1 /*
2 * PHY drivers for the sungem ethernet driver.
3 *
4 * This file could be shared with other drivers.
5 *
6 * (c) 2002-2007, Benjamin Herrenscmidt (benh@kernel.crashing.org)
7 *
8 * TODO:
9 * - Add support for PHYs that provide an IRQ line
10 * - Eventually moved the entire polling state machine in
11 * there (out of the eth driver), so that it can easily be
12 * skipped on PHYs that implement it in hardware.
13 * - On LXT971 & BCM5201, Apple uses some chip specific regs
14 * to read the link status. Figure out why and if it makes
15 * sense to do the same (magic aneg ?)
16 * - Apple has some additional power management code for some
17 * Broadcom PHYs that they "hide" from the OpenSource version
18 * of darwin, still need to reverse engineer that
19 */
20
21
22 #include <linux/module.h>
23
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/delay.h>
31
32 #ifdef CONFIG_PPC_PMAC
33 #include <asm/prom.h>
34 #endif
35
36 #include <linux/sungem_phy.h>
37
38 /* Link modes of the BCM5400 PHY */
39 static const int phy_BCM5400_link_table[8][3] = {
40 { 0, 0, 0 }, /* No link */
41 { 0, 0, 0 }, /* 10BT Half Duplex */
42 { 1, 0, 0 }, /* 10BT Full Duplex */
43 { 0, 1, 0 }, /* 100BT Half Duplex */
44 { 0, 1, 0 }, /* 100BT Half Duplex */
45 { 1, 1, 0 }, /* 100BT Full Duplex*/
46 { 1, 0, 1 }, /* 1000BT */
47 { 1, 0, 1 }, /* 1000BT */
48 };
49
__sungem_phy_read(struct mii_phy * phy,int id,int reg)50 static inline int __sungem_phy_read(struct mii_phy* phy, int id, int reg)
51 {
52 return phy->mdio_read(phy->dev, id, reg);
53 }
54
__sungem_phy_write(struct mii_phy * phy,int id,int reg,int val)55 static inline void __sungem_phy_write(struct mii_phy* phy, int id, int reg, int val)
56 {
57 phy->mdio_write(phy->dev, id, reg, val);
58 }
59
sungem_phy_read(struct mii_phy * phy,int reg)60 static inline int sungem_phy_read(struct mii_phy* phy, int reg)
61 {
62 return phy->mdio_read(phy->dev, phy->mii_id, reg);
63 }
64
sungem_phy_write(struct mii_phy * phy,int reg,int val)65 static inline void sungem_phy_write(struct mii_phy* phy, int reg, int val)
66 {
67 phy->mdio_write(phy->dev, phy->mii_id, reg, val);
68 }
69
reset_one_mii_phy(struct mii_phy * phy,int phy_id)70 static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
71 {
72 u16 val;
73 int limit = 10000;
74
75 val = __sungem_phy_read(phy, phy_id, MII_BMCR);
76 val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
77 val |= BMCR_RESET;
78 __sungem_phy_write(phy, phy_id, MII_BMCR, val);
79
80 udelay(100);
81
82 while (--limit) {
83 val = __sungem_phy_read(phy, phy_id, MII_BMCR);
84 if ((val & BMCR_RESET) == 0)
85 break;
86 udelay(10);
87 }
88 if ((val & BMCR_ISOLATE) && limit > 0)
89 __sungem_phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
90
91 return limit <= 0;
92 }
93
bcm5201_init(struct mii_phy * phy)94 static int bcm5201_init(struct mii_phy* phy)
95 {
96 u16 data;
97
98 data = sungem_phy_read(phy, MII_BCM5201_MULTIPHY);
99 data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
100 sungem_phy_write(phy, MII_BCM5201_MULTIPHY, data);
101
102 sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
103
104 return 0;
105 }
106
bcm5201_suspend(struct mii_phy * phy)107 static int bcm5201_suspend(struct mii_phy* phy)
108 {
109 sungem_phy_write(phy, MII_BCM5201_INTERRUPT, 0);
110 sungem_phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
111
112 return 0;
113 }
114
bcm5221_init(struct mii_phy * phy)115 static int bcm5221_init(struct mii_phy* phy)
116 {
117 u16 data;
118
119 data = sungem_phy_read(phy, MII_BCM5221_TEST);
120 sungem_phy_write(phy, MII_BCM5221_TEST,
121 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
122
123 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
124 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
125 data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
126
127 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
128 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
129 data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
130
131 data = sungem_phy_read(phy, MII_BCM5221_TEST);
132 sungem_phy_write(phy, MII_BCM5221_TEST,
133 data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
134
135 return 0;
136 }
137
bcm5221_suspend(struct mii_phy * phy)138 static int bcm5221_suspend(struct mii_phy* phy)
139 {
140 u16 data;
141
142 data = sungem_phy_read(phy, MII_BCM5221_TEST);
143 sungem_phy_write(phy, MII_BCM5221_TEST,
144 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
145
146 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
147 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
148 data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
149
150 return 0;
