• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2006 Nick Piggin
5  * Copyright (C) 2012 Konstantin Khlebnikov
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 #ifndef _LINUX_RADIX_TREE_H
22 #define _LINUX_RADIX_TREE_H
23 
24 #include <linux/bitops.h>
25 #include <linux/bug.h>
26 #include <linux/kernel.h>
27 #include <linux/list.h>
28 #include <linux/preempt.h>
29 #include <linux/rcupdate.h>
30 #include <linux/spinlock.h>
31 #include <linux/types.h>
32 
33 /*
34  * The bottom two bits of the slot determine how the remaining bits in the
35  * slot are interpreted:
36  *
37  * 00 - data pointer
38  * 01 - internal entry
39  * 10 - exceptional entry
40  * 11 - this bit combination is currently unused/reserved
41  *
42  * The internal entry may be a pointer to the next level in the tree, a
43  * sibling entry, or an indicator that the entry in this slot has been moved
44  * to another location in the tree and the lookup should be restarted.  While
45  * NULL fits the 'data pointer' pattern, it means that there is no entry in
46  * the tree for this index (no matter what level of the tree it is found at).
47  * This means that you cannot store NULL in the tree as a value for the index.
48  */
49 #define RADIX_TREE_ENTRY_MASK		3UL
50 #define RADIX_TREE_INTERNAL_NODE	1UL
51 
52 /*
53  * Most users of the radix tree store pointers but shmem/tmpfs stores swap
54  * entries in the same tree.  They are marked as exceptional entries to
55  * distinguish them from pointers to struct page.
56  * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
57  */
58 #define RADIX_TREE_EXCEPTIONAL_ENTRY	2
59 #define RADIX_TREE_EXCEPTIONAL_SHIFT	2
60 
radix_tree_is_internal_node(void * ptr)61 static inline bool radix_tree_is_internal_node(void *ptr)
62 {
63 	return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
64 				RADIX_TREE_INTERNAL_NODE;
65 }
66 
67 /*** radix-tree API starts here ***/
68 
69 #define RADIX_TREE_MAX_TAGS 3
70 
71 #ifndef RADIX_TREE_MAP_SHIFT
72 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
73 #endif
74 
75 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
76 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
77 
78 #define RADIX_TREE_TAG_LONGS	\
79 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
80 
81 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
82 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
83 					  RADIX_TREE_MAP_SHIFT))
84 
85 /*
86  * @count is the count of every non-NULL element in the ->slots array
87  * whether that is an exceptional entry, a retry entry, a user pointer,
88  * a sibling entry or a pointer to the next level of the tree.
89  * @exceptional is the count of every element in ->slots which is
90  * either radix_tree_exceptional_entry() or is a sibling entry for an
91  * exceptional entry.
92  */
93 struct radix_tree_node {
94 	unsigned char	shift;		/* Bits remaining in each slot */
95 	unsigned char	offset;		/* Slot offset in parent */
96 	unsigned char	count;		/* Total entry count */
97 	unsigned char	exceptional;	/* Exceptional entry count */
98 	struct radix_tree_node *parent;		/* Used when ascending tree */
99 	struct radix_tree_root *root;		/* The tree we belong to */
100 	union {
101 		struct list_head private_list;	/* For tree user */
102 		struct rcu_head	rcu_head;	/* Used when freeing node */
103 	};
104 	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
105 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
106 };
107 
108 /* The top bits of gfp_mask are used to store the root tags and the IDR flag */
109 #define ROOT_IS_IDR	((__force gfp_t)(1 << __GFP_BITS_SHIFT))
110 #define ROOT_TAG_SHIFT	(__GFP_BITS_SHIFT + 1)
111 
112 struct radix_tree_root {
113 	gfp_t			gfp_mask;
114 	struct radix_tree_node	__rcu *rnode;
115 };
116 
117 #define RADIX_TREE_INIT(mask)	{					\
118 	.gfp_mask = (mask),						\
119 	.rnode = NULL,							\
120 }
121 
122 #define RADIX_TREE(name, mask) \
123 	struct radix_tree_root name = RADIX_TREE_INIT(mask)
124 
125 #define INIT_RADIX_TREE(root, mask)					\
126 do {									\
127 	(root)->gfp_mask = (mask);					\
128 	(root)->rnode = NULL;						\
129 } while (0)
130 
radix_tree_empty(const struct radix_tree_root * root)131 static inline bool radix_tree_empty(const struct radix_tree_root *root)
132 {
133 	return root->rnode == NULL;
134 }
135 
136 /**
137  * struct radix_tree_iter - radix tree iterator state
138  *
139  * @index:	index of current slot
140  * @next_index:	one beyond the last index for this chunk
141  * @tags:	bit-mask for tag-iterating
142  * @node:	node that contains current slot
143  * @shift:	shift for the node that holds our slots
144  *
145  * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
146  * subinterval of slots contained within one radix tree leaf node.  It is
147  * described by a pointer to its first slot and a struct radix_tree_iter
148  * which holds the chunk's position in the tree and its size.  For tagged
149  * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
150  * radix tree tag.
