• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the TCP module.
7  *
8  * Version:	@(#)tcp.h	1.0.5	05/23/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *
13  *		This program is free software; you can redistribute it and/or
14  *		modify it under the terms of the GNU General Public License
15  *		as published by the Free Software Foundation; either version
16  *		2 of the License, or (at your option) any later version.
17  */
18 #ifndef _TCP_H
19 #define _TCP_H
20 
21 #define FASTRETRANS_DEBUG 1
22 
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/cryptohash.h>
31 #include <linux/kref.h>
32 #include <linux/ktime.h>
33 
34 #include <net/inet_connection_sock.h>
35 #include <net/inet_timewait_sock.h>
36 #include <net/inet_hashtables.h>
37 #include <net/checksum.h>
38 #include <net/request_sock.h>
39 #include <net/sock.h>
40 #include <net/snmp.h>
41 #include <net/ip.h>
42 #include <net/tcp_states.h>
43 #include <net/inet_ecn.h>
44 #include <net/dst.h>
45 
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 
49 #include <linux/bpf.h>
50 #include <linux/filter.h>
51 #include <linux/bpf-cgroup.h>
52 
53 extern struct inet_hashinfo tcp_hashinfo;
54 
55 extern struct percpu_counter tcp_orphan_count;
56 void tcp_time_wait(struct sock *sk, int state, int timeo);
57 
58 #define MAX_TCP_HEADER	(128 + MAX_HEADER)
59 #define MAX_TCP_OPTION_SPACE 40
60 #define TCP_MIN_SND_MSS		48
61 #define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
62 
63 /*
64  * Never offer a window over 32767 without using window scaling. Some
65  * poor stacks do signed 16bit maths!
66  */
67 #define MAX_TCP_WINDOW		32767U
68 
69 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
70 #define TCP_MIN_MSS		88U
71 
72 /* The least MTU to use for probing */
73 #define TCP_BASE_MSS		1024
74 
75 /* probing interval, default to 10 minutes as per RFC4821 */
76 #define TCP_PROBE_INTERVAL	600
77 
78 /* Specify interval when tcp mtu probing will stop */
79 #define TCP_PROBE_THRESHOLD	8
80 
81 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
82 #define TCP_FASTRETRANS_THRESH 3
83 
84 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
85 #define TCP_MAX_QUICKACKS	16U
86 
87 /* Maximal number of window scale according to RFC1323 */
88 #define TCP_MAX_WSCALE		14U
89 
90 /* urg_data states */
91 #define TCP_URG_VALID	0x0100
92 #define TCP_URG_NOTYET	0x0200
93 #define TCP_URG_READ	0x0400
94 
95 #define TCP_RETR1	3	/*
96 				 * This is how many retries it does before it
97 				 * tries to figure out if the gateway is
98 				 * down. Minimal RFC value is 3; it corresponds
99 				 * to ~3sec-8min depending on RTO.
100 				 */
101 
102 #define TCP_RETR2	15	/*
103 				 * This should take at least
104 				 * 90 minutes to time out.
105 				 * RFC1122 says that the limit is 100 sec.
106 				 * 15 is ~13-30min depending on RTO.
107 				 */
108 
109 #define TCP_SYN_RETRIES	 6	/* This is how many retries are done
110 				 * when active opening a connection.
111 				 * RFC1122 says the minimum retry MUST
112 				 * be at least 180secs.  Nevertheless
113 				 * this value is corresponding to
114 				 * 63secs of retransmission with the
115 				 * current initial RTO.
116 				 */
117 
118 #define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
119 				 * when passive opening a connection.
120 				 * This is corresponding to 31secs of
121 				 * retransmission with the current
122 				 * initial RTO.
123 				 */
124 
125 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
126 				  * state, about 60 seconds	*/
127 #define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
128                                  /* BSD style FIN_WAIT2 deadlock breaker.
129 				  * It used to be 3min, new value is 60sec,
130 				  * to combine FIN-WAIT-2 timeout with
131 				  * TIME-WAIT timer.
132 				  */
133 
134 #define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
135 #if HZ >= 100
136 #define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
137 #define TCP_ATO_MIN	((unsigned)(HZ/25))
138 #else
139 #define TCP_DELACK_MIN	4U
140 #define TCP_ATO_MIN	4U
141 #endif
142 #define TCP_RTO_MAX	((unsigned)(120*HZ))
143 #define TCP_RTO_MIN	((unsigned)(HZ/5))
144 #define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
145 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
146 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
147 						 * used as a fallback RTO for the
148 						 * initial data transmission if no
149 						 * valid RTT sample has been acquired,
150 						 * most likely due to retrans in 3WHS.
151 						 */
152 
153 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
154 					                 * for local resources.
155 					                 */
156 #define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
157 #define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
158 #define TCP_KEEPALIVE_INTVL	(75*HZ)
159 
160 #define MAX_TCP_KEEPIDLE	32767
161 #define MAX_TCP_KEEPINTVL	32767
162 #define MAX_TCP_KEEPCNT		127
163 #define MAX_TCP_SYNCNT		127
164 
165 #define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
166 
167 #define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
168 #define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
169 					 * after this time. It should be equal
170 					 * (or greater than) TCP_TIMEWAIT_LEN
171 					 * to provide reliability equal to one
172 					 * provided by timewait state.
173 					 */
174 #define TCP_PAWS_WINDOW	1		/* Replay window for per-host
175 					 * timestamps. It must be less than
176 					 * minimal timewait lifetime.
177 					 */
178 /*
179  *	TCP option
180  */
181 
182 #define TCPOPT_NOP		1	/* Padding */
183 #define TCPOPT_EOL		0	/* End of options */
184 #define TCPOPT_MSS		2	/* Segment size negotiating */
185 #define TCPOPT_WINDOW		3	/* Window scaling */
186 #define TCPOPT_SACK_PERM        4       /* SACK Permitted */
187 #define TCPOPT_SACK             5       /* SACK Block */
188 #define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
189 #define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
190 #define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
191 #define TCPOPT_EXP		254	/* Experimental */
192 /* Magic number to be after the option value for sharing TCP
193  * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
194  */
195 #define TCPOPT_FASTOPEN_MAGIC	0xF989
196 
197 /*
198  *     TCP option lengths
199  */
200 
201 #define TCPOLEN_MSS            4
202 #define TCPOLEN_WINDOW         3
203 #define TCPOLEN_SACK_PERM      2
204 #define TCPOLEN_TIMESTAMP      10
205 #define TCPOLEN_MD5SIG         18
206 #define TCPOLEN_FASTOPEN_BASE  2
207 #define TCPOLEN_EXP_FASTOPEN_BASE  4
208 
209 /* But this is what stacks really send out. */
210 #define TCPOLEN_TSTAMP_ALIGNED		12
211 #define TCPOLEN_WSCALE_ALIGNED		4
212 #define TCPOLEN_SACKPERM_ALIGNED	4
213 #define TCPOLEN_SACK_BASE		2
214 #define TCPOLEN_SACK_BASE_ALIGNED	4
215 #define TCPOLEN_SACK_PERBLOCK		8
216 #define TCPOLEN_MD5SIG_ALIGNED		20
217 #define TCPOLEN_MSS_ALIGNED		4
218 
219 /* Flags in tp->nonagle */
220 #define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
221 #define TCP_NAGLE_CORK		2	/* Socket is corked	    */
222 #define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
223 
224 /* TCP thin-stream limits */
225 #define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
226 
227 /* TCP initial congestion window as per rfc6928 */
228 #define TCP_INIT_CWND		10
229 
230 /* Bit Flags for sysctl_tcp_fastopen */
231 #define	TFO_CLIENT_ENABLE	1
232 #define	TFO_SERVER_ENABLE	2
233 #define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
234 
235 /* Accept SYN data w/o any cookie option */
236 #define	TFO_SERVER_COOKIE_NOT_REQD	0x200
237 
238 /* Force enable TFO on all listeners, i.e., not requiring the
239  * TCP_FASTOPEN socket option.
