1 /*******************************************************************************
2 * Filename: target_core_transport.c
3 *
4 * This file contains the Generic Target Engine Core.
5 *
6 * (c) Copyright 2002-2013 Datera, Inc.
7 *
8 * Nicholas A. Bellinger <nab@kernel.org>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 *
24 ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev, int err, bool write_pending);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72
init_se_kmem_caches(void)73 int init_se_kmem_caches(void)
74 {
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
82 }
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
89 }
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
97 }
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
105 }
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
113 }
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
121 }
122 t10_alua_lba_map_cache = kmem_cache_create(
123 "t10_alua_lba_map_cache",
124 sizeof(struct t10_alua_lba_map),
125 __alignof__(struct t10_alua_lba_map), 0, NULL);
126 if (!t10_alua_lba_map_cache) {
127 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 "cache failed\n");
129 goto out_free_tg_pt_gp_cache;
130 }
131 t10_alua_lba_map_mem_cache = kmem_cache_create(
132 "t10_alua_lba_map_mem_cache",
133 sizeof(struct t10_alua_lba_map_member),
134 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
135 if (!t10_alua_lba_map_mem_cache) {
136 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 "cache failed\n");
138 goto out_free_lba_map_cache;
139 }
140
141 target_completion_wq = alloc_workqueue("target_completion",
142 WQ_MEM_RECLAIM, 0);
143 if (!target_completion_wq)
144 goto out_free_lba_map_mem_cache;
145
146 return 0;
147
148 out_free_lba_map_mem_cache:
149 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
150 out_free_lba_map_cache:
151 kmem_cache_destroy(t10_alua_lba_map_cache);
152 out_free_tg_pt_gp_cache:
153 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
154 out_free_lu_gp_mem_cache:
155 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
156 out_free_lu_gp_cache:
157 kmem_cache_destroy(t10_alua_lu_gp_cache);
158 out_free_pr_reg_cache:
159 kmem_cache_destroy(t10_pr_reg_cache);
160 out_free_ua_cache:
161 kmem_cache_destroy(se_ua_cache);
162 out_free_sess_cache:
163 kmem_cache_destroy(se_sess_cache);
164 out:
165 return -ENOMEM;
166 }
167
release_se_kmem_caches(void)168 void release_se_kmem_caches(void)
169 {
170 destroy_workqueue(target_completion_wq);
171 kmem_cache_destroy(se_sess_cache);
172 kmem_cache_destroy(se_ua_cache);
173 kmem_cache_destroy(t10_pr_reg_cache);
174 kmem_cache_destroy(t10_alua_lu_gp_cache);
175 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
176 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177 kmem_cache_destroy(t10_alua_lba_map_cache);
178 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 }
180
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock);
183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184
185 /*
186 * Allocate a new row index for the entry type specified
187 */
scsi_get_new_index(scsi_index_t type)188 u32 scsi_get_new_index(scsi_index_t type)
189 {
190 u32 new_index;
191
192 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193
194 spin_lock(&scsi_mib_index_lock);
195 new_index = ++scsi_mib_index[type];
196 spin_unlock(&scsi_mib_index_lock);
197
198 return new_index;
199 }
200
transport_subsystem_check_init(void)201 void transport_subsystem_check_init(void)
202 {
203 int ret;
204 static int sub_api_initialized;
205
206 if (sub_api_initialized)
207 return;
208
209 ret = request_module("target_core_iblock");
210 if (ret != 0)
211 pr_err("Unable to load target_core_iblock\n");
212
213 ret = request_module("target_core_file");
214 if (ret != 0)
215 pr_err("Unable to load target_core_file\n");
216
217 ret = request_module("target_core_pscsi");
218 if (ret != 0)
219 pr_err("Unable to load target_core_pscsi\n");
220
221 ret = request_module("target_core_user");
222 if (ret != 0)
223 pr_err("Unable to load target_core_user\n");
224
225 sub_api_initialized = 1;
226 }
227
transport_init_session(enum target_prot_op sup_prot_ops)228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 {
230 struct se_session *se_sess;
231
232 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233 if (!se_sess) {
234 pr_err("Unable to allocate struct se_session from"
235 " se_sess_cache\n");
236 return ERR_PTR(-ENOMEM);
237 }
238 INIT_LIST_HEAD(&se_sess->sess_list);
239 INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241 INIT_LIST_HEAD(&se_sess->sess_wait_list);
242 spin_lock_init(&se_sess->sess_cmd_lock);
243 se_sess->sup_prot_ops = sup_prot_ops;
244
245 return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)249 int transport_alloc_session_tags(struct se_session *se_sess,
250 unsigned int tag_num, unsigned int tag_size)
251 {
252 int rc;
253
254 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
256 if (!se_sess->sess_cmd_map) {
257 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 if (!se_sess->sess_cmd_map) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 return -ENOMEM;
261 }
262 }
263
264 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 if (rc < 0) {
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num);
268 kvfree(se_sess->sess_cmd_map);
269 se_sess->sess_cmd_map = NULL;
270 return -ENOMEM;
271 }
272
273 return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 unsigned int tag_size,
279 enum target_prot_op sup_prot_ops)
280 {
281 struct se_session *se_sess;
282 int rc;
283
284 if (tag_num != 0 && !tag_size) {
285 pr_err("init_session_tags called with percpu-ida tag_num:"
286 " %u, but zero tag_size\n", tag_num);
287 return ERR_PTR(-EINVAL);
288 }
289 if (!tag_num && tag_size) {
290 pr_err("init_session_tags called with percpu-ida tag_size:"
291 " %u, but zero tag_num\n", tag_size);
292 return ERR_PTR(-EINVAL);
293 }
294
295 se_sess = transport_init_session(sup_prot_ops);
296 if (IS_ERR(se_sess))
297 return se_sess;
298
299 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300 if (rc < 0) {
301 transport_free_session(se_sess);
302 return ERR_PTR(-ENOMEM);
303 }
304
305 return se_sess;
306 }
307 EXPORT_SYMBOL(transport_init_session_tags);
308
309 /*
310 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)312 void __transport_register_session(
313 struct se_portal_group *se_tpg,
314 struct se_node_acl *se_nacl,
315 struct se_session *se_sess,
316 void *fabric_sess_ptr)
317 {
318 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 unsigned char buf[PR_REG_ISID_LEN];
320 unsigned long flags;
321
322 se_sess->se_tpg = se_tpg;
323 se_sess->fabric_sess_ptr = fabric_sess_ptr;
324 /*
325 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 *
327 * Only set for struct se_session's that will actually be moving I/O.
328 * eg: *NOT* discovery sessions.
329 */
330 if (se_nacl) {
331 /*
332 *
333 * Determine if fabric allows for T10-PI feature bits exposed to
334 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
335 *
336 * If so, then always save prot_type on a per se_node_acl node
337 * basis and re-instate the previous sess_prot_type to avoid
338 * disabling PI from below any previously initiator side
339 * registered LUNs.
340 */
341 if (se_nacl->saved_prot_type)
342 se_sess->sess_prot_type = se_nacl->saved_prot_type;
343 else if (tfo->tpg_check_prot_fabric_only)
344 se_sess->sess_prot_type = se_nacl->saved_prot_type =
345 tfo->tpg_check_prot_fabric_only(se_tpg);
346 /*
347 * If the fabric module supports an ISID based TransportID,
348 * save this value in binary from the fabric I_T Nexus now.
349 */
350 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
351 memset(&buf[0], 0, PR_REG_ISID_LEN);
352 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
353 &buf[0], PR_REG_ISID_LEN);
354 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
355 }
356
357 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
358 /*
359 * The se_nacl->nacl_sess pointer will be set to the
360 * last active I_T Nexus for each struct se_node_acl.
361 */
362 se_nacl->nacl_sess = se_sess;
363
364 list_add_tail(&se_sess->sess_acl_list,
365 &se_nacl->acl_sess_list);
366 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
367 }
368 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
369
370 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
371 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
372 }
373 EXPORT_SYMBOL(__transport_register_session);
374
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)375 void transport_register_session(
376 struct se_portal_group *se_tpg,
377 struct se_node_acl *se_nacl,
378 struct se_session *se_sess,
379 void *fabric_sess_ptr)
380 {
381 unsigned long flags;
382
383 spin_lock_irqsave(&se_tpg->session_lock, flags);
384 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
385 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
386 }
387 EXPORT_SYMBOL(transport_register_session);
388
389 struct se_session *
target_alloc_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))390 target_alloc_session(struct se_portal_group *tpg,
391 unsigned int tag_num, unsigned int tag_size,
392 enum target_prot_op prot_op,
393 const char *initiatorname, void *private,
394 int (*callback)(struct se_portal_group *,
395 struct se_session *, void *))
396 {
397 struct se_session *sess;
398
399 /*
400 * If the fabric driver is using percpu-ida based pre allocation
401 * of I/O descriptor tags, go ahead and perform that setup now..
402 */
403 if (tag_num != 0)
404 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
405 else
406 sess = transport_init_session(prot_op);
407
408 if (IS_ERR(sess))
409 return sess;
410
411 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
412 (unsigned char *)initiatorname);
413 if (!sess->se_node_acl) {
414 transport_free_session(sess);
415 return ERR_PTR(-EACCES);
416 }
417 /*
418 * Go ahead and perform any remaining fabric setup that is
419 * required before transport_register_session().
420 */
421 if (callback != NULL) {
422 int rc = callback(tpg, sess, private);
423 if (rc) {
424 transport_free_session(sess);
425 return ERR_PTR(rc);
426 }
427 }
428
429 transport_register_session(tpg, sess->se_node_acl, sess, private);
430 return sess;
431 }
432 EXPORT_SYMBOL(target_alloc_session);
433
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)434 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
435 {
436 struct se_session *se_sess;
437 ssize_t len = 0;
438
439 spin_lock_bh(&se_tpg->session_lock);
440 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
441 if (!se_sess->se_node_acl)
442 continue;
443 if (!se_sess->se_node_acl->dynamic_node_acl)
444 continue;
445 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
446 break;
447
448 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
449 se_sess->se_node_acl->initiatorname);
450 len += 1; /* Include NULL terminator */
451 }
452 spin_unlock_bh(&se_tpg->session_lock);
453
454 return len;
455 }
456 EXPORT_SYMBOL(target_show_dynamic_sessions);
457
target_complete_nacl(struct kref * kref)458 static void target_complete_nacl(struct kref *kref)
459 {
460 struct se_node_acl *nacl = container_of(kref,
461 struct se_node_acl, acl_kref);
462 struct se_portal_group *se_tpg = nacl->se_tpg;
463
464 if (!nacl->dynamic_stop) {
465 complete(&nacl->acl_free_comp);
466 return;
467 }
468
469 mutex_lock(&se_tpg->acl_node_mutex);
470 list_del_init(&nacl->acl_list);
471 mutex_unlock(&se_tpg->acl_node_mutex);
472
473 core_tpg_wait_for_nacl_pr_ref(nacl);
474 core_free_device_list_for_node(nacl, se_tpg);
475 kfree(nacl);
476 }
477
target_put_nacl(struct se_node_acl * nacl)478 void target_put_nacl(struct se_node_acl *nacl)
479 {
480 kref_put(&nacl->acl_kref, target_complete_nacl);
481 }
482 EXPORT_SYMBOL(target_put_nacl);
483
transport_deregister_session_configfs(struct se_session * se_sess)484 void transport_deregister_session_configfs(struct se_session *se_sess)
485 {
486 struct se_node_acl *se_nacl;
487 unsigned long flags;
488 /*
489 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
490 */
491 se_nacl = se_sess->se_node_acl;
492 if (se_nacl) {
493 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
494 if (!list_empty(&se_sess->sess_acl_list))
495 list_del_init(&se_sess->sess_acl_list);
496 /*
497 * If the session list is empty, then clear the pointer.
498 * Otherwise, set the struct se_session pointer from the tail
499 * element of the per struct se_node_acl active session list.
500 */
501 if (list_empty(&se_nacl->acl_sess_list))
502 se_nacl->nacl_sess = NULL;
503 else {
504 se_nacl->nacl_sess = container_of(
505 se_nacl->acl_sess_list.prev,
506 struct se_session, sess_acl_list);
507 }
508 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
509 }
510 }
511 EXPORT_SYMBOL(transport_deregister_session_configfs);
512
transport_free_session(struct se_session * se_sess)513 void transport_free_session(struct se_session *se_sess)
514 {
515 struct se_node_acl *se_nacl = se_sess->se_node_acl;
516
517 /*
518 * Drop the se_node_acl->nacl_kref obtained from within
519 * core_tpg_get_initiator_node_acl().
