• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55 
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65 
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 		struct se_device *dev, int err, bool write_pending);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72 
init_se_kmem_caches(void)73 int init_se_kmem_caches(void)
74 {
75 	se_sess_cache = kmem_cache_create("se_sess_cache",
76 			sizeof(struct se_session), __alignof__(struct se_session),
77 			0, NULL);
78 	if (!se_sess_cache) {
79 		pr_err("kmem_cache_create() for struct se_session"
80 				" failed\n");
81 		goto out;
82 	}
83 	se_ua_cache = kmem_cache_create("se_ua_cache",
84 			sizeof(struct se_ua), __alignof__(struct se_ua),
85 			0, NULL);
86 	if (!se_ua_cache) {
87 		pr_err("kmem_cache_create() for struct se_ua failed\n");
88 		goto out_free_sess_cache;
89 	}
90 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 			sizeof(struct t10_pr_registration),
92 			__alignof__(struct t10_pr_registration), 0, NULL);
93 	if (!t10_pr_reg_cache) {
94 		pr_err("kmem_cache_create() for struct t10_pr_registration"
95 				" failed\n");
96 		goto out_free_ua_cache;
97 	}
98 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 			0, NULL);
101 	if (!t10_alua_lu_gp_cache) {
102 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 				" failed\n");
104 		goto out_free_pr_reg_cache;
105 	}
106 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 			sizeof(struct t10_alua_lu_gp_member),
108 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 	if (!t10_alua_lu_gp_mem_cache) {
110 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 				"cache failed\n");
112 		goto out_free_lu_gp_cache;
113 	}
114 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 			sizeof(struct t10_alua_tg_pt_gp),
116 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 	if (!t10_alua_tg_pt_gp_cache) {
118 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 				"cache failed\n");
120 		goto out_free_lu_gp_mem_cache;
121 	}
122 	t10_alua_lba_map_cache = kmem_cache_create(
123 			"t10_alua_lba_map_cache",
124 			sizeof(struct t10_alua_lba_map),
125 			__alignof__(struct t10_alua_lba_map), 0, NULL);
126 	if (!t10_alua_lba_map_cache) {
127 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 				"cache failed\n");
129 		goto out_free_tg_pt_gp_cache;
130 	}
131 	t10_alua_lba_map_mem_cache = kmem_cache_create(
132 			"t10_alua_lba_map_mem_cache",
133 			sizeof(struct t10_alua_lba_map_member),
134 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
135 	if (!t10_alua_lba_map_mem_cache) {
136 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 				"cache failed\n");
138 		goto out_free_lba_map_cache;
139 	}
140 
141 	target_completion_wq = alloc_workqueue("target_completion",
142 					       WQ_MEM_RECLAIM, 0);
143 	if (!target_completion_wq)
144 		goto out_free_lba_map_mem_cache;
145 
146 	return 0;
147 
148 out_free_lba_map_mem_cache:
149 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
150 out_free_lba_map_cache:
151 	kmem_cache_destroy(t10_alua_lba_map_cache);
152 out_free_tg_pt_gp_cache:
153 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
154 out_free_lu_gp_mem_cache:
155 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
156 out_free_lu_gp_cache:
157 	kmem_cache_destroy(t10_alua_lu_gp_cache);
158 out_free_pr_reg_cache:
159 	kmem_cache_destroy(t10_pr_reg_cache);
160 out_free_ua_cache:
161 	kmem_cache_destroy(se_ua_cache);
162 out_free_sess_cache:
163 	kmem_cache_destroy(se_sess_cache);
164 out:
165 	return -ENOMEM;
166 }
167 
release_se_kmem_caches(void)168 void release_se_kmem_caches(void)
169 {
170 	destroy_workqueue(target_completion_wq);
171 	kmem_cache_destroy(se_sess_cache);
172 	kmem_cache_destroy(se_ua_cache);
173 	kmem_cache_destroy(t10_pr_reg_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_cache);
175 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
176 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177 	kmem_cache_destroy(t10_alua_lba_map_cache);
178 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 }
180 
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock);
183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184 
185 /*
186  * Allocate a new row index for the entry type specified
187  */
scsi_get_new_index(scsi_index_t type)188 u32 scsi_get_new_index(scsi_index_t type)
189 {
190 	u32 new_index;
191 
192 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193 
194 	spin_lock(&scsi_mib_index_lock);
195 	new_index = ++scsi_mib_index[type];
196 	spin_unlock(&scsi_mib_index_lock);
197 
198 	return new_index;
199 }
200 
transport_subsystem_check_init(void)201 void transport_subsystem_check_init(void)
202 {
203 	int ret;
204 	static int sub_api_initialized;
205 
206 	if (sub_api_initialized)
207 		return;
208 
209 	ret = request_module("target_core_iblock");
210 	if (ret != 0)
211 		pr_err("Unable to load target_core_iblock\n");
212 
213 	ret = request_module("target_core_file");
214 	if (ret != 0)
215 		pr_err("Unable to load target_core_file\n");
216 
217 	ret = request_module("target_core_pscsi");
218 	if (ret != 0)
219 		pr_err("Unable to load target_core_pscsi\n");
220 
221 	ret = request_module("target_core_user");
222 	if (ret != 0)
223 		pr_err("Unable to load target_core_user\n");
224 
225 	sub_api_initialized = 1;
226 }
227 
transport_init_session(enum target_prot_op sup_prot_ops)228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 {
230 	struct se_session *se_sess;
231 
232 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233 	if (!se_sess) {
234 		pr_err("Unable to allocate struct se_session from"
235 				" se_sess_cache\n");
236 		return ERR_PTR(-ENOMEM);
237 	}
238 	INIT_LIST_HEAD(&se_sess->sess_list);
239 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
242 	spin_lock_init(&se_sess->sess_cmd_lock);
243 	se_sess->sup_prot_ops = sup_prot_ops;
244 
245 	return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248 
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)249 int transport_alloc_session_tags(struct se_session *se_sess,
250 			         unsigned int tag_num, unsigned int tag_size)
251 {
252 	int rc;
253 
254 	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255 					GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
256 	if (!se_sess->sess_cmd_map) {
257 		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258 		if (!se_sess->sess_cmd_map) {
259 			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260 			return -ENOMEM;
261 		}
262 	}
263 
264 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265 	if (rc < 0) {
266 		pr_err("Unable to init se_sess->sess_tag_pool,"
267 			" tag_num: %u\n", tag_num);
268 		kvfree(se_sess->sess_cmd_map);
269 		se_sess->sess_cmd_map = NULL;
270 		return -ENOMEM;
271 	}
272 
273 	return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276 
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278 					       unsigned int tag_size,
279 					       enum target_prot_op sup_prot_ops)
280 {
281 	struct se_session *se_sess;
282 	int rc;
283 
284 	if (tag_num != 0 && !tag_size) {
285 		pr_err("init_session_tags called with percpu-ida tag_num:"
286 		       " %u, but zero tag_size\n", tag_num);
287 		return ERR_PTR(-EINVAL);
288 	}
289 	if (!tag_num && tag_size) {
290 		pr_err("init_session_tags called with percpu-ida tag_size:"
291 		       " %u, but zero tag_num\n", tag_size);
292 		return ERR_PTR(-EINVAL);
293 	}
294 
295 	se_sess = transport_init_session(sup_prot_ops);
296 	if (IS_ERR(se_sess))
297 		return se_sess;
298 
299 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300 	if (rc < 0) {
301 		transport_free_session(se_sess);
302 		return ERR_PTR(-ENOMEM);
303 	}
304 
305 	return se_sess;
306 }
307 EXPORT_SYMBOL(transport_init_session_tags);
308 
309 /*
310  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)312 void __transport_register_session(
313 	struct se_portal_group *se_tpg,
314 	struct se_node_acl *se_nacl,
315 	struct se_session *se_sess,
316 	void *fabric_sess_ptr)
317 {
318 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319 	unsigned char buf[PR_REG_ISID_LEN];
320 	unsigned long flags;
321 
322 	se_sess->se_tpg = se_tpg;
323 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
324 	/*
325 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 	 *
327 	 * Only set for struct se_session's that will actually be moving I/O.
328 	 * eg: *NOT* discovery sessions.
329 	 */
330 	if (se_nacl) {
331 		/*
332 		 *
333 		 * Determine if fabric allows for T10-PI feature bits exposed to
334 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
335 		 *
336 		 * If so, then always save prot_type on a per se_node_acl node
337 		 * basis and re-instate the previous sess_prot_type to avoid
338 		 * disabling PI from below any previously initiator side
339 		 * registered LUNs.
340 		 */
341 		if (se_nacl->saved_prot_type)
342 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
343 		else if (tfo->tpg_check_prot_fabric_only)
344 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
345 					tfo->tpg_check_prot_fabric_only(se_tpg);
346 		/*
347 		 * If the fabric module supports an ISID based TransportID,
348 		 * save this value in binary from the fabric I_T Nexus now.
349 		 */
350 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
351 			memset(&buf[0], 0, PR_REG_ISID_LEN);
352 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
353 					&buf[0], PR_REG_ISID_LEN);
354 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
355 		}
356 
357 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
358 		/*
359 		 * The se_nacl->nacl_sess pointer will be set to the
360 		 * last active I_T Nexus for each struct se_node_acl.
361 		 */
362 		se_nacl->nacl_sess = se_sess;
363 
364 		list_add_tail(&se_sess->sess_acl_list,
365 			      &se_nacl->acl_sess_list);
366 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
367 	}
368 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
369 
370 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
371 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
372 }
373 EXPORT_SYMBOL(__transport_register_session);
374 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)375 void transport_register_session(
376 	struct se_portal_group *se_tpg,
377 	struct se_node_acl *se_nacl,
378 	struct se_session *se_sess,
379 	void *fabric_sess_ptr)
380 {
381 	unsigned long flags;
382 
383 	spin_lock_irqsave(&se_tpg->session_lock, flags);
384 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
385 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
386 }
387 EXPORT_SYMBOL(transport_register_session);
388 
389 struct se_session *
target_alloc_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))390 target_alloc_session(struct se_portal_group *tpg,
391 		     unsigned int tag_num, unsigned int tag_size,
392 		     enum target_prot_op prot_op,
393 		     const char *initiatorname, void *private,
394 		     int (*callback)(struct se_portal_group *,
395 				     struct se_session *, void *))
396 {
397 	struct se_session *sess;
398 
399 	/*
400 	 * If the fabric driver is using percpu-ida based pre allocation
401 	 * of I/O descriptor tags, go ahead and perform that setup now..
402 	 */
403 	if (tag_num != 0)
404 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
405 	else
406 		sess = transport_init_session(prot_op);
407 
408 	if (IS_ERR(sess))
409 		return sess;
410 
411 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
412 					(unsigned char *)initiatorname);
413 	if (!sess->se_node_acl) {
414 		transport_free_session(sess);
415 		return ERR_PTR(-EACCES);
416 	}
417 	/*
418 	 * Go ahead and perform any remaining fabric setup that is
419 	 * required before transport_register_session().