151 }
152
bcm5241_init(struct mii_phy * phy)153 static int bcm5241_init(struct mii_phy* phy)
154 {
155 u16 data;
156
157 data = sungem_phy_read(phy, MII_BCM5221_TEST);
158 sungem_phy_write(phy, MII_BCM5221_TEST,
159 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
160
161 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
162 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
163 data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
164
165 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
166 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
167 data & ~MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
168
169 data = sungem_phy_read(phy, MII_BCM5221_TEST);
170 sungem_phy_write(phy, MII_BCM5221_TEST,
171 data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
172
173 return 0;
174 }
175
bcm5241_suspend(struct mii_phy * phy)176 static int bcm5241_suspend(struct mii_phy* phy)
177 {
178 u16 data;
179
180 data = sungem_phy_read(phy, MII_BCM5221_TEST);
181 sungem_phy_write(phy, MII_BCM5221_TEST,
182 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
183
184 data = sungem_phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
185 sungem_phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
186 data | MII_BCM5241_SHDOW_AUX_MODE4_STANDBYPWR);
187
188 return 0;
189 }
190
bcm5400_init(struct mii_phy * phy)191 static int bcm5400_init(struct mii_phy* phy)
192 {
193 u16 data;
194
195 /* Configure for gigabit full duplex */
196 data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
197 data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
198 sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
199
200 data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
201 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
202 sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
203
204 udelay(100);
205
206 /* Reset and configure cascaded 10/100 PHY */
207 (void)reset_one_mii_phy(phy, 0x1f);
208
209 data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
210 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
211 __sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
212
213 data = sungem_phy_read(phy, MII_BCM5400_AUXCONTROL);
214 data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
215 sungem_phy_write(phy, MII_BCM5400_AUXCONTROL, data);
216
217 return 0;
218 }
219
bcm5400_suspend(struct mii_phy * phy)220 static int bcm5400_suspend(struct mii_phy* phy)
221 {
222 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
223 sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
224 #endif
225 return 0;
226 }
227
bcm5401_init(struct mii_phy * phy)228 static int bcm5401_init(struct mii_phy* phy)
229 {
230 u16 data;
231 int rev;
232
233 rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
234 if (rev == 0 || rev == 3) {
235 /* Some revisions of 5401 appear to need this
236 * initialisation sequence to disable, according
237 * to OF, "tap power management"
238 *
239 * WARNING ! OF and Darwin don't agree on the
240 * register addresses. OF seem to interpret the
241 * register numbers below as decimal
242 *
243 * Note: This should (and does) match tg3_init_5401phy_dsp
244 * in the tg3.c driver. -DaveM
245 */
246 sungem_phy_write(phy, 0x18, 0x0c20);
247 sungem_phy_write(phy, 0x17, 0x0012);
248 sungem_phy_write(phy, 0x15, 0x1804);
249 sungem_phy_write(phy, 0x17, 0x0013);
250 sungem_phy_write(phy, 0x15, 0x1204);
251 sungem_phy_write(phy, 0x17, 0x8006);
252 sungem_phy_write(phy, 0x15, 0x0132);
253 sungem_phy_write(phy, 0x17, 0x8006);
254 sungem_phy_write(phy, 0x15, 0x0232);
255 sungem_phy_write(phy, 0x17, 0x201f);
256 sungem_phy_write(phy, 0x15, 0x0a20);
257 }
258
259 /* Configure for gigabit full duplex */
260 data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
261 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
262 sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
263
264 udelay(10);
265
266 /* Reset and configure cascaded 10/100 PHY */
267 (void)reset_one_mii_phy(phy, 0x1f);
268
269 data = __sungem_phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
270 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
271 __sungem_phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
272
273 return 0;
274 }
275
bcm5401_suspend(struct mii_phy * phy)276 static int bcm5401_suspend(struct mii_phy* phy)
277 {
278 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
279 sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
280 #endif
281 return 0;
282 }
283
bcm5411_init(struct mii_phy * phy)284 static int bcm5411_init(struct mii_phy* phy)
285 {
286 u16 data;
287
288 /* Here's some more Apple black magic to setup
289 * some voltage stuffs.
