• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  *
14  * A code-rewriter that enables instruction single-stepping.
15  */
16 
17 #include <linux/smp.h>
18 #include <linux/ptrace.h>
19 #include <linux/slab.h>
20 #include <linux/thread_info.h>
21 #include <linux/uaccess.h>
22 #include <linux/mman.h>
23 #include <linux/types.h>
24 #include <linux/err.h>
25 #include <linux/prctl.h>
26 #include <asm/cacheflush.h>
27 #include <asm/traps.h>
28 #include <linux/uaccess.h>
29 #include <asm/unaligned.h>
30 #include <arch/abi.h>
31 #include <arch/spr_def.h>
32 #include <arch/opcode.h>
33 
34 
35 #ifndef __tilegx__   /* Hardware support for single step unavailable. */
36 
37 #define signExtend17(val) sign_extend((val), 17)
38 #define TILE_X1_MASK (0xffffffffULL << 31)
39 
40 enum mem_op {
41 	MEMOP_NONE,
42 	MEMOP_LOAD,
43 	MEMOP_STORE,
44 	MEMOP_LOAD_POSTINCR,
45 	MEMOP_STORE_POSTINCR
46 };
47 
set_BrOff_X1(tilepro_bundle_bits n,s32 offset)48 static inline tilepro_bundle_bits set_BrOff_X1(tilepro_bundle_bits n,
49 	s32 offset)
50 {
51 	tilepro_bundle_bits result;
52 
53 	/* mask out the old offset */
54 	tilepro_bundle_bits mask = create_BrOff_X1(-1);
55 	result = n & (~mask);
56 
57 	/* or in the new offset */
58 	result |= create_BrOff_X1(offset);
59 
60 	return result;
61 }
62 
move_X1(tilepro_bundle_bits n,int dest,int src)63 static inline tilepro_bundle_bits move_X1(tilepro_bundle_bits n, int dest,
64 	int src)
65 {
66 	tilepro_bundle_bits result;
67 	tilepro_bundle_bits op;
68 
69 	result = n & (~TILE_X1_MASK);
70 
71 	op = create_Opcode_X1(SPECIAL_0_OPCODE_X1) |
72 		create_RRROpcodeExtension_X1(OR_SPECIAL_0_OPCODE_X1) |
73 		create_Dest_X1(dest) |
74 		create_SrcB_X1(TREG_ZERO) |
75 		create_SrcA_X1(src) ;
76 
77 	result |= op;
78 	return result;
79 }
80 
nop_X1(tilepro_bundle_bits n)81 static inline tilepro_bundle_bits nop_X1(tilepro_bundle_bits n)
82 {
83 	return move_X1(n, TREG_ZERO, TREG_ZERO);
84 }
85 
addi_X1(tilepro_bundle_bits n,int dest,int src,int imm)86 static inline tilepro_bundle_bits addi_X1(
87 	tilepro_bundle_bits n, int dest, int src, int imm)
88 {
89 	n &= ~TILE_X1_MASK;
90 
91 	n |=  (create_SrcA_X1(src) |
92 	       create_Dest_X1(dest) |
93 	       create_Imm8_X1(imm) |
94 	       create_S_X1(0) |
95 	       create_Opcode_X1(IMM_0_OPCODE_X1) |
96 	       create_ImmOpcodeExtension_X1(ADDI_IMM_0_OPCODE_X1));
97 
98 	return n;
99 }
100 
rewrite_load_store_unaligned(struct single_step_state * state,tilepro_bundle_bits bundle,struct pt_regs * regs,enum mem_op mem_op,int size,int sign_ext)101 static tilepro_bundle_bits rewrite_load_store_unaligned(
102 	struct single_step_state *state,
103 	tilepro_bundle_bits bundle,
104 	struct pt_regs *regs,
105 	enum mem_op mem_op,
106 	int size, int sign_ext)
107 {
108 	unsigned char __user *addr;
109 	int val_reg, addr_reg, err, val;
110 	int align_ctl;
111 
112 	align_ctl = unaligned_fixup;
113 	switch (task_thread_info(current)->align_ctl) {
114 	case PR_UNALIGN_NOPRINT:
115 		align_ctl = 1;
116 		break;
117 	case PR_UNALIGN_SIGBUS:
118 		align_ctl = 0;
119 		break;
120 	}
121 
122 	/* Get address and value registers */
123 	if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
124 		addr_reg = get_SrcA_Y2(bundle);
125 		val_reg = get_SrcBDest_Y2(bundle);
126 	} else if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
127 		addr_reg = get_SrcA_X1(bundle);
128 		val_reg  = get_Dest_X1(bundle);
129 	} else {
130 		addr_reg = get_SrcA_X1(bundle);
131 		val_reg  = get_SrcB_X1(bundle);
132 	}
133 
134 	/*
135 	 * If registers are not GPRs, don't try to handle it.
