1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59
60 #include "internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64
65 struct scan_control {
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 /* Allocation order */
73 int order;
74
75 /*
76 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * are scanned.
78 */
79 nodemask_t *nodemask;
80
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
86
87 /* Scan (total_size >> priority) pages at once */
88 int priority;
89
90 /* The highest zone to isolate pages for reclaim from */
91 enum zone_type reclaim_idx;
92
93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
109
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
115 /* Incremented by the number of inactive pages that were scanned */
116 unsigned long nr_scanned;
117
118 /* Number of pages freed so far during a call to shrink_zones() */
119 unsigned long nr_reclaimed;
120 };
121
122 #ifdef ARCH_HAS_PREFETCH
123 #define prefetch_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetch(&prev->_field); \
130 } \
131 } while (0)
132 #else
133 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
134 #endif
135
136 #ifdef ARCH_HAS_PREFETCHW
137 #define prefetchw_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetchw(&prev->_field); \
144 } \
145 } while (0)
146 #else
147 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149
150 /*
151 * From 0 .. 100. Higher means more swappy.
152 */
153 int vm_swappiness = 60;
154 /*
155 * The total number of pages which are beyond the high watermark within all
156 * zones.
157 */
158 unsigned long vm_total_pages;
159
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
162
163 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)164 static bool global_reclaim(struct scan_control *sc)
165 {
166 return !sc->target_mem_cgroup;
167 }
168
169 /**
170 * sane_reclaim - is the usual dirty throttling mechanism operational?
171 * @sc: scan_control in question
172 *
173 * The normal page dirty throttling mechanism in balance_dirty_pages() is
174 * completely broken with the legacy memcg and direct stalling in
175 * shrink_page_list() is used for throttling instead, which lacks all the
176 * niceties such as fairness, adaptive pausing, bandwidth proportional
177 * allocation and configurability.
178 *
179 * This function tests whether the vmscan currently in progress can assume
180 * that the normal dirty throttling mechanism is operational.
181 */
sane_reclaim(struct scan_control * sc)182 static bool sane_reclaim(struct scan_control *sc)
183 {
184 struct mem_cgroup *memcg = sc->target_mem_cgroup;
185
186 if (!memcg)
187 return true;
188 #ifdef CONFIG_CGROUP_WRITEBACK
189 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
190 return true;
191 #endif
192 return false;
193 }
194 #else
global_reclaim(struct scan_control * sc)195 static bool global_reclaim(struct scan_control *sc)
196 {
197 return true;
198 }
199
sane_reclaim(struct scan_control * sc)200 static bool sane_reclaim(struct scan_control *sc)
201 {
202 return true;
203 }
204 #endif
205
206 /*
207 * This misses isolated pages which are not accounted for to save counters.
208 * As the data only determines if reclaim or compaction continues, it is
209 * not expected that isolated pages will be a dominating factor.
210 */
zone_reclaimable_pages(struct zone * zone)211 unsigned long zone_reclaimable_pages(struct zone *zone)
212 {
213 unsigned long nr;
214
215 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
216 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
217 if (get_nr_swap_pages() > 0)
218 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
219 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
220
221 return nr;
222 }
223
pgdat_reclaimable_pages(struct pglist_data * pgdat)224 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
225 {
226 unsigned long nr;
227
228 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
230 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
231
232 if (get_nr_swap_pages() > 0)
233 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
235 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
236
237 return nr;
238 }
239
240 /**
241 * lruvec_lru_size - Returns the number of pages on the given LRU list.
242 * @lruvec: lru vector
243 * @lru: lru to use
244 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
245 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)246 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
247 {
248 unsigned long lru_size;
249 int zid;
250
251 if (!mem_cgroup_disabled())
252 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
253 else
254 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
255
256 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
257 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
258 unsigned long size;
259
260 if (!managed_zone(zone))
261 continue;
262
263 if (!mem_cgroup_disabled())
264 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
265 else
266 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
267 NR_ZONE_LRU_BASE + lru);
268 lru_size -= min(size, lru_size);
269 }
270
271 return lru_size;
272
273 }
274
275 /*
276 * Add a shrinker callback to be called from the vm.
277 */
register_shrinker(struct shrinker * shrinker)278 int register_shrinker(struct shrinker *shrinker)
279 {
280 size_t size = sizeof(*shrinker->nr_deferred);
281
282 if (shrinker->flags & SHRINKER_NUMA_AWARE)
283 size *= nr_node_ids;
284
285 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
286 if (!shrinker->nr_deferred)
287 return -ENOMEM;
288
289 down_write(&shrinker_rwsem);
290 list_add_tail(&shrinker->list, &shrinker_list);
291 up_write(&shrinker_rwsem);
292 return 0;
293 }
294 EXPORT_SYMBOL(register_shrinker);
295
296 /*
297 * Remove one
298 */
unregister_shrinker(struct shrinker * shrinker)299 void unregister_shrinker(struct shrinker *shrinker)
300 {
301 if (!shrinker->nr_deferred)
302 return;
303 down_write(&shrinker_rwsem);
304 list_del(&shrinker->list);
305 up_write(&shrinker_rwsem);
306 kfree(shrinker->nr_deferred);
307 shrinker->nr_deferred = NULL;
308 }
309 EXPORT_SYMBOL(unregister_shrinker);
310
311 #define SHRINK_BATCH 128
312
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,unsigned long nr_scanned,unsigned long nr_eligible)313 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
314 struct shrinker *shrinker,
315 unsigned long nr_scanned,
316 unsigned long nr_eligible)
317 {
318 unsigned long freed = 0;
319 unsigned long long delta;
320 long total_scan;
321 long freeable;
322 long nr;
323 long new_nr;
324 int nid = shrinkctl->nid;
325 long batch_size = shrinker->batch ? shrinker->batch
326 : SHRINK_BATCH;
327 long scanned = 0, next_deferred;
328
329 freeable = shrinker->count_objects(shrinker, shrinkctl);
330 if (freeable == 0)
331 return 0;
332
333 /*
334 * copy the current shrinker scan count into a local variable
335 * and zero it so that other concurrent shrinker invocations
336 * don't also do this scanning work.
337 */
338 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
339
340 total_scan = nr;
341 delta = (4 * nr_scanned) / shrinker->seeks;
342 delta *= freeable;
343 do_div(delta, nr_eligible + 1);
344 total_scan += delta;
345 if (total_scan < 0) {
346 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
347 shrinker->scan_objects, total_scan);
348 total_scan = freeable;
349 next_deferred = nr;
350 } else
351 next_deferred = total_scan;
352
353 /*
354 * We need to avoid excessive windup on filesystem shrinkers
355 * due to large numbers of GFP_NOFS allocations causing the
356 * shrinkers to return -1 all the time. This results in a large
357 * nr being built up so when a shrink that can do some work
358 * comes along it empties the entire cache due to nr >>>
359 * freeable. This is bad for sustaining a working set in
360 * memory.
361 *
362 * Hence only allow the shrinker to scan the entire cache when
363 * a large delta change is calculated directly.
364 */
365 if (delta < freeable / 4)
366 total_scan = min(total_scan, freeable / 2);
367
368 /*
369 * Avoid risking looping forever due to too large nr value:
370 * never try to free more than twice the estimate number of
371 * freeable entries.
372 */
373 if (total_scan > freeable * 2)
374 total_scan = freeable * 2;
375
376 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
377 nr_scanned, nr_eligible,
378 freeable, delta, total_scan);
379
380 /*
381 * Normally, we should not scan less than batch_size objects in one
382 * pass to avoid too frequent shrinker calls, but if the slab has less
383 * than batch_size objects in total and we are really tight on memory,
384 * we will try to reclaim all available objects, otherwise we can end
385 * up failing allocations although there are plenty of reclaimable
386 * objects spread over several slabs with usage less than the
387 * batch_size.
388 *
389 * We detect the "tight on memory" situations by looking at the total
390 * number of objects we want to scan (total_scan). If it is greater
391 * than the total number of objects on slab (freeable), we must be
392 * scanning at high prio and therefore should try to reclaim as much as
393 * possible.
394 */
395 while (total_scan >= batch_size ||
396 total_scan >= freeable) {
397 unsigned long ret;
398 unsigned long nr_to_scan = min(batch_size, total_scan);
399
400 shrinkctl->nr_to_scan = nr_to_scan;
401 shrinkctl->nr_scanned = nr_to_scan;
402 ret = shrinker->scan_objects(shrinker, shrinkctl);
403 if (ret == SHRINK_STOP)
404 break;
405 freed += ret;
406
407 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
408 total_scan -= shrinkctl->nr_scanned;
409 scanned += shrinkctl->nr_scanned;
410
411 cond_resched();
412 }
413
414 if (next_deferred >= scanned)
415 next_deferred -= scanned;
416 else
417 next_deferred = 0;
418 /*
419 * move the unused scan count back into the shrinker in a
420 * manner that handles concurrent updates. If we exhausted the
421 * scan, there is no need to do an update.
422 */
423 if (next_deferred > 0)
424 new_nr = atomic_long_add_return(next_deferred,
425 &shrinker->nr_deferred[nid]);
426 else
427 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
428
429 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
430 return freed;
431 }
432
433 /**
434 * shrink_slab - shrink slab caches
435 * @gfp_mask: allocation context
436 * @nid: node whose slab caches to target
437 * @memcg: memory cgroup whose slab caches to target
438 * @nr_scanned: pressure numerator
439 * @nr_eligible: pressure denominator
440 *
441 * Call the shrink functions to age shrinkable caches.
442 *
443 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
444 * unaware shrinkers will receive a node id of 0 instead.
445 *
446 * @memcg specifies the memory cgroup to target. If it is not NULL,
447 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
448 * objects from the memory cgroup specified. Otherwise, only unaware
449 * shrinkers are called.
450 *
451 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
452 * the available objects should be scanned. Page reclaim for example
453 * passes the number of pages scanned and the number of pages on the
454 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
455 * when it encountered mapped pages. The ratio is further biased by
456 * the ->seeks setting of the shrink function, which indicates the
457 * cost to recreate an object relative to that of an LRU page.
458 *
459 * Returns the number of reclaimed slab objects.
460 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,unsigned long nr_scanned,unsigned long nr_eligible)461 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
462 struct mem_cgroup *memcg,
463 unsigned long nr_scanned,
464 unsigned long nr_eligible)
465 {
466 struct shrinker *shrinker;
467 unsigned long freed = 0;
468
469 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
470 return 0;
471
472 if (nr_scanned == 0)
473 nr_scanned = SWAP_CLUSTER_MAX;
474
475 if (!down_read_trylock(&shrinker_rwsem)) {
476 /*
477 * If we would return 0, our callers would understand that we
478 * have nothing else to shrink and give up trying. By returning
479 * 1 we keep it going and assume we'll be able to shrink next
480 * time.
481 */
482 freed = 1;
483 goto out;
484 }
485
486 list_for_each_entry(shrinker, &shrinker_list, list) {
487 struct shrink_control sc = {
488 .gfp_mask = gfp_mask,
489 .nid = nid,
490 .memcg = memcg,
491 };
492
493 /*
494 * If kernel memory accounting is disabled, we ignore
495 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
496 * passing NULL for memcg.
497 */
498 if (memcg_kmem_enabled() &&
499 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
500 continue;
501
502 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
503 sc.nid = 0;
504
505 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
506 /*
507 * Bail out if someone want to register a new shrinker to
508 * prevent the regsitration from being stalled for long periods
509 * by parallel ongoing shrinking.
510 */
511 if (rwsem_is_contended(&shrinker_rwsem)) {
512 freed = freed ? : 1;
513 break;
514 }
515 }
516
517 up_read(&shrinker_rwsem);
518 out:
519 cond_resched();
520 return freed;
521 }
522
drop_slab_node(int nid)523 void drop_slab_node(int nid)
524 {
525 unsigned long freed;
526
527 do {
528 struct mem_cgroup *memcg = NULL;
529
530 freed = 0;
531 do {
532 freed += shrink_slab(GFP_KERNEL, nid, memcg,
533 1000, 1000);
534 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
535 } while (freed > 10);
536 }
537
drop_slab(void)538 void drop_slab(void)
539 {
540 int nid;
541
542 for_each_online_node(nid)
543 drop_slab_node(nid);
544 }
545
is_page_cache_freeable(struct page * page)546 static inline int is_page_cache_freeable(struct page *page)
547 {
548 /*
549 * A freeable page cache page is referenced only by the caller
550 * that isolated the page, the page cache radix tree and
551 * optional buffer heads at page->private.
552 */
553 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
554 HPAGE_PMD_NR : 1;
555 return page_count(page) - page_has_private(page) == 1 + radix_pins;
556 }
557
may_write_to_inode(struct inode * inode,struct scan_control * sc)558 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
559 {
560 if (current->flags & PF_SWAPWRITE)
561 return 1;
562 if (!inode_write_congested(inode))
563 return 1;
564 if (inode_to_bdi(inode) == current->backing_dev_info)
565 return 1;
566 return 0;
567 }
568
569 /*
570 * We detected a synchronous write error writing a page out. Probably
571 * -ENOSPC. We need to propagate that into the address_space for a subsequent
572 * fsync(), msync() or close().
573 *
574 * The tricky part is that after writepage we cannot touch the mapping: nothing
575 * prevents it from being freed up. But we have a ref on the page and once
576 * that page is locked, the mapping is pinned.
577 *
578 * We're allowed to run sleeping lock_page() here because we know the caller has
579 * __GFP_FS.
580 */
handle_write_error(struct address_space * mapping,struct page * page,int error)581 static void handle_write_error(struct address_space *mapping,
582 struct page *page, int error)
583 {
584 lock_page(page);
585 if (page_mapping(page) == mapping)
586 mapping_set_error(mapping, error);
587 unlock_page(page);
588 }
589
590 /* possible outcome of pageout() */
591 typedef enum {
592 /* failed to write page out, page is locked */
593 PAGE_KEEP,
594 /* move page to the active list, page is locked */
595 PAGE_ACTIVATE,
596 /* page has been sent to the disk successfully, page is unlocked */
597 PAGE_SUCCESS,
598 /* page is clean and locked */
599 PAGE_CLEAN,
600 } pageout_t;
601
602 /*
603 * pageout is called by shrink_page_list() for each dirty page.
604 * Calls ->writepage().
605 */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)606 static pageout_t pageout(struct page *page, struct address_space *mapping,
607 struct scan_control *sc)
608 {
609 /*
610 * If the page is dirty, only perform writeback if that write
611 * will be non-blocking. To prevent this allocation from being
612 * stalled by pagecache activity. But note that there may be
613 * stalls if we need to run get_block(). We could test
614 * PagePrivate for that.
615 *
616 * If this process is currently in __generic_file_write_iter() against
617 * this page's queue, we can perform writeback even if that
618 * will block.
619 *
620 * If the page is swapcache, write it back even if that would
621 * block, for some throttling. This happens by accident, because
622 * swap_backing_dev_info is bust: it doesn't reflect the
623 * congestion state of the swapdevs. Easy to fix, if needed.
624 */
625 if (!is_page_cache_freeable(page))
626 return PAGE_KEEP;
627 if (!mapping) {
628 /*
629 * Some data journaling orphaned pages can have
630 * page->mapping == NULL while being dirty with clean buffers.
