
10533 		list_add(&event->migrate_entry, &events);
10534 	}
10535 
10536 	/*
10537 	 * Wait for the events to quiesce before re-instating them.
10538 	 */
10539 	synchronize_rcu();
10540 
10541 	/*
10542 	 * Re-instate events in 2 passes.
10543 	 *
10544 	 * Skip over group leaders and only install siblings on this first
10545 	 * pass, siblings will not get enabled without a leader, however a
10546 	 * leader will enable its siblings, even if those are still on the old
10547 	 * context.
10548 	 */
10549 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10550 		if (event->group_leader == event)
10551 			continue;
10552 
10553 		list_del(&event->migrate_entry);
10554 		if (event->state >= PERF_EVENT_STATE_OFF)
10555 			event->state = PERF_EVENT_STATE_INACTIVE;
10556 		account_event_cpu(event, dst_cpu);
10557 		perf_install_in_context(dst_ctx, event, dst_cpu);
10558 		get_ctx(dst_ctx);
10559 	}
10560 
10561 	/*
10562 	 * Once all the siblings are setup properly, install the group leaders
10563 	 * to make it go.
10564 	 */
10565 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10566 		list_del(&event->migrate_entry);
10567 		if (event->state >= PERF_EVENT_STATE_OFF)
10568 			event->state = PERF_EVENT_STATE_INACTIVE;
10569 		account_event_cpu(event, dst_cpu);
10570 		perf_install_in_context(dst_ctx, event, dst_cpu);
10571 		get_ctx(dst_ctx);
10572 	}
10573 	mutex_unlock(&dst_ctx->mutex);
10574 	mutex_unlock(&src_ctx->mutex);
10575 }
10576 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10577 
sync_child_event(struct perf_event * child_event,struct task_struct * child)10578 static void sync_child_event(struct perf_event *child_event,
10579 			       struct task_struct *child)
10580 {
10581 	struct perf_event *parent_event = child_event->parent;
10582 	u64 child_val;
10583 
10584 	if (child_event->attr.inherit_stat)
10585 		perf_event_read_event(child_event, child);
10586 
10587 	child_val = perf_event_count(child_event);
10588 
10589 	/*
10590 	 * Add back the child's count to the parent's count:
10591 	 */
10592 	atomic64_add(child_val, &parent_event->child_count);
10593 	atomic64_add(child_event->total_time_enabled,
10594 		     &parent_event->child_total_time_enabled);
10595 	atomic64_add(child_event->total_time_running,
10596 		     &parent_event->child_total_time_running);
10597 }
10598 
10599 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)10600 perf_event_exit_event(struct perf_event *child_event,
10601 		      struct perf_event_context *child_ctx,
10602 		      struct task_struct *child)
10603 {
10604 	struct perf_event *parent_event = child_event->parent;
10605 
10606 	/*
10607 	 * Do not destroy the 'original' grouping; because of the context
10608 	 * switch optimization the original events could've ended up in a
10609 	 * random child task.
10610 	 *
10611 	 * If we were to destroy the original group, all group related
10612 	 * operations would cease to function properly after this random
10613 	 * child dies.
10614 	 *
10615 	 * Do destroy all inherited groups, we don't care about those
10616 	 * and being thorough is better.
10617 	 */
10618 	raw_spin_lock_irq(&child_ctx->lock);
10619 	WARN_ON_ONCE(child_ctx->is_active);
10620 
10621 	if (parent_event)
10622 		perf_group_detach(child_event);
10623 	list_del_event(child_event, child_ctx);
10624 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10625 	raw_spin_unlock_irq(&child_ctx->lock);
10626 
10627 	/*
10628 	 * Parent events are governed by their filedesc, retain them.
10629 	 */
10630 	if (!parent_event) {
10631 		perf_event_wakeup(child_event);
10632 		return;
10633 	}
10634 	/*
10635 	 * Child events can be cleaned up.
10636 	 */
10637 
10638 	sync_child_event(child_event, child);
10639 
10640 	/*
10641 	 * Remove this event from the parent's list
10642 	 */
10643 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10644 	mutex_lock(&parent_event->child_mutex);
10645 	list_del_init(&child_event->child_list);
10646 	mutex_unlock(&parent_event->child_mutex);
10647 
10648 	/*
10649 	 * Kick perf_poll() for is_event_hup().