290 */
291 sungem_phy_write(phy, 0x1c, 0x8c23);
292 sungem_phy_write(phy, 0x1c, 0x8ca3);
293 sungem_phy_write(phy, 0x1c, 0x8c23);
294
295 /* Here, Apple seems to want to reset it, do
296 * it as well
297 */
298 sungem_phy_write(phy, MII_BMCR, BMCR_RESET);
299 sungem_phy_write(phy, MII_BMCR, 0x1340);
300
301 data = sungem_phy_read(phy, MII_BCM5400_GB_CONTROL);
302 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
303 sungem_phy_write(phy, MII_BCM5400_GB_CONTROL, data);
304
305 udelay(10);
306
307 /* Reset and configure cascaded 10/100 PHY */
308 (void)reset_one_mii_phy(phy, 0x1f);
309
310 return 0;
311 }
312
genmii_setup_aneg(struct mii_phy * phy,u32 advertise)313 static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
314 {
315 u16 ctl, adv;
316
317 phy->autoneg = 1;
318 phy->speed = SPEED_10;
319 phy->duplex = DUPLEX_HALF;
320 phy->pause = 0;
321 phy->advertising = advertise;
322
323 /* Setup standard advertise */
324 adv = sungem_phy_read(phy, MII_ADVERTISE);
325 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
326 if (advertise & ADVERTISED_10baseT_Half)
327 adv |= ADVERTISE_10HALF;
328 if (advertise & ADVERTISED_10baseT_Full)
329 adv |= ADVERTISE_10FULL;
330 if (advertise & ADVERTISED_100baseT_Half)
331 adv |= ADVERTISE_100HALF;
332 if (advertise & ADVERTISED_100baseT_Full)
333 adv |= ADVERTISE_100FULL;
334 sungem_phy_write(phy, MII_ADVERTISE, adv);
335
336 /* Start/Restart aneg */
337 ctl = sungem_phy_read(phy, MII_BMCR);
338 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
339 sungem_phy_write(phy, MII_BMCR, ctl);
340
341 return 0;
342 }
343
genmii_setup_forced(struct mii_phy * phy,int speed,int fd)344 static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
345 {
346 u16 ctl;
347
348 phy->autoneg = 0;
349 phy->speed = speed;
350 phy->duplex = fd;
351 phy->pause = 0;
352
353 ctl = sungem_phy_read(phy, MII_BMCR);
354 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
355
356 /* First reset the PHY */
357 sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
358
359 /* Select speed & duplex */
360 switch(speed) {
361 case SPEED_10:
362 break;
363 case SPEED_100:
364 ctl |= BMCR_SPEED100;
365 break;
366 case SPEED_1000:
367 default:
368 return -EINVAL;
369 }
370 if (fd == DUPLEX_FULL)
371 ctl |= BMCR_FULLDPLX;
372 sungem_phy_write(phy, MII_BMCR, ctl);
373
374 return 0;
375 }
376
genmii_poll_link(struct mii_phy * phy)377 static int genmii_poll_link(struct mii_phy *phy)
378 {
379 u16 status;
380
381 (void)sungem_phy_read(phy, MII_BMSR);
382 status = sungem_phy_read(phy, MII_BMSR);
383 if ((status & BMSR_LSTATUS) == 0)
384 return 0;
385 if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
386 return 0;
387 return 1;
388 }
389
genmii_read_link(struct mii_phy * phy)390 static int genmii_read_link(struct mii_phy *phy)
391 {
392 u16 lpa;
393
394 if (phy->autoneg) {
395 lpa = sungem_phy_read(phy, MII_LPA);
396
397 if (lpa & (LPA_10FULL | LPA_100FULL))
398 phy->duplex = DUPLEX_FULL;
399 else
400 phy->duplex = DUPLEX_HALF;
401 if (lpa & (LPA_100FULL | LPA_100HALF))
402 phy->speed = SPEED_100;
403 else
404 phy->speed = SPEED_10;
405 phy->pause = 0;
406 }
407 /* On non-aneg, we assume what we put in BMCR is the speed,
408 * though magic-aneg shouldn't prevent this case from occurring
409 */
410
411 return 0;
412 }
413
generic_suspend(struct mii_phy * phy)414 static int generic_suspend(struct mii_phy* phy)
415 {
416 sungem_phy_write(phy, MII_BMCR, BMCR_PDOWN);
417
418 return 0;
419 }
420
bcm5421_init(struct mii_phy * phy)421 static int bcm5421_init(struct mii_phy* phy)
422 {
423 u16 data;
424 unsigned int id;
425
426 id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
427
428 /* Revision 0 of 5421 needs some fixups */
429 if (id == 0x002060e0) {
430 /* This is borrowed from MacOS
431 */
432 sungem_phy_write(phy, 0x18, 0x1007);
433 data = sungem_phy_read(phy, 0x18);
434 sungem_phy_write(phy, 0x18, data | 0x0400);
435 sungem_phy_write(phy, 0x18, 0x0007);
436 data = sungem_phy_read(phy, 0x18);
437 sungem_phy_write(phy, 0x18, data | 0x0800);
438 sungem_phy_write(phy, 0x17, 0x000a);
439 data = sungem_phy_read(phy, 0x15);
440 sungem_phy_write(phy, 0x15, data | 0x0200);
441 }
442
443 /* Pick up some init code from OF for K2 version */
444 if ((id & 0xfffffff0) == 0x002062e0) {
445 sungem_phy_write(phy, 4, 0x01e1);
446 sungem_phy_write(phy, 9, 0x0300);
447 }
448
449 /* Check if we can enable automatic low power */
450 #ifdef CONFIG_PPC_PMAC
451 if (phy->platform_data) {
452 struct device_node *np = of_get_parent(phy->platform_data);
453 int can_low_power = 1;
454 if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
455 can_low_power = 0;
456 if (can_low_power) {