631 */
632 if (page_has_private(page)) {
633 if (try_to_free_buffers(page)) {
634 ClearPageDirty(page);
635 pr_info("%s: orphaned page\n", __func__);
636 return PAGE_CLEAN;
637 }
638 }
639 return PAGE_KEEP;
640 }
641 if (mapping->a_ops->writepage == NULL)
642 return PAGE_ACTIVATE;
643 if (!may_write_to_inode(mapping->host, sc))
644 return PAGE_KEEP;
645
646 if (clear_page_dirty_for_io(page)) {
647 int res;
648 struct writeback_control wbc = {
649 .sync_mode = WB_SYNC_NONE,
650 .nr_to_write = SWAP_CLUSTER_MAX,
651 .range_start = 0,
652 .range_end = LLONG_MAX,
653 .for_reclaim = 1,
654 };
655
656 SetPageReclaim(page);
657 res = mapping->a_ops->writepage(page, &wbc);
658 if (res < 0)
659 handle_write_error(mapping, page, res);
660 if (res == AOP_WRITEPAGE_ACTIVATE) {
661 ClearPageReclaim(page);
662 return PAGE_ACTIVATE;
663 }
664
665 if (!PageWriteback(page)) {
666 /* synchronous write or broken a_ops? */
667 ClearPageReclaim(page);
668 }
669 trace_mm_vmscan_writepage(page);
670 inc_node_page_state(page, NR_VMSCAN_WRITE);
671 return PAGE_SUCCESS;
672 }
673
674 return PAGE_CLEAN;
675 }
676
677 /*
678 * Same as remove_mapping, but if the page is removed from the mapping, it
679 * gets returned with a refcount of 0.
680 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)681 static int __remove_mapping(struct address_space *mapping, struct page *page,
682 bool reclaimed)
683 {
684 unsigned long flags;
685 int refcount;
686
687 BUG_ON(!PageLocked(page));
688 BUG_ON(mapping != page_mapping(page));
689
690 spin_lock_irqsave(&mapping->tree_lock, flags);
691 /*
692 * The non racy check for a busy page.
693 *
694 * Must be careful with the order of the tests. When someone has
695 * a ref to the page, it may be possible that they dirty it then
696 * drop the reference. So if PageDirty is tested before page_count
697 * here, then the following race may occur:
698 *
699 * get_user_pages(&page);
700 * [user mapping goes away]
701 * write_to(page);
702 * !PageDirty(page) [good]
703 * SetPageDirty(page);
704 * put_page(page);
705 * !page_count(page) [good, discard it]
706 *
707 * [oops, our write_to data is lost]
708 *
709 * Reversing the order of the tests ensures such a situation cannot
710 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
711 * load is not satisfied before that of page->_refcount.
712 *
713 * Note that if SetPageDirty is always performed via set_page_dirty,
714 * and thus under tree_lock, then this ordering is not required.
715 */
716 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
717 refcount = 1 + HPAGE_PMD_NR;
718 else
719 refcount = 2;
720 if (!page_ref_freeze(page, refcount))
721 goto cannot_free;
722 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
723 if (unlikely(PageDirty(page))) {
724 page_ref_unfreeze(page, refcount);
725 goto cannot_free;
726 }
727
728 if (PageSwapCache(page)) {
729 swp_entry_t swap = { .val = page_private(page) };
730 mem_cgroup_swapout(page, swap);
731 __delete_from_swap_cache(page);
732 spin_unlock_irqrestore(&mapping->tree_lock, flags);
733 put_swap_page(page, swap);
734 } else {
735 void (*freepage)(struct page *);
736 void *shadow = NULL;
737
738 freepage = mapping->a_ops->freepage;
739 /*
740 * Remember a shadow entry for reclaimed file cache in
741 * order to detect refaults, thus thrashing, later on.
742 *
743 * But don't store shadows in an address space that is
744 * already exiting. This is not just an optizimation,
745 * inode reclaim needs to empty out the radix tree or
746 * the nodes are lost. Don't plant shadows behind its
747 * back.
748 *
749 * We also don't store shadows for DAX mappings because the
750 * only page cache pages found in these are zero pages
751 * covering holes, and because we don't want to mix DAX
752 * exceptional entries and shadow exceptional entries in the
753 * same page_tree.
754 */
755 if (reclaimed && page_is_file_cache(page) &&
756 !mapping_exiting(mapping) && !dax_mapping(mapping))
757 shadow = workingset_eviction(mapping, page);
758 __delete_from_page_cache(page, shadow);
759 spin_unlock_irqrestore(&mapping->tree_lock, flags);
760
761 if (freepage != NULL)
762 freepage(page);
763 }
764
765 return 1;
766
767 cannot_free:
768 spin_unlock_irqrestore(&mapping->tree_lock, flags);
769 return 0;
770 }
771
772 /*
773 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
774 * someone else has a ref on the page, abort and return 0. If it was
775 * successfully detached, return 1. Assumes the caller has a single ref on
776 * this page.
777 */
remove_mapping(struct address_space * mapping,struct page * page)778 int remove_mapping(struct address_space *mapping, struct page *page)
779 {
780 if (__remove_mapping(mapping, page, false)) {
781 /*
782 * Unfreezing the refcount with 1 rather than 2 effectively
783 * drops the pagecache ref for us without requiring another
784 * atomic operation.
785 */
786 page_ref_unfreeze(page, 1);
787 return 1;
788 }
789 return 0;
790 }
791
792 /**
793 * putback_lru_page - put previously isolated page onto appropriate LRU list
794 * @page: page to be put back to appropriate lru list
795 *
796 * Add previously isolated @page to appropriate LRU list.
797 * Page may still be unevictable for other reasons.
798 *
799 * lru_lock must not be held, interrupts must be enabled.
800 */
putback_lru_page(struct page * page)801 void putback_lru_page(struct page *page)
802 {
803 bool is_unevictable;
804 int was_unevictable = PageUnevictable(page);
805
806 VM_BUG_ON_PAGE(PageLRU(page), page);
807
808 redo:
809 ClearPageUnevictable(page);
810
811 if (page_evictable(page)) {
812 /*
813 * For evictable pages, we can use the cache.
814 * In event of a race, worst case is we end up with an
815 * unevictable page on [in]active list.
816 * We know how to handle that.
817 */
818 is_unevictable = false;
819 lru_cache_add(page);
820 } else {
821 /*
822 * Put unevictable pages directly on zone's unevictable
823 * list.
824 */
825 is_unevictable = true;
826 add_page_to_unevictable_list(page);
827 /*
828 * When racing with an mlock or AS_UNEVICTABLE clearing
829 * (page is unlocked) make sure that if the other thread
830 * does not observe our setting of PG_lru and fails
831 * isolation/check_move_unevictable_pages,
832 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
833 * the page back to the evictable list.
834 *
835 * The other side is TestClearPageMlocked() or shmem_lock().
836 */
837 smp_mb();
838 }
839
840 /*
841 * page's status can change while we move it among lru. If an evictable
842 * page is on unevictable list, it never be freed. To avoid that,
843 * check after we added it to the list, again.
844 */
845 if (is_unevictable && page_evictable(page)) {
846 if (!isolate_lru_page(page)) {
847 put_page(page);
848 goto redo;
849 }
850 /* This means someone else dropped this page from LRU
851 * So, it will be freed or putback to LRU again. There is
852 * nothing to do here.
853 */
854 }
855
856 if (was_unevictable && !is_unevictable)
857 count_vm_event(UNEVICTABLE_PGRESCUED);
858 else if (!was_unevictable && is_unevictable)
859 count_vm_event(UNEVICTABLE_PGCULLED);
860
861 put_page(page); /* drop ref from isolate */
862 }
863
864 enum page_references {
865 PAGEREF_RECLAIM,
866 PAGEREF_RECLAIM_CLEAN,
867 PAGEREF_KEEP,
868 PAGEREF_ACTIVATE,
869 };
870
page_check_references(struct page * page,struct scan_control * sc)871 static enum page_references page_check_references(struct page *page,
872 struct scan_control *sc)
873 {
874 int referenced_ptes, referenced_page;
875 unsigned long vm_flags;
876
877 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
878 &vm_flags);
879 referenced_page = TestClearPageReferenced(page);
880
881 /*
882 * Mlock lost the isolation race with us. Let try_to_unmap()
883 * move the page to the unevictable list.
884 */
885 if (vm_flags & VM_LOCKED)
886 return PAGEREF_RECLAIM;
887
888 if (referenced_ptes) {
889 if (PageSwapBacked(page))
890 return PAGEREF_ACTIVATE;
891 /*
892 * All mapped pages start out with page table
893 * references from the instantiating fault, so we need
894 * to look twice if a mapped file page is used more
895 * than once.
896 *
897 * Mark it and spare it for another trip around the
898 * inactive list. Another page table reference will
899 * lead to its activation.
900 *
901 * Note: the mark is set for activated pages as well
902 * so that recently deactivated but used pages are
903 * quickly recovered.
904 */
905 SetPageReferenced(page);
906
907 if (referenced_page || referenced_ptes > 1)
908 return PAGEREF_ACTIVATE;
909
910 /*
911 * Activate file-backed executable pages after first usage.
912 */
913 if (vm_flags & VM_EXEC)
914 return PAGEREF_ACTIVATE;
915
916 return PAGEREF_KEEP;
917 }
918
919 /* Reclaim if clean, defer dirty pages to writeback */
920 if (referenced_page && !PageSwapBacked(page))
921 return PAGEREF_RECLAIM_CLEAN;
922
923 return PAGEREF_RECLAIM;
924 }
925
926 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)927 static void page_check_dirty_writeback(struct page *page,
928 bool *dirty, bool *writeback)
929 {
930 struct address_space *mapping;
931
932 /*
933 * Anonymous pages are not handled by flushers and must be written
934 * from reclaim context. Do not stall reclaim based on them
935 */
936 if (!page_is_file_cache(page) ||
937 (PageAnon(page) && !PageSwapBacked(page))) {
938 *dirty = false;
939 *writeback = false;
940 return;
941 }
942
943 /* By default assume that the page flags are accurate */
944 *dirty = PageDirty(page);
945 *writeback = PageWriteback(page);
946
947 /* Verify dirty/writeback state if the filesystem supports it */
948 if (!page_has_private(page))
949 return;
950
951 mapping = page_mapping(page);
952 if (mapping && mapping->a_ops->is_dirty_writeback)
953 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
954 }
955
956 struct reclaim_stat {
957 unsigned nr_dirty;
958 unsigned nr_unqueued_dirty;
959 unsigned nr_congested;
960 unsigned nr_writeback;
961 unsigned nr_immediate;
962 unsigned nr_activate;
963 unsigned nr_ref_keep;
964 unsigned nr_unmap_fail;
965 };
966
967 /*
968 * shrink_page_list() returns the number of reclaimed pages
969 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,enum ttu_flags ttu_flags,struct reclaim_stat * stat,bool force_reclaim)970 static unsigned long shrink_page_list(struct list_head *page_list,
971 struct pglist_data *pgdat,
972 struct scan_control *sc,
973 enum ttu_flags ttu_flags,
974 struct reclaim_stat *stat,
975 bool force_reclaim)
976 {
977 LIST_HEAD(ret_pages);
978 LIST_HEAD(free_pages);
979 int pgactivate = 0;
980 unsigned nr_unqueued_dirty = 0;
981 unsigned nr_dirty = 0;
982 unsigned nr_congested = 0;
983 unsigned nr_reclaimed = 0;
984 unsigned nr_writeback = 0;
985 unsigned nr_immediate = 0;
986 unsigned nr_ref_keep = 0;
987 unsigned nr_unmap_fail = 0;
988
989 cond_resched();
990
991 while (!list_empty(page_list)) {
992 struct address_space *mapping;
993 struct page *page;
994 int may_enter_fs;
995 enum page_references references = PAGEREF_RECLAIM_CLEAN;
996 bool dirty, writeback;
997
998 cond_resched();
999
1000 page = lru_to_page(page_list);
1001 list_del(&page->lru);
1002
1003 if (!trylock_page(page))
1004 goto keep;
1005
1006 VM_BUG_ON_PAGE(PageActive(page), page);
1007
1008 sc->nr_scanned++;
1009
1010 if (unlikely(!page_evictable(page)))
1011 goto activate_locked;
1012
1013 if (!sc->may_unmap && page_mapped(page))
1014 goto keep_locked;
1015
1016 /* Double the slab pressure for mapped and swapcache pages */
1017 if ((page_mapped(page) || PageSwapCache(page)) &&
1018 !(PageAnon(page) && !PageSwapBacked(page)))
1019 sc->nr_scanned++;
1020
1021 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1022 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1023
1024 /*
1025 * The number of dirty pages determines if a zone is marked
1026 * reclaim_congested which affects wait_iff_congested. kswapd
1027 * will stall and start writing pages if the tail of the LRU
1028 * is all dirty unqueued pages.
1029 */
1030 page_check_dirty_writeback(page, &dirty, &writeback);
1031 if (dirty || writeback)
1032 nr_dirty++;
1033
1034 if (dirty && !writeback)
1035 nr_unqueued_dirty++;
1036
1037 /*
1038 * Treat this page as congested if the underlying BDI is or if
1039 * pages are cycling through the LRU so quickly that the
1040 * pages marked for immediate reclaim are making it to the
1041 * end of the LRU a second time.
1042 */
1043 mapping = page_mapping(page);
1044 if (((dirty || writeback) && mapping &&
1045 inode_write_congested(mapping->host)) ||
1046 (writeback && PageReclaim(page)))
1047 nr_congested++;
1048
1049 /*
1050 * If a page at the tail of the LRU is under writeback, there
1051 * are three cases to consider.
1052 *
1053 * 1) If reclaim is encountering an excessive number of pages
1054 * under writeback and this page is both under writeback and
1055 * PageReclaim then it indicates that pages are being queued
1056 * for IO but are being recycled through the LRU before the
1057 * IO can complete. Waiting on the page itself risks an
1058 * indefinite stall if it is impossible to writeback the
1059 * page due to IO error or disconnected storage so instead
1060 * note that the LRU is being scanned too quickly and the
1061 * caller can stall after page list has been processed.
1062 *
1063 * 2) Global or new memcg reclaim encounters a page that is
1064 * not marked for immediate reclaim, or the caller does not
1065 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1066 * not to fs). In this case mark the page for immediate
1067 * reclaim and continue scanning.
1068 *
1069 * Require may_enter_fs because we would wait on fs, which
1070 * may not have submitted IO yet. And the loop driver might
1071 * enter reclaim, and deadlock if it waits on a page for
1072 * which it is needed to do the write (loop masks off
1073 * __GFP_IO|__GFP_FS for this reason); but more thought
1074 * would probably show more reasons.
1075 *
1076 * 3) Legacy memcg encounters a page that is already marked
1077 * PageReclaim. memcg does not have any dirty pages
1078 * throttling so we could easily OOM just because too many
1079 * pages are in writeback and there is nothing else to
1080 * reclaim. Wait for the writeback to complete.
1081 *
1082 * In cases 1) and 2) we activate the pages to get them out of
1083 * the way while we continue scanning for clean pages on the
1084 * inactive list and refilling from the active list. The
1085 * observation here is that waiting for disk writes is more
1086 * expensive than potentially causing reloads down the line.
1087 * Since they're marked for immediate reclaim, they won't put
1088 * memory pressure on the cache working set any longer than it
1089 * takes to write them to disk.