420 	 */
421 	if (callback != NULL) {
422 		int rc = callback(tpg, sess, private);
423 		if (rc) {
424 			transport_free_session(sess);
425 			return ERR_PTR(rc);
426 		}
427 	}
428 
429 	transport_register_session(tpg, sess->se_node_acl, sess, private);
430 	return sess;
431 }
432 EXPORT_SYMBOL(target_alloc_session);
433 
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)434 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
435 {
436 	struct se_session *se_sess;
437 	ssize_t len = 0;
438 
439 	spin_lock_bh(&se_tpg->session_lock);
440 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
441 		if (!se_sess->se_node_acl)
442 			continue;
443 		if (!se_sess->se_node_acl->dynamic_node_acl)
444 			continue;
445 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
446 			break;
447 
448 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
449 				se_sess->se_node_acl->initiatorname);
450 		len += 1; /* Include NULL terminator */
451 	}
452 	spin_unlock_bh(&se_tpg->session_lock);
453 
454 	return len;
455 }
456 EXPORT_SYMBOL(target_show_dynamic_sessions);
457 
target_complete_nacl(struct kref * kref)458 static void target_complete_nacl(struct kref *kref)
459 {
460 	struct se_node_acl *nacl = container_of(kref,
461 				struct se_node_acl, acl_kref);
462 	struct se_portal_group *se_tpg = nacl->se_tpg;
463 
464 	if (!nacl->dynamic_stop) {
465 		complete(&nacl->acl_free_comp);
466 		return;
467 	}
468 
469 	mutex_lock(&se_tpg->acl_node_mutex);
470 	list_del_init(&nacl->acl_list);
471 	mutex_unlock(&se_tpg->acl_node_mutex);
472 
473 	core_tpg_wait_for_nacl_pr_ref(nacl);
474 	core_free_device_list_for_node(nacl, se_tpg);
475 	kfree(nacl);
476 }
477 
target_put_nacl(struct se_node_acl * nacl)478 void target_put_nacl(struct se_node_acl *nacl)
479 {
480 	kref_put(&nacl->acl_kref, target_complete_nacl);
481 }
482 EXPORT_SYMBOL(target_put_nacl);
483 
transport_deregister_session_configfs(struct se_session * se_sess)484 void transport_deregister_session_configfs(struct se_session *se_sess)
485 {
486 	struct se_node_acl *se_nacl;
487 	unsigned long flags;
488 	/*
489 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
490 	 */
491 	se_nacl = se_sess->se_node_acl;
492 	if (se_nacl) {
493 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
494 		if (!list_empty(&se_sess->sess_acl_list))
495 			list_del_init(&se_sess->sess_acl_list);
496 		/*
497 		 * If the session list is empty, then clear the pointer.
498 		 * Otherwise, set the struct se_session pointer from the tail
499 		 * element of the per struct se_node_acl active session list.
500 		 */
501 		if (list_empty(&se_nacl->acl_sess_list))
502 			se_nacl->nacl_sess = NULL;
503 		else {
504 			se_nacl->nacl_sess = container_of(
505 					se_nacl->acl_sess_list.prev,
506 					struct se_session, sess_acl_list);
507 		}
508 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
509 	}
510 }
511 EXPORT_SYMBOL(transport_deregister_session_configfs);
512 
transport_free_session(struct se_session * se_sess)513 void transport_free_session(struct se_session *se_sess)
514 {
515 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
516 
517 	/*
518 	 * Drop the se_node_acl->nacl_kref obtained from within
519 	 * core_tpg_get_initiator_node_acl().
520 	 */
521 	if (se_nacl) {
522 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
523 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
524 		unsigned long flags;
525 
526 		se_sess->se_node_acl = NULL;
527 
528 		/*
529 		 * Also determine if we need to drop the extra ->cmd_kref if
530 		 * it had been previously dynamically generated, and
531 		 * the endpoint is not caching dynamic ACLs.
532 		 */
533 		mutex_lock(&se_tpg->acl_node_mutex);
534 		if (se_nacl->dynamic_node_acl &&
535 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
536 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
537 			if (list_empty(&se_nacl->acl_sess_list))
538 				se_nacl->dynamic_stop = true;
539 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
540 
541 			if (se_nacl->dynamic_stop)
542 				list_del_init(&se_nacl->acl_list);
543 		}
544 		mutex_unlock(&se_tpg->acl_node_mutex);
545 
546 		if (se_nacl->dynamic_stop)
547 			target_put_nacl(se_nacl);
548 
549 		target_put_nacl(se_nacl);
550 	}
551 	if (se_sess->sess_cmd_map) {
552 		percpu_ida_destroy(&se_sess->sess_tag_pool);
553 		kvfree(se_sess->sess_cmd_map);
554 	}
555 	kmem_cache_free(se_sess_cache, se_sess);
556 }
557 EXPORT_SYMBOL(transport_free_session);
558 
transport_deregister_session(struct se_session * se_sess)559 void transport_deregister_session(struct se_session *se_sess)
560 {
561 	struct se_portal_group *se_tpg = se_sess->se_tpg;
562 	unsigned long flags;
563 
564 	if (!se_tpg) {
565 		transport_free_session(se_sess);
566 		return;
567 	}
568 
569 	spin_lock_irqsave(&se_tpg->session_lock, flags);
570 	list_del(&se_sess->sess_list);
571 	se_sess->se_tpg = NULL;
572 	se_sess->fabric_sess_ptr = NULL;
573 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
574 
575 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
576 		se_tpg->se_tpg_tfo->get_fabric_name());
577 	/*
578 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
579 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
580 	 * removal context from within transport_free_session() code.
581 	 *
582 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
583 	 * to release all remaining generate_node_acl=1 created ACL resources.
584 	 */
585 
586 	transport_free_session(se_sess);
587 }
588 EXPORT_SYMBOL(transport_deregister_session);
589 
target_remove_from_state_list(struct se_cmd * cmd)590 static void target_remove_from_state_list(struct se_cmd *cmd)
591 {
592 	struct se_device *dev = cmd->se_dev;
593 	unsigned long flags;
594 
595 	if (!dev)
596 		return;
597 
598 	spin_lock_irqsave(&dev->execute_task_lock, flags);
599 	if (cmd->state_active) {
600 		list_del(&cmd->state_list);
601 		cmd->state_active = false;
602 	}
603 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
604 }
605 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)606 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
607 {
608 	unsigned long flags;
609 
610 	target_remove_from_state_list(cmd);
611 
612 	/*
613 	 * Clear struct se_cmd->se_lun before the handoff to FE.
614 	 */
615 	cmd->se_lun = NULL;
616 
617 	spin_lock_irqsave(&cmd->t_state_lock, flags);
618 	/*
619 	 * Determine if frontend context caller is requesting the stopping of
620 	 * this command for frontend exceptions.
621 	 */
622 	if (cmd->transport_state & CMD_T_STOP) {
623 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
624 			__func__, __LINE__, cmd->tag);
625 
626 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
627 
628 		complete_all(&cmd->t_transport_stop_comp);
629 		return 1;
630 	}
631 	cmd->transport_state &= ~CMD_T_ACTIVE;
632 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
633 
634 	/*
635 	 * Some fabric modules like tcm_loop can release their internally
636 	 * allocated I/O reference and struct se_cmd now.
637 	 *
638 	 * Fabric modules are expected to return '1' here if the se_cmd being
639 	 * passed is released at this point, or zero if not being released.
640 	 */
641 	return cmd->se_tfo->check_stop_free(cmd);
642 }
643 
transport_lun_remove_cmd(struct se_cmd * cmd)644 static void transport_lun_remove_cmd(struct se_cmd *cmd)
645 {
646 	struct se_lun *lun = cmd->se_lun;
647 
648 	if (!lun)
649 		return;
650 
651 	if (cmpxchg(&cmd->lun_ref_active, true, false))
652 		percpu_ref_put(&lun->lun_ref);
653 }
654 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)655 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
656 {
657 	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
658 	int ret = 0;
659 
660 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
661 		transport_lun_remove_cmd(cmd);
662 	/*
663 	 * Allow the fabric driver to unmap any resources before
664 	 * releasing the descriptor via TFO->release_cmd()
665 	 */
666 	if (remove)
667 		cmd->se_tfo->aborted_task(cmd);
668 
669 	if (transport_cmd_check_stop_to_fabric(cmd))
670 		return 1;
671 	if (remove && ack_kref)
672 		ret = transport_put_cmd(cmd);
673 
674 	return ret;
675 }
676 
target_complete_failure_work(struct work_struct * work)677 static void target_complete_failure_work(struct work_struct *work)
678 {
679 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680 
681 	transport_generic_request_failure(cmd,
682 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
683 }
684 
685 /*
686  * Used when asking transport to copy Sense Data from the underlying
687  * Linux/SCSI struct scsi_cmnd
688  */
transport_get_sense_buffer(struct se_cmd * cmd)689 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
690 {
691 	struct se_device *dev = cmd->se_dev;
692 
693 	WARN_ON(!cmd->se_lun);
694 
695 	if (!dev)
696 		return NULL;
697 
698 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
699 		return NULL;
700 
701 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
702 
703 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
704 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
705 	return cmd->sense_buffer;
706 }
707 
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)708 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
709 {
710 	unsigned char *cmd_sense_buf;
711 	unsigned long flags;
712 
713 	spin_lock_irqsave(&cmd->t_state_lock, flags);
714 	cmd_sense_buf = transport_get_sense_buffer(cmd);
715 	if (!cmd_sense_buf) {
716 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717 		return;
718 	}
719 
720 	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
721 	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
722 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723 }
724 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
725 
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)726 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
727 {
728 	struct se_device *dev = cmd->se_dev;
729 	int success;
730 	unsigned long flags;
731 
732 	cmd->scsi_status = scsi_status;
733 
734 	spin_lock_irqsave(&cmd->t_state_lock, flags);
735 	switch (cmd->scsi_status) {
736 	case SAM_STAT_CHECK_CONDITION:
737 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
738 			success = 1;
739 		else
740 			success = 0;
741 		break;
742 	default:
743 		success = 1;
744 		break;
745 	}
746 
747 	/*
748 	 * Check for case where an explicit ABORT_TASK has been received
749 	 * and transport_wait_for_tasks() will be waiting for completion..
750 	 */
751 	if (cmd->transport_state & CMD_T_ABORTED ||
752 	    cmd->transport_state & CMD_T_STOP) {
753 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754 		/*
755 		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
756 		 * release se_device->caw_sem obtained by sbc_compare_and_write()
757 		 * since target_complete_ok_work() or target_complete_failure_work()
758 		 * won't be called to invoke the normal CAW completion callbacks.