457 /* Enable automatic low-power */
458 sungem_phy_write(phy, 0x1c, 0x9002);
459 sungem_phy_write(phy, 0x1c, 0xa821);
460 sungem_phy_write(phy, 0x1c, 0x941d);
461 }
462 }
463 #endif /* CONFIG_PPC_PMAC */
464
465 return 0;
466 }
467
bcm54xx_setup_aneg(struct mii_phy * phy,u32 advertise)468 static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
469 {
470 u16 ctl, adv;
471
472 phy->autoneg = 1;
473 phy->speed = SPEED_10;
474 phy->duplex = DUPLEX_HALF;
475 phy->pause = 0;
476 phy->advertising = advertise;
477
478 /* Setup standard advertise */
479 adv = sungem_phy_read(phy, MII_ADVERTISE);
480 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
481 if (advertise & ADVERTISED_10baseT_Half)
482 adv |= ADVERTISE_10HALF;
483 if (advertise & ADVERTISED_10baseT_Full)
484 adv |= ADVERTISE_10FULL;
485 if (advertise & ADVERTISED_100baseT_Half)
486 adv |= ADVERTISE_100HALF;
487 if (advertise & ADVERTISED_100baseT_Full)
488 adv |= ADVERTISE_100FULL;
489 if (advertise & ADVERTISED_Pause)
490 adv |= ADVERTISE_PAUSE_CAP;
491 if (advertise & ADVERTISED_Asym_Pause)
492 adv |= ADVERTISE_PAUSE_ASYM;
493 sungem_phy_write(phy, MII_ADVERTISE, adv);
494
495 /* Setup 1000BT advertise */
496 adv = sungem_phy_read(phy, MII_1000BASETCONTROL);
497 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
498 if (advertise & SUPPORTED_1000baseT_Half)
499 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
500 if (advertise & SUPPORTED_1000baseT_Full)
501 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
502 sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
503
504 /* Start/Restart aneg */
505 ctl = sungem_phy_read(phy, MII_BMCR);
506 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
507 sungem_phy_write(phy, MII_BMCR, ctl);
508
509 return 0;
510 }
511
bcm54xx_setup_forced(struct mii_phy * phy,int speed,int fd)512 static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
513 {
514 u16 ctl;
515
516 phy->autoneg = 0;
517 phy->speed = speed;
518 phy->duplex = fd;
519 phy->pause = 0;
520
521 ctl = sungem_phy_read(phy, MII_BMCR);
522 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
523
524 /* First reset the PHY */
525 sungem_phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
526
527 /* Select speed & duplex */
528 switch(speed) {
529 case SPEED_10:
530 break;
531 case SPEED_100:
532 ctl |= BMCR_SPEED100;
533 break;
534 case SPEED_1000:
535 ctl |= BMCR_SPD2;
536 }
537 if (fd == DUPLEX_FULL)
538 ctl |= BMCR_FULLDPLX;
539
540 // XXX Should we set the sungem to GII now on 1000BT ?
541
542 sungem_phy_write(phy, MII_BMCR, ctl);
543
544 return 0;
545 }
546
bcm54xx_read_link(struct mii_phy * phy)547 static int bcm54xx_read_link(struct mii_phy *phy)
548 {
549 int link_mode;
550 u16 val;
551
552 if (phy->autoneg) {
553 val = sungem_phy_read(phy, MII_BCM5400_AUXSTATUS);
554 link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
555 MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
556 phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
557 DUPLEX_FULL : DUPLEX_HALF;
558 phy->speed = phy_BCM5400_link_table[link_mode][2] ?
559 SPEED_1000 :
560 (phy_BCM5400_link_table[link_mode][1] ?
561 SPEED_100 : SPEED_10);
562 val = sungem_phy_read(phy, MII_LPA);
563 phy->pause = (phy->duplex == DUPLEX_FULL) &&
564 ((val & LPA_PAUSE) != 0);
565 }
566 /* On non-aneg, we assume what we put in BMCR is the speed,
567 * though magic-aneg shouldn't prevent this case from occurring
568 */
569
570 return 0;
571 }
572
marvell88e1111_init(struct mii_phy * phy)573 static int marvell88e1111_init(struct mii_phy* phy)
574 {
575 u16 rev;
576
577 /* magic init sequence for rev 0 */
578 rev = sungem_phy_read(phy, MII_PHYSID2) & 0x000f;
579 if (rev == 0) {
580 sungem_phy_write(phy, 0x1d, 0x000a);
581 sungem_phy_write(phy, 0x1e, 0x0821);
582
583 sungem_phy_write(phy, 0x1d, 0x0006);
584 sungem_phy_write(phy, 0x1e, 0x8600);
585
586 sungem_phy_write(phy, 0x1d, 0x000b);
587 sungem_phy_write(phy, 0x1e, 0x0100);
588
589 sungem_phy_write(phy, 0x1d, 0x0004);
590 sungem_phy_write(phy, 0x1e, 0x4850);
591 }
592 return 0;
593 }
594
595 #define BCM5421_MODE_MASK (1 << 5)
596
bcm5421_poll_link(struct mii_phy * phy)597 static int bcm5421_poll_link(struct mii_phy* phy)
598 {
599 u32 phy_reg;
600 int mode;
601
602 /* find out in what mode we are */
603 sungem_phy_write(phy, MII_NCONFIG, 0x1000);
604 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
605
606 mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
607
608 if ( mode == BCM54XX_COPPER)
609 return genmii_poll_link(phy);
610
611 /* try to find out whether we have a link */
612 sungem_phy_write(phy, MII_NCONFIG, 0x2000);
613 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