136 	 *
137 	 * FIXME: we could handle non-GPR loads by getting the real value
138 	 * from memory, writing it to the single step buffer, using a
139 	 * temp_reg to hold a pointer to that memory, then executing that
140 	 * instruction and resetting temp_reg.  For non-GPR stores, it's a
141 	 * little trickier; we could use the single step buffer for that
142 	 * too, but we'd have to add some more state bits so that we could
143 	 * call back in here to copy that value to the real target.  For
144 	 * now, we just handle the simple case.
145 	 */
146 	if ((val_reg >= PTREGS_NR_GPRS &&
147 	     (val_reg != TREG_ZERO ||
148 	      mem_op == MEMOP_LOAD ||
149 	      mem_op == MEMOP_LOAD_POSTINCR)) ||
150 	    addr_reg >= PTREGS_NR_GPRS)
151 		return bundle;
152 
153 	/* If it's aligned, don't handle it specially */
154 	addr = (void __user *)regs->regs[addr_reg];
155 	if (((unsigned long)addr % size) == 0)
156 		return bundle;
157 
158 	/*
159 	 * Return SIGBUS with the unaligned address, if requested.
160 	 * Note that we return SIGBUS even for completely invalid addresses
161 	 * as long as they are in fact unaligned; this matches what the
162 	 * tilepro hardware would be doing, if it could provide us with the
163 	 * actual bad address in an SPR, which it doesn't.
164 	 */
165 	if (align_ctl == 0) {
166 		siginfo_t info = {
167 			.si_signo = SIGBUS,
168 			.si_code = BUS_ADRALN,
169 			.si_addr = addr
170 		};
171 		trace_unhandled_signal("unaligned trap", regs,
172 				       (unsigned long)addr, SIGBUS);
173 		force_sig_info(info.si_signo, &info, current);
174 		return (tilepro_bundle_bits) 0;
175 	}
176 
177 	/* Handle unaligned load/store */
178 	if (mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR) {
179 		unsigned short val_16;
180 		switch (size) {
181 		case 2:
182 			err = copy_from_user(&val_16, addr, sizeof(val_16));
183 			val = sign_ext ? ((short)val_16) : val_16;
184 			break;
185 		case 4:
186 			err = copy_from_user(&val, addr, sizeof(val));
187 			break;
188 		default:
189 			BUG();
190 		}
191 		if (err == 0) {
192 			state->update_reg = val_reg;
193 			state->update_value = val;
194 			state->update = 1;
195 		}
196 	} else {
197 		unsigned short val_16;
198 		val = (val_reg == TREG_ZERO) ? 0 : regs->regs[val_reg];
199 		switch (size) {
200 		case 2:
201 			val_16 = val;
202 			err = copy_to_user(addr, &val_16, sizeof(val_16));
203 			break;
204 		case 4:
205 			err = copy_to_user(addr, &val, sizeof(val));
206 			break;
207 		default:
208 			BUG();
209 		}
210 	}
211 
212 	if (err) {
213 		siginfo_t info = {
214 			.si_signo = SIGBUS,
215 			.si_code = BUS_ADRALN,
216 			.si_addr = addr
217 		};
218 		trace_unhandled_signal("bad address for unaligned fixup", regs,
219 				       (unsigned long)addr, SIGBUS);
220 		force_sig_info(info.si_signo, &info, current);
221 		return (tilepro_bundle_bits) 0;
222 	}
223 
224 	if (unaligned_printk || unaligned_fixup_count == 0) {
225 		pr_info("Process %d/%s: PC %#lx: Fixup of unaligned %s at %#lx\n",
226 			current->pid, current->comm, regs->pc,
227 			mem_op == MEMOP_LOAD || mem_op == MEMOP_LOAD_POSTINCR ?
