• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56 
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 
60 #include "internal.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64 
65 struct scan_control {
66 	/* How many pages shrink_list() should reclaim */
67 	unsigned long nr_to_reclaim;
68 
69 	/* This context's GFP mask */
70 	gfp_t gfp_mask;
71 
72 	/* Allocation order */
73 	int order;
74 
75 	/*
76 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 	 * are scanned.
78 	 */
79 	nodemask_t	*nodemask;
80 
81 	/*
82 	 * The memory cgroup that hit its limit and as a result is the
83 	 * primary target of this reclaim invocation.
84 	 */
85 	struct mem_cgroup *target_mem_cgroup;
86 
87 	/* Scan (total_size >> priority) pages at once */
88 	int priority;
89 
90 	/* The highest zone to isolate pages for reclaim from */
91 	enum zone_type reclaim_idx;
92 
93 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
94 	unsigned int may_writepage:1;
95 
96 	/* Can mapped pages be reclaimed? */
97 	unsigned int may_unmap:1;
98 
99 	/* Can pages be swapped as part of reclaim? */
100 	unsigned int may_swap:1;
101 
102 	/*
103 	 * Cgroups are not reclaimed below their configured memory.low,
104 	 * unless we threaten to OOM. If any cgroups are skipped due to
105 	 * memory.low and nothing was reclaimed, go back for memory.low.
106 	 */
107 	unsigned int memcg_low_reclaim:1;
108 	unsigned int memcg_low_skipped:1;
109 
110 	unsigned int hibernation_mode:1;
111 
112 	/* One of the zones is ready for compaction */
113 	unsigned int compaction_ready:1;
114 
115 	/* Incremented by the number of inactive pages that were scanned */
116 	unsigned long nr_scanned;
117 
118 	/* Number of pages freed so far during a call to shrink_zones() */
119 	unsigned long nr_reclaimed;
120 };
121 
122 #ifdef ARCH_HAS_PREFETCH
123 #define prefetch_prev_lru_page(_page, _base, _field)			\
124 	do {								\
125 		if ((_page)->lru.prev != _base) {			\
126 			struct page *prev;				\
127 									\
128 			prev = lru_to_page(&(_page->lru));		\
129 			prefetch(&prev->_field);			\
130 		}							\
131 	} while (0)
132 #else
133 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
134 #endif
135 
136 #ifdef ARCH_HAS_PREFETCHW
137 #define prefetchw_prev_lru_page(_page, _base, _field)			\
138 	do {								\
139 		if ((_page)->lru.prev != _base) {			\
140 			struct page *prev;				\
141 									\
142 			prev = lru_to_page(&(_page->lru));		\
143 			prefetchw(&prev->_field);			\
144 		}							\
145 	} while (0)
146 #else
147 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149 
150 /*
151  * From 0 .. 100.  Higher means more swappy.
152  */
153 int vm_swappiness = 60;
154 /*
155  * The total number of pages which are beyond the high watermark within all
156  * zones.
157  */
158 unsigned long vm_total_pages;
159 
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
162 
163 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)164 static bool global_reclaim(struct scan_control *sc)
165 {
166 	return !sc->target_mem_cgroup;
167 }
168 
169 /**
170  * sane_reclaim - is the usual dirty throttling mechanism operational?
171  * @sc: scan_control in question
172  *
173  * The normal page dirty throttling mechanism in balance_dirty_pages() is
174  * completely broken with the legacy memcg and direct stalling in
175  * shrink_page_list() is used for throttling instead, which lacks all the
176  * niceties such as fairness, adaptive pausing, bandwidth proportional
177  * allocation and configurability.
178  *
179  * This function tests whether the vmscan currently in progress can assume
180  * that the normal dirty throttling mechanism is operational.
181  */
sane_reclaim(struct scan_control * sc)182 static bool sane_reclaim(struct scan_control *sc)
183 {
184 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
185 
186 	if (!memcg)
187 		return true;
188 #ifdef CONFIG_CGROUP_WRITEBACK
189 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
190 		return true;
191 #endif
192 	return false;
193 }
194 #else
global_reclaim(struct scan_control * sc)195 static bool global_reclaim(struct scan_control *sc)
196 {
197 	return true;
198 }
199 
sane_reclaim(struct scan_control * sc)200 static bool sane_reclaim(struct scan_control *sc)
201 {
202 	return true;
203 }
204 #endif
205 
206 /*
207  * This misses isolated pages which are not accounted for to save counters.
208  * As the data only determines if reclaim or compaction continues, it is
209  * not expected that isolated pages will be a dominating factor.
210  */
zone_reclaimable_pages(struct zone * zone)211 unsigned long zone_reclaimable_pages(struct zone *zone)
212 {
213 	unsigned long nr;
214 
215 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
216 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
217 	if (get_nr_swap_pages() > 0)
218 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
219 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
220 
221 	return nr;
222 }
223 
pgdat_reclaimable_pages(struct pglist_data * pgdat)224 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
225 {
226 	unsigned long nr;
227 
228 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
229 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
230 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
231 
232 	if (get_nr_swap_pages() > 0)
233 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
234 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
235 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
236 
237 	return nr;
238 }
239 
240 /**
241  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
242  * @lruvec: lru vector
243  * @lru: lru to use
244  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
245  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)246 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
247 {
248 	unsigned long lru_size;
249 	int zid;
250 
251 	if (!mem_cgroup_disabled())
252 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
253 	else
254 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
255 
256 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
257 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
258 		unsigned long size;
259 
260 		if (!managed_zone(zone))
261 			continue;
262 
263 		if (!mem_cgroup_disabled())
264 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
265 		else
266 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
267 				       NR_ZONE_LRU_BASE + lru);
268 		lru_size -= min(size, lru_size);
269 	}
270 
271 	return lru_size;
272 
273 }
274 
275 /*
276  * Add a shrinker callback to be called from the vm.
277  */
register_shrinker(struct shrinker * shrinker)278 int register_shrinker(struct shrinker *shrinker)
279 {
280 	size_t size = sizeof(*shrinker->nr_deferred);
281 
282 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
283 		size *= nr_node_ids;
284 
285 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
286 	if (!shrinker->nr_deferred)
287 		return -ENOMEM;
288 
289 	down_write(&shrinker_rwsem);
290 	list_add_tail(&shrinker->list, &shrinker_list);
291 	up_write(&shrinker_rwsem);
292 	return 0;
293 }
294 EXPORT_SYMBOL(register_shrinker);
295 
296 /*
297  * Remove one
298  */
unregister_shrinker(struct shrinker * shrinker)299 void unregister_shrinker(struct shrinker *shrinker)
300 {
301 	if (!shrinker->nr_deferred)
302 		return;
303 	down_write(&shrinker_rwsem);
304 	list_del(&shrinker->list);
305 	up_write(&shrinker_rwsem);
306 	kfree(shrinker->nr_deferred);
307 	shrinker->nr_deferred = NULL;
308 }
309 EXPORT_SYMBOL(unregister_shrinker);
310 
311 #define SHRINK_BATCH 128
312 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,unsigned long nr_scanned,unsigned long nr_eligible)313 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
314 				    struct shrinker *shrinker,
315 				    unsigned long nr_scanned,
316 				    unsigned long nr_eligible)
317 {
318 	unsigned long freed = 0;
319 	unsigned long long delta;
320 	long total_scan;
321 	long freeable;
322 	long nr;
323 	long new_nr;
324 	int nid = shrinkctl->nid;
325 	long batch_size = shrinker->batch ? shrinker->batch
326 					  : SHRINK_BATCH;
327 	long scanned = 0, next_deferred;
328 
329 	freeable = shrinker->count_objects(shrinker, shrinkctl);
330 	if (freeable == 0)
331 		return 0;
332 
333 	/*
334 	 * copy the current shrinker scan count into a local variable
335 	 * and zero it so that other concurrent shrinker invocations
336 	 * don't also do this scanning work.
337 	 */
338 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
339 
340 	total_scan = nr;
341 	delta = (4 * nr_scanned) / shrinker->seeks;
342 	delta *= freeable;
343 	do_div(delta, nr_eligible + 1);
344 	total_scan += delta;
345 	if (total_scan < 0) {
346 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
347 		       shrinker->scan_objects, total_scan);
348 		total_scan = freeable;
349 		next_deferred = nr;
350 	} else
351 		next_deferred = total_scan;
352 
353 	/*
354 	 * We need to avoid excessive windup on filesystem shrinkers
355 	 * due to large numbers of GFP_NOFS allocations causing the
356 	 * shrinkers to return -1 all the time. This results in a large
357 	 * nr being built up so when a shrink that can do some work
358 	 * comes along it empties the entire cache due to nr >>>
359 	 * freeable. This is bad for sustaining a working set in
360 	 * memory.
361 	 *
362 	 * Hence only allow the shrinker to scan the entire cache when
363 	 * a large delta change is calculated directly.
364 	 */
365 	if (delta < freeable / 4)
366 		total_scan = min(total_scan, freeable / 2);
367 
368 	/*
369 	 * Avoid risking looping forever due to too large nr value:
370 	 * never try to free more than twice the estimate number of
371 	 * freeable entries.
372 	 */
373 	if (total_scan > freeable * 2)
374 		total_scan = freeable * 2;
375 
376 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
377 				   nr_scanned, nr_eligible,
378 				   freeable, delta, total_scan);
379 
380 	/*
381 	 * Normally, we should not scan less than batch_size objects in one
382 	 * pass to avoid too frequent shrinker calls, but if the slab has less
383 	 * than batch_size objects in total and we are really tight on memory,
384 	 * we will try to reclaim all available objects, otherwise we can end
385 	 * up failing allocations although there are plenty of reclaimable
386 	 * objects spread over several slabs with usage less than the
387 	 * batch_size.
388 	 *
389 	 * We detect the "tight on memory" situations by looking at the total
390 	 * number of objects we want to scan (total_scan). If it is greater
391 	 * than the total number of objects on slab (freeable), we must be
392 	 * scanning at high prio and therefore should try to reclaim as much as
393 	 * possible.
394 	 */
395 	while (total_scan >= batch_size ||
396 	       total_scan >= freeable) {
397 		unsigned long ret;
398 		unsigned long nr_to_scan = min(batch_size, total_scan);
399 
400 		shrinkctl->nr_to_scan = nr_to_scan;
401 		shrinkctl->nr_scanned = nr_to_scan;
402 		ret = shrinker->scan_objects(shrinker, shrinkctl);
403 		if (ret == SHRINK_STOP)
404 			break;
405 		freed += ret;
406 
407 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
408 		total_scan -= shrinkctl->nr_scanned;
409 		scanned += shrinkctl->nr_scanned;
410 
411 		cond_resched();
412 	}
413 
414 	if (next_deferred >= scanned)
415 		next_deferred -= scanned;
416 	else
417 		next_deferred = 0;
418 	/*
419 	 * move the unused scan count back into the shrinker in a
420 	 * manner that handles concurrent updates. If we exhausted the
421 	 * scan, there is no need to do an update.
422 	 */
423 	if (next_deferred > 0)
424 		new_nr = atomic_long_add_return(next_deferred,
425 						&shrinker->nr_deferred[nid]);
426 	else
427 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
428 
429 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
430 	return freed;
431 }
432 
433 /**
434  * shrink_slab - shrink slab caches
435  * @gfp_mask: allocation context
436  * @nid: node whose slab caches to target
437  * @memcg: memory cgroup whose slab caches to target
438  * @nr_scanned: pressure numerator
439  * @nr_eligible: pressure denominator
440  *
441  * Call the shrink functions to age shrinkable caches.
442  *
443  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
444  * unaware shrinkers will receive a node id of 0 instead.
445  *
446  * @memcg specifies the memory cgroup to target. If it is not NULL,
447  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
448  * objects from the memory cgroup specified. Otherwise, only unaware
449  * shrinkers are called.
450  *
451  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
452  * the available objects should be scanned.  Page reclaim for example
453  * passes the number of pages scanned and the number of pages on the
454  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
455  * when it encountered mapped pages.  The ratio is further biased by
456  * the ->seeks setting of the shrink function, which indicates the
457  * cost to recreate an object relative to that of an LRU page.
458  *
459  * Returns the number of reclaimed slab objects.
460  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,unsigned long nr_scanned,unsigned long nr_eligible)461 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
462 				 struct mem_cgroup *memcg,
463 				 unsigned long nr_scanned,
464 				 unsigned long nr_eligible)
465 {
466 	struct shrinker *shrinker;
467 	unsigned long freed = 0;
468 
469 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
470 		return 0;
471 
472 	if (nr_scanned == 0)
473 		nr_scanned = SWAP_CLUSTER_MAX;
474 
475 	if (!down_read_trylock(&shrinker_rwsem)) {
476 		/*
477 		 * If we would return 0, our callers would understand that we
478 		 * have nothing else to shrink and give up trying. By returning
479 		 * 1 we keep it going and assume we'll be able to shrink next
480 		 * time.
481 		 */
482 		freed = 1;
483 		goto out;
484 	}
485 
486 	list_for_each_entry(shrinker, &shrinker_list, list) {
487 		struct shrink_control sc = {
488 			.gfp_mask = gfp_mask,
489 			.nid = nid,
490 			.memcg = memcg,
491 		};
492 
493 		/*
494 		 * If kernel memory accounting is disabled, we ignore
495 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
496 		 * passing NULL for memcg.
497 		 */
498 		if (memcg_kmem_enabled() &&
499 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
500 			continue;
501 
502 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
503 			sc.nid = 0;
504 
505 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
506 		/*
507 		 * Bail out if someone want to register a new shrinker to
508 		 * prevent the regsitration from being stalled for long periods
509 		 * by parallel ongoing shrinking.
510 		 */
511 		if (rwsem_is_contended(&shrinker_rwsem)) {
512 			freed = freed ? : 1;
513 			break;
514 		}
515 	}
516 
517 	up_read(&shrinker_rwsem);
518 out:
519 	cond_resched();
520 	return freed;
521 }
522 
drop_slab_node(int nid)523 void drop_slab_node(int nid)
524 {
525 	unsigned long freed;
526 
527 	do {
528 		struct mem_cgroup *memcg = NULL;
529 
530 		freed = 0;
531 		do {
532 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
533 					     1000, 1000);
534 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
535 	} while (freed > 10);
536 }
537 
drop_slab(void)538 void drop_slab(void)
539 {
540 	int nid;
541 
542 	for_each_online_node(nid)
543 		drop_slab_node(nid);
544 }
545 
is_page_cache_freeable(struct page * page)546 static inline int is_page_cache_freeable(struct page *page)
547 {
548 	/*
549 	 * A freeable page cache page is referenced only by the caller
550 	 * that isolated the page, the page cache radix tree and
551 	 * optional buffer heads at page->private.
552 	 */
553 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
554 		HPAGE_PMD_NR : 1;
555 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
556 }
557 
may_write_to_inode(struct inode * inode,struct scan_control * sc)558 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
559 {
560 	if (current->flags & PF_SWAPWRITE)
561 		return 1;
562 	if (!inode_write_congested(inode))
563 		return 1;
564 	if (inode_to_bdi(inode) == current->backing_dev_info)
565 		return 1;
566 	return 0;
567 }
568 
569 /*
570  * We detected a synchronous write error writing a page out.  Probably
571  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
572  * fsync(), msync() or close().
573  *
574  * The tricky part is that after writepage we cannot touch the mapping: nothing
575  * prevents it from being freed up.  But we have a ref on the page and once
576  * that page is locked, the mapping is pinned.
577  *
578  * We're allowed to run sleeping lock_page() here because we know the caller has
579  * __GFP_FS.
580  */
handle_write_error(struct address_space * mapping,struct page * page,int error)581 static void handle_write_error(struct address_space *mapping,
582 				struct page *page, int error)
583 {
584 	lock_page(page);
585 	if (page_mapping(page) == mapping)
586 		mapping_set_error(mapping, error);
587 	unlock_page(page);
588 }
589 
590 /* possible outcome of pageout() */
591 typedef enum {
592 	/* failed to write page out, page is locked */
593 	PAGE_KEEP,
594 	/* move page to the active list, page is locked */
595 	PAGE_ACTIVATE,
596 	/* page has been sent to the disk successfully, page is unlocked */
597 	PAGE_SUCCESS,
598 	/* page is clean and locked */
599 	PAGE_CLEAN,
600 } pageout_t;
601 
602 /*
603  * pageout is called by shrink_page_list() for each dirty page.
604  * Calls ->writepage().