520 */
521 if (se_nacl) {
522 struct se_portal_group *se_tpg = se_nacl->se_tpg;
523 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
524 unsigned long flags;
525
526 se_sess->se_node_acl = NULL;
527
528 /*
529 * Also determine if we need to drop the extra ->cmd_kref if
530 * it had been previously dynamically generated, and
531 * the endpoint is not caching dynamic ACLs.
532 */
533 mutex_lock(&se_tpg->acl_node_mutex);
534 if (se_nacl->dynamic_node_acl &&
535 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
536 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
537 if (list_empty(&se_nacl->acl_sess_list))
538 se_nacl->dynamic_stop = true;
539 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
540
541 if (se_nacl->dynamic_stop)
542 list_del_init(&se_nacl->acl_list);
543 }
544 mutex_unlock(&se_tpg->acl_node_mutex);
545
546 if (se_nacl->dynamic_stop)
547 target_put_nacl(se_nacl);
548
549 target_put_nacl(se_nacl);
550 }
551 if (se_sess->sess_cmd_map) {
552 percpu_ida_destroy(&se_sess->sess_tag_pool);
553 kvfree(se_sess->sess_cmd_map);
554 }
555 kmem_cache_free(se_sess_cache, se_sess);
556 }
557 EXPORT_SYMBOL(transport_free_session);
558
transport_deregister_session(struct se_session * se_sess)559 void transport_deregister_session(struct se_session *se_sess)
560 {
561 struct se_portal_group *se_tpg = se_sess->se_tpg;
562 unsigned long flags;
563
564 if (!se_tpg) {
565 transport_free_session(se_sess);
566 return;
567 }
568
569 spin_lock_irqsave(&se_tpg->session_lock, flags);
570 list_del(&se_sess->sess_list);
571 se_sess->se_tpg = NULL;
572 se_sess->fabric_sess_ptr = NULL;
573 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
574
575 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
576 se_tpg->se_tpg_tfo->get_fabric_name());
577 /*
578 * If last kref is dropping now for an explicit NodeACL, awake sleeping
579 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
580 * removal context from within transport_free_session() code.
581 *
582 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
583 * to release all remaining generate_node_acl=1 created ACL resources.
584 */
585
586 transport_free_session(se_sess);
587 }
588 EXPORT_SYMBOL(transport_deregister_session);
589
target_remove_from_state_list(struct se_cmd * cmd)590 static void target_remove_from_state_list(struct se_cmd *cmd)
591 {
592 struct se_device *dev = cmd->se_dev;
593 unsigned long flags;
594
595 if (!dev)
596 return;
597
598 spin_lock_irqsave(&dev->execute_task_lock, flags);
599 if (cmd->state_active) {
600 list_del(&cmd->state_list);
601 cmd->state_active = false;
602 }
603 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
604 }
605
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)606 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
607 {
608 unsigned long flags;
609
610 target_remove_from_state_list(cmd);
611
612 /*
613 * Clear struct se_cmd->se_lun before the handoff to FE.
614 */
615 cmd->se_lun = NULL;
616
617 spin_lock_irqsave(&cmd->t_state_lock, flags);
618 /*
619 * Determine if frontend context caller is requesting the stopping of
620 * this command for frontend exceptions.
621 */
622 if (cmd->transport_state & CMD_T_STOP) {
623 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
624 __func__, __LINE__, cmd->tag);
625
626 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
627
628 complete_all(&cmd->t_transport_stop_comp);
629 return 1;
630 }
631 cmd->transport_state &= ~CMD_T_ACTIVE;
632 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
633
634 /*
635 * Some fabric modules like tcm_loop can release their internally
636 * allocated I/O reference and struct se_cmd now.
637 *
638 * Fabric modules are expected to return '1' here if the se_cmd being
639 * passed is released at this point, or zero if not being released.
640 */
641 return cmd->se_tfo->check_stop_free(cmd);
642 }
643
transport_lun_remove_cmd(struct se_cmd * cmd)644 static void transport_lun_remove_cmd(struct se_cmd *cmd)
645 {
646 struct se_lun *lun = cmd->se_lun;
647
648 if (!lun)
649 return;
650
651 if (cmpxchg(&cmd->lun_ref_active, true, false))
652 percpu_ref_put(&lun->lun_ref);
653 }
654
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)655 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
656 {
657 bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
658 int ret = 0;
659
660 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
661 transport_lun_remove_cmd(cmd);
662 /*
663 * Allow the fabric driver to unmap any resources before
664 * releasing the descriptor via TFO->release_cmd()
665 */
666 if (remove)
667 cmd->se_tfo->aborted_task(cmd);
668
669 if (transport_cmd_check_stop_to_fabric(cmd))
670 return 1;
671 if (remove && ack_kref)
672 ret = transport_put_cmd(cmd);
673
674 return ret;
675 }
676
target_complete_failure_work(struct work_struct * work)677 static void target_complete_failure_work(struct work_struct *work)
678 {
679 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681 transport_generic_request_failure(cmd,
682 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
683 }
684
685 /*
686 * Used when asking transport to copy Sense Data from the underlying
687 * Linux/SCSI struct scsi_cmnd
688 */
transport_get_sense_buffer(struct se_cmd * cmd)689 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
690 {
691 struct se_device *dev = cmd->se_dev;
692
693 WARN_ON(!cmd->se_lun);
694
695 if (!dev)
696 return NULL;
697
698 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
699 return NULL;
700
701 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
702
703 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
704 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
705 return cmd->sense_buffer;
706 }
707
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)708 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
709 {
710 unsigned char *cmd_sense_buf;
711 unsigned long flags;
712
713 spin_lock_irqsave(&cmd->t_state_lock, flags);
714 cmd_sense_buf = transport_get_sense_buffer(cmd);
715 if (!cmd_sense_buf) {
716 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717 return;
718 }
719
720 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
721 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
722 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723 }
724 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
725
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)726 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
727 {
728 struct se_device *dev = cmd->se_dev;
729 int success;
730 unsigned long flags;
731
732 cmd->scsi_status = scsi_status;
733
734 spin_lock_irqsave(&cmd->t_state_lock, flags);
735 switch (cmd->scsi_status) {
736 case SAM_STAT_CHECK_CONDITION:
737 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
738 success = 1;
739 else
740 success = 0;
741 break;
742 default:
743 success = 1;
744 break;
745 }
746
747 /*
748 * Check for case where an explicit ABORT_TASK has been received
749 * and transport_wait_for_tasks() will be waiting for completion..
750 */
751 if (cmd->transport_state & CMD_T_ABORTED ||
752 cmd->transport_state & CMD_T_STOP) {
753 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754 /*
755 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
756 * release se_device->caw_sem obtained by sbc_compare_and_write()
757 * since target_complete_ok_work() or target_complete_failure_work()
758 * won't be called to invoke the normal CAW completion callbacks.
759 */
760 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
761 up(&dev->caw_sem);
762 }
763 complete_all(&cmd->t_transport_stop_comp);
764 return;
765 } else if (!success) {
766 INIT_WORK(&cmd->work, target_complete_failure_work);
767 } else {
768 INIT_WORK(&cmd->work, target_complete_ok_work);
769 }
770
771 cmd->t_state = TRANSPORT_COMPLETE;
772 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
773 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
774
775 if (cmd->se_cmd_flags & SCF_USE_CPUID)
776 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
777 else
778 queue_work(target_completion_wq, &cmd->work);
779 }
780 EXPORT_SYMBOL(target_complete_cmd);
781
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)782 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
783 {
784 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
785 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
786 cmd->residual_count += cmd->data_length - length;
787 } else {
788 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
789 cmd->residual_count = cmd->data_length - length;
790 }
791
792 cmd->data_length = length;
793 }
794
795 target_complete_cmd(cmd, scsi_status);
796 }
797 EXPORT_SYMBOL(target_complete_cmd_with_length);
798
target_add_to_state_list(struct se_cmd * cmd)799 static void target_add_to_state_list(struct se_cmd *cmd)
800 {
801 struct se_device *dev = cmd->se_dev;
802 unsigned long flags;
803
804 spin_lock_irqsave(&dev->execute_task_lock, flags);
805 if (!cmd->state_active) {
806 list_add_tail(&cmd->state_list, &dev->state_list);
807 cmd->state_active = true;
808 }
809 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
810 }
811
812 /*
813 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
814 */
815 static void transport_write_pending_qf(struct se_cmd *cmd);
816 static void transport_complete_qf(struct se_cmd *cmd);
817
target_qf_do_work(struct work_struct * work)818 void target_qf_do_work(struct work_struct *work)
819 {
820 struct se_device *dev = container_of(work, struct se_device,
821 qf_work_queue);
822 LIST_HEAD(qf_cmd_list);
823 struct se_cmd *cmd, *cmd_tmp;
824
825 spin_lock_irq(&dev->qf_cmd_lock);
826 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
827 spin_unlock_irq(&dev->qf_cmd_lock);
828
829 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
830 list_del(&cmd->se_qf_node);
831 atomic_dec_mb(&dev->dev_qf_count);
832
833 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
834 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
835 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
836 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
837 : "UNKNOWN");
838
839 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
840 transport_write_pending_qf(cmd);
841 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
842 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
843 transport_complete_qf(cmd);
844 }
845 }
846
transport_dump_cmd_direction(struct se_cmd * cmd)847 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
848 {
849 switch (cmd->data_direction) {
850 case DMA_NONE:
851 return "NONE";
852 case DMA_FROM_DEVICE:
853 return "READ";
854 case DMA_TO_DEVICE:
855 return "WRITE";
856 case DMA_BIDIRECTIONAL:
857 return "BIDI";
858 default:
859 break;
860 }
861
862 return "UNKNOWN";
863 }
864
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)865 void transport_dump_dev_state(
866 struct se_device *dev,
867 char *b,
868 int *bl)
869 {
870 *bl += sprintf(b + *bl, "Status: ");
871 if (dev->export_count)
872 *bl += sprintf(b + *bl, "ACTIVATED");
873 else
874 *bl += sprintf(b + *bl, "DEACTIVATED");
875
876 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
877 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
878 dev->dev_attrib.block_size,
879 dev->dev_attrib.hw_max_sectors);
880 *bl += sprintf(b + *bl, " ");
881 }
882
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)883 void transport_dump_vpd_proto_id(
884 struct t10_vpd *vpd,
885 unsigned char *p_buf,
886 int p_buf_len)
887 {
888 unsigned char buf[VPD_TMP_BUF_SIZE];
889 int len;
890
891 memset(buf, 0, VPD_TMP_BUF_SIZE);
892 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
893
894 switch (vpd->protocol_identifier) {
895 case 0x00:
896 sprintf(buf+len, "Fibre Channel\n");
897 break;
898 case 0x10:
899 sprintf(buf+len, "Parallel SCSI\n");
900 break;
901 case 0x20:
902 sprintf(buf+len, "SSA\n");
903 break;
904 case 0x30:
905 sprintf(buf+len, "IEEE 1394\n");
906 break;
907 case 0x40:
908 sprintf(buf+len, "SCSI Remote Direct Memory Access"
909 " Protocol\n");
910 break;
911 case 0x50:
912 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
913 break;
914 case 0x60:
915 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
916 break;
917 case 0x70:
918 sprintf(buf+len, "Automation/Drive Interface Transport"
919 " Protocol\n");
920 break;
921 case 0x80:
922 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
923 break;
924 default:
925 sprintf(buf+len, "Unknown 0x%02x\n",
926 vpd->protocol_identifier);
927 break;
928 }
929
930 if (p_buf)
931 strncpy(p_buf, buf, p_buf_len);
932 else
933 pr_debug("%s", buf);
934 }
935
936 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)937 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
938 {
939 /*
940 * Check if the Protocol Identifier Valid (PIV) bit is set..
941 *
942 * from spc3r23.pdf section 7.5.1
943 */
944 if (page_83[1] & 0x80) {
945 vpd->protocol_identifier = (page_83[0] & 0xf0);
946 vpd->protocol_identifier_set = 1;
947 transport_dump_vpd_proto_id(vpd, NULL, 0);
948 }
949 }
950 EXPORT_SYMBOL(transport_set_vpd_proto_id);
951
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)952 int transport_dump_vpd_assoc(
953 struct t10_vpd *vpd,
954 unsigned char *p_buf,
955 int p_buf_len)
956 {
957 unsigned char buf[VPD_TMP_BUF_SIZE];
958 int ret = 0;
959 int len;
960
961 memset(buf, 0, VPD_TMP_BUF_SIZE);
962 len = sprintf(buf, "T10 VPD Identifier Association: ");
963
964 switch (vpd->association) {
965 case 0x00:
966 sprintf(buf+len, "addressed logical unit\n");
967 break;
968 case 0x10:
969 sprintf(buf+len, "target port\n");
970 break;
971 case 0x20:
972 sprintf(buf+len, "SCSI target device\n");
973 break;
974 default:
975 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
976 ret = -EINVAL;
977 break;
978 }
979
980 if (p_buf)
981 strncpy(p_buf, buf, p_buf_len);
982 else
983 pr_debug("%s", buf);
984
985 return ret;
986 }
987
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)988 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
989 {
990 /*
991 * The VPD identification association..