10650 	 */
10651 	perf_event_wakeup(parent_event);
10652 	free_event(child_event);
10653 	put_event(parent_event);
10654 }
10655 
perf_event_exit_task_context(struct task_struct * child,int ctxn)10656 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10657 {
10658 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10659 	struct perf_event *child_event, *next;
10660 
10661 	WARN_ON_ONCE(child != current);
10662 
10663 	child_ctx = perf_pin_task_context(child, ctxn);
10664 	if (!child_ctx)
10665 		return;
10666 
10667 	/*
10668 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10669 	 * ctx::mutex over the entire thing. This serializes against almost
10670 	 * everything that wants to access the ctx.
10671 	 *
10672 	 * The exception is sys_perf_event_open() /
10673 	 * perf_event_create_kernel_count() which does find_get_context()
10674 	 * without ctx::mutex (it cannot because of the move_group double mutex
10675 	 * lock thing). See the comments in perf_install_in_context().
10676 	 */
10677 	mutex_lock(&child_ctx->mutex);
10678 
10679 	/*
10680 	 * In a single ctx::lock section, de-schedule the events and detach the
10681 	 * context from the task such that we cannot ever get it scheduled back
10682 	 * in.
10683 	 */
10684 	raw_spin_lock_irq(&child_ctx->lock);
10685 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10686 
10687 	/*
10688 	 * Now that the context is inactive, destroy the task <-> ctx relation
10689 	 * and mark the context dead.
10690 	 */
10691 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10692 	put_ctx(child_ctx); /* cannot be last */
10693 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10694 	put_task_struct(current); /* cannot be last */
10695 
10696 	clone_ctx = unclone_ctx(child_ctx);
10697 	raw_spin_unlock_irq(&child_ctx->lock);
10698 
10699 	if (clone_ctx)
10700 		put_ctx(clone_ctx);
10701 
10702 	/*
10703 	 * Report the task dead after unscheduling the events so that we
10704 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10705 	 * get a few PERF_RECORD_READ events.
10706 	 */
10707 	perf_event_task(child, child_ctx, 0);
10708 
10709 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10710 		perf_event_exit_event(child_event, child_ctx, child);
10711 
10712 	mutex_unlock(&child_ctx->mutex);
10713 
10714 	put_ctx(child_ctx);
10715 }
10716 
10717 /*
10718  * When a child task exits, feed back event values to parent events.
10719  *
10720  * Can be called with cred_guard_mutex held when called from
10721  * install_exec_creds().
10722  */
perf_event_exit_task(struct task_struct * child)10723 void perf_event_exit_task(struct task_struct *child)
10724 {
10725 	struct perf_event *event, *tmp;
10726 	int ctxn;
10727 
10728 	mutex_lock(&child->perf_event_mutex);
10729 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10730 				 owner_entry) {
10731 		list_del_init(&event->owner_entry);
10732 
10733 		/*
10734 		 * Ensure the list deletion is visible before we clear
10735 		 * the owner, closes a race against perf_release() where
10736 		 * we need to serialize on the owner->perf_event_mutex.
10737 		 */
10738 		smp_store_release(&event->owner, NULL);
10739 	}
10740 	mutex_unlock(&child->perf_event_mutex);
10741 
10742 	for_each_task_context_nr(ctxn)
10743 		perf_event_exit_task_context(child, ctxn);
10744 
10745 	/*
10746 	 * The perf_event_exit_task_context calls perf_event_task
10747 	 * with child's task_ctx, which generates EXIT events for
10748 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10749 	 * At this point we need to send EXIT events to cpu contexts.
10750 	 */
10751 	perf_event_task(child, NULL, 0);
10752 }
10753 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)10754 static void perf_free_event(struct perf_event *event,
10755 			    struct perf_event_context *ctx)
10756 {
10757 	struct perf_event *parent = event->parent;
10758 
10759 	if (WARN_ON_ONCE(!parent))
10760 		return;
10761 
10762 	mutex_lock(&parent->child_mutex);
10763 	list_del_init(&event->child_list);
10764 	mutex_unlock(&parent->child_mutex);
10765 
10766 	put_event(parent);
10767 
10768 	raw_spin_lock_irq(&ctx->lock);
10769 	perf_group_detach(event);
10770 	list_del_event(event, ctx);
10771 	raw_spin_unlock_irq(&ctx->lock);
10772 	free_event(event);
10773 }
10774 
10775 /*
10776  * Free an unexposed, unused context as created by inheritance by
10777  * perf_event_init_task below, used by fork() in case of fail.