605  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)606 static pageout_t pageout(struct page *page, struct address_space *mapping,
607 			 struct scan_control *sc)
608 {
609 	/*
610 	 * If the page is dirty, only perform writeback if that write
611 	 * will be non-blocking.  To prevent this allocation from being
612 	 * stalled by pagecache activity.  But note that there may be
613 	 * stalls if we need to run get_block().  We could test
614 	 * PagePrivate for that.
615 	 *
616 	 * If this process is currently in __generic_file_write_iter() against
617 	 * this page's queue, we can perform writeback even if that
618 	 * will block.
619 	 *
620 	 * If the page is swapcache, write it back even if that would
621 	 * block, for some throttling. This happens by accident, because
622 	 * swap_backing_dev_info is bust: it doesn't reflect the
623 	 * congestion state of the swapdevs.  Easy to fix, if needed.
624 	 */
625 	if (!is_page_cache_freeable(page))
626 		return PAGE_KEEP;
627 	if (!mapping) {
628 		/*
629 		 * Some data journaling orphaned pages can have
630 		 * page->mapping == NULL while being dirty with clean buffers.
631 		 */
632 		if (page_has_private(page)) {
633 			if (try_to_free_buffers(page)) {
634 				ClearPageDirty(page);
635 				pr_info("%s: orphaned page\n", __func__);
636 				return PAGE_CLEAN;
637 			}
638 		}
639 		return PAGE_KEEP;
640 	}
641 	if (mapping->a_ops->writepage == NULL)
642 		return PAGE_ACTIVATE;
643 	if (!may_write_to_inode(mapping->host, sc))
644 		return PAGE_KEEP;
645 
646 	if (clear_page_dirty_for_io(page)) {
647 		int res;
648 		struct writeback_control wbc = {
649 			.sync_mode = WB_SYNC_NONE,
650 			.nr_to_write = SWAP_CLUSTER_MAX,
651 			.range_start = 0,
652 			.range_end = LLONG_MAX,
653 			.for_reclaim = 1,
654 		};
655 
656 		SetPageReclaim(page);
657 		res = mapping->a_ops->writepage(page, &wbc);
658 		if (res < 0)
659 			handle_write_error(mapping, page, res);
660 		if (res == AOP_WRITEPAGE_ACTIVATE) {
661 			ClearPageReclaim(page);
662 			return PAGE_ACTIVATE;
663 		}
664 
665 		if (!PageWriteback(page)) {
666 			/* synchronous write or broken a_ops? */
667 			ClearPageReclaim(page);
668 		}
669 		trace_mm_vmscan_writepage(page);
670 		inc_node_page_state(page, NR_VMSCAN_WRITE);
671 		return PAGE_SUCCESS;
672 	}
673 
674 	return PAGE_CLEAN;
675 }
676 
677 /*
678  * Same as remove_mapping, but if the page is removed from the mapping, it
679  * gets returned with a refcount of 0.
680  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)681 static int __remove_mapping(struct address_space *mapping, struct page *page,
682 			    bool reclaimed)
683 {
684 	unsigned long flags;
685 	int refcount;
686 
687 	BUG_ON(!PageLocked(page));
688 	BUG_ON(mapping != page_mapping(page));
689 
690 	spin_lock_irqsave(&mapping->tree_lock, flags);
691 	/*
692 	 * The non racy check for a busy page.
693 	 *
694 	 * Must be careful with the order of the tests. When someone has
695 	 * a ref to the page, it may be possible that they dirty it then
696 	 * drop the reference. So if PageDirty is tested before page_count
697 	 * here, then the following race may occur:
698 	 *
699 	 * get_user_pages(&page);
700 	 * [user mapping goes away]
701 	 * write_to(page);
702 	 *				!PageDirty(page)    [good]
703 	 * SetPageDirty(page);
704 	 * put_page(page);
705 	 *				!page_count(page)   [good, discard it]
706 	 *
707 	 * [oops, our write_to data is lost]
708 	 *
709 	 * Reversing the order of the tests ensures such a situation cannot
710 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
711 	 * load is not satisfied before that of page->_refcount.
712 	 *
713 	 * Note that if SetPageDirty is always performed via set_page_dirty,
714 	 * and thus under tree_lock, then this ordering is not required.
715 	 */
716 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
717 		refcount = 1 + HPAGE_PMD_NR;
718 	else
719 		refcount = 2;
720 	if (!page_ref_freeze(page, refcount))
721 		goto cannot_free;
722 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
723 	if (unlikely(PageDirty(page))) {
724 		page_ref_unfreeze(page, refcount);
725 		goto cannot_free;
726 	}
727 
728 	if (PageSwapCache(page)) {
729 		swp_entry_t swap = { .val = page_private(page) };
730 		mem_cgroup_swapout(page, swap);
731 		__delete_from_swap_cache(page);
732 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
733 		put_swap_page(page, swap);
734 	} else {
735 		void (*freepage)(struct page *);
736 		void *shadow = NULL;
737 
738 		freepage = mapping->a_ops->freepage;
739 		/*
740 		 * Remember a shadow entry for reclaimed file cache in
741 		 * order to detect refaults, thus thrashing, later on.
742 		 *
743 		 * But don't store shadows in an address space that is
744 		 * already exiting.  This is not just an optizimation,
745 		 * inode reclaim needs to empty out the radix tree or
746 		 * the nodes are lost.  Don't plant shadows behind its
747 		 * back.
748 		 *
749 		 * We also don't store shadows for DAX mappings because the
750 		 * only page cache pages found in these are zero pages
751 		 * covering holes, and because we don't want to mix DAX
752 		 * exceptional entries and shadow exceptional entries in the
753 		 * same page_tree.
754 		 */
755 		if (reclaimed && page_is_file_cache(page) &&
756 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
757 			shadow = workingset_eviction(mapping, page);
758 		__delete_from_page_cache(page, shadow);
759 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
760 
761 		if (freepage != NULL)
762 			freepage(page);
763 	}
764 
765 	return 1;
766 
767 cannot_free:
768 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
769 	return 0;
770 }
771 
772 /*
773  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
774  * someone else has a ref on the page, abort and return 0.  If it was
775  * successfully detached, return 1.  Assumes the caller has a single ref on
776  * this page.
777  */
remove_mapping(struct address_space * mapping,struct page * page)778 int remove_mapping(struct address_space *mapping, struct page *page)
779 {
780 	if (__remove_mapping(mapping, page, false)) {
781 		/*
782 		 * Unfreezing the refcount with 1 rather than 2 effectively
783 		 * drops the pagecache ref for us without requiring another
784 		 * atomic operation.
785 		 */
786 		page_ref_unfreeze(page, 1);
787 		return 1;
788 	}
789 	return 0;
790 }
791 
792 /**
793  * putback_lru_page - put previously isolated page onto appropriate LRU list
794  * @page: page to be put back to appropriate lru list
795  *
796  * Add previously isolated @page to appropriate LRU list.
797  * Page may still be unevictable for other reasons.
798  *
799  * lru_lock must not be held, interrupts must be enabled.
800  */
putback_lru_page(struct page * page)801 void putback_lru_page(struct page *page)
802 {
803 	bool is_unevictable;
804 	int was_unevictable = PageUnevictable(page);
805 
806 	VM_BUG_ON_PAGE(PageLRU(page), page);
807 
808 redo:
809 	ClearPageUnevictable(page);
810 
811 	if (page_evictable(page)) {
812 		/*
813 		 * For evictable pages, we can use the cache.
814 		 * In event of a race, worst case is we end up with an
815 		 * unevictable page on [in]active list.
816 		 * We know how to handle that.
817 		 */
818 		is_unevictable = false;
819 		lru_cache_add(page);
820 	} else {
821 		/*
822 		 * Put unevictable pages directly on zone's unevictable
823 		 * list.
824 		 */
825 		is_unevictable = true;
826 		add_page_to_unevictable_list(page);
827 		/*
828 		 * When racing with an mlock or AS_UNEVICTABLE clearing
829 		 * (page is unlocked) make sure that if the other thread
830 		 * does not observe our setting of PG_lru and fails
831 		 * isolation/check_move_unevictable_pages,
832 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
833 		 * the page back to the evictable list.
834 		 *
835 		 * The other side is TestClearPageMlocked() or shmem_lock().
836 		 */
837 		smp_mb();
838 	}
839 
840 	/*
841 	 * page's status can change while we move it among lru. If an evictable
842 	 * page is on unevictable list, it never be freed. To avoid that,
843 	 * check after we added it to the list, again.
844 	 */
845 	if (is_unevictable && page_evictable(page)) {
846 		if (!isolate_lru_page(page)) {
847 			put_page(page);
848 			goto redo;
849 		}
850 		/* This means someone else dropped this page from LRU
851 		 * So, it will be freed or putback to LRU again. There is
852 		 * nothing to do here.
853 		 */
854 	}
855 
856 	if (was_unevictable && !is_unevictable)
857 		count_vm_event(UNEVICTABLE_PGRESCUED);
858 	else if (!was_unevictable && is_unevictable)
859 		count_vm_event(UNEVICTABLE_PGCULLED);
860 
861 	put_page(page);		/* drop ref from isolate */
862 }
863 
864 enum page_references {
865 	PAGEREF_RECLAIM,
866 	PAGEREF_RECLAIM_CLEAN,
867 	PAGEREF_KEEP,
868 	PAGEREF_ACTIVATE,
869 };
870 
page_check_references(struct page * page,struct scan_control * sc)871 static enum page_references page_check_references(struct page *page,
872 						  struct scan_control *sc)
873 {
874 	int referenced_ptes, referenced_page;
875 	unsigned long vm_flags;
876 
877 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
878 					  &vm_flags);
879 	referenced_page = TestClearPageReferenced(page);
880 
881 	/*
882 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
883 	 * move the page to the unevictable list.
884 	 */
885 	if (vm_flags & VM_LOCKED)
886 		return PAGEREF_RECLAIM;
887 
888 	if (referenced_ptes) {
889 		if (PageSwapBacked(page))
890 			return PAGEREF_ACTIVATE;
891 		/*
892 		 * All mapped pages start out with page table
893 		 * references from the instantiating fault, so we need
894 		 * to look twice if a mapped file page is used more
895 		 * than once.
896 		 *
897 		 * Mark it and spare it for another trip around the
898 		 * inactive list.  Another page table reference will
899 		 * lead to its activation.
900 		 *
901 		 * Note: the mark is set for activated pages as well
902 		 * so that recently deactivated but used pages are
903 		 * quickly recovered.
904 		 */
905 		SetPageReferenced(page);
906 
907 		if (referenced_page || referenced_ptes > 1)
908 			return PAGEREF_ACTIVATE;
909 
910 		/*
911 		 * Activate file-backed executable pages after first usage.
912 		 */
913 		if (vm_flags & VM_EXEC)
914 			return PAGEREF_ACTIVATE;
915 
916 		return PAGEREF_KEEP;
917 	}
918 
919 	/* Reclaim if clean, defer dirty pages to writeback */
920 	if (referenced_page && !PageSwapBacked(page))
921 		return PAGEREF_RECLAIM_CLEAN;
922 
923 	return PAGEREF_RECLAIM;
924 }
925 
926 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)927 static void page_check_dirty_writeback(struct page *page,
928 				       bool *dirty, bool *writeback)
929 {
930 	struct address_space *mapping;
931 
932 	/*
933 	 * Anonymous pages are not handled by flushers and must be written
934 	 * from reclaim context. Do not stall reclaim based on them
935 	 */
936 	if (!page_is_file_cache(page) ||
937 	    (PageAnon(page) && !PageSwapBacked(page))) {
938 		*dirty = false;
939 		*writeback = false;
940 		return;
941 	}
942 
943 	/* By default assume that the page flags are accurate */
944 	*dirty = PageDirty(page);
945 	*writeback = PageWriteback(page);
946 
947 	/* Verify dirty/writeback state if the filesystem supports it */
948 	if (!page_has_private(page))
949 		return;
950 
951 	mapping = page_mapping(page);
952 	if (mapping && mapping->a_ops->is_dirty_writeback)
953 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
954 }
955 
956 struct reclaim_stat {
957 	unsigned nr_dirty;
958 	unsigned nr_unqueued_dirty;
959 	unsigned nr_congested;
960 	unsigned nr_writeback;
961 	unsigned nr_immediate;
962 	unsigned nr_activate;
963 	unsigned nr_ref_keep;
964 	unsigned nr_unmap_fail;
965 };
966 
967 /*
968  * shrink_page_list() returns the number of reclaimed pages
969  */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,enum ttu_flags ttu_flags,struct reclaim_stat * stat,bool force_reclaim)970 static unsigned long shrink_page_list(struct list_head *page_list,
971 				      struct pglist_data *pgdat,
972 				      struct scan_control *sc,
973 				      enum ttu_flags ttu_flags,
974 				      struct reclaim_stat *stat,
975 				      bool force_reclaim)
976 {
977 	LIST_HEAD(ret_pages);
978 	LIST_HEAD(free_pages);
979 	int pgactivate = 0;
980 	unsigned nr_unqueued_dirty = 0;
981 	unsigned nr_dirty = 0;
982 	unsigned nr_congested = 0;
983 	unsigned nr_reclaimed = 0;
984 	unsigned nr_writeback = 0;
985 	unsigned nr_immediate = 0;
986 	unsigned nr_ref_keep = 0;
987 	unsigned nr_unmap_fail = 0;
988 
989 	cond_resched();
990 
991 	while (!list_empty(page_list)) {
992 		struct address_space *mapping;
993 		struct page *page;
994 		int may_enter_fs;
995 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
996 		bool dirty, writeback;
997 
998 		cond_resched();
999 
1000 		page = lru_to_page(page_list);
1001 		list_del(&page->lru);
1002 
1003 		if (!trylock_page(page))
1004 			goto keep;
1005 
1006 		VM_BUG_ON_PAGE(PageActive(page), page);
1007 
1008 		sc->nr_scanned++;
1009 
1010 		if (unlikely(!page_evictable(page)))
1011 			goto activate_locked;
1012 
1013 		if (!sc->may_unmap && page_mapped(page))
1014 			goto keep_locked;
1015 
1016 		/* Double the slab pressure for mapped and swapcache pages */
1017 		if ((page_mapped(page) || PageSwapCache(page)) &&
1018 		    !(PageAnon(page) && !PageSwapBacked(page)))
1019 			sc->nr_scanned++;
1020 
1021 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1022 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1023 
1024 		/*
1025 		 * The number of dirty pages determines if a zone is marked
1026 		 * reclaim_congested which affects wait_iff_congested. kswapd
1027 		 * will stall and start writing pages if the tail of the LRU
1028 		 * is all dirty unqueued pages.
1029 		 */
1030 		page_check_dirty_writeback(page, &dirty, &writeback);
1031 		if (dirty || writeback)
1032 			nr_dirty++;
1033 
1034 		if (dirty && !writeback)
1035 			nr_unqueued_dirty++;
1036 
1037 		/*
1038 		 * Treat this page as congested if the underlying BDI is or if
1039 		 * pages are cycling through the LRU so quickly that the
1040 		 * pages marked for immediate reclaim are making it to the
1041 		 * end of the LRU a second time.
1042 		 */
1043 		mapping = page_mapping(page);
1044 		if (((dirty || writeback) && mapping &&
1045 		     inode_write_congested(mapping->host)) ||
1046 		    (writeback && PageReclaim(page)))
1047 			nr_congested++;
1048 
1049 		/*
1050 		 * If a page at the tail of the LRU is under writeback, there
1051 		 * are three cases to consider.
1052 		 *
1053 		 * 1) If reclaim is encountering an excessive number of pages
1054 		 *    under writeback and this page is both under writeback and
1055 		 *    PageReclaim then it indicates that pages are being queued
1056 		 *    for IO but are being recycled through the LRU before the
1057 		 *    IO can complete. Waiting on the page itself risks an
1058 		 *    indefinite stall if it is impossible to writeback the
1059 		 *    page due to IO error or disconnected storage so instead
1060 		 *    note that the LRU is being scanned too quickly and the
1061 		 *    caller can stall after page list has been processed.
1062 		 *
1063 		 * 2) Global or new memcg reclaim encounters a page that is
1064 		 *    not marked for immediate reclaim, or the caller does not
1065 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1066 		 *    not to fs). In this case mark the page for immediate
1067 		 *    reclaim and continue scanning.