992 *
993 * from spc3r23.pdf Section 7.6.3.1 Table 297
994 */
995 vpd->association = (page_83[1] & 0x30);
996 return transport_dump_vpd_assoc(vpd, NULL, 0);
997 }
998 EXPORT_SYMBOL(transport_set_vpd_assoc);
999
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1000 int transport_dump_vpd_ident_type(
1001 struct t10_vpd *vpd,
1002 unsigned char *p_buf,
1003 int p_buf_len)
1004 {
1005 unsigned char buf[VPD_TMP_BUF_SIZE];
1006 int ret = 0;
1007 int len;
1008
1009 memset(buf, 0, VPD_TMP_BUF_SIZE);
1010 len = sprintf(buf, "T10 VPD Identifier Type: ");
1011
1012 switch (vpd->device_identifier_type) {
1013 case 0x00:
1014 sprintf(buf+len, "Vendor specific\n");
1015 break;
1016 case 0x01:
1017 sprintf(buf+len, "T10 Vendor ID based\n");
1018 break;
1019 case 0x02:
1020 sprintf(buf+len, "EUI-64 based\n");
1021 break;
1022 case 0x03:
1023 sprintf(buf+len, "NAA\n");
1024 break;
1025 case 0x04:
1026 sprintf(buf+len, "Relative target port identifier\n");
1027 break;
1028 case 0x08:
1029 sprintf(buf+len, "SCSI name string\n");
1030 break;
1031 default:
1032 sprintf(buf+len, "Unsupported: 0x%02x\n",
1033 vpd->device_identifier_type);
1034 ret = -EINVAL;
1035 break;
1036 }
1037
1038 if (p_buf) {
1039 if (p_buf_len < strlen(buf)+1)
1040 return -EINVAL;
1041 strncpy(p_buf, buf, p_buf_len);
1042 } else {
1043 pr_debug("%s", buf);
1044 }
1045
1046 return ret;
1047 }
1048
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1049 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1050 {
1051 /*
1052 * The VPD identifier type..
1053 *
1054 * from spc3r23.pdf Section 7.6.3.1 Table 298
1055 */
1056 vpd->device_identifier_type = (page_83[1] & 0x0f);
1057 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1058 }
1059 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1060
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1061 int transport_dump_vpd_ident(
1062 struct t10_vpd *vpd,
1063 unsigned char *p_buf,
1064 int p_buf_len)
1065 {
1066 unsigned char buf[VPD_TMP_BUF_SIZE];
1067 int ret = 0;
1068
1069 memset(buf, 0, VPD_TMP_BUF_SIZE);
1070
1071 switch (vpd->device_identifier_code_set) {
1072 case 0x01: /* Binary */
1073 snprintf(buf, sizeof(buf),
1074 "T10 VPD Binary Device Identifier: %s\n",
1075 &vpd->device_identifier[0]);
1076 break;
1077 case 0x02: /* ASCII */
1078 snprintf(buf, sizeof(buf),
1079 "T10 VPD ASCII Device Identifier: %s\n",
1080 &vpd->device_identifier[0]);
1081 break;
1082 case 0x03: /* UTF-8 */
1083 snprintf(buf, sizeof(buf),
1084 "T10 VPD UTF-8 Device Identifier: %s\n",
1085 &vpd->device_identifier[0]);
1086 break;
1087 default:
1088 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1089 " 0x%02x", vpd->device_identifier_code_set);
1090 ret = -EINVAL;
1091 break;
1092 }
1093
1094 if (p_buf)
1095 strncpy(p_buf, buf, p_buf_len);
1096 else
1097 pr_debug("%s", buf);
1098
1099 return ret;
1100 }
1101
1102 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1103 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1104 {
1105 static const char hex_str[] = "0123456789abcdef";
1106 int j = 0, i = 4; /* offset to start of the identifier */
1107
1108 /*
1109 * The VPD Code Set (encoding)
1110 *
1111 * from spc3r23.pdf Section 7.6.3.1 Table 296
1112 */
1113 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1114 switch (vpd->device_identifier_code_set) {
1115 case 0x01: /* Binary */
1116 vpd->device_identifier[j++] =
1117 hex_str[vpd->device_identifier_type];
1118 while (i < (4 + page_83[3])) {
1119 vpd->device_identifier[j++] =
1120 hex_str[(page_83[i] & 0xf0) >> 4];
1121 vpd->device_identifier[j++] =
1122 hex_str[page_83[i] & 0x0f];
1123 i++;
1124 }
1125 break;
1126 case 0x02: /* ASCII */
1127 case 0x03: /* UTF-8 */
1128 while (i < (4 + page_83[3]))
1129 vpd->device_identifier[j++] = page_83[i++];
1130 break;
1131 default:
1132 break;
1133 }
1134
1135 return transport_dump_vpd_ident(vpd, NULL, 0);
1136 }
1137 EXPORT_SYMBOL(transport_set_vpd_ident);
1138
1139 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1140 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1141 unsigned int size)
1142 {
1143 u32 mtl;
1144
1145 if (!cmd->se_tfo->max_data_sg_nents)
1146 return TCM_NO_SENSE;
1147 /*
1148 * Check if fabric enforced maximum SGL entries per I/O descriptor
1149 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1150 * residual_count and reduce original cmd->data_length to maximum
1151 * length based on single PAGE_SIZE entry scatter-lists.
1152 */
1153 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1154 if (cmd->data_length > mtl) {
1155 /*
1156 * If an existing CDB overflow is present, calculate new residual
1157 * based on CDB size minus fabric maximum transfer length.
1158 *
1159 * If an existing CDB underflow is present, calculate new residual
1160 * based on original cmd->data_length minus fabric maximum transfer
1161 * length.
1162 *
1163 * Otherwise, set the underflow residual based on cmd->data_length
1164 * minus fabric maximum transfer length.
1165 */
1166 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1167 cmd->residual_count = (size - mtl);
1168 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1169 u32 orig_dl = size + cmd->residual_count;
1170 cmd->residual_count = (orig_dl - mtl);
1171 } else {
1172 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1173 cmd->residual_count = (cmd->data_length - mtl);
1174 }
1175 cmd->data_length = mtl;
1176 /*
1177 * Reset sbc_check_prot() calculated protection payload
1178 * length based upon the new smaller MTL.
1179 */
1180 if (cmd->prot_length) {
1181 u32 sectors = (mtl / dev->dev_attrib.block_size);
1182 cmd->prot_length = dev->prot_length * sectors;
1183 }
1184 }
1185 return TCM_NO_SENSE;
1186 }
1187
1188 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1189 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1190 {
1191 struct se_device *dev = cmd->se_dev;
1192
1193 if (cmd->unknown_data_length) {
1194 cmd->data_length = size;
1195 } else if (size != cmd->data_length) {
1196 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1197 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1198 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1199 cmd->data_length, size, cmd->t_task_cdb[0]);
1200
1201 if (cmd->data_direction == DMA_TO_DEVICE) {
1202 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1203 pr_err_ratelimited("Rejecting underflow/overflow"
1204 " for WRITE data CDB\n");
1205 return TCM_INVALID_CDB_FIELD;
1206 }
1207 /*
1208 * Some fabric drivers like iscsi-target still expect to
1209 * always reject overflow writes. Reject this case until
1210 * full fabric driver level support for overflow writes
1211 * is introduced tree-wide.
1212 */
1213 if (size > cmd->data_length) {
1214 pr_err_ratelimited("Rejecting overflow for"
1215 " WRITE control CDB\n");
1216 return TCM_INVALID_CDB_FIELD;
1217 }
1218 }
1219 /*
1220 * Reject READ_* or WRITE_* with overflow/underflow for
1221 * type SCF_SCSI_DATA_CDB.
1222 */
1223 if (dev->dev_attrib.block_size != 512) {
1224 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1225 " CDB on non 512-byte sector setup subsystem"
1226 " plugin: %s\n", dev->transport->name);
1227 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1228 return TCM_INVALID_CDB_FIELD;
1229 }
1230 /*
1231 * For the overflow case keep the existing fabric provided
1232 * ->data_length. Otherwise for the underflow case, reset
1233 * ->data_length to the smaller SCSI expected data transfer
1234 * length.
1235 */
1236 if (size > cmd->data_length) {
1237 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1238 cmd->residual_count = (size - cmd->data_length);
1239 } else {
1240 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1241 cmd->residual_count = (cmd->data_length - size);
1242 cmd->data_length = size;
1243 }
1244 }
1245
1246 return target_check_max_data_sg_nents(cmd, dev, size);
1247
1248 }
1249
1250 /*
1251 * Used by fabric modules containing a local struct se_cmd within their
1252 * fabric dependent per I/O descriptor.
1253 *
1254 * Preserves the value of @cmd->tag.
1255 */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1256 void transport_init_se_cmd(
1257 struct se_cmd *cmd,
1258 const struct target_core_fabric_ops *tfo,
1259 struct se_session *se_sess,
1260 u32 data_length,
1261 int data_direction,
1262 int task_attr,
1263 unsigned char *sense_buffer)
1264 {
1265 INIT_LIST_HEAD(&cmd->se_delayed_node);
1266 INIT_LIST_HEAD(&cmd->se_qf_node);
1267 INIT_LIST_HEAD(&cmd->se_cmd_list);
1268 INIT_LIST_HEAD(&cmd->state_list);
1269 init_completion(&cmd->t_transport_stop_comp);
1270 init_completion(&cmd->cmd_wait_comp);
1271 spin_lock_init(&cmd->t_state_lock);
1272 INIT_WORK(&cmd->work, NULL);
1273 kref_init(&cmd->cmd_kref);
1274
1275 cmd->se_tfo = tfo;
1276 cmd->se_sess = se_sess;
1277 cmd->data_length = data_length;
1278 cmd->data_direction = data_direction;
1279 cmd->sam_task_attr = task_attr;
1280 cmd->sense_buffer = sense_buffer;
1281
1282 cmd->state_active = false;
1283 }
1284 EXPORT_SYMBOL(transport_init_se_cmd);
1285
1286 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1287 transport_check_alloc_task_attr(struct se_cmd *cmd)
1288 {
1289 struct se_device *dev = cmd->se_dev;
1290
1291 /*
1292 * Check if SAM Task Attribute emulation is enabled for this
1293 * struct se_device storage object
1294 */
1295 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1296 return 0;
1297
1298 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1299 pr_debug("SAM Task Attribute ACA"
1300 " emulation is not supported\n");
1301 return TCM_INVALID_CDB_FIELD;
1302 }
1303
1304 return 0;
1305 }
1306
1307 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1308 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1309 {
1310 struct se_device *dev = cmd->se_dev;
1311 sense_reason_t ret;
1312
1313 /*
1314 * Ensure that the received CDB is less than the max (252 + 8) bytes
1315 * for VARIABLE_LENGTH_CMD
1316 */
1317 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1318 pr_err("Received SCSI CDB with command_size: %d that"
1319 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1320 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1321 return TCM_INVALID_CDB_FIELD;
1322 }
1323 /*
1324 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1325 * allocate the additional extended CDB buffer now.. Otherwise
1326 * setup the pointer from __t_task_cdb to t_task_cdb.
1327 */
1328 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1329 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1330 GFP_KERNEL);
1331 if (!cmd->t_task_cdb) {
1332 pr_err("Unable to allocate cmd->t_task_cdb"
1333 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1334 scsi_command_size(cdb),
1335 (unsigned long)sizeof(cmd->__t_task_cdb));
1336 return TCM_OUT_OF_RESOURCES;
1337 }
1338 } else
1339 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1340 /*
1341 * Copy the original CDB into cmd->
1342 */
1343 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1344
1345 trace_target_sequencer_start(cmd);
1346
1347 ret = dev->transport->parse_cdb(cmd);
1348 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1349 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1350 cmd->se_tfo->get_fabric_name(),
1351 cmd->se_sess->se_node_acl->initiatorname,
1352 cmd->t_task_cdb[0]);
1353 if (ret)
1354 return ret;
1355
1356 ret = transport_check_alloc_task_attr(cmd);
1357 if (ret)
1358 return ret;
1359
1360 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1361 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1362 return 0;
1363 }
1364 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1365
1366 /*
1367 * Used by fabric module frontends to queue tasks directly.