1090 */
1091 if (PageWriteback(page)) {
1092 /* Case 1 above */
1093 if (current_is_kswapd() &&
1094 PageReclaim(page) &&
1095 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1096 nr_immediate++;
1097 goto activate_locked;
1098
1099 /* Case 2 above */
1100 } else if (sane_reclaim(sc) ||
1101 !PageReclaim(page) || !may_enter_fs) {
1102 /*
1103 * This is slightly racy - end_page_writeback()
1104 * might have just cleared PageReclaim, then
1105 * setting PageReclaim here end up interpreted
1106 * as PageReadahead - but that does not matter
1107 * enough to care. What we do want is for this
1108 * page to have PageReclaim set next time memcg
1109 * reclaim reaches the tests above, so it will
1110 * then wait_on_page_writeback() to avoid OOM;
1111 * and it's also appropriate in global reclaim.
1112 */
1113 SetPageReclaim(page);
1114 nr_writeback++;
1115 goto activate_locked;
1116
1117 /* Case 3 above */
1118 } else {
1119 unlock_page(page);
1120 wait_on_page_writeback(page);
1121 /* then go back and try same page again */
1122 list_add_tail(&page->lru, page_list);
1123 continue;
1124 }
1125 }
1126
1127 if (!force_reclaim)
1128 references = page_check_references(page, sc);
1129
1130 switch (references) {
1131 case PAGEREF_ACTIVATE:
1132 goto activate_locked;
1133 case PAGEREF_KEEP:
1134 nr_ref_keep++;
1135 goto keep_locked;
1136 case PAGEREF_RECLAIM:
1137 case PAGEREF_RECLAIM_CLEAN:
1138 ; /* try to reclaim the page below */
1139 }
1140
1141 /*
1142 * Anonymous process memory has backing store?
1143 * Try to allocate it some swap space here.
1144 * Lazyfree page could be freed directly
1145 */
1146 if (PageAnon(page) && PageSwapBacked(page)) {
1147 if (!PageSwapCache(page)) {
1148 if (!(sc->gfp_mask & __GFP_IO))
1149 goto keep_locked;
1150 if (PageTransHuge(page)) {
1151 /* cannot split THP, skip it */
1152 if (!can_split_huge_page(page, NULL))
1153 goto activate_locked;
1154 /*
1155 * Split pages without a PMD map right
1156 * away. Chances are some or all of the
1157 * tail pages can be freed without IO.
1158 */
1159 if (!compound_mapcount(page) &&
1160 split_huge_page_to_list(page,
1161 page_list))
1162 goto activate_locked;
1163 }
1164 if (!add_to_swap(page)) {
1165 if (!PageTransHuge(page))
1166 goto activate_locked;
1167 /* Fallback to swap normal pages */
1168 if (split_huge_page_to_list(page,
1169 page_list))
1170 goto activate_locked;
1171 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1172 count_vm_event(THP_SWPOUT_FALLBACK);
1173 #endif
1174 if (!add_to_swap(page))
1175 goto activate_locked;
1176 }
1177
1178 may_enter_fs = 1;
1179
1180 /* Adding to swap updated mapping */
1181 mapping = page_mapping(page);
1182 }
1183 } else if (unlikely(PageTransHuge(page))) {
1184 /* Split file THP */
1185 if (split_huge_page_to_list(page, page_list))
1186 goto keep_locked;
1187 }
1188
1189 /*
1190 * The page is mapped into the page tables of one or more
1191 * processes. Try to unmap it here.
1192 */
1193 if (page_mapped(page)) {
1194 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1195
1196 if (unlikely(PageTransHuge(page)))
1197 flags |= TTU_SPLIT_HUGE_PMD;
1198 if (!try_to_unmap(page, flags)) {
1199 nr_unmap_fail++;
1200 goto activate_locked;
1201 }
1202 }
1203
1204 if (PageDirty(page)) {
1205 /*
1206 * Only kswapd can writeback filesystem pages
1207 * to avoid risk of stack overflow. But avoid
1208 * injecting inefficient single-page IO into
1209 * flusher writeback as much as possible: only
1210 * write pages when we've encountered many
1211 * dirty pages, and when we've already scanned
1212 * the rest of the LRU for clean pages and see
1213 * the same dirty pages again (PageReclaim).
1214 */
1215 if (page_is_file_cache(page) &&
1216 (!current_is_kswapd() || !PageReclaim(page) ||
1217 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1218 /*
1219 * Immediately reclaim when written back.
1220 * Similar in principal to deactivate_page()
1221 * except we already have the page isolated
1222 * and know it's dirty
1223 */
1224 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1225 SetPageReclaim(page);
1226
1227 goto activate_locked;
1228 }
1229
1230 if (references == PAGEREF_RECLAIM_CLEAN)
1231 goto keep_locked;
1232 if (!may_enter_fs)
1233 goto keep_locked;
1234 if (!sc->may_writepage)
1235 goto keep_locked;
1236
1237 /*
1238 * Page is dirty. Flush the TLB if a writable entry
1239 * potentially exists to avoid CPU writes after IO
1240 * starts and then write it out here.
1241 */
1242 try_to_unmap_flush_dirty();
1243 switch (pageout(page, mapping, sc)) {
1244 case PAGE_KEEP:
1245 goto keep_locked;
1246 case PAGE_ACTIVATE:
1247 goto activate_locked;
1248 case PAGE_SUCCESS:
1249 if (PageWriteback(page))
1250 goto keep;
1251 if (PageDirty(page))
1252 goto keep;
1253
1254 /*
1255 * A synchronous write - probably a ramdisk. Go
1256 * ahead and try to reclaim the page.
1257 */
1258 if (!trylock_page(page))
1259 goto keep;
1260 if (PageDirty(page) || PageWriteback(page))
1261 goto keep_locked;
1262 mapping = page_mapping(page);
1263 case PAGE_CLEAN:
1264 ; /* try to free the page below */
1265 }
1266 }
1267
1268 /*
1269 * If the page has buffers, try to free the buffer mappings
1270 * associated with this page. If we succeed we try to free
1271 * the page as well.
1272 *
1273 * We do this even if the page is PageDirty().
1274 * try_to_release_page() does not perform I/O, but it is
1275 * possible for a page to have PageDirty set, but it is actually
1276 * clean (all its buffers are clean). This happens if the
1277 * buffers were written out directly, with submit_bh(). ext3
1278 * will do this, as well as the blockdev mapping.
1279 * try_to_release_page() will discover that cleanness and will
1280 * drop the buffers and mark the page clean - it can be freed.
1281 *
1282 * Rarely, pages can have buffers and no ->mapping. These are
1283 * the pages which were not successfully invalidated in
1284 * truncate_complete_page(). We try to drop those buffers here
1285 * and if that worked, and the page is no longer mapped into
1286 * process address space (page_count == 1) it can be freed.
1287 * Otherwise, leave the page on the LRU so it is swappable.
1288 */
1289 if (page_has_private(page)) {
1290 if (!try_to_release_page(page, sc->gfp_mask))
1291 goto activate_locked;
1292 if (!mapping && page_count(page) == 1) {
1293 unlock_page(page);
1294 if (put_page_testzero(page))
1295 goto free_it;
1296 else {
1297 /*
1298 * rare race with speculative reference.
1299 * the speculative reference will free
1300 * this page shortly, so we may
1301 * increment nr_reclaimed here (and
1302 * leave it off the LRU).
1303 */
1304 nr_reclaimed++;
1305 continue;
1306 }
1307 }
1308 }
1309
1310 if (PageAnon(page) && !PageSwapBacked(page)) {
1311 /* follow __remove_mapping for reference */
1312 if (!page_ref_freeze(page, 1))
1313 goto keep_locked;
1314 if (PageDirty(page)) {
1315 page_ref_unfreeze(page, 1);
1316 goto keep_locked;
1317 }
1318
1319 count_vm_event(PGLAZYFREED);
1320 count_memcg_page_event(page, PGLAZYFREED);
1321 } else if (!mapping || !__remove_mapping(mapping, page, true))
1322 goto keep_locked;
1323 /*
1324 * At this point, we have no other references and there is
1325 * no way to pick any more up (removed from LRU, removed
1326 * from pagecache). Can use non-atomic bitops now (and
1327 * we obviously don't have to worry about waking up a process
1328 * waiting on the page lock, because there are no references.
1329 */
1330 __ClearPageLocked(page);
1331 free_it:
1332 nr_reclaimed++;
1333
1334 /*
1335 * Is there need to periodically free_page_list? It would
1336 * appear not as the counts should be low
1337 */
1338 if (unlikely(PageTransHuge(page))) {
1339 mem_cgroup_uncharge(page);
1340 (*get_compound_page_dtor(page))(page);
1341 } else
1342 list_add(&page->lru, &free_pages);
1343 continue;
1344
1345 activate_locked:
1346 /* Not a candidate for swapping, so reclaim swap space. */
1347 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1348 PageMlocked(page)))
1349 try_to_free_swap(page);
1350 VM_BUG_ON_PAGE(PageActive(page), page);
1351 if (!PageMlocked(page)) {
1352 SetPageActive(page);
1353 pgactivate++;
1354 count_memcg_page_event(page, PGACTIVATE);
1355 }
1356 keep_locked:
1357 unlock_page(page);
1358 keep:
1359 list_add(&page->lru, &ret_pages);
1360 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1361 }
1362
1363 mem_cgroup_uncharge_list(&free_pages);
1364 try_to_unmap_flush();
1365 free_hot_cold_page_list(&free_pages, true);
1366
1367 list_splice(&ret_pages, page_list);
1368 count_vm_events(PGACTIVATE, pgactivate);
1369
1370 if (stat) {
1371 stat->nr_dirty = nr_dirty;
1372 stat->nr_congested = nr_congested;
1373 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1374 stat->nr_writeback = nr_writeback;
1375 stat->nr_immediate = nr_immediate;
1376 stat->nr_activate = pgactivate;
1377 stat->nr_ref_keep = nr_ref_keep;
1378 stat->nr_unmap_fail = nr_unmap_fail;
1379 }
1380 return nr_reclaimed;
1381 }
1382
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1383 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1384 struct list_head *page_list)
1385 {
1386 struct scan_control sc = {
1387 .gfp_mask = GFP_KERNEL,
1388 .priority = DEF_PRIORITY,
1389 .may_unmap = 1,
1390 };
1391 unsigned long ret;
1392 struct page *page, *next;
1393 LIST_HEAD(clean_pages);
1394
1395 list_for_each_entry_safe(page, next, page_list, lru) {
1396 if (page_is_file_cache(page) && !PageDirty(page) &&
1397 !__PageMovable(page) && !PageUnevictable(page)) {
1398 ClearPageActive(page);
1399 list_move(&page->lru, &clean_pages);
1400 }
1401 }
1402
1403 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1404 TTU_IGNORE_ACCESS, NULL, true);
1405 list_splice(&clean_pages, page_list);
1406 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1407 return ret;
1408 }
1409
1410 /*
1411 * Attempt to remove the specified page from its LRU. Only take this page
1412 * if it is of the appropriate PageActive status. Pages which are being
1413 * freed elsewhere are also ignored.
1414 *
1415 * page: page to consider
1416 * mode: one of the LRU isolation modes defined above
1417 *
1418 * returns 0 on success, -ve errno on failure.
1419 */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1420 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1421 {
1422 int ret = -EINVAL;
1423
1424 /* Only take pages on the LRU. */
1425 if (!PageLRU(page))
1426 return ret;
1427
1428 /* Compaction should not handle unevictable pages but CMA can do so */
1429 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1430 return ret;
1431
1432 ret = -EBUSY;
1433
1434 /*
1435 * To minimise LRU disruption, the caller can indicate that it only
1436 * wants to isolate pages it will be able to operate on without
1437 * blocking - clean pages for the most part.
1438 *
1439 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1440 * that it is possible to migrate without blocking
1441 */
1442 if (mode & ISOLATE_ASYNC_MIGRATE) {
1443 /* All the caller can do on PageWriteback is block */
1444 if (PageWriteback(page))
1445 return ret;
1446
1447 if (PageDirty(page)) {
1448 struct address_space *mapping;
1449 bool migrate_dirty;
1450
1451 /*
1452 * Only pages without mappings or that have a
1453 * ->migratepage callback are possible to migrate
1454 * without blocking. However, we can be racing with
1455 * truncation so it's necessary to lock the page
1456 * to stabilise the mapping as truncation holds
1457 * the page lock until after the page is removed
1458 * from the page cache.
1459 */
1460 if (!trylock_page(page))
1461 return ret;
1462
1463 mapping = page_mapping(page);
1464 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1465 unlock_page(page);
1466 if (!migrate_dirty)
1467 return ret;
1468 }
1469 }
1470
1471 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1472 return ret;
1473
1474 if (likely(get_page_unless_zero(page))) {
1475 /*
1476 * Be careful not to clear PageLRU until after we're
1477 * sure the page is not being freed elsewhere -- the
1478 * page release code relies on it.
1479 */
1480 ClearPageLRU(page);
1481 ret = 0;
1482 }
1483
1484 return ret;
1485 }
1486
1487
1488 /*
1489 * Update LRU sizes after isolating pages. The LRU size updates must
1490 * be complete before mem_cgroup_update_lru_size due to a santity check.
1491 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1492 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1493 enum lru_list lru, unsigned long *nr_zone_taken)
1494 {
1495 int zid;
1496
1497 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1498 if (!nr_zone_taken[zid])
1499 continue;
1500
1501 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1502 #ifdef CONFIG_MEMCG
1503 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1504 #endif
1505 }
1506
1507 }
1508
1509 /*
1510 * zone_lru_lock is heavily contended. Some of the functions that
1511 * shrink the lists perform better by taking out a batch of pages
1512 * and working on them outside the LRU lock.
1513 *
1514 * For pagecache intensive workloads, this function is the hottest
1515 * spot in the kernel (apart from copy_*_user functions).
1516 *
1517 * Appropriate locks must be held before calling this function.
1518 *
1519 * @nr_to_scan: The number of eligible pages to look through on the list.
1520 * @lruvec: The LRU vector to pull pages from.
1521 * @dst: The temp list to put pages on to.
1522 * @nr_scanned: The number of pages that were scanned.
1523 * @sc: The scan_control struct for this reclaim session
1524 * @mode: One of the LRU isolation modes
1525 * @lru: LRU list id for isolating
1526 *
1527 * returns how many pages were moved onto *@dst.
1528 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1529 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1530 struct lruvec *lruvec, struct list_head *dst,
1531 unsigned long *nr_scanned, struct scan_control *sc,
1532 isolate_mode_t mode, enum lru_list lru)
1533 {
1534 struct list_head *src = &lruvec->lists[lru];
1535 unsigned long nr_taken = 0;
1536 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1537 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1538 unsigned long skipped = 0;
1539 unsigned long scan, total_scan, nr_pages;
1540 LIST_HEAD(pages_skipped);
1541
1542 scan = 0;
1543 for (total_scan = 0;
1544 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1545 total_scan++) {
1546 struct page *page;
1547
1548 page = lru_to_page(src);
1549 prefetchw_prev_lru_page(page, src, flags);
1550
1551 VM_BUG_ON_PAGE(!PageLRU(page), page);
1552
1553 if (page_zonenum(page) > sc->reclaim_idx) {
1554 list_move(&page->lru, &pages_skipped);
1555 nr_skipped[page_zonenum(page)]++;
1556 continue;
1557 }
1558
1559 /*
1560 * Do not count skipped pages because that makes the function
1561 * return with no isolated pages if the LRU mostly contains
1562 * ineligible pages. This causes the VM to not reclaim any
1563 * pages, triggering a premature OOM.