1068 		 *
1069 		 *    Require may_enter_fs because we would wait on fs, which
1070 		 *    may not have submitted IO yet. And the loop driver might
1071 		 *    enter reclaim, and deadlock if it waits on a page for
1072 		 *    which it is needed to do the write (loop masks off
1073 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1074 		 *    would probably show more reasons.
1075 		 *
1076 		 * 3) Legacy memcg encounters a page that is already marked
1077 		 *    PageReclaim. memcg does not have any dirty pages
1078 		 *    throttling so we could easily OOM just because too many
1079 		 *    pages are in writeback and there is nothing else to
1080 		 *    reclaim. Wait for the writeback to complete.
1081 		 *
1082 		 * In cases 1) and 2) we activate the pages to get them out of
1083 		 * the way while we continue scanning for clean pages on the
1084 		 * inactive list and refilling from the active list. The
1085 		 * observation here is that waiting for disk writes is more
1086 		 * expensive than potentially causing reloads down the line.
1087 		 * Since they're marked for immediate reclaim, they won't put
1088 		 * memory pressure on the cache working set any longer than it
1089 		 * takes to write them to disk.
1090 		 */
1091 		if (PageWriteback(page)) {
1092 			/* Case 1 above */
1093 			if (current_is_kswapd() &&
1094 			    PageReclaim(page) &&
1095 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1096 				nr_immediate++;
1097 				goto activate_locked;
1098 
1099 			/* Case 2 above */
1100 			} else if (sane_reclaim(sc) ||
1101 			    !PageReclaim(page) || !may_enter_fs) {
1102 				/*
1103 				 * This is slightly racy - end_page_writeback()
1104 				 * might have just cleared PageReclaim, then
1105 				 * setting PageReclaim here end up interpreted
1106 				 * as PageReadahead - but that does not matter
1107 				 * enough to care.  What we do want is for this
1108 				 * page to have PageReclaim set next time memcg
1109 				 * reclaim reaches the tests above, so it will
1110 				 * then wait_on_page_writeback() to avoid OOM;
1111 				 * and it's also appropriate in global reclaim.
1112 				 */
1113 				SetPageReclaim(page);
1114 				nr_writeback++;
1115 				goto activate_locked;
1116 
1117 			/* Case 3 above */
1118 			} else {
1119 				unlock_page(page);
1120 				wait_on_page_writeback(page);
1121 				/* then go back and try same page again */
1122 				list_add_tail(&page->lru, page_list);
1123 				continue;
1124 			}
1125 		}
1126 
1127 		if (!force_reclaim)
1128 			references = page_check_references(page, sc);
1129 
1130 		switch (references) {
1131 		case PAGEREF_ACTIVATE:
1132 			goto activate_locked;
1133 		case PAGEREF_KEEP:
1134 			nr_ref_keep++;
1135 			goto keep_locked;
1136 		case PAGEREF_RECLAIM:
1137 		case PAGEREF_RECLAIM_CLEAN:
1138 			; /* try to reclaim the page below */
1139 		}
1140 
1141 		/*
1142 		 * Anonymous process memory has backing store?
1143 		 * Try to allocate it some swap space here.
1144 		 * Lazyfree page could be freed directly
1145 		 */
1146 		if (PageAnon(page) && PageSwapBacked(page)) {
1147 			if (!PageSwapCache(page)) {
1148 				if (!(sc->gfp_mask & __GFP_IO))
1149 					goto keep_locked;
1150 				if (PageTransHuge(page)) {
1151 					/* cannot split THP, skip it */
1152 					if (!can_split_huge_page(page, NULL))
1153 						goto activate_locked;
1154 					/*
1155 					 * Split pages without a PMD map right
1156 					 * away. Chances are some or all of the
1157 					 * tail pages can be freed without IO.
1158 					 */
1159 					if (!compound_mapcount(page) &&
1160 					    split_huge_page_to_list(page,
1161 								    page_list))
1162 						goto activate_locked;
1163 				}
1164 				if (!add_to_swap(page)) {
1165 					if (!PageTransHuge(page))
1166 						goto activate_locked;
1167 					/* Fallback to swap normal pages */
1168 					if (split_huge_page_to_list(page,
1169 								    page_list))
1170 						goto activate_locked;
1171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1172 					count_vm_event(THP_SWPOUT_FALLBACK);
1173 #endif
1174 					if (!add_to_swap(page))
1175 						goto activate_locked;
1176 				}
1177 
1178 				may_enter_fs = 1;
1179 
1180 				/* Adding to swap updated mapping */
1181 				mapping = page_mapping(page);
1182 			}
1183 		} else if (unlikely(PageTransHuge(page))) {
1184 			/* Split file THP */
1185 			if (split_huge_page_to_list(page, page_list))
1186 				goto keep_locked;
1187 		}
1188 
1189 		/*
1190 		 * The page is mapped into the page tables of one or more
1191 		 * processes. Try to unmap it here.
1192 		 */
1193 		if (page_mapped(page)) {
1194 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1195 
1196 			if (unlikely(PageTransHuge(page)))
1197 				flags |= TTU_SPLIT_HUGE_PMD;
1198 			if (!try_to_unmap(page, flags)) {
1199 				nr_unmap_fail++;
1200 				goto activate_locked;
1201 			}
1202 		}
1203 
1204 		if (PageDirty(page)) {
1205 			/*
1206 			 * Only kswapd can writeback filesystem pages
1207 			 * to avoid risk of stack overflow. But avoid
1208 			 * injecting inefficient single-page IO into
1209 			 * flusher writeback as much as possible: only
1210 			 * write pages when we've encountered many
1211 			 * dirty pages, and when we've already scanned
1212 			 * the rest of the LRU for clean pages and see
1213 			 * the same dirty pages again (PageReclaim).
1214 			 */
1215 			if (page_is_file_cache(page) &&
1216 			    (!current_is_kswapd() || !PageReclaim(page) ||
1217 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1218 				/*
1219 				 * Immediately reclaim when written back.
1220 				 * Similar in principal to deactivate_page()
1221 				 * except we already have the page isolated
1222 				 * and know it's dirty
1223 				 */
1224 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1225 				SetPageReclaim(page);
1226 
1227 				goto activate_locked;
1228 			}
1229 
1230 			if (references == PAGEREF_RECLAIM_CLEAN)
1231 				goto keep_locked;
1232 			if (!may_enter_fs)
1233 				goto keep_locked;
1234 			if (!sc->may_writepage)
1235 				goto keep_locked;
1236 
1237 			/*
1238 			 * Page is dirty. Flush the TLB if a writable entry
1239 			 * potentially exists to avoid CPU writes after IO
1240 			 * starts and then write it out here.
1241 			 */
1242 			try_to_unmap_flush_dirty();
1243 			switch (pageout(page, mapping, sc)) {
1244 			case PAGE_KEEP:
1245 				goto keep_locked;
1246 			case PAGE_ACTIVATE:
1247 				goto activate_locked;
1248 			case PAGE_SUCCESS:
1249 				if (PageWriteback(page))
1250 					goto keep;
1251 				if (PageDirty(page))
1252 					goto keep;
1253 
1254 				/*
1255 				 * A synchronous write - probably a ramdisk.  Go
1256 				 * ahead and try to reclaim the page.
1257 				 */
1258 				if (!trylock_page(page))
1259 					goto keep;
1260 				if (PageDirty(page) || PageWriteback(page))
1261 					goto keep_locked;
1262 				mapping = page_mapping(page);
1263 			case PAGE_CLEAN:
1264 				; /* try to free the page below */
1265 			}
1266 		}
1267 
1268 		/*
1269 		 * If the page has buffers, try to free the buffer mappings
1270 		 * associated with this page. If we succeed we try to free
1271 		 * the page as well.
1272 		 *
1273 		 * We do this even if the page is PageDirty().
1274 		 * try_to_release_page() does not perform I/O, but it is
1275 		 * possible for a page to have PageDirty set, but it is actually
1276 		 * clean (all its buffers are clean).  This happens if the
1277 		 * buffers were written out directly, with submit_bh(). ext3
1278 		 * will do this, as well as the blockdev mapping.
1279 		 * try_to_release_page() will discover that cleanness and will
1280 		 * drop the buffers and mark the page clean - it can be freed.
1281 		 *
1282 		 * Rarely, pages can have buffers and no ->mapping.  These are
1283 		 * the pages which were not successfully invalidated in
1284 		 * truncate_complete_page().  We try to drop those buffers here
1285 		 * and if that worked, and the page is no longer mapped into
1286 		 * process address space (page_count == 1) it can be freed.
1287 		 * Otherwise, leave the page on the LRU so it is swappable.
1288 		 */
1289 		if (page_has_private(page)) {
1290 			if (!try_to_release_page(page, sc->gfp_mask))
1291 				goto activate_locked;
1292 			if (!mapping && page_count(page) == 1) {
1293 				unlock_page(page);
1294 				if (put_page_testzero(page))
1295 					goto free_it;
1296 				else {
1297 					/*
1298 					 * rare race with speculative reference.
1299 					 * the speculative reference will free
1300 					 * this page shortly, so we may
1301 					 * increment nr_reclaimed here (and
1302 					 * leave it off the LRU).
1303 					 */
1304 					nr_reclaimed++;
1305 					continue;
1306 				}
1307 			}
1308 		}
1309 
1310 		if (PageAnon(page) && !PageSwapBacked(page)) {
1311 			/* follow __remove_mapping for reference */
1312 			if (!page_ref_freeze(page, 1))
1313 				goto keep_locked;
1314 			if (PageDirty(page)) {
1315 				page_ref_unfreeze(page, 1);
1316 				goto keep_locked;
1317 			}
1318 
1319 			count_vm_event(PGLAZYFREED);
1320 			count_memcg_page_event(page, PGLAZYFREED);
1321 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1322 			goto keep_locked;
1323 		/*
1324 		 * At this point, we have no other references and there is
1325 		 * no way to pick any more up (removed from LRU, removed
1326 		 * from pagecache). Can use non-atomic bitops now (and
1327 		 * we obviously don't have to worry about waking up a process
1328 		 * waiting on the page lock, because there are no references.
1329 		 */
1330 		__ClearPageLocked(page);
1331 free_it:
1332 		nr_reclaimed++;
1333 
1334 		/*
1335 		 * Is there need to periodically free_page_list? It would
1336 		 * appear not as the counts should be low
1337 		 */
1338 		if (unlikely(PageTransHuge(page))) {
1339 			mem_cgroup_uncharge(page);
1340 			(*get_compound_page_dtor(page))(page);
1341 		} else
1342 			list_add(&page->lru, &free_pages);
1343 		continue;
1344 
1345 activate_locked:
1346 		/* Not a candidate for swapping, so reclaim swap space. */
1347 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1348 						PageMlocked(page)))
1349 			try_to_free_swap(page);
1350 		VM_BUG_ON_PAGE(PageActive(page), page);
1351 		if (!PageMlocked(page)) {
1352 			SetPageActive(page);
1353 			pgactivate++;
1354 			count_memcg_page_event(page, PGACTIVATE);
1355 		}
1356 keep_locked:
1357 		unlock_page(page);
1358 keep:
1359 		list_add(&page->lru, &ret_pages);
1360 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1361 	}
1362 
1363 	mem_cgroup_uncharge_list(&free_pages);
1364 	try_to_unmap_flush();
1365 	free_hot_cold_page_list(&free_pages, true);
1366 
1367 	list_splice(&ret_pages, page_list);
1368 	count_vm_events(PGACTIVATE, pgactivate);
1369 
1370 	if (stat) {
1371 		stat->nr_dirty = nr_dirty;
1372 		stat->nr_congested = nr_congested;
1373 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1374 		stat->nr_writeback = nr_writeback;
1375 		stat->nr_immediate = nr_immediate;
1376 		stat->nr_activate = pgactivate;
1377 		stat->nr_ref_keep = nr_ref_keep;
1378 		stat->nr_unmap_fail = nr_unmap_fail;
1379 	}
1380 	return nr_reclaimed;
1381 }
1382 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1383 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1384 					    struct list_head *page_list)
1385 {
1386 	struct scan_control sc = {
1387 		.gfp_mask = GFP_KERNEL,
1388 		.priority = DEF_PRIORITY,
1389 		.may_unmap = 1,
1390 	};
1391 	unsigned long ret;
1392 	struct page *page, *next;
1393 	LIST_HEAD(clean_pages);
1394 
1395 	list_for_each_entry_safe(page, next, page_list, lru) {
1396 		if (page_is_file_cache(page) && !PageDirty(page) &&
1397 		    !__PageMovable(page) && !PageUnevictable(page)) {
1398 			ClearPageActive(page);
1399 			list_move(&page->lru, &clean_pages);
1400 		}
1401 	}
1402 
1403 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1404 			TTU_IGNORE_ACCESS, NULL, true);
1405 	list_splice(&clean_pages, page_list);
1406 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1407 	return ret;
1408 }
1409 
1410 /*
1411  * Attempt to remove the specified page from its LRU.  Only take this page
1412  * if it is of the appropriate PageActive status.  Pages which are being
1413  * freed elsewhere are also ignored.
1414  *
1415  * page:	page to consider
1416  * mode:	one of the LRU isolation modes defined above
1417  *
1418  * returns 0 on success, -ve errno on failure.
1419  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1420 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1421 {
1422 	int ret = -EINVAL;
1423 
1424 	/* Only take pages on the LRU. */
1425 	if (!PageLRU(page))
1426 		return ret;
1427 
1428 	/* Compaction should not handle unevictable pages but CMA can do so */
1429 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1430 		return ret;
1431 
1432 	ret = -EBUSY;
1433 
1434 	/*
1435 	 * To minimise LRU disruption, the caller can indicate that it only
1436 	 * wants to isolate pages it will be able to operate on without
1437 	 * blocking - clean pages for the most part.
1438 	 *
1439 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1440 	 * that it is possible to migrate without blocking
1441 	 */
1442 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1443 		/* All the caller can do on PageWriteback is block */
1444 		if (PageWriteback(page))
1445 			return ret;
1446 
1447 		if (PageDirty(page)) {
1448 			struct address_space *mapping;
1449 			bool migrate_dirty;
1450 
1451 			/*
1452 			 * Only pages without mappings or that have a
1453 			 * ->migratepage callback are possible to migrate
1454 			 * without blocking. However, we can be racing with
1455 			 * truncation so it's necessary to lock the page
1456 			 * to stabilise the mapping as truncation holds
1457 			 * the page lock until after the page is removed
1458 			 * from the page cache.
1459 			 */
1460 			if (!trylock_page(page))
1461 				return ret;
1462 
1463 			mapping = page_mapping(page);
1464 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1465 			unlock_page(page);
1466 			if (!migrate_dirty)
1467 				return ret;
1468 		}
1469 	}
1470 
1471 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1472 		return ret;
1473 
1474 	if (likely(get_page_unless_zero(page))) {
1475 		/*
1476 		 * Be careful not to clear PageLRU until after we're
1477 		 * sure the page is not being freed elsewhere -- the
1478 		 * page release code relies on it.
1479 		 */
1480 		ClearPageLRU(page);
1481 		ret = 0;
1482 	}
1483 
1484 	return ret;
1485 }
1486 
1487 
1488 /*
1489  * Update LRU sizes after isolating pages. The LRU size updates must
1490  * be complete before mem_cgroup_update_lru_size due to a santity check.
1491  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1492 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1493 			enum lru_list lru, unsigned long *nr_zone_taken)
1494 {
1495 	int zid;
1496 
1497 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1498 		if (!nr_zone_taken[zid])
1499 			continue;
1500 
1501 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1502 #ifdef CONFIG_MEMCG
1503 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1504 #endif
1505 	}
1506 
1507 }
1508 
1509 /*
1510  * zone_lru_lock is heavily contended.  Some of the functions that
1511  * shrink the lists perform better by taking out a batch of pages
1512  * and working on them outside the LRU lock.
1513  *
1514  * For pagecache intensive workloads, this function is the hottest
1515  * spot in the kernel (apart from copy_*_user functions).
1516  *
1517  * Appropriate locks must be held before calling this function.
1518  *
1519  * @nr_to_scan:	The number of eligible pages to look through on the list.
1520  * @lruvec:	The LRU vector to pull pages from.
1521  * @dst:	The temp list to put pages on to.
1522  * @nr_scanned:	The number of pages that were scanned.
1523  * @sc:		The scan_control struct for this reclaim session
1524  * @mode:	One of the LRU isolation modes
1525  * @lru:	LRU list id for isolating
1526  *
1527  * returns how many pages were moved onto *@dst.