1368 * May only be used from process context.
1369 */
transport_handle_cdb_direct(struct se_cmd * cmd)1370 int transport_handle_cdb_direct(
1371 struct se_cmd *cmd)
1372 {
1373 sense_reason_t ret;
1374
1375 if (!cmd->se_lun) {
1376 dump_stack();
1377 pr_err("cmd->se_lun is NULL\n");
1378 return -EINVAL;
1379 }
1380 if (in_interrupt()) {
1381 dump_stack();
1382 pr_err("transport_generic_handle_cdb cannot be called"
1383 " from interrupt context\n");
1384 return -EINVAL;
1385 }
1386 /*
1387 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1388 * outstanding descriptors are handled correctly during shutdown via
1389 * transport_wait_for_tasks()
1390 *
1391 * Also, we don't take cmd->t_state_lock here as we only expect
1392 * this to be called for initial descriptor submission.
1393 */
1394 cmd->t_state = TRANSPORT_NEW_CMD;
1395 cmd->transport_state |= CMD_T_ACTIVE;
1396
1397 /*
1398 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1399 * so follow TRANSPORT_NEW_CMD processing thread context usage
1400 * and call transport_generic_request_failure() if necessary..
1401 */
1402 ret = transport_generic_new_cmd(cmd);
1403 if (ret)
1404 transport_generic_request_failure(cmd, ret);
1405 return 0;
1406 }
1407 EXPORT_SYMBOL(transport_handle_cdb_direct);
1408
1409 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1410 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1411 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1412 {
1413 if (!sgl || !sgl_count)
1414 return 0;
1415
1416 /*
1417 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1418 * scatterlists already have been set to follow what the fabric
1419 * passes for the original expected data transfer length.
1420 */
1421 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1422 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1423 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1424 return TCM_INVALID_CDB_FIELD;
1425 }
1426
1427 cmd->t_data_sg = sgl;
1428 cmd->t_data_nents = sgl_count;
1429 cmd->t_bidi_data_sg = sgl_bidi;
1430 cmd->t_bidi_data_nents = sgl_bidi_count;
1431
1432 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1433 return 0;
1434 }
1435
1436 /*
1437 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1438 * se_cmd + use pre-allocated SGL memory.
1439 *
1440 * @se_cmd: command descriptor to submit
1441 * @se_sess: associated se_sess for endpoint
1442 * @cdb: pointer to SCSI CDB
1443 * @sense: pointer to SCSI sense buffer
1444 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1445 * @data_length: fabric expected data transfer length
1446 * @task_addr: SAM task attribute
1447 * @data_dir: DMA data direction
1448 * @flags: flags for command submission from target_sc_flags_tables
1449 * @sgl: struct scatterlist memory for unidirectional mapping
1450 * @sgl_count: scatterlist count for unidirectional mapping
1451 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1452 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1453 * @sgl_prot: struct scatterlist memory protection information
1454 * @sgl_prot_count: scatterlist count for protection information
1455 *
1456 * Task tags are supported if the caller has set @se_cmd->tag.
1457 *
1458 * Returns non zero to signal active I/O shutdown failure. All other
1459 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1460 * but still return zero here.
1461 *
1462 * This may only be called from process context, and also currently
1463 * assumes internal allocation of fabric payload buffer by target-core.
1464 */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1465 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1466 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1467 u32 data_length, int task_attr, int data_dir, int flags,
1468 struct scatterlist *sgl, u32 sgl_count,
1469 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1470 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1471 {
1472 struct se_portal_group *se_tpg;
1473 sense_reason_t rc;
1474 int ret;
1475
1476 se_tpg = se_sess->se_tpg;
1477 BUG_ON(!se_tpg);
1478 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1479 BUG_ON(in_interrupt());
1480 /*
1481 * Initialize se_cmd for target operation. From this point
1482 * exceptions are handled by sending exception status via
1483 * target_core_fabric_ops->queue_status() callback
1484 */
1485 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1486 data_length, data_dir, task_attr, sense);
1487
1488 if (flags & TARGET_SCF_USE_CPUID)
1489 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1490 else
1491 se_cmd->cpuid = WORK_CPU_UNBOUND;
1492
1493 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1494 se_cmd->unknown_data_length = 1;
1495 /*
1496 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1497 * se_sess->sess_cmd_list. A second kref_get here is necessary
1498 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1499 * kref_put() to happen during fabric packet acknowledgement.
1500 */
1501 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1502 if (ret)
1503 return ret;
1504 /*
1505 * Signal bidirectional data payloads to target-core
1506 */
1507 if (flags & TARGET_SCF_BIDI_OP)
1508 se_cmd->se_cmd_flags |= SCF_BIDI;
1509 /*
1510 * Locate se_lun pointer and attach it to struct se_cmd
1511 */
1512 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1513 if (rc) {
1514 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1515 target_put_sess_cmd(se_cmd);
1516 return 0;
1517 }
1518
1519 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1520 if (rc != 0) {
1521 transport_generic_request_failure(se_cmd, rc);
1522 return 0;
1523 }
1524
1525 /*
1526 * Save pointers for SGLs containing protection information,
1527 * if present.
1528 */
1529 if (sgl_prot_count) {
1530 se_cmd->t_prot_sg = sgl_prot;
1531 se_cmd->t_prot_nents = sgl_prot_count;
1532 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1533 }
1534
1535 /*
1536 * When a non zero sgl_count has been passed perform SGL passthrough
1537 * mapping for pre-allocated fabric memory instead of having target
1538 * core perform an internal SGL allocation..
1539 */
1540 if (sgl_count != 0) {
1541 BUG_ON(!sgl);
1542
1543 /*
1544 * A work-around for tcm_loop as some userspace code via
1545 * scsi-generic do not memset their associated read buffers,
1546 * so go ahead and do that here for type non-data CDBs. Also
1547 * note that this is currently guaranteed to be a single SGL
1548 * for this case by target core in target_setup_cmd_from_cdb()
1549 * -> transport_generic_cmd_sequencer().
1550 */
1551 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1552 se_cmd->data_direction == DMA_FROM_DEVICE) {
1553 unsigned char *buf = NULL;
1554
1555 if (sgl)
1556 buf = kmap(sg_page(sgl)) + sgl->offset;
1557
1558 if (buf) {
1559 memset(buf, 0, sgl->length);
1560 kunmap(sg_page(sgl));
1561 }
1562 }
1563
1564 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1565 sgl_bidi, sgl_bidi_count);
1566 if (rc != 0) {
1567 transport_generic_request_failure(se_cmd, rc);
1568 return 0;
1569 }
1570 }
1571
1572 /*
1573 * Check if we need to delay processing because of ALUA
1574 * Active/NonOptimized primary access state..
1575 */
1576 core_alua_check_nonop_delay(se_cmd);
1577
1578 transport_handle_cdb_direct(se_cmd);
1579 return 0;
1580 }
1581 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1582
1583 /*
1584 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1585 *
1586 * @se_cmd: command descriptor to submit
1587 * @se_sess: associated se_sess for endpoint
1588 * @cdb: pointer to SCSI CDB
1589 * @sense: pointer to SCSI sense buffer
1590 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1591 * @data_length: fabric expected data transfer length
1592 * @task_addr: SAM task attribute
1593 * @data_dir: DMA data direction
1594 * @flags: flags for command submission from target_sc_flags_tables
1595 *
1596 * Task tags are supported if the caller has set @se_cmd->tag.
1597 *
1598 * Returns non zero to signal active I/O shutdown failure. All other
1599 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1600 * but still return zero here.
1601 *
1602 * This may only be called from process context, and also currently
1603 * assumes internal allocation of fabric payload buffer by target-core.
1604 *
1605 * It also assumes interal target core SGL memory allocation.
1606 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1607 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1608 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1609 u32 data_length, int task_attr, int data_dir, int flags)
1610 {
1611 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1612 unpacked_lun, data_length, task_attr, data_dir,
1613 flags, NULL, 0, NULL, 0, NULL, 0);
1614 }
1615 EXPORT_SYMBOL(target_submit_cmd);
1616
target_complete_tmr_failure(struct work_struct * work)1617 static void target_complete_tmr_failure(struct work_struct *work)
1618 {
1619 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1620
1621 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1622 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1623
1624 transport_lun_remove_cmd(se_cmd);
1625 transport_cmd_check_stop_to_fabric(se_cmd);
1626 }
1627
target_lookup_lun_from_tag(struct se_session * se_sess,u64 tag,u64 * unpacked_lun)1628 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1629 u64 *unpacked_lun)
1630 {
1631 struct se_cmd *se_cmd;
1632 unsigned long flags;
1633 bool ret = false;
1634
1635 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1636 list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1637 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1638 continue;
1639
1640 if (se_cmd->tag == tag) {
1641 *unpacked_lun = se_cmd->orig_fe_lun;
1642 ret = true;
1643 break;
1644 }
1645 }
1646 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1647
1648 return ret;
1649 }
1650
1651 /**
1652 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1653 * for TMR CDBs
1654 *
1655 * @se_cmd: command descriptor to submit
1656 * @se_sess: associated se_sess for endpoint
1657 * @sense: pointer to SCSI sense buffer
1658 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1659 * @fabric_context: fabric context for TMR req
1660 * @tm_type: Type of TM request
1661 * @gfp: gfp type for caller
1662 * @tag: referenced task tag for TMR_ABORT_TASK
1663 * @flags: submit cmd flags
1664 *
1665 * Callable from all contexts.
1666 **/
1667
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1668 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1669 unsigned char *sense, u64 unpacked_lun,
1670 void *fabric_tmr_ptr, unsigned char tm_type,
1671 gfp_t gfp, u64 tag, int flags)
1672 {
1673 struct se_portal_group *se_tpg;
1674 int ret;
1675
1676 se_tpg = se_sess->se_tpg;
1677 BUG_ON(!se_tpg);
1678
1679 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1680 0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1681 /*
1682 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1683 * allocation failure.
1684 */
1685 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1686 if (ret < 0)
1687 return -ENOMEM;
1688
1689 if (tm_type == TMR_ABORT_TASK)
1690 se_cmd->se_tmr_req->ref_task_tag = tag;
1691
1692 /* See target_submit_cmd for commentary */
1693 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1694 if (ret) {
1695 core_tmr_release_req(se_cmd->se_tmr_req);
1696 return ret;
1697 }
1698 /*
1699 * If this is ABORT_TASK with no explicit fabric provided LUN,
1700 * go ahead and search active session tags for a match to figure
1701 * out unpacked_lun for the original se_cmd.
1702 */
1703 if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1704 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1705 goto failure;
1706 }
1707
1708 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1709 if (ret)
1710 goto failure;
1711
1712 transport_generic_handle_tmr(se_cmd);
1713 return 0;
1714
1715 /*
1716 * For callback during failure handling, push this work off
1717 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1718 */
1719 failure:
1720 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1721 schedule_work(&se_cmd->work);
1722 return 0;
1723 }
1724 EXPORT_SYMBOL(target_submit_tmr);
1725
1726 /*
1727 * Handle SAM-esque emulation for generic transport request failures.
1728 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1729 void transport_generic_request_failure(struct se_cmd *cmd,
1730 sense_reason_t sense_reason)
1731 {
1732 int ret = 0, post_ret = 0;
1733
1734 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1735 sense_reason);
1736 target_show_cmd("-----[ ", cmd);
1737
1738 /*
1739 * For SAM Task Attribute emulation for failed struct se_cmd
1740 */
1741 transport_complete_task_attr(cmd);
1742
1743 /*
1744 * Handle special case for COMPARE_AND_WRITE failure, where the
1745 * callback is expected to drop the per device ->caw_sem.