759 		 */
760 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
761 			up(&dev->caw_sem);
762 		}
763 		complete_all(&cmd->t_transport_stop_comp);
764 		return;
765 	} else if (!success) {
766 		INIT_WORK(&cmd->work, target_complete_failure_work);
767 	} else {
768 		INIT_WORK(&cmd->work, target_complete_ok_work);
769 	}
770 
771 	cmd->t_state = TRANSPORT_COMPLETE;
772 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
773 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
774 
775 	if (cmd->se_cmd_flags & SCF_USE_CPUID)
776 		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
777 	else
778 		queue_work(target_completion_wq, &cmd->work);
779 }
780 EXPORT_SYMBOL(target_complete_cmd);
781 
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)782 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
783 {
784 	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
785 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
786 			cmd->residual_count += cmd->data_length - length;
787 		} else {
788 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
789 			cmd->residual_count = cmd->data_length - length;
790 		}
791 
792 		cmd->data_length = length;
793 	}
794 
795 	target_complete_cmd(cmd, scsi_status);
796 }
797 EXPORT_SYMBOL(target_complete_cmd_with_length);
798 
target_add_to_state_list(struct se_cmd * cmd)799 static void target_add_to_state_list(struct se_cmd *cmd)
800 {
801 	struct se_device *dev = cmd->se_dev;
802 	unsigned long flags;
803 
804 	spin_lock_irqsave(&dev->execute_task_lock, flags);
805 	if (!cmd->state_active) {
806 		list_add_tail(&cmd->state_list, &dev->state_list);
807 		cmd->state_active = true;
808 	}
809 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
810 }
811 
812 /*
813  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
814  */
815 static void transport_write_pending_qf(struct se_cmd *cmd);
816 static void transport_complete_qf(struct se_cmd *cmd);
817 
target_qf_do_work(struct work_struct * work)818 void target_qf_do_work(struct work_struct *work)
819 {
820 	struct se_device *dev = container_of(work, struct se_device,
821 					qf_work_queue);
822 	LIST_HEAD(qf_cmd_list);
823 	struct se_cmd *cmd, *cmd_tmp;
824 
825 	spin_lock_irq(&dev->qf_cmd_lock);
826 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
827 	spin_unlock_irq(&dev->qf_cmd_lock);
828 
829 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
830 		list_del(&cmd->se_qf_node);
831 		atomic_dec_mb(&dev->dev_qf_count);
832 
833 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
834 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
835 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
836 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
837 			: "UNKNOWN");
838 
839 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
840 			transport_write_pending_qf(cmd);
841 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
842 			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
843 			transport_complete_qf(cmd);
844 	}
845 }
846 
transport_dump_cmd_direction(struct se_cmd * cmd)847 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
848 {
849 	switch (cmd->data_direction) {
850 	case DMA_NONE:
851 		return "NONE";
852 	case DMA_FROM_DEVICE:
853 		return "READ";
854 	case DMA_TO_DEVICE:
855 		return "WRITE";
856 	case DMA_BIDIRECTIONAL:
857 		return "BIDI";
858 	default:
859 		break;
860 	}
861 
862 	return "UNKNOWN";
863 }
864 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)865 void transport_dump_dev_state(
866 	struct se_device *dev,
867 	char *b,
868 	int *bl)
869 {
870 	*bl += sprintf(b + *bl, "Status: ");
871 	if (dev->export_count)
872 		*bl += sprintf(b + *bl, "ACTIVATED");
873 	else
874 		*bl += sprintf(b + *bl, "DEACTIVATED");
875 
876 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
877 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
878 		dev->dev_attrib.block_size,
879 		dev->dev_attrib.hw_max_sectors);
880 	*bl += sprintf(b + *bl, "        ");
881 }
882 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)883 void transport_dump_vpd_proto_id(
884 	struct t10_vpd *vpd,
885 	unsigned char *p_buf,
886 	int p_buf_len)
887 {
888 	unsigned char buf[VPD_TMP_BUF_SIZE];
889 	int len;
890 
891 	memset(buf, 0, VPD_TMP_BUF_SIZE);
892 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
893 
894 	switch (vpd->protocol_identifier) {
895 	case 0x00:
896 		sprintf(buf+len, "Fibre Channel\n");
897 		break;
898 	case 0x10:
899 		sprintf(buf+len, "Parallel SCSI\n");
900 		break;
901 	case 0x20:
902 		sprintf(buf+len, "SSA\n");
903 		break;
904 	case 0x30:
905 		sprintf(buf+len, "IEEE 1394\n");
906 		break;
907 	case 0x40:
908 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
909 				" Protocol\n");
910 		break;
911 	case 0x50:
912 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
913 		break;
914 	case 0x60:
915 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
916 		break;
917 	case 0x70:
918 		sprintf(buf+len, "Automation/Drive Interface Transport"
919 				" Protocol\n");
920 		break;
921 	case 0x80:
922 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
923 		break;
924 	default:
925 		sprintf(buf+len, "Unknown 0x%02x\n",
926 				vpd->protocol_identifier);
927 		break;
928 	}
929 
930 	if (p_buf)
931 		strncpy(p_buf, buf, p_buf_len);
932 	else
933 		pr_debug("%s", buf);
934 }
935 
936 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)937 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
938 {
939 	/*
940 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
941 	 *
942 	 * from spc3r23.pdf section 7.5.1
943 	 */
944 	 if (page_83[1] & 0x80) {
945 		vpd->protocol_identifier = (page_83[0] & 0xf0);
946 		vpd->protocol_identifier_set = 1;
947 		transport_dump_vpd_proto_id(vpd, NULL, 0);
948 	}
949 }
950 EXPORT_SYMBOL(transport_set_vpd_proto_id);
951 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)952 int transport_dump_vpd_assoc(
953 	struct t10_vpd *vpd,
954 	unsigned char *p_buf,
955 	int p_buf_len)
956 {
957 	unsigned char buf[VPD_TMP_BUF_SIZE];
958 	int ret = 0;
959 	int len;
960 
961 	memset(buf, 0, VPD_TMP_BUF_SIZE);
962 	len = sprintf(buf, "T10 VPD Identifier Association: ");
963 
964 	switch (vpd->association) {
965 	case 0x00:
966 		sprintf(buf+len, "addressed logical unit\n");
967 		break;
968 	case 0x10:
969 		sprintf(buf+len, "target port\n");
970 		break;
971 	case 0x20:
972 		sprintf(buf+len, "SCSI target device\n");
973 		break;
974 	default:
975 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
976 		ret = -EINVAL;
977 		break;
978 	}
979 
980 	if (p_buf)
981 		strncpy(p_buf, buf, p_buf_len);
982 	else
983 		pr_debug("%s", buf);
984 
985 	return ret;
986 }
987 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)988 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
989 {
990 	/*
991 	 * The VPD identification association..
992 	 *
993 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
994 	 */
995 	vpd->association = (page_83[1] & 0x30);
996 	return transport_dump_vpd_assoc(vpd, NULL, 0);
997 }
998 EXPORT_SYMBOL(transport_set_vpd_assoc);
999 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1000 int transport_dump_vpd_ident_type(
1001 	struct t10_vpd *vpd,
1002 	unsigned char *p_buf,
1003 	int p_buf_len)
1004 {
1005 	unsigned char buf[VPD_TMP_BUF_SIZE];
1006 	int ret = 0;
1007 	int len;
1008 
1009 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1010 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1011 
1012 	switch (vpd->device_identifier_type) {
1013 	case 0x00:
1014 		sprintf(buf+len, "Vendor specific\n");
1015 		break;
1016 	case 0x01:
1017 		sprintf(buf+len, "T10 Vendor ID based\n");
1018 		break;
1019 	case 0x02:
1020 		sprintf(buf+len, "EUI-64 based\n");
1021 		break;
1022 	case 0x03:
1023 		sprintf(buf+len, "NAA\n");
1024 		break;
1025 	case 0x04:
1026 		sprintf(buf+len, "Relative target port identifier\n");
1027 		break;
1028 	case 0x08:
1029 		sprintf(buf+len, "SCSI name string\n");
1030 		break;
1031 	default:
1032 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1033 				vpd->device_identifier_type);
1034 		ret = -EINVAL;
1035 		break;
1036 	}
1037 
1038 	if (p_buf) {
1039 		if (p_buf_len < strlen(buf)+1)
1040 			return -EINVAL;
1041 		strncpy(p_buf, buf, p_buf_len);
1042 	} else {
1043 		pr_debug("%s", buf);
1044 	}
1045 
1046 	return ret;
1047 }
1048 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1049 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1050 {
1051 	/*
1052 	 * The VPD identifier type..
1053 	 *
1054 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1055 	 */
1056 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1057 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1058 }
1059 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1060 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1061 int transport_dump_vpd_ident(
1062 	struct t10_vpd *vpd,
1063 	unsigned char *p_buf,
1064 	int p_buf_len)
1065 {
1066 	unsigned char buf[VPD_TMP_BUF_SIZE];
1067 	int ret = 0;
1068 
1069 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1070 
1071 	switch (vpd->device_identifier_code_set) {
1072 	case 0x01: /* Binary */
1073 		snprintf(buf, sizeof(buf),
1074 			"T10 VPD Binary Device Identifier: %s\n",
1075 			&vpd->device_identifier[0]);
1076 		break;
1077 	case 0x02: /* ASCII */
1078 		snprintf(buf, sizeof(buf),
1079 			"T10 VPD ASCII Device Identifier: %s\n",
1080 			&vpd->device_identifier[0]);
1081 		break;
1082 	case 0x03: /* UTF-8 */
1083 		snprintf(buf, sizeof(buf),
1084 			"T10 VPD UTF-8 Device Identifier: %s\n",
1085 			&vpd->device_identifier[0]);
1086 		break;
1087 	default:
1088 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1089 			" 0x%02x", vpd->device_identifier_code_set);
1090 		ret = -EINVAL;
1091 		break;
1092 	}
1093 
1094 	if (p_buf)
1095 		strncpy(p_buf, buf, p_buf_len);
1096 	else
1097 		pr_debug("%s", buf);
1098 
1099 	return ret;
1100 }
1101 
1102 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1103 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1104 {
1105 	static const char hex_str[] = "0123456789abcdef";
1106 	int j = 0, i = 4; /* offset to start of the identifier */
1107 
1108 	/*
1109 	 * The VPD Code Set (encoding)
1110 	 *
1111 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1112 	 */
1113 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1114 	switch (vpd->device_identifier_code_set) {
1115 	case 0x01: /* Binary */
1116 		vpd->device_identifier[j++] =
1117 				hex_str[vpd->device_identifier_type];
1118 		while (i < (4 + page_83[3])) {
1119 			vpd->device_identifier[j++] =
1120 				hex_str[(page_83[i] & 0xf0) >> 4];
1121 			vpd->device_identifier[j++] =
1122 				hex_str[page_83[i] & 0x0f];
1123 			i++;
1124 		}
1125 		break;
1126 	case 0x02: /* ASCII */
1127 	case 0x03: /* UTF-8 */
1128 		while (i < (4 + page_83[3]))
1129 			vpd->device_identifier[j++] = page_83[i++];
1130 		break;
1131 	default:
1132 		break;
1133 	}
1134 
1135 	return transport_dump_vpd_ident(vpd, NULL, 0);
1136 }
1137 EXPORT_SYMBOL(transport_set_vpd_ident);
1138 
1139 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1140 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1141 			       unsigned int size)
1142 {
1143 	u32 mtl;
1144 
1145 	if (!cmd->se_tfo->max_data_sg_nents)
1146 		return TCM_NO_SENSE;
1147 	/*
1148 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1149 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1150 	 * residual_count and reduce original cmd->data_length to maximum
1151 	 * length based on single PAGE_SIZE entry scatter-lists.
1152 	 */
1153 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1154 	if (cmd->data_length > mtl) {
1155 		/*
1156 		 * If an existing CDB overflow is present, calculate new residual
1157 		 * based on CDB size minus fabric maximum transfer length.
1158 		 *
1159 		 * If an existing CDB underflow is present, calculate new residual
1160 		 * based on original cmd->data_length minus fabric maximum transfer
1161 		 * length.
1162 		 *
1163 		 * Otherwise, set the underflow residual based on cmd->data_length
1164 		 * minus fabric maximum transfer length.
1165 		 */
1166 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1167 			cmd->residual_count = (size - mtl);
1168 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1169 			u32 orig_dl = size + cmd->residual_count;
1170 			cmd->residual_count = (orig_dl - mtl);
1171 		} else {
1172 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1173 			cmd->residual_count = (cmd->data_length - mtl);
1174 		}
1175 		cmd->data_length = mtl;
1176 		/*
1177 		 * Reset sbc_check_prot() calculated protection payload
1178 		 * length based upon the new smaller MTL.