151  */
152 struct radix_tree_iter {
153 	unsigned long	index;
154 	unsigned long	next_index;
155 	unsigned long	tags;
156 	struct radix_tree_node *node;
157 #ifdef CONFIG_RADIX_TREE_MULTIORDER
158 	unsigned int	shift;
159 #endif
160 };
161 
iter_shift(const struct radix_tree_iter * iter)162 static inline unsigned int iter_shift(const struct radix_tree_iter *iter)
163 {
164 #ifdef CONFIG_RADIX_TREE_MULTIORDER
165 	return iter->shift;
166 #else
167 	return 0;
168 #endif
169 }
170 
171 /**
172  * Radix-tree synchronization
173  *
174  * The radix-tree API requires that users provide all synchronisation (with
175  * specific exceptions, noted below).
176  *
177  * Synchronization of access to the data items being stored in the tree, and
178  * management of their lifetimes must be completely managed by API users.
179  *
180  * For API usage, in general,
181  * - any function _modifying_ the tree or tags (inserting or deleting
182  *   items, setting or clearing tags) must exclude other modifications, and
183  *   exclude any functions reading the tree.
184  * - any function _reading_ the tree or tags (looking up items or tags,
185  *   gang lookups) must exclude modifications to the tree, but may occur
186  *   concurrently with other readers.
187  *
188  * The notable exceptions to this rule are the following functions:
189  * __radix_tree_lookup
190  * radix_tree_lookup
191  * radix_tree_lookup_slot
192  * radix_tree_tag_get
193  * radix_tree_gang_lookup
194  * radix_tree_gang_lookup_slot
195  * radix_tree_gang_lookup_tag
196  * radix_tree_gang_lookup_tag_slot
197  * radix_tree_tagged
198  *
199  * The first 8 functions are able to be called locklessly, using RCU. The
200  * caller must ensure calls to these functions are made within rcu_read_lock()
201  * regions. Other readers (lock-free or otherwise) and modifications may be
202  * running concurrently.
203  *
204  * It is still required that the caller manage the synchronization and lifetimes
205  * of the items. So if RCU lock-free lookups are used, typically this would mean
206  * that the items have their own locks, or are amenable to lock-free access; and
207  * that the items are freed by RCU (or only freed after having been deleted from
208  * the radix tree *and* a synchronize_rcu() grace period).
209  *
210  * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
211  * access to data items when inserting into or looking up from the radix tree)
212  *
213  * Note that the value returned by radix_tree_tag_get() may not be relied upon
214  * if only the RCU read lock is held.  Functions to set/clear tags and to
215  * delete nodes running concurrently with it may affect its result such that
216  * two consecutive reads in the same locked section may return different
217  * values.  If reliability is required, modification functions must also be
218  * excluded from concurrency.
219  *
220  * radix_tree_tagged is able to be called without locking or RCU.
221  */
222 
223 /**
224  * radix_tree_deref_slot - dereference a slot
225  * @slot: slot pointer, returned by radix_tree_lookup_slot
226  *
227  * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
228  * locked across slot lookup and dereference. Not required if write lock is
229  * held (ie. items cannot be concurrently inserted).
230  *
231  * radix_tree_deref_retry must be used to confirm validity of the pointer if
232  * only the read lock is held.
233  *
234  * Return: entry stored in that slot.