1746 */
1747 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1748 cmd->transport_complete_callback)
1749 cmd->transport_complete_callback(cmd, false, &post_ret);
1750
1751 if (transport_check_aborted_status(cmd, 1))
1752 return;
1753
1754 switch (sense_reason) {
1755 case TCM_NON_EXISTENT_LUN:
1756 case TCM_UNSUPPORTED_SCSI_OPCODE:
1757 case TCM_INVALID_CDB_FIELD:
1758 case TCM_INVALID_PARAMETER_LIST:
1759 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1760 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1761 case TCM_UNKNOWN_MODE_PAGE:
1762 case TCM_WRITE_PROTECTED:
1763 case TCM_ADDRESS_OUT_OF_RANGE:
1764 case TCM_CHECK_CONDITION_ABORT_CMD:
1765 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1766 case TCM_CHECK_CONDITION_NOT_READY:
1767 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1768 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1769 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1770 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1771 case TCM_TOO_MANY_TARGET_DESCS:
1772 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1773 case TCM_TOO_MANY_SEGMENT_DESCS:
1774 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1775 break;
1776 case TCM_OUT_OF_RESOURCES:
1777 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1778 break;
1779 case TCM_RESERVATION_CONFLICT:
1780 /*
1781 * No SENSE Data payload for this case, set SCSI Status
1782 * and queue the response to $FABRIC_MOD.
1783 *
1784 * Uses linux/include/scsi/scsi.h SAM status codes defs
1785 */
1786 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1787 /*
1788 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1789 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1790 * CONFLICT STATUS.
1791 *
1792 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1793 */
1794 if (cmd->se_sess &&
1795 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1796 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1797 cmd->orig_fe_lun, 0x2C,
1798 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1799 }
1800 trace_target_cmd_complete(cmd);
1801 ret = cmd->se_tfo->queue_status(cmd);
1802 if (ret)
1803 goto queue_full;
1804 goto check_stop;
1805 default:
1806 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1807 cmd->t_task_cdb[0], sense_reason);
1808 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1809 break;
1810 }
1811
1812 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1813 if (ret)
1814 goto queue_full;
1815
1816 check_stop:
1817 transport_lun_remove_cmd(cmd);
1818 transport_cmd_check_stop_to_fabric(cmd);
1819 return;
1820
1821 queue_full:
1822 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1823 }
1824 EXPORT_SYMBOL(transport_generic_request_failure);
1825
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)1826 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1827 {
1828 sense_reason_t ret;
1829
1830 if (!cmd->execute_cmd) {
1831 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1832 goto err;
1833 }
1834 if (do_checks) {
1835 /*
1836 * Check for an existing UNIT ATTENTION condition after
1837 * target_handle_task_attr() has done SAM task attr
1838 * checking, and possibly have already defered execution
1839 * out to target_restart_delayed_cmds() context.
1840 */
1841 ret = target_scsi3_ua_check(cmd);
1842 if (ret)
1843 goto err;
1844
1845 ret = target_alua_state_check(cmd);
1846 if (ret)
1847 goto err;
1848
1849 ret = target_check_reservation(cmd);
1850 if (ret) {
1851 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1852 goto err;
1853 }
1854 }
1855
1856 ret = cmd->execute_cmd(cmd);
1857 if (!ret)
1858 return;
1859 err:
1860 spin_lock_irq(&cmd->t_state_lock);
1861 cmd->transport_state &= ~CMD_T_SENT;
1862 spin_unlock_irq(&cmd->t_state_lock);
1863
1864 transport_generic_request_failure(cmd, ret);
1865 }
1866
target_write_prot_action(struct se_cmd * cmd)1867 static int target_write_prot_action(struct se_cmd *cmd)
1868 {
1869 u32 sectors;
1870 /*
1871 * Perform WRITE_INSERT of PI using software emulation when backend
1872 * device has PI enabled, if the transport has not already generated
1873 * PI using hardware WRITE_INSERT offload.
1874 */
1875 switch (cmd->prot_op) {
1876 case TARGET_PROT_DOUT_INSERT:
1877 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1878 sbc_dif_generate(cmd);
1879 break;
1880 case TARGET_PROT_DOUT_STRIP:
1881 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1882 break;
1883
1884 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1885 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1886 sectors, 0, cmd->t_prot_sg, 0);
1887 if (unlikely(cmd->pi_err)) {
1888 spin_lock_irq(&cmd->t_state_lock);
1889 cmd->transport_state &= ~CMD_T_SENT;
1890 spin_unlock_irq(&cmd->t_state_lock);
1891 transport_generic_request_failure(cmd, cmd->pi_err);
1892 return -1;
1893 }
1894 break;
1895 default:
1896 break;
1897 }
1898
1899 return 0;
1900 }
1901
target_handle_task_attr(struct se_cmd * cmd)1902 static bool target_handle_task_attr(struct se_cmd *cmd)
1903 {
1904 struct se_device *dev = cmd->se_dev;
1905
1906 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1907 return false;
1908
1909 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1910
1911 /*
1912 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1913 * to allow the passed struct se_cmd list of tasks to the front of the list.
1914 */
1915 switch (cmd->sam_task_attr) {
1916 case TCM_HEAD_TAG:
1917 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1918 cmd->t_task_cdb[0]);
1919 return false;
1920 case TCM_ORDERED_TAG:
1921 atomic_inc_mb(&dev->dev_ordered_sync);
1922
1923 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1924 cmd->t_task_cdb[0]);
1925
1926 /*
1927 * Execute an ORDERED command if no other older commands
1928 * exist that need to be completed first.
1929 */
1930 if (!atomic_read(&dev->simple_cmds))
1931 return false;
1932 break;
1933 default:
1934 /*
1935 * For SIMPLE and UNTAGGED Task Attribute commands
1936 */
1937 atomic_inc_mb(&dev->simple_cmds);
1938 break;
1939 }
1940
1941 if (atomic_read(&dev->dev_ordered_sync) == 0)
1942 return false;
1943
1944 spin_lock(&dev->delayed_cmd_lock);
1945 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1946 spin_unlock(&dev->delayed_cmd_lock);
1947
1948 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1949 cmd->t_task_cdb[0], cmd->sam_task_attr);
1950 return true;
1951 }
1952
1953 static int __transport_check_aborted_status(struct se_cmd *, int);
1954
target_execute_cmd(struct se_cmd * cmd)1955 void target_execute_cmd(struct se_cmd *cmd)
1956 {
1957 /*
1958 * Determine if frontend context caller is requesting the stopping of
1959 * this command for frontend exceptions.
1960 *
1961 * If the received CDB has aleady been aborted stop processing it here.
1962 */
1963 spin_lock_irq(&cmd->t_state_lock);
1964 if (__transport_check_aborted_status(cmd, 1)) {
1965 spin_unlock_irq(&cmd->t_state_lock);
1966 return;
1967 }
1968 if (cmd->transport_state & CMD_T_STOP) {
1969 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1970 __func__, __LINE__, cmd->tag);
1971
1972 spin_unlock_irq(&cmd->t_state_lock);
1973 complete_all(&cmd->t_transport_stop_comp);
1974 return;
1975 }
1976
1977 cmd->t_state = TRANSPORT_PROCESSING;
1978 cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1979 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1980 spin_unlock_irq(&cmd->t_state_lock);
1981
1982 if (target_write_prot_action(cmd))
1983 return;
1984
1985 if (target_handle_task_attr(cmd)) {
1986 spin_lock_irq(&cmd->t_state_lock);
1987 cmd->transport_state &= ~CMD_T_SENT;
1988 spin_unlock_irq(&cmd->t_state_lock);
1989 return;
1990 }
1991
1992 __target_execute_cmd(cmd, true);
1993 }
1994 EXPORT_SYMBOL(target_execute_cmd);
1995
1996 /*
1997 * Process all commands up to the last received ORDERED task attribute which
1998 * requires another blocking boundary
1999 */
target_restart_delayed_cmds(struct se_device * dev)2000 static void target_restart_delayed_cmds(struct se_device *dev)
2001 {
2002 for (;;) {
2003 struct se_cmd *cmd;
2004
2005 spin_lock(&dev->delayed_cmd_lock);
2006 if (list_empty(&dev->delayed_cmd_list)) {
2007 spin_unlock(&dev->delayed_cmd_lock);
2008 break;
2009 }
2010
2011 cmd = list_entry(dev->delayed_cmd_list.next,
2012 struct se_cmd, se_delayed_node);
2013 list_del(&cmd->se_delayed_node);
2014 spin_unlock(&dev->delayed_cmd_lock);
2015
2016 cmd->transport_state |= CMD_T_SENT;
2017
2018 __target_execute_cmd(cmd, true);
2019
2020 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2021 break;
2022 }
2023 }
2024
2025 /*
2026 * Called from I/O completion to determine which dormant/delayed
2027 * and ordered cmds need to have their tasks added to the execution queue.
2028 */
transport_complete_task_attr(struct se_cmd * cmd)2029 static void transport_complete_task_attr(struct se_cmd *cmd)
2030 {
2031 struct se_device *dev = cmd->se_dev;
2032
2033 if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2034 return;
2035
2036 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2037 goto restart;
2038
2039 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2040 atomic_dec_mb(&dev->simple_cmds);
2041 dev->dev_cur_ordered_id++;
2042 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2043 dev->dev_cur_ordered_id++;
2044 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2045 dev->dev_cur_ordered_id);
2046 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2047 atomic_dec_mb(&dev->dev_ordered_sync);
2048
2049 dev->dev_cur_ordered_id++;
2050 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2051 dev->dev_cur_ordered_id);
2052 }
2053 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2054
2055 restart:
2056 target_restart_delayed_cmds(dev);
2057 }
2058
transport_complete_qf(struct se_cmd * cmd)2059 static void transport_complete_qf(struct se_cmd *cmd)
2060 {
2061 int ret = 0;
2062
2063 transport_complete_task_attr(cmd);
2064 /*
2065 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2066 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2067 * the same callbacks should not be retried. Return CHECK_CONDITION
2068 * if a scsi_status is not already set.
2069 *
2070 * If a fabric driver ->queue_status() has returned non zero, always
2071 * keep retrying no matter what..
2072 */
2073 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2074 if (cmd->scsi_status)
2075 goto queue_status;
2076
2077 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2078 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2079 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2080 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2081 goto queue_status;
2082 }
2083
2084 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2085 goto queue_status;
2086
2087 switch (cmd->data_direction) {
2088 case DMA_FROM_DEVICE:
2089 if (cmd->scsi_status)
2090 goto queue_status;
2091
2092 trace_target_cmd_complete(cmd);
2093 ret = cmd->se_tfo->queue_data_in(cmd);
2094 break;
2095 case DMA_TO_DEVICE:
2096 if (cmd->se_cmd_flags & SCF_BIDI) {
2097 ret = cmd->se_tfo->queue_data_in(cmd);
2098 break;
2099 }
2100 /* Fall through for DMA_TO_DEVICE */
2101 case DMA_NONE:
2102 queue_status:
2103 trace_target_cmd_complete(cmd);
2104 ret = cmd->se_tfo->queue_status(cmd);
2105 break;
2106 default:
2107 break;
2108 }
2109
2110 if (ret < 0) {
2111 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2112 return;
2113 }
2114 transport_lun_remove_cmd(cmd);
2115 transport_cmd_check_stop_to_fabric(cmd);
2116 }
2117
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2118 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2119 int err, bool write_pending)
2120 {
2121 /*
2122 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2123 * ->queue_data_in() callbacks from new process context.
2124 *
2125 * Otherwise for other errors, transport_complete_qf() will send
2126 * CHECK_CONDITION via ->queue_status() instead of attempting to
2127 * retry associated fabric driver data-transfer callbacks.
2128 */
2129 if (err == -EAGAIN || err == -ENOMEM) {
2130 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2131 TRANSPORT_COMPLETE_QF_OK;
2132 } else {
2133 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2134 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2135 }
2136
2137 spin_lock_irq(&dev->qf_cmd_lock);
2138 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2139 atomic_inc_mb(&dev->dev_qf_count);
2140 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2141
2142 schedule_work(&cmd->se_dev->qf_work_queue);
2143 }
2144
target_read_prot_action(struct se_cmd * cmd)2145 static bool target_read_prot_action(struct se_cmd *cmd)
2146 {
2147 switch (cmd->prot_op) {
2148 case TARGET_PROT_DIN_STRIP:
2149 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2150 u32 sectors = cmd->data_length >>
2151 ilog2(cmd->se_dev->dev_attrib.block_size);
2152
2153 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2154 sectors, 0, cmd->t_prot_sg,
2155 0);
2156 if (cmd->pi_err)
2157 return true;
2158 }
2159 break;
2160 case TARGET_PROT_DIN_INSERT:
2161 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2162 break;
2163
2164 sbc_dif_generate(cmd);
2165 break;
2166 default:
2167 break;
2168 }
2169
2170 return false;
2171 }
2172
target_complete_ok_work(struct work_struct * work)2173 static void target_complete_ok_work(struct work_struct *work)
2174 {
2175 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2176 int ret;
2177
2178 /*
2179 * Check if we need to move delayed/dormant tasks from cmds on the
2180 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2181 * Attribute.