240  */
241 #define	TFO_SERVER_WO_SOCKOPT1	0x400
242 
243 
244 /* sysctl variables for tcp */
245 extern int sysctl_tcp_fastopen;
246 extern int sysctl_tcp_retrans_collapse;
247 extern int sysctl_tcp_stdurg;
248 extern int sysctl_tcp_rfc1337;
249 extern int sysctl_tcp_abort_on_overflow;
250 extern int sysctl_tcp_max_orphans;
251 extern int sysctl_tcp_fack;
252 extern int sysctl_tcp_reordering;
253 extern int sysctl_tcp_max_reordering;
254 extern int sysctl_tcp_dsack;
255 extern long sysctl_tcp_mem[3];
256 extern int sysctl_tcp_wmem[3];
257 extern int sysctl_tcp_rmem[3];
258 extern int sysctl_tcp_app_win;
259 extern int sysctl_tcp_adv_win_scale;
260 extern int sysctl_tcp_frto;
261 extern int sysctl_tcp_nometrics_save;
262 extern int sysctl_tcp_moderate_rcvbuf;
263 extern int sysctl_tcp_tso_win_divisor;
264 extern int sysctl_tcp_workaround_signed_windows;
265 extern int sysctl_tcp_slow_start_after_idle;
266 extern int sysctl_tcp_thin_linear_timeouts;
267 extern int sysctl_tcp_thin_dupack;
268 extern int sysctl_tcp_early_retrans;
269 extern int sysctl_tcp_recovery;
270 #define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
271 
272 extern int sysctl_tcp_limit_output_bytes;
273 extern int sysctl_tcp_challenge_ack_limit;
274 extern int sysctl_tcp_min_tso_segs;
275 extern int sysctl_tcp_min_rtt_wlen;
276 extern int sysctl_tcp_autocorking;
277 extern int sysctl_tcp_invalid_ratelimit;
278 extern int sysctl_tcp_pacing_ss_ratio;
279 extern int sysctl_tcp_pacing_ca_ratio;
280 extern int sysctl_tcp_default_init_rwnd;
281 
282 extern atomic_long_t tcp_memory_allocated;
283 extern struct percpu_counter tcp_sockets_allocated;
284 extern unsigned long tcp_memory_pressure;
285 
286 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)287 static inline bool tcp_under_memory_pressure(const struct sock *sk)
288 {
289 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
290 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
291 		return true;
292 
293 	return READ_ONCE(tcp_memory_pressure);
294 }
295 /*
296  * The next routines deal with comparing 32 bit unsigned ints
297  * and worry about wraparound (automatic with unsigned arithmetic).
298  */
299 
before(__u32 seq1,__u32 seq2)300 static inline bool before(__u32 seq1, __u32 seq2)
301 {
302         return (__s32)(seq1-seq2) < 0;
303 }
304 #define after(seq2, seq1) 	before(seq1, seq2)
305 
306 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)307 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
308 {
309 	return seq3 - seq2 >= seq1 - seq2;
310 }
311 
tcp_out_of_memory(struct sock * sk)312 static inline bool tcp_out_of_memory(struct sock *sk)
313 {
314 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
315 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
316 		return true;
317 	return false;
318 }
319 
320 void sk_forced_mem_schedule(struct sock *sk, int size);
321 
tcp_too_many_orphans(struct sock * sk,int shift)322 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
323 {
324 	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
325 	int orphans = percpu_counter_read_positive(ocp);
326 
327 	if (orphans << shift > sysctl_tcp_max_orphans) {
328 		orphans = percpu_counter_sum_positive(ocp);
329 		if (orphans << shift > sysctl_tcp_max_orphans)
330 			return true;
331 	}
332 	return false;
333 }
334 
335 bool tcp_check_oom(struct sock *sk, int shift);
336 
337 
338 extern struct proto tcp_prot;
339 
340 #define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
341 #define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
342 #define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
343 #define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
344 
345 void tcp_tasklet_init(void);
346 
347 void tcp_v4_err(struct sk_buff *skb, u32);
348 
349 void tcp_shutdown(struct sock *sk, int how);
350 
351 int tcp_v4_early_demux(struct sk_buff *skb);
352 int tcp_v4_rcv(struct sk_buff *skb);
353 
354 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
355 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
356 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
357 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
358 		 int flags);
359 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
360 			size_t size, int flags);
361 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
362 		 size_t size, int flags);
363 void tcp_release_cb(struct sock *sk);
364 void tcp_wfree(struct sk_buff *skb);
365 void tcp_write_timer_handler(struct sock *sk);
366 void tcp_delack_timer_handler(struct sock *sk);
367 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
368 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
369 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
370 			 const struct tcphdr *th);
371 void tcp_rcv_space_adjust(struct sock *sk);
372 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
373 void tcp_twsk_destructor(struct sock *sk);
374 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
375 			struct pipe_inode_info *pipe, size_t len,
376 			unsigned int flags);
377 
378 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)379 static inline void tcp_dec_quickack_mode(struct sock *sk,
380 					 const unsigned int pkts)
381 {
382 	struct inet_connection_sock *icsk = inet_csk(sk);
383 
384 	if (icsk->icsk_ack.quick) {
385 		if (pkts >= icsk->icsk_ack.quick) {
386 			icsk->icsk_ack.quick = 0;
387 			/* Leaving quickack mode we deflate ATO. */
388 			icsk->icsk_ack.ato   = TCP_ATO_MIN;
389 		} else
390 			icsk->icsk_ack.quick -= pkts;
391 	}
392 }
393 
394 #define	TCP_ECN_OK		1
395 #define	TCP_ECN_QUEUE_CWR	2
396 #define	TCP_ECN_DEMAND_CWR	4
397 #define	TCP_ECN_SEEN		8
398 
399 enum tcp_tw_status {
400 	TCP_TW_SUCCESS = 0,
401 	TCP_TW_RST = 1,
402 	TCP_TW_ACK = 2,
403 	TCP_TW_SYN = 3
404 };
405 
406 
407 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
408 					      struct sk_buff *skb,
409 					      const struct tcphdr *th);
410 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
411 			   struct request_sock *req, bool fastopen);
412 int tcp_child_process(struct sock *parent, struct sock *child,
413 		      struct sk_buff *skb);
414 void tcp_enter_loss(struct sock *sk);
415 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
416 void tcp_clear_retrans(struct tcp_sock *tp);
417 void tcp_update_metrics(struct sock *sk);
418 void tcp_init_metrics(struct sock *sk);
419 void tcp_metrics_init(void);
420 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
421 void tcp_disable_fack(struct tcp_sock *tp);
422 void tcp_close(struct sock *sk, long timeout);
423 void tcp_init_sock(struct sock *sk);
424 unsigned int tcp_poll(struct file *file, struct socket *sock,
425 		      struct poll_table_struct *wait);
426 int tcp_getsockopt(struct sock *sk, int level, int optname,
427 		   char __user *optval, int __user *optlen);
428 int tcp_setsockopt(struct sock *sk, int level, int optname,
429 		   char __user *optval, unsigned int optlen);
430 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
431 			  char __user *optval, int __user *optlen);
432 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
433 			  char __user *optval, unsigned int optlen);
434 void tcp_set_keepalive(struct sock *sk, int val);
435 void tcp_syn_ack_timeout(const struct request_sock *req);
436 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
437 		int flags, int *addr_len);
438 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
439 		       struct tcp_options_received *opt_rx,
440 		       int estab, struct tcp_fastopen_cookie *foc);
441 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
442 
443 /*
444  *	TCP v4 functions exported for the inet6 API
445  */
446 
447 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
448 void tcp_v4_mtu_reduced(struct sock *sk);
449 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
450 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
451 struct sock *tcp_create_openreq_child(const struct sock *sk,
452 				      struct request_sock *req,
453 				      struct sk_buff *skb);
454 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
455 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
456 				  struct request_sock *req,
457 				  struct dst_entry *dst,
458 				  struct request_sock *req_unhash,
459 				  bool *own_req);
460 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
461 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
462 int tcp_connect(struct sock *sk);
463 enum tcp_synack_type {
464 	TCP_SYNACK_NORMAL,
465 	TCP_SYNACK_FASTOPEN,
466 	TCP_SYNACK_COOKIE,
467 };
468 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
469 				struct request_sock *req,
470 				struct tcp_fastopen_cookie *foc,
471 				enum tcp_synack_type synack_type);
472 int tcp_disconnect(struct sock *sk, int flags);
473 
474 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
475 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
476 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
477 
478 /* From syncookies.c */
479 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
480 				 struct request_sock *req,
481 				 struct dst_entry *dst, u32 tsoff);
482 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
483 		      u32 cookie);
484 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
485 #ifdef CONFIG_SYN_COOKIES
486 
487 /* Syncookies use a monotonic timer which increments every 60 seconds.
488  * This counter is used both as a hash input and partially encoded into
489  * the cookie value.  A cookie is only validated further if the delta
490  * between the current counter value and the encoded one is less than this,
491  * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
492  * the counter advances immediately after a cookie is generated).
493  */
494 #define MAX_SYNCOOKIE_AGE	2
495 #define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
496 #define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
497 
498 /* syncookies: remember time of last synqueue overflow
499  * But do not dirty this field too often (once per second is enough)
500  * It is racy as we do not hold a lock, but race is very minor.
501  */
tcp_synq_overflow(const struct sock * sk)502 static inline void tcp_synq_overflow(const struct sock *sk)
503 {
504 	unsigned long last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
505 	unsigned long now = jiffies;
506 
507 	if (!time_between32(now, last_overflow, last_overflow + HZ))
508 		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
509 }
510 
511 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)512 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
513 {
514 	unsigned long last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
515 
516 	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
517 	 * then we're under synflood. However, we have to use
518 	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
519 	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
520 	 * jiffies but before we store .ts_recent_stamp into last_overflow,
521 	 * which could lead to rejecting a valid syncookie.