1528  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1529 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1530 		struct lruvec *lruvec, struct list_head *dst,
1531 		unsigned long *nr_scanned, struct scan_control *sc,
1532 		isolate_mode_t mode, enum lru_list lru)
1533 {
1534 	struct list_head *src = &lruvec->lists[lru];
1535 	unsigned long nr_taken = 0;
1536 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1537 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1538 	unsigned long skipped = 0;
1539 	unsigned long scan, total_scan, nr_pages;
1540 	LIST_HEAD(pages_skipped);
1541 
1542 	scan = 0;
1543 	for (total_scan = 0;
1544 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1545 	     total_scan++) {
1546 		struct page *page;
1547 
1548 		page = lru_to_page(src);
1549 		prefetchw_prev_lru_page(page, src, flags);
1550 
1551 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1552 
1553 		if (page_zonenum(page) > sc->reclaim_idx) {
1554 			list_move(&page->lru, &pages_skipped);
1555 			nr_skipped[page_zonenum(page)]++;
1556 			continue;
1557 		}
1558 
1559 		/*
1560 		 * Do not count skipped pages because that makes the function
1561 		 * return with no isolated pages if the LRU mostly contains
1562 		 * ineligible pages.  This causes the VM to not reclaim any
1563 		 * pages, triggering a premature OOM.
1564 		 */
1565 		scan++;
1566 		switch (__isolate_lru_page(page, mode)) {
1567 		case 0:
1568 			nr_pages = hpage_nr_pages(page);
1569 			nr_taken += nr_pages;
1570 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1571 			list_move(&page->lru, dst);
1572 			break;
1573 
1574 		case -EBUSY:
1575 			/* else it is being freed elsewhere */
1576 			list_move(&page->lru, src);
1577 			continue;
1578 
1579 		default:
1580 			BUG();
1581 		}
1582 	}
1583 
1584 	/*
1585 	 * Splice any skipped pages to the start of the LRU list. Note that
1586 	 * this disrupts the LRU order when reclaiming for lower zones but
1587 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1588 	 * scanning would soon rescan the same pages to skip and put the
1589 	 * system at risk of premature OOM.
1590 	 */
1591 	if (!list_empty(&pages_skipped)) {
1592 		int zid;
1593 
1594 		list_splice(&pages_skipped, src);
1595 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1596 			if (!nr_skipped[zid])
1597 				continue;
1598 
1599 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1600 			skipped += nr_skipped[zid];
1601 		}
1602 	}
1603 	*nr_scanned = total_scan;
1604 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1605 				    total_scan, skipped, nr_taken, mode, lru);
1606 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1607 	return nr_taken;
1608 }
1609 
1610 /**
1611  * isolate_lru_page - tries to isolate a page from its LRU list
1612  * @page: page to isolate from its LRU list
1613  *
1614  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1615  * vmstat statistic corresponding to whatever LRU list the page was on.
1616  *
1617  * Returns 0 if the page was removed from an LRU list.
1618  * Returns -EBUSY if the page was not on an LRU list.
1619  *
1620  * The returned page will have PageLRU() cleared.  If it was found on
1621  * the active list, it will have PageActive set.  If it was found on
1622  * the unevictable list, it will have the PageUnevictable bit set. That flag
1623  * may need to be cleared by the caller before letting the page go.
1624  *
1625  * The vmstat statistic corresponding to the list on which the page was
1626  * found will be decremented.
1627  *
1628  * Restrictions:
1629  * (1) Must be called with an elevated refcount on the page. This is a
1630  *     fundamentnal difference from isolate_lru_pages (which is called
1631  *     without a stable reference).
1632  * (2) the lru_lock must not be held.
1633  * (3) interrupts must be enabled.
1634  */
isolate_lru_page(struct page * page)1635 int isolate_lru_page(struct page *page)
1636 {
1637 	int ret = -EBUSY;
1638 
1639 	VM_BUG_ON_PAGE(!page_count(page), page);
1640 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1641 
1642 	if (PageLRU(page)) {
1643 		struct zone *zone = page_zone(page);
1644 		struct lruvec *lruvec;
1645 
1646 		spin_lock_irq(zone_lru_lock(zone));
1647 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1648 		if (PageLRU(page)) {
1649 			int lru = page_lru(page);
1650 			get_page(page);
1651 			ClearPageLRU(page);
1652 			del_page_from_lru_list(page, lruvec, lru);
1653 			ret = 0;
1654 		}
1655 		spin_unlock_irq(zone_lru_lock(zone));
1656 	}
1657 	return ret;
1658 }
1659 
1660 /*
1661  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1662  * then get resheduled. When there are massive number of tasks doing page
1663  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1664  * the LRU list will go small and be scanned faster than necessary, leading to
1665  * unnecessary swapping, thrashing and OOM.
1666  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1667 static int too_many_isolated(struct pglist_data *pgdat, int file,
1668 		struct scan_control *sc)
1669 {
1670 	unsigned long inactive, isolated;
1671 
1672 	if (current_is_kswapd())
1673 		return 0;
1674 
1675 	if (!sane_reclaim(sc))
1676 		return 0;
1677 
1678 	if (file) {
1679 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1680 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1681 	} else {
1682 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1683 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1684 	}
1685 
1686 	/*
1687 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1688 	 * won't get blocked by normal direct-reclaimers, forming a circular
1689 	 * deadlock.
1690 	 */
1691 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1692 		inactive >>= 3;
1693 
1694 	return isolated > inactive;
1695 }
1696 
1697 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1698 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1699 {
1700 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1701 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1702 	LIST_HEAD(pages_to_free);
1703 
1704 	/*
1705 	 * Put back any unfreeable pages.
1706 	 */
1707 	while (!list_empty(page_list)) {
1708 		struct page *page = lru_to_page(page_list);
1709 		int lru;
1710 
1711 		VM_BUG_ON_PAGE(PageLRU(page), page);
1712 		list_del(&page->lru);
1713 		if (unlikely(!page_evictable(page))) {
1714 			spin_unlock_irq(&pgdat->lru_lock);
1715 			putback_lru_page(page);
1716 			spin_lock_irq(&pgdat->lru_lock);
1717 			continue;
1718 		}
1719 
1720 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1721 
1722 		SetPageLRU(page);
1723 		lru = page_lru(page);
1724 		add_page_to_lru_list(page, lruvec, lru);
1725 
1726 		if (is_active_lru(lru)) {
1727 			int file = is_file_lru(lru);
1728 			int numpages = hpage_nr_pages(page);
1729 			reclaim_stat->recent_rotated[file] += numpages;
1730 		}
1731 		if (put_page_testzero(page)) {
1732 			__ClearPageLRU(page);
1733 			__ClearPageActive(page);
1734 			del_page_from_lru_list(page, lruvec, lru);
1735 
1736 			if (unlikely(PageCompound(page))) {
1737 				spin_unlock_irq(&pgdat->lru_lock);
1738 				mem_cgroup_uncharge(page);
1739 				(*get_compound_page_dtor(page))(page);
1740 				spin_lock_irq(&pgdat->lru_lock);
1741 			} else
1742 				list_add(&page->lru, &pages_to_free);
1743 		}
1744 	}
1745 
1746 	/*
1747 	 * To save our caller's stack, now use input list for pages to free.
1748 	 */
1749 	list_splice(&pages_to_free, page_list);
1750 }
1751 
1752 /*
1753  * If a kernel thread (such as nfsd for loop-back mounts) services
1754  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1755  * In that case we should only throttle if the backing device it is
1756  * writing to is congested.  In other cases it is safe to throttle.
1757  */
current_may_throttle(void)1758 static int current_may_throttle(void)
1759 {
1760 	return !(current->flags & PF_LESS_THROTTLE) ||
1761 		current->backing_dev_info == NULL ||
1762 		bdi_write_congested(current->backing_dev_info);
1763 }
1764 
1765 /*
1766  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1767  * of reclaimed pages
1768  */
1769 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1770 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1771 		     struct scan_control *sc, enum lru_list lru)
1772 {
1773 	LIST_HEAD(page_list);
1774 	unsigned long nr_scanned;
1775 	unsigned long nr_reclaimed = 0;
1776 	unsigned long nr_taken;
1777 	struct reclaim_stat stat = {};
1778 	isolate_mode_t isolate_mode = 0;
1779 	int file = is_file_lru(lru);
1780 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1781 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1782 	bool stalled = false;
1783 
1784 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1785 		if (stalled)
1786 			return 0;
1787 
1788 		/* wait a bit for the reclaimer. */
1789 		msleep(100);
1790 		stalled = true;
1791 
1792 		/* We are about to die and free our memory. Return now. */
1793 		if (fatal_signal_pending(current))
1794 			return SWAP_CLUSTER_MAX;
1795 	}
1796 
1797 	lru_add_drain();
1798 
1799 	if (!sc->may_unmap)
1800 		isolate_mode |= ISOLATE_UNMAPPED;
1801 
1802 	spin_lock_irq(&pgdat->lru_lock);
1803 
1804 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1805 				     &nr_scanned, sc, isolate_mode, lru);
1806 
1807 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1808 	reclaim_stat->recent_scanned[file] += nr_taken;
1809 
1810 	if (current_is_kswapd()) {
1811 		if (global_reclaim(sc))
1812 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1813 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1814 				   nr_scanned);
1815 	} else {
1816 		if (global_reclaim(sc))
1817 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1818 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1819 				   nr_scanned);
1820 	}
1821 	spin_unlock_irq(&pgdat->lru_lock);
1822 
1823 	if (nr_taken == 0)
1824 		return 0;
1825 
1826 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1827 				&stat, false);
1828 
1829 	spin_lock_irq(&pgdat->lru_lock);
1830 
1831 	if (current_is_kswapd()) {
1832 		if (global_reclaim(sc))
1833 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1834 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1835 				   nr_reclaimed);
1836 	} else {
1837 		if (global_reclaim(sc))
1838 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1839 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1840 				   nr_reclaimed);
1841 	}
1842 
1843 	putback_inactive_pages(lruvec, &page_list);
1844 
1845 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1846 
1847 	spin_unlock_irq(&pgdat->lru_lock);
1848 
1849 	mem_cgroup_uncharge_list(&page_list);
1850 	free_hot_cold_page_list(&page_list, true);
1851 
1852 	/*
1853 	 * If reclaim is isolating dirty pages under writeback, it implies
1854 	 * that the long-lived page allocation rate is exceeding the page
1855 	 * laundering rate. Either the global limits are not being effective
1856 	 * at throttling processes due to the page distribution throughout
1857 	 * zones or there is heavy usage of a slow backing device. The
1858 	 * only option is to throttle from reclaim context which is not ideal
1859 	 * as there is no guarantee the dirtying process is throttled in the
1860 	 * same way balance_dirty_pages() manages.
1861 	 *
1862 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1863 	 * of pages under pages flagged for immediate reclaim and stall if any
1864 	 * are encountered in the nr_immediate check below.
1865 	 */
1866 	if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1867 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1868 
1869 	/*
1870 	 * If dirty pages are scanned that are not queued for IO, it
1871 	 * implies that flushers are not doing their job. This can
1872 	 * happen when memory pressure pushes dirty pages to the end of
1873 	 * the LRU before the dirty limits are breached and the dirty
1874 	 * data has expired. It can also happen when the proportion of
1875 	 * dirty pages grows not through writes but through memory
1876 	 * pressure reclaiming all the clean cache. And in some cases,
1877 	 * the flushers simply cannot keep up with the allocation
1878 	 * rate. Nudge the flusher threads in case they are asleep.
1879 	 */
1880 	if (stat.nr_unqueued_dirty == nr_taken)
1881 		wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1882 
1883 	/*
1884 	 * Legacy memcg will stall in page writeback so avoid forcibly
1885 	 * stalling here.
1886 	 */
1887 	if (sane_reclaim(sc)) {
1888 		/*
1889 		 * Tag a zone as congested if all the dirty pages scanned were
1890 		 * backed by a congested BDI and wait_iff_congested will stall.
1891 		 */
1892 		if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1893 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1894 
1895 		/* Allow kswapd to start writing pages during reclaim. */
1896 		if (stat.nr_unqueued_dirty == nr_taken)
1897 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1898 
1899 		/*
1900 		 * If kswapd scans pages marked marked for immediate
1901 		 * reclaim and under writeback (nr_immediate), it implies
1902 		 * that pages are cycling through the LRU faster than
1903 		 * they are written so also forcibly stall.
1904 		 */
1905 		if (stat.nr_immediate && current_may_throttle())
1906 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1907 	}
1908 
1909 	/*
1910 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1911 	 * is congested. Allow kswapd to continue until it starts encountering
1912 	 * unqueued dirty pages or cycling through the LRU too quickly.
1913 	 */
1914 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1915 	    current_may_throttle())
1916 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1917 
1918 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1919 			nr_scanned, nr_reclaimed,
1920 			stat.nr_dirty,  stat.nr_writeback,
1921 			stat.nr_congested, stat.nr_immediate,
1922 			stat.nr_activate, stat.nr_ref_keep,
1923 			stat.nr_unmap_fail,
1924 			sc->priority, file);
1925 	return nr_reclaimed;
1926 }
1927 
1928 /*
1929  * This moves pages from the active list to the inactive list.
1930  *
1931  * We move them the other way if the page is referenced by one or more
1932  * processes, from rmap.
1933  *
1934  * If the pages are mostly unmapped, the processing is fast and it is
1935  * appropriate to hold zone_lru_lock across the whole operation.  But if
1936  * the pages are mapped, the processing is slow (page_referenced()) so we
1937  * should drop zone_lru_lock around each page.  It's impossible to balance
1938  * this, so instead we remove the pages from the LRU while processing them.
1939  * It is safe to rely on PG_active against the non-LRU pages in here because
1940  * nobody will play with that bit on a non-LRU page.
1941  *
1942  * The downside is that we have to touch page->_refcount against each page.
1943  * But we had to alter page->flags anyway.
1944  *
1945  * Returns the number of pages moved to the given lru.
1946  */
1947 
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1948 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1949 				     struct list_head *list,
1950 				     struct list_head *pages_to_free,
1951 				     enum lru_list lru)
1952 {
1953 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1954 	struct page *page;
1955 	int nr_pages;
1956 	int nr_moved = 0;
1957 
1958 	while (!list_empty(list)) {
1959 		page = lru_to_page(list);
1960 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1961 
1962 		VM_BUG_ON_PAGE(PageLRU(page), page);
1963 		SetPageLRU(page);
1964 
1965 		nr_pages = hpage_nr_pages(page);
1966 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1967 		list_move(&page->lru, &lruvec->lists[lru]);
1968 
1969 		if (put_page_testzero(page)) {
1970 			__ClearPageLRU(page);
1971 			__ClearPageActive(page);
1972 			del_page_from_lru_list(page, lruvec, lru);
1973 
1974 			if (unlikely(PageCompound(page))) {
1975 				spin_unlock_irq(&pgdat->lru_lock);
1976 				mem_cgroup_uncharge(page);
1977 				(*get_compound_page_dtor(page))(page);
1978 				spin_lock_irq(&pgdat->lru_lock);
1979 			} else
1980 				list_add(&page->lru, pages_to_free);
1981 		} else {
1982 			nr_moved += nr_pages;
1983 		}
1984 	}
1985 
1986 	if (!is_active_lru(lru)) {
1987 		__count_vm_events(PGDEACTIVATE, nr_moved);
1988 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1989 				   nr_moved);
1990 	}
1991 
1992 	return nr_moved;
1993 }
1994 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1995 static void shrink_active_list(unsigned long nr_to_scan,
1996 			       struct lruvec *lruvec,
1997 			       struct scan_control *sc,
1998 			       enum lru_list lru)
1999 {
2000 	unsigned long nr_taken;
2001 	unsigned long nr_scanned;
2002 	unsigned long vm_flags;
2003 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2004 	LIST_HEAD(l_active);
2005 	LIST_HEAD(l_inactive);
2006 	struct page *page;
2007 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2008 	unsigned nr_deactivate, nr_activate;
2009 	unsigned nr_rotated = 0;
2010 	isolate_mode_t isolate_mode = 0;
2011 	int file = is_file_lru(lru);
2012 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2013 
2014 	lru_add_drain();
2015 
2016 	if (!sc->may_unmap)
2017 		isolate_mode |= ISOLATE_UNMAPPED;
2018 
2019 	spin_lock_irq(&pgdat->lru_lock);
2020 
2021 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2022 				     &nr_scanned, sc, isolate_mode, lru);
2023 
2024 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2025 	reclaim_stat->recent_scanned[file] += nr_taken;
2026 
2027 	__count_vm_events(PGREFILL, nr_scanned);
2028 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2029 
2030 	spin_unlock_irq(&pgdat->lru_lock);
2031 
2032 	while (!list_empty(&l_hold)) {
2033 		cond_resched();
2034 		page = lru_to_page(&l_hold);
2035 		list_del(&page->lru);
2036 
2037 		if (unlikely(!page_evictable(page))) {
2038 			putback_lru_page(page);
2039 			continue;
2040 		}
2041 
2042 		if (unlikely(buffer_heads_over_limit)) {
2043 			if (page_has_private(page) && trylock_page(page)) {
2044 				if (page_has_private(page))
2045 					try_to_release_page(page, 0);
2046 				unlock_page(page);
2047 			}
2048 		}
2049 
2050 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2051 				    &vm_flags)) {
2052 			nr_rotated += hpage_nr_pages(page);
2053 			/*
2054 			 * Identify referenced, file-backed active pages and
2055 			 * give them one more trip around the active list. So
2056 			 * that executable code get better chances to stay in
2057 			 * memory under moderate memory pressure.  Anon pages
2058 			 * are not likely to be evicted by use-once streaming
2059 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2060 			 * so we ignore them here.