614
615 if (phy_reg & 0x0020)
616 return 0;
617 else
618 return 1;
619 }
620
bcm5421_read_link(struct mii_phy * phy)621 static int bcm5421_read_link(struct mii_phy* phy)
622 {
623 u32 phy_reg;
624 int mode;
625
626 /* find out in what mode we are */
627 sungem_phy_write(phy, MII_NCONFIG, 0x1000);
628 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
629
630 mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
631
632 if ( mode == BCM54XX_COPPER)
633 return bcm54xx_read_link(phy);
634
635 phy->speed = SPEED_1000;
636
637 /* find out whether we are running half- or full duplex */
638 sungem_phy_write(phy, MII_NCONFIG, 0x2000);
639 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
640
641 if ( (phy_reg & 0x0080) >> 7)
642 phy->duplex |= DUPLEX_HALF;
643 else
644 phy->duplex |= DUPLEX_FULL;
645
646 return 0;
647 }
648
bcm5421_enable_fiber(struct mii_phy * phy,int autoneg)649 static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
650 {
651 /* enable fiber mode */
652 sungem_phy_write(phy, MII_NCONFIG, 0x9020);
653 /* LEDs active in both modes, autosense prio = fiber */
654 sungem_phy_write(phy, MII_NCONFIG, 0x945f);
655
656 if (!autoneg) {
657 /* switch off fibre autoneg */
658 sungem_phy_write(phy, MII_NCONFIG, 0xfc01);
659 sungem_phy_write(phy, 0x0b, 0x0004);
660 }
661
662 phy->autoneg = autoneg;
663
664 return 0;
665 }
666
667 #define BCM5461_FIBER_LINK (1 << 2)
668 #define BCM5461_MODE_MASK (3 << 1)
669
bcm5461_poll_link(struct mii_phy * phy)670 static int bcm5461_poll_link(struct mii_phy* phy)
671 {
672 u32 phy_reg;
673 int mode;
674
675 /* find out in what mode we are */
676 sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
677 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
678
679 mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
680
681 if ( mode == BCM54XX_COPPER)
682 return genmii_poll_link(phy);
683
684 /* find out whether we have a link */
685 sungem_phy_write(phy, MII_NCONFIG, 0x7000);
686 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
687
688 if (phy_reg & BCM5461_FIBER_LINK)
689 return 1;
690 else
691 return 0;
692 }
693
694 #define BCM5461_FIBER_DUPLEX (1 << 3)
695
bcm5461_read_link(struct mii_phy * phy)696 static int bcm5461_read_link(struct mii_phy* phy)
697 {
698 u32 phy_reg;
699 int mode;
700
701 /* find out in what mode we are */
702 sungem_phy_write(phy, MII_NCONFIG, 0x7c00);
703 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
704
705 mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
706
707 if ( mode == BCM54XX_COPPER) {
708 return bcm54xx_read_link(phy);
709 }
710
711 phy->speed = SPEED_1000;
712
713 /* find out whether we are running half- or full duplex */
714 sungem_phy_write(phy, MII_NCONFIG, 0x7000);
715 phy_reg = sungem_phy_read(phy, MII_NCONFIG);
716
717 if (phy_reg & BCM5461_FIBER_DUPLEX)
718 phy->duplex |= DUPLEX_FULL;
719 else
720 phy->duplex |= DUPLEX_HALF;
721
722 return 0;
723 }
724
bcm5461_enable_fiber(struct mii_phy * phy,int autoneg)725 static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
726 {
727 /* select fiber mode, enable 1000 base-X registers */
728 sungem_phy_write(phy, MII_NCONFIG, 0xfc0b);
729
730 if (autoneg) {
731 /* enable fiber with no autonegotiation */
732 sungem_phy_write(phy, MII_ADVERTISE, 0x01e0);
733 sungem_phy_write(phy, MII_BMCR, 0x1140);
734 } else {
735 /* enable fiber with autonegotiation */
736 sungem_phy_write(phy, MII_BMCR, 0x0140);
737 }
738
739 phy->autoneg = autoneg;
740
741 return 0;
742 }
743
marvell_setup_aneg(struct mii_phy * phy,u32 advertise)744 static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
745 {
746 u16 ctl, adv;
747
748 phy->autoneg = 1;
749 phy->speed = SPEED_10;
750 phy->duplex = DUPLEX_HALF;
751 phy->pause = 0;
752 phy->advertising = advertise;
753
754 /* Setup standard advertise */
755 adv = sungem_phy_read(phy, MII_ADVERTISE);
756 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
757 if (advertise & ADVERTISED_10baseT_Half)
758 adv |= ADVERTISE_10HALF;
759 if (advertise & ADVERTISED_10baseT_Full)
760 adv |= ADVERTISE_10FULL;
761 if (advertise & ADVERTISED_100baseT_Half)
762 adv |= ADVERTISE_100HALF;
763 if (advertise & ADVERTISED_100baseT_Full)
764 adv |= ADVERTISE_100FULL;
765 if (advertise & ADVERTISED_Pause)
766 adv |= ADVERTISE_PAUSE_CAP;
767 if (advertise & ADVERTISED_Asym_Pause)
768 adv |= ADVERTISE_PAUSE_ASYM;
769 sungem_phy_write(phy, MII_ADVERTISE, adv);
770
771 /* Setup 1000BT advertise & enable crossover detect
772 * XXX How do we advertise 1000BT ? Darwin source is
773 * confusing here, they read from specific control and
774 * write to control... Someone has specs for those
775 * beasts ?