522 	 */
523 	return !time_between32(jiffies, last_overflow - HZ,
524 			       last_overflow + TCP_SYNCOOKIE_VALID);
525 }
526 
tcp_cookie_time(void)527 static inline u32 tcp_cookie_time(void)
528 {
529 	u64 val = get_jiffies_64();
530 
531 	do_div(val, TCP_SYNCOOKIE_PERIOD);
532 	return val;
533 }
534 
535 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
536 			      u16 *mssp);
537 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
538 u64 cookie_init_timestamp(struct request_sock *req);
539 bool cookie_timestamp_decode(const struct net *net,
540 			     struct tcp_options_received *opt);
541 bool cookie_ecn_ok(const struct tcp_options_received *opt,
542 		   const struct net *net, const struct dst_entry *dst);
543 
544 /* From net/ipv6/syncookies.c */
545 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
546 		      u32 cookie);
547 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
548 
549 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
550 			      const struct tcphdr *th, u16 *mssp);
551 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
552 #endif
553 /* tcp_output.c */
554 
555 u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
556 		     int min_tso_segs);
557 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
558 			       int nonagle);
559 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
560 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
561 void tcp_retransmit_timer(struct sock *sk);
562 void tcp_xmit_retransmit_queue(struct sock *);
563 void tcp_simple_retransmit(struct sock *);
564 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
565 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
566 int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
567 
568 void tcp_send_probe0(struct sock *);
569 void tcp_send_partial(struct sock *);
570 int tcp_write_wakeup(struct sock *, int mib);
571 void tcp_send_fin(struct sock *sk);
572 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
573 int tcp_send_synack(struct sock *);
574 void tcp_push_one(struct sock *, unsigned int mss_now);
575 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
576 void tcp_send_ack(struct sock *sk);
577 void tcp_send_delayed_ack(struct sock *sk);
578 void tcp_send_loss_probe(struct sock *sk);
579 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
580 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
581 			     const struct sk_buff *next_skb);
582 
583 /* tcp_input.c */
584 void tcp_rearm_rto(struct sock *sk);
585 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
586 void tcp_reset(struct sock *sk);
587 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
588 void tcp_fin(struct sock *sk);
589 
590 /* tcp_timer.c */
591 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)592 static inline void tcp_clear_xmit_timers(struct sock *sk)
593 {
594 	hrtimer_cancel(&tcp_sk(sk)->pacing_timer);
595 	inet_csk_clear_xmit_timers(sk);
596 }
597 
598 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
599 unsigned int tcp_current_mss(struct sock *sk);
600 
601 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)602 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
603 {
604 	int cutoff;
605 
606 	/* When peer uses tiny windows, there is no use in packetizing
607 	 * to sub-MSS pieces for the sake of SWS or making sure there
608 	 * are enough packets in the pipe for fast recovery.
609 	 *
610 	 * On the other hand, for extremely large MSS devices, handling
611 	 * smaller than MSS windows in this way does make sense.
612 	 */
613 	if (tp->max_window > TCP_MSS_DEFAULT)
614 		cutoff = (tp->max_window >> 1);
615 	else
616 		cutoff = tp->max_window;
617 
618 	if (cutoff && pktsize > cutoff)
619 		return max_t(int, cutoff, 68U - tp->tcp_header_len);
620 	else
621 		return pktsize;
622 }
623 
624 /* tcp.c */
625 void tcp_get_info(struct sock *, struct tcp_info *);
626 
627 /* Read 'sendfile()'-style from a TCP socket */
628 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
629 		  sk_read_actor_t recv_actor);
630 
631 void tcp_initialize_rcv_mss(struct sock *sk);
632 
633 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
634 int tcp_mss_to_mtu(struct sock *sk, int mss);
635 void tcp_mtup_init(struct sock *sk);
636 void tcp_init_buffer_space(struct sock *sk);
637 
tcp_bound_rto(const struct sock * sk)638 static inline void tcp_bound_rto(const struct sock *sk)
639 {
640 	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
641 		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
642 }
643 
__tcp_set_rto(const struct tcp_sock * tp)644 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
645 {
646 	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
647 }
648 
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)649 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
650 {
651 	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
652 			       ntohl(TCP_FLAG_ACK) |
653 			       snd_wnd);
654 }
655 
tcp_fast_path_on(struct tcp_sock * tp)656 static inline void tcp_fast_path_on(struct tcp_sock *tp)
657 {
658 	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
659 }
660 
tcp_fast_path_check(struct sock * sk)661 static inline void tcp_fast_path_check(struct sock *sk)
662 {
663 	struct tcp_sock *tp = tcp_sk(sk);
664 
665 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
666 	    tp->rcv_wnd &&
667 	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
668 	    !tp->urg_data)
669 		tcp_fast_path_on(tp);
670 }
671 
672 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)673 static inline u32 tcp_rto_min(struct sock *sk)
674 {
675 	const struct dst_entry *dst = __sk_dst_get(sk);
676 	u32 rto_min = TCP_RTO_MIN;
677 
678 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
679 		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
680 	return rto_min;
681 }
682 
tcp_rto_min_us(struct sock * sk)683 static inline u32 tcp_rto_min_us(struct sock *sk)
684 {
685 	return jiffies_to_usecs(tcp_rto_min(sk));
686 }
687 
tcp_ca_dst_locked(const struct dst_entry * dst)688 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
689 {
690 	return dst_metric_locked(dst, RTAX_CC_ALGO);
691 }
692 
693 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)694 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
695 {
696 	return minmax_get(&tp->rtt_min);
697 }
698 
699 /* Compute the actual receive window we are currently advertising.
700  * Rcv_nxt can be after the window if our peer push more data
701  * than the offered window.
702  */
tcp_receive_window(const struct tcp_sock * tp)703 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
704 {
705 	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
706 
707 	if (win < 0)
708 		win = 0;
709 	return (u32) win;
710 }
711 
712 /* Choose a new window, without checks for shrinking, and without
713  * scaling applied to the result.  The caller does these things
714  * if necessary.  This is a "raw" window selection.
715  */
716 u32 __tcp_select_window(struct sock *sk);
717 
718 void tcp_send_window_probe(struct sock *sk);
719 
720 /* TCP uses 32bit jiffies to save some space.
721  * Note that this is different from tcp_time_stamp, which
722  * historically has been the same until linux-4.13.
723  */
724 #define tcp_jiffies32 ((u32)jiffies)
725 
726 /*
727  * Deliver a 32bit value for TCP timestamp option (RFC 7323)
728  * It is no longer tied to jiffies, but to 1 ms clock.
729  * Note: double check if you want to use tcp_jiffies32 instead of this.
730  */
731 #define TCP_TS_HZ	1000
732 
tcp_clock_ns(void)733 static inline u64 tcp_clock_ns(void)
734 {
735 	return local_clock();
736 }
737 
tcp_clock_us(void)738 static inline u64 tcp_clock_us(void)
739 {
740 	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
741 }
742 
743 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)744 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
745 {
746 	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
747 }
748 
749 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)750 static inline u32 tcp_time_stamp_raw(void)
751 {
752 	return div_u64(tcp_clock_ns(), NSEC_PER_SEC / TCP_TS_HZ);
753 }
754 
755 
756 /* Refresh 1us clock of a TCP socket,
757  * ensuring monotically increasing values.
758  */
tcp_mstamp_refresh(struct tcp_sock * tp)759 static inline void tcp_mstamp_refresh(struct tcp_sock *tp)
760 {
761 	u64 val = tcp_clock_us();
762 
763 	if (val > tp->tcp_mstamp)
764 		tp->tcp_mstamp = val;
765 }
766 
tcp_stamp_us_delta(u64 t1,u64 t0)767 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
768 {
769 	return max_t(s64, t1 - t0, 0);
770 }
771 
tcp_skb_timestamp(const struct sk_buff * skb)772 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
773 {
774 	return div_u64(skb->skb_mstamp, USEC_PER_SEC / TCP_TS_HZ);
775 }
776 
777 
778 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
779 
780 #define TCPHDR_FIN 0x01
781 #define TCPHDR_SYN 0x02
782 #define TCPHDR_RST 0x04
783 #define TCPHDR_PSH 0x08
784 #define TCPHDR_ACK 0x10
785 #define TCPHDR_URG 0x20
786 #define TCPHDR_ECE 0x40
787 #define TCPHDR_CWR 0x80
788 
789 #define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
790 
791 /* This is what the send packet queuing engine uses to pass
792  * TCP per-packet control information to the transmission code.
793  * We also store the host-order sequence numbers in here too.
794  * This is 44 bytes if IPV6 is enabled.