1179 		 */
1180 		if (cmd->prot_length) {
1181 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1182 			cmd->prot_length = dev->prot_length * sectors;
1183 		}
1184 	}
1185 	return TCM_NO_SENSE;
1186 }
1187 
1188 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1189 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1190 {
1191 	struct se_device *dev = cmd->se_dev;
1192 
1193 	if (cmd->unknown_data_length) {
1194 		cmd->data_length = size;
1195 	} else if (size != cmd->data_length) {
1196 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1197 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1198 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1199 				cmd->data_length, size, cmd->t_task_cdb[0]);
1200 
1201 		if (cmd->data_direction == DMA_TO_DEVICE) {
1202 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1203 				pr_err_ratelimited("Rejecting underflow/overflow"
1204 						   " for WRITE data CDB\n");
1205 				return TCM_INVALID_CDB_FIELD;
1206 			}
1207 			/*
1208 			 * Some fabric drivers like iscsi-target still expect to
1209 			 * always reject overflow writes.  Reject this case until
1210 			 * full fabric driver level support for overflow writes
1211 			 * is introduced tree-wide.
1212 			 */
1213 			if (size > cmd->data_length) {
1214 				pr_err_ratelimited("Rejecting overflow for"
1215 						   " WRITE control CDB\n");
1216 				return TCM_INVALID_CDB_FIELD;
1217 			}
1218 		}
1219 		/*
1220 		 * Reject READ_* or WRITE_* with overflow/underflow for
1221 		 * type SCF_SCSI_DATA_CDB.
1222 		 */
1223 		if (dev->dev_attrib.block_size != 512)  {
1224 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1225 				" CDB on non 512-byte sector setup subsystem"
1226 				" plugin: %s\n", dev->transport->name);
1227 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1228 			return TCM_INVALID_CDB_FIELD;
1229 		}
1230 		/*
1231 		 * For the overflow case keep the existing fabric provided
1232 		 * ->data_length.  Otherwise for the underflow case, reset
1233 		 * ->data_length to the smaller SCSI expected data transfer
1234 		 * length.
1235 		 */
1236 		if (size > cmd->data_length) {
1237 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1238 			cmd->residual_count = (size - cmd->data_length);
1239 		} else {
1240 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1241 			cmd->residual_count = (cmd->data_length - size);
1242 			cmd->data_length = size;
1243 		}
1244 	}
1245 
1246 	return target_check_max_data_sg_nents(cmd, dev, size);
1247 
1248 }
1249 
1250 /*
1251  * Used by fabric modules containing a local struct se_cmd within their
1252  * fabric dependent per I/O descriptor.
1253  *
1254  * Preserves the value of @cmd->tag.
1255  */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1256 void transport_init_se_cmd(
1257 	struct se_cmd *cmd,
1258 	const struct target_core_fabric_ops *tfo,
1259 	struct se_session *se_sess,
1260 	u32 data_length,
1261 	int data_direction,
1262 	int task_attr,
1263 	unsigned char *sense_buffer)
1264 {
1265 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1266 	INIT_LIST_HEAD(&cmd->se_qf_node);
1267 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1268 	INIT_LIST_HEAD(&cmd->state_list);
1269 	init_completion(&cmd->t_transport_stop_comp);
1270 	init_completion(&cmd->cmd_wait_comp);
1271 	spin_lock_init(&cmd->t_state_lock);
1272 	INIT_WORK(&cmd->work, NULL);
1273 	kref_init(&cmd->cmd_kref);
1274 
1275 	cmd->se_tfo = tfo;
1276 	cmd->se_sess = se_sess;
1277 	cmd->data_length = data_length;
1278 	cmd->data_direction = data_direction;
1279 	cmd->sam_task_attr = task_attr;
1280 	cmd->sense_buffer = sense_buffer;
1281 
1282 	cmd->state_active = false;
1283 }
1284 EXPORT_SYMBOL(transport_init_se_cmd);
1285 
1286 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1287 transport_check_alloc_task_attr(struct se_cmd *cmd)
1288 {
1289 	struct se_device *dev = cmd->se_dev;
1290 
1291 	/*
1292 	 * Check if SAM Task Attribute emulation is enabled for this
1293 	 * struct se_device storage object
1294 	 */
1295 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1296 		return 0;
1297 
1298 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1299 		pr_debug("SAM Task Attribute ACA"
1300 			" emulation is not supported\n");
1301 		return TCM_INVALID_CDB_FIELD;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1308 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1309 {
1310 	struct se_device *dev = cmd->se_dev;
1311 	sense_reason_t ret;
1312 
1313 	/*
1314 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1315 	 * for VARIABLE_LENGTH_CMD
1316 	 */
1317 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1318 		pr_err("Received SCSI CDB with command_size: %d that"
1319 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1320 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1321 		return TCM_INVALID_CDB_FIELD;
1322 	}
1323 	/*
1324 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1325 	 * allocate the additional extended CDB buffer now..  Otherwise
1326 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1327 	 */
1328 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1329 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1330 						GFP_KERNEL);
1331 		if (!cmd->t_task_cdb) {
1332 			pr_err("Unable to allocate cmd->t_task_cdb"
1333 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1334 				scsi_command_size(cdb),
1335 				(unsigned long)sizeof(cmd->__t_task_cdb));
1336 			return TCM_OUT_OF_RESOURCES;
1337 		}
1338 	} else
1339 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1340 	/*
1341 	 * Copy the original CDB into cmd->
1342 	 */
1343 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1344 
1345 	trace_target_sequencer_start(cmd);
1346 
1347 	ret = dev->transport->parse_cdb(cmd);
1348 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1349 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1350 				    cmd->se_tfo->get_fabric_name(),
1351 				    cmd->se_sess->se_node_acl->initiatorname,
1352 				    cmd->t_task_cdb[0]);
1353 	if (ret)
1354 		return ret;
1355 
1356 	ret = transport_check_alloc_task_attr(cmd);
1357 	if (ret)
1358 		return ret;
1359 
1360 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1361 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1362 	return 0;
1363 }
1364 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1365 
1366 /*
1367  * Used by fabric module frontends to queue tasks directly.
1368  * May only be used from process context.
1369  */
transport_handle_cdb_direct(struct se_cmd * cmd)1370 int transport_handle_cdb_direct(
1371 	struct se_cmd *cmd)
1372 {
1373 	sense_reason_t ret;
1374 
1375 	if (!cmd->se_lun) {
1376 		dump_stack();
1377 		pr_err("cmd->se_lun is NULL\n");
1378 		return -EINVAL;
1379 	}
1380 	if (in_interrupt()) {
1381 		dump_stack();
1382 		pr_err("transport_generic_handle_cdb cannot be called"
1383 				" from interrupt context\n");
1384 		return -EINVAL;
1385 	}
1386 	/*
1387 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1388 	 * outstanding descriptors are handled correctly during shutdown via
1389 	 * transport_wait_for_tasks()
1390 	 *
1391 	 * Also, we don't take cmd->t_state_lock here as we only expect
1392 	 * this to be called for initial descriptor submission.
1393 	 */
1394 	cmd->t_state = TRANSPORT_NEW_CMD;
1395 	cmd->transport_state |= CMD_T_ACTIVE;
1396 
1397 	/*
1398 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1399 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1400 	 * and call transport_generic_request_failure() if necessary..
1401 	 */
1402 	ret = transport_generic_new_cmd(cmd);
1403 	if (ret)
1404 		transport_generic_request_failure(cmd, ret);
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL(transport_handle_cdb_direct);
1408 
1409 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1410 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1411 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1412 {
1413 	if (!sgl || !sgl_count)
1414 		return 0;
1415 
1416 	/*
1417 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1418 	 * scatterlists already have been set to follow what the fabric
1419 	 * passes for the original expected data transfer length.
1420 	 */
1421 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1422 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1423 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1424 		return TCM_INVALID_CDB_FIELD;
1425 	}
1426 
1427 	cmd->t_data_sg = sgl;
1428 	cmd->t_data_nents = sgl_count;
1429 	cmd->t_bidi_data_sg = sgl_bidi;
1430 	cmd->t_bidi_data_nents = sgl_bidi_count;
1431 
1432 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1433 	return 0;
1434 }
1435 
1436 /*
1437  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1438  * 			 se_cmd + use pre-allocated SGL memory.
1439  *
1440  * @se_cmd: command descriptor to submit
1441  * @se_sess: associated se_sess for endpoint
1442  * @cdb: pointer to SCSI CDB
1443  * @sense: pointer to SCSI sense buffer
1444  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1445  * @data_length: fabric expected data transfer length
1446  * @task_addr: SAM task attribute
1447  * @data_dir: DMA data direction
1448  * @flags: flags for command submission from target_sc_flags_tables
1449  * @sgl: struct scatterlist memory for unidirectional mapping
1450  * @sgl_count: scatterlist count for unidirectional mapping
1451  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1452  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1453  * @sgl_prot: struct scatterlist memory protection information
1454  * @sgl_prot_count: scatterlist count for protection information
1455  *
1456  * Task tags are supported if the caller has set @se_cmd->tag.
1457  *
1458  * Returns non zero to signal active I/O shutdown failure.  All other
1459  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1460  * but still return zero here.
1461  *
1462  * This may only be called from process context, and also currently
1463  * assumes internal allocation of fabric payload buffer by target-core.
1464  */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1465 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1466 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1467 		u32 data_length, int task_attr, int data_dir, int flags,
1468 		struct scatterlist *sgl, u32 sgl_count,
1469 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1470 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1471 {
1472 	struct se_portal_group *se_tpg;
1473 	sense_reason_t rc;
1474 	int ret;
1475 
1476 	se_tpg = se_sess->se_tpg;
1477 	BUG_ON(!se_tpg);
1478 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1479 	BUG_ON(in_interrupt());
1480 	/*
1481 	 * Initialize se_cmd for target operation.  From this point
1482 	 * exceptions are handled by sending exception status via
1483 	 * target_core_fabric_ops->queue_status() callback
1484 	 */
1485 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1486 				data_length, data_dir, task_attr, sense);
1487 
1488 	if (flags & TARGET_SCF_USE_CPUID)
1489 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1490 	else
1491 		se_cmd->cpuid = WORK_CPU_UNBOUND;
1492 
1493 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1494 		se_cmd->unknown_data_length = 1;
1495 	/*
1496 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1497 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1498 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1499 	 * kref_put() to happen during fabric packet acknowledgement.
1500 	 */
1501 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1502 	if (ret)
1503 		return ret;
1504 	/*
1505 	 * Signal bidirectional data payloads to target-core
1506 	 */
1507 	if (flags & TARGET_SCF_BIDI_OP)
1508 		se_cmd->se_cmd_flags |= SCF_BIDI;
1509 	/*
1510 	 * Locate se_lun pointer and attach it to struct se_cmd
1511 	 */
1512 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1513 	if (rc) {
1514 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1515 		target_put_sess_cmd(se_cmd);
1516 		return 0;
1517 	}
1518 
1519 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1520 	if (rc != 0) {
1521 		transport_generic_request_failure(se_cmd, rc);
1522 		return 0;
1523 	}
1524 
1525 	/*
1526 	 * Save pointers for SGLs containing protection information,
1527 	 * if present.