2061 			 */
2062 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2063 				list_add(&page->lru, &l_active);
2064 				continue;
2065 			}
2066 		}
2067 
2068 		ClearPageActive(page);	/* we are de-activating */
2069 		SetPageWorkingset(page);
2070 		list_add(&page->lru, &l_inactive);
2071 	}
2072 
2073 	/*
2074 	 * Move pages back to the lru list.
2075 	 */
2076 	spin_lock_irq(&pgdat->lru_lock);
2077 	/*
2078 	 * Count referenced pages from currently used mappings as rotated,
2079 	 * even though only some of them are actually re-activated.  This
2080 	 * helps balance scan pressure between file and anonymous pages in
2081 	 * get_scan_count.
2082 	 */
2083 	reclaim_stat->recent_rotated[file] += nr_rotated;
2084 
2085 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2086 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2087 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2088 	spin_unlock_irq(&pgdat->lru_lock);
2089 
2090 	mem_cgroup_uncharge_list(&l_hold);
2091 	free_hot_cold_page_list(&l_hold, true);
2092 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2093 			nr_deactivate, nr_rotated, sc->priority, file);
2094 }
2095 
2096 /*
2097  * The inactive anon list should be small enough that the VM never has
2098  * to do too much work.
2099  *
2100  * The inactive file list should be small enough to leave most memory
2101  * to the established workingset on the scan-resistant active list,
2102  * but large enough to avoid thrashing the aggregate readahead window.
2103  *
2104  * Both inactive lists should also be large enough that each inactive
2105  * page has a chance to be referenced again before it is reclaimed.
2106  *
2107  * If that fails and refaulting is observed, the inactive list grows.
2108  *
2109  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2110  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2111  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2112  *
2113  * total     target    max
2114  * memory    ratio     inactive
2115  * -------------------------------------
2116  *   10MB       1         5MB
2117  *  100MB       1        50MB
2118  *    1GB       3       250MB
2119  *   10GB      10       0.9GB
2120  *  100GB      31         3GB
2121  *    1TB     101        10GB
2122  *   10TB     320        32GB
2123  */
inactive_list_is_low(struct lruvec * lruvec,bool file,struct scan_control * sc,bool trace)2124 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2125 				 struct scan_control *sc, bool trace)
2126 {
2127 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2128 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2129 	enum lru_list inactive_lru = file * LRU_FILE;
2130 	unsigned long inactive, active;
2131 	unsigned long inactive_ratio;
2132 	unsigned long refaults;
2133 	unsigned long gb;
2134 
2135 	/*
2136 	 * If we don't have swap space, anonymous page deactivation
2137 	 * is pointless.
2138 	 */
2139 	if (!file && !total_swap_pages)
2140 		return false;
2141 
2142 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2143 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2144 
2145 	/*
2146 	 * When refaults are being observed, it means a new workingset
2147 	 * is being established. Disable active list protection to get
2148 	 * rid of the stale workingset quickly.
2149 	 */
2150 	refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2151 	if (file && lruvec->refaults != refaults) {
2152 		inactive_ratio = 0;
2153 	} else {
2154 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2155 		if (gb)
2156 			inactive_ratio = int_sqrt(10 * gb);
2157 		else
2158 			inactive_ratio = 1;
2159 	}
2160 
2161 	if (trace)
2162 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2163 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2164 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2165 			inactive_ratio, file);
2166 
2167 	return inactive * inactive_ratio < active;
2168 }
2169 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2170 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2171 				 struct lruvec *lruvec, struct scan_control *sc)
2172 {
2173 	if (is_active_lru(lru)) {
2174 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2175 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2176 		return 0;
2177 	}
2178 
2179 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2180 }
2181 
2182 enum scan_balance {
2183 	SCAN_EQUAL,
2184 	SCAN_FRACT,
2185 	SCAN_ANON,
2186 	SCAN_FILE,
2187 };
2188 
2189 /*
2190  * Determine how aggressively the anon and file LRU lists should be
2191  * scanned.  The relative value of each set of LRU lists is determined
2192  * by looking at the fraction of the pages scanned we did rotate back
2193  * onto the active list instead of evict.
2194  *
2195  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2196  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2197  */
get_scan_count(struct lruvec * lruvec,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)2198 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2199 			   struct scan_control *sc, unsigned long *nr,
2200 			   unsigned long *lru_pages)
2201 {
2202 	int swappiness = mem_cgroup_swappiness(memcg);
2203 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2204 	u64 fraction[2];
2205 	u64 denominator = 0;	/* gcc */
2206 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2207 	unsigned long anon_prio, file_prio;
2208 	enum scan_balance scan_balance;
2209 	unsigned long anon, file;
2210 	unsigned long ap, fp;
2211 	enum lru_list lru;
2212 
2213 	/* If we have no swap space, do not bother scanning anon pages. */
2214 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2215 		scan_balance = SCAN_FILE;
2216 		goto out;
2217 	}
2218 
2219 	/*
2220 	 * Global reclaim will swap to prevent OOM even with no
2221 	 * swappiness, but memcg users want to use this knob to
2222 	 * disable swapping for individual groups completely when
2223 	 * using the memory controller's swap limit feature would be
2224 	 * too expensive.
2225 	 */
2226 	if (!global_reclaim(sc) && !swappiness) {
2227 		scan_balance = SCAN_FILE;
2228 		goto out;
2229 	}
2230 
2231 	/*
2232 	 * Do not apply any pressure balancing cleverness when the
2233 	 * system is close to OOM, scan both anon and file equally
2234 	 * (unless the swappiness setting disagrees with swapping).
2235 	 */
2236 	if (!sc->priority && swappiness) {
2237 		scan_balance = SCAN_EQUAL;
2238 		goto out;
2239 	}
2240 
2241 	/*
2242 	 * Prevent the reclaimer from falling into the cache trap: as
2243 	 * cache pages start out inactive, every cache fault will tip
2244 	 * the scan balance towards the file LRU.  And as the file LRU
2245 	 * shrinks, so does the window for rotation from references.
2246 	 * This means we have a runaway feedback loop where a tiny
2247 	 * thrashing file LRU becomes infinitely more attractive than
2248 	 * anon pages.  Try to detect this based on file LRU size.
2249 	 */
2250 	if (global_reclaim(sc)) {
2251 		unsigned long pgdatfile;
2252 		unsigned long pgdatfree;
2253 		int z;
2254 		unsigned long total_high_wmark = 0;
2255 
2256 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2257 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2258 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2259 
2260 		for (z = 0; z < MAX_NR_ZONES; z++) {
2261 			struct zone *zone = &pgdat->node_zones[z];
2262 			if (!managed_zone(zone))
2263 				continue;
2264 
2265 			total_high_wmark += high_wmark_pages(zone);
2266 		}
2267 
2268 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2269 			/*
2270 			 * Force SCAN_ANON if there are enough inactive
2271 			 * anonymous pages on the LRU in eligible zones.
2272 			 * Otherwise, the small LRU gets thrashed.
2273 			 */
2274 			if (!inactive_list_is_low(lruvec, false, sc, false) &&
2275 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2276 					>> sc->priority) {
2277 				scan_balance = SCAN_ANON;
2278 				goto out;
2279 			}
2280 		}
2281 	}
2282 
2283 	/*
2284 	 * If there is enough inactive page cache, i.e. if the size of the
2285 	 * inactive list is greater than that of the active list *and* the
2286 	 * inactive list actually has some pages to scan on this priority, we
2287 	 * do not reclaim anything from the anonymous working set right now.
2288 	 * Without the second condition we could end up never scanning an
2289 	 * lruvec even if it has plenty of old anonymous pages unless the
2290 	 * system is under heavy pressure.
2291 	 */
2292 	if (!inactive_list_is_low(lruvec, true, sc, false) &&
2293 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2294 		scan_balance = SCAN_FILE;
2295 		goto out;
2296 	}
2297 
2298 	scan_balance = SCAN_FRACT;
2299 
2300 	/*
2301 	 * With swappiness at 100, anonymous and file have the same priority.
2302 	 * This scanning priority is essentially the inverse of IO cost.
2303 	 */
2304 	anon_prio = swappiness;
2305 	file_prio = 200 - anon_prio;
2306 
2307 	/*
2308 	 * OK, so we have swap space and a fair amount of page cache
2309 	 * pages.  We use the recently rotated / recently scanned
2310 	 * ratios to determine how valuable each cache is.
2311 	 *
2312 	 * Because workloads change over time (and to avoid overflow)
2313 	 * we keep these statistics as a floating average, which ends
2314 	 * up weighing recent references more than old ones.
2315 	 *
2316 	 * anon in [0], file in [1]
2317 	 */
2318 
2319 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2320 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2321 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2322 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2323 
2324 	spin_lock_irq(&pgdat->lru_lock);
2325 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2326 		reclaim_stat->recent_scanned[0] /= 2;
2327 		reclaim_stat->recent_rotated[0] /= 2;
2328 	}
2329 
2330 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2331 		reclaim_stat->recent_scanned[1] /= 2;
2332 		reclaim_stat->recent_rotated[1] /= 2;
2333 	}
2334 
2335 	/*
2336 	 * The amount of pressure on anon vs file pages is inversely
2337 	 * proportional to the fraction of recently scanned pages on
2338 	 * each list that were recently referenced and in active use.
2339 	 */
2340 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2341 	ap /= reclaim_stat->recent_rotated[0] + 1;
2342 
2343 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2344 	fp /= reclaim_stat->recent_rotated[1] + 1;
2345 	spin_unlock_irq(&pgdat->lru_lock);
2346 
2347 	fraction[0] = ap;
2348 	fraction[1] = fp;
2349 	denominator = ap + fp + 1;
2350 out:
2351 	*lru_pages = 0;
2352 	for_each_evictable_lru(lru) {
2353 		int file = is_file_lru(lru);
2354 		unsigned long size;
2355 		unsigned long scan;
2356 
2357 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2358 		scan = size >> sc->priority;
2359 		/*
2360 		 * If the cgroup's already been deleted, make sure to
2361 		 * scrape out the remaining cache.
2362 		 */
2363 		if (!scan && !mem_cgroup_online(memcg))
2364 			scan = min(size, SWAP_CLUSTER_MAX);
2365 
2366 		switch (scan_balance) {
2367 		case SCAN_EQUAL:
2368 			/* Scan lists relative to size */
2369 			break;
2370 		case SCAN_FRACT:
2371 			/*
2372 			 * Scan types proportional to swappiness and
2373 			 * their relative recent reclaim efficiency.
2374 			 * Make sure we don't miss the last page on
2375 			 * the offlined memory cgroups because of a
2376 			 * round-off error.
2377 			 */
2378 			scan = mem_cgroup_online(memcg) ?
2379 			       div64_u64(scan * fraction[file], denominator) :
2380 			       DIV64_U64_ROUND_UP(scan * fraction[file],
2381 						  denominator);
2382 			break;
2383 		case SCAN_FILE:
2384 		case SCAN_ANON:
2385 			/* Scan one type exclusively */
2386 			if ((scan_balance == SCAN_FILE) != file) {
2387 				size = 0;
2388 				scan = 0;
2389 			}
2390 			break;
2391 		default:
2392 			/* Look ma, no brain */
2393 			BUG();
2394 		}
2395 
2396 		*lru_pages += size;
2397 		nr[lru] = scan;
2398 	}
2399 }
2400 
2401 /*
2402  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2403  */
shrink_node_memcg(struct pglist_data * pgdat,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * lru_pages)2404 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2405 			      struct scan_control *sc, unsigned long *lru_pages)
2406 {
2407 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2408 	unsigned long nr[NR_LRU_LISTS];
2409 	unsigned long targets[NR_LRU_LISTS];
2410 	unsigned long nr_to_scan;
2411 	enum lru_list lru;
2412 	unsigned long nr_reclaimed = 0;
2413 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2414 	struct blk_plug plug;
2415 	bool scan_adjusted;
2416 
2417 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2418 
2419 	/* Record the original scan target for proportional adjustments later */
2420 	memcpy(targets, nr, sizeof(nr));
2421 
2422 	/*
2423 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2424 	 * event that can occur when there is little memory pressure e.g.
2425 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2426 	 * when the requested number of pages are reclaimed when scanning at
2427 	 * DEF_PRIORITY on the assumption that the fact we are direct
2428 	 * reclaiming implies that kswapd is not keeping up and it is best to
2429 	 * do a batch of work at once. For memcg reclaim one check is made to
2430 	 * abort proportional reclaim if either the file or anon lru has already
2431 	 * dropped to zero at the first pass.
2432 	 */
2433 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2434 			 sc->priority == DEF_PRIORITY);
2435 
2436 	blk_start_plug(&plug);
2437 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2438 					nr[LRU_INACTIVE_FILE]) {
2439 		unsigned long nr_anon, nr_file, percentage;
2440 		unsigned long nr_scanned;
2441 
2442 		for_each_evictable_lru(lru) {
2443 			if (nr[lru]) {
2444 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2445 				nr[lru] -= nr_to_scan;
2446 
2447 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2448 							    lruvec, sc);
2449 			}
2450 		}
2451 
2452 		cond_resched();
2453 
2454 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2455 			continue;
2456 
2457 		/*
2458 		 * For kswapd and memcg, reclaim at least the number of pages
2459 		 * requested. Ensure that the anon and file LRUs are scanned
2460 		 * proportionally what was requested by get_scan_count(). We
2461 		 * stop reclaiming one LRU and reduce the amount scanning
2462 		 * proportional to the original scan target.
2463 		 */
2464 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2465 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2466 
2467 		/*
2468 		 * It's just vindictive to attack the larger once the smaller
2469 		 * has gone to zero.  And given the way we stop scanning the
2470 		 * smaller below, this makes sure that we only make one nudge
2471 		 * towards proportionality once we've got nr_to_reclaim.
2472 		 */
2473 		if (!nr_file || !nr_anon)
2474 			break;
2475 
2476 		if (nr_file > nr_anon) {
2477 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2478 						targets[LRU_ACTIVE_ANON] + 1;
2479 			lru = LRU_BASE;
2480 			percentage = nr_anon * 100 / scan_target;
2481 		} else {
2482 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2483 						targets[LRU_ACTIVE_FILE] + 1;
2484 			lru = LRU_FILE;
2485 			percentage = nr_file * 100 / scan_target;
2486 		}
2487 
2488 		/* Stop scanning the smaller of the LRU */
2489 		nr[lru] = 0;
2490 		nr[lru + LRU_ACTIVE] = 0;
2491 
2492 		/*
2493 		 * Recalculate the other LRU scan count based on its original
2494 		 * scan target and the percentage scanning already complete
2495 		 */
2496 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2497 		nr_scanned = targets[lru] - nr[lru];
2498 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2499 		nr[lru] -= min(nr[lru], nr_scanned);
2500 
2501 		lru += LRU_ACTIVE;
2502 		nr_scanned = targets[lru] - nr[lru];
2503 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2504 		nr[lru] -= min(nr[lru], nr_scanned);
2505 
2506 		scan_adjusted = true;
2507 	}
2508 	blk_finish_plug(&plug);
2509 	sc->nr_reclaimed += nr_reclaimed;
2510 
2511 	/*
2512 	 * Even if we did not try to evict anon pages at all, we want to
2513 	 * rebalance the anon lru active/inactive ratio.