1564 */
1565 scan++;
1566 switch (__isolate_lru_page(page, mode)) {
1567 case 0:
1568 nr_pages = hpage_nr_pages(page);
1569 nr_taken += nr_pages;
1570 nr_zone_taken[page_zonenum(page)] += nr_pages;
1571 list_move(&page->lru, dst);
1572 break;
1573
1574 case -EBUSY:
1575 /* else it is being freed elsewhere */
1576 list_move(&page->lru, src);
1577 continue;
1578
1579 default:
1580 BUG();
1581 }
1582 }
1583
1584 /*
1585 * Splice any skipped pages to the start of the LRU list. Note that
1586 * this disrupts the LRU order when reclaiming for lower zones but
1587 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1588 * scanning would soon rescan the same pages to skip and put the
1589 * system at risk of premature OOM.
1590 */
1591 if (!list_empty(&pages_skipped)) {
1592 int zid;
1593
1594 list_splice(&pages_skipped, src);
1595 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1596 if (!nr_skipped[zid])
1597 continue;
1598
1599 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1600 skipped += nr_skipped[zid];
1601 }
1602 }
1603 *nr_scanned = total_scan;
1604 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1605 total_scan, skipped, nr_taken, mode, lru);
1606 update_lru_sizes(lruvec, lru, nr_zone_taken);
1607 return nr_taken;
1608 }
1609
1610 /**
1611 * isolate_lru_page - tries to isolate a page from its LRU list
1612 * @page: page to isolate from its LRU list
1613 *
1614 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1615 * vmstat statistic corresponding to whatever LRU list the page was on.
1616 *
1617 * Returns 0 if the page was removed from an LRU list.
1618 * Returns -EBUSY if the page was not on an LRU list.
1619 *
1620 * The returned page will have PageLRU() cleared. If it was found on
1621 * the active list, it will have PageActive set. If it was found on
1622 * the unevictable list, it will have the PageUnevictable bit set. That flag
1623 * may need to be cleared by the caller before letting the page go.
1624 *
1625 * The vmstat statistic corresponding to the list on which the page was
1626 * found will be decremented.
1627 *
1628 * Restrictions:
1629 * (1) Must be called with an elevated refcount on the page. This is a
1630 * fundamentnal difference from isolate_lru_pages (which is called
1631 * without a stable reference).
1632 * (2) the lru_lock must not be held.
1633 * (3) interrupts must be enabled.
1634 */
isolate_lru_page(struct page * page)1635 int isolate_lru_page(struct page *page)
1636 {
1637 int ret = -EBUSY;
1638
1639 VM_BUG_ON_PAGE(!page_count(page), page);
1640 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1641
1642 if (PageLRU(page)) {
1643 struct zone *zone = page_zone(page);
1644 struct lruvec *lruvec;
1645
1646 spin_lock_irq(zone_lru_lock(zone));
1647 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1648 if (PageLRU(page)) {
1649 int lru = page_lru(page);
1650 get_page(page);
1651 ClearPageLRU(page);
1652 del_page_from_lru_list(page, lruvec, lru);
1653 ret = 0;
1654 }
1655 spin_unlock_irq(zone_lru_lock(zone));
1656 }
1657 return ret;
1658 }
1659
1660 /*
1661 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1662 * then get resheduled. When there are massive number of tasks doing page
1663 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1664 * the LRU list will go small and be scanned faster than necessary, leading to
1665 * unnecessary swapping, thrashing and OOM.
1666 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1667 static int too_many_isolated(struct pglist_data *pgdat, int file,
1668 struct scan_control *sc)
1669 {
1670 unsigned long inactive, isolated;
1671
1672 if (current_is_kswapd())
1673 return 0;
1674
1675 if (!sane_reclaim(sc))
1676 return 0;
1677
1678 if (file) {
1679 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1680 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1681 } else {
1682 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1683 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1684 }
1685
1686 /*
1687 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1688 * won't get blocked by normal direct-reclaimers, forming a circular
1689 * deadlock.
1690 */
1691 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1692 inactive >>= 3;
1693
1694 return isolated > inactive;
1695 }
1696
1697 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1698 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1699 {
1700 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1701 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1702 LIST_HEAD(pages_to_free);
1703
1704 /*
1705 * Put back any unfreeable pages.
1706 */
1707 while (!list_empty(page_list)) {
1708 struct page *page = lru_to_page(page_list);
1709 int lru;
1710
1711 VM_BUG_ON_PAGE(PageLRU(page), page);
1712 list_del(&page->lru);
1713 if (unlikely(!page_evictable(page))) {
1714 spin_unlock_irq(&pgdat->lru_lock);
1715 putback_lru_page(page);
1716 spin_lock_irq(&pgdat->lru_lock);
1717 continue;
1718 }
1719
1720 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1721
1722 SetPageLRU(page);
1723 lru = page_lru(page);
1724 add_page_to_lru_list(page, lruvec, lru);
1725
1726 if (is_active_lru(lru)) {
1727 int file = is_file_lru(lru);
1728 int numpages = hpage_nr_pages(page);
1729 reclaim_stat->recent_rotated[file] += numpages;
1730 }
1731 if (put_page_testzero(page)) {
1732 __ClearPageLRU(page);
1733 __ClearPageActive(page);
1734 del_page_from_lru_list(page, lruvec, lru);
1735
1736 if (unlikely(PageCompound(page))) {
1737 spin_unlock_irq(&pgdat->lru_lock);
1738 mem_cgroup_uncharge(page);
1739 (*get_compound_page_dtor(page))(page);
1740 spin_lock_irq(&pgdat->lru_lock);
1741 } else
1742 list_add(&page->lru, &pages_to_free);
1743 }
1744 }
1745
1746 /*
1747 * To save our caller's stack, now use input list for pages to free.
1748 */
1749 list_splice(&pages_to_free, page_list);
1750 }
1751
1752 /*
1753 * If a kernel thread (such as nfsd for loop-back mounts) services
1754 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1755 * In that case we should only throttle if the backing device it is
1756 * writing to is congested. In other cases it is safe to throttle.
1757 */
current_may_throttle(void)1758 static int current_may_throttle(void)
1759 {
1760 return !(current->flags & PF_LESS_THROTTLE) ||
1761 current->backing_dev_info == NULL ||
1762 bdi_write_congested(current->backing_dev_info);
1763 }
1764
1765 /*
1766 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1767 * of reclaimed pages
1768 */
1769 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1770 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1771 struct scan_control *sc, enum lru_list lru)
1772 {
1773 LIST_HEAD(page_list);
1774 unsigned long nr_scanned;
1775 unsigned long nr_reclaimed = 0;
1776 unsigned long nr_taken;
1777 struct reclaim_stat stat = {};
1778 isolate_mode_t isolate_mode = 0;
1779 int file = is_file_lru(lru);
1780 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1781 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1782 bool stalled = false;
1783
1784 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1785 if (stalled)
1786 return 0;
1787
1788 /* wait a bit for the reclaimer. */
1789 msleep(100);
1790 stalled = true;
1791
1792 /* We are about to die and free our memory. Return now. */
1793 if (fatal_signal_pending(current))
1794 return SWAP_CLUSTER_MAX;
1795 }
1796
1797 lru_add_drain();
1798
1799 if (!sc->may_unmap)
1800 isolate_mode |= ISOLATE_UNMAPPED;
1801
1802 spin_lock_irq(&pgdat->lru_lock);
1803
1804 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1805 &nr_scanned, sc, isolate_mode, lru);
1806
1807 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1808 reclaim_stat->recent_scanned[file] += nr_taken;
1809
1810 if (current_is_kswapd()) {
1811 if (global_reclaim(sc))
1812 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1813 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1814 nr_scanned);
1815 } else {
1816 if (global_reclaim(sc))
1817 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1818 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1819 nr_scanned);
1820 }
1821 spin_unlock_irq(&pgdat->lru_lock);
1822
1823 if (nr_taken == 0)
1824 return 0;
1825
1826 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1827 &stat, false);
1828
1829 spin_lock_irq(&pgdat->lru_lock);
1830
1831 if (current_is_kswapd()) {
1832 if (global_reclaim(sc))
1833 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1834 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1835 nr_reclaimed);
1836 } else {
1837 if (global_reclaim(sc))
1838 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1839 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1840 nr_reclaimed);
1841 }
1842
1843 putback_inactive_pages(lruvec, &page_list);
1844
1845 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1846
1847 spin_unlock_irq(&pgdat->lru_lock);
1848
1849 mem_cgroup_uncharge_list(&page_list);
1850 free_hot_cold_page_list(&page_list, true);
1851
1852 /*
1853 * If reclaim is isolating dirty pages under writeback, it implies
1854 * that the long-lived page allocation rate is exceeding the page
1855 * laundering rate. Either the global limits are not being effective
1856 * at throttling processes due to the page distribution throughout
1857 * zones or there is heavy usage of a slow backing device. The
1858 * only option is to throttle from reclaim context which is not ideal
1859 * as there is no guarantee the dirtying process is throttled in the
1860 * same way balance_dirty_pages() manages.
1861 *
1862 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1863 * of pages under pages flagged for immediate reclaim and stall if any
1864 * are encountered in the nr_immediate check below.
1865 */
1866 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1867 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1868
1869 /*
1870 * If dirty pages are scanned that are not queued for IO, it
1871 * implies that flushers are not doing their job. This can
1872 * happen when memory pressure pushes dirty pages to the end of
1873 * the LRU before the dirty limits are breached and the dirty
1874 * data has expired. It can also happen when the proportion of
1875 * dirty pages grows not through writes but through memory
1876 * pressure reclaiming all the clean cache. And in some cases,
1877 * the flushers simply cannot keep up with the allocation
1878 * rate. Nudge the flusher threads in case they are asleep.
1879 */
1880 if (stat.nr_unqueued_dirty == nr_taken)
1881 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1882
1883 /*
1884 * Legacy memcg will stall in page writeback so avoid forcibly
1885 * stalling here.
1886 */
1887 if (sane_reclaim(sc)) {
1888 /*
1889 * Tag a zone as congested if all the dirty pages scanned were
1890 * backed by a congested BDI and wait_iff_congested will stall.
1891 */
1892 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1893 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1894
1895 /* Allow kswapd to start writing pages during reclaim. */
1896 if (stat.nr_unqueued_dirty == nr_taken)
1897 set_bit(PGDAT_DIRTY, &pgdat->flags);
1898
1899 /*
1900 * If kswapd scans pages marked marked for immediate
1901 * reclaim and under writeback (nr_immediate), it implies
1902 * that pages are cycling through the LRU faster than
1903 * they are written so also forcibly stall.
1904 */
1905 if (stat.nr_immediate && current_may_throttle())
1906 congestion_wait(BLK_RW_ASYNC, HZ/10);
1907 }
1908
1909 /*
1910 * Stall direct reclaim for IO completions if underlying BDIs or zone
1911 * is congested. Allow kswapd to continue until it starts encountering
1912 * unqueued dirty pages or cycling through the LRU too quickly.
1913 */
1914 if (!sc->hibernation_mode && !current_is_kswapd() &&
1915 current_may_throttle())
1916 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1917
1918 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1919 nr_scanned, nr_reclaimed,
1920 stat.nr_dirty, stat.nr_writeback,
1921 stat.nr_congested, stat.nr_immediate,
1922 stat.nr_activate, stat.nr_ref_keep,
1923 stat.nr_unmap_fail,
1924 sc->priority, file);
1925 return nr_reclaimed;
1926 }
1927
1928 /*
1929 * This moves pages from the active list to the inactive list.
1930 *
1931 * We move them the other way if the page is referenced by one or more
1932 * processes, from rmap.
1933 *
1934 * If the pages are mostly unmapped, the processing is fast and it is
1935 * appropriate to hold zone_lru_lock across the whole operation. But if
1936 * the pages are mapped, the processing is slow (page_referenced()) so we
1937 * should drop zone_lru_lock around each page. It's impossible to balance
1938 * this, so instead we remove the pages from the LRU while processing them.
1939 * It is safe to rely on PG_active against the non-LRU pages in here because
1940 * nobody will play with that bit on a non-LRU page.
1941 *
1942 * The downside is that we have to touch page->_refcount against each page.
1943 * But we had to alter page->flags anyway.
1944 *
1945 * Returns the number of pages moved to the given lru.
1946 */
1947
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1948 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1949 struct list_head *list,
1950 struct list_head *pages_to_free,
1951 enum lru_list lru)
1952 {
1953 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1954 struct page *page;
1955 int nr_pages;
1956 int nr_moved = 0;
1957
1958 while (!list_empty(list)) {
1959 page = lru_to_page(list);
1960 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1961
1962 VM_BUG_ON_PAGE(PageLRU(page), page);
1963 SetPageLRU(page);
1964
1965 nr_pages = hpage_nr_pages(page);
1966 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1967 list_move(&page->lru, &lruvec->lists[lru]);
1968
1969 if (put_page_testzero(page)) {
1970 __ClearPageLRU(page);
1971 __ClearPageActive(page);
1972 del_page_from_lru_list(page, lruvec, lru);
1973
1974 if (unlikely(PageCompound(page))) {
1975 spin_unlock_irq(&pgdat->lru_lock);
1976 mem_cgroup_uncharge(page);
1977 (*get_compound_page_dtor(page))(page);
1978 spin_lock_irq(&pgdat->lru_lock);
1979 } else
1980 list_add(&page->lru, pages_to_free);
1981 } else {
1982 nr_moved += nr_pages;
1983 }
1984 }
1985
1986 if (!is_active_lru(lru)) {
1987 __count_vm_events(PGDEACTIVATE, nr_moved);
1988 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
1989 nr_moved);
1990 }
1991
1992 return nr_moved;
1993 }
1994
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1995 static void shrink_active_list(unsigned long nr_to_scan,
1996 struct lruvec *lruvec,
1997 struct scan_control *sc,
1998 enum lru_list lru)
1999 {
2000 unsigned long nr_taken;
2001 unsigned long nr_scanned;
2002 unsigned long vm_flags;
2003 LIST_HEAD(l_hold); /* The pages which were snipped off */
2004 LIST_HEAD(l_active);
2005 LIST_HEAD(l_inactive);
2006 struct page *page;
2007 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2008 unsigned nr_deactivate, nr_activate;
2009 unsigned nr_rotated = 0;
2010 isolate_mode_t isolate_mode = 0;
2011 int file = is_file_lru(lru);
2012 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2013
2014 lru_add_drain();
2015
2016 if (!sc->may_unmap)
2017 isolate_mode |= ISOLATE_UNMAPPED;
2018
2019 spin_lock_irq(&pgdat->lru_lock);
2020
2021 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2022 &nr_scanned, sc, isolate_mode, lru);
2023
2024 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2025 reclaim_stat->recent_scanned[file] += nr_taken;
2026
2027 __count_vm_events(PGREFILL, nr_scanned);
2028 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2029
2030 spin_unlock_irq(&pgdat->lru_lock);
2031
2032 while (!list_empty(&l_hold)) {
2033 cond_resched();
2034 page = lru_to_page(&l_hold);
2035 list_del(&page->lru);
2036
2037 if (unlikely(!page_evictable(page))) {
2038 putback_lru_page(page);
2039 continue;
2040 }
2041
2042 if (unlikely(buffer_heads_over_limit)) {
2043 if (page_has_private(page) && trylock_page(page)) {
2044 if (page_has_private(page))
2045 try_to_release_page(page, 0);
2046 unlock_page(page);
2047 }
2048 }
2049
2050 if (page_referenced(page, 0, sc->target_mem_cgroup,
2051 &vm_flags)) {
2052 nr_rotated += hpage_nr_pages(page);
2053 /*
2054 * Identify referenced, file-backed active pages and
2055 * give them one more trip around the active list. So
2056 * that executable code get better chances to stay in
2057 * memory under moderate memory pressure. Anon pages
2058 * are not likely to be evicted by use-once streaming
2059 * IO, plus JVM can create lots of anon VM_EXEC pages,
2060 * so we ignore them here.