1528 	 */
1529 	if (sgl_prot_count) {
1530 		se_cmd->t_prot_sg = sgl_prot;
1531 		se_cmd->t_prot_nents = sgl_prot_count;
1532 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1533 	}
1534 
1535 	/*
1536 	 * When a non zero sgl_count has been passed perform SGL passthrough
1537 	 * mapping for pre-allocated fabric memory instead of having target
1538 	 * core perform an internal SGL allocation..
1539 	 */
1540 	if (sgl_count != 0) {
1541 		BUG_ON(!sgl);
1542 
1543 		/*
1544 		 * A work-around for tcm_loop as some userspace code via
1545 		 * scsi-generic do not memset their associated read buffers,
1546 		 * so go ahead and do that here for type non-data CDBs.  Also
1547 		 * note that this is currently guaranteed to be a single SGL
1548 		 * for this case by target core in target_setup_cmd_from_cdb()
1549 		 * -> transport_generic_cmd_sequencer().
1550 		 */
1551 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1552 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1553 			unsigned char *buf = NULL;
1554 
1555 			if (sgl)
1556 				buf = kmap(sg_page(sgl)) + sgl->offset;
1557 
1558 			if (buf) {
1559 				memset(buf, 0, sgl->length);
1560 				kunmap(sg_page(sgl));
1561 			}
1562 		}
1563 
1564 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1565 				sgl_bidi, sgl_bidi_count);
1566 		if (rc != 0) {
1567 			transport_generic_request_failure(se_cmd, rc);
1568 			return 0;
1569 		}
1570 	}
1571 
1572 	/*
1573 	 * Check if we need to delay processing because of ALUA
1574 	 * Active/NonOptimized primary access state..
1575 	 */
1576 	core_alua_check_nonop_delay(se_cmd);
1577 
1578 	transport_handle_cdb_direct(se_cmd);
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1582 
1583 /*
1584  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1585  *
1586  * @se_cmd: command descriptor to submit
1587  * @se_sess: associated se_sess for endpoint
1588  * @cdb: pointer to SCSI CDB
1589  * @sense: pointer to SCSI sense buffer
1590  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1591  * @data_length: fabric expected data transfer length
1592  * @task_addr: SAM task attribute
1593  * @data_dir: DMA data direction
1594  * @flags: flags for command submission from target_sc_flags_tables
1595  *
1596  * Task tags are supported if the caller has set @se_cmd->tag.
1597  *
1598  * Returns non zero to signal active I/O shutdown failure.  All other
1599  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1600  * but still return zero here.
1601  *
1602  * This may only be called from process context, and also currently
1603  * assumes internal allocation of fabric payload buffer by target-core.
1604  *
1605  * It also assumes interal target core SGL memory allocation.
1606  */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1607 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1608 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1609 		u32 data_length, int task_attr, int data_dir, int flags)
1610 {
1611 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1612 			unpacked_lun, data_length, task_attr, data_dir,
1613 			flags, NULL, 0, NULL, 0, NULL, 0);
1614 }
1615 EXPORT_SYMBOL(target_submit_cmd);
1616 
target_complete_tmr_failure(struct work_struct * work)1617 static void target_complete_tmr_failure(struct work_struct *work)
1618 {
1619 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1620 
1621 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1622 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1623 
1624 	transport_lun_remove_cmd(se_cmd);
1625 	transport_cmd_check_stop_to_fabric(se_cmd);
1626 }
1627 
target_lookup_lun_from_tag(struct se_session * se_sess,u64 tag,u64 * unpacked_lun)1628 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1629 				       u64 *unpacked_lun)
1630 {
1631 	struct se_cmd *se_cmd;
1632 	unsigned long flags;
1633 	bool ret = false;
1634 
1635 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1636 	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1637 		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1638 			continue;
1639 
1640 		if (se_cmd->tag == tag) {
1641 			*unpacked_lun = se_cmd->orig_fe_lun;
1642 			ret = true;
1643 			break;
1644 		}
1645 	}
1646 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1647 
1648 	return ret;
1649 }
1650 
1651 /**
1652  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1653  *                     for TMR CDBs
1654  *
1655  * @se_cmd: command descriptor to submit
1656  * @se_sess: associated se_sess for endpoint
1657  * @sense: pointer to SCSI sense buffer
1658  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1659  * @fabric_context: fabric context for TMR req
1660  * @tm_type: Type of TM request
1661  * @gfp: gfp type for caller
1662  * @tag: referenced task tag for TMR_ABORT_TASK
1663  * @flags: submit cmd flags
1664  *
1665  * Callable from all contexts.
1666  **/
1667 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1668 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1669 		unsigned char *sense, u64 unpacked_lun,
1670 		void *fabric_tmr_ptr, unsigned char tm_type,
1671 		gfp_t gfp, u64 tag, int flags)
1672 {
1673 	struct se_portal_group *se_tpg;
1674 	int ret;
1675 
1676 	se_tpg = se_sess->se_tpg;
1677 	BUG_ON(!se_tpg);
1678 
1679 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1680 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1681 	/*
1682 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1683 	 * allocation failure.
1684 	 */
1685 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1686 	if (ret < 0)
1687 		return -ENOMEM;
1688 
1689 	if (tm_type == TMR_ABORT_TASK)
1690 		se_cmd->se_tmr_req->ref_task_tag = tag;
1691 
1692 	/* See target_submit_cmd for commentary */
1693 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1694 	if (ret) {
1695 		core_tmr_release_req(se_cmd->se_tmr_req);
1696 		return ret;
1697 	}
1698 	/*
1699 	 * If this is ABORT_TASK with no explicit fabric provided LUN,
1700 	 * go ahead and search active session tags for a match to figure
1701 	 * out unpacked_lun for the original se_cmd.
1702 	 */
1703 	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1704 		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1705 			goto failure;
1706 	}
1707 
1708 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1709 	if (ret)
1710 		goto failure;
1711 
1712 	transport_generic_handle_tmr(se_cmd);
1713 	return 0;
1714 
1715 	/*
1716 	 * For callback during failure handling, push this work off
1717 	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1718 	 */
1719 failure:
1720 	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1721 	schedule_work(&se_cmd->work);
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(target_submit_tmr);
1725 
1726 /*
1727  * Handle SAM-esque emulation for generic transport request failures.
1728  */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1729 void transport_generic_request_failure(struct se_cmd *cmd,
1730 		sense_reason_t sense_reason)
1731 {
1732 	int ret = 0, post_ret = 0;
1733 
1734 	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1735 		 sense_reason);
1736 	target_show_cmd("-----[ ", cmd);
1737 
1738 	/*
1739 	 * For SAM Task Attribute emulation for failed struct se_cmd
1740 	 */
1741 	transport_complete_task_attr(cmd);
1742 
1743 	/*
1744 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1745 	 * callback is expected to drop the per device ->caw_sem.
1746 	 */
1747 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1748 	     cmd->transport_complete_callback)
1749 		cmd->transport_complete_callback(cmd, false, &post_ret);
1750 
1751 	if (transport_check_aborted_status(cmd, 1))
1752 		return;
1753 
1754 	switch (sense_reason) {
1755 	case TCM_NON_EXISTENT_LUN:
1756 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1757 	case TCM_INVALID_CDB_FIELD:
1758 	case TCM_INVALID_PARAMETER_LIST:
1759 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1760 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1761 	case TCM_UNKNOWN_MODE_PAGE:
1762 	case TCM_WRITE_PROTECTED:
1763 	case TCM_ADDRESS_OUT_OF_RANGE:
1764 	case TCM_CHECK_CONDITION_ABORT_CMD:
1765 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1766 	case TCM_CHECK_CONDITION_NOT_READY:
1767 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1768 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1769 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1770 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1771 	case TCM_TOO_MANY_TARGET_DESCS:
1772 	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1773 	case TCM_TOO_MANY_SEGMENT_DESCS:
1774 	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1775 		break;
1776 	case TCM_OUT_OF_RESOURCES:
1777 		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1778 		break;
1779 	case TCM_RESERVATION_CONFLICT:
1780 		/*
1781 		 * No SENSE Data payload for this case, set SCSI Status
1782 		 * and queue the response to $FABRIC_MOD.
1783 		 *
1784 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1785 		 */
1786 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1787 		/*
1788 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1789 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1790 		 * CONFLICT STATUS.
1791 		 *
1792 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1793 		 */
1794 		if (cmd->se_sess &&
1795 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1796 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1797 					       cmd->orig_fe_lun, 0x2C,
1798 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1799 		}
1800 		trace_target_cmd_complete(cmd);
1801 		ret = cmd->se_tfo->queue_status(cmd);
1802 		if (ret)
1803 			goto queue_full;
1804 		goto check_stop;
1805 	default:
1806 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1807 			cmd->t_task_cdb[0], sense_reason);
1808 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1809 		break;
1810 	}
1811 
1812 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1813 	if (ret)
1814 		goto queue_full;
1815 
1816 check_stop:
1817 	transport_lun_remove_cmd(cmd);
1818 	transport_cmd_check_stop_to_fabric(cmd);
1819 	return;
1820 
1821 queue_full:
1822 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1823 }
1824 EXPORT_SYMBOL(transport_generic_request_failure);
1825 
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)1826 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1827 {
1828 	sense_reason_t ret;
1829 
1830 	if (!cmd->execute_cmd) {
1831 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1832 		goto err;
1833 	}
1834 	if (do_checks) {
1835 		/*
1836 		 * Check for an existing UNIT ATTENTION condition after
1837 		 * target_handle_task_attr() has done SAM task attr
1838 		 * checking, and possibly have already defered execution
1839 		 * out to target_restart_delayed_cmds() context.
1840 		 */
1841 		ret = target_scsi3_ua_check(cmd);
1842 		if (ret)
1843 			goto err;
1844 
1845 		ret = target_alua_state_check(cmd);
1846 		if (ret)
1847 			goto err;
1848 
1849 		ret = target_check_reservation(cmd);
1850 		if (ret) {
1851 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1852 			goto err;
1853 		}
1854 	}
1855 
1856 	ret = cmd->execute_cmd(cmd);
1857 	if (!ret)
1858 		return;
1859 err:
1860 	spin_lock_irq(&cmd->t_state_lock);
1861 	cmd->transport_state &= ~CMD_T_SENT;
1862 	spin_unlock_irq(&cmd->t_state_lock);
1863 
1864 	transport_generic_request_failure(cmd, ret);
1865 }
1866 
target_write_prot_action(struct se_cmd * cmd)1867 static int target_write_prot_action(struct se_cmd *cmd)
1868 {
1869 	u32 sectors;
1870 	/*
1871 	 * Perform WRITE_INSERT of PI using software emulation when backend
1872 	 * device has PI enabled, if the transport has not already generated
1873 	 * PI using hardware WRITE_INSERT offload.