2514 	 */
2515 	if (inactive_list_is_low(lruvec, false, sc, true))
2516 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2517 				   sc, LRU_ACTIVE_ANON);
2518 }
2519 
2520 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2521 static bool in_reclaim_compaction(struct scan_control *sc)
2522 {
2523 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2524 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2525 			 sc->priority < DEF_PRIORITY - 2))
2526 		return true;
2527 
2528 	return false;
2529 }
2530 
2531 /*
2532  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2533  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2534  * true if more pages should be reclaimed such that when the page allocator
2535  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2536  * It will give up earlier than that if there is difficulty reclaiming pages.
2537  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2538 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2539 					unsigned long nr_reclaimed,
2540 					unsigned long nr_scanned,
2541 					struct scan_control *sc)
2542 {
2543 	unsigned long pages_for_compaction;
2544 	unsigned long inactive_lru_pages;
2545 	int z;
2546 
2547 	/* If not in reclaim/compaction mode, stop */
2548 	if (!in_reclaim_compaction(sc))
2549 		return false;
2550 
2551 	/* Consider stopping depending on scan and reclaim activity */
2552 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2553 		/*
2554 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2555 		 * full LRU list has been scanned and we are still failing
2556 		 * to reclaim pages. This full LRU scan is potentially
2557 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2558 		 */
2559 		if (!nr_reclaimed && !nr_scanned)
2560 			return false;
2561 	} else {
2562 		/*
2563 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2564 		 * fail without consequence, stop if we failed to reclaim
2565 		 * any pages from the last SWAP_CLUSTER_MAX number of
2566 		 * pages that were scanned. This will return to the
2567 		 * caller faster at the risk reclaim/compaction and
2568 		 * the resulting allocation attempt fails
2569 		 */
2570 		if (!nr_reclaimed)
2571 			return false;
2572 	}
2573 
2574 	/*
2575 	 * If we have not reclaimed enough pages for compaction and the
2576 	 * inactive lists are large enough, continue reclaiming
2577 	 */
2578 	pages_for_compaction = compact_gap(sc->order);
2579 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2580 	if (get_nr_swap_pages() > 0)
2581 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2582 	if (sc->nr_reclaimed < pages_for_compaction &&
2583 			inactive_lru_pages > pages_for_compaction)
2584 		return true;
2585 
2586 	/* If compaction would go ahead or the allocation would succeed, stop */
2587 	for (z = 0; z <= sc->reclaim_idx; z++) {
2588 		struct zone *zone = &pgdat->node_zones[z];
2589 		if (!managed_zone(zone))
2590 			continue;
2591 
2592 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2593 		case COMPACT_SUCCESS:
2594 		case COMPACT_CONTINUE:
2595 			return false;
2596 		default:
2597 			/* check next zone */
2598 			;
2599 		}
2600 	}
2601 	return true;
2602 }
2603 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2604 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2605 {
2606 	struct reclaim_state *reclaim_state = current->reclaim_state;
2607 	unsigned long nr_reclaimed, nr_scanned;
2608 	bool reclaimable = false;
2609 
2610 	do {
2611 		struct mem_cgroup *root = sc->target_mem_cgroup;
2612 		struct mem_cgroup_reclaim_cookie reclaim = {
2613 			.pgdat = pgdat,
2614 			.priority = sc->priority,
2615 		};
2616 		unsigned long node_lru_pages = 0;
2617 		struct mem_cgroup *memcg;
2618 
2619 		nr_reclaimed = sc->nr_reclaimed;
2620 		nr_scanned = sc->nr_scanned;
2621 
2622 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2623 		do {
2624 			unsigned long lru_pages;
2625 			unsigned long reclaimed;
2626 			unsigned long scanned;
2627 
2628 			if (mem_cgroup_low(root, memcg)) {
2629 				if (!sc->memcg_low_reclaim) {
2630 					sc->memcg_low_skipped = 1;
2631 					continue;
2632 				}
2633 				mem_cgroup_event(memcg, MEMCG_LOW);
2634 			}
2635 
2636 			reclaimed = sc->nr_reclaimed;
2637 			scanned = sc->nr_scanned;
2638 
2639 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2640 			node_lru_pages += lru_pages;
2641 
2642 			if (memcg)
2643 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2644 					    memcg, sc->nr_scanned - scanned,
2645 					    lru_pages);
2646 
2647 			/* Record the group's reclaim efficiency */
2648 			vmpressure(sc->gfp_mask, memcg, false,
2649 				   sc->nr_scanned - scanned,
2650 				   sc->nr_reclaimed - reclaimed);
2651 
2652 			/*
2653 			 * Direct reclaim and kswapd have to scan all memory
2654 			 * cgroups to fulfill the overall scan target for the
2655 			 * node.
2656 			 *
2657 			 * Limit reclaim, on the other hand, only cares about
2658 			 * nr_to_reclaim pages to be reclaimed and it will
2659 			 * retry with decreasing priority if one round over the
2660 			 * whole hierarchy is not sufficient.
2661 			 */
2662 			if (!global_reclaim(sc) &&
2663 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2664 				mem_cgroup_iter_break(root, memcg);
2665 				break;
2666 			}
2667 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2668 
2669 		/*
2670 		 * Shrink the slab caches in the same proportion that
2671 		 * the eligible LRU pages were scanned.
2672 		 */
2673 		if (global_reclaim(sc))
2674 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2675 				    sc->nr_scanned - nr_scanned,
2676 				    node_lru_pages);
2677 
2678 		if (reclaim_state) {
2679 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2680 			reclaim_state->reclaimed_slab = 0;
2681 		}
2682 
2683 		/* Record the subtree's reclaim efficiency */
2684 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2685 			   sc->nr_scanned - nr_scanned,
2686 			   sc->nr_reclaimed - nr_reclaimed);
2687 
2688 		if (sc->nr_reclaimed - nr_reclaimed)
2689 			reclaimable = true;
2690 
2691 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2692 					 sc->nr_scanned - nr_scanned, sc));
2693 
2694 	/*
2695 	 * Kswapd gives up on balancing particular nodes after too
2696 	 * many failures to reclaim anything from them and goes to
2697 	 * sleep. On reclaim progress, reset the failure counter. A
2698 	 * successful direct reclaim run will revive a dormant kswapd.
2699 	 */
2700 	if (reclaimable)
2701 		pgdat->kswapd_failures = 0;
2702 
2703 	return reclaimable;
2704 }
2705 
2706 /*
2707  * Returns true if compaction should go ahead for a costly-order request, or
2708  * the allocation would already succeed without compaction. Return false if we
2709  * should reclaim first.
2710  */
compaction_ready(struct zone * zone,struct scan_control * sc)2711 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2712 {
2713 	unsigned long watermark;
2714 	enum compact_result suitable;
2715 
2716 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2717 	if (suitable == COMPACT_SUCCESS)
2718 		/* Allocation should succeed already. Don't reclaim. */
2719 		return true;
2720 	if (suitable == COMPACT_SKIPPED)
2721 		/* Compaction cannot yet proceed. Do reclaim. */
2722 		return false;
2723 
2724 	/*
2725 	 * Compaction is already possible, but it takes time to run and there
2726 	 * are potentially other callers using the pages just freed. So proceed
2727 	 * with reclaim to make a buffer of free pages available to give
2728 	 * compaction a reasonable chance of completing and allocating the page.
2729 	 * Note that we won't actually reclaim the whole buffer in one attempt
2730 	 * as the target watermark in should_continue_reclaim() is lower. But if
2731 	 * we are already above the high+gap watermark, don't reclaim at all.
2732 	 */
2733 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2734 
2735 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2736 }
2737 
2738 /*
2739  * This is the direct reclaim path, for page-allocating processes.  We only
2740  * try to reclaim pages from zones which will satisfy the caller's allocation
2741  * request.
2742  *
2743  * If a zone is deemed to be full of pinned pages then just give it a light
2744  * scan then give up on it.
2745  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2746 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2747 {
2748 	struct zoneref *z;
2749 	struct zone *zone;
2750 	unsigned long nr_soft_reclaimed;
2751 	unsigned long nr_soft_scanned;
2752 	gfp_t orig_mask;
2753 	pg_data_t *last_pgdat = NULL;
2754 
2755 	/*
2756 	 * If the number of buffer_heads in the machine exceeds the maximum
2757 	 * allowed level, force direct reclaim to scan the highmem zone as
2758 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2759 	 */
2760 	orig_mask = sc->gfp_mask;
2761 	if (buffer_heads_over_limit) {
2762 		sc->gfp_mask |= __GFP_HIGHMEM;
2763 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2764 	}
2765 
2766 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2767 					sc->reclaim_idx, sc->nodemask) {
2768 		/*
2769 		 * Take care memory controller reclaiming has small influence
2770 		 * to global LRU.
2771 		 */
2772 		if (global_reclaim(sc)) {
2773 			if (!cpuset_zone_allowed(zone,
2774 						 GFP_KERNEL | __GFP_HARDWALL))
2775 				continue;
2776 
2777 			/*
2778 			 * If we already have plenty of memory free for
2779 			 * compaction in this zone, don't free any more.
2780 			 * Even though compaction is invoked for any
2781 			 * non-zero order, only frequent costly order
2782 			 * reclamation is disruptive enough to become a
2783 			 * noticeable problem, like transparent huge
2784 			 * page allocations.
2785 			 */
2786 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2787 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2788 			    compaction_ready(zone, sc)) {
2789 				sc->compaction_ready = true;
2790 				continue;
2791 			}
2792 
2793 			/*
2794 			 * Shrink each node in the zonelist once. If the
2795 			 * zonelist is ordered by zone (not the default) then a
2796 			 * node may be shrunk multiple times but in that case
2797 			 * the user prefers lower zones being preserved.
2798 			 */
2799 			if (zone->zone_pgdat == last_pgdat)
2800 				continue;
2801 
2802 			/*
2803 			 * This steals pages from memory cgroups over softlimit
2804 			 * and returns the number of reclaimed pages and
2805 			 * scanned pages. This works for global memory pressure
2806 			 * and balancing, not for a memcg's limit.
2807 			 */
2808 			nr_soft_scanned = 0;
2809 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2810 						sc->order, sc->gfp_mask,
2811 						&nr_soft_scanned);
2812 			sc->nr_reclaimed += nr_soft_reclaimed;
2813 			sc->nr_scanned += nr_soft_scanned;
2814 			/* need some check for avoid more shrink_zone() */
2815 		}
2816 
2817 		/* See comment about same check for global reclaim above */
2818 		if (zone->zone_pgdat == last_pgdat)
2819 			continue;
2820 		last_pgdat = zone->zone_pgdat;
2821 		shrink_node(zone->zone_pgdat, sc);
2822 	}
2823 
2824 	/*
2825 	 * Restore to original mask to avoid the impact on the caller if we
2826 	 * promoted it to __GFP_HIGHMEM.
2827 	 */
2828 	sc->gfp_mask = orig_mask;
2829 }
2830 
snapshot_refaults(struct mem_cgroup * root_memcg,pg_data_t * pgdat)2831 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2832 {
2833 	struct mem_cgroup *memcg;
2834 
2835 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2836 	do {
2837 		unsigned long refaults;
2838 		struct lruvec *lruvec;
2839 
2840 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2841 		refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2842 		lruvec->refaults = refaults;
2843 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2844 }
2845 
2846 /*
2847  * This is the main entry point to direct page reclaim.
2848  *
2849  * If a full scan of the inactive list fails to free enough memory then we
2850  * are "out of memory" and something needs to be killed.
2851  *
2852  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2853  * high - the zone may be full of dirty or under-writeback pages, which this
2854  * caller can't do much about.  We kick the writeback threads and take explicit
2855  * naps in the hope that some of these pages can be written.  But if the
2856  * allocating task holds filesystem locks which prevent writeout this might not
2857  * work, and the allocation attempt will fail.
2858  *
2859  * returns:	0, if no pages reclaimed
2860  * 		else, the number of pages reclaimed
2861  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2862 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2863 					  struct scan_control *sc)
2864 {
2865 	int initial_priority = sc->priority;
2866 	pg_data_t *last_pgdat;
2867 	struct zoneref *z;
2868 	struct zone *zone;
2869 retry:
2870 	delayacct_freepages_start();
2871 
2872 	if (global_reclaim(sc))
2873 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2874 
2875 	do {
2876 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2877 				sc->priority);
2878 		sc->nr_scanned = 0;
2879 		shrink_zones(zonelist, sc);
2880 
2881 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2882 			break;
2883 
2884 		if (sc->compaction_ready)
2885 			break;
2886 
2887 		/*
2888 		 * If we're getting trouble reclaiming, start doing
2889 		 * writepage even in laptop mode.
2890 		 */
2891 		if (sc->priority < DEF_PRIORITY - 2)
2892 			sc->may_writepage = 1;
2893 	} while (--sc->priority >= 0);
2894 
2895 	last_pgdat = NULL;
2896 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2897 					sc->nodemask) {
2898 		if (zone->zone_pgdat == last_pgdat)
2899 			continue;
2900 		last_pgdat = zone->zone_pgdat;
2901 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2902 	}
2903 
2904 	delayacct_freepages_end();
2905 
2906 	if (sc->nr_reclaimed)
2907 		return sc->nr_reclaimed;
2908 
2909 	/* Aborted reclaim to try compaction? don't OOM, then */
2910 	if (sc->compaction_ready)
2911 		return 1;
2912 
2913 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2914 	if (sc->memcg_low_skipped) {
2915 		sc->priority = initial_priority;
2916 		sc->memcg_low_reclaim = 1;
2917 		sc->memcg_low_skipped = 0;
2918 		goto retry;
2919 	}
2920 
2921 	return 0;
2922 }
2923 
allow_direct_reclaim(pg_data_t * pgdat)2924 static bool allow_direct_reclaim(pg_data_t *pgdat)
2925 {
2926 	struct zone *zone;
2927 	unsigned long pfmemalloc_reserve = 0;
2928 	unsigned long free_pages = 0;
2929 	int i;
2930 	bool wmark_ok;
2931 
2932 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2933 		return true;
2934 
2935 	for (i = 0; i <= ZONE_NORMAL; i++) {
2936 		zone = &pgdat->node_zones[i];
2937 		if (!managed_zone(zone))
2938 			continue;
2939 
2940 		if (!zone_reclaimable_pages(zone))
2941 			continue;
2942 
2943 		pfmemalloc_reserve += min_wmark_pages(zone);
2944 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2945 	}
2946 
2947 	/* If there are no reserves (unexpected config) then do not throttle */
2948 	if (!pfmemalloc_reserve)
2949 		return true;
2950 
2951 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2952 
2953 	/* kswapd must be awake if processes are being throttled */
2954 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2955 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2956 						(enum zone_type)ZONE_NORMAL);
2957 		wake_up_interruptible(&pgdat->kswapd_wait);
2958 	}
2959 
2960 	return wmark_ok;
2961 }
2962 
2963 /*
2964  * Throttle direct reclaimers if backing storage is backed by the network
2965  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2966  * depleted. kswapd will continue to make progress and wake the processes
2967  * when the low watermark is reached.
2968  *
2969  * Returns true if a fatal signal was delivered during throttling. If this
2970  * happens, the page allocator should not consider triggering the OOM killer.
2971  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)2972 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2973 					nodemask_t *nodemask)
2974 {
2975 	struct zoneref *z;
2976 	struct zone *zone;
2977 	pg_data_t *pgdat = NULL;
2978 
2979 	/*
2980 	 * Kernel threads should not be throttled as they may be indirectly
2981 	 * responsible for cleaning pages necessary for reclaim to make forward
2982 	 * progress. kjournald for example may enter direct reclaim while
2983 	 * committing a transaction where throttling it could forcing other
2984 	 * processes to block on log_wait_commit().
2985 	 */
2986 	if (current->flags & PF_KTHREAD)
2987 		goto out;
2988 
2989 	/*
2990 	 * If a fatal signal is pending, this process should not throttle.
2991 	 * It should return quickly so it can exit and free its memory
2992 	 */
2993 	if (fatal_signal_pending(current))
2994 		goto out;
2995 
2996 	/*
2997 	 * Check if the pfmemalloc reserves are ok by finding the first node
2998 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2999 	 * GFP_KERNEL will be required for allocating network buffers when
3000 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3001 	 *
3002 	 * Throttling is based on the first usable node and throttled processes
3003 	 * wait on a queue until kswapd makes progress and wakes them. There
3004 	 * is an affinity then between processes waking up and where reclaim
3005 	 * progress has been made assuming the process wakes on the same node.