10778  *
10779  * Not all locks are strictly required, but take them anyway to be nice and
10780  * help out with the lockdep assertions.
10781  */
perf_event_free_task(struct task_struct * task)10782 void perf_event_free_task(struct task_struct *task)
10783 {
10784 	struct perf_event_context *ctx;
10785 	struct perf_event *event, *tmp;
10786 	int ctxn;
10787 
10788 	for_each_task_context_nr(ctxn) {
10789 		ctx = task->perf_event_ctxp[ctxn];
10790 		if (!ctx)
10791 			continue;
10792 
10793 		mutex_lock(&ctx->mutex);
10794 		raw_spin_lock_irq(&ctx->lock);
10795 		/*
10796 		 * Destroy the task <-> ctx relation and mark the context dead.
10797 		 *
10798 		 * This is important because even though the task hasn't been
10799 		 * exposed yet the context has been (through child_list).
10800 		 */
10801 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10802 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10803 		put_task_struct(task); /* cannot be last */
10804 		raw_spin_unlock_irq(&ctx->lock);
10805 
10806 		list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10807 			perf_free_event(event, ctx);
10808 
10809 		mutex_unlock(&ctx->mutex);
10810 		put_ctx(ctx);
10811 	}
10812 }
10813 
perf_event_delayed_put(struct task_struct * task)10814 void perf_event_delayed_put(struct task_struct *task)
10815 {
10816 	int ctxn;
10817 
10818 	for_each_task_context_nr(ctxn)
10819 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10820 }
10821 
perf_event_get(unsigned int fd)10822 struct file *perf_event_get(unsigned int fd)
10823 {
10824 	struct file *file;
10825 
10826 	file = fget_raw(fd);
10827 	if (!file)
10828 		return ERR_PTR(-EBADF);
10829 
10830 	if (file->f_op != &perf_fops) {
10831 		fput(file);
10832 		return ERR_PTR(-EBADF);
10833 	}
10834 
10835 	return file;
10836 }
10837 
perf_event_attrs(struct perf_event * event)10838 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10839 {
10840 	if (!event)
10841 		return ERR_PTR(-EINVAL);
10842 
10843 	return &event->attr;
10844 }
10845 
10846 /*
10847  * Inherit a event from parent task to child task.
10848  *
10849  * Returns:
10850  *  - valid pointer on success
10851  *  - NULL for orphaned events
10852  *  - IS_ERR() on error
10853  */
10854 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)10855 inherit_event(struct perf_event *parent_event,
10856 	      struct task_struct *parent,
10857 	      struct perf_event_context *parent_ctx,
10858 	      struct task_struct *child,
10859 	      struct perf_event *group_leader,
10860 	      struct perf_event_context *child_ctx)
10861 {
10862 	enum perf_event_active_state parent_state = parent_event->state;
10863 	struct perf_event *child_event;
10864 	unsigned long flags;
10865 
10866 	/*
10867 	 * Instead of creating recursive hierarchies of events,
10868 	 * we link inherited events back to the original parent,
10869 	 * which has a filp for sure, which we use as the reference
10870 	 * count:
10871 	 */
10872 	if (parent_event->parent)
10873 		parent_event = parent_event->parent;
10874 
10875 	child_event = perf_event_alloc(&parent_event->attr,
10876 					   parent_event->cpu,
10877 					   child,
10878 					   group_leader, parent_event,
10879 					   NULL, NULL, -1);
10880 	if (IS_ERR(child_event))
10881 		return child_event;
10882 
10883 	/*
10884 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10885 	 * must be under the same lock in order to serialize against
10886 	 * perf_event_release_kernel(), such that either we must observe
10887 	 * is_orphaned_event() or they will observe us on the child_list.