1874 	 */
1875 	switch (cmd->prot_op) {
1876 	case TARGET_PROT_DOUT_INSERT:
1877 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1878 			sbc_dif_generate(cmd);
1879 		break;
1880 	case TARGET_PROT_DOUT_STRIP:
1881 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1882 			break;
1883 
1884 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1885 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1886 					     sectors, 0, cmd->t_prot_sg, 0);
1887 		if (unlikely(cmd->pi_err)) {
1888 			spin_lock_irq(&cmd->t_state_lock);
1889 			cmd->transport_state &= ~CMD_T_SENT;
1890 			spin_unlock_irq(&cmd->t_state_lock);
1891 			transport_generic_request_failure(cmd, cmd->pi_err);
1892 			return -1;
1893 		}
1894 		break;
1895 	default:
1896 		break;
1897 	}
1898 
1899 	return 0;
1900 }
1901 
target_handle_task_attr(struct se_cmd * cmd)1902 static bool target_handle_task_attr(struct se_cmd *cmd)
1903 {
1904 	struct se_device *dev = cmd->se_dev;
1905 
1906 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1907 		return false;
1908 
1909 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1910 
1911 	/*
1912 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1913 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1914 	 */
1915 	switch (cmd->sam_task_attr) {
1916 	case TCM_HEAD_TAG:
1917 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1918 			 cmd->t_task_cdb[0]);
1919 		return false;
1920 	case TCM_ORDERED_TAG:
1921 		atomic_inc_mb(&dev->dev_ordered_sync);
1922 
1923 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1924 			 cmd->t_task_cdb[0]);
1925 
1926 		/*
1927 		 * Execute an ORDERED command if no other older commands
1928 		 * exist that need to be completed first.
1929 		 */
1930 		if (!atomic_read(&dev->simple_cmds))
1931 			return false;
1932 		break;
1933 	default:
1934 		/*
1935 		 * For SIMPLE and UNTAGGED Task Attribute commands
1936 		 */
1937 		atomic_inc_mb(&dev->simple_cmds);
1938 		break;
1939 	}
1940 
1941 	if (atomic_read(&dev->dev_ordered_sync) == 0)
1942 		return false;
1943 
1944 	spin_lock(&dev->delayed_cmd_lock);
1945 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1946 	spin_unlock(&dev->delayed_cmd_lock);
1947 
1948 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1949 		cmd->t_task_cdb[0], cmd->sam_task_attr);
1950 	return true;
1951 }
1952 
1953 static int __transport_check_aborted_status(struct se_cmd *, int);
1954 
target_execute_cmd(struct se_cmd * cmd)1955 void target_execute_cmd(struct se_cmd *cmd)
1956 {
1957 	/*
1958 	 * Determine if frontend context caller is requesting the stopping of
1959 	 * this command for frontend exceptions.
1960 	 *
1961 	 * If the received CDB has aleady been aborted stop processing it here.
1962 	 */
1963 	spin_lock_irq(&cmd->t_state_lock);
1964 	if (__transport_check_aborted_status(cmd, 1)) {
1965 		spin_unlock_irq(&cmd->t_state_lock);
1966 		return;
1967 	}
1968 	if (cmd->transport_state & CMD_T_STOP) {
1969 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1970 			__func__, __LINE__, cmd->tag);
1971 
1972 		spin_unlock_irq(&cmd->t_state_lock);
1973 		complete_all(&cmd->t_transport_stop_comp);
1974 		return;
1975 	}
1976 
1977 	cmd->t_state = TRANSPORT_PROCESSING;
1978 	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1979 	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1980 	spin_unlock_irq(&cmd->t_state_lock);
1981 
1982 	if (target_write_prot_action(cmd))
1983 		return;
1984 
1985 	if (target_handle_task_attr(cmd)) {
1986 		spin_lock_irq(&cmd->t_state_lock);
1987 		cmd->transport_state &= ~CMD_T_SENT;
1988 		spin_unlock_irq(&cmd->t_state_lock);
1989 		return;
1990 	}
1991 
1992 	__target_execute_cmd(cmd, true);
1993 }
1994 EXPORT_SYMBOL(target_execute_cmd);
1995 
1996 /*
1997  * Process all commands up to the last received ORDERED task attribute which
1998  * requires another blocking boundary
1999  */
target_restart_delayed_cmds(struct se_device * dev)2000 static void target_restart_delayed_cmds(struct se_device *dev)
2001 {
2002 	for (;;) {
2003 		struct se_cmd *cmd;
2004 
2005 		spin_lock(&dev->delayed_cmd_lock);
2006 		if (list_empty(&dev->delayed_cmd_list)) {
2007 			spin_unlock(&dev->delayed_cmd_lock);
2008 			break;
2009 		}
2010 
2011 		cmd = list_entry(dev->delayed_cmd_list.next,
2012 				 struct se_cmd, se_delayed_node);
2013 		list_del(&cmd->se_delayed_node);
2014 		spin_unlock(&dev->delayed_cmd_lock);
2015 
2016 		cmd->transport_state |= CMD_T_SENT;
2017 
2018 		__target_execute_cmd(cmd, true);
2019 
2020 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2021 			break;
2022 	}
2023 }
2024 
2025 /*
2026  * Called from I/O completion to determine which dormant/delayed
2027  * and ordered cmds need to have their tasks added to the execution queue.
2028  */
transport_complete_task_attr(struct se_cmd * cmd)2029 static void transport_complete_task_attr(struct se_cmd *cmd)
2030 {
2031 	struct se_device *dev = cmd->se_dev;
2032 
2033 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2034 		return;
2035 
2036 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2037 		goto restart;
2038 
2039 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2040 		atomic_dec_mb(&dev->simple_cmds);
2041 		dev->dev_cur_ordered_id++;
2042 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2043 		dev->dev_cur_ordered_id++;
2044 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2045 			 dev->dev_cur_ordered_id);
2046 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2047 		atomic_dec_mb(&dev->dev_ordered_sync);
2048 
2049 		dev->dev_cur_ordered_id++;
2050 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2051 			 dev->dev_cur_ordered_id);
2052 	}
2053 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2054 
2055 restart:
2056 	target_restart_delayed_cmds(dev);
2057 }
2058 
transport_complete_qf(struct se_cmd * cmd)2059 static void transport_complete_qf(struct se_cmd *cmd)
2060 {
2061 	int ret = 0;
2062 
2063 	transport_complete_task_attr(cmd);
2064 	/*
2065 	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2066 	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2067 	 * the same callbacks should not be retried.  Return CHECK_CONDITION
2068 	 * if a scsi_status is not already set.
2069 	 *
2070 	 * If a fabric driver ->queue_status() has returned non zero, always
2071 	 * keep retrying no matter what..
2072 	 */
2073 	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2074 		if (cmd->scsi_status)
2075 			goto queue_status;
2076 
2077 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2078 		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2079 		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2080 		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2081 		goto queue_status;
2082 	}
2083 
2084 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2085 		goto queue_status;
2086 
2087 	switch (cmd->data_direction) {
2088 	case DMA_FROM_DEVICE:
2089 		if (cmd->scsi_status)
2090 			goto queue_status;
2091 
2092 		trace_target_cmd_complete(cmd);
2093 		ret = cmd->se_tfo->queue_data_in(cmd);
2094 		break;
2095 	case DMA_TO_DEVICE:
2096 		if (cmd->se_cmd_flags & SCF_BIDI) {
2097 			ret = cmd->se_tfo->queue_data_in(cmd);
2098 			break;
2099 		}
2100 		/* Fall through for DMA_TO_DEVICE */
2101 	case DMA_NONE:
2102 queue_status:
2103 		trace_target_cmd_complete(cmd);
2104 		ret = cmd->se_tfo->queue_status(cmd);
2105 		break;
2106 	default:
2107 		break;
2108 	}
2109 
2110 	if (ret < 0) {
2111 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2112 		return;
2113 	}
2114 	transport_lun_remove_cmd(cmd);
2115 	transport_cmd_check_stop_to_fabric(cmd);
2116 }
2117 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2118 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2119 					int err, bool write_pending)
2120 {
2121 	/*
2122 	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2123 	 * ->queue_data_in() callbacks from new process context.
2124 	 *
2125 	 * Otherwise for other errors, transport_complete_qf() will send
2126 	 * CHECK_CONDITION via ->queue_status() instead of attempting to
2127 	 * retry associated fabric driver data-transfer callbacks.
2128 	 */
2129 	if (err == -EAGAIN || err == -ENOMEM) {
2130 		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2131 						 TRANSPORT_COMPLETE_QF_OK;
2132 	} else {
2133 		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2134 		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2135 	}
2136 
2137 	spin_lock_irq(&dev->qf_cmd_lock);
2138 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2139 	atomic_inc_mb(&dev->dev_qf_count);
2140 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2141 
2142 	schedule_work(&cmd->se_dev->qf_work_queue);
2143 }
2144 
target_read_prot_action(struct se_cmd * cmd)2145 static bool target_read_prot_action(struct se_cmd *cmd)
2146 {
2147 	switch (cmd->prot_op) {
2148 	case TARGET_PROT_DIN_STRIP:
2149 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2150 			u32 sectors = cmd->data_length >>
2151 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2152 
2153 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2154 						     sectors, 0, cmd->t_prot_sg,
2155 						     0);
2156 			if (cmd->pi_err)
2157 				return true;
2158 		}
2159 		break;
2160 	case TARGET_PROT_DIN_INSERT:
2161 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2162 			break;
2163 
2164 		sbc_dif_generate(cmd);
2165 		break;
2166 	default:
2167 		break;
2168 	}
2169 
2170 	return false;
2171 }
2172 
target_complete_ok_work(struct work_struct * work)2173 static void target_complete_ok_work(struct work_struct *work)
2174 {
2175 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2176 	int ret;
2177 
2178 	/*
2179 	 * Check if we need to move delayed/dormant tasks from cmds on the
2180 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2181 	 * Attribute.
2182 	 */
2183 	transport_complete_task_attr(cmd);
2184 
2185 	/*
2186 	 * Check to schedule QUEUE_FULL work, or execute an existing
2187 	 * cmd->transport_qf_callback()
2188 	 */
2189 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2190 		schedule_work(&cmd->se_dev->qf_work_queue);
2191 
2192 	/*
2193 	 * Check if we need to send a sense buffer from
2194 	 * the struct se_cmd in question.
2195 	 */
2196 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2197 		WARN_ON(!cmd->scsi_status);
2198 		ret = transport_send_check_condition_and_sense(
2199 					cmd, 0, 1);
2200 		if (ret)
2201 			goto queue_full;
2202 
2203 		transport_lun_remove_cmd(cmd);
2204 		transport_cmd_check_stop_to_fabric(cmd);
2205 		return;
2206 	}
2207 	/*
2208 	 * Check for a callback, used by amongst other things
2209 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2210 	 */
2211 	if (cmd->transport_complete_callback) {
2212 		sense_reason_t rc;
2213 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2214 		bool zero_dl = !(cmd->data_length);
2215 		int post_ret = 0;
2216 
2217 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2218 		if (!rc && !post_ret) {
2219 			if (caw && zero_dl)
2220 				goto queue_rsp;
2221 
2222 			return;
2223 		} else if (rc) {
2224 			ret = transport_send_check_condition_and_sense(cmd,
2225 						rc, 0);
2226 			if (ret)
2227 				goto queue_full;
2228 
2229 			transport_lun_remove_cmd(cmd);
2230 			transport_cmd_check_stop_to_fabric(cmd);
2231 			return;
2232 		}
2233 	}
2234 
2235 queue_rsp:
2236 	switch (cmd->data_direction) {
2237 	case DMA_FROM_DEVICE:
2238 		if (cmd->scsi_status)
2239 			goto queue_status;
2240 
2241 		atomic_long_add(cmd->data_length,
2242 				&cmd->se_lun->lun_stats.tx_data_octets);
2243 		/*
2244 		 * Perform READ_STRIP of PI using software emulation when
2245 		 * backend had PI enabled, if the transport will not be
2246 		 * performing hardware READ_STRIP offload.