228 			"load" : "store",
229 			(unsigned long)addr);
230 		if (!unaligned_printk) {
231 #define P pr_info
232 P("\n");
233 P("Unaligned fixups in the kernel will slow your application considerably.\n");
234 P("To find them, write a \"1\" to /proc/sys/tile/unaligned_fixup/printk,\n");
235 P("which requests the kernel show all unaligned fixups, or write a \"0\"\n");
236 P("to /proc/sys/tile/unaligned_fixup/enabled, in which case each unaligned\n");
237 P("access will become a SIGBUS you can debug. No further warnings will be\n");
238 P("shown so as to avoid additional slowdown, but you can track the number\n");
239 P("of fixups performed via /proc/sys/tile/unaligned_fixup/count.\n");
240 P("Use the tile-addr2line command (see \"info addr2line\") to decode PCs.\n");
241 P("\n");
242 #undef P
243 		}
244 	}
245 	++unaligned_fixup_count;
246 
247 	if (bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK) {
248 		/* Convert the Y2 instruction to a prefetch. */
249 		bundle &= ~(create_SrcBDest_Y2(-1) |
250 			    create_Opcode_Y2(-1));
251 		bundle |= (create_SrcBDest_Y2(TREG_ZERO) |
252 			   create_Opcode_Y2(LW_OPCODE_Y2));
253 	/* Replace the load postincr with an addi */
254 	} else if (mem_op == MEMOP_LOAD_POSTINCR) {
255 		bundle = addi_X1(bundle, addr_reg, addr_reg,
256 				 get_Imm8_X1(bundle));
257 	/* Replace the store postincr with an addi */
258 	} else if (mem_op == MEMOP_STORE_POSTINCR) {
259 		bundle = addi_X1(bundle, addr_reg, addr_reg,
260 				 get_Dest_Imm8_X1(bundle));
261 	} else {
262 		/* Convert the X1 instruction to a nop. */
263 		bundle &= ~(create_Opcode_X1(-1) |
264 			    create_UnShOpcodeExtension_X1(-1) |
265 			    create_UnOpcodeExtension_X1(-1));
266 		bundle |= (create_Opcode_X1(SHUN_0_OPCODE_X1) |
267 			   create_UnShOpcodeExtension_X1(
268 				   UN_0_SHUN_0_OPCODE_X1) |
269 			   create_UnOpcodeExtension_X1(
270 				   NOP_UN_0_SHUN_0_OPCODE_X1));
271 	}
272 
273 	return bundle;
274 }
275 
276 /*
277  * Called after execve() has started the new image.  This allows us
278  * to reset the info state.  Note that the the mmap'ed memory, if there
279  * was any, has already been unmapped by the exec.
280  */
single_step_execve(void)281 void single_step_execve(void)
282 {
283 	struct thread_info *ti = current_thread_info();
284 	kfree(ti->step_state);
285 	ti->step_state = NULL;
286 }
287 
288 /*
289  * single_step_once() - entry point when single stepping has been triggered.
290  * @regs: The machine register state
291  *
292  *  When we arrive at this routine via a trampoline, the single step
293  *  engine copies the executing bundle to the single step buffer.
294  *  If the instruction is a condition branch, then the target is
295  *  reset to one past the next instruction. If the instruction
296  *  sets the lr, then that is noted. If the instruction is a jump
297  *  or call, then the new target pc is preserved and the current
298  *  bundle instruction set to null.
299  *
300  *  The necessary post-single-step rewriting information is stored in
301  *  single_step_state->  We use data segment values because the
302  *  stack will be rewound when we run the rewritten single-stepped
303  *  instruction.
304  */
single_step_once(struct pt_regs * regs)305 void single_step_once(struct pt_regs *regs)
306 {
307 	extern tilepro_bundle_bits __single_step_ill_insn;
308 	extern tilepro_bundle_bits __single_step_j_insn;
309 	extern tilepro_bundle_bits __single_step_addli_insn;
310 	extern tilepro_bundle_bits __single_step_auli_insn;
311 	struct thread_info *info = (void *)current_thread_info();
312 	struct single_step_state *state = info->step_state;
313 	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
314 	tilepro_bundle_bits __user *buffer, *pc;
315 	tilepro_bundle_bits bundle;
316 	int temp_reg;
317 	int target_reg = TREG_LR;
318 	int err;
319 	enum mem_op mem_op = MEMOP_NONE;
320 	int size = 0, sign_ext = 0;  /* happy compiler */
321 	int align_ctl;
322 
323 	align_ctl = unaligned_fixup;
324 	switch (task_thread_info(current)->align_ctl) {
325 	case PR_UNALIGN_NOPRINT:
326 		align_ctl = 1;
327 		break;
328 	case PR_UNALIGN_SIGBUS:
329 		align_ctl = 0;
330 		break;
331 	}
332 
333 	asm(
334 "    .pushsection .rodata.single_step\n"
335 "    .align 8\n"
336 "    .globl    __single_step_ill_insn\n"
337 "__single_step_ill_insn:\n"
338 "    ill\n"
339 "    .globl    __single_step_addli_insn\n"
340 "__single_step_addli_insn:\n"
341 "    { nop; addli r0, zero, 0 }\n"
342 "    .globl    __single_step_auli_insn\n"
343 "__single_step_auli_insn:\n"
344 "    { nop; auli r0, r0, 0 }\n"
345 "    .globl    __single_step_j_insn\n"
346 "__single_step_j_insn:\n"
347 "    j .\n"
348 "    .popsection\n"
349 	);
350 
351 	/*
352 	 * Enable interrupts here to allow touching userspace and the like.