776 */
777 adv = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
778 adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
779 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
780 MII_1000BASETCONTROL_HALFDUPLEXCAP);
781 if (advertise & SUPPORTED_1000baseT_Half)
782 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
783 if (advertise & SUPPORTED_1000baseT_Full)
784 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
785 sungem_phy_write(phy, MII_1000BASETCONTROL, adv);
786
787 /* Start/Restart aneg */
788 ctl = sungem_phy_read(phy, MII_BMCR);
789 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
790 sungem_phy_write(phy, MII_BMCR, ctl);
791
792 return 0;
793 }
794
marvell_setup_forced(struct mii_phy * phy,int speed,int fd)795 static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
796 {
797 u16 ctl, ctl2;
798
799 phy->autoneg = 0;
800 phy->speed = speed;
801 phy->duplex = fd;
802 phy->pause = 0;
803
804 ctl = sungem_phy_read(phy, MII_BMCR);
805 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
806 ctl |= BMCR_RESET;
807
808 /* Select speed & duplex */
809 switch(speed) {
810 case SPEED_10:
811 break;
812 case SPEED_100:
813 ctl |= BMCR_SPEED100;
814 break;
815 /* I'm not sure about the one below, again, Darwin source is
816 * quite confusing and I lack chip specs
817 */
818 case SPEED_1000:
819 ctl |= BMCR_SPD2;
820 }
821 if (fd == DUPLEX_FULL)
822 ctl |= BMCR_FULLDPLX;
823
824 /* Disable crossover. Again, the way Apple does it is strange,
825 * though I don't assume they are wrong ;)
826 */
827 ctl2 = sungem_phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
828 ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
829 MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
830 MII_1000BASETCONTROL_FULLDUPLEXCAP |
831 MII_1000BASETCONTROL_HALFDUPLEXCAP);
832 if (speed == SPEED_1000)
833 ctl2 |= (fd == DUPLEX_FULL) ?
834 MII_1000BASETCONTROL_FULLDUPLEXCAP :
835 MII_1000BASETCONTROL_HALFDUPLEXCAP;
836 sungem_phy_write(phy, MII_1000BASETCONTROL, ctl2);
837
838 // XXX Should we set the sungem to GII now on 1000BT ?
839
840 sungem_phy_write(phy, MII_BMCR, ctl);
841
842 return 0;
843 }
844
marvell_read_link(struct mii_phy * phy)845 static int marvell_read_link(struct mii_phy *phy)
846 {
847 u16 status, pmask;
848
849 if (phy->autoneg) {
850 status = sungem_phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
851 if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
852 return -EAGAIN;
853 if (status & MII_M1011_PHY_SPEC_STATUS_1000)
854 phy->speed = SPEED_1000;
855 else if (status & MII_M1011_PHY_SPEC_STATUS_100)
856 phy->speed = SPEED_100;
857 else
858 phy->speed = SPEED_10;
859 if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
860 phy->duplex = DUPLEX_FULL;
861 else
862 phy->duplex = DUPLEX_HALF;
863 pmask = MII_M1011_PHY_SPEC_STATUS_TX_PAUSE |
864 MII_M1011_PHY_SPEC_STATUS_RX_PAUSE;
865 phy->pause = (status & pmask) == pmask;
866 }
867 /* On non-aneg, we assume what we put in BMCR is the speed,
868 * though magic-aneg shouldn't prevent this case from occurring
869 */
870
871 return 0;
872 }
873
874 #define MII_BASIC_FEATURES \
875 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
876 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
877 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII | \
878 SUPPORTED_Pause)
879
880 /* On gigabit capable PHYs, we advertise Pause support but not asym pause
881 * support for now as I'm not sure it's supported and Darwin doesn't do
882 * it neither. --BenH.
883 */
884 #define MII_GBIT_FEATURES \
885 (MII_BASIC_FEATURES | \
886 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
887
888 /* Broadcom BCM 5201 */
889 static const struct mii_phy_ops bcm5201_phy_ops = {
890 .init = bcm5201_init,
891 .suspend = bcm5201_suspend,
892 .setup_aneg = genmii_setup_aneg,
893 .setup_forced = genmii_setup_forced,
894 .poll_link = genmii_poll_link,
895 .read_link = genmii_read_link,
896 };
897
898 static struct mii_phy_def bcm5201_phy_def = {
899 .phy_id = 0x00406210,
900 .phy_id_mask = 0xfffffff0,
901 .name = "BCM5201",
902 .features = MII_BASIC_FEATURES,
903 .magic_aneg = 1,
904 .ops = &bcm5201_phy_ops
905 };
906
907 /* Broadcom BCM 5221 */
908 static const struct mii_phy_ops bcm5221_phy_ops = {
909 .suspend = bcm5221_suspend,
910 .init = bcm5221_init,
911 .setup_aneg = genmii_setup_aneg,
912 .setup_forced = genmii_setup_forced,
913 .poll_link = genmii_poll_link,
914 .read_link = genmii_read_link,
915 };
916
917 static struct mii_phy_def bcm5221_phy_def = {
918 .phy_id = 0x004061e0,
919 .phy_id_mask = 0xfffffff0,
920 .name = "BCM5221",
921 .features = MII_BASIC_FEATURES,
922 .magic_aneg = 1,
923 .ops = &bcm5221_phy_ops
924 };
925
926 /* Broadcom BCM 5241 */
927 static const struct mii_phy_ops bcm5241_phy_ops = {
928 .suspend = bcm5241_suspend,
929 .init = bcm5241_init,
930 .setup_aneg = genmii_setup_aneg,
931 .setup_forced = genmii_setup_forced,