2247 		 */
2248 		if (target_read_prot_action(cmd)) {
2249 			ret = transport_send_check_condition_and_sense(cmd,
2250 						cmd->pi_err, 0);
2251 			if (ret)
2252 				goto queue_full;
2253 
2254 			transport_lun_remove_cmd(cmd);
2255 			transport_cmd_check_stop_to_fabric(cmd);
2256 			return;
2257 		}
2258 
2259 		trace_target_cmd_complete(cmd);
2260 		ret = cmd->se_tfo->queue_data_in(cmd);
2261 		if (ret)
2262 			goto queue_full;
2263 		break;
2264 	case DMA_TO_DEVICE:
2265 		atomic_long_add(cmd->data_length,
2266 				&cmd->se_lun->lun_stats.rx_data_octets);
2267 		/*
2268 		 * Check if we need to send READ payload for BIDI-COMMAND
2269 		 */
2270 		if (cmd->se_cmd_flags & SCF_BIDI) {
2271 			atomic_long_add(cmd->data_length,
2272 					&cmd->se_lun->lun_stats.tx_data_octets);
2273 			ret = cmd->se_tfo->queue_data_in(cmd);
2274 			if (ret)
2275 				goto queue_full;
2276 			break;
2277 		}
2278 		/* Fall through for DMA_TO_DEVICE */
2279 	case DMA_NONE:
2280 queue_status:
2281 		trace_target_cmd_complete(cmd);
2282 		ret = cmd->se_tfo->queue_status(cmd);
2283 		if (ret)
2284 			goto queue_full;
2285 		break;
2286 	default:
2287 		break;
2288 	}
2289 
2290 	transport_lun_remove_cmd(cmd);
2291 	transport_cmd_check_stop_to_fabric(cmd);
2292 	return;
2293 
2294 queue_full:
2295 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2296 		" data_direction: %d\n", cmd, cmd->data_direction);
2297 
2298 	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2299 }
2300 
target_free_sgl(struct scatterlist * sgl,int nents)2301 void target_free_sgl(struct scatterlist *sgl, int nents)
2302 {
2303 	struct scatterlist *sg;
2304 	int count;
2305 
2306 	for_each_sg(sgl, sg, nents, count)
2307 		__free_page(sg_page(sg));
2308 
2309 	kfree(sgl);
2310 }
2311 EXPORT_SYMBOL(target_free_sgl);
2312 
transport_reset_sgl_orig(struct se_cmd * cmd)2313 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2314 {
2315 	/*
2316 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2317 	 * emulation, and free + reset pointers if necessary..
2318 	 */
2319 	if (!cmd->t_data_sg_orig)
2320 		return;
2321 
2322 	kfree(cmd->t_data_sg);
2323 	cmd->t_data_sg = cmd->t_data_sg_orig;
2324 	cmd->t_data_sg_orig = NULL;
2325 	cmd->t_data_nents = cmd->t_data_nents_orig;
2326 	cmd->t_data_nents_orig = 0;
2327 }
2328 
transport_free_pages(struct se_cmd * cmd)2329 static inline void transport_free_pages(struct se_cmd *cmd)
2330 {
2331 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2332 		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2333 		cmd->t_prot_sg = NULL;
2334 		cmd->t_prot_nents = 0;
2335 	}
2336 
2337 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2338 		/*
2339 		 * Release special case READ buffer payload required for
2340 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2341 		 */
2342 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2343 			target_free_sgl(cmd->t_bidi_data_sg,
2344 					   cmd->t_bidi_data_nents);
2345 			cmd->t_bidi_data_sg = NULL;
2346 			cmd->t_bidi_data_nents = 0;
2347 		}
2348 		transport_reset_sgl_orig(cmd);
2349 		return;
2350 	}
2351 	transport_reset_sgl_orig(cmd);
2352 
2353 	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2354 	cmd->t_data_sg = NULL;
2355 	cmd->t_data_nents = 0;
2356 
2357 	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2358 	cmd->t_bidi_data_sg = NULL;
2359 	cmd->t_bidi_data_nents = 0;
2360 }
2361 
2362 /**
2363  * transport_put_cmd - release a reference to a command
2364  * @cmd:       command to release
2365  *
2366  * This routine releases our reference to the command and frees it if possible.
2367  */
transport_put_cmd(struct se_cmd * cmd)2368 static int transport_put_cmd(struct se_cmd *cmd)
2369 {
2370 	BUG_ON(!cmd->se_tfo);
2371 	/*
2372 	 * If this cmd has been setup with target_get_sess_cmd(), drop
2373 	 * the kref and call ->release_cmd() in kref callback.
2374 	 */
2375 	return target_put_sess_cmd(cmd);
2376 }
2377 
transport_kmap_data_sg(struct se_cmd * cmd)2378 void *transport_kmap_data_sg(struct se_cmd *cmd)
2379 {
2380 	struct scatterlist *sg = cmd->t_data_sg;
2381 	struct page **pages;
2382 	int i;
2383 
2384 	/*
2385 	 * We need to take into account a possible offset here for fabrics like
2386 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2387 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2388 	 */
2389 	if (!cmd->t_data_nents)
2390 		return NULL;
2391 
2392 	BUG_ON(!sg);
2393 	if (cmd->t_data_nents == 1)
2394 		return kmap(sg_page(sg)) + sg->offset;
2395 
2396 	/* >1 page. use vmap */
2397 	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2398 	if (!pages)
2399 		return NULL;
2400 
2401 	/* convert sg[] to pages[] */
2402 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2403 		pages[i] = sg_page(sg);
2404 	}
2405 
2406 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2407 	kfree(pages);
2408 	if (!cmd->t_data_vmap)
2409 		return NULL;
2410 
2411 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2412 }
2413 EXPORT_SYMBOL(transport_kmap_data_sg);
2414 
transport_kunmap_data_sg(struct se_cmd * cmd)2415 void transport_kunmap_data_sg(struct se_cmd *cmd)
2416 {
2417 	if (!cmd->t_data_nents) {
2418 		return;
2419 	} else if (cmd->t_data_nents == 1) {
2420 		kunmap(sg_page(cmd->t_data_sg));
2421 		return;
2422 	}
2423 
2424 	vunmap(cmd->t_data_vmap);
2425 	cmd->t_data_vmap = NULL;
2426 }
2427 EXPORT_SYMBOL(transport_kunmap_data_sg);
2428 
2429 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2430 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2431 		 bool zero_page, bool chainable)
2432 {
2433 	struct scatterlist *sg;
2434 	struct page *page;
2435 	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2436 	unsigned int nalloc, nent;
2437 	int i = 0;
2438 
2439 	nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2440 	if (chainable)
2441 		nalloc++;
2442 	sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2443 	if (!sg)
2444 		return -ENOMEM;
2445 
2446 	sg_init_table(sg, nalloc);
2447 
2448 	while (length) {
2449 		u32 page_len = min_t(u32, length, PAGE_SIZE);
2450 		page = alloc_page(GFP_KERNEL | zero_flag);
2451 		if (!page)
2452 			goto out;
2453 
2454 		sg_set_page(&sg[i], page, page_len, 0);
2455 		length -= page_len;
2456 		i++;
2457 	}
2458 	*sgl = sg;
2459 	*nents = nent;
2460 	return 0;
2461 
2462 out:
2463 	while (i > 0) {
2464 		i--;
2465 		__free_page(sg_page(&sg[i]));
2466 	}
2467 	kfree(sg);
2468 	return -ENOMEM;
2469 }
2470 EXPORT_SYMBOL(target_alloc_sgl);
2471 
2472 /*
2473  * Allocate any required resources to execute the command.  For writes we
2474  * might not have the payload yet, so notify the fabric via a call to
2475  * ->write_pending instead. Otherwise place it on the execution queue.
2476  */
2477 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2478 transport_generic_new_cmd(struct se_cmd *cmd)
2479 {
2480 	unsigned long flags;
2481 	int ret = 0;
2482 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2483 
2484 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2485 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2486 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2487 				       cmd->prot_length, true, false);
2488 		if (ret < 0)
2489 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2490 	}
2491 
2492 	/*
2493 	 * Determine is the TCM fabric module has already allocated physical
2494 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2495 	 * beforehand.
2496 	 */
2497 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2498 	    cmd->data_length) {
2499 
2500 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2501 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2502 			u32 bidi_length;
2503 
2504 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2505 				bidi_length = cmd->t_task_nolb *
2506 					      cmd->se_dev->dev_attrib.block_size;
2507 			else
2508 				bidi_length = cmd->data_length;
2509 
2510 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2511 					       &cmd->t_bidi_data_nents,
2512 					       bidi_length, zero_flag, false);
2513 			if (ret < 0)
2514 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2515 		}
2516 
2517 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2518 				       cmd->data_length, zero_flag, false);
2519 		if (ret < 0)
2520 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2521 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2522 		    cmd->data_length) {
2523 		/*
2524 		 * Special case for COMPARE_AND_WRITE with fabrics
2525 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2526 		 */
2527 		u32 caw_length = cmd->t_task_nolb *
2528 				 cmd->se_dev->dev_attrib.block_size;
2529 
2530 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2531 				       &cmd->t_bidi_data_nents,
2532 				       caw_length, zero_flag, false);
2533 		if (ret < 0)
2534 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2535 	}
2536 	/*
2537 	 * If this command is not a write we can execute it right here,
2538 	 * for write buffers we need to notify the fabric driver first
2539 	 * and let it call back once the write buffers are ready.
2540 	 */
2541 	target_add_to_state_list(cmd);
2542 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2543 		target_execute_cmd(cmd);
2544 		return 0;
2545 	}
2546 
2547 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2548 	cmd->t_state = TRANSPORT_WRITE_PENDING;
2549 	/*
2550 	 * Determine if frontend context caller is requesting the stopping of
2551 	 * this command for frontend exceptions.
2552 	 */
2553 	if (cmd->transport_state & CMD_T_STOP) {
2554 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2555 			 __func__, __LINE__, cmd->tag);
2556 
2557 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2558 
2559 		complete_all(&cmd->t_transport_stop_comp);
2560 		return 0;
2561 	}
2562 	cmd->transport_state &= ~CMD_T_ACTIVE;
2563 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2564 
2565 	ret = cmd->se_tfo->write_pending(cmd);
2566 	if (ret)
2567 		goto queue_full;
2568 
2569 	return 0;
2570 
2571 queue_full:
2572 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2573 	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL(transport_generic_new_cmd);
2577 
transport_write_pending_qf(struct se_cmd * cmd)2578 static void transport_write_pending_qf(struct se_cmd *cmd)
2579 {
2580 	unsigned long flags;
2581 	int ret;
2582 	bool stop;
2583 
2584 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2585 	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2586 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2587 
2588 	if (stop) {
2589 		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2590 			__func__, __LINE__, cmd->tag);
2591 		complete_all(&cmd->t_transport_stop_comp);
2592 		return;
2593 	}
2594 
2595 	ret = cmd->se_tfo->write_pending(cmd);
2596 	if (ret) {
2597 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2598 			 cmd);
2599 		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2600 	}
2601 }
2602 
2603 static bool
2604 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2605 			   unsigned long *flags);
2606 
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2607 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2608 {
2609 	unsigned long flags;
2610 
2611 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2612 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2613 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2614 }
2615 
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2616 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2617 {
2618 	int ret = 0;
2619 	bool aborted = false, tas = false;
2620 
2621 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2622 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2623 			target_wait_free_cmd(cmd, &aborted, &tas);
2624 
2625 		if (!aborted || tas)
2626 			ret = transport_put_cmd(cmd);
2627 	} else {
2628 		if (wait_for_tasks)
2629 			target_wait_free_cmd(cmd, &aborted, &tas);
2630 		/*
2631 		 * Handle WRITE failure case where transport_generic_new_cmd()
2632 		 * has already added se_cmd to state_list, but fabric has
2633 		 * failed command before I/O submission.