2061 */
2062 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2063 list_add(&page->lru, &l_active);
2064 continue;
2065 }
2066 }
2067
2068 ClearPageActive(page); /* we are de-activating */
2069 SetPageWorkingset(page);
2070 list_add(&page->lru, &l_inactive);
2071 }
2072
2073 /*
2074 * Move pages back to the lru list.
2075 */
2076 spin_lock_irq(&pgdat->lru_lock);
2077 /*
2078 * Count referenced pages from currently used mappings as rotated,
2079 * even though only some of them are actually re-activated. This
2080 * helps balance scan pressure between file and anonymous pages in
2081 * get_scan_count.
2082 */
2083 reclaim_stat->recent_rotated[file] += nr_rotated;
2084
2085 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2086 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2087 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2088 spin_unlock_irq(&pgdat->lru_lock);
2089
2090 mem_cgroup_uncharge_list(&l_hold);
2091 free_hot_cold_page_list(&l_hold, true);
2092 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2093 nr_deactivate, nr_rotated, sc->priority, file);
2094 }
2095
2096 /*
2097 * The inactive anon list should be small enough that the VM never has
2098 * to do too much work.
2099 *
2100 * The inactive file list should be small enough to leave most memory
2101 * to the established workingset on the scan-resistant active list,
2102 * but large enough to avoid thrashing the aggregate readahead window.
2103 *
2104 * Both inactive lists should also be large enough that each inactive
2105 * page has a chance to be referenced again before it is reclaimed.
2106 *
2107 * If that fails and refaulting is observed, the inactive list grows.
2108 *
2109 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2110 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2111 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2112 *
2113 * total target max
2114 * memory ratio inactive
2115 * -------------------------------------
2116 * 10MB 1 5MB
2117 * 100MB 1 50MB
2118 * 1GB 3 250MB
2119 * 10GB 10 0.9GB
2120 * 100GB 31 3GB
2121 * 1TB 101 10GB
2122 * 10TB 320 32GB
2123 */
inactive_list_is_low(struct lruvec * lruvec,bool file,struct scan_control * sc,bool trace)2124 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2125 struct scan_control *sc, bool trace)
2126 {
2127 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2128 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2129 enum lru_list inactive_lru = file * LRU_FILE;
2130 unsigned long inactive, active;
2131 unsigned long inactive_ratio;
2132 unsigned long refaults;
2133 unsigned long gb;
2134
2135 /*
2136 * If we don't have swap space, anonymous page deactivation
2137 * is pointless.
2138 */
2139 if (!file && !total_swap_pages)
2140 return false;
2141
2142 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2143 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2144
2145 /*
2146 * When refaults are being observed, it means a new workingset
2147 * is being established. Disable active list protection to get
2148 * rid of the stale workingset quickly.
2149 */
2150 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2151 if (file && lruvec->refaults != refaults) {
2152 inactive_ratio = 0;
2153 } else {
2154 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2155 if (gb)
2156 inactive_ratio = int_sqrt(10 * gb);
2157 else
2158 inactive_ratio = 1;
2159 }
2160
2161 if (trace)
2162 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2163 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2164 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2165 inactive_ratio, file);
2166
2167 return inactive * inactive_ratio < active;
2168 }
2169
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2170 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2171 struct lruvec *lruvec, struct scan_control *sc)
2172 {
2173 if (is_active_lru(lru)) {
2174 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2175 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2176 return 0;
2177 }
2178
2179 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2180 }
2181
2182 enum scan_balance {
2183 SCAN_EQUAL,
2184 SCAN_FRACT,
2185 SCAN_ANON,
2186 SCAN_FILE,
2187 };
2188
2189 /*
2190 * Determine how aggressively the anon and file LRU lists should be
2191 * scanned. The relative value of each set of LRU lists is determined
2192 * by looking at the fraction of the pages scanned we did rotate back
2193 * onto the active list instead of evict.
2194 *
2195 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2196 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2197 */
get_scan_count(struct lruvec * lruvec,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)2198 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2199 struct scan_control *sc, unsigned long *nr,
2200 unsigned long *lru_pages)
2201 {
2202 int swappiness = mem_cgroup_swappiness(memcg);
2203 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2204 u64 fraction[2];
2205 u64 denominator = 0; /* gcc */
2206 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2207 unsigned long anon_prio, file_prio;
2208 enum scan_balance scan_balance;
2209 unsigned long anon, file;
2210 unsigned long ap, fp;
2211 enum lru_list lru;
2212
2213 /* If we have no swap space, do not bother scanning anon pages. */
2214 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2215 scan_balance = SCAN_FILE;
2216 goto out;
2217 }
2218
2219 /*
2220 * Global reclaim will swap to prevent OOM even with no
2221 * swappiness, but memcg users want to use this knob to
2222 * disable swapping for individual groups completely when
2223 * using the memory controller's swap limit feature would be
2224 * too expensive.
2225 */
2226 if (!global_reclaim(sc) && !swappiness) {
2227 scan_balance = SCAN_FILE;
2228 goto out;
2229 }
2230
2231 /*
2232 * Do not apply any pressure balancing cleverness when the
2233 * system is close to OOM, scan both anon and file equally
2234 * (unless the swappiness setting disagrees with swapping).
2235 */
2236 if (!sc->priority && swappiness) {
2237 scan_balance = SCAN_EQUAL;
2238 goto out;
2239 }
2240
2241 /*
2242 * Prevent the reclaimer from falling into the cache trap: as
2243 * cache pages start out inactive, every cache fault will tip
2244 * the scan balance towards the file LRU. And as the file LRU
2245 * shrinks, so does the window for rotation from references.
2246 * This means we have a runaway feedback loop where a tiny
2247 * thrashing file LRU becomes infinitely more attractive than
2248 * anon pages. Try to detect this based on file LRU size.
2249 */
2250 if (global_reclaim(sc)) {
2251 unsigned long pgdatfile;
2252 unsigned long pgdatfree;
2253 int z;
2254 unsigned long total_high_wmark = 0;
2255
2256 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2257 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2258 node_page_state(pgdat, NR_INACTIVE_FILE);
2259
2260 for (z = 0; z < MAX_NR_ZONES; z++) {
2261 struct zone *zone = &pgdat->node_zones[z];
2262 if (!managed_zone(zone))
2263 continue;
2264
2265 total_high_wmark += high_wmark_pages(zone);
2266 }
2267
2268 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2269 /*
2270 * Force SCAN_ANON if there are enough inactive
2271 * anonymous pages on the LRU in eligible zones.
2272 * Otherwise, the small LRU gets thrashed.
2273 */
2274 if (!inactive_list_is_low(lruvec, false, sc, false) &&
2275 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2276 >> sc->priority) {
2277 scan_balance = SCAN_ANON;
2278 goto out;
2279 }
2280 }
2281 }
2282
2283 /*
2284 * If there is enough inactive page cache, i.e. if the size of the
2285 * inactive list is greater than that of the active list *and* the
2286 * inactive list actually has some pages to scan on this priority, we
2287 * do not reclaim anything from the anonymous working set right now.
2288 * Without the second condition we could end up never scanning an
2289 * lruvec even if it has plenty of old anonymous pages unless the
2290 * system is under heavy pressure.
2291 */
2292 if (!inactive_list_is_low(lruvec, true, sc, false) &&
2293 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2294 scan_balance = SCAN_FILE;
2295 goto out;
2296 }
2297
2298 scan_balance = SCAN_FRACT;
2299
2300 /*
2301 * With swappiness at 100, anonymous and file have the same priority.
2302 * This scanning priority is essentially the inverse of IO cost.
2303 */
2304 anon_prio = swappiness;
2305 file_prio = 200 - anon_prio;
2306
2307 /*
2308 * OK, so we have swap space and a fair amount of page cache
2309 * pages. We use the recently rotated / recently scanned
2310 * ratios to determine how valuable each cache is.
2311 *
2312 * Because workloads change over time (and to avoid overflow)
2313 * we keep these statistics as a floating average, which ends
2314 * up weighing recent references more than old ones.
2315 *
2316 * anon in [0], file in [1]
2317 */
2318
2319 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2320 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2321 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2322 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2323
2324 spin_lock_irq(&pgdat->lru_lock);
2325 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2326 reclaim_stat->recent_scanned[0] /= 2;
2327 reclaim_stat->recent_rotated[0] /= 2;
2328 }
2329
2330 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2331 reclaim_stat->recent_scanned[1] /= 2;
2332 reclaim_stat->recent_rotated[1] /= 2;
2333 }
2334
2335 /*
2336 * The amount of pressure on anon vs file pages is inversely
2337 * proportional to the fraction of recently scanned pages on
2338 * each list that were recently referenced and in active use.
2339 */
2340 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2341 ap /= reclaim_stat->recent_rotated[0] + 1;
2342
2343 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2344 fp /= reclaim_stat->recent_rotated[1] + 1;
2345 spin_unlock_irq(&pgdat->lru_lock);
2346
2347 fraction[0] = ap;
2348 fraction[1] = fp;
2349 denominator = ap + fp + 1;
2350 out:
2351 *lru_pages = 0;
2352 for_each_evictable_lru(lru) {
2353 int file = is_file_lru(lru);
2354 unsigned long size;
2355 unsigned long scan;
2356
2357 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2358 scan = size >> sc->priority;
2359 /*
2360 * If the cgroup's already been deleted, make sure to
2361 * scrape out the remaining cache.
2362 */
2363 if (!scan && !mem_cgroup_online(memcg))
2364 scan = min(size, SWAP_CLUSTER_MAX);
2365
2366 switch (scan_balance) {
2367 case SCAN_EQUAL:
2368 /* Scan lists relative to size */
2369 break;
2370 case SCAN_FRACT:
2371 /*
2372 * Scan types proportional to swappiness and
2373 * their relative recent reclaim efficiency.
2374 * Make sure we don't miss the last page on
2375 * the offlined memory cgroups because of a
2376 * round-off error.
2377 */
2378 scan = mem_cgroup_online(memcg) ?
2379 div64_u64(scan * fraction[file], denominator) :
2380 DIV64_U64_ROUND_UP(scan * fraction[file],
2381 denominator);
2382 break;
2383 case SCAN_FILE:
2384 case SCAN_ANON:
2385 /* Scan one type exclusively */
2386 if ((scan_balance == SCAN_FILE) != file) {
2387 size = 0;
2388 scan = 0;
2389 }
2390 break;
2391 default:
2392 /* Look ma, no brain */
2393 BUG();
2394 }
2395
2396 *lru_pages += size;
2397 nr[lru] = scan;
2398 }
2399 }
2400
2401 /*
2402 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2403 */
shrink_node_memcg(struct pglist_data * pgdat,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * lru_pages)2404 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2405 struct scan_control *sc, unsigned long *lru_pages)
2406 {
2407 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2408 unsigned long nr[NR_LRU_LISTS];
2409 unsigned long targets[NR_LRU_LISTS];
2410 unsigned long nr_to_scan;
2411 enum lru_list lru;
2412 unsigned long nr_reclaimed = 0;
2413 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2414 struct blk_plug plug;
2415 bool scan_adjusted;
2416
2417 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2418
2419 /* Record the original scan target for proportional adjustments later */
2420 memcpy(targets, nr, sizeof(nr));
2421
2422 /*
2423 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2424 * event that can occur when there is little memory pressure e.g.
2425 * multiple streaming readers/writers. Hence, we do not abort scanning
2426 * when the requested number of pages are reclaimed when scanning at
2427 * DEF_PRIORITY on the assumption that the fact we are direct
2428 * reclaiming implies that kswapd is not keeping up and it is best to
2429 * do a batch of work at once. For memcg reclaim one check is made to
2430 * abort proportional reclaim if either the file or anon lru has already
2431 * dropped to zero at the first pass.
2432 */
2433 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2434 sc->priority == DEF_PRIORITY);
2435
2436 blk_start_plug(&plug);
2437 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2438 nr[LRU_INACTIVE_FILE]) {
2439 unsigned long nr_anon, nr_file, percentage;
2440 unsigned long nr_scanned;
2441
2442 for_each_evictable_lru(lru) {
2443 if (nr[lru]) {
2444 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2445 nr[lru] -= nr_to_scan;
2446
2447 nr_reclaimed += shrink_list(lru, nr_to_scan,
2448 lruvec, sc);
2449 }
2450 }
2451
2452 cond_resched();
2453
2454 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2455 continue;
2456
2457 /*
2458 * For kswapd and memcg, reclaim at least the number of pages
2459 * requested. Ensure that the anon and file LRUs are scanned
2460 * proportionally what was requested by get_scan_count(). We
2461 * stop reclaiming one LRU and reduce the amount scanning
2462 * proportional to the original scan target.
2463 */
2464 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2465 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2466
2467 /*
2468 * It's just vindictive to attack the larger once the smaller
2469 * has gone to zero. And given the way we stop scanning the
2470 * smaller below, this makes sure that we only make one nudge
2471 * towards proportionality once we've got nr_to_reclaim.
2472 */
2473 if (!nr_file || !nr_anon)
2474 break;
2475
2476 if (nr_file > nr_anon) {
2477 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2478 targets[LRU_ACTIVE_ANON] + 1;
2479 lru = LRU_BASE;
2480 percentage = nr_anon * 100 / scan_target;
2481 } else {
2482 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2483 targets[LRU_ACTIVE_FILE] + 1;
2484 lru = LRU_FILE;
2485 percentage = nr_file * 100 / scan_target;
2486 }
2487
2488 /* Stop scanning the smaller of the LRU */
2489 nr[lru] = 0;
2490 nr[lru + LRU_ACTIVE] = 0;
2491
2492 /*
2493 * Recalculate the other LRU scan count based on its original
2494 * scan target and the percentage scanning already complete
2495 */
2496 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2497 nr_scanned = targets[lru] - nr[lru];
2498 nr[lru] = targets[lru] * (100 - percentage) / 100;
2499 nr[lru] -= min(nr[lru], nr_scanned);
2500
2501 lru += LRU_ACTIVE;
2502 nr_scanned = targets[lru] - nr[lru];
2503 nr[lru] = targets[lru] * (100 - percentage) / 100;
2504 nr[lru] -= min(nr[lru], nr_scanned);
2505
2506 scan_adjusted = true;
2507 }
2508 blk_finish_plug(&plug);
2509 sc->nr_reclaimed += nr_reclaimed;
2510
2511 /*
2512 * Even if we did not try to evict anon pages at all, we want to
2513 * rebalance the anon lru active/inactive ratio.
2514 */
2515 if (inactive_list_is_low(lruvec, false, sc, true))
2516 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2517 sc, LRU_ACTIVE_ANON);
2518 }
2519
2520 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2521 static bool in_reclaim_compaction(struct scan_control *sc)
2522 {
2523 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2524 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2525 sc->priority < DEF_PRIORITY - 2))
2526 return true;
2527
2528 return false;
2529 }
2530
2531 /*
2532 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2533 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2534 * true if more pages should be reclaimed such that when the page allocator
2535 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2536 * It will give up earlier than that if there is difficulty reclaiming pages.