235  */
radix_tree_deref_slot(void __rcu ** slot)236 static inline void *radix_tree_deref_slot(void __rcu **slot)
237 {
238 	return rcu_dereference(*slot);
239 }
240 
241 /**
242  * radix_tree_deref_slot_protected - dereference a slot with tree lock held
243  * @slot: slot pointer, returned by radix_tree_lookup_slot
244  *
245  * Similar to radix_tree_deref_slot.  The caller does not hold the RCU read
246  * lock but it must hold the tree lock to prevent parallel updates.
247  *
248  * Return: entry stored in that slot.
249  */
radix_tree_deref_slot_protected(void __rcu ** slot,spinlock_t * treelock)250 static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
251 							spinlock_t *treelock)
252 {
253 	return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
254 }
255 
256 /**
257  * radix_tree_deref_retry	- check radix_tree_deref_slot
258  * @arg:	pointer returned by radix_tree_deref_slot
259  * Returns:	0 if retry is not required, otherwise retry is required
260  *
261  * radix_tree_deref_retry must be used with radix_tree_deref_slot.
262  */
radix_tree_deref_retry(void * arg)263 static inline int radix_tree_deref_retry(void *arg)
264 {
265 	return unlikely(radix_tree_is_internal_node(arg));
266 }
267 
268 /**
269  * radix_tree_exceptional_entry	- radix_tree_deref_slot gave exceptional entry?
270  * @arg:	value returned by radix_tree_deref_slot
271  * Returns:	0 if well-aligned pointer, non-0 if exceptional entry.
272  */
radix_tree_exceptional_entry(void * arg)273 static inline int radix_tree_exceptional_entry(void *arg)
274 {
275 	/* Not unlikely because radix_tree_exception often tested first */
276 	return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
277 }
278 
279 /**
280  * radix_tree_exception	- radix_tree_deref_slot returned either exception?
281  * @arg:	value returned by radix_tree_deref_slot
282  * Returns:	0 if well-aligned pointer, non-0 if either kind of exception.
283  */
radix_tree_exception(void * arg)284 static inline int radix_tree_exception(void *arg)
285 {
286 	return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
287 }
288 
289 int __radix_tree_create(struct radix_tree_root *, unsigned long index,
290 			unsigned order, struct radix_tree_node **nodep,
291 			void __rcu ***slotp);
292 int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
293 			unsigned order, void *);
radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * entry)294 static inline int radix_tree_insert(struct radix_tree_root *root,
295 			unsigned long index, void *entry)
296 {
297 	return __radix_tree_insert(root, index, 0, entry);
298 }
299 void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
300 			  struct radix_tree_node **nodep, void __rcu ***slotp);
301 void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
302 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
303 					unsigned long index);
304 typedef void (*radix_tree_update_node_t)(struct radix_tree_node *, void *);
305 void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
306 			  void __rcu **slot, void *entry,
307 			  radix_tree_update_node_t update_node, void *private);
308 void radix_tree_iter_replace(struct radix_tree_root *,
309 		const struct radix_tree_iter *, void __rcu **slot, void *entry);
310 void radix_tree_replace_slot(struct radix_tree_root *,
311 			     void __rcu **slot, void *entry);
312 void __radix_tree_delete_node(struct radix_tree_root *,
313 			      struct radix_tree_node *,
314 			      radix_tree_update_node_t update_node,
315 			      void *private);
316 void radix_tree_iter_delete(struct radix_tree_root *,
317 			struct radix_tree_iter *iter, void __rcu **slot);
318 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
319 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
320 void radix_tree_clear_tags(struct radix_tree_root *, struct radix_tree_node *,
321 			   void __rcu **slot);
322 unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
323 			void **results, unsigned long first_index,
324 			unsigned int max_items);
325 unsigned int radix_tree_gang_lookup_slot(const struct radix_tree_root *,
326 			void __rcu ***results, unsigned long *indices,
327 			unsigned long first_index, unsigned int max_items);
328 int radix_tree_preload(gfp_t gfp_mask);
329 int radix_tree_maybe_preload(gfp_t gfp_mask);
330 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order);