932 .poll_link = genmii_poll_link,
933 .read_link = genmii_read_link,
934 };
935 static struct mii_phy_def bcm5241_phy_def = {
936 .phy_id = 0x0143bc30,
937 .phy_id_mask = 0xfffffff0,
938 .name = "BCM5241",
939 .features = MII_BASIC_FEATURES,
940 .magic_aneg = 1,
941 .ops = &bcm5241_phy_ops
942 };
943
944 /* Broadcom BCM 5400 */
945 static const struct mii_phy_ops bcm5400_phy_ops = {
946 .init = bcm5400_init,
947 .suspend = bcm5400_suspend,
948 .setup_aneg = bcm54xx_setup_aneg,
949 .setup_forced = bcm54xx_setup_forced,
950 .poll_link = genmii_poll_link,
951 .read_link = bcm54xx_read_link,
952 };
953
954 static struct mii_phy_def bcm5400_phy_def = {
955 .phy_id = 0x00206040,
956 .phy_id_mask = 0xfffffff0,
957 .name = "BCM5400",
958 .features = MII_GBIT_FEATURES,
959 .magic_aneg = 1,
960 .ops = &bcm5400_phy_ops
961 };
962
963 /* Broadcom BCM 5401 */
964 static const struct mii_phy_ops bcm5401_phy_ops = {
965 .init = bcm5401_init,
966 .suspend = bcm5401_suspend,
967 .setup_aneg = bcm54xx_setup_aneg,
968 .setup_forced = bcm54xx_setup_forced,
969 .poll_link = genmii_poll_link,
970 .read_link = bcm54xx_read_link,
971 };
972
973 static struct mii_phy_def bcm5401_phy_def = {
974 .phy_id = 0x00206050,
975 .phy_id_mask = 0xfffffff0,
976 .name = "BCM5401",
977 .features = MII_GBIT_FEATURES,
978 .magic_aneg = 1,
979 .ops = &bcm5401_phy_ops
980 };
981
982 /* Broadcom BCM 5411 */
983 static const struct mii_phy_ops bcm5411_phy_ops = {
984 .init = bcm5411_init,
985 .suspend = generic_suspend,
986 .setup_aneg = bcm54xx_setup_aneg,
987 .setup_forced = bcm54xx_setup_forced,
988 .poll_link = genmii_poll_link,
989 .read_link = bcm54xx_read_link,
990 };
991
992 static struct mii_phy_def bcm5411_phy_def = {
993 .phy_id = 0x00206070,
994 .phy_id_mask = 0xfffffff0,
995 .name = "BCM5411",
996 .features = MII_GBIT_FEATURES,
997 .magic_aneg = 1,
998 .ops = &bcm5411_phy_ops
999 };
1000
1001 /* Broadcom BCM 5421 */
1002 static const struct mii_phy_ops bcm5421_phy_ops = {
1003 .init = bcm5421_init,
1004 .suspend = generic_suspend,
1005 .setup_aneg = bcm54xx_setup_aneg,
1006 .setup_forced = bcm54xx_setup_forced,
1007 .poll_link = bcm5421_poll_link,
1008 .read_link = bcm5421_read_link,
1009 .enable_fiber = bcm5421_enable_fiber,
1010 };
1011
1012 static struct mii_phy_def bcm5421_phy_def = {
1013 .phy_id = 0x002060e0,
1014 .phy_id_mask = 0xfffffff0,
1015 .name = "BCM5421",
1016 .features = MII_GBIT_FEATURES,
1017 .magic_aneg = 1,
1018 .ops = &bcm5421_phy_ops
1019 };
1020
1021 /* Broadcom BCM 5421 built-in K2 */
1022 static const struct mii_phy_ops bcm5421k2_phy_ops = {
1023 .init = bcm5421_init,
1024 .suspend = generic_suspend,
1025 .setup_aneg = bcm54xx_setup_aneg,
1026 .setup_forced = bcm54xx_setup_forced,
1027 .poll_link = genmii_poll_link,
1028 .read_link = bcm54xx_read_link,
1029 };
1030
1031 static struct mii_phy_def bcm5421k2_phy_def = {
1032 .phy_id = 0x002062e0,
1033 .phy_id_mask = 0xfffffff0,
1034 .name = "BCM5421-K2",
1035 .features = MII_GBIT_FEATURES,
1036 .magic_aneg = 1,
1037 .ops = &bcm5421k2_phy_ops
1038 };
1039
1040 static const struct mii_phy_ops bcm5461_phy_ops = {
1041 .init = bcm5421_init,
1042 .suspend = generic_suspend,
1043 .setup_aneg = bcm54xx_setup_aneg,
1044 .setup_forced = bcm54xx_setup_forced,
1045 .poll_link = bcm5461_poll_link,
1046 .read_link = bcm5461_read_link,
1047 .enable_fiber = bcm5461_enable_fiber,
1048 };
1049
1050 static struct mii_phy_def bcm5461_phy_def = {
1051 .phy_id = 0x002060c0,
1052 .phy_id_mask = 0xfffffff0,
1053 .name = "BCM5461",
1054 .features = MII_GBIT_FEATURES,
1055 .magic_aneg = 1,
1056 .ops = &bcm5461_phy_ops
1057 };
1058
1059 /* Broadcom BCM 5462 built-in Vesta */
1060 static const struct mii_phy_ops bcm5462V_phy_ops = {
1061 .init = bcm5421_init,
1062 .suspend = generic_suspend,
1063 .setup_aneg = bcm54xx_setup_aneg,
1064 .setup_forced = bcm54xx_setup_forced,
1065 .poll_link = genmii_poll_link,
1066 .read_link = bcm54xx_read_link,
1067 };
1068
1069 static struct mii_phy_def bcm5462V_phy_def = {
1070 .phy_id = 0x002060d0,
1071 .phy_id_mask = 0xfffffff0,
1072 .name = "BCM5462-Vesta",
1073 .features = MII_GBIT_FEATURES,
1074 .magic_aneg = 1,
1075 .ops = &bcm5462V_phy_ops
1076 };
1077
1078 /* Marvell 88E1101 amd 88E1111 */
1079 static const struct mii_phy_ops marvell88e1101_phy_ops = {
1080 .suspend = generic_suspend,
1081 .setup_aneg = marvell_setup_aneg,
1082 .setup_forced = marvell_setup_forced,
1083 .poll_link = genmii_poll_link,
1084 .read_link = marvell_read_link
1085 };
1086
1087 static const struct mii_phy_ops marvell88e1111_phy_ops = {
1088 .init = marvell88e1111_init,
1089 .suspend = generic_suspend,
1090 .setup_aneg = marvell_setup_aneg,
1091 .setup_forced = marvell_setup_forced,
1092 .poll_link = genmii_poll_link,
1093 .read_link = marvell_read_link
1094 };
1095
1096 /* two revs in darwin for the 88e1101 ... I could use a datasheet
1097 * to get the proper names...