2537 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2538 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2539 unsigned long nr_reclaimed,
2540 unsigned long nr_scanned,
2541 struct scan_control *sc)
2542 {
2543 unsigned long pages_for_compaction;
2544 unsigned long inactive_lru_pages;
2545 int z;
2546
2547 /* If not in reclaim/compaction mode, stop */
2548 if (!in_reclaim_compaction(sc))
2549 return false;
2550
2551 /* Consider stopping depending on scan and reclaim activity */
2552 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2553 /*
2554 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2555 * full LRU list has been scanned and we are still failing
2556 * to reclaim pages. This full LRU scan is potentially
2557 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2558 */
2559 if (!nr_reclaimed && !nr_scanned)
2560 return false;
2561 } else {
2562 /*
2563 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2564 * fail without consequence, stop if we failed to reclaim
2565 * any pages from the last SWAP_CLUSTER_MAX number of
2566 * pages that were scanned. This will return to the
2567 * caller faster at the risk reclaim/compaction and
2568 * the resulting allocation attempt fails
2569 */
2570 if (!nr_reclaimed)
2571 return false;
2572 }
2573
2574 /*
2575 * If we have not reclaimed enough pages for compaction and the
2576 * inactive lists are large enough, continue reclaiming
2577 */
2578 pages_for_compaction = compact_gap(sc->order);
2579 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2580 if (get_nr_swap_pages() > 0)
2581 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2582 if (sc->nr_reclaimed < pages_for_compaction &&
2583 inactive_lru_pages > pages_for_compaction)
2584 return true;
2585
2586 /* If compaction would go ahead or the allocation would succeed, stop */
2587 for (z = 0; z <= sc->reclaim_idx; z++) {
2588 struct zone *zone = &pgdat->node_zones[z];
2589 if (!managed_zone(zone))
2590 continue;
2591
2592 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2593 case COMPACT_SUCCESS:
2594 case COMPACT_CONTINUE:
2595 return false;
2596 default:
2597 /* check next zone */
2598 ;
2599 }
2600 }
2601 return true;
2602 }
2603
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2604 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2605 {
2606 struct reclaim_state *reclaim_state = current->reclaim_state;
2607 unsigned long nr_reclaimed, nr_scanned;
2608 bool reclaimable = false;
2609
2610 do {
2611 struct mem_cgroup *root = sc->target_mem_cgroup;
2612 struct mem_cgroup_reclaim_cookie reclaim = {
2613 .pgdat = pgdat,
2614 .priority = sc->priority,
2615 };
2616 unsigned long node_lru_pages = 0;
2617 struct mem_cgroup *memcg;
2618
2619 nr_reclaimed = sc->nr_reclaimed;
2620 nr_scanned = sc->nr_scanned;
2621
2622 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2623 do {
2624 unsigned long lru_pages;
2625 unsigned long reclaimed;
2626 unsigned long scanned;
2627
2628 if (mem_cgroup_low(root, memcg)) {
2629 if (!sc->memcg_low_reclaim) {
2630 sc->memcg_low_skipped = 1;
2631 continue;
2632 }
2633 mem_cgroup_event(memcg, MEMCG_LOW);
2634 }
2635
2636 reclaimed = sc->nr_reclaimed;
2637 scanned = sc->nr_scanned;
2638
2639 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2640 node_lru_pages += lru_pages;
2641
2642 if (memcg)
2643 shrink_slab(sc->gfp_mask, pgdat->node_id,
2644 memcg, sc->nr_scanned - scanned,
2645 lru_pages);
2646
2647 /* Record the group's reclaim efficiency */
2648 vmpressure(sc->gfp_mask, memcg, false,
2649 sc->nr_scanned - scanned,
2650 sc->nr_reclaimed - reclaimed);
2651
2652 /*
2653 * Direct reclaim and kswapd have to scan all memory
2654 * cgroups to fulfill the overall scan target for the
2655 * node.
2656 *
2657 * Limit reclaim, on the other hand, only cares about
2658 * nr_to_reclaim pages to be reclaimed and it will
2659 * retry with decreasing priority if one round over the
2660 * whole hierarchy is not sufficient.
2661 */
2662 if (!global_reclaim(sc) &&
2663 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2664 mem_cgroup_iter_break(root, memcg);
2665 break;
2666 }
2667 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2668
2669 /*
2670 * Shrink the slab caches in the same proportion that
2671 * the eligible LRU pages were scanned.
2672 */
2673 if (global_reclaim(sc))
2674 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2675 sc->nr_scanned - nr_scanned,
2676 node_lru_pages);
2677
2678 if (reclaim_state) {
2679 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2680 reclaim_state->reclaimed_slab = 0;
2681 }
2682
2683 /* Record the subtree's reclaim efficiency */
2684 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2685 sc->nr_scanned - nr_scanned,
2686 sc->nr_reclaimed - nr_reclaimed);
2687
2688 if (sc->nr_reclaimed - nr_reclaimed)
2689 reclaimable = true;
2690
2691 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2692 sc->nr_scanned - nr_scanned, sc));
2693
2694 /*
2695 * Kswapd gives up on balancing particular nodes after too
2696 * many failures to reclaim anything from them and goes to
2697 * sleep. On reclaim progress, reset the failure counter. A
2698 * successful direct reclaim run will revive a dormant kswapd.
2699 */
2700 if (reclaimable)
2701 pgdat->kswapd_failures = 0;
2702
2703 return reclaimable;
2704 }
2705
2706 /*
2707 * Returns true if compaction should go ahead for a costly-order request, or
2708 * the allocation would already succeed without compaction. Return false if we
2709 * should reclaim first.
2710 */
compaction_ready(struct zone * zone,struct scan_control * sc)2711 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2712 {
2713 unsigned long watermark;
2714 enum compact_result suitable;
2715
2716 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2717 if (suitable == COMPACT_SUCCESS)
2718 /* Allocation should succeed already. Don't reclaim. */
2719 return true;
2720 if (suitable == COMPACT_SKIPPED)
2721 /* Compaction cannot yet proceed. Do reclaim. */
2722 return false;
2723
2724 /*
2725 * Compaction is already possible, but it takes time to run and there
2726 * are potentially other callers using the pages just freed. So proceed
2727 * with reclaim to make a buffer of free pages available to give
2728 * compaction a reasonable chance of completing and allocating the page.
2729 * Note that we won't actually reclaim the whole buffer in one attempt
2730 * as the target watermark in should_continue_reclaim() is lower. But if
2731 * we are already above the high+gap watermark, don't reclaim at all.
2732 */
2733 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2734
2735 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2736 }
2737
2738 /*
2739 * This is the direct reclaim path, for page-allocating processes. We only
2740 * try to reclaim pages from zones which will satisfy the caller's allocation
2741 * request.
2742 *
2743 * If a zone is deemed to be full of pinned pages then just give it a light
2744 * scan then give up on it.
2745 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2746 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2747 {
2748 struct zoneref *z;
2749 struct zone *zone;
2750 unsigned long nr_soft_reclaimed;
2751 unsigned long nr_soft_scanned;
2752 gfp_t orig_mask;
2753 pg_data_t *last_pgdat = NULL;
2754
2755 /*
2756 * If the number of buffer_heads in the machine exceeds the maximum
2757 * allowed level, force direct reclaim to scan the highmem zone as
2758 * highmem pages could be pinning lowmem pages storing buffer_heads
2759 */
2760 orig_mask = sc->gfp_mask;
2761 if (buffer_heads_over_limit) {
2762 sc->gfp_mask |= __GFP_HIGHMEM;
2763 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2764 }
2765
2766 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2767 sc->reclaim_idx, sc->nodemask) {
2768 /*
2769 * Take care memory controller reclaiming has small influence
2770 * to global LRU.
2771 */
2772 if (global_reclaim(sc)) {
2773 if (!cpuset_zone_allowed(zone,
2774 GFP_KERNEL | __GFP_HARDWALL))
2775 continue;
2776
2777 /*
2778 * If we already have plenty of memory free for
2779 * compaction in this zone, don't free any more.
2780 * Even though compaction is invoked for any
2781 * non-zero order, only frequent costly order
2782 * reclamation is disruptive enough to become a
2783 * noticeable problem, like transparent huge
2784 * page allocations.
2785 */
2786 if (IS_ENABLED(CONFIG_COMPACTION) &&
2787 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2788 compaction_ready(zone, sc)) {
2789 sc->compaction_ready = true;
2790 continue;
2791 }
2792
2793 /*
2794 * Shrink each node in the zonelist once. If the
2795 * zonelist is ordered by zone (not the default) then a
2796 * node may be shrunk multiple times but in that case
2797 * the user prefers lower zones being preserved.
2798 */
2799 if (zone->zone_pgdat == last_pgdat)
2800 continue;
2801
2802 /*
2803 * This steals pages from memory cgroups over softlimit
2804 * and returns the number of reclaimed pages and
2805 * scanned pages. This works for global memory pressure
2806 * and balancing, not for a memcg's limit.
2807 */
2808 nr_soft_scanned = 0;
2809 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2810 sc->order, sc->gfp_mask,
2811 &nr_soft_scanned);
2812 sc->nr_reclaimed += nr_soft_reclaimed;
2813 sc->nr_scanned += nr_soft_scanned;
2814 /* need some check for avoid more shrink_zone() */
2815 }
2816
2817 /* See comment about same check for global reclaim above */
2818 if (zone->zone_pgdat == last_pgdat)
2819 continue;
2820 last_pgdat = zone->zone_pgdat;
2821 shrink_node(zone->zone_pgdat, sc);
2822 }
2823
2824 /*
2825 * Restore to original mask to avoid the impact on the caller if we
2826 * promoted it to __GFP_HIGHMEM.
2827 */
2828 sc->gfp_mask = orig_mask;
2829 }
2830
snapshot_refaults(struct mem_cgroup * root_memcg,pg_data_t * pgdat)2831 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2832 {
2833 struct mem_cgroup *memcg;
2834
2835 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2836 do {
2837 unsigned long refaults;
2838 struct lruvec *lruvec;
2839
2840 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2841 refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE);
2842 lruvec->refaults = refaults;
2843 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2844 }
2845
2846 /*
2847 * This is the main entry point to direct page reclaim.
2848 *
2849 * If a full scan of the inactive list fails to free enough memory then we
2850 * are "out of memory" and something needs to be killed.
2851 *
2852 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2853 * high - the zone may be full of dirty or under-writeback pages, which this
2854 * caller can't do much about. We kick the writeback threads and take explicit
2855 * naps in the hope that some of these pages can be written. But if the
2856 * allocating task holds filesystem locks which prevent writeout this might not
2857 * work, and the allocation attempt will fail.
2858 *
2859 * returns: 0, if no pages reclaimed
2860 * else, the number of pages reclaimed
2861 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2862 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2863 struct scan_control *sc)
2864 {
2865 int initial_priority = sc->priority;
2866 pg_data_t *last_pgdat;
2867 struct zoneref *z;
2868 struct zone *zone;
2869 retry:
2870 delayacct_freepages_start();
2871
2872 if (global_reclaim(sc))
2873 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2874
2875 do {
2876 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2877 sc->priority);
2878 sc->nr_scanned = 0;
2879 shrink_zones(zonelist, sc);
2880
2881 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2882 break;
2883
2884 if (sc->compaction_ready)
2885 break;
2886
2887 /*
2888 * If we're getting trouble reclaiming, start doing
2889 * writepage even in laptop mode.
2890 */
2891 if (sc->priority < DEF_PRIORITY - 2)
2892 sc->may_writepage = 1;
2893 } while (--sc->priority >= 0);
2894
2895 last_pgdat = NULL;
2896 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2897 sc->nodemask) {
2898 if (zone->zone_pgdat == last_pgdat)
2899 continue;
2900 last_pgdat = zone->zone_pgdat;
2901 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2902 }
2903
2904 delayacct_freepages_end();
2905
2906 if (sc->nr_reclaimed)
2907 return sc->nr_reclaimed;
2908
2909 /* Aborted reclaim to try compaction? don't OOM, then */
2910 if (sc->compaction_ready)
2911 return 1;
2912
2913 /* Untapped cgroup reserves? Don't OOM, retry. */
2914 if (sc->memcg_low_skipped) {
2915 sc->priority = initial_priority;
2916 sc->memcg_low_reclaim = 1;
2917 sc->memcg_low_skipped = 0;
2918 goto retry;
2919 }
2920
2921 return 0;
2922 }
2923
allow_direct_reclaim(pg_data_t * pgdat)2924 static bool allow_direct_reclaim(pg_data_t *pgdat)
2925 {
2926 struct zone *zone;
2927 unsigned long pfmemalloc_reserve = 0;
2928 unsigned long free_pages = 0;
2929 int i;
2930 bool wmark_ok;
2931
2932 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2933 return true;
2934
2935 for (i = 0; i <= ZONE_NORMAL; i++) {
2936 zone = &pgdat->node_zones[i];
2937 if (!managed_zone(zone))
2938 continue;
2939
2940 if (!zone_reclaimable_pages(zone))
2941 continue;
2942
2943 pfmemalloc_reserve += min_wmark_pages(zone);
2944 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2945 }
2946
2947 /* If there are no reserves (unexpected config) then do not throttle */
2948 if (!pfmemalloc_reserve)
2949 return true;
2950
2951 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2952
2953 /* kswapd must be awake if processes are being throttled */
2954 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2955 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2956 (enum zone_type)ZONE_NORMAL);
2957 wake_up_interruptible(&pgdat->kswapd_wait);
2958 }
2959
2960 return wmark_ok;
2961 }
2962
2963 /*
2964 * Throttle direct reclaimers if backing storage is backed by the network
2965 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2966 * depleted. kswapd will continue to make progress and wake the processes
2967 * when the low watermark is reached.
2968 *
2969 * Returns true if a fatal signal was delivered during throttling. If this
2970 * happens, the page allocator should not consider triggering the OOM killer.
2971 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)2972 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2973 nodemask_t *nodemask)
2974 {
2975 struct zoneref *z;
2976 struct zone *zone;
2977 pg_data_t *pgdat = NULL;
2978
2979 /*
2980 * Kernel threads should not be throttled as they may be indirectly
2981 * responsible for cleaning pages necessary for reclaim to make forward
2982 * progress. kjournald for example may enter direct reclaim while
2983 * committing a transaction where throttling it could forcing other
2984 * processes to block on log_wait_commit().
2985 */
2986 if (current->flags & PF_KTHREAD)
2987 goto out;
2988
2989 /*
2990 * If a fatal signal is pending, this process should not throttle.
2991 * It should return quickly so it can exit and free its memory
2992 */
2993 if (fatal_signal_pending(current))
2994 goto out;
2995
2996 /*
2997 * Check if the pfmemalloc reserves are ok by finding the first node
2998 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2999 * GFP_KERNEL will be required for allocating network buffers when
3000 * swapping over the network so ZONE_HIGHMEM is unusable.
3001 *
3002 * Throttling is based on the first usable node and throttled processes
3003 * wait on a queue until kswapd makes progress and wakes them. There
3004 * is an affinity then between processes waking up and where reclaim
3005 * progress has been made assuming the process wakes on the same node.
3006 * More importantly, processes running on remote nodes will not compete
3007 * for remote pfmemalloc reserves and processes on different nodes
3008 * should make reasonable progress.