353 	 * The callers expect this: do_trap() already has interrupts
354 	 * enabled, and do_work_pending() handles functions that enable
355 	 * interrupts internally.
356 	 */
357 	local_irq_enable();
358 
359 	if (state == NULL) {
360 		/* allocate a page of writable, executable memory */
361 		state = kmalloc(sizeof(struct single_step_state), GFP_KERNEL);
362 		if (state == NULL) {
363 			pr_err("Out of kernel memory trying to single-step\n");
364 			return;
365 		}
366 
367 		/* allocate a cache line of writable, executable memory */
368 		buffer = (void __user *) vm_mmap(NULL, 0, 64,
369 					  PROT_EXEC | PROT_READ | PROT_WRITE,
370 					  MAP_PRIVATE | MAP_ANONYMOUS,
371 					  0);
372 
373 		if (IS_ERR((void __force *)buffer)) {
374 			kfree(state);
375 			pr_err("Out of kernel pages trying to single-step\n");
376 			return;
377 		}
378 
379 		state->buffer = buffer;
380 		state->is_enabled = 0;
381 
382 		info->step_state = state;
383 
384 		/* Validate our stored instruction patterns */
385 		BUG_ON(get_Opcode_X1(__single_step_addli_insn) !=
386 		       ADDLI_OPCODE_X1);
387 		BUG_ON(get_Opcode_X1(__single_step_auli_insn) !=
388 		       AULI_OPCODE_X1);
389 		BUG_ON(get_SrcA_X1(__single_step_addli_insn) != TREG_ZERO);
390 		BUG_ON(get_Dest_X1(__single_step_addli_insn) != 0);
391 		BUG_ON(get_JOffLong_X1(__single_step_j_insn) != 0);
392 	}
393 
394 	/*
395 	 * If we are returning from a syscall, we still haven't hit the
396 	 * "ill" for the swint1 instruction.  So back the PC up to be
397 	 * pointing at the swint1, but we'll actually return directly
398 	 * back to the "ill" so we come back in via SIGILL as if we
399 	 * had "executed" the swint1 without ever being in kernel space.
400 	 */
401 	if (regs->faultnum == INT_SWINT_1)
402 		regs->pc -= 8;
403 
404 	pc = (tilepro_bundle_bits __user *)(regs->pc);
405 	if (get_user(bundle, pc) != 0) {
406 		pr_err("Couldn't read instruction at %p trying to step\n", pc);
407 		return;
408 	}
409 
410 	/* We'll follow the instruction with 2 ill op bundles */
411 	state->orig_pc = (unsigned long)pc;
412 	state->next_pc = (unsigned long)(pc + 1);
413 	state->branch_next_pc = 0;
414 	state->update = 0;
415 
416 	if (!(bundle & TILEPRO_BUNDLE_Y_ENCODING_MASK)) {
417 		/* two wide, check for control flow */
418 		int opcode = get_Opcode_X1(bundle);
419 
420 		switch (opcode) {
421 		/* branches */
422 		case BRANCH_OPCODE_X1:
423 		{
424 			s32 offset = signExtend17(get_BrOff_X1(bundle));
425 
426 			/*
427 			 * For branches, we use a rewriting trick to let the
428 			 * hardware evaluate whether the branch is taken or
429 			 * untaken.  We record the target offset and then
430 			 * rewrite the branch instruction to target 1 insn
431 			 * ahead if the branch is taken.  We then follow the
432 			 * rewritten branch with two bundles, each containing
433 			 * an "ill" instruction. The supervisor examines the
434 			 * pc after the single step code is executed, and if
435 			 * the pc is the first ill instruction, then the
436 			 * branch (if any) was not taken.  If the pc is the
437 			 * second ill instruction, then the branch was
438 			 * taken. The new pc is computed for these cases, and
439 			 * inserted into the registers for the thread.  If
440 			 * the pc is the start of the single step code, then
441 			 * an exception or interrupt was taken before the
442 			 * code started processing, and the same "original"
443 			 * pc is restored.  This change, different from the
444 			 * original implementation, has the advantage of
445 			 * executing a single user instruction.