2182 */
2183 transport_complete_task_attr(cmd);
2184
2185 /*
2186 * Check to schedule QUEUE_FULL work, or execute an existing
2187 * cmd->transport_qf_callback()
2188 */
2189 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2190 schedule_work(&cmd->se_dev->qf_work_queue);
2191
2192 /*
2193 * Check if we need to send a sense buffer from
2194 * the struct se_cmd in question.
2195 */
2196 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2197 WARN_ON(!cmd->scsi_status);
2198 ret = transport_send_check_condition_and_sense(
2199 cmd, 0, 1);
2200 if (ret)
2201 goto queue_full;
2202
2203 transport_lun_remove_cmd(cmd);
2204 transport_cmd_check_stop_to_fabric(cmd);
2205 return;
2206 }
2207 /*
2208 * Check for a callback, used by amongst other things
2209 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2210 */
2211 if (cmd->transport_complete_callback) {
2212 sense_reason_t rc;
2213 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2214 bool zero_dl = !(cmd->data_length);
2215 int post_ret = 0;
2216
2217 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2218 if (!rc && !post_ret) {
2219 if (caw && zero_dl)
2220 goto queue_rsp;
2221
2222 return;
2223 } else if (rc) {
2224 ret = transport_send_check_condition_and_sense(cmd,
2225 rc, 0);
2226 if (ret)
2227 goto queue_full;
2228
2229 transport_lun_remove_cmd(cmd);
2230 transport_cmd_check_stop_to_fabric(cmd);
2231 return;
2232 }
2233 }
2234
2235 queue_rsp:
2236 switch (cmd->data_direction) {
2237 case DMA_FROM_DEVICE:
2238 if (cmd->scsi_status)
2239 goto queue_status;
2240
2241 atomic_long_add(cmd->data_length,
2242 &cmd->se_lun->lun_stats.tx_data_octets);
2243 /*
2244 * Perform READ_STRIP of PI using software emulation when
2245 * backend had PI enabled, if the transport will not be
2246 * performing hardware READ_STRIP offload.
2247 */
2248 if (target_read_prot_action(cmd)) {
2249 ret = transport_send_check_condition_and_sense(cmd,
2250 cmd->pi_err, 0);
2251 if (ret)
2252 goto queue_full;
2253
2254 transport_lun_remove_cmd(cmd);
2255 transport_cmd_check_stop_to_fabric(cmd);
2256 return;
2257 }
2258
2259 trace_target_cmd_complete(cmd);
2260 ret = cmd->se_tfo->queue_data_in(cmd);
2261 if (ret)
2262 goto queue_full;
2263 break;
2264 case DMA_TO_DEVICE:
2265 atomic_long_add(cmd->data_length,
2266 &cmd->se_lun->lun_stats.rx_data_octets);
2267 /*
2268 * Check if we need to send READ payload for BIDI-COMMAND
2269 */
2270 if (cmd->se_cmd_flags & SCF_BIDI) {
2271 atomic_long_add(cmd->data_length,
2272 &cmd->se_lun->lun_stats.tx_data_octets);
2273 ret = cmd->se_tfo->queue_data_in(cmd);
2274 if (ret)
2275 goto queue_full;
2276 break;
2277 }
2278 /* Fall through for DMA_TO_DEVICE */
2279 case DMA_NONE:
2280 queue_status:
2281 trace_target_cmd_complete(cmd);
2282 ret = cmd->se_tfo->queue_status(cmd);
2283 if (ret)
2284 goto queue_full;
2285 break;
2286 default:
2287 break;
2288 }
2289
2290 transport_lun_remove_cmd(cmd);
2291 transport_cmd_check_stop_to_fabric(cmd);
2292 return;
2293
2294 queue_full:
2295 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2296 " data_direction: %d\n", cmd, cmd->data_direction);
2297
2298 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2299 }
2300
target_free_sgl(struct scatterlist * sgl,int nents)2301 void target_free_sgl(struct scatterlist *sgl, int nents)
2302 {
2303 struct scatterlist *sg;
2304 int count;
2305
2306 for_each_sg(sgl, sg, nents, count)
2307 __free_page(sg_page(sg));
2308
2309 kfree(sgl);
2310 }
2311 EXPORT_SYMBOL(target_free_sgl);
2312
transport_reset_sgl_orig(struct se_cmd * cmd)2313 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2314 {
2315 /*
2316 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2317 * emulation, and free + reset pointers if necessary..
2318 */
2319 if (!cmd->t_data_sg_orig)
2320 return;
2321
2322 kfree(cmd->t_data_sg);
2323 cmd->t_data_sg = cmd->t_data_sg_orig;
2324 cmd->t_data_sg_orig = NULL;
2325 cmd->t_data_nents = cmd->t_data_nents_orig;
2326 cmd->t_data_nents_orig = 0;
2327 }
2328
transport_free_pages(struct se_cmd * cmd)2329 static inline void transport_free_pages(struct se_cmd *cmd)
2330 {
2331 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2332 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2333 cmd->t_prot_sg = NULL;
2334 cmd->t_prot_nents = 0;
2335 }
2336
2337 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2338 /*
2339 * Release special case READ buffer payload required for
2340 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2341 */
2342 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2343 target_free_sgl(cmd->t_bidi_data_sg,
2344 cmd->t_bidi_data_nents);
2345 cmd->t_bidi_data_sg = NULL;
2346 cmd->t_bidi_data_nents = 0;
2347 }
2348 transport_reset_sgl_orig(cmd);
2349 return;
2350 }
2351 transport_reset_sgl_orig(cmd);
2352
2353 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2354 cmd->t_data_sg = NULL;
2355 cmd->t_data_nents = 0;
2356
2357 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2358 cmd->t_bidi_data_sg = NULL;
2359 cmd->t_bidi_data_nents = 0;
2360 }
2361
2362 /**
2363 * transport_put_cmd - release a reference to a command
2364 * @cmd: command to release
2365 *
2366 * This routine releases our reference to the command and frees it if possible.
2367 */
transport_put_cmd(struct se_cmd * cmd)2368 static int transport_put_cmd(struct se_cmd *cmd)
2369 {
2370 BUG_ON(!cmd->se_tfo);
2371 /*
2372 * If this cmd has been setup with target_get_sess_cmd(), drop
2373 * the kref and call ->release_cmd() in kref callback.
2374 */
2375 return target_put_sess_cmd(cmd);
2376 }
2377
transport_kmap_data_sg(struct se_cmd * cmd)2378 void *transport_kmap_data_sg(struct se_cmd *cmd)
2379 {
2380 struct scatterlist *sg = cmd->t_data_sg;
2381 struct page **pages;
2382 int i;
2383
2384 /*
2385 * We need to take into account a possible offset here for fabrics like
2386 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2387 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2388 */
2389 if (!cmd->t_data_nents)
2390 return NULL;
2391
2392 BUG_ON(!sg);
2393 if (cmd->t_data_nents == 1)
2394 return kmap(sg_page(sg)) + sg->offset;
2395
2396 /* >1 page. use vmap */
2397 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2398 if (!pages)
2399 return NULL;
2400
2401 /* convert sg[] to pages[] */
2402 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2403 pages[i] = sg_page(sg);
2404 }
2405
2406 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2407 kfree(pages);
2408 if (!cmd->t_data_vmap)
2409 return NULL;
2410
2411 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2412 }
2413 EXPORT_SYMBOL(transport_kmap_data_sg);
2414
transport_kunmap_data_sg(struct se_cmd * cmd)2415 void transport_kunmap_data_sg(struct se_cmd *cmd)
2416 {
2417 if (!cmd->t_data_nents) {
2418 return;
2419 } else if (cmd->t_data_nents == 1) {
2420 kunmap(sg_page(cmd->t_data_sg));
2421 return;
2422 }
2423
2424 vunmap(cmd->t_data_vmap);
2425 cmd->t_data_vmap = NULL;
2426 }
2427 EXPORT_SYMBOL(transport_kunmap_data_sg);
2428
2429 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2430 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2431 bool zero_page, bool chainable)
2432 {
2433 struct scatterlist *sg;
2434 struct page *page;
2435 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2436 unsigned int nalloc, nent;
2437 int i = 0;
2438
2439 nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2440 if (chainable)
2441 nalloc++;
2442 sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2443 if (!sg)
2444 return -ENOMEM;
2445
2446 sg_init_table(sg, nalloc);
2447
2448 while (length) {
2449 u32 page_len = min_t(u32, length, PAGE_SIZE);
2450 page = alloc_page(GFP_KERNEL | zero_flag);
2451 if (!page)
2452 goto out;
2453
2454 sg_set_page(&sg[i], page, page_len, 0);
2455 length -= page_len;
2456 i++;
2457 }
2458 *sgl = sg;
2459 *nents = nent;
2460 return 0;
2461
2462 out:
2463 while (i > 0) {
2464 i--;
2465 __free_page(sg_page(&sg[i]));
2466 }
2467 kfree(sg);
2468 return -ENOMEM;
2469 }
2470 EXPORT_SYMBOL(target_alloc_sgl);
2471
2472 /*
2473 * Allocate any required resources to execute the command. For writes we
2474 * might not have the payload yet, so notify the fabric via a call to
2475 * ->write_pending instead. Otherwise place it on the execution queue.
2476 */
2477 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2478 transport_generic_new_cmd(struct se_cmd *cmd)
2479 {
2480 unsigned long flags;
2481 int ret = 0;
2482 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2483
2484 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2485 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2486 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2487 cmd->prot_length, true, false);
2488 if (ret < 0)
2489 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2490 }
2491
2492 /*
2493 * Determine is the TCM fabric module has already allocated physical
2494 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2495 * beforehand.
2496 */
2497 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2498 cmd->data_length) {
2499
2500 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2501 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2502 u32 bidi_length;
2503
2504 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2505 bidi_length = cmd->t_task_nolb *
2506 cmd->se_dev->dev_attrib.block_size;
2507 else
2508 bidi_length = cmd->data_length;
2509
2510 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2511 &cmd->t_bidi_data_nents,
2512 bidi_length, zero_flag, false);
2513 if (ret < 0)
2514 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2515 }
2516
2517 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2518 cmd->data_length, zero_flag, false);
2519 if (ret < 0)
2520 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2521 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2522 cmd->data_length) {
2523 /*
2524 * Special case for COMPARE_AND_WRITE with fabrics
2525 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2526 */
2527 u32 caw_length = cmd->t_task_nolb *
2528 cmd->se_dev->dev_attrib.block_size;
2529
2530 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2531 &cmd->t_bidi_data_nents,
2532 caw_length, zero_flag, false);
2533 if (ret < 0)
2534 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2535 }
2536 /*
2537 * If this command is not a write we can execute it right here,
2538 * for write buffers we need to notify the fabric driver first
2539 * and let it call back once the write buffers are ready.
2540 */
2541 target_add_to_state_list(cmd);
2542 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2543 target_execute_cmd(cmd);
2544 return 0;
2545 }
2546
2547 spin_lock_irqsave(&cmd->t_state_lock, flags);
2548 cmd->t_state = TRANSPORT_WRITE_PENDING;
2549 /*
2550 * Determine if frontend context caller is requesting the stopping of
2551 * this command for frontend exceptions.
2552 */
2553 if (cmd->transport_state & CMD_T_STOP) {
2554 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2555 __func__, __LINE__, cmd->tag);
2556
2557 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2558
2559 complete_all(&cmd->t_transport_stop_comp);
2560 return 0;
2561 }
2562 cmd->transport_state &= ~CMD_T_ACTIVE;
2563 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2564
2565 ret = cmd->se_tfo->write_pending(cmd);
2566 if (ret)
2567 goto queue_full;
2568
2569 return 0;
2570
2571 queue_full:
2572 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2573 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2574 return 0;
2575 }
2576 EXPORT_SYMBOL(transport_generic_new_cmd);
2577
transport_write_pending_qf(struct se_cmd * cmd)2578 static void transport_write_pending_qf(struct se_cmd *cmd)
2579 {
2580 unsigned long flags;
2581 int ret;
2582 bool stop;
2583
2584 spin_lock_irqsave(&cmd->t_state_lock, flags);
2585 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2586 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2587
2588 if (stop) {
2589 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2590 __func__, __LINE__, cmd->tag);
2591 complete_all(&cmd->t_transport_stop_comp);
2592 return;
2593 }
2594
2595 ret = cmd->se_tfo->write_pending(cmd);
2596 if (ret) {
2597 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2598 cmd);
2599 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2600 }
2601 }
2602
2603 static bool
2604 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2605 unsigned long *flags);
2606
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2607 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2608 {
2609 unsigned long flags;
2610
2611 spin_lock_irqsave(&cmd->t_state_lock, flags);
2612 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2613 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2614 }
2615
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2616 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2617 {
2618 int ret = 0;
2619 bool aborted = false, tas = false;
2620
2621 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2622 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2623 target_wait_free_cmd(cmd, &aborted, &tas);
2624
2625 if (!aborted || tas)
2626 ret = transport_put_cmd(cmd);
2627 } else {
2628 if (wait_for_tasks)
2629 target_wait_free_cmd(cmd, &aborted, &tas);
2630 /*
2631 * Handle WRITE failure case where transport_generic_new_cmd()
2632 * has already added se_cmd to state_list, but fabric has
2633 * failed command before I/O submission.