1098 */
1099 static struct mii_phy_def marvell88e1101v1_phy_def = {
1100 .phy_id = 0x01410c20,
1101 .phy_id_mask = 0xfffffff0,
1102 .name = "Marvell 88E1101v1",
1103 .features = MII_GBIT_FEATURES,
1104 .magic_aneg = 1,
1105 .ops = &marvell88e1101_phy_ops
1106 };
1107 static struct mii_phy_def marvell88e1101v2_phy_def = {
1108 .phy_id = 0x01410c60,
1109 .phy_id_mask = 0xfffffff0,
1110 .name = "Marvell 88E1101v2",
1111 .features = MII_GBIT_FEATURES,
1112 .magic_aneg = 1,
1113 .ops = &marvell88e1101_phy_ops
1114 };
1115 static struct mii_phy_def marvell88e1111_phy_def = {
1116 .phy_id = 0x01410cc0,
1117 .phy_id_mask = 0xfffffff0,
1118 .name = "Marvell 88E1111",
1119 .features = MII_GBIT_FEATURES,
1120 .magic_aneg = 1,
1121 .ops = &marvell88e1111_phy_ops
1122 };
1123
1124 /* Generic implementation for most 10/100 PHYs */
1125 static const struct mii_phy_ops generic_phy_ops = {
1126 .setup_aneg = genmii_setup_aneg,
1127 .setup_forced = genmii_setup_forced,
1128 .poll_link = genmii_poll_link,
1129 .read_link = genmii_read_link
1130 };
1131
1132 static struct mii_phy_def genmii_phy_def = {
1133 .phy_id = 0x00000000,
1134 .phy_id_mask = 0x00000000,
1135 .name = "Generic MII",
1136 .features = MII_BASIC_FEATURES,
1137 .magic_aneg = 0,
1138 .ops = &generic_phy_ops
1139 };
1140
1141 static struct mii_phy_def* mii_phy_table[] = {
1142 &bcm5201_phy_def,
1143 &bcm5221_phy_def,
1144 &bcm5241_phy_def,
1145 &bcm5400_phy_def,
1146 &bcm5401_phy_def,
1147 &bcm5411_phy_def,
1148 &bcm5421_phy_def,
1149 &bcm5421k2_phy_def,
1150 &bcm5461_phy_def,
1151 &bcm5462V_phy_def,
1152 &marvell88e1101v1_phy_def,
1153 &marvell88e1101v2_phy_def,
1154 &marvell88e1111_phy_def,
1155 &genmii_phy_def,
1156 NULL
1157 };
1158
sungem_phy_probe(struct mii_phy * phy,int mii_id)1159 int sungem_phy_probe(struct mii_phy *phy, int mii_id)
1160 {
1161 int rc;
1162 u32 id;
1163 struct mii_phy_def* def;
1164 int i;
1165
1166 /* We do not reset the mii_phy structure as the driver
1167 * may re-probe the PHY regulary
1168 */
1169 phy->mii_id = mii_id;
1170
1171 /* Take PHY out of isloate mode and reset it. */
1172 rc = reset_one_mii_phy(phy, mii_id);
1173 if (rc)
1174 goto fail;
1175
1176 /* Read ID and find matching entry */
1177 id = (sungem_phy_read(phy, MII_PHYSID1) << 16 | sungem_phy_read(phy, MII_PHYSID2));
1178 printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1179 id, mii_id);
1180 for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1181 if ((id & def->phy_id_mask) == def->phy_id)
1182 break;
1183 /* Should never be NULL (we have a generic entry), but... */
1184 if (def == NULL)
1185 goto fail;
1186
1187 phy->def = def;
1188
1189 return 0;
1190 fail:
1191 phy->speed = 0;
1192 phy->duplex = 0;
1193 phy->pause = 0;
1194 phy->advertising = 0;
1195 return -ENODEV;
1196 }
1197
1198 EXPORT_SYMBOL(sungem_phy_probe);
1199 MODULE_LICENSE("GPL");
1200