446 			 */
447 			state->branch_next_pc = (unsigned long)(pc + offset);
448 
449 			/* rewrite branch offset to go forward one bundle */
450 			bundle = set_BrOff_X1(bundle, 2);
451 		}
452 		break;
453 
454 		/* jumps */
455 		case JALB_OPCODE_X1:
456 		case JALF_OPCODE_X1:
457 			state->update = 1;
458 			state->next_pc =
459 				(unsigned long) (pc + get_JOffLong_X1(bundle));
460 			break;
461 
462 		case JB_OPCODE_X1:
463 		case JF_OPCODE_X1:
464 			state->next_pc =
465 				(unsigned long) (pc + get_JOffLong_X1(bundle));
466 			bundle = nop_X1(bundle);
467 			break;
468 
469 		case SPECIAL_0_OPCODE_X1:
470 			switch (get_RRROpcodeExtension_X1(bundle)) {
471 			/* jump-register */
472 			case JALRP_SPECIAL_0_OPCODE_X1:
473 			case JALR_SPECIAL_0_OPCODE_X1:
474 				state->update = 1;
475 				state->next_pc =
476 					regs->regs[get_SrcA_X1(bundle)];
477 				break;
478 
479 			case JRP_SPECIAL_0_OPCODE_X1:
480 			case JR_SPECIAL_0_OPCODE_X1:
481 				state->next_pc =
482 					regs->regs[get_SrcA_X1(bundle)];
483 				bundle = nop_X1(bundle);
484 				break;
485 
486 			case LNK_SPECIAL_0_OPCODE_X1:
487 				state->update = 1;
488 				target_reg = get_Dest_X1(bundle);
489 				break;
490 
491 			/* stores */
492 			case SH_SPECIAL_0_OPCODE_X1:
493 				mem_op = MEMOP_STORE;
494 				size = 2;
495 				break;
496 
497 			case SW_SPECIAL_0_OPCODE_X1:
498 				mem_op = MEMOP_STORE;
499 				size = 4;
500 				break;
501 			}
502 			break;
503 
504 		/* loads and iret */
505 		case SHUN_0_OPCODE_X1:
506 			if (get_UnShOpcodeExtension_X1(bundle) ==
507 			    UN_0_SHUN_0_OPCODE_X1) {
508 				switch (get_UnOpcodeExtension_X1(bundle)) {
509 				case LH_UN_0_SHUN_0_OPCODE_X1:
510 					mem_op = MEMOP_LOAD;
511 					size = 2;
512 					sign_ext = 1;
513 					break;
514 
515 				case LH_U_UN_0_SHUN_0_OPCODE_X1:
516 					mem_op = MEMOP_LOAD;
517 					size = 2;
518 					sign_ext = 0;
519 					break;
520 
521 				case LW_UN_0_SHUN_0_OPCODE_X1:
522 					mem_op = MEMOP_LOAD;
523 					size = 4;
524 					break;
525 
526 				case IRET_UN_0_SHUN_0_OPCODE_X1:
527 				{
528 					unsigned long ex0_0 = __insn_mfspr(
529 						SPR_EX_CONTEXT_0_0);
530 					unsigned long ex0_1 = __insn_mfspr(
531 						SPR_EX_CONTEXT_0_1);
532 					/*
533 					 * Special-case it if we're iret'ing
534 					 * to PL0 again.  Otherwise just let
535 					 * it run and it will generate SIGILL.