795  * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
796  */
797 struct tcp_skb_cb {
798 	__u32		seq;		/* Starting sequence number	*/
799 	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
800 	union {
801 		/* Note : tcp_tw_isn is used in input path only
802 		 *	  (isn chosen by tcp_timewait_state_process())
803 		 *
804 		 * 	  tcp_gso_segs/size are used in write queue only,
805 		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
806 		 */
807 		__u32		tcp_tw_isn;
808 		struct {
809 			u16	tcp_gso_segs;
810 			u16	tcp_gso_size;
811 		};
812 
813 		/* Used to stash the receive timestamp while this skb is in the
814 		 * out of order queue, as skb->tstamp is overwritten by the
815 		 * rbnode.
816 		 */
817 		ktime_t		swtstamp;
818 	};
819 	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
820 
821 	__u8		sacked;		/* State flags for SACK/FACK.	*/
822 #define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
823 #define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
824 #define TCPCB_LOST		0x04	/* SKB is lost			*/
825 #define TCPCB_TAGBITS		0x07	/* All tag bits			*/
826 #define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
827 #define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
828 #define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
829 				TCPCB_REPAIRED)
830 
831 	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
832 	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
833 			eor:1,		/* Is skb MSG_EOR marked? */
834 			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
835 			unused:5;
836 	__u32		ack_seq;	/* Sequence number ACK'd	*/
837 	union {
838 		struct {
839 			/* There is space for up to 24 bytes */
840 			__u32 in_flight:30,/* Bytes in flight at transmit */
841 			      is_app_limited:1, /* cwnd not fully used? */
842 			      unused:1;
843 			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
844 			__u32 delivered;
845 			/* start of send pipeline phase */
846 			u64 first_tx_mstamp;
847 			/* when we reached the "delivered" count */
848 			u64 delivered_mstamp;
849 		} tx;   /* only used for outgoing skbs */
850 		union {
851 			struct inet_skb_parm	h4;
852 #if IS_ENABLED(CONFIG_IPV6)
853 			struct inet6_skb_parm	h6;
854 #endif
855 		} header;	/* For incoming skbs */
856 		struct {
857 			__u32 key;
858 			__u32 flags;
859 			struct bpf_map *map;
860 			void *data_end;
861 		} bpf;
862 	};
863 };
864 
865 #define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
866 
867 
868 #if IS_ENABLED(CONFIG_IPV6)
869 /* This is the variant of inet6_iif() that must be used by TCP,
870  * as TCP moves IP6CB into a different location in skb->cb[]
871  */
tcp_v6_iif(const struct sk_buff * skb)872 static inline int tcp_v6_iif(const struct sk_buff *skb)
873 {
874 	return TCP_SKB_CB(skb)->header.h6.iif;
875 }
876 
tcp_v6_iif_l3_slave(const struct sk_buff * skb)877 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
878 {
879 	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
880 
881 	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
882 }
883 
884 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)885 static inline int tcp_v6_sdif(const struct sk_buff *skb)
886 {
887 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
888 	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
889 		return TCP_SKB_CB(skb)->header.h6.iif;
890 #endif
891 	return 0;
892 }
893 #endif
894 
inet_exact_dif_match(struct net * net,struct sk_buff * skb)895 static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
896 {
897 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
898 	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
899 	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
900 		return true;
901 #endif
902 	return false;
903 }
904 
905 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)906 static inline int tcp_v4_sdif(struct sk_buff *skb)
907 {
908 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
909 	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
910 		return TCP_SKB_CB(skb)->header.h4.iif;
911 #endif
912 	return 0;
913 }
914 
915 /* Due to TSO, an SKB can be composed of multiple actual
916  * packets.  To keep these tracked properly, we use this.
917  */
tcp_skb_pcount(const struct sk_buff * skb)918 static inline int tcp_skb_pcount(const struct sk_buff *skb)
919 {
920 	return TCP_SKB_CB(skb)->tcp_gso_segs;
921 }
922 
tcp_skb_pcount_set(struct sk_buff * skb,int segs)923 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
924 {
925 	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
926 }
927 
tcp_skb_pcount_add(struct sk_buff * skb,int segs)928 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
929 {
930 	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
931 }
932 
933 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)934 static inline int tcp_skb_mss(const struct sk_buff *skb)
935 {
936 	return TCP_SKB_CB(skb)->tcp_gso_size;
937 }
938 
tcp_skb_can_collapse_to(const struct sk_buff * skb)939 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
940 {
941 	return likely(!TCP_SKB_CB(skb)->eor);
942 }
943 
944 /* Events passed to congestion control interface */
945 enum tcp_ca_event {
946 	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
947 	CA_EVENT_CWND_RESTART,	/* congestion window restart */
948 	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
949 	CA_EVENT_LOSS,		/* loss timeout */
950 	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
951 	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
952 };
953 
954 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
955 enum tcp_ca_ack_event_flags {
956 	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
957 	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
958 	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
959 };
960 
961 /*
962  * Interface for adding new TCP congestion control handlers
963  */
964 #define TCP_CA_NAME_MAX	16
965 #define TCP_CA_MAX	128
966 #define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
967 
968 #define TCP_CA_UNSPEC	0
969 
970 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
971 #define TCP_CONG_NON_RESTRICTED 0x1
972 /* Requires ECN/ECT set on all packets */
973 #define TCP_CONG_NEEDS_ECN	0x2
974 
975 union tcp_cc_info;
976 
977 struct ack_sample {
978 	u32 pkts_acked;
979 	s32 rtt_us;
980 	u32 in_flight;
981 };
982 
983 /* A rate sample measures the number of (original/retransmitted) data
984  * packets delivered "delivered" over an interval of time "interval_us".
985  * The tcp_rate.c code fills in the rate sample, and congestion
986  * control modules that define a cong_control function to run at the end
987  * of ACK processing can optionally chose to consult this sample when
988  * setting cwnd and pacing rate.
989  * A sample is invalid if "delivered" or "interval_us" is negative.
990  */
991 struct rate_sample {
992 	u64  prior_mstamp; /* starting timestamp for interval */
993 	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
994 	s32  delivered;		/* number of packets delivered over interval */
995 	long interval_us;	/* time for tp->delivered to incr "delivered" */
996 	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
997 	int  losses;		/* number of packets marked lost upon ACK */
998 	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
999 	u32  prior_in_flight;	/* in flight before this ACK */
1000 	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1001 	bool is_retrans;	/* is sample from retransmission? */
1002 };
1003 
1004 struct tcp_congestion_ops {
1005 	struct list_head	list;
1006 	u32 key;
1007 	u32 flags;
1008 
1009 	/* initialize private data (optional) */
1010 	void (*init)(struct sock *sk);
1011 	/* cleanup private data  (optional) */
1012 	void (*release)(struct sock *sk);
1013 
1014 	/* return slow start threshold (required) */
1015 	u32 (*ssthresh)(struct sock *sk);
1016 	/* do new cwnd calculation (required) */
1017 	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1018 	/* call before changing ca_state (optional) */
1019 	void (*set_state)(struct sock *sk, u8 new_state);
1020 	/* call when cwnd event occurs (optional) */
1021 	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1022 	/* call when ack arrives (optional) */
1023 	void (*in_ack_event)(struct sock *sk, u32 flags);
1024 	/* new value of cwnd after loss (required) */
1025 	u32  (*undo_cwnd)(struct sock *sk);
1026 	/* hook for packet ack accounting (optional) */
1027 	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1028 	/* suggest number of segments for each skb to transmit (optional) */
1029 	u32 (*tso_segs_goal)(struct sock *sk);
1030 	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1031 	u32 (*sndbuf_expand)(struct sock *sk);
1032 	/* call when packets are delivered to update cwnd and pacing rate,
1033 	 * after all the ca_state processing. (optional)
1034 	 */
1035 	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1036 	/* get info for inet_diag (optional) */
1037 	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1038 			   union tcp_cc_info *info);
1039 
1040 	char 		name[TCP_CA_NAME_MAX];
1041 	struct module 	*owner;
1042 };
1043 
1044 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1045 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1046 
1047 void tcp_assign_congestion_control(struct sock *sk);
1048 void tcp_init_congestion_control(struct sock *sk);
1049 void tcp_cleanup_congestion_control(struct sock *sk);
1050 int tcp_set_default_congestion_control(const char *name);
1051 void tcp_get_default_congestion_control(char *name);
1052 void tcp_get_available_congestion_control(char *buf, size_t len);
1053 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1054 int tcp_set_allowed_congestion_control(char *allowed);
1055 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1056 			       bool reinit, bool cap_net_admin);
1057 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1058 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1059 
1060 u32 tcp_reno_ssthresh(struct sock *sk);
1061 u32 tcp_reno_undo_cwnd(struct sock *sk);
1062 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1063 extern struct tcp_congestion_ops tcp_reno;
1064 
1065 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1066 u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
1067 #ifdef CONFIG_INET
1068 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1069 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1070 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1071 {
1072 	return NULL;
1073 }
1074 #endif
1075 
tcp_ca_needs_ecn(const struct sock * sk)1076 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1077 {
1078 	const struct inet_connection_sock *icsk = inet_csk(sk);
1079 
1080 	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1081 }
1082 
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1083 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1084 {
1085 	struct inet_connection_sock *icsk = inet_csk(sk);
1086 
1087 	if (icsk->icsk_ca_ops->set_state)
1088 		icsk->icsk_ca_ops->set_state(sk, ca_state);
1089 	icsk->icsk_ca_state = ca_state;
1090 }
1091 
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1092 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1093 {
1094 	const struct inet_connection_sock *icsk = inet_csk(sk);
1095 
1096 	if (icsk->icsk_ca_ops->cwnd_event)
1097 		icsk->icsk_ca_ops->cwnd_event(sk, event);
1098 }
1099 
1100 /* From tcp_rate.c */
1101 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1102 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1103 			    struct rate_sample *rs);
1104 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1105 		  bool is_sack_reneg, struct rate_sample *rs);
1106 void tcp_rate_check_app_limited(struct sock *sk);
1107 
1108 /* These functions determine how the current flow behaves in respect of SACK
1109  * handling. SACK is negotiated with the peer, and therefore it can vary
1110  * between different flows.