2634 */
2635 if (cmd->state_active)
2636 target_remove_from_state_list(cmd);
2637
2638 if (cmd->se_lun)
2639 transport_lun_remove_cmd(cmd);
2640
2641 if (!aborted || tas)
2642 ret = transport_put_cmd(cmd);
2643 }
2644 /*
2645 * If the task has been internally aborted due to TMR ABORT_TASK
2646 * or LUN_RESET, target_core_tmr.c is responsible for performing
2647 * the remaining calls to target_put_sess_cmd(), and not the
2648 * callers of this function.
2649 */
2650 if (aborted) {
2651 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2652 wait_for_completion(&cmd->cmd_wait_comp);
2653 cmd->se_tfo->release_cmd(cmd);
2654 ret = 1;
2655 }
2656 return ret;
2657 }
2658 EXPORT_SYMBOL(transport_generic_free_cmd);
2659
2660 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2661 * @se_cmd: command descriptor to add
2662 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2663 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2664 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2665 {
2666 struct se_session *se_sess = se_cmd->se_sess;
2667 unsigned long flags;
2668 int ret = 0;
2669
2670 /*
2671 * Add a second kref if the fabric caller is expecting to handle
2672 * fabric acknowledgement that requires two target_put_sess_cmd()
2673 * invocations before se_cmd descriptor release.
2674 */
2675 if (ack_kref) {
2676 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2677 return -EINVAL;
2678
2679 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2680 }
2681
2682 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2683 if (se_sess->sess_tearing_down) {
2684 ret = -ESHUTDOWN;
2685 goto out;
2686 }
2687 se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2688 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2689 out:
2690 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2691
2692 if (ret && ack_kref)
2693 target_put_sess_cmd(se_cmd);
2694
2695 return ret;
2696 }
2697 EXPORT_SYMBOL(target_get_sess_cmd);
2698
target_free_cmd_mem(struct se_cmd * cmd)2699 static void target_free_cmd_mem(struct se_cmd *cmd)
2700 {
2701 transport_free_pages(cmd);
2702
2703 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2704 core_tmr_release_req(cmd->se_tmr_req);
2705 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2706 kfree(cmd->t_task_cdb);
2707 }
2708
target_release_cmd_kref(struct kref * kref)2709 static void target_release_cmd_kref(struct kref *kref)
2710 {
2711 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2712 struct se_session *se_sess = se_cmd->se_sess;
2713 unsigned long flags;
2714 bool fabric_stop;
2715
2716 if (se_sess) {
2717 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2718
2719 spin_lock(&se_cmd->t_state_lock);
2720 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2721 (se_cmd->transport_state & CMD_T_ABORTED);
2722 spin_unlock(&se_cmd->t_state_lock);
2723
2724 if (se_cmd->cmd_wait_set || fabric_stop) {
2725 list_del_init(&se_cmd->se_cmd_list);
2726 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2727 target_free_cmd_mem(se_cmd);
2728 complete(&se_cmd->cmd_wait_comp);
2729 return;
2730 }
2731 list_del_init(&se_cmd->se_cmd_list);
2732 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2733 }
2734
2735 target_free_cmd_mem(se_cmd);
2736 se_cmd->se_tfo->release_cmd(se_cmd);
2737 }
2738
2739 /**
2740 * target_put_sess_cmd - decrease the command reference count
2741 * @se_cmd: command to drop a reference from
2742 *
2743 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2744 * refcount to drop to zero. Returns zero otherwise.
2745 */
target_put_sess_cmd(struct se_cmd * se_cmd)2746 int target_put_sess_cmd(struct se_cmd *se_cmd)
2747 {
2748 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2749 }
2750 EXPORT_SYMBOL(target_put_sess_cmd);
2751
data_dir_name(enum dma_data_direction d)2752 static const char *data_dir_name(enum dma_data_direction d)
2753 {
2754 switch (d) {
2755 case DMA_BIDIRECTIONAL: return "BIDI";
2756 case DMA_TO_DEVICE: return "WRITE";
2757 case DMA_FROM_DEVICE: return "READ";
2758 case DMA_NONE: return "NONE";
2759 }
2760
2761 return "(?)";
2762 }
2763
cmd_state_name(enum transport_state_table t)2764 static const char *cmd_state_name(enum transport_state_table t)
2765 {
2766 switch (t) {
2767 case TRANSPORT_NO_STATE: return "NO_STATE";
2768 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2769 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2770 case TRANSPORT_PROCESSING: return "PROCESSING";
2771 case TRANSPORT_COMPLETE: return "COMPLETE";
2772 case TRANSPORT_ISTATE_PROCESSING:
2773 return "ISTATE_PROCESSING";
2774 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2775 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2776 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2777 }
2778
2779 return "(?)";
2780 }
2781
target_append_str(char ** str,const char * txt)2782 static void target_append_str(char **str, const char *txt)
2783 {
2784 char *prev = *str;
2785
2786 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2787 kstrdup(txt, GFP_ATOMIC);
2788 kfree(prev);
2789 }
2790
2791 /*
2792 * Convert a transport state bitmask into a string. The caller is
2793 * responsible for freeing the returned pointer.
2794 */
target_ts_to_str(u32 ts)2795 static char *target_ts_to_str(u32 ts)
2796 {
2797 char *str = NULL;
2798
2799 if (ts & CMD_T_ABORTED)
2800 target_append_str(&str, "aborted");
2801 if (ts & CMD_T_ACTIVE)
2802 target_append_str(&str, "active");
2803 if (ts & CMD_T_COMPLETE)
2804 target_append_str(&str, "complete");
2805 if (ts & CMD_T_SENT)
2806 target_append_str(&str, "sent");
2807 if (ts & CMD_T_STOP)
2808 target_append_str(&str, "stop");
2809 if (ts & CMD_T_FABRIC_STOP)
2810 target_append_str(&str, "fabric_stop");
2811
2812 return str;
2813 }
2814
target_tmf_name(enum tcm_tmreq_table tmf)2815 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2816 {
2817 switch (tmf) {
2818 case TMR_ABORT_TASK: return "ABORT_TASK";
2819 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
2820 case TMR_CLEAR_ACA: return "CLEAR_ACA";
2821 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
2822 case TMR_LUN_RESET: return "LUN_RESET";
2823 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
2824 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
2825 case TMR_UNKNOWN: break;
2826 }
2827 return "(?)";
2828 }
2829
target_show_cmd(const char * pfx,struct se_cmd * cmd)2830 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2831 {
2832 char *ts_str = target_ts_to_str(cmd->transport_state);
2833 const u8 *cdb = cmd->t_task_cdb;
2834 struct se_tmr_req *tmf = cmd->se_tmr_req;
2835
2836 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2837 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2838 pfx, cdb[0], cdb[1], cmd->tag,
2839 data_dir_name(cmd->data_direction),
2840 cmd->se_tfo->get_cmd_state(cmd),
2841 cmd_state_name(cmd->t_state), cmd->data_length,
2842 kref_read(&cmd->cmd_kref), ts_str);
2843 } else {
2844 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2845 pfx, target_tmf_name(tmf->function), cmd->tag,
2846 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2847 cmd_state_name(cmd->t_state),
2848 kref_read(&cmd->cmd_kref), ts_str);
2849 }
2850 kfree(ts_str);
2851 }
2852 EXPORT_SYMBOL(target_show_cmd);
2853
2854 /* target_sess_cmd_list_set_waiting - Flag all commands in
2855 * sess_cmd_list to complete cmd_wait_comp. Set
2856 * sess_tearing_down so no more commands are queued.
2857 * @se_sess: session to flag
2858 */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2859 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2860 {
2861 struct se_cmd *se_cmd, *tmp_cmd;
2862 unsigned long flags;
2863 int rc;
2864
2865 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2866 if (se_sess->sess_tearing_down) {
2867 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2868 return;
2869 }
2870 se_sess->sess_tearing_down = 1;
2871 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2872
2873 list_for_each_entry_safe(se_cmd, tmp_cmd,
2874 &se_sess->sess_wait_list, se_cmd_list) {
2875 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2876 if (rc) {
2877 se_cmd->cmd_wait_set = 1;
2878 spin_lock(&se_cmd->t_state_lock);
2879 se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2880 spin_unlock(&se_cmd->t_state_lock);
2881 } else
2882 list_del_init(&se_cmd->se_cmd_list);
2883 }
2884
2885 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2886 }
2887 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2888
2889 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2890 * @se_sess: session to wait for active I/O
2891 */
target_wait_for_sess_cmds(struct se_session * se_sess)2892 void target_wait_for_sess_cmds(struct se_session *se_sess)
2893 {
2894 struct se_cmd *se_cmd, *tmp_cmd;
2895 unsigned long flags;
2896 bool tas;
2897
2898 list_for_each_entry_safe(se_cmd, tmp_cmd,
2899 &se_sess->sess_wait_list, se_cmd_list) {
2900 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2901 " %d\n", se_cmd, se_cmd->t_state,
2902 se_cmd->se_tfo->get_cmd_state(se_cmd));
2903
2904 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2905 tas = (se_cmd->transport_state & CMD_T_TAS);
2906 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2907
2908 if (!target_put_sess_cmd(se_cmd)) {
2909 if (tas)
2910 target_put_sess_cmd(se_cmd);
2911 }
2912
2913 wait_for_completion(&se_cmd->cmd_wait_comp);
2914 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2915 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2916 se_cmd->se_tfo->get_cmd_state(se_cmd));
2917
2918 se_cmd->se_tfo->release_cmd(se_cmd);
2919 }
2920
2921 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2922 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2923 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2924
2925 }
2926 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2927
target_lun_confirm(struct percpu_ref * ref)2928 static void target_lun_confirm(struct percpu_ref *ref)
2929 {
2930 struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2931
2932 complete(&lun->lun_ref_comp);
2933 }
2934
transport_clear_lun_ref(struct se_lun * lun)2935 void transport_clear_lun_ref(struct se_lun *lun)
2936 {
2937 /*
2938 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2939 * the initial reference and schedule confirm kill to be
2940 * executed after one full RCU grace period has completed.
2941 */
2942 percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2943 /*
2944 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2945 * to call target_lun_confirm after lun->lun_ref has been marked
2946 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2947 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2948 * fails for all new incoming I/O.
2949 */
2950 wait_for_completion(&lun->lun_ref_comp);
2951 /*
2952 * The second completion waits for percpu_ref_put_many() to
2953 * invoke ->release() after lun->lun_ref has switched to
2954 * atomic_t mode, and lun->lun_ref.count has reached zero.
2955 *
2956 * At this point all target-core lun->lun_ref references have
2957 * been dropped via transport_lun_remove_cmd(), and it's safe
2958 * to proceed with the remaining LUN shutdown.