331 void radix_tree_init(void);
332 void *radix_tree_tag_set(struct radix_tree_root *,
333 			unsigned long index, unsigned int tag);
334 void *radix_tree_tag_clear(struct radix_tree_root *,
335 			unsigned long index, unsigned int tag);
336 int radix_tree_tag_get(const struct radix_tree_root *,
337 			unsigned long index, unsigned int tag);
338 void radix_tree_iter_tag_set(struct radix_tree_root *,
339 		const struct radix_tree_iter *iter, unsigned int tag);
340 void radix_tree_iter_tag_clear(struct radix_tree_root *,
341 		const struct radix_tree_iter *iter, unsigned int tag);
342 unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
343 		void **results, unsigned long first_index,
344 		unsigned int max_items, unsigned int tag);
345 unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
346 		void __rcu ***results, unsigned long first_index,
347 		unsigned int max_items, unsigned int tag);
348 int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);
349 
radix_tree_preload_end(void)350 static inline void radix_tree_preload_end(void)
351 {
352 	preempt_enable();
353 }
354 
355 int radix_tree_split_preload(unsigned old_order, unsigned new_order, gfp_t);
356 int radix_tree_split(struct radix_tree_root *, unsigned long index,
357 			unsigned new_order);
358 int radix_tree_join(struct radix_tree_root *, unsigned long index,
359 			unsigned new_order, void *);
360 
361 void __rcu **idr_get_free_cmn(struct radix_tree_root *root,
362 			      struct radix_tree_iter *iter, gfp_t gfp,
363 			      unsigned long max);
idr_get_free(struct radix_tree_root * root,struct radix_tree_iter * iter,gfp_t gfp,int end)364 static inline void __rcu **idr_get_free(struct radix_tree_root *root,
365 					struct radix_tree_iter *iter,
366 					gfp_t gfp,
367 					int end)
368 {
369 	return idr_get_free_cmn(root, iter, gfp, end > 0 ? end - 1 : INT_MAX);
370 }
371 
idr_get_free_ext(struct radix_tree_root * root,struct radix_tree_iter * iter,gfp_t gfp,unsigned long end)372 static inline void __rcu **idr_get_free_ext(struct radix_tree_root *root,
373 					    struct radix_tree_iter *iter,
374 					    gfp_t gfp,
375 					    unsigned long end)
376 {
377 	return idr_get_free_cmn(root, iter, gfp, end - 1);
378 }
379 
380 enum {
381 	RADIX_TREE_ITER_TAG_MASK = 0x0f,	/* tag index in lower nybble */
382 	RADIX_TREE_ITER_TAGGED   = 0x10,	/* lookup tagged slots */
383 	RADIX_TREE_ITER_CONTIG   = 0x20,	/* stop at first hole */
384 };
385 
386 /**
387  * radix_tree_iter_init - initialize radix tree iterator
388  *
389  * @iter:	pointer to iterator state
390  * @start:	iteration starting index
391  * Returns:	NULL
392  */
393 static __always_inline void __rcu **
radix_tree_iter_init(struct radix_tree_iter * iter,unsigned long start)394 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
395 {
396 	/*
397 	 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
398 	 * in the case of a successful tagged chunk lookup.  If the lookup was
399 	 * unsuccessful or non-tagged then nobody cares about ->tags.
400 	 *
401 	 * Set index to zero to bypass next_index overflow protection.
402 	 * See the comment in radix_tree_next_chunk() for details.
403 	 */
404 	iter->index = 0;
405 	iter->next_index = start;
406 	return NULL;
407 }
408 
409 /**
410  * radix_tree_next_chunk - find next chunk of slots for iteration
411  *
412  * @root:	radix tree root
413  * @iter:	iterator state
414  * @flags:	RADIX_TREE_ITER_* flags and tag index
415  * Returns:	pointer to chunk first slot, or NULL if there no more left
416  *
417  * This function looks up the next chunk in the radix tree starting from
418  * @iter->next_index.  It returns a pointer to the chunk's first slot.
419  * Also it fills @iter with data about chunk: position in the tree (index),
420  * its end (next_index), and constructs a bit mask for tagged iterating (tags).
421  */
422 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
423 			     struct radix_tree_iter *iter, unsigned flags);
424 
425 /**
426  * radix_tree_iter_lookup - look up an index in the radix tree
427  * @root: radix tree root
428  * @iter: iterator state
429  * @index: key to look up
430  *
431  * If @index is present in the radix tree, this function returns the slot
432  * containing it and updates @iter to describe the entry.  If @index is not
433  * present, it returns NULL.