536 					 */
537 					if (EX1_PL(ex0_1) == USER_PL) {
538 						state->next_pc = ex0_0;
539 						regs->ex1 = ex0_1;
540 						bundle = nop_X1(bundle);
541 					}
542 				}
543 				}
544 			}
545 			break;
546 
547 		/* postincrement operations */
548 		case IMM_0_OPCODE_X1:
549 			switch (get_ImmOpcodeExtension_X1(bundle)) {
550 			case LWADD_IMM_0_OPCODE_X1:
551 				mem_op = MEMOP_LOAD_POSTINCR;
552 				size = 4;
553 				break;
554 
555 			case LHADD_IMM_0_OPCODE_X1:
556 				mem_op = MEMOP_LOAD_POSTINCR;
557 				size = 2;
558 				sign_ext = 1;
559 				break;
560 
561 			case LHADD_U_IMM_0_OPCODE_X1:
562 				mem_op = MEMOP_LOAD_POSTINCR;
563 				size = 2;
564 				sign_ext = 0;
565 				break;
566 
567 			case SWADD_IMM_0_OPCODE_X1:
568 				mem_op = MEMOP_STORE_POSTINCR;
569 				size = 4;
570 				break;
571 
572 			case SHADD_IMM_0_OPCODE_X1:
573 				mem_op = MEMOP_STORE_POSTINCR;
574 				size = 2;
575 				break;
576 
577 			default:
578 				break;
579 			}
580 			break;
581 		}
582 
583 		if (state->update) {
584 			/*
585 			 * Get an available register.  We start with a
586 			 * bitmask with 1's for available registers.
587 			 * We truncate to the low 32 registers since
588 			 * we are guaranteed to have set bits in the
589 			 * low 32 bits, then use ctz to pick the first.
590 			 */
591 			u32 mask = (u32) ~((1ULL << get_Dest_X0(bundle)) |
592 					   (1ULL << get_SrcA_X0(bundle)) |
593 					   (1ULL << get_SrcB_X0(bundle)) |
594 					   (1ULL << target_reg));
595 			temp_reg = __builtin_ctz(mask);
596 			state->update_reg = temp_reg;
597 			state->update_value = regs->regs[temp_reg];
598 			regs->regs[temp_reg] = (unsigned long) (pc+1);
599 			regs->flags |= PT_FLAGS_RESTORE_REGS;
600 			bundle = move_X1(bundle, target_reg, temp_reg);
601 		}
602 	} else {
603 		int opcode = get_Opcode_Y2(bundle);
604 
605 		switch (opcode) {
606 		/* loads */
607 		case LH_OPCODE_Y2:
608 			mem_op = MEMOP_LOAD;
609 			size = 2;
610 			sign_ext = 1;
611 			break;
612 
613 		case LH_U_OPCODE_Y2:
614 			mem_op = MEMOP_LOAD;
615 			size = 2;
616 			sign_ext = 0;
617 			break;
618 
619 		case LW_OPCODE_Y2:
620 			mem_op = MEMOP_LOAD;
621 			size = 4;
622 			break;
623 
624 		/* stores */
625 		case SH_OPCODE_Y2:
626 			mem_op = MEMOP_STORE;
627 			size = 2;
628 			break;
629 
630 		case SW_OPCODE_Y2:
631 			mem_op = MEMOP_STORE;
632 			size = 4;
633 			break;
634 		}
635 	}
636 
637 	/*
638 	 * Check if we need to rewrite an unaligned load/store.
639 	 * Returning zero is a special value meaning we generated a signal.
640 	 */
641 	if (mem_op != MEMOP_NONE && align_ctl >= 0) {
642 		bundle = rewrite_load_store_unaligned(state, bundle, regs,
643 						      mem_op, size, sign_ext);
644 		if (bundle == 0)
645 			return;
646 	}
647 
648 	/* write the bundle to our execution area */
649 	buffer = state->buffer;
650 	err = __put_user(bundle, buffer++);
651 
652 	/*
653 	 * If we're really single-stepping, we take an INT_ILL after.
654 	 * If we're just handling an unaligned access, we can just
655 	 * jump directly back to where we were in user code.