10888 	 */
10889 	mutex_lock(&parent_event->child_mutex);
10890 	if (is_orphaned_event(parent_event) ||
10891 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10892 		mutex_unlock(&parent_event->child_mutex);
10893 		free_event(child_event);
10894 		return NULL;
10895 	}
10896 
10897 	get_ctx(child_ctx);
10898 
10899 	/*
10900 	 * Make the child state follow the state of the parent event,
10901 	 * not its attr.disabled bit.  We hold the parent's mutex,
10902 	 * so we won't race with perf_event_{en, dis}able_family.
10903 	 */
10904 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10905 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10906 	else
10907 		child_event->state = PERF_EVENT_STATE_OFF;
10908 
10909 	if (parent_event->attr.freq) {
10910 		u64 sample_period = parent_event->hw.sample_period;
10911 		struct hw_perf_event *hwc = &child_event->hw;
10912 
10913 		hwc->sample_period = sample_period;
10914 		hwc->last_period   = sample_period;
10915 
10916 		local64_set(&hwc->period_left, sample_period);
10917 	}
10918 
10919 	child_event->ctx = child_ctx;
10920 	child_event->overflow_handler = parent_event->overflow_handler;
10921 	child_event->overflow_handler_context
10922 		= parent_event->overflow_handler_context;
10923 
10924 	/*
10925 	 * Precalculate sample_data sizes
10926 	 */
10927 	perf_event__header_size(child_event);
10928 	perf_event__id_header_size(child_event);
10929 
10930 	/*
10931 	 * Link it up in the child's context:
10932 	 */
10933 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10934 	add_event_to_ctx(child_event, child_ctx);
10935 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10936 
10937 	/*
10938 	 * Link this into the parent event's child list
10939 	 */
10940 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10941 	mutex_unlock(&parent_event->child_mutex);
10942 
10943 	return child_event;
10944 }
10945 
10946 /*
10947  * Inherits an event group.
10948  *
10949  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10950  * This matches with perf_event_release_kernel() removing all child events.
10951  *
10952  * Returns:
10953  *  - 0 on success
10954  *  - <0 on error
10955  */
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)10956 static int inherit_group(struct perf_event *parent_event,
10957 	      struct task_struct *parent,
10958 	      struct perf_event_context *parent_ctx,
10959 	      struct task_struct *child,
10960 	      struct perf_event_context *child_ctx)
10961 {
10962 	struct perf_event *leader;
10963 	struct perf_event *sub;
10964 	struct perf_event *child_ctr;
10965 
10966 	leader = inherit_event(parent_event, parent, parent_ctx,
10967 				 child, NULL, child_ctx);
10968 	if (IS_ERR(leader))
10969 		return PTR_ERR(leader);
10970 	/*
10971 	 * @leader can be NULL here because of is_orphaned_event(). In this
10972 	 * case inherit_event() will create individual events, similar to what
10973 	 * perf_group_detach() would do anyway.
10974 	 */
10975 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10976 		child_ctr = inherit_event(sub, parent, parent_ctx,
10977 					    child, leader, child_ctx);
10978 		if (IS_ERR(child_ctr))
10979 			return PTR_ERR(child_ctr);
10980 	}
10981 	return 0;
10982 }
10983 
10984 /*
10985  * Creates the child task context and tries to inherit the event-group.
10986  *
10987  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10988  * inherited_all set when we 'fail' to inherit an orphaned event; this is
10989  * consistent with perf_event_release_kernel() removing all child events.
10990  *
10991  * Returns:
10992  *  - 0 on success
10993  *  - <0 on error
10994  */
10995 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)10996 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10997 		   struct perf_event_context *parent_ctx,
10998 		   struct task_struct *child, int ctxn,
10999 		   int *inherited_all)
11000 {
11001 	int ret;
11002 	struct perf_event_context *child_ctx;
11003 
11004 	if (!event->attr.inherit) {
11005 		*inherited_all = 0;
11006 		return 0;
11007 	}
11008 
11009 	child_ctx = child->perf_event_ctxp[ctxn];
11010 	if (!child_ctx) {
11011 		/*
11012 		 * This is executed from the parent task context, so
11013 		 * inherit events that have been marked for cloning.
11014 		 * First allocate and initialize a context for the
11015 		 * child.