1111  *
1112  * tcp_is_sack - SACK enabled
1113  * tcp_is_reno - No SACK
1114  * tcp_is_fack - FACK enabled, implies SACK enabled
1115  */
tcp_is_sack(const struct tcp_sock * tp)1116 static inline int tcp_is_sack(const struct tcp_sock *tp)
1117 {
1118 	return tp->rx_opt.sack_ok;
1119 }
1120 
tcp_is_reno(const struct tcp_sock * tp)1121 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1122 {
1123 	return !tcp_is_sack(tp);
1124 }
1125 
tcp_is_fack(const struct tcp_sock * tp)1126 static inline bool tcp_is_fack(const struct tcp_sock *tp)
1127 {
1128 	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1129 }
1130 
tcp_enable_fack(struct tcp_sock * tp)1131 static inline void tcp_enable_fack(struct tcp_sock *tp)
1132 {
1133 	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1134 }
1135 
tcp_left_out(const struct tcp_sock * tp)1136 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1137 {
1138 	return tp->sacked_out + tp->lost_out;
1139 }
1140 
1141 /* This determines how many packets are "in the network" to the best
1142  * of our knowledge.  In many cases it is conservative, but where
1143  * detailed information is available from the receiver (via SACK
1144  * blocks etc.) we can make more aggressive calculations.
1145  *
1146  * Use this for decisions involving congestion control, use just
1147  * tp->packets_out to determine if the send queue is empty or not.
1148  *
1149  * Read this equation as:
1150  *
1151  *	"Packets sent once on transmission queue" MINUS
1152  *	"Packets left network, but not honestly ACKed yet" PLUS
1153  *	"Packets fast retransmitted"
1154  */
tcp_packets_in_flight(const struct tcp_sock * tp)1155 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1156 {
1157 	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1158 }
1159 
1160 #define TCP_INFINITE_SSTHRESH	0x7fffffff
1161 
tcp_in_slow_start(const struct tcp_sock * tp)1162 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1163 {
1164 	return tp->snd_cwnd < tp->snd_ssthresh;
1165 }
1166 
tcp_in_initial_slowstart(const struct tcp_sock * tp)1167 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1168 {
1169 	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1170 }
1171 
tcp_in_cwnd_reduction(const struct sock * sk)1172 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1173 {
1174 	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1175 	       (1 << inet_csk(sk)->icsk_ca_state);
1176 }
1177 
1178 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1179  * The exception is cwnd reduction phase, when cwnd is decreasing towards
1180  * ssthresh.
1181  */
tcp_current_ssthresh(const struct sock * sk)1182 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1183 {
1184 	const struct tcp_sock *tp = tcp_sk(sk);
1185 
1186 	if (tcp_in_cwnd_reduction(sk))
1187 		return tp->snd_ssthresh;
1188 	else
1189 		return max(tp->snd_ssthresh,
1190 			   ((tp->snd_cwnd >> 1) +
1191 			    (tp->snd_cwnd >> 2)));
1192 }
1193 
1194 /* Use define here intentionally to get WARN_ON location shown at the caller */
1195 #define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1196 
1197 void tcp_enter_cwr(struct sock *sk);
1198 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1199 
1200 /* The maximum number of MSS of available cwnd for which TSO defers
1201  * sending if not using sysctl_tcp_tso_win_divisor.
1202  */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1203 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1204 {
1205 	return 3;
1206 }
1207 
1208 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1209 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1210 {
1211 	return tp->snd_una + tp->snd_wnd;
1212 }
1213 
1214 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1215  * flexible approach. The RFC suggests cwnd should not be raised unless
1216  * it was fully used previously. And that's exactly what we do in
1217  * congestion avoidance mode. But in slow start we allow cwnd to grow
1218  * as long as the application has used half the cwnd.
1219  * Example :
1220  *    cwnd is 10 (IW10), but application sends 9 frames.
1221  *    We allow cwnd to reach 18 when all frames are ACKed.
1222  * This check is safe because it's as aggressive as slow start which already
1223  * risks 100% overshoot. The advantage is that we discourage application to
1224  * either send more filler packets or data to artificially blow up the cwnd
1225  * usage, and allow application-limited process to probe bw more aggressively.
1226  */
tcp_is_cwnd_limited(const struct sock * sk)1227 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1228 {
1229 	const struct tcp_sock *tp = tcp_sk(sk);
1230 
1231 	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1232 	if (tcp_in_slow_start(tp))
1233 		return tp->snd_cwnd < 2 * tp->max_packets_out;
1234 
1235 	return tp->is_cwnd_limited;
1236 }
1237 
1238 /* Something is really bad, we could not queue an additional packet,
1239  * because qdisc is full or receiver sent a 0 window.
1240  * We do not want to add fuel to the fire, or abort too early,
1241  * so make sure the timer we arm now is at least 200ms in the future,
1242  * regardless of current icsk_rto value (as it could be ~2ms)
1243  */
tcp_probe0_base(const struct sock * sk)1244 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1245 {
1246 	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1247 }
1248 
1249 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1250 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1251 					    unsigned long max_when)
1252 {
1253 	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1254 
1255 	return (unsigned long)min_t(u64, when, max_when);
1256 }
1257 
tcp_check_probe_timer(struct sock * sk)1258 static inline void tcp_check_probe_timer(struct sock *sk)
1259 {
1260 	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1261 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1262 					  tcp_probe0_base(sk), TCP_RTO_MAX);
1263 }
1264 
tcp_init_wl(struct tcp_sock * tp,u32 seq)1265 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1266 {
1267 	tp->snd_wl1 = seq;
1268 }
1269 
tcp_update_wl(struct tcp_sock * tp,u32 seq)1270 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1271 {
1272 	tp->snd_wl1 = seq;
1273 }
1274 
1275 /*
1276  * Calculate(/check) TCP checksum
1277  */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1278 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1279 				   __be32 daddr, __wsum base)
1280 {
1281 	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1282 }
1283 
__tcp_checksum_complete(struct sk_buff * skb)1284 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1285 {
1286 	return __skb_checksum_complete(skb);
1287 }
1288 
tcp_checksum_complete(struct sk_buff * skb)1289 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1290 {
1291 	return !skb_csum_unnecessary(skb) &&
1292 		__tcp_checksum_complete(skb);
1293 }
1294 
1295 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1296 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1297 
1298 #undef STATE_TRACE
1299 
1300 #ifdef STATE_TRACE
1301 static const char *statename[]={
1302 	"Unused","Established","Syn Sent","Syn Recv",
1303 	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1304 	"Close Wait","Last ACK","Listen","Closing"
1305 };
1306 #endif
1307 void tcp_set_state(struct sock *sk, int state);
1308 
1309 void tcp_done(struct sock *sk);
1310 
1311 int tcp_abort(struct sock *sk, int err);
1312 
tcp_sack_reset(struct tcp_options_received * rx_opt)1313 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1314 {
1315 	rx_opt->dsack = 0;
1316 	rx_opt->num_sacks = 0;
1317 }
1318 
1319 u32 tcp_default_init_rwnd(u32 mss);
1320 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1321 
tcp_slow_start_after_idle_check(struct sock * sk)1322 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1323 {
1324 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1325 	struct tcp_sock *tp = tcp_sk(sk);
1326 	s32 delta;
1327 
1328 	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1329 	    ca_ops->cong_control)
1330 		return;
1331 	delta = tcp_jiffies32 - tp->lsndtime;
1332 	if (delta > inet_csk(sk)->icsk_rto)
1333 		tcp_cwnd_restart(sk, delta);
1334 }
1335 
1336 /* Determine a window scaling and initial window to offer. */
1337 void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
1338 			       __u32 *window_clamp, int wscale_ok,
1339 			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1340 
tcp_win_from_space(int space)1341 static inline int tcp_win_from_space(int space)
1342 {
1343 	int tcp_adv_win_scale = sysctl_tcp_adv_win_scale;
1344 
1345 	return tcp_adv_win_scale <= 0 ?