3009 */
3010 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3011 gfp_zone(gfp_mask), nodemask) {
3012 if (zone_idx(zone) > ZONE_NORMAL)
3013 continue;
3014
3015 /* Throttle based on the first usable node */
3016 pgdat = zone->zone_pgdat;
3017 if (allow_direct_reclaim(pgdat))
3018 goto out;
3019 break;
3020 }
3021
3022 /* If no zone was usable by the allocation flags then do not throttle */
3023 if (!pgdat)
3024 goto out;
3025
3026 /* Account for the throttling */
3027 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3028
3029 /*
3030 * If the caller cannot enter the filesystem, it's possible that it
3031 * is due to the caller holding an FS lock or performing a journal
3032 * transaction in the case of a filesystem like ext[3|4]. In this case,
3033 * it is not safe to block on pfmemalloc_wait as kswapd could be
3034 * blocked waiting on the same lock. Instead, throttle for up to a
3035 * second before continuing.
3036 */
3037 if (!(gfp_mask & __GFP_FS)) {
3038 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3039 allow_direct_reclaim(pgdat), HZ);
3040
3041 goto check_pending;
3042 }
3043
3044 /* Throttle until kswapd wakes the process */
3045 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3046 allow_direct_reclaim(pgdat));
3047
3048 check_pending:
3049 if (fatal_signal_pending(current))
3050 return true;
3051
3052 out:
3053 return false;
3054 }
3055
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3056 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3057 gfp_t gfp_mask, nodemask_t *nodemask)
3058 {
3059 unsigned long nr_reclaimed;
3060 struct scan_control sc = {
3061 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3062 .gfp_mask = current_gfp_context(gfp_mask),
3063 .reclaim_idx = gfp_zone(gfp_mask),
3064 .order = order,
3065 .nodemask = nodemask,
3066 .priority = DEF_PRIORITY,
3067 .may_writepage = !laptop_mode,
3068 .may_unmap = 1,
3069 .may_swap = 1,
3070 };
3071
3072 /*
3073 * Do not enter reclaim if fatal signal was delivered while throttled.
3074 * 1 is returned so that the page allocator does not OOM kill at this
3075 * point.
3076 */
3077 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3078 return 1;
3079
3080 trace_mm_vmscan_direct_reclaim_begin(order,
3081 sc.may_writepage,
3082 sc.gfp_mask,
3083 sc.reclaim_idx);
3084
3085 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3086
3087 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3088
3089 return nr_reclaimed;
3090 }
3091
3092 #ifdef CONFIG_MEMCG
3093
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3094 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3095 gfp_t gfp_mask, bool noswap,
3096 pg_data_t *pgdat,
3097 unsigned long *nr_scanned)
3098 {
3099 struct scan_control sc = {
3100 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3101 .target_mem_cgroup = memcg,
3102 .may_writepage = !laptop_mode,
3103 .may_unmap = 1,
3104 .reclaim_idx = MAX_NR_ZONES - 1,
3105 .may_swap = !noswap,
3106 };
3107 unsigned long lru_pages;
3108
3109 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3110 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3111
3112 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3113 sc.may_writepage,
3114 sc.gfp_mask,
3115 sc.reclaim_idx);
3116
3117 /*
3118 * NOTE: Although we can get the priority field, using it
3119 * here is not a good idea, since it limits the pages we can scan.
3120 * if we don't reclaim here, the shrink_node from balance_pgdat
3121 * will pick up pages from other mem cgroup's as well. We hack
3122 * the priority and make it zero.
3123 */
3124 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3125
3126 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3127
3128 *nr_scanned = sc.nr_scanned;
3129 return sc.nr_reclaimed;
3130 }
3131
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3132 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3133 unsigned long nr_pages,
3134 gfp_t gfp_mask,
3135 bool may_swap)
3136 {
3137 struct zonelist *zonelist;
3138 unsigned long nr_reclaimed;
3139 unsigned long pflags;
3140 int nid;
3141 unsigned int noreclaim_flag;
3142 struct scan_control sc = {
3143 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3144 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3145 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3146 .reclaim_idx = MAX_NR_ZONES - 1,
3147 .target_mem_cgroup = memcg,
3148 .priority = DEF_PRIORITY,
3149 .may_writepage = !laptop_mode,
3150 .may_unmap = 1,
3151 .may_swap = may_swap,
3152 };
3153
3154 /*
3155 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3156 * take care of from where we get pages. So the node where we start the
3157 * scan does not need to be the current node.
3158 */
3159 nid = mem_cgroup_select_victim_node(memcg);
3160
3161 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3162
3163 trace_mm_vmscan_memcg_reclaim_begin(0,
3164 sc.may_writepage,
3165 sc.gfp_mask,
3166 sc.reclaim_idx);
3167
3168 psi_memstall_enter(&pflags);
3169 noreclaim_flag = memalloc_noreclaim_save();
3170
3171 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3172
3173 memalloc_noreclaim_restore(noreclaim_flag);
3174 psi_memstall_leave(&pflags);
3175
3176 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3177
3178 return nr_reclaimed;
3179 }
3180 #endif
3181
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3182 static void age_active_anon(struct pglist_data *pgdat,
3183 struct scan_control *sc)
3184 {
3185 struct mem_cgroup *memcg;
3186
3187 if (!total_swap_pages)
3188 return;
3189
3190 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3191 do {
3192 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3193
3194 if (inactive_list_is_low(lruvec, false, sc, true))
3195 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3196 sc, LRU_ACTIVE_ANON);
3197
3198 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3199 } while (memcg);
3200 }
3201
3202 /*
3203 * Returns true if there is an eligible zone balanced for the request order
3204 * and classzone_idx
3205 */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)3206 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3207 {
3208 int i;
3209 unsigned long mark = -1;
3210 struct zone *zone;
3211
3212 for (i = 0; i <= classzone_idx; i++) {
3213 zone = pgdat->node_zones + i;
3214
3215 if (!managed_zone(zone))
3216 continue;
3217
3218 mark = high_wmark_pages(zone);
3219 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3220 return true;
3221 }
3222
3223 /*
3224 * If a node has no populated zone within classzone_idx, it does not
3225 * need balancing by definition. This can happen if a zone-restricted
3226 * allocation tries to wake a remote kswapd.
3227 */
3228 if (mark == -1)
3229 return true;
3230
3231 return false;
3232 }
3233
3234 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3235 static void clear_pgdat_congested(pg_data_t *pgdat)
3236 {
3237 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3238 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3239 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3240 }
3241
3242 /*
3243 * Prepare kswapd for sleeping. This verifies that there are no processes
3244 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3245 *
3246 * Returns true if kswapd is ready to sleep
3247 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int classzone_idx)3248 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3249 {
3250 /*
3251 * The throttled processes are normally woken up in balance_pgdat() as
3252 * soon as allow_direct_reclaim() is true. But there is a potential
3253 * race between when kswapd checks the watermarks and a process gets
3254 * throttled. There is also a potential race if processes get
3255 * throttled, kswapd wakes, a large process exits thereby balancing the
3256 * zones, which causes kswapd to exit balance_pgdat() before reaching
3257 * the wake up checks. If kswapd is going to sleep, no process should
3258 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3259 * the wake up is premature, processes will wake kswapd and get
3260 * throttled again. The difference from wake ups in balance_pgdat() is
3261 * that here we are under prepare_to_wait().
3262 */
3263 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3264 wake_up_all(&pgdat->pfmemalloc_wait);
3265
3266 /* Hopeless node, leave it to direct reclaim */
3267 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3268 return true;
3269
3270 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3271 clear_pgdat_congested(pgdat);
3272 return true;
3273 }
3274
3275 return false;
3276 }
3277
3278 /*
3279 * kswapd shrinks a node of pages that are at or below the highest usable
3280 * zone that is currently unbalanced.
3281 *
3282 * Returns true if kswapd scanned at least the requested number of pages to
3283 * reclaim or if the lack of progress was due to pages under writeback.
3284 * This is used to determine if the scanning priority needs to be raised.
3285 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3286 static bool kswapd_shrink_node(pg_data_t *pgdat,
3287 struct scan_control *sc)
3288 {
3289 struct zone *zone;
3290 int z;
3291
3292 /* Reclaim a number of pages proportional to the number of zones */
3293 sc->nr_to_reclaim = 0;
3294 for (z = 0; z <= sc->reclaim_idx; z++) {
3295 zone = pgdat->node_zones + z;
3296 if (!managed_zone(zone))
3297 continue;
3298
3299 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3300 }
3301
3302 /*
3303 * Historically care was taken to put equal pressure on all zones but
3304 * now pressure is applied based on node LRU order.
3305 */
3306 shrink_node(pgdat, sc);
3307
3308 /*
3309 * Fragmentation may mean that the system cannot be rebalanced for
3310 * high-order allocations. If twice the allocation size has been
3311 * reclaimed then recheck watermarks only at order-0 to prevent
3312 * excessive reclaim. Assume that a process requested a high-order
3313 * can direct reclaim/compact.
3314 */
3315 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3316 sc->order = 0;
3317
3318 return sc->nr_scanned >= sc->nr_to_reclaim;
3319 }
3320
3321 /*
3322 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3323 * that are eligible for use by the caller until at least one zone is
3324 * balanced.
3325 *
3326 * Returns the order kswapd finished reclaiming at.
3327 *
3328 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3329 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3330 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3331 * or lower is eligible for reclaim until at least one usable zone is
3332 * balanced.
3333 */
balance_pgdat(pg_data_t * pgdat,int order,int classzone_idx)3334 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3335 {
3336 int i;
3337 unsigned long nr_soft_reclaimed;
3338 unsigned long nr_soft_scanned;
3339 unsigned long pflags;
3340 struct zone *zone;
3341 struct scan_control sc = {
3342 .gfp_mask = GFP_KERNEL,
3343 .order = order,
3344 .priority = DEF_PRIORITY,
3345 .may_writepage = !laptop_mode,
3346 .may_unmap = 1,
3347 .may_swap = 1,
3348 };
3349 psi_memstall_enter(&pflags);
3350 count_vm_event(PAGEOUTRUN);
3351
3352 do {
3353 unsigned long nr_reclaimed = sc.nr_reclaimed;
3354 bool raise_priority = true;
3355
3356 sc.reclaim_idx = classzone_idx;
3357
3358 /*
3359 * If the number of buffer_heads exceeds the maximum allowed
3360 * then consider reclaiming from all zones. This has a dual
3361 * purpose -- on 64-bit systems it is expected that
3362 * buffer_heads are stripped during active rotation. On 32-bit
3363 * systems, highmem pages can pin lowmem memory and shrinking
3364 * buffers can relieve lowmem pressure. Reclaim may still not
3365 * go ahead if all eligible zones for the original allocation
3366 * request are balanced to avoid excessive reclaim from kswapd.
3367 */
3368 if (buffer_heads_over_limit) {
3369 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3370 zone = pgdat->node_zones + i;
3371 if (!managed_zone(zone))
3372 continue;
3373
3374 sc.reclaim_idx = i;
3375 break;
3376 }
3377 }
3378
3379 /*
3380 * Only reclaim if there are no eligible zones. Note that
3381 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3382 * have adjusted it.
3383 */
3384 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3385 goto out;
3386
3387 /*
3388 * Do some background aging of the anon list, to give
3389 * pages a chance to be referenced before reclaiming. All
3390 * pages are rotated regardless of classzone as this is
3391 * about consistent aging.
3392 */
3393 age_active_anon(pgdat, &sc);
3394
3395 /*
3396 * If we're getting trouble reclaiming, start doing writepage
3397 * even in laptop mode.
3398 */
3399 if (sc.priority < DEF_PRIORITY - 2)
3400 sc.may_writepage = 1;
3401
3402 /* Call soft limit reclaim before calling shrink_node. */
3403 sc.nr_scanned = 0;
3404 nr_soft_scanned = 0;
3405 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3406 sc.gfp_mask, &nr_soft_scanned);
3407 sc.nr_reclaimed += nr_soft_reclaimed;
3408
3409 /*
3410 * There should be no need to raise the scanning priority if
3411 * enough pages are already being scanned that that high
3412 * watermark would be met at 100% efficiency.
3413 */
3414 if (kswapd_shrink_node(pgdat, &sc))
3415 raise_priority = false;
3416
3417 /*
3418 * If the low watermark is met there is no need for processes
3419 * to be throttled on pfmemalloc_wait as they should not be
3420 * able to safely make forward progress. Wake them
3421 */
3422 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3423 allow_direct_reclaim(pgdat))
3424 wake_up_all(&pgdat->pfmemalloc_wait);
3425
3426 /* Check if kswapd should be suspending */
3427 if (try_to_freeze() || kthread_should_stop())
3428 break;
3429
3430 /*
3431 * Raise priority if scanning rate is too low or there was no
3432 * progress in reclaiming pages
3433 */
3434 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3435 if (raise_priority || !nr_reclaimed)
3436 sc.priority--;
3437 } while (sc.priority >= 1);
3438
3439 if (!sc.nr_reclaimed)
3440 pgdat->kswapd_failures++;
3441
3442 out:
3443 snapshot_refaults(NULL, pgdat);
3444 psi_memstall_leave(&pflags);
3445 /*
3446 * Return the order kswapd stopped reclaiming at as
3447 * prepare_kswapd_sleep() takes it into account. If another caller
3448 * entered the allocator slow path while kswapd was awake, order will
3449 * remain at the higher level.
3450 */
3451 return sc.order;
3452 }
3453
3454 /*
3455 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3456 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3457 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3458 * after previous reclaim attempt (node is still unbalanced). In that case
3459 * return the zone index of the previous kswapd reclaim cycle.
3460 */
kswapd_classzone_idx(pg_data_t * pgdat,enum zone_type prev_classzone_idx)3461 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3462 enum zone_type prev_classzone_idx)
3463 {
3464 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3465 return prev_classzone_idx;
3466 return pgdat->kswapd_classzone_idx;
3467 }
3468
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int classzone_idx)3469 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3470 unsigned int classzone_idx)
3471 {
3472 long remaining = 0;
3473 DEFINE_WAIT(wait);
3474
3475 if (freezing(current) || kthread_should_stop())
3476 return;
3477
3478 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3479
3480 /*
3481 * Try to sleep for a short interval. Note that kcompactd will only be
3482 * woken if it is possible to sleep for a short interval. This is
3483 * deliberate on the assumption that if reclaim cannot keep an
3484 * eligible zone balanced that it's also unlikely that compaction will
3485 * succeed.
3486 */
3487 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3488 /*
3489 * Compaction records what page blocks it recently failed to
3490 * isolate pages from and skips them in the future scanning.
3491 * When kswapd is going to sleep, it is reasonable to assume
3492 * that pages and compaction may succeed so reset the cache.
3493 */
3494 reset_isolation_suitable(pgdat);
3495
3496 /*
3497 * We have freed the memory, now we should compact it to make
3498 * allocation of the requested order possible.
3499 */
3500 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3501
3502 remaining = schedule_timeout(HZ/10);
3503
3504 /*
3505 * If woken prematurely then reset kswapd_classzone_idx and
3506 * order. The values will either be from a wakeup request or
3507 * the previous request that slept prematurely.
3508 */
3509 if (remaining) {
3510 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3511 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3512 }
3513
3514 finish_wait(&pgdat->kswapd_wait, &wait);
3515 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3516 }
3517
3518 /*
3519 * After a short sleep, check if it was a premature sleep. If not, then
3520 * go fully to sleep until explicitly woken up.
3521 */
3522 if (!remaining &&
3523 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3524 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3525
3526 /*
3527 * vmstat counters are not perfectly accurate and the estimated
3528 * value for counters such as NR_FREE_PAGES can deviate from the
3529 * true value by nr_online_cpus * threshold. To avoid the zone
3530 * watermarks being breached while under pressure, we reduce the
3531 * per-cpu vmstat threshold while kswapd is awake and restore
3532 * them before going back to sleep.