3006 	 * More importantly, processes running on remote nodes will not compete
3007 	 * for remote pfmemalloc reserves and processes on different nodes
3008 	 * should make reasonable progress.
3009 	 */
3010 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3011 					gfp_zone(gfp_mask), nodemask) {
3012 		if (zone_idx(zone) > ZONE_NORMAL)
3013 			continue;
3014 
3015 		/* Throttle based on the first usable node */
3016 		pgdat = zone->zone_pgdat;
3017 		if (allow_direct_reclaim(pgdat))
3018 			goto out;
3019 		break;
3020 	}
3021 
3022 	/* If no zone was usable by the allocation flags then do not throttle */
3023 	if (!pgdat)
3024 		goto out;
3025 
3026 	/* Account for the throttling */
3027 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3028 
3029 	/*
3030 	 * If the caller cannot enter the filesystem, it's possible that it
3031 	 * is due to the caller holding an FS lock or performing a journal
3032 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3033 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3034 	 * blocked waiting on the same lock. Instead, throttle for up to a
3035 	 * second before continuing.
3036 	 */
3037 	if (!(gfp_mask & __GFP_FS)) {
3038 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3039 			allow_direct_reclaim(pgdat), HZ);
3040 
3041 		goto check_pending;
3042 	}
3043 
3044 	/* Throttle until kswapd wakes the process */
3045 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3046 		allow_direct_reclaim(pgdat));
3047 
3048 check_pending:
3049 	if (fatal_signal_pending(current))
3050 		return true;
3051 
3052 out:
3053 	return false;
3054 }
3055 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3056 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3057 				gfp_t gfp_mask, nodemask_t *nodemask)
3058 {
3059 	unsigned long nr_reclaimed;
3060 	struct scan_control sc = {
3061 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3062 		.gfp_mask = current_gfp_context(gfp_mask),
3063 		.reclaim_idx = gfp_zone(gfp_mask),
3064 		.order = order,
3065 		.nodemask = nodemask,
3066 		.priority = DEF_PRIORITY,
3067 		.may_writepage = !laptop_mode,
3068 		.may_unmap = 1,
3069 		.may_swap = 1,
3070 	};
3071 
3072 	/*
3073 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3074 	 * 1 is returned so that the page allocator does not OOM kill at this
3075 	 * point.
3076 	 */
3077 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3078 		return 1;
3079 
3080 	trace_mm_vmscan_direct_reclaim_begin(order,
3081 				sc.may_writepage,
3082 				sc.gfp_mask,
3083 				sc.reclaim_idx);
3084 
3085 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3086 
3087 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3088 
3089 	return nr_reclaimed;
3090 }
3091 
3092 #ifdef CONFIG_MEMCG
3093 
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3094 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3095 						gfp_t gfp_mask, bool noswap,
3096 						pg_data_t *pgdat,
3097 						unsigned long *nr_scanned)
3098 {
3099 	struct scan_control sc = {
3100 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3101 		.target_mem_cgroup = memcg,
3102 		.may_writepage = !laptop_mode,
3103 		.may_unmap = 1,
3104 		.reclaim_idx = MAX_NR_ZONES - 1,
3105 		.may_swap = !noswap,
3106 	};
3107 	unsigned long lru_pages;
3108 
3109 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3110 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3111 
3112 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3113 						      sc.may_writepage,
3114 						      sc.gfp_mask,
3115 						      sc.reclaim_idx);
3116 
3117 	/*
3118 	 * NOTE: Although we can get the priority field, using it
3119 	 * here is not a good idea, since it limits the pages we can scan.
3120 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3121 	 * will pick up pages from other mem cgroup's as well. We hack
3122 	 * the priority and make it zero.
3123 	 */
3124 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3125 
3126 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3127 
3128 	*nr_scanned = sc.nr_scanned;
3129 	return sc.nr_reclaimed;
3130 }
3131 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3132 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3133 					   unsigned long nr_pages,
3134 					   gfp_t gfp_mask,
3135 					   bool may_swap)
3136 {
3137 	struct zonelist *zonelist;
3138 	unsigned long nr_reclaimed;
3139 	unsigned long pflags;
3140 	int nid;
3141 	unsigned int noreclaim_flag;
3142 	struct scan_control sc = {
3143 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3144 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3145 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3146 		.reclaim_idx = MAX_NR_ZONES - 1,
3147 		.target_mem_cgroup = memcg,
3148 		.priority = DEF_PRIORITY,
3149 		.may_writepage = !laptop_mode,
3150 		.may_unmap = 1,
3151 		.may_swap = may_swap,
3152 	};
3153 
3154 	/*
3155 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3156 	 * take care of from where we get pages. So the node where we start the
3157 	 * scan does not need to be the current node.
3158 	 */
3159 	nid = mem_cgroup_select_victim_node(memcg);
3160 
3161 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3162 
3163 	trace_mm_vmscan_memcg_reclaim_begin(0,
3164 					    sc.may_writepage,
3165 					    sc.gfp_mask,
3166 					    sc.reclaim_idx);
3167 
3168 	psi_memstall_enter(&pflags);
3169 	noreclaim_flag = memalloc_noreclaim_save();
3170 
3171 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3172 
3173 	memalloc_noreclaim_restore(noreclaim_flag);
3174 	psi_memstall_leave(&pflags);
3175 
3176 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3177 
3178 	return nr_reclaimed;
3179 }
3180 #endif
3181 
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3182 static void age_active_anon(struct pglist_data *pgdat,
3183 				struct scan_control *sc)
3184 {
3185 	struct mem_cgroup *memcg;
3186 
3187 	if (!total_swap_pages)
3188 		return;
3189 
3190 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3191 	do {
3192 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3193 
3194 		if (inactive_list_is_low(lruvec, false, sc, true))
3195 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3196 					   sc, LRU_ACTIVE_ANON);
3197 
3198 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3199 	} while (memcg);
3200 }
3201 
3202 /*
3203  * Returns true if there is an eligible zone balanced for the request order
3204  * and classzone_idx
3205  */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)3206 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3207 {
3208 	int i;
3209 	unsigned long mark = -1;
3210 	struct zone *zone;
3211 
3212 	for (i = 0; i <= classzone_idx; i++) {
3213 		zone = pgdat->node_zones + i;
3214 
3215 		if (!managed_zone(zone))
3216 			continue;
3217 
3218 		mark = high_wmark_pages(zone);
3219 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3220 			return true;
3221 	}
3222 
3223 	/*
3224 	 * If a node has no populated zone within classzone_idx, it does not
3225 	 * need balancing by definition. This can happen if a zone-restricted
3226 	 * allocation tries to wake a remote kswapd.
3227 	 */
3228 	if (mark == -1)
3229 		return true;
3230 
3231 	return false;
3232 }
3233 
3234 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3235 static void clear_pgdat_congested(pg_data_t *pgdat)
3236 {
3237 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3238 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3239 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3240 }
3241 
3242 /*
3243  * Prepare kswapd for sleeping. This verifies that there are no processes
3244  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3245  *
3246  * Returns true if kswapd is ready to sleep
3247  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int classzone_idx)3248 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3249 {
3250 	/*
3251 	 * The throttled processes are normally woken up in balance_pgdat() as
3252 	 * soon as allow_direct_reclaim() is true. But there is a potential
3253 	 * race between when kswapd checks the watermarks and a process gets
3254 	 * throttled. There is also a potential race if processes get
3255 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3256 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3257 	 * the wake up checks. If kswapd is going to sleep, no process should
3258 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3259 	 * the wake up is premature, processes will wake kswapd and get
3260 	 * throttled again. The difference from wake ups in balance_pgdat() is
3261 	 * that here we are under prepare_to_wait().
3262 	 */
3263 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3264 		wake_up_all(&pgdat->pfmemalloc_wait);
3265 
3266 	/* Hopeless node, leave it to direct reclaim */
3267 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3268 		return true;
3269 
3270 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3271 		clear_pgdat_congested(pgdat);
3272 		return true;
3273 	}
3274 
3275 	return false;
3276 }
3277 
3278 /*
3279  * kswapd shrinks a node of pages that are at or below the highest usable
3280  * zone that is currently unbalanced.
3281  *
3282  * Returns true if kswapd scanned at least the requested number of pages to
3283  * reclaim or if the lack of progress was due to pages under writeback.
3284  * This is used to determine if the scanning priority needs to be raised.
3285  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3286 static bool kswapd_shrink_node(pg_data_t *pgdat,
3287 			       struct scan_control *sc)
3288 {
3289 	struct zone *zone;
3290 	int z;
3291 
3292 	/* Reclaim a number of pages proportional to the number of zones */
3293 	sc->nr_to_reclaim = 0;
3294 	for (z = 0; z <= sc->reclaim_idx; z++) {
3295 		zone = pgdat->node_zones + z;
3296 		if (!managed_zone(zone))
3297 			continue;
3298 
3299 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3300 	}
3301 
3302 	/*
3303 	 * Historically care was taken to put equal pressure on all zones but
3304 	 * now pressure is applied based on node LRU order.
3305 	 */
3306 	shrink_node(pgdat, sc);
3307 
3308 	/*
3309 	 * Fragmentation may mean that the system cannot be rebalanced for
3310 	 * high-order allocations. If twice the allocation size has been
3311 	 * reclaimed then recheck watermarks only at order-0 to prevent
3312 	 * excessive reclaim. Assume that a process requested a high-order
3313 	 * can direct reclaim/compact.
3314 	 */
3315 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3316 		sc->order = 0;
3317 
3318 	return sc->nr_scanned >= sc->nr_to_reclaim;
3319 }
3320 
3321 /*
3322  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3323  * that are eligible for use by the caller until at least one zone is
3324  * balanced.
3325  *
3326  * Returns the order kswapd finished reclaiming at.
3327  *
3328  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3329  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3330  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3331  * or lower is eligible for reclaim until at least one usable zone is
3332  * balanced.
3333  */
balance_pgdat(pg_data_t * pgdat,int order,int classzone_idx)3334 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3335 {
3336 	int i;
3337 	unsigned long nr_soft_reclaimed;
3338 	unsigned long nr_soft_scanned;
3339 	unsigned long pflags;
3340 	struct zone *zone;
3341 	struct scan_control sc = {
3342 		.gfp_mask = GFP_KERNEL,
3343 		.order = order,
3344 		.priority = DEF_PRIORITY,
3345 		.may_writepage = !laptop_mode,
3346 		.may_unmap = 1,
3347 		.may_swap = 1,
3348 	};
3349 	psi_memstall_enter(&pflags);
3350 	count_vm_event(PAGEOUTRUN);
3351 
3352 	do {
3353 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3354 		bool raise_priority = true;
3355 
3356 		sc.reclaim_idx = classzone_idx;
3357 
3358 		/*
3359 		 * If the number of buffer_heads exceeds the maximum allowed
3360 		 * then consider reclaiming from all zones. This has a dual
3361 		 * purpose -- on 64-bit systems it is expected that
3362 		 * buffer_heads are stripped during active rotation. On 32-bit
3363 		 * systems, highmem pages can pin lowmem memory and shrinking
3364 		 * buffers can relieve lowmem pressure. Reclaim may still not
3365 		 * go ahead if all eligible zones for the original allocation
3366 		 * request are balanced to avoid excessive reclaim from kswapd.
3367 		 */
3368 		if (buffer_heads_over_limit) {
3369 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3370 				zone = pgdat->node_zones + i;
3371 				if (!managed_zone(zone))
3372 					continue;
3373 
3374 				sc.reclaim_idx = i;
3375 				break;
3376 			}
3377 		}
3378 
3379 		/*
3380 		 * Only reclaim if there are no eligible zones. Note that
3381 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3382 		 * have adjusted it.
3383 		 */
3384 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3385 			goto out;
3386 
3387 		/*
3388 		 * Do some background aging of the anon list, to give
3389 		 * pages a chance to be referenced before reclaiming. All
3390 		 * pages are rotated regardless of classzone as this is
3391 		 * about consistent aging.
3392 		 */
3393 		age_active_anon(pgdat, &sc);
3394 
3395 		/*
3396 		 * If we're getting trouble reclaiming, start doing writepage
3397 		 * even in laptop mode.
3398 		 */
3399 		if (sc.priority < DEF_PRIORITY - 2)
3400 			sc.may_writepage = 1;
3401 
3402 		/* Call soft limit reclaim before calling shrink_node. */
3403 		sc.nr_scanned = 0;
3404 		nr_soft_scanned = 0;
3405 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3406 						sc.gfp_mask, &nr_soft_scanned);
3407 		sc.nr_reclaimed += nr_soft_reclaimed;
3408 
3409 		/*
3410 		 * There should be no need to raise the scanning priority if
3411 		 * enough pages are already being scanned that that high
3412 		 * watermark would be met at 100% efficiency.
3413 		 */
3414 		if (kswapd_shrink_node(pgdat, &sc))
3415 			raise_priority = false;
3416 
3417 		/*
3418 		 * If the low watermark is met there is no need for processes
3419 		 * to be throttled on pfmemalloc_wait as they should not be
3420 		 * able to safely make forward progress. Wake them
3421 		 */
3422 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3423 				allow_direct_reclaim(pgdat))
3424 			wake_up_all(&pgdat->pfmemalloc_wait);
3425 
3426 		/* Check if kswapd should be suspending */
3427 		if (try_to_freeze() || kthread_should_stop())
3428 			break;
3429 
3430 		/*
3431 		 * Raise priority if scanning rate is too low or there was no
3432 		 * progress in reclaiming pages
3433 		 */
3434 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3435 		if (raise_priority || !nr_reclaimed)
3436 			sc.priority--;
3437 	} while (sc.priority >= 1);
3438 
3439 	if (!sc.nr_reclaimed)
3440 		pgdat->kswapd_failures++;
3441 
3442 out:
3443 	snapshot_refaults(NULL, pgdat);
3444 	psi_memstall_leave(&pflags);
3445 	/*
3446 	 * Return the order kswapd stopped reclaiming at as
3447 	 * prepare_kswapd_sleep() takes it into account. If another caller
3448 	 * entered the allocator slow path while kswapd was awake, order will
3449 	 * remain at the higher level.
3450 	 */
3451 	return sc.order;
3452 }
3453 
3454 /*
3455  * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3456  * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3457  * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3458  * after previous reclaim attempt (node is still unbalanced). In that case
3459  * return the zone index of the previous kswapd reclaim cycle.
3460  */
kswapd_classzone_idx(pg_data_t * pgdat,enum zone_type prev_classzone_idx)3461 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3462 					   enum zone_type prev_classzone_idx)
3463 {
3464 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3465 		return prev_classzone_idx;
3466 	return pgdat->kswapd_classzone_idx;
3467 }
3468 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int classzone_idx)3469 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3470 				unsigned int classzone_idx)
3471 {
3472 	long remaining = 0;
3473 	DEFINE_WAIT(wait);
3474 
3475 	if (freezing(current) || kthread_should_stop())
3476 		return;
3477 
3478 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3479 
3480 	/*
3481 	 * Try to sleep for a short interval. Note that kcompactd will only be
3482 	 * woken if it is possible to sleep for a short interval. This is
3483 	 * deliberate on the assumption that if reclaim cannot keep an
3484 	 * eligible zone balanced that it's also unlikely that compaction will
3485 	 * succeed.
3486 	 */
3487 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3488 		/*
3489 		 * Compaction records what page blocks it recently failed to
3490 		 * isolate pages from and skips them in the future scanning.
3491 		 * When kswapd is going to sleep, it is reasonable to assume
3492 		 * that pages and compaction may succeed so reset the cache.
3493 		 */
3494 		reset_isolation_suitable(pgdat);
3495 
3496 		/*
3497 		 * We have freed the memory, now we should compact it to make
3498 		 * allocation of the requested order possible.
3499 		 */
3500 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3501 
3502 		remaining = schedule_timeout(HZ/10);
3503 
3504 		/*
3505 		 * If woken prematurely then reset kswapd_classzone_idx and
3506 		 * order. The values will either be from a wakeup request or
3507 		 * the previous request that slept prematurely.
3508 		 */
3509 		if (remaining) {
3510 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3511 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3512 		}
3513 
3514 		finish_wait(&pgdat->kswapd_wait, &wait);
3515 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3516 	}
3517 
3518 	/*
3519 	 * After a short sleep, check if it was a premature sleep. If not, then
3520 	 * go fully to sleep until explicitly woken up.