11016 		 */
11017 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11018 		if (!child_ctx)
11019 			return -ENOMEM;
11020 
11021 		child->perf_event_ctxp[ctxn] = child_ctx;
11022 	}
11023 
11024 	ret = inherit_group(event, parent, parent_ctx,
11025 			    child, child_ctx);
11026 
11027 	if (ret)
11028 		*inherited_all = 0;
11029 
11030 	return ret;
11031 }
11032 
11033 /*
11034  * Initialize the perf_event context in task_struct
11035  */
perf_event_init_context(struct task_struct * child,int ctxn)11036 static int perf_event_init_context(struct task_struct *child, int ctxn)
11037 {
11038 	struct perf_event_context *child_ctx, *parent_ctx;
11039 	struct perf_event_context *cloned_ctx;
11040 	struct perf_event *event;
11041 	struct task_struct *parent = current;
11042 	int inherited_all = 1;
11043 	unsigned long flags;
11044 	int ret = 0;
11045 
11046 	if (likely(!parent->perf_event_ctxp[ctxn]))
11047 		return 0;
11048 
11049 	/*
11050 	 * If the parent's context is a clone, pin it so it won't get
11051 	 * swapped under us.
11052 	 */
11053 	parent_ctx = perf_pin_task_context(parent, ctxn);
11054 	if (!parent_ctx)
11055 		return 0;
11056 
11057 	/*
11058 	 * No need to check if parent_ctx != NULL here; since we saw
11059 	 * it non-NULL earlier, the only reason for it to become NULL
11060 	 * is if we exit, and since we're currently in the middle of
11061 	 * a fork we can't be exiting at the same time.
11062 	 */
11063 
11064 	/*
11065 	 * Lock the parent list. No need to lock the child - not PID
11066 	 * hashed yet and not running, so nobody can access it.
11067 	 */
11068 	mutex_lock(&parent_ctx->mutex);
11069 
11070 	/*
11071 	 * We dont have to disable NMIs - we are only looking at
11072 	 * the list, not manipulating it:
11073 	 */
11074 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
11075 		ret = inherit_task_group(event, parent, parent_ctx,
11076 					 child, ctxn, &inherited_all);
11077 		if (ret)
11078 			goto out_unlock;
11079 	}
11080 
11081 	/*
11082 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
11083 	 * to allocations, but we need to prevent rotation because
11084 	 * rotate_ctx() will change the list from interrupt context.
11085 	 */
11086 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11087 	parent_ctx->rotate_disable = 1;
11088 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11089 
11090 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
11091 		ret = inherit_task_group(event, parent, parent_ctx,
11092 					 child, ctxn, &inherited_all);
11093 		if (ret)
11094 			goto out_unlock;
11095 	}
11096 
11097 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11098 	parent_ctx->rotate_disable = 0;
11099 
11100 	child_ctx = child->perf_event_ctxp[ctxn];
11101 
11102 	if (child_ctx && inherited_all) {
11103 		/*
11104 		 * Mark the child context as a clone of the parent
11105 		 * context, or of whatever the parent is a clone of.
11106 		 *
11107 		 * Note that if the parent is a clone, the holding of
11108 		 * parent_ctx->lock avoids it from being uncloned.