656 	 */
657 	if (is_single_step) {
658 		err |= __put_user(__single_step_ill_insn, buffer++);
659 		err |= __put_user(__single_step_ill_insn, buffer++);
660 	} else {
661 		long delta;
662 
663 		if (state->update) {
664 			/* We have some state to update; do it inline */
665 			int ha16;
666 			bundle = __single_step_addli_insn;
667 			bundle |= create_Dest_X1(state->update_reg);
668 			bundle |= create_Imm16_X1(state->update_value);
669 			err |= __put_user(bundle, buffer++);
670 			bundle = __single_step_auli_insn;
671 			bundle |= create_Dest_X1(state->update_reg);
672 			bundle |= create_SrcA_X1(state->update_reg);
673 			ha16 = (state->update_value + 0x8000) >> 16;
674 			bundle |= create_Imm16_X1(ha16);
675 			err |= __put_user(bundle, buffer++);
676 			state->update = 0;
677 		}
678 
679 		/* End with a jump back to the next instruction */
680 		delta = ((regs->pc + TILEPRO_BUNDLE_SIZE_IN_BYTES) -
681 			(unsigned long)buffer) >>
682 			TILEPRO_LOG2_BUNDLE_ALIGNMENT_IN_BYTES;
683 		bundle = __single_step_j_insn;
684 		bundle |= create_JOffLong_X1(delta);
685 		err |= __put_user(bundle, buffer++);
686 	}
687 
688 	if (err) {
689 		pr_err("Fault when writing to single-step buffer\n");
690 		return;
691 	}
692 
693 	/*
694 	 * Flush the buffer.
695 	 * We do a local flush only, since this is a thread-specific buffer.
696 	 */
697 	__flush_icache_range((unsigned long)state->buffer,
698 			     (unsigned long)buffer);
699 
700 	/* Indicate enabled */
701 	state->is_enabled = is_single_step;
702 	regs->pc = (unsigned long)state->buffer;
703 
704 	/* Fault immediately if we are coming back from a syscall. */
705 	if (regs->faultnum == INT_SWINT_1)
706 		regs->pc += 8;
707 }
708 
709 #else
710 
711 static DEFINE_PER_CPU(unsigned long, ss_saved_pc);
712 
713 
714 /*
715  * Called directly on the occasion of an interrupt.
716  *
717  * If the process doesn't have single step set, then we use this as an
718  * opportunity to turn single step off.
719  *
720  * It has been mentioned that we could conditionally turn off single stepping
721  * on each entry into the kernel and rely on single_step_once to turn it
722  * on for the processes that matter (as we already do), but this
723  * implementation is somewhat more efficient in that we muck with registers
724  * once on a bum interrupt rather than on every entry into the kernel.
725  *
726  * If SINGLE_STEP_CONTROL_K has CANCELED set, then an interrupt occurred,
727  * so we have to run through this process again before we can say that an
728  * instruction has executed.
729  *
730  * swint will set CANCELED, but it's a legitimate instruction.  Fortunately
731  * it changes the PC.  If it hasn't changed, then we know that the interrupt
732  * wasn't generated by swint and we'll need to run this process again before
733  * we can say an instruction has executed.
734  *
735  * If either CANCELED == 0 or the PC's changed, we send out SIGTRAPs and get
736  * on with our lives.
737  */
738 
gx_singlestep_handle(struct pt_regs * regs,int fault_num)739 void gx_singlestep_handle(struct pt_regs *regs, int fault_num)
740 {
741 	unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
742 	struct thread_info *info = (void *)current_thread_info();
743 	int is_single_step = test_ti_thread_flag(info, TIF_SINGLESTEP);
744 	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
745 
746 	if (is_single_step == 0) {
747 		__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 0);
748 
749 	} else if ((*ss_pc != regs->pc) ||
750 		   (!(control & SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK))) {
751 
752 		control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
753 		control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
754 		__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
755 		send_sigtrap(current, regs);
756 	}
757 }
758 
759 
760 /*
761  * Called from need_singlestep.  Set up the control registers and the enable
762  * register, then return back.
763  */
764 
single_step_once(struct pt_regs * regs)765 void single_step_once(struct pt_regs *regs)
766 {
767 	unsigned long *ss_pc = this_cpu_ptr(&ss_saved_pc);
768 	unsigned long control = __insn_mfspr(SPR_SINGLE_STEP_CONTROL_K);
769 
770 	*ss_pc = regs->pc;
771 	control |= SPR_SINGLE_STEP_CONTROL_1__CANCELED_MASK;
772 	control |= SPR_SINGLE_STEP_CONTROL_1__INHIBIT_MASK;
773 	__insn_mtspr(SPR_SINGLE_STEP_CONTROL_K, control);
774 	__insn_mtspr(SPR_SINGLE_STEP_EN_K_K, 1 << USER_PL);
775 }
776 
single_step_execve(void)777 void single_step_execve(void)
778 {
779 	/* Nothing */
780 }
781 
782 #endif /* !__tilegx__ */
783