3521 	 */
3522 	if (!remaining &&
3523 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3524 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3525 
3526 		/*
3527 		 * vmstat counters are not perfectly accurate and the estimated
3528 		 * value for counters such as NR_FREE_PAGES can deviate from the
3529 		 * true value by nr_online_cpus * threshold. To avoid the zone
3530 		 * watermarks being breached while under pressure, we reduce the
3531 		 * per-cpu vmstat threshold while kswapd is awake and restore
3532 		 * them before going back to sleep.
3533 		 */
3534 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3535 
3536 		if (!kthread_should_stop())
3537 			schedule();
3538 
3539 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3540 	} else {
3541 		if (remaining)
3542 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3543 		else
3544 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3545 	}
3546 	finish_wait(&pgdat->kswapd_wait, &wait);
3547 }
3548 
3549 /*
3550  * The background pageout daemon, started as a kernel thread
3551  * from the init process.
3552  *
3553  * This basically trickles out pages so that we have _some_
3554  * free memory available even if there is no other activity
3555  * that frees anything up. This is needed for things like routing
3556  * etc, where we otherwise might have all activity going on in
3557  * asynchronous contexts that cannot page things out.
3558  *
3559  * If there are applications that are active memory-allocators
3560  * (most normal use), this basically shouldn't matter.
3561  */
kswapd(void * p)3562 static int kswapd(void *p)
3563 {
3564 	unsigned int alloc_order, reclaim_order;
3565 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3566 	pg_data_t *pgdat = (pg_data_t*)p;
3567 	struct task_struct *tsk = current;
3568 
3569 	struct reclaim_state reclaim_state = {
3570 		.reclaimed_slab = 0,
3571 	};
3572 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3573 
3574 	if (!cpumask_empty(cpumask))
3575 		set_cpus_allowed_ptr(tsk, cpumask);
3576 	current->reclaim_state = &reclaim_state;
3577 
3578 	/*
3579 	 * Tell the memory management that we're a "memory allocator",
3580 	 * and that if we need more memory we should get access to it
3581 	 * regardless (see "__alloc_pages()"). "kswapd" should
3582 	 * never get caught in the normal page freeing logic.
3583 	 *
3584 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3585 	 * you need a small amount of memory in order to be able to
3586 	 * page out something else, and this flag essentially protects
3587 	 * us from recursively trying to free more memory as we're
3588 	 * trying to free the first piece of memory in the first place).
3589 	 */
3590 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3591 	set_freezable();
3592 
3593 	pgdat->kswapd_order = 0;
3594 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3595 	for ( ; ; ) {
3596 		bool ret;
3597 
3598 		alloc_order = reclaim_order = pgdat->kswapd_order;
3599 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3600 
3601 kswapd_try_sleep:
3602 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3603 					classzone_idx);
3604 
3605 		/* Read the new order and classzone_idx */
3606 		alloc_order = reclaim_order = pgdat->kswapd_order;
3607 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3608 		pgdat->kswapd_order = 0;
3609 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3610 
3611 		ret = try_to_freeze();
3612 		if (kthread_should_stop())
3613 			break;
3614 
3615 		/*
3616 		 * We can speed up thawing tasks if we don't call balance_pgdat
3617 		 * after returning from the refrigerator
3618 		 */
3619 		if (ret)
3620 			continue;
3621 
3622 		/*
3623 		 * Reclaim begins at the requested order but if a high-order
3624 		 * reclaim fails then kswapd falls back to reclaiming for
3625 		 * order-0. If that happens, kswapd will consider sleeping
3626 		 * for the order it finished reclaiming at (reclaim_order)
3627 		 * but kcompactd is woken to compact for the original
3628 		 * request (alloc_order).
3629 		 */
3630 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3631 						alloc_order);
3632 		fs_reclaim_acquire(GFP_KERNEL);
3633 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3634 		fs_reclaim_release(GFP_KERNEL);
3635 		if (reclaim_order < alloc_order)
3636 			goto kswapd_try_sleep;
3637 	}
3638 
3639 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3640 	current->reclaim_state = NULL;
3641 
3642 	return 0;
3643 }
3644 
3645 /*
3646  * A zone is low on free memory, so wake its kswapd task to service it.
3647  */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3648 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3649 {
3650 	pg_data_t *pgdat;
3651 
3652 	if (!managed_zone(zone))
3653 		return;
3654 
3655 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3656 		return;
3657 	pgdat = zone->zone_pgdat;
3658 
3659 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3660 		pgdat->kswapd_classzone_idx = classzone_idx;
3661 	else
3662 		pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3663 						  classzone_idx);
3664 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3665 	if (!waitqueue_active(&pgdat->kswapd_wait))
3666 		return;
3667 
3668 	/* Hopeless node, leave it to direct reclaim */
3669 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3670 		return;
3671 
3672 	if (pgdat_balanced(pgdat, order, classzone_idx))
3673 		return;
3674 
3675 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3676 	wake_up_interruptible(&pgdat->kswapd_wait);
3677 }
3678 
3679 #ifdef CONFIG_HIBERNATION
3680 /*
3681  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3682  * freed pages.
3683  *
3684  * Rather than trying to age LRUs the aim is to preserve the overall
3685  * LRU order by reclaiming preferentially
3686  * inactive > active > active referenced > active mapped
3687  */
shrink_all_memory(unsigned long nr_to_reclaim)3688 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3689 {
3690 	struct reclaim_state reclaim_state;
3691 	struct scan_control sc = {
3692 		.nr_to_reclaim = nr_to_reclaim,
3693 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3694 		.reclaim_idx = MAX_NR_ZONES - 1,
3695 		.priority = DEF_PRIORITY,
3696 		.may_writepage = 1,
3697 		.may_unmap = 1,
3698 		.may_swap = 1,
3699 		.hibernation_mode = 1,
3700 	};
3701 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3702 	struct task_struct *p = current;
3703 	unsigned long nr_reclaimed;
3704 	unsigned int noreclaim_flag;
3705 
3706 	noreclaim_flag = memalloc_noreclaim_save();
3707 	fs_reclaim_acquire(sc.gfp_mask);
3708 	reclaim_state.reclaimed_slab = 0;
3709 	p->reclaim_state = &reclaim_state;
3710 
3711 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3712 
3713 	p->reclaim_state = NULL;
3714 	fs_reclaim_release(sc.gfp_mask);
3715 	memalloc_noreclaim_restore(noreclaim_flag);
3716 
3717 	return nr_reclaimed;
3718 }
3719 #endif /* CONFIG_HIBERNATION */
3720 
3721 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3722    not required for correctness.  So if the last cpu in a node goes
3723    away, we get changed to run anywhere: as the first one comes back,
3724    restore their cpu bindings. */
kswapd_cpu_online(unsigned int cpu)3725 static int kswapd_cpu_online(unsigned int cpu)
3726 {
3727 	int nid;
3728 
3729 	for_each_node_state(nid, N_MEMORY) {
3730 		pg_data_t *pgdat = NODE_DATA(nid);
3731 		const struct cpumask *mask;
3732 
3733 		mask = cpumask_of_node(pgdat->node_id);
3734 
3735 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3736 			/* One of our CPUs online: restore mask */
3737 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3738 	}
3739 	return 0;
3740 }
3741 
3742 /*
3743  * This kswapd start function will be called by init and node-hot-add.
3744  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3745  */
kswapd_run(int nid)3746 int kswapd_run(int nid)
3747 {
3748 	pg_data_t *pgdat = NODE_DATA(nid);
3749 	int ret = 0;
3750 
3751 	if (pgdat->kswapd)
3752 		return 0;
3753 
3754 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3755 	if (IS_ERR(pgdat->kswapd)) {
3756 		/* failure at boot is fatal */
3757 		BUG_ON(system_state < SYSTEM_RUNNING);
3758 		pr_err("Failed to start kswapd on node %d\n", nid);
3759 		ret = PTR_ERR(pgdat->kswapd);
3760 		pgdat->kswapd = NULL;
3761 	}
3762 	return ret;
3763 }
3764 
3765 /*
3766  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3767  * hold mem_hotplug_begin/end().
3768  */
kswapd_stop(int nid)3769 void kswapd_stop(int nid)
3770 {
3771 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3772 
3773 	if (kswapd) {
3774 		kthread_stop(kswapd);
3775 		NODE_DATA(nid)->kswapd = NULL;
3776 	}
3777 }
3778 
kswapd_init(void)3779 static int __init kswapd_init(void)
3780 {
3781 	int nid, ret;
3782 
3783 	swap_setup();
3784 	for_each_node_state(nid, N_MEMORY)
3785  		kswapd_run(nid);
3786 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3787 					"mm/vmscan:online", kswapd_cpu_online,
3788 					NULL);
3789 	WARN_ON(ret < 0);
3790 	return 0;
3791 }
3792 
3793 module_init(kswapd_init)
3794 
3795 #ifdef CONFIG_NUMA
3796 /*
3797  * Node reclaim mode
3798  *
3799  * If non-zero call node_reclaim when the number of free pages falls below
3800  * the watermarks.
3801  */
3802 int node_reclaim_mode __read_mostly;
3803 
3804 #define RECLAIM_OFF 0
3805 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3806 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3807 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3808 
3809 /*
3810  * Priority for NODE_RECLAIM. This determines the fraction of pages
3811  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3812  * a zone.
3813  */
3814 #define NODE_RECLAIM_PRIORITY 4
3815 
3816 /*
3817  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3818  * occur.
3819  */
3820 int sysctl_min_unmapped_ratio = 1;
3821 
3822 /*
3823  * If the number of slab pages in a zone grows beyond this percentage then
3824  * slab reclaim needs to occur.
3825  */
3826 int sysctl_min_slab_ratio = 5;
3827 
node_unmapped_file_pages(struct pglist_data * pgdat)3828 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3829 {
3830 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3831 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3832 		node_page_state(pgdat, NR_ACTIVE_FILE);
3833 
3834 	/*
3835 	 * It's possible for there to be more file mapped pages than
3836 	 * accounted for by the pages on the file LRU lists because
3837 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3838 	 */
3839 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3840 }
3841 
3842 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)3843 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3844 {
3845 	unsigned long nr_pagecache_reclaimable;
3846 	unsigned long delta = 0;
3847 
3848 	/*
3849 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3850 	 * potentially reclaimable. Otherwise, we have to worry about
3851 	 * pages like swapcache and node_unmapped_file_pages() provides
3852 	 * a better estimate
3853 	 */
3854 	if (node_reclaim_mode & RECLAIM_UNMAP)
3855 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3856 	else
3857 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3858 
3859 	/* If we can't clean pages, remove dirty pages from consideration */
3860 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3861 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3862 
3863 	/* Watch for any possible underflows due to delta */
3864 	if (unlikely(delta > nr_pagecache_reclaimable))
3865 		delta = nr_pagecache_reclaimable;
3866 
3867 	return nr_pagecache_reclaimable - delta;
3868 }
3869 
3870 /*
3871  * Try to free up some pages from this node through reclaim.
3872  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)3873 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3874 {
3875 	/* Minimum pages needed in order to stay on node */
3876 	const unsigned long nr_pages = 1 << order;
3877 	struct task_struct *p = current;
3878 	struct reclaim_state reclaim_state;
3879 	unsigned int noreclaim_flag;
3880 	struct scan_control sc = {
3881 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3882 		.gfp_mask = current_gfp_context(gfp_mask),
3883 		.order = order,
3884 		.priority = NODE_RECLAIM_PRIORITY,
3885 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3886 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3887 		.may_swap = 1,
3888 		.reclaim_idx = gfp_zone(gfp_mask),
3889 	};
3890 
3891 	cond_resched();
3892 	/*
3893 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3894 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3895 	 * and RECLAIM_UNMAP.
3896 	 */
3897 	noreclaim_flag = memalloc_noreclaim_save();
3898 	p->flags |= PF_SWAPWRITE;
3899 	fs_reclaim_acquire(sc.gfp_mask);
3900 	reclaim_state.reclaimed_slab = 0;
3901 	p->reclaim_state = &reclaim_state;
3902 
3903 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3904 		/*
3905 		 * Free memory by calling shrink zone with increasing
3906 		 * priorities until we have enough memory freed.
3907 		 */
3908 		do {
3909 			shrink_node(pgdat, &sc);
3910 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3911 	}
3912 
3913 	p->reclaim_state = NULL;
3914 	fs_reclaim_release(gfp_mask);
3915 	current->flags &= ~PF_SWAPWRITE;
3916 	memalloc_noreclaim_restore(noreclaim_flag);
3917 	return sc.nr_reclaimed >= nr_pages;
3918 }
3919 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)3920 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3921 {
3922 	int ret;
3923 
3924 	/*
3925 	 * Node reclaim reclaims unmapped file backed pages and
3926 	 * slab pages if we are over the defined limits.
3927 	 *
3928 	 * A small portion of unmapped file backed pages is needed for
3929 	 * file I/O otherwise pages read by file I/O will be immediately
3930 	 * thrown out if the node is overallocated. So we do not reclaim
3931 	 * if less than a specified percentage of the node is used by
3932 	 * unmapped file backed pages.
3933 	 */
3934 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3935 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3936 		return NODE_RECLAIM_FULL;
3937 
3938 	/*
3939 	 * Do not scan if the allocation should not be delayed.
3940 	 */
3941 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3942 		return NODE_RECLAIM_NOSCAN;
3943 
3944 	/*
3945 	 * Only run node reclaim on the local node or on nodes that do not
3946 	 * have associated processors. This will favor the local processor
3947 	 * over remote processors and spread off node memory allocations
3948 	 * as wide as possible.
3949 	 */
3950 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3951 		return NODE_RECLAIM_NOSCAN;
3952 
3953 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3954 		return NODE_RECLAIM_NOSCAN;
3955 
3956 	ret = __node_reclaim(pgdat, gfp_mask, order);
3957 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3958 
3959 	if (!ret)
3960 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3961 
3962 	return ret;
3963 }
3964 #endif
3965 
3966 /*
3967  * page_evictable - test whether a page is evictable
3968  * @page: the page to test
3969  *
3970  * Test whether page is evictable--i.e., should be placed on active/inactive
3971  * lists vs unevictable list.
3972  *
3973  * Reasons page might not be evictable:
3974  * (1) page's mapping marked unevictable
3975  * (2) page is part of an mlocked VMA
3976  *
3977  */
page_evictable(struct page * page)3978 int page_evictable(struct page *page)
3979 {
3980 	int ret;
3981 
3982 	/* Prevent address_space of inode and swap cache from being freed */
3983 	rcu_read_lock();
3984 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3985 	rcu_read_unlock();
3986 	return ret;
3987 }
3988 
3989 #ifdef CONFIG_SHMEM
3990 /**
3991  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3992  * @pages:	array of pages to check
3993  * @nr_pages:	number of pages to check
3994  *
3995  * Checks pages for evictability and moves them to the appropriate lru list.
3996  *
3997  * This function is only used for SysV IPC SHM_UNLOCK.
3998  */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3999 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4000 {
4001 	struct lruvec *lruvec;
4002 	struct pglist_data *pgdat = NULL;
4003 	int pgscanned = 0;
4004 	int pgrescued = 0;
4005 	int i;
4006 
4007 	for (i = 0; i < nr_pages; i++) {
4008 		struct page *page = pages[i];
4009 		struct pglist_data *pagepgdat = page_pgdat(page);
4010 
4011 		pgscanned++;
4012 		if (pagepgdat != pgdat) {
4013 			if (pgdat)
4014 				spin_unlock_irq(&pgdat->lru_lock);
4015 			pgdat = pagepgdat;
4016 			spin_lock_irq(&pgdat->lru_lock);
4017 		}
4018 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4019 
4020 		if (!PageLRU(page) || !PageUnevictable(page))
4021 			continue;
4022 
4023 		if (page_evictable(page)) {
4024 			enum lru_list lru = page_lru_base_type(page);
4025 
4026 			VM_BUG_ON_PAGE(PageActive(page), page);
4027 			ClearPageUnevictable(page);
4028 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4029 			add_page_to_lru_list(page, lruvec, lru);
4030 			pgrescued++;
4031 		}
4032 	}
4033 
4034 	if (pgdat) {
4035 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4036 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4037 		spin_unlock_irq(&pgdat->lru_lock);
4038 	}
4039 }
4040 #endif /* CONFIG_SHMEM */
4041