11109 		 */
11110 		cloned_ctx = parent_ctx->parent_ctx;
11111 		if (cloned_ctx) {
11112 			child_ctx->parent_ctx = cloned_ctx;
11113 			child_ctx->parent_gen = parent_ctx->parent_gen;
11114 		} else {
11115 			child_ctx->parent_ctx = parent_ctx;
11116 			child_ctx->parent_gen = parent_ctx->generation;
11117 		}
11118 		get_ctx(child_ctx->parent_ctx);
11119 	}
11120 
11121 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11122 out_unlock:
11123 	mutex_unlock(&parent_ctx->mutex);
11124 
11125 	perf_unpin_context(parent_ctx);
11126 	put_ctx(parent_ctx);
11127 
11128 	return ret;
11129 }
11130 
11131 /*
11132  * Initialize the perf_event context in task_struct
11133  */
perf_event_init_task(struct task_struct * child)11134 int perf_event_init_task(struct task_struct *child)
11135 {
11136 	int ctxn, ret;
11137 
11138 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11139 	mutex_init(&child->perf_event_mutex);
11140 	INIT_LIST_HEAD(&child->perf_event_list);
11141 
11142 	for_each_task_context_nr(ctxn) {
11143 		ret = perf_event_init_context(child, ctxn);
11144 		if (ret) {
11145 			perf_event_free_task(child);
11146 			return ret;
11147 		}
11148 	}
11149 
11150 	return 0;
11151 }
11152 
perf_event_init_all_cpus(void)11153 static void __init perf_event_init_all_cpus(void)
11154 {
11155 	struct swevent_htable *swhash;
11156 	int cpu;
11157 
11158 	zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11159 
11160 	for_each_possible_cpu(cpu) {
11161 		swhash = &per_cpu(swevent_htable, cpu);
11162 		mutex_init(&swhash->hlist_mutex);
11163 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11164 
11165 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11166 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11167 
11168 #ifdef CONFIG_CGROUP_PERF
11169 		INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11170 #endif
11171 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11172 	}
11173 }
11174 
perf_swevent_init_cpu(unsigned int cpu)11175 void perf_swevent_init_cpu(unsigned int cpu)
11176 {
11177 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11178 
11179 	mutex_lock(&swhash->hlist_mutex);
11180 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11181 		struct swevent_hlist *hlist;
11182 
11183 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11184 		WARN_ON(!hlist);
11185 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
11186 	}
11187 	mutex_unlock(&swhash->hlist_mutex);
11188 }
11189 
11190 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)11191 static void __perf_event_exit_context(void *__info)
11192 {
11193 	struct perf_event_context *ctx = __info;
11194 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11195 	struct perf_event *event;
11196 
11197 	raw_spin_lock(&ctx->lock);
11198 	list_for_each_entry(event, &ctx->event_list, event_entry)
11199 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11200 	raw_spin_unlock(&ctx->lock);
11201 }
11202 
perf_event_exit_cpu_context(int cpu)11203 static void perf_event_exit_cpu_context(int cpu)
11204 {
11205 	struct perf_cpu_context *cpuctx;
11206 	struct perf_event_context *ctx;
11207 	struct pmu *pmu;
11208 
11209 	mutex_lock(&pmus_lock);
11210 	list_for_each_entry(pmu, &pmus, entry) {
11211 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11212 		ctx = &cpuctx->ctx;
11213 
11214 		mutex_lock(&ctx->mutex);
11215 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11216 		cpuctx->online = 0;
11217 		mutex_unlock(&ctx->mutex);
11218 	}
11219 	cpumask_clear_cpu(cpu, perf_online_mask);
11220 	mutex_unlock(&pmus_lock);
11221 }
11222 #else
11223 
perf_event_exit_cpu_context(int cpu)11224 static void perf_event_exit_cpu_context(int cpu) { }
11225 
11226 #endif
11227 
perf_event_init_cpu(unsigned int cpu)11228 int perf_event_init_cpu(unsigned int cpu)
11229 {
11230 	struct perf_cpu_context *cpuctx;
11231 	struct perf_event_context *ctx;
11232 	struct pmu *pmu;
11233 
11234 	perf_swevent_init_cpu(cpu);
11235 
11236 	mutex_lock(&pmus_lock);
11237 	cpumask_set_cpu(cpu, perf_online_mask);
11238 	list_for_each_entry(pmu, &pmus, entry) {
11239 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11240 		ctx = &cpuctx->ctx;
11241 
11242 		mutex_lock(&ctx->mutex);
11243 		cpuctx->online = 1;
11244 		mutex_unlock(&ctx->mutex);
11245 	}
11246 	mutex_unlock(&pmus_lock);
11247 
11248 	return 0;
11249 }
11250 
perf_event_exit_cpu(unsigned int cpu)11251 int perf_event_exit_cpu(unsigned int cpu)
11252 {
11253 	perf_event_exit_cpu_context(cpu);
11254 	return 0;
11255 }
11256 
11257 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)11258 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11259 {
11260 	int cpu;
11261 
11262 	for_each_online_cpu(cpu)
11263 		perf_event_exit_cpu(cpu);
11264 
11265 	return NOTIFY_OK;
11266 }
11267 
11268 /*
11269  * Run the perf reboot notifier at the very last possible moment so that
11270  * the generic watchdog code runs as long as possible.