1346 		(space>>(-tcp_adv_win_scale)) :
1347 		space - (space>>tcp_adv_win_scale);
1348 }
1349 
1350 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1351 static inline int tcp_space(const struct sock *sk)
1352 {
1353 	return tcp_win_from_space(sk->sk_rcvbuf -
1354 				  atomic_read(&sk->sk_rmem_alloc));
1355 }
1356 
tcp_full_space(const struct sock * sk)1357 static inline int tcp_full_space(const struct sock *sk)
1358 {
1359 	return tcp_win_from_space(sk->sk_rcvbuf);
1360 }
1361 
1362 extern void tcp_openreq_init_rwin(struct request_sock *req,
1363 				  const struct sock *sk_listener,
1364 				  const struct dst_entry *dst);
1365 
1366 void tcp_enter_memory_pressure(struct sock *sk);
1367 void tcp_leave_memory_pressure(struct sock *sk);
1368 
keepalive_intvl_when(const struct tcp_sock * tp)1369 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1370 {
1371 	struct net *net = sock_net((struct sock *)tp);
1372 
1373 	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1374 }
1375 
keepalive_time_when(const struct tcp_sock * tp)1376 static inline int keepalive_time_when(const struct tcp_sock *tp)
1377 {
1378 	struct net *net = sock_net((struct sock *)tp);
1379 
1380 	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1381 }
1382 
keepalive_probes(const struct tcp_sock * tp)1383 static inline int keepalive_probes(const struct tcp_sock *tp)
1384 {
1385 	struct net *net = sock_net((struct sock *)tp);
1386 
1387 	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1388 }
1389 
keepalive_time_elapsed(const struct tcp_sock * tp)1390 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1391 {
1392 	const struct inet_connection_sock *icsk = &tp->inet_conn;
1393 
1394 	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1395 			  tcp_jiffies32 - tp->rcv_tstamp);
1396 }
1397 
tcp_fin_time(const struct sock * sk)1398 static inline int tcp_fin_time(const struct sock *sk)
1399 {
1400 	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1401 	const int rto = inet_csk(sk)->icsk_rto;
1402 
1403 	if (fin_timeout < (rto << 2) - (rto >> 1))
1404 		fin_timeout = (rto << 2) - (rto >> 1);
1405 
1406 	return fin_timeout;
1407 }
1408 
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1409 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1410 				  int paws_win)
1411 {
1412 	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1413 		return true;
1414 	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1415 		return true;
1416 	/*
1417 	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1418 	 * then following tcp messages have valid values. Ignore 0 value,
1419 	 * or else 'negative' tsval might forbid us to accept their packets.
1420 	 */
1421 	if (!rx_opt->ts_recent)
1422 		return true;
1423 	return false;
1424 }
1425 
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1426 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1427 				   int rst)
1428 {
1429 	if (tcp_paws_check(rx_opt, 0))
1430 		return false;
1431 
1432 	/* RST segments are not recommended to carry timestamp,
1433 	   and, if they do, it is recommended to ignore PAWS because
1434 	   "their cleanup function should take precedence over timestamps."
1435 	   Certainly, it is mistake. It is necessary to understand the reasons
1436 	   of this constraint to relax it: if peer reboots, clock may go
1437 	   out-of-sync and half-open connections will not be reset.
1438 	   Actually, the problem would be not existing if all
1439 	   the implementations followed draft about maintaining clock
1440 	   via reboots. Linux-2.2 DOES NOT!
1441 
1442 	   However, we can relax time bounds for RST segments to MSL.
1443 	 */
1444 	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1445 		return false;
1446 	return true;
1447 }
1448 
1449 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1450 			  int mib_idx, u32 *last_oow_ack_time);
1451 
tcp_mib_init(struct net * net)1452 static inline void tcp_mib_init(struct net *net)
1453 {
1454 	/* See RFC 2012 */
1455 	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1456 	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1457 	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1458 	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1459 }
1460 
1461 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1462 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1463 {
1464 	tp->lost_skb_hint = NULL;
1465 }
1466 
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1467 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1468 {
1469 	tcp_clear_retrans_hints_partial(tp);
1470 	tp->retransmit_skb_hint = NULL;
1471 }
1472 
1473 union tcp_md5_addr {
1474 	struct in_addr  a4;
1475 #if IS_ENABLED(CONFIG_IPV6)
1476 	struct in6_addr	a6;
1477 #endif
1478 };
1479 
1480 /* - key database */
1481 struct tcp_md5sig_key {
1482 	struct hlist_node	node;
1483 	u8			keylen;
1484 	u8			family; /* AF_INET or AF_INET6 */
1485 	union tcp_md5_addr	addr;
1486 	u8			prefixlen;
1487 	u8			key[TCP_MD5SIG_MAXKEYLEN];
1488 	struct rcu_head		rcu;
1489 };
1490 
1491 /* - sock block */
1492 struct tcp_md5sig_info {
1493 	struct hlist_head	head;
1494 	struct rcu_head		rcu;
1495 };
1496 
1497 /* - pseudo header */
1498 struct tcp4_pseudohdr {
1499 	__be32		saddr;
1500 	__be32		daddr;
1501 	__u8		pad;
1502 	__u8		protocol;
1503 	__be16		len;
1504 };
1505 
1506 struct tcp6_pseudohdr {
1507 	struct in6_addr	saddr;
1508 	struct in6_addr daddr;
1509 	__be32		len;
1510 	__be32		protocol;	/* including padding */
1511 };
1512 
1513 union tcp_md5sum_block {
1514 	struct tcp4_pseudohdr ip4;
1515 #if IS_ENABLED(CONFIG_IPV6)
1516 	struct tcp6_pseudohdr ip6;
1517 #endif
1518 };
1519 
1520 /* - pool: digest algorithm, hash description and scratch buffer */
1521 struct tcp_md5sig_pool {
1522 	struct ahash_request	*md5_req;
1523 	void			*scratch;
1524 };
1525 
1526 /* - functions */
1527 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1528 			const struct sock *sk, const struct sk_buff *skb);
1529 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1530 		   int family, u8 prefixlen, const u8 *newkey, u8 newkeylen,
1531 		   gfp_t gfp);
1532 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1533 		   int family, u8 prefixlen);
1534 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1535 					 const struct sock *addr_sk);
1536 
1537 #ifdef CONFIG_TCP_MD5SIG
1538 struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1539 					 const union tcp_md5_addr *addr,
1540 					 int family);
1541 #define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1542 #else
tcp_md5_do_lookup(const struct sock * sk,const union tcp_md5_addr * addr,int family)1543 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1544 					 const union tcp_md5_addr *addr,
1545 					 int family)
1546 {
1547 	return NULL;
1548 }
1549 #define tcp_twsk_md5_key(twsk)	NULL
1550 #endif
1551 
1552 bool tcp_alloc_md5sig_pool(void);
1553 
1554 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1555 static inline void tcp_put_md5sig_pool(void)
1556 {
1557 	local_bh_enable();
1558 }
1559 
1560 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1561 			  unsigned int header_len);
1562 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1563 		     const struct tcp_md5sig_key *key);
1564 
1565 /* From tcp_fastopen.c */
1566 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1567 			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1568 			    unsigned long *last_syn_loss);
1569 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1570 			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1571 			    u16 try_exp);
1572 struct tcp_fastopen_request {
1573 	/* Fast Open cookie. Size 0 means a cookie request */
1574 	struct tcp_fastopen_cookie	cookie;
1575 	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1576 	size_t				size;
1577 	int				copied;	/* queued in tcp_connect() */
1578 };
1579 void tcp_free_fastopen_req(struct tcp_sock *tp);
1580 
1581 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1582 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1583 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1584 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1585 			      struct request_sock *req,
1586 			      struct tcp_fastopen_cookie *foc);
1587 void tcp_fastopen_init_key_once(bool publish);
1588 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1589 			     struct tcp_fastopen_cookie *cookie);
1590 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1591 #define TCP_FASTOPEN_KEY_LENGTH 16
1592 
1593 /* Fastopen key context */
1594 struct tcp_fastopen_context {
1595 	struct crypto_cipher	*tfm;
1596 	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1597 	struct rcu_head		rcu;
1598 };
1599 
1600 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1601 void tcp_fastopen_active_disable(struct sock *sk);
1602 bool tcp_fastopen_active_should_disable(struct sock *sk);
1603 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1604 void tcp_fastopen_active_timeout_reset(void);
1605 
1606 /* Latencies incurred by various limits for a sender. They are
1607  * chronograph-like stats that are mutually exclusive.