3533 */
3534 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3535
3536 if (!kthread_should_stop())
3537 schedule();
3538
3539 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3540 } else {
3541 if (remaining)
3542 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3543 else
3544 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3545 }
3546 finish_wait(&pgdat->kswapd_wait, &wait);
3547 }
3548
3549 /*
3550 * The background pageout daemon, started as a kernel thread
3551 * from the init process.
3552 *
3553 * This basically trickles out pages so that we have _some_
3554 * free memory available even if there is no other activity
3555 * that frees anything up. This is needed for things like routing
3556 * etc, where we otherwise might have all activity going on in
3557 * asynchronous contexts that cannot page things out.
3558 *
3559 * If there are applications that are active memory-allocators
3560 * (most normal use), this basically shouldn't matter.
3561 */
kswapd(void * p)3562 static int kswapd(void *p)
3563 {
3564 unsigned int alloc_order, reclaim_order;
3565 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3566 pg_data_t *pgdat = (pg_data_t*)p;
3567 struct task_struct *tsk = current;
3568
3569 struct reclaim_state reclaim_state = {
3570 .reclaimed_slab = 0,
3571 };
3572 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3573
3574 if (!cpumask_empty(cpumask))
3575 set_cpus_allowed_ptr(tsk, cpumask);
3576 current->reclaim_state = &reclaim_state;
3577
3578 /*
3579 * Tell the memory management that we're a "memory allocator",
3580 * and that if we need more memory we should get access to it
3581 * regardless (see "__alloc_pages()"). "kswapd" should
3582 * never get caught in the normal page freeing logic.
3583 *
3584 * (Kswapd normally doesn't need memory anyway, but sometimes
3585 * you need a small amount of memory in order to be able to
3586 * page out something else, and this flag essentially protects
3587 * us from recursively trying to free more memory as we're
3588 * trying to free the first piece of memory in the first place).
3589 */
3590 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3591 set_freezable();
3592
3593 pgdat->kswapd_order = 0;
3594 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3595 for ( ; ; ) {
3596 bool ret;
3597
3598 alloc_order = reclaim_order = pgdat->kswapd_order;
3599 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3600
3601 kswapd_try_sleep:
3602 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3603 classzone_idx);
3604
3605 /* Read the new order and classzone_idx */
3606 alloc_order = reclaim_order = pgdat->kswapd_order;
3607 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3608 pgdat->kswapd_order = 0;
3609 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3610
3611 ret = try_to_freeze();
3612 if (kthread_should_stop())
3613 break;
3614
3615 /*
3616 * We can speed up thawing tasks if we don't call balance_pgdat
3617 * after returning from the refrigerator
3618 */
3619 if (ret)
3620 continue;
3621
3622 /*
3623 * Reclaim begins at the requested order but if a high-order
3624 * reclaim fails then kswapd falls back to reclaiming for
3625 * order-0. If that happens, kswapd will consider sleeping
3626 * for the order it finished reclaiming at (reclaim_order)
3627 * but kcompactd is woken to compact for the original
3628 * request (alloc_order).
3629 */
3630 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3631 alloc_order);
3632 fs_reclaim_acquire(GFP_KERNEL);
3633 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3634 fs_reclaim_release(GFP_KERNEL);
3635 if (reclaim_order < alloc_order)
3636 goto kswapd_try_sleep;
3637 }
3638
3639 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3640 current->reclaim_state = NULL;
3641
3642 return 0;
3643 }
3644
3645 /*
3646 * A zone is low on free memory, so wake its kswapd task to service it.
3647 */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3648 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3649 {
3650 pg_data_t *pgdat;
3651
3652 if (!managed_zone(zone))
3653 return;
3654
3655 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3656 return;
3657 pgdat = zone->zone_pgdat;
3658
3659 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3660 pgdat->kswapd_classzone_idx = classzone_idx;
3661 else
3662 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3663 classzone_idx);
3664 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3665 if (!waitqueue_active(&pgdat->kswapd_wait))
3666 return;
3667
3668 /* Hopeless node, leave it to direct reclaim */
3669 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3670 return;
3671
3672 if (pgdat_balanced(pgdat, order, classzone_idx))
3673 return;
3674
3675 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3676 wake_up_interruptible(&pgdat->kswapd_wait);
3677 }
3678
3679 #ifdef CONFIG_HIBERNATION
3680 /*
3681 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3682 * freed pages.
3683 *
3684 * Rather than trying to age LRUs the aim is to preserve the overall
3685 * LRU order by reclaiming preferentially
3686 * inactive > active > active referenced > active mapped
3687 */
shrink_all_memory(unsigned long nr_to_reclaim)3688 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3689 {
3690 struct reclaim_state reclaim_state;
3691 struct scan_control sc = {
3692 .nr_to_reclaim = nr_to_reclaim,
3693 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3694 .reclaim_idx = MAX_NR_ZONES - 1,
3695 .priority = DEF_PRIORITY,
3696 .may_writepage = 1,
3697 .may_unmap = 1,
3698 .may_swap = 1,
3699 .hibernation_mode = 1,
3700 };
3701 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3702 struct task_struct *p = current;
3703 unsigned long nr_reclaimed;
3704 unsigned int noreclaim_flag;
3705
3706 noreclaim_flag = memalloc_noreclaim_save();
3707 fs_reclaim_acquire(sc.gfp_mask);
3708 reclaim_state.reclaimed_slab = 0;
3709 p->reclaim_state = &reclaim_state;
3710
3711 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3712
3713 p->reclaim_state = NULL;
3714 fs_reclaim_release(sc.gfp_mask);
3715 memalloc_noreclaim_restore(noreclaim_flag);
3716
3717 return nr_reclaimed;
3718 }
3719 #endif /* CONFIG_HIBERNATION */
3720
3721 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3722 not required for correctness. So if the last cpu in a node goes
3723 away, we get changed to run anywhere: as the first one comes back,
3724 restore their cpu bindings. */
kswapd_cpu_online(unsigned int cpu)3725 static int kswapd_cpu_online(unsigned int cpu)
3726 {
3727 int nid;
3728
3729 for_each_node_state(nid, N_MEMORY) {
3730 pg_data_t *pgdat = NODE_DATA(nid);
3731 const struct cpumask *mask;
3732
3733 mask = cpumask_of_node(pgdat->node_id);
3734
3735 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3736 /* One of our CPUs online: restore mask */
3737 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3738 }
3739 return 0;
3740 }
3741
3742 /*
3743 * This kswapd start function will be called by init and node-hot-add.
3744 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3745 */
kswapd_run(int nid)3746 int kswapd_run(int nid)
3747 {
3748 pg_data_t *pgdat = NODE_DATA(nid);
3749 int ret = 0;
3750
3751 if (pgdat->kswapd)
3752 return 0;
3753
3754 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3755 if (IS_ERR(pgdat->kswapd)) {
3756 /* failure at boot is fatal */
3757 BUG_ON(system_state < SYSTEM_RUNNING);
3758 pr_err("Failed to start kswapd on node %d\n", nid);
3759 ret = PTR_ERR(pgdat->kswapd);
3760 pgdat->kswapd = NULL;
3761 }
3762 return ret;
3763 }
3764
3765 /*
3766 * Called by memory hotplug when all memory in a node is offlined. Caller must
3767 * hold mem_hotplug_begin/end().
3768 */
kswapd_stop(int nid)3769 void kswapd_stop(int nid)
3770 {
3771 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3772
3773 if (kswapd) {
3774 kthread_stop(kswapd);
3775 NODE_DATA(nid)->kswapd = NULL;
3776 }
3777 }
3778
kswapd_init(void)3779 static int __init kswapd_init(void)
3780 {
3781 int nid, ret;
3782
3783 swap_setup();
3784 for_each_node_state(nid, N_MEMORY)
3785 kswapd_run(nid);
3786 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3787 "mm/vmscan:online", kswapd_cpu_online,
3788 NULL);
3789 WARN_ON(ret < 0);
3790 return 0;
3791 }
3792
3793 module_init(kswapd_init)
3794
3795 #ifdef CONFIG_NUMA
3796 /*
3797 * Node reclaim mode
3798 *
3799 * If non-zero call node_reclaim when the number of free pages falls below
3800 * the watermarks.
3801 */
3802 int node_reclaim_mode __read_mostly;
3803
3804 #define RECLAIM_OFF 0
3805 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3806 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3807 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3808
3809 /*
3810 * Priority for NODE_RECLAIM. This determines the fraction of pages
3811 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3812 * a zone.
3813 */
3814 #define NODE_RECLAIM_PRIORITY 4
3815
3816 /*
3817 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3818 * occur.
3819 */
3820 int sysctl_min_unmapped_ratio = 1;
3821
3822 /*
3823 * If the number of slab pages in a zone grows beyond this percentage then
3824 * slab reclaim needs to occur.
3825 */
3826 int sysctl_min_slab_ratio = 5;
3827
node_unmapped_file_pages(struct pglist_data * pgdat)3828 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3829 {
3830 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3831 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3832 node_page_state(pgdat, NR_ACTIVE_FILE);
3833
3834 /*
3835 * It's possible for there to be more file mapped pages than
3836 * accounted for by the pages on the file LRU lists because
3837 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3838 */
3839 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3840 }
3841
3842 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)3843 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3844 {
3845 unsigned long nr_pagecache_reclaimable;
3846 unsigned long delta = 0;
3847
3848 /*
3849 * If RECLAIM_UNMAP is set, then all file pages are considered
3850 * potentially reclaimable. Otherwise, we have to worry about
3851 * pages like swapcache and node_unmapped_file_pages() provides
3852 * a better estimate
3853 */
3854 if (node_reclaim_mode & RECLAIM_UNMAP)
3855 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3856 else
3857 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3858
3859 /* If we can't clean pages, remove dirty pages from consideration */
3860 if (!(node_reclaim_mode & RECLAIM_WRITE))
3861 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3862
3863 /* Watch for any possible underflows due to delta */
3864 if (unlikely(delta > nr_pagecache_reclaimable))
3865 delta = nr_pagecache_reclaimable;
3866
3867 return nr_pagecache_reclaimable - delta;
3868 }
3869
3870 /*
3871 * Try to free up some pages from this node through reclaim.
3872 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)3873 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3874 {
3875 /* Minimum pages needed in order to stay on node */
3876 const unsigned long nr_pages = 1 << order;
3877 struct task_struct *p = current;
3878 struct reclaim_state reclaim_state;
3879 unsigned int noreclaim_flag;
3880 struct scan_control sc = {
3881 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3882 .gfp_mask = current_gfp_context(gfp_mask),
3883 .order = order,
3884 .priority = NODE_RECLAIM_PRIORITY,
3885 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3886 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3887 .may_swap = 1,
3888 .reclaim_idx = gfp_zone(gfp_mask),
3889 };
3890
3891 cond_resched();
3892 /*
3893 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3894 * and we also need to be able to write out pages for RECLAIM_WRITE
3895 * and RECLAIM_UNMAP.
3896 */
3897 noreclaim_flag = memalloc_noreclaim_save();
3898 p->flags |= PF_SWAPWRITE;
3899 fs_reclaim_acquire(sc.gfp_mask);
3900 reclaim_state.reclaimed_slab = 0;
3901 p->reclaim_state = &reclaim_state;
3902
3903 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3904 /*
3905 * Free memory by calling shrink zone with increasing
3906 * priorities until we have enough memory freed.
3907 */
3908 do {
3909 shrink_node(pgdat, &sc);
3910 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3911 }
3912
3913 p->reclaim_state = NULL;
3914 fs_reclaim_release(gfp_mask);
3915 current->flags &= ~PF_SWAPWRITE;
3916 memalloc_noreclaim_restore(noreclaim_flag);
3917 return sc.nr_reclaimed >= nr_pages;
3918 }
3919
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)3920 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3921 {
3922 int ret;
3923
3924 /*
3925 * Node reclaim reclaims unmapped file backed pages and
3926 * slab pages if we are over the defined limits.
3927 *
3928 * A small portion of unmapped file backed pages is needed for
3929 * file I/O otherwise pages read by file I/O will be immediately
3930 * thrown out if the node is overallocated. So we do not reclaim
3931 * if less than a specified percentage of the node is used by
3932 * unmapped file backed pages.
3933 */
3934 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3935 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3936 return NODE_RECLAIM_FULL;
3937
3938 /*
3939 * Do not scan if the allocation should not be delayed.
3940 */
3941 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3942 return NODE_RECLAIM_NOSCAN;
3943
3944 /*
3945 * Only run node reclaim on the local node or on nodes that do not
3946 * have associated processors. This will favor the local processor
3947 * over remote processors and spread off node memory allocations
3948 * as wide as possible.
3949 */
3950 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3951 return NODE_RECLAIM_NOSCAN;
3952
3953 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3954 return NODE_RECLAIM_NOSCAN;
3955
3956 ret = __node_reclaim(pgdat, gfp_mask, order);
3957 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3958
3959 if (!ret)
3960 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3961
3962 return ret;
3963 }
3964 #endif
3965
3966 /*
3967 * page_evictable - test whether a page is evictable
3968 * @page: the page to test
3969 *
3970 * Test whether page is evictable--i.e., should be placed on active/inactive
3971 * lists vs unevictable list.
3972 *
3973 * Reasons page might not be evictable:
3974 * (1) page's mapping marked unevictable
3975 * (2) page is part of an mlocked VMA
3976 *
3977 */
page_evictable(struct page * page)3978 int page_evictable(struct page *page)
3979 {
3980 int ret;
3981
3982 /* Prevent address_space of inode and swap cache from being freed */
3983 rcu_read_lock();
3984 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3985 rcu_read_unlock();
3986 return ret;
3987 }
3988
3989 #ifdef CONFIG_SHMEM
3990 /**
3991 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3992 * @pages: array of pages to check
3993 * @nr_pages: number of pages to check
3994 *
3995 * Checks pages for evictability and moves them to the appropriate lru list.
3996 *
3997 * This function is only used for SysV IPC SHM_UNLOCK.
3998 */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3999 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4000 {
4001 struct lruvec *lruvec;
4002 struct pglist_data *pgdat = NULL;
4003 int pgscanned = 0;
4004 int pgrescued = 0;
4005 int i;
4006
4007 for (i = 0; i < nr_pages; i++) {
4008 struct page *page = pages[i];
4009 struct pglist_data *pagepgdat = page_pgdat(page);
4010
4011 pgscanned++;
4012 if (pagepgdat != pgdat) {
4013 if (pgdat)
4014 spin_unlock_irq(&pgdat->lru_lock);
4015 pgdat = pagepgdat;
4016 spin_lock_irq(&pgdat->lru_lock);
4017 }
4018 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4019
4020 if (!PageLRU(page) || !PageUnevictable(page))
4021 continue;
4022
4023 if (page_evictable(page)) {
4024 enum lru_list lru = page_lru_base_type(page);
4025
4026 VM_BUG_ON_PAGE(PageActive(page), page);
4027 ClearPageUnevictable(page);
4028 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4029 add_page_to_lru_list(page, lruvec, lru);
4030 pgrescued++;
4031 }
4032 }
4033
4034 if (pgdat) {
4035 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4036 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4037 spin_unlock_irq(&pgdat->lru_lock);
4038 }
4039 }
4040 #endif /* CONFIG_SHMEM */
4041