434  */
435 static inline void __rcu **
radix_tree_iter_lookup(const struct radix_tree_root * root,struct radix_tree_iter * iter,unsigned long index)436 radix_tree_iter_lookup(const struct radix_tree_root *root,
437 			struct radix_tree_iter *iter, unsigned long index)
438 {
439 	radix_tree_iter_init(iter, index);
440 	return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
441 }
442 
443 /**
444  * radix_tree_iter_find - find a present entry
445  * @root: radix tree root
446  * @iter: iterator state
447  * @index: start location
448  *
449  * This function returns the slot containing the entry with the lowest index
450  * which is at least @index.  If @index is larger than any present entry, this
451  * function returns NULL.  The @iter is updated to describe the entry found.
452  */
453 static inline void __rcu **
radix_tree_iter_find(const struct radix_tree_root * root,struct radix_tree_iter * iter,unsigned long index)454 radix_tree_iter_find(const struct radix_tree_root *root,
455 			struct radix_tree_iter *iter, unsigned long index)
456 {
457 	radix_tree_iter_init(iter, index);
458 	return radix_tree_next_chunk(root, iter, 0);
459 }
460 
461 /**
462  * radix_tree_iter_retry - retry this chunk of the iteration
463  * @iter:	iterator state
464  *
465  * If we iterate over a tree protected only by the RCU lock, a race
466  * against deletion or creation may result in seeing a slot for which
467  * radix_tree_deref_retry() returns true.  If so, call this function
468  * and continue the iteration.
469  */
470 static inline __must_check
radix_tree_iter_retry(struct radix_tree_iter * iter)471 void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
472 {
473 	iter->next_index = iter->index;
474 	iter->tags = 0;
475 	return NULL;
476 }
477 
478 static inline unsigned long
__radix_tree_iter_add(struct radix_tree_iter * iter,unsigned long slots)479 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
480 {
481 	return iter->index + (slots << iter_shift(iter));
482 }
483 
484 /**
485  * radix_tree_iter_resume - resume iterating when the chunk may be invalid
486  * @slot: pointer to current slot
487  * @iter: iterator state
488  * Returns: New slot pointer
489  *
490  * If the iterator needs to release then reacquire a lock, the chunk may
491  * have been invalidated by an insertion or deletion.  Call this function
492  * before releasing the lock to continue the iteration from the next index.
493  */
494 void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
495 					struct radix_tree_iter *iter);
496 
497 /**
498  * radix_tree_chunk_size - get current chunk size
499  *
500  * @iter:	pointer to radix tree iterator
501  * Returns:	current chunk size
502  */
503 static __always_inline long
radix_tree_chunk_size(struct radix_tree_iter * iter)504 radix_tree_chunk_size(struct radix_tree_iter *iter)
505 {
506 	return (iter->next_index - iter->index) >> iter_shift(iter);
507 }
508 
509 #ifdef CONFIG_RADIX_TREE_MULTIORDER
510 void __rcu **__radix_tree_next_slot(void __rcu **slot,
511 				struct radix_tree_iter *iter, unsigned flags);
512 #else
513 /* Can't happen without sibling entries, but the compiler can't tell that */
__radix_tree_next_slot(void __rcu ** slot,struct radix_tree_iter * iter,unsigned flags)514 static inline void __rcu **__radix_tree_next_slot(void __rcu **slot,
515 				struct radix_tree_iter *iter, unsigned flags)
516 {
517 	return slot;
518 }
519 #endif
520 
521 /**
522  * radix_tree_next_slot - find next slot in chunk
523  *
524  * @slot:	pointer to current slot
525  * @iter:	pointer to interator state
526  * @flags:	RADIX_TREE_ITER_*, should be constant
527  * Returns:	pointer to next slot, or NULL if there no more left
528  *
529  * This function updates @iter->index in the case of a successful lookup.
530  * For tagged lookup it also eats @iter->tags.