1608  */
1609 enum tcp_chrono {
1610 	TCP_CHRONO_UNSPEC,
1611 	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1612 	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1613 	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1614 	__TCP_CHRONO_MAX,
1615 };
1616 
1617 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1618 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1619 
tcp_init_send_head(struct sock * sk)1620 static inline void tcp_init_send_head(struct sock *sk)
1621 {
1622 	sk->sk_send_head = NULL;
1623 }
1624 
1625 /* write queue abstraction */
tcp_write_queue_purge(struct sock * sk)1626 static inline void tcp_write_queue_purge(struct sock *sk)
1627 {
1628 	struct sk_buff *skb;
1629 
1630 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1631 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1632 		sk_wmem_free_skb(sk, skb);
1633 	sk_mem_reclaim(sk);
1634 	tcp_clear_all_retrans_hints(tcp_sk(sk));
1635 	tcp_init_send_head(sk);
1636 	tcp_sk(sk)->packets_out = 0;
1637 	inet_csk(sk)->icsk_backoff = 0;
1638 }
1639 
tcp_write_queue_head(const struct sock * sk)1640 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1641 {
1642 	return skb_peek(&sk->sk_write_queue);
1643 }
1644 
tcp_write_queue_tail(const struct sock * sk)1645 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1646 {
1647 	return skb_peek_tail(&sk->sk_write_queue);
1648 }
1649 
tcp_write_queue_next(const struct sock * sk,const struct sk_buff * skb)1650 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1651 						   const struct sk_buff *skb)
1652 {
1653 	return skb_queue_next(&sk->sk_write_queue, skb);
1654 }
1655 
tcp_write_queue_prev(const struct sock * sk,const struct sk_buff * skb)1656 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1657 						   const struct sk_buff *skb)
1658 {
1659 	return skb_queue_prev(&sk->sk_write_queue, skb);
1660 }
1661 
1662 #define tcp_for_write_queue(skb, sk)					\
1663 	skb_queue_walk(&(sk)->sk_write_queue, skb)
1664 
1665 #define tcp_for_write_queue_from(skb, sk)				\
1666 	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1667 
1668 #define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1669 	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1670 
tcp_send_head(const struct sock * sk)1671 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1672 {
1673 	return sk->sk_send_head;
1674 }
1675 
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1676 static inline bool tcp_skb_is_last(const struct sock *sk,
1677 				   const struct sk_buff *skb)
1678 {
1679 	return skb_queue_is_last(&sk->sk_write_queue, skb);
1680 }
1681 
tcp_advance_send_head(struct sock * sk,const struct sk_buff * skb)1682 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1683 {
1684 	if (tcp_skb_is_last(sk, skb))
1685 		sk->sk_send_head = NULL;
1686 	else
1687 		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1688 }
1689 
tcp_check_send_head(struct sock * sk,struct sk_buff * skb_unlinked)1690 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1691 {
1692 	if (sk->sk_send_head == skb_unlinked) {
1693 		sk->sk_send_head = NULL;
1694 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1695 	}
1696 	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1697 		tcp_sk(sk)->highest_sack = NULL;
1698 }
1699 
tcp_rtx_queue_head(const struct sock * sk)1700 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1701 {
1702 	struct sk_buff *skb = tcp_write_queue_head(sk);
1703 
1704 	if (skb == tcp_send_head(sk))
1705 		skb = NULL;
1706 
1707 	return skb;
1708 }
1709 
tcp_rtx_queue_tail(const struct sock * sk)1710 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1711 {
1712 	struct sk_buff *skb = tcp_send_head(sk);
1713 
1714 	/* empty retransmit queue, for example due to zero window */
1715 	if (skb == tcp_write_queue_head(sk))
1716 		return NULL;
1717 
1718 	return skb ? tcp_write_queue_prev(sk, skb) : tcp_write_queue_tail(sk);
1719 }
1720 
__tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1721 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1722 {
1723 	__skb_queue_tail(&sk->sk_write_queue, skb);
1724 }
1725 
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1726 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1727 {
1728 	__tcp_add_write_queue_tail(sk, skb);
1729 
1730 	/* Queue it, remembering where we must start sending. */
1731 	if (sk->sk_send_head == NULL) {
1732 		sk->sk_send_head = skb;
1733 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1734 
1735 		if (tcp_sk(sk)->highest_sack == NULL)
1736 			tcp_sk(sk)->highest_sack = skb;
1737 	}
1738 }
1739 
__tcp_add_write_queue_head(struct sock * sk,struct sk_buff * skb)1740 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1741 {
1742 	__skb_queue_head(&sk->sk_write_queue, skb);
1743 }
1744 
1745 /* Insert buff after skb on the write queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk)1746 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1747 						struct sk_buff *buff,
1748 						struct sock *sk)
1749 {
1750 	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1751 }
1752 
1753 /* Insert new before skb on the write queue of sk.  */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1754 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1755 						  struct sk_buff *skb,
1756 						  struct sock *sk)
1757 {
1758 	__skb_queue_before(&sk->sk_write_queue, skb, new);
1759 
1760 	if (sk->sk_send_head == skb)
1761 		sk->sk_send_head = new;
1762 }
1763 
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1764 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1765 {
1766 	__skb_unlink(skb, &sk->sk_write_queue);
1767 }
1768 
tcp_write_queue_empty(struct sock * sk)1769 static inline bool tcp_write_queue_empty(struct sock *sk)
1770 {
1771 	return skb_queue_empty(&sk->sk_write_queue);
1772 }
1773 
tcp_push_pending_frames(struct sock * sk)1774 static inline void tcp_push_pending_frames(struct sock *sk)
1775 {
1776 	if (tcp_send_head(sk)) {
1777 		struct tcp_sock *tp = tcp_sk(sk);
1778 
1779 		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1780 	}
1781 }
1782 
1783 /* Start sequence of the skb just after the highest skb with SACKed
1784  * bit, valid only if sacked_out > 0 or when the caller has ensured
1785  * validity by itself.
1786  */
tcp_highest_sack_seq(struct tcp_sock * tp)1787 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1788 {
1789 	if (!tp->sacked_out)
1790 		return tp->snd_una;
1791 
1792 	if (tp->highest_sack == NULL)
1793 		return tp->snd_nxt;
1794 
1795 	return TCP_SKB_CB(tp->highest_sack)->seq;
1796 }
1797 
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1798 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1799 {
1800 	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1801 						tcp_write_queue_next(sk, skb);
1802 }
1803 
tcp_highest_sack(struct sock * sk)1804 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1805 {
1806 	return tcp_sk(sk)->highest_sack;
1807 }
1808 
tcp_highest_sack_reset(struct sock * sk)1809 static inline void tcp_highest_sack_reset(struct sock *sk)
1810 {
1811 	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1812 }
1813 
1814 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1815 static inline void tcp_highest_sack_replace(struct sock *sk,
1816 					    struct sk_buff *old,
1817 					    struct sk_buff *new)
1818 {
1819 	if (old == tcp_highest_sack(sk))
1820 		tcp_sk(sk)->highest_sack = new;
1821 }
1822 
1823 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1824 static inline bool inet_sk_transparent(const struct sock *sk)
1825 {
1826 	switch (sk->sk_state) {
1827 	case TCP_TIME_WAIT:
1828 		return inet_twsk(sk)->tw_transparent;
1829 	case TCP_NEW_SYN_RECV:
1830 		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1831 	}
1832 	return inet_sk(sk)->transparent;
1833 }
1834 
1835 /* Determines whether this is a thin stream (which may suffer from
1836  * increased latency). Used to trigger latency-reducing mechanisms.