11271  */
11272 static struct notifier_block perf_reboot_notifier = {
11273 	.notifier_call = perf_reboot,
11274 	.priority = INT_MIN,
11275 };
11276 
perf_event_init(void)11277 void __init perf_event_init(void)
11278 {
11279 	int ret;
11280 
11281 	idr_init(&pmu_idr);
11282 
11283 	perf_event_init_all_cpus();
11284 	init_srcu_struct(&pmus_srcu);
11285 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11286 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
11287 	perf_pmu_register(&perf_task_clock, NULL, -1);
11288 	perf_tp_register();
11289 	perf_event_init_cpu(smp_processor_id());
11290 	register_reboot_notifier(&perf_reboot_notifier);
11291 
11292 	ret = init_hw_breakpoint();
11293 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11294 
11295 	/*
11296 	 * Build time assertion that we keep the data_head at the intended
11297 	 * location.  IOW, validation we got the __reserved[] size right.
11298 	 */
11299 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11300 		     != 1024);
11301 }
11302 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)11303 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11304 			      char *page)
11305 {
11306 	struct perf_pmu_events_attr *pmu_attr =
11307 		container_of(attr, struct perf_pmu_events_attr, attr);
11308 
11309 	if (pmu_attr->event_str)
11310 		return sprintf(page, "%s\n", pmu_attr->event_str);
11311 
11312 	return 0;
11313 }
11314 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11315 
perf_event_sysfs_init(void)11316 static int __init perf_event_sysfs_init(void)
11317 {
11318 	struct pmu *pmu;
11319 	int ret;
11320 
11321 	mutex_lock(&pmus_lock);
11322 
11323 	ret = bus_register(&pmu_bus);
11324 	if (ret)
11325 		goto unlock;
11326 
11327 	list_for_each_entry(pmu, &pmus, entry) {
11328 		if (!pmu->name || pmu->type < 0)
11329 			continue;
11330 
11331 		ret = pmu_dev_alloc(pmu);
11332 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11333 	}
11334 	pmu_bus_running = 1;
11335 	ret = 0;
11336 
11337 unlock:
11338 	mutex_unlock(&pmus_lock);
11339 
11340 	return ret;
11341 }
11342 device_initcall(perf_event_sysfs_init);
11343 
11344 #ifdef CONFIG_CGROUP_PERF
11345 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)11346 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11347 {
11348 	struct perf_cgroup *jc;
11349 
11350 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11351 	if (!jc)
11352 		return ERR_PTR(-ENOMEM);
11353 
11354 	jc->info = alloc_percpu(struct perf_cgroup_info);
11355 	if (!jc->info) {
11356 		kfree(jc);
11357 		return ERR_PTR(-ENOMEM);
11358 	}
11359 
11360 	return &jc->css;
11361 }
11362 
perf_cgroup_css_free(struct cgroup_subsys_state * css)11363 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11364 {
11365 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11366 
11367 	free_percpu(jc->info);
11368 	kfree(jc);
11369 }
11370 
__perf_cgroup_move(void * info)11371 static int __perf_cgroup_move(void *info)
11372 {
11373 	struct task_struct *task = info;
11374 	rcu_read_lock();
11375 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11376 	rcu_read_unlock();
11377 	return 0;
11378 }
11379 
perf_cgroup_attach(struct cgroup_taskset * tset)11380 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11381 {
11382 	struct task_struct *task;
11383 	struct cgroup_subsys_state *css;
11384 
11385 	cgroup_taskset_for_each(task, css, tset)
11386 		task_function_call(task, __perf_cgroup_move, task);
11387 }
11388 
11389 struct cgroup_subsys perf_event_cgrp_subsys = {
11390 	.css_alloc	= perf_cgroup_css_alloc,
11391 	.css_free	= perf_cgroup_css_free,
11392 	.attach		= perf_cgroup_attach,
11393 	/*
11394 	 * Implicitly enable on dfl hierarchy so that perf events can
11395 	 * always be filtered by cgroup2 path as long as perf_event
11396 	 * controller is not mounted on a legacy hierarchy.
11397 	 */
11398 	.implicit_on_dfl = true,
11399 	.threaded	= true,
11400 };
11401 #endif /* CONFIG_CGROUP_PERF */
11402