531  *
532  * There are several cases where 'slot' can be passed in as NULL to this
533  * function.  These cases result from the use of radix_tree_iter_resume() or
534  * radix_tree_iter_retry().  In these cases we don't end up dereferencing
535  * 'slot' because either:
536  * a) we are doing tagged iteration and iter->tags has been set to 0, or
537  * b) we are doing non-tagged iteration, and iter->index and iter->next_index
538  *    have been set up so that radix_tree_chunk_size() returns 1 or 0.
539  */
radix_tree_next_slot(void __rcu ** slot,struct radix_tree_iter * iter,unsigned flags)540 static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
541 				struct radix_tree_iter *iter, unsigned flags)
542 {
543 	if (flags & RADIX_TREE_ITER_TAGGED) {
544 		iter->tags >>= 1;
545 		if (unlikely(!iter->tags))
546 			return NULL;
547 		if (likely(iter->tags & 1ul)) {
548 			iter->index = __radix_tree_iter_add(iter, 1);
549 			slot++;
550 			goto found;
551 		}
552 		if (!(flags & RADIX_TREE_ITER_CONTIG)) {
553 			unsigned offset = __ffs(iter->tags);
554 
555 			iter->tags >>= offset++;
556 			iter->index = __radix_tree_iter_add(iter, offset);
557 			slot += offset;
558 			goto found;
559 		}
560 	} else {
561 		long count = radix_tree_chunk_size(iter);
562 
563 		while (--count > 0) {
564 			slot++;
565 			iter->index = __radix_tree_iter_add(iter, 1);
566 
567 			if (likely(*slot))
568 				goto found;
569 			if (flags & RADIX_TREE_ITER_CONTIG) {
570 				/* forbid switching to the next chunk */
571 				iter->next_index = 0;
572 				break;
573 			}
574 		}
575 	}
576 	return NULL;
577 
578  found:
579 	if (unlikely(radix_tree_is_internal_node(rcu_dereference_raw(*slot))))
580 		return __radix_tree_next_slot(slot, iter, flags);
581 	return slot;
582 }
583 
584 /**
585  * radix_tree_for_each_slot - iterate over non-empty slots
586  *
587  * @slot:	the void** variable for pointer to slot
588  * @root:	the struct radix_tree_root pointer
589  * @iter:	the struct radix_tree_iter pointer
590  * @start:	iteration starting index
591  *
592  * @slot points to radix tree slot, @iter->index contains its index.
593  */
594 #define radix_tree_for_each_slot(slot, root, iter, start)		\
595 	for (slot = radix_tree_iter_init(iter, start) ;			\
596 	     slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;	\
597 	     slot = radix_tree_next_slot(slot, iter, 0))
598 
599 /**
600  * radix_tree_for_each_contig - iterate over contiguous slots
601  *
602  * @slot:	the void** variable for pointer to slot
603  * @root:	the struct radix_tree_root pointer
604  * @iter:	the struct radix_tree_iter pointer
605  * @start:	iteration starting index
606  *
607  * @slot points to radix tree slot, @iter->index contains its index.
608  */
609 #define radix_tree_for_each_contig(slot, root, iter, start)		\
610 	for (slot = radix_tree_iter_init(iter, start) ;			\
611 	     slot || (slot = radix_tree_next_chunk(root, iter,		\
612 				RADIX_TREE_ITER_CONTIG)) ;		\
613 	     slot = radix_tree_next_slot(slot, iter,			\
614 				RADIX_TREE_ITER_CONTIG))
615 
616 /**
617  * radix_tree_for_each_tagged - iterate over tagged slots
618  *
619  * @slot:	the void** variable for pointer to slot
620  * @root:	the struct radix_tree_root pointer
621  * @iter:	the struct radix_tree_iter pointer
622  * @start:	iteration starting index
623  * @tag:	tag index
624  *
625  * @slot points to radix tree slot, @iter->index contains its index.
626  */
627 #define radix_tree_for_each_tagged(slot, root, iter, start, tag)	\
628 	for (slot = radix_tree_iter_init(iter, start) ;			\
629 	     slot || (slot = radix_tree_next_chunk(root, iter,		\
630 			      RADIX_TREE_ITER_TAGGED | tag)) ;		\
631 	     slot = radix_tree_next_slot(slot, iter,			\
632 				RADIX_TREE_ITER_TAGGED | tag))
633 
634 #endif /* _LINUX_RADIX_TREE_H */
635