1837  */
tcp_stream_is_thin(struct tcp_sock * tp)1838 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1839 {
1840 	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1841 }
1842 
1843 /* /proc */
1844 enum tcp_seq_states {
1845 	TCP_SEQ_STATE_LISTENING,
1846 	TCP_SEQ_STATE_ESTABLISHED,
1847 };
1848 
1849 int tcp_seq_open(struct inode *inode, struct file *file);
1850 
1851 struct tcp_seq_afinfo {
1852 	char				*name;
1853 	sa_family_t			family;
1854 	const struct file_operations	*seq_fops;
1855 	struct seq_operations		seq_ops;
1856 };
1857 
1858 struct tcp_iter_state {
1859 	struct seq_net_private	p;
1860 	sa_family_t		family;
1861 	enum tcp_seq_states	state;
1862 	struct sock		*syn_wait_sk;
1863 	int			bucket, offset, sbucket, num;
1864 	loff_t			last_pos;
1865 };
1866 
1867 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1868 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1869 
1870 extern struct request_sock_ops tcp_request_sock_ops;
1871 extern struct request_sock_ops tcp6_request_sock_ops;
1872 
1873 void tcp_v4_destroy_sock(struct sock *sk);
1874 
1875 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1876 				netdev_features_t features);
1877 struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
1878 int tcp_gro_complete(struct sk_buff *skb);
1879 
1880 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1881 
tcp_notsent_lowat(const struct tcp_sock * tp)1882 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1883 {
1884 	struct net *net = sock_net((struct sock *)tp);
1885 	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1886 }
1887 
tcp_stream_memory_free(const struct sock * sk)1888 static inline bool tcp_stream_memory_free(const struct sock *sk)
1889 {
1890 	const struct tcp_sock *tp = tcp_sk(sk);
1891 	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
1892 
1893 	return notsent_bytes < tcp_notsent_lowat(tp);
1894 }
1895 
1896 #ifdef CONFIG_PROC_FS
1897 int tcp4_proc_init(void);
1898 void tcp4_proc_exit(void);
1899 #endif
1900 
1901 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1902 int tcp_conn_request(struct request_sock_ops *rsk_ops,
1903 		     const struct tcp_request_sock_ops *af_ops,
1904 		     struct sock *sk, struct sk_buff *skb);
1905 
1906 /* TCP af-specific functions */
1907 struct tcp_sock_af_ops {
1908 #ifdef CONFIG_TCP_MD5SIG
1909 	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1910 						const struct sock *addr_sk);
1911 	int		(*calc_md5_hash)(char *location,
1912 					 const struct tcp_md5sig_key *md5,
1913 					 const struct sock *sk,
1914 					 const struct sk_buff *skb);
1915 	int		(*md5_parse)(struct sock *sk,
1916 				     int optname,
1917 				     char __user *optval,
1918 				     int optlen);
1919 #endif
1920 };
1921 
1922 struct tcp_request_sock_ops {
1923 	u16 mss_clamp;
1924 #ifdef CONFIG_TCP_MD5SIG
1925 	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1926 						 const struct sock *addr_sk);
1927 	int		(*calc_md5_hash) (char *location,
1928 					  const struct tcp_md5sig_key *md5,
1929 					  const struct sock *sk,
1930 					  const struct sk_buff *skb);
1931 #endif
1932 	void (*init_req)(struct request_sock *req,
1933 			 const struct sock *sk_listener,
1934 			 struct sk_buff *skb);
1935 #ifdef CONFIG_SYN_COOKIES
1936 	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1937 				 __u16 *mss);
1938 #endif
1939 	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1940 				       const struct request_sock *req);
1941 	u32 (*init_seq)(const struct sk_buff *skb);
1942 	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
1943 	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1944 			   struct flowi *fl, struct request_sock *req,
1945 			   struct tcp_fastopen_cookie *foc,
1946 			   enum tcp_synack_type synack_type);
1947 };
1948 
1949 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)1950 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1951 					 const struct sock *sk, struct sk_buff *skb,
1952 					 __u16 *mss)
1953 {
1954 	tcp_synq_overflow(sk);
1955 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1956 	return ops->cookie_init_seq(skb, mss);
1957 }
1958 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)1959 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1960 					 const struct sock *sk, struct sk_buff *skb,
1961 					 __u16 *mss)
1962 {
1963 	return 0;
1964 }
1965 #endif
1966 
1967 int tcpv4_offload_init(void);
1968 
1969 void tcp_v4_init(void);
1970 void tcp_init(void);
1971 
1972 /* tcp_recovery.c */
1973 extern void tcp_rack_mark_lost(struct sock *sk);
1974 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
1975 			     u64 xmit_time);
1976 extern void tcp_rack_reo_timeout(struct sock *sk);
1977 
1978 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)1979 static inline s64 tcp_rto_delta_us(const struct sock *sk)
1980 {
1981 	const struct sk_buff *skb = tcp_write_queue_head(sk);
1982 	u32 rto = inet_csk(sk)->icsk_rto;
1983 	u64 rto_time_stamp_us = skb->skb_mstamp + jiffies_to_usecs(rto);
1984 
1985 	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
1986 }
1987 
1988 /*
1989  * Save and compile IPv4 options, return a pointer to it
1990  */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)1991 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
1992 							 struct sk_buff *skb)
1993 {
1994 	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1995 	struct ip_options_rcu *dopt = NULL;
1996 
1997 	if (opt->optlen) {
1998 		int opt_size = sizeof(*dopt) + opt->optlen;
1999 
2000 		dopt = kmalloc(opt_size, GFP_ATOMIC);
2001 		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2002 			kfree(dopt);
2003 			dopt = NULL;
2004 		}
2005 	}
2006 	return dopt;
2007 }
2008 
2009 /* locally generated TCP pure ACKs have skb->truesize == 2
2010  * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2011  * This is much faster than dissecting the packet to find out.
2012  * (Think of GRE encapsulations, IPv4, IPv6, ...)
2013  */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2014 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2015 {
2016 	return skb->truesize == 2;
2017 }
2018 
skb_set_tcp_pure_ack(struct sk_buff * skb)2019 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2020 {
2021 	skb->truesize = 2;
2022 }
2023 
tcp_inq(struct sock * sk)2024 static inline int tcp_inq(struct sock *sk)
2025 {
2026 	struct tcp_sock *tp = tcp_sk(sk);
2027 	int answ;
2028 
2029 	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2030 		answ = 0;
2031 	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2032 		   !tp->urg_data ||
2033 		   before(tp->urg_seq, tp->copied_seq) ||
2034 		   !before(tp->urg_seq, tp->rcv_nxt)) {
2035 
2036 		answ = tp->rcv_nxt - tp->copied_seq;
2037 
2038 		/* Subtract 1, if FIN was received */
2039 		if (answ && sock_flag(sk, SOCK_DONE))
2040 			answ--;
2041 	} else {
2042 		answ = tp->urg_seq - tp->copied_seq;
2043 	}
2044 
2045 	return answ;
2046 }
2047 
2048 int tcp_peek_len(struct socket *sock);
2049 
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2050 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2051 {
2052 	u16 segs_in;
2053 
2054 	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2055 	tp->segs_in += segs_in;
2056 	if (skb->len > tcp_hdrlen(skb))
2057 		tp->data_segs_in += segs_in;
2058 }
2059 
2060 /*
2061  * TCP listen path runs lockless.
2062  * We forced "struct sock" to be const qualified to make sure
2063  * we don't modify one of its field by mistake.
2064  * Here, we increment sk_drops which is an atomic_t, so we can safely
2065  * make sock writable again.
2066  */
tcp_listendrop(const struct sock * sk)2067 static inline void tcp_listendrop(const struct sock *sk)
2068 {
2069 	atomic_inc(&((struct sock *)sk)->sk_drops);
2070 	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2071 }
2072 
2073 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2074 
2075 /*
2076  * Interface for adding Upper Level Protocols over TCP
2077  */
2078 
2079 #define TCP_ULP_NAME_MAX	16
2080 #define TCP_ULP_MAX		128
2081 #define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2082 
2083 struct tcp_ulp_ops {
2084 	struct list_head	list;
2085 
2086 	/* initialize ulp */
2087 	int (*init)(struct sock *sk);
2088 	/* cleanup ulp */
2089 	void (*release)(struct sock *sk);
2090 
2091 	char		name[TCP_ULP_NAME_MAX];
2092 	struct module	*owner;
2093 };
2094 int tcp_register_ulp(struct tcp_ulp_ops *type);
2095 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2096 int tcp_set_ulp(struct sock *sk, const char *name);
2097 void tcp_get_available_ulp(char *buf, size_t len);
2098 void tcp_cleanup_ulp(struct sock *sk);
2099 
2100 #define MODULE_ALIAS_TCP_ULP(name)				\
2101 	__MODULE_INFO(alias, alias_userspace, name);		\
2102 	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2103 
2104 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2105  * is < 0, then the BPF op failed (for example if the loaded BPF
2106  * program does not support the chosen operation or there is no BPF
2107  * program loaded).
2108  */
2109 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op)2110 static inline int tcp_call_bpf(struct sock *sk, int op)
2111 {
2112 	struct bpf_sock_ops_kern sock_ops;
2113 	int ret;
2114 
2115 	if (sk_fullsock(sk))
2116 		sock_owned_by_me(sk);
2117 
2118 	memset(&sock_ops, 0, sizeof(sock_ops));
2119 	sock_ops.sk = sk;
2120 	sock_ops.op = op;
2121 
2122 	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2123 	if (ret == 0)
2124 		ret = sock_ops.reply;
2125 	else
2126 		ret = -1;
2127 	return ret;
2128 }
2129 #else
tcp_call_bpf(struct sock * sk,int op)2130 static inline int tcp_call_bpf(struct sock *sk, int op)
2131 {
2132 	return -EPERM;
2133 }
2134 #endif
2135 
tcp_timeout_init(struct sock * sk)2136 static inline u32 tcp_timeout_init(struct sock *sk)
2137 {
2138 	int timeout;
2139 
2140 	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT);
2141 
2142 	if (timeout <= 0)
2143 		timeout = TCP_TIMEOUT_INIT;
2144 	return timeout;
2145 }
2146 
tcp_rwnd_init_bpf(struct sock * sk)2147 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2148 {
2149 	int rwnd;
2150 
2151 	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT);
2152 
2153 	if (rwnd < 0)
2154 		rwnd = 0;
2155 	return rwnd;
2156 }
2157 
tcp_bpf_ca_needs_ecn(struct sock * sk)2158 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2159 {
2160 	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN) == 1);
2161 }
2162 #endif	/* _TCP_H */
2163