2959 */
2960 wait_for_completion(&lun->lun_shutdown_comp);
2961 }
2962
2963 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2964 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2965 bool *aborted, bool *tas, unsigned long *flags)
2966 __releases(&cmd->t_state_lock)
2967 __acquires(&cmd->t_state_lock)
2968 {
2969
2970 assert_spin_locked(&cmd->t_state_lock);
2971 WARN_ON_ONCE(!irqs_disabled());
2972
2973 if (fabric_stop)
2974 cmd->transport_state |= CMD_T_FABRIC_STOP;
2975
2976 if (cmd->transport_state & CMD_T_ABORTED)
2977 *aborted = true;
2978
2979 if (cmd->transport_state & CMD_T_TAS)
2980 *tas = true;
2981
2982 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2983 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2984 return false;
2985
2986 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2987 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2988 return false;
2989
2990 if (!(cmd->transport_state & CMD_T_ACTIVE))
2991 return false;
2992
2993 if (fabric_stop && *aborted)
2994 return false;
2995
2996 cmd->transport_state |= CMD_T_STOP;
2997
2998 target_show_cmd("wait_for_tasks: Stopping ", cmd);
2999
3000 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3001
3002 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3003 180 * HZ))
3004 target_show_cmd("wait for tasks: ", cmd);
3005
3006 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3007 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3008
3009 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3010 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3011
3012 return true;
3013 }
3014
3015 /**
3016 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3017 * @cmd: command to wait on
3018 */
transport_wait_for_tasks(struct se_cmd * cmd)3019 bool transport_wait_for_tasks(struct se_cmd *cmd)
3020 {
3021 unsigned long flags;
3022 bool ret, aborted = false, tas = false;
3023
3024 spin_lock_irqsave(&cmd->t_state_lock, flags);
3025 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3026 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3027
3028 return ret;
3029 }
3030 EXPORT_SYMBOL(transport_wait_for_tasks);
3031
3032 struct sense_info {
3033 u8 key;
3034 u8 asc;
3035 u8 ascq;
3036 bool add_sector_info;
3037 };
3038
3039 static const struct sense_info sense_info_table[] = {
3040 [TCM_NO_SENSE] = {
3041 .key = NOT_READY
3042 },
3043 [TCM_NON_EXISTENT_LUN] = {
3044 .key = ILLEGAL_REQUEST,
3045 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3046 },
3047 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3048 .key = ILLEGAL_REQUEST,
3049 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3050 },
3051 [TCM_SECTOR_COUNT_TOO_MANY] = {
3052 .key = ILLEGAL_REQUEST,
3053 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3054 },
3055 [TCM_UNKNOWN_MODE_PAGE] = {
3056 .key = ILLEGAL_REQUEST,
3057 .asc = 0x24, /* INVALID FIELD IN CDB */
3058 },
3059 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3060 .key = ABORTED_COMMAND,
3061 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3062 .ascq = 0x03,
3063 },
3064 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3065 .key = ABORTED_COMMAND,
3066 .asc = 0x0c, /* WRITE ERROR */
3067 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3068 },
3069 [TCM_INVALID_CDB_FIELD] = {
3070 .key = ILLEGAL_REQUEST,
3071 .asc = 0x24, /* INVALID FIELD IN CDB */
3072 },
3073 [TCM_INVALID_PARAMETER_LIST] = {
3074 .key = ILLEGAL_REQUEST,
3075 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3076 },
3077 [TCM_TOO_MANY_TARGET_DESCS] = {
3078 .key = ILLEGAL_REQUEST,
3079 .asc = 0x26,
3080 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3081 },
3082 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3083 .key = ILLEGAL_REQUEST,
3084 .asc = 0x26,
3085 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3086 },
3087 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3088 .key = ILLEGAL_REQUEST,
3089 .asc = 0x26,
3090 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3091 },
3092 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3093 .key = ILLEGAL_REQUEST,
3094 .asc = 0x26,
3095 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3096 },
3097 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3098 .key = ILLEGAL_REQUEST,
3099 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3100 },
3101 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3102 .key = ILLEGAL_REQUEST,
3103 .asc = 0x0c, /* WRITE ERROR */
3104 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3105 },
3106 [TCM_SERVICE_CRC_ERROR] = {
3107 .key = ABORTED_COMMAND,
3108 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3109 .ascq = 0x05, /* N/A */
3110 },
3111 [TCM_SNACK_REJECTED] = {
3112 .key = ABORTED_COMMAND,
3113 .asc = 0x11, /* READ ERROR */
3114 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3115 },
3116 [TCM_WRITE_PROTECTED] = {
3117 .key = DATA_PROTECT,
3118 .asc = 0x27, /* WRITE PROTECTED */
3119 },
3120 [TCM_ADDRESS_OUT_OF_RANGE] = {
3121 .key = ILLEGAL_REQUEST,
3122 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3123 },
3124 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3125 .key = UNIT_ATTENTION,
3126 },
3127 [TCM_CHECK_CONDITION_NOT_READY] = {
3128 .key = NOT_READY,
3129 },
3130 [TCM_MISCOMPARE_VERIFY] = {
3131 .key = MISCOMPARE,
3132 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3133 .ascq = 0x00,
3134 },
3135 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3136 .key = ABORTED_COMMAND,
3137 .asc = 0x10,
3138 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3139 .add_sector_info = true,
3140 },
3141 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3142 .key = ABORTED_COMMAND,
3143 .asc = 0x10,
3144 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3145 .add_sector_info = true,
3146 },
3147 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3148 .key = ABORTED_COMMAND,
3149 .asc = 0x10,
3150 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3151 .add_sector_info = true,
3152 },
3153 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3154 .key = COPY_ABORTED,
3155 .asc = 0x0d,
3156 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3157
3158 },
3159 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3160 /*
3161 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3162 * Solaris initiators. Returning NOT READY instead means the
3163 * operations will be retried a finite number of times and we
3164 * can survive intermittent errors.
3165 */
3166 .key = NOT_READY,
3167 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3168 },
3169 };
3170
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3171 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3172 {
3173 const struct sense_info *si;
3174 u8 *buffer = cmd->sense_buffer;
3175 int r = (__force int)reason;
3176 u8 asc, ascq;
3177 bool desc_format = target_sense_desc_format(cmd->se_dev);
3178
3179 if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3180 si = &sense_info_table[r];
3181 else
3182 si = &sense_info_table[(__force int)
3183 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3184
3185 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3186 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3187 WARN_ON_ONCE(asc == 0);
3188 } else if (si->asc == 0) {
3189 WARN_ON_ONCE(cmd->scsi_asc == 0);
3190 asc = cmd->scsi_asc;
3191 ascq = cmd->scsi_ascq;
3192 } else {
3193 asc = si->asc;
3194 ascq = si->ascq;
3195 }
3196
3197 scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3198 if (si->add_sector_info)
3199 return scsi_set_sense_information(buffer,
3200 cmd->scsi_sense_length,
3201 cmd->bad_sector);
3202
3203 return 0;
3204 }
3205
3206 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3207 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3208 sense_reason_t reason, int from_transport)
3209 {
3210 unsigned long flags;
3211
3212 spin_lock_irqsave(&cmd->t_state_lock, flags);
3213 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3214 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3215 return 0;
3216 }
3217 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3218 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3219
3220 if (!from_transport) {
3221 int rc;
3222
3223 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3224 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3225 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3226 rc = translate_sense_reason(cmd, reason);
3227 if (rc)
3228 return rc;
3229 }
3230
3231 trace_target_cmd_complete(cmd);
3232 return cmd->se_tfo->queue_status(cmd);
3233 }
3234 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3235
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)3236 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3237 __releases(&cmd->t_state_lock)
3238 __acquires(&cmd->t_state_lock)
3239 {
3240 int ret;
3241
3242 assert_spin_locked(&cmd->t_state_lock);
3243 WARN_ON_ONCE(!irqs_disabled());
3244
3245 if (!(cmd->transport_state & CMD_T_ABORTED))
3246 return 0;
3247 /*
3248 * If cmd has been aborted but either no status is to be sent or it has
3249 * already been sent, just return
3250 */
3251 if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3252 if (send_status)
3253 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3254 return 1;
3255 }
3256
3257 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3258 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3259
3260 cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3261 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3262 trace_target_cmd_complete(cmd);
3263
3264 spin_unlock_irq(&cmd->t_state_lock);
3265 ret = cmd->se_tfo->queue_status(cmd);
3266 if (ret)
3267 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3268 spin_lock_irq(&cmd->t_state_lock);
3269
3270 return 1;
3271 }
3272
transport_check_aborted_status(struct se_cmd * cmd,int send_status)3273 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3274 {
3275 int ret;
3276
3277 spin_lock_irq(&cmd->t_state_lock);
3278 ret = __transport_check_aborted_status(cmd, send_status);
3279 spin_unlock_irq(&cmd->t_state_lock);
3280
3281 return ret;
3282 }
3283 EXPORT_SYMBOL(transport_check_aborted_status);
3284
transport_send_task_abort(struct se_cmd * cmd)3285 void transport_send_task_abort(struct se_cmd *cmd)
3286 {
3287 unsigned long flags;
3288 int ret;
3289
3290 spin_lock_irqsave(&cmd->t_state_lock, flags);
3291 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3292 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3293 return;
3294 }
3295 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3296
3297 /*
3298 * If there are still expected incoming fabric WRITEs, we wait
3299 * until until they have completed before sending a TASK_ABORTED
3300 * response. This response with TASK_ABORTED status will be
3301 * queued back to fabric module by transport_check_aborted_status().
3302 */
3303 if (cmd->data_direction == DMA_TO_DEVICE) {
3304 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3305 spin_lock_irqsave(&cmd->t_state_lock, flags);
3306 if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3307 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3308 goto send_abort;
3309 }
3310 cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3311 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3312 return;
3313 }
3314 }
3315 send_abort:
3316 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3317
3318 transport_lun_remove_cmd(cmd);
3319
3320 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3321 cmd->t_task_cdb[0], cmd->tag);
3322
3323 trace_target_cmd_complete(cmd);
3324 ret = cmd->se_tfo->queue_status(cmd);
3325 if (ret)
3326 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3327 }
3328
target_tmr_work(struct work_struct * work)3329 static void target_tmr_work(struct work_struct *work)
3330 {
3331 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3332 struct se_device *dev = cmd->se_dev;
3333 struct se_tmr_req *tmr = cmd->se_tmr_req;
3334 unsigned long flags;
3335 int ret;
3336
3337 spin_lock_irqsave(&cmd->t_state_lock, flags);
3338 if (cmd->transport_state & CMD_T_ABORTED) {
3339 tmr->response = TMR_FUNCTION_REJECTED;
3340 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3341 goto check_stop;
3342 }
3343 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3344
3345 switch (tmr->function) {
3346 case TMR_ABORT_TASK:
3347 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3348 break;
3349 case TMR_ABORT_TASK_SET:
3350 case TMR_CLEAR_ACA:
3351 case TMR_CLEAR_TASK_SET:
3352 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3353 break;
3354 case TMR_LUN_RESET:
3355 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3356 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3357 TMR_FUNCTION_REJECTED;
3358 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3359 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3360 cmd->orig_fe_lun, 0x29,
3361 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3362 }
3363 break;
3364 case TMR_TARGET_WARM_RESET:
3365 tmr->response = TMR_FUNCTION_REJECTED;
3366 break;
3367 case TMR_TARGET_COLD_RESET:
3368 tmr->response = TMR_FUNCTION_REJECTED;
3369 break;
3370 default:
3371 pr_err("Uknown TMR function: 0x%02x.\n",
3372 tmr->function);
3373 tmr->response = TMR_FUNCTION_REJECTED;
3374 break;
3375 }
3376
3377 spin_lock_irqsave(&cmd->t_state_lock, flags);
3378 if (cmd->transport_state & CMD_T_ABORTED) {
3379 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3380 goto check_stop;
3381 }
3382 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3383
3384 cmd->se_tfo->queue_tm_rsp(cmd);
3385
3386 check_stop:
3387 transport_lun_remove_cmd(cmd);
3388 transport_cmd_check_stop_to_fabric(cmd);
3389 }
3390
transport_generic_handle_tmr(struct se_cmd * cmd)3391 int transport_generic_handle_tmr(
3392 struct se_cmd *cmd)
3393 {
3394 unsigned long flags;
3395 bool aborted = false;
3396
3397 spin_lock_irqsave(&cmd->t_state_lock, flags);
3398 if (cmd->transport_state & CMD_T_ABORTED) {
3399 aborted = true;
3400 } else {
3401 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3402 cmd->transport_state |= CMD_T_ACTIVE;
3403 }
3404 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3405
3406 if (aborted) {
3407 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3408 "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3409 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3410 transport_lun_remove_cmd(cmd);
3411 transport_cmd_check_stop_to_fabric(cmd);
3412 return 0;
3413 }
3414
3415 INIT_WORK(&cmd->work, target_tmr_work);
3416 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3417 return 0;
3418 }
3419 EXPORT_SYMBOL(transport_generic_handle_tmr);
3420
3421 bool
target_check_wce(struct se_device * dev)3422 target_check_wce(struct se_device *dev)
3423 {
3424 bool wce = false;
3425
3426 if (dev->transport->get_write_cache)
3427 wce = dev->transport->get_write_cache(dev);
3428 else if (dev->dev_attrib.emulate_write_cache > 0)
3429 wce = true;
3430
3431 return wce;
3432 }
3433
3434 bool
target_check_fua(struct se_device * dev)3435 target_check_fua(struct se_device *dev)
3436 {
3437 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3438 }
3439