2634 		 */
2635 		if (cmd->state_active)
2636 			target_remove_from_state_list(cmd);
2637 
2638 		if (cmd->se_lun)
2639 			transport_lun_remove_cmd(cmd);
2640 
2641 		if (!aborted || tas)
2642 			ret = transport_put_cmd(cmd);
2643 	}
2644 	/*
2645 	 * If the task has been internally aborted due to TMR ABORT_TASK
2646 	 * or LUN_RESET, target_core_tmr.c is responsible for performing
2647 	 * the remaining calls to target_put_sess_cmd(), and not the
2648 	 * callers of this function.
2649 	 */
2650 	if (aborted) {
2651 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2652 		wait_for_completion(&cmd->cmd_wait_comp);
2653 		cmd->se_tfo->release_cmd(cmd);
2654 		ret = 1;
2655 	}
2656 	return ret;
2657 }
2658 EXPORT_SYMBOL(transport_generic_free_cmd);
2659 
2660 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2661  * @se_cmd:	command descriptor to add
2662  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2663  */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2664 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2665 {
2666 	struct se_session *se_sess = se_cmd->se_sess;
2667 	unsigned long flags;
2668 	int ret = 0;
2669 
2670 	/*
2671 	 * Add a second kref if the fabric caller is expecting to handle
2672 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2673 	 * invocations before se_cmd descriptor release.
2674 	 */
2675 	if (ack_kref) {
2676 		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2677 			return -EINVAL;
2678 
2679 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2680 	}
2681 
2682 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2683 	if (se_sess->sess_tearing_down) {
2684 		ret = -ESHUTDOWN;
2685 		goto out;
2686 	}
2687 	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2688 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2689 out:
2690 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2691 
2692 	if (ret && ack_kref)
2693 		target_put_sess_cmd(se_cmd);
2694 
2695 	return ret;
2696 }
2697 EXPORT_SYMBOL(target_get_sess_cmd);
2698 
target_free_cmd_mem(struct se_cmd * cmd)2699 static void target_free_cmd_mem(struct se_cmd *cmd)
2700 {
2701 	transport_free_pages(cmd);
2702 
2703 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2704 		core_tmr_release_req(cmd->se_tmr_req);
2705 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2706 		kfree(cmd->t_task_cdb);
2707 }
2708 
target_release_cmd_kref(struct kref * kref)2709 static void target_release_cmd_kref(struct kref *kref)
2710 {
2711 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2712 	struct se_session *se_sess = se_cmd->se_sess;
2713 	unsigned long flags;
2714 	bool fabric_stop;
2715 
2716 	if (se_sess) {
2717 		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2718 
2719 		spin_lock(&se_cmd->t_state_lock);
2720 		fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2721 			      (se_cmd->transport_state & CMD_T_ABORTED);
2722 		spin_unlock(&se_cmd->t_state_lock);
2723 
2724 		if (se_cmd->cmd_wait_set || fabric_stop) {
2725 			list_del_init(&se_cmd->se_cmd_list);
2726 			spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2727 			target_free_cmd_mem(se_cmd);
2728 			complete(&se_cmd->cmd_wait_comp);
2729 			return;
2730 		}
2731 		list_del_init(&se_cmd->se_cmd_list);
2732 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2733 	}
2734 
2735 	target_free_cmd_mem(se_cmd);
2736 	se_cmd->se_tfo->release_cmd(se_cmd);
2737 }
2738 
2739 /**
2740  * target_put_sess_cmd - decrease the command reference count
2741  * @se_cmd:	command to drop a reference from
2742  *
2743  * Returns 1 if and only if this target_put_sess_cmd() call caused the
2744  * refcount to drop to zero. Returns zero otherwise.
2745  */
target_put_sess_cmd(struct se_cmd * se_cmd)2746 int target_put_sess_cmd(struct se_cmd *se_cmd)
2747 {
2748 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2749 }
2750 EXPORT_SYMBOL(target_put_sess_cmd);
2751 
data_dir_name(enum dma_data_direction d)2752 static const char *data_dir_name(enum dma_data_direction d)
2753 {
2754 	switch (d) {
2755 	case DMA_BIDIRECTIONAL:	return "BIDI";
2756 	case DMA_TO_DEVICE:	return "WRITE";
2757 	case DMA_FROM_DEVICE:	return "READ";
2758 	case DMA_NONE:		return "NONE";
2759 	}
2760 
2761 	return "(?)";
2762 }
2763 
cmd_state_name(enum transport_state_table t)2764 static const char *cmd_state_name(enum transport_state_table t)
2765 {
2766 	switch (t) {
2767 	case TRANSPORT_NO_STATE:	return "NO_STATE";
2768 	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
2769 	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
2770 	case TRANSPORT_PROCESSING:	return "PROCESSING";
2771 	case TRANSPORT_COMPLETE:	return "COMPLETE";
2772 	case TRANSPORT_ISTATE_PROCESSING:
2773 					return "ISTATE_PROCESSING";
2774 	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
2775 	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
2776 	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
2777 	}
2778 
2779 	return "(?)";
2780 }
2781 
target_append_str(char ** str,const char * txt)2782 static void target_append_str(char **str, const char *txt)
2783 {
2784 	char *prev = *str;
2785 
2786 	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2787 		kstrdup(txt, GFP_ATOMIC);
2788 	kfree(prev);
2789 }
2790 
2791 /*
2792  * Convert a transport state bitmask into a string. The caller is
2793  * responsible for freeing the returned pointer.
2794  */
target_ts_to_str(u32 ts)2795 static char *target_ts_to_str(u32 ts)
2796 {
2797 	char *str = NULL;
2798 
2799 	if (ts & CMD_T_ABORTED)
2800 		target_append_str(&str, "aborted");
2801 	if (ts & CMD_T_ACTIVE)
2802 		target_append_str(&str, "active");
2803 	if (ts & CMD_T_COMPLETE)
2804 		target_append_str(&str, "complete");
2805 	if (ts & CMD_T_SENT)
2806 		target_append_str(&str, "sent");
2807 	if (ts & CMD_T_STOP)
2808 		target_append_str(&str, "stop");
2809 	if (ts & CMD_T_FABRIC_STOP)
2810 		target_append_str(&str, "fabric_stop");
2811 
2812 	return str;
2813 }
2814 
target_tmf_name(enum tcm_tmreq_table tmf)2815 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2816 {
2817 	switch (tmf) {
2818 	case TMR_ABORT_TASK:		return "ABORT_TASK";
2819 	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
2820 	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
2821 	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
2822 	case TMR_LUN_RESET:		return "LUN_RESET";
2823 	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
2824 	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
2825 	case TMR_UNKNOWN:		break;
2826 	}
2827 	return "(?)";
2828 }
2829 
target_show_cmd(const char * pfx,struct se_cmd * cmd)2830 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2831 {
2832 	char *ts_str = target_ts_to_str(cmd->transport_state);
2833 	const u8 *cdb = cmd->t_task_cdb;
2834 	struct se_tmr_req *tmf = cmd->se_tmr_req;
2835 
2836 	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2837 		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2838 			 pfx, cdb[0], cdb[1], cmd->tag,
2839 			 data_dir_name(cmd->data_direction),
2840 			 cmd->se_tfo->get_cmd_state(cmd),
2841 			 cmd_state_name(cmd->t_state), cmd->data_length,
2842 			 kref_read(&cmd->cmd_kref), ts_str);
2843 	} else {
2844 		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2845 			 pfx, target_tmf_name(tmf->function), cmd->tag,
2846 			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2847 			 cmd_state_name(cmd->t_state),
2848 			 kref_read(&cmd->cmd_kref), ts_str);
2849 	}
2850 	kfree(ts_str);
2851 }
2852 EXPORT_SYMBOL(target_show_cmd);
2853 
2854 /* target_sess_cmd_list_set_waiting - Flag all commands in
2855  *         sess_cmd_list to complete cmd_wait_comp.  Set
2856  *         sess_tearing_down so no more commands are queued.
2857  * @se_sess:	session to flag
2858  */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2859 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2860 {
2861 	struct se_cmd *se_cmd, *tmp_cmd;
2862 	unsigned long flags;
2863 	int rc;
2864 
2865 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2866 	if (se_sess->sess_tearing_down) {
2867 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2868 		return;
2869 	}
2870 	se_sess->sess_tearing_down = 1;
2871 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2872 
2873 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2874 				 &se_sess->sess_wait_list, se_cmd_list) {
2875 		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2876 		if (rc) {
2877 			se_cmd->cmd_wait_set = 1;
2878 			spin_lock(&se_cmd->t_state_lock);
2879 			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2880 			spin_unlock(&se_cmd->t_state_lock);
2881 		} else
2882 			list_del_init(&se_cmd->se_cmd_list);
2883 	}
2884 
2885 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2886 }
2887 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2888 
2889 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2890  * @se_sess:    session to wait for active I/O
2891  */
target_wait_for_sess_cmds(struct se_session * se_sess)2892 void target_wait_for_sess_cmds(struct se_session *se_sess)
2893 {
2894 	struct se_cmd *se_cmd, *tmp_cmd;
2895 	unsigned long flags;
2896 	bool tas;
2897 
2898 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2899 				&se_sess->sess_wait_list, se_cmd_list) {
2900 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2901 			" %d\n", se_cmd, se_cmd->t_state,
2902 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2903 
2904 		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2905 		tas = (se_cmd->transport_state & CMD_T_TAS);
2906 		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2907 
2908 		if (!target_put_sess_cmd(se_cmd)) {
2909 			if (tas)
2910 				target_put_sess_cmd(se_cmd);
2911 		}
2912 
2913 		wait_for_completion(&se_cmd->cmd_wait_comp);
2914 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2915 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2916 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2917 
2918 		se_cmd->se_tfo->release_cmd(se_cmd);
2919 	}
2920 
2921 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2922 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2923 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2924 
2925 }
2926 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2927 
target_lun_confirm(struct percpu_ref * ref)2928 static void target_lun_confirm(struct percpu_ref *ref)
2929 {
2930 	struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2931 
2932 	complete(&lun->lun_ref_comp);
2933 }
2934 
transport_clear_lun_ref(struct se_lun * lun)2935 void transport_clear_lun_ref(struct se_lun *lun)
2936 {
2937 	/*
2938 	 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2939 	 * the initial reference and schedule confirm kill to be
2940 	 * executed after one full RCU grace period has completed.
2941 	 */
2942 	percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2943 	/*
2944 	 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2945 	 * to call target_lun_confirm after lun->lun_ref has been marked
2946 	 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2947 	 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2948 	 * fails for all new incoming I/O.
2949 	 */
2950 	wait_for_completion(&lun->lun_ref_comp);
2951 	/*
2952 	 * The second completion waits for percpu_ref_put_many() to
2953 	 * invoke ->release() after lun->lun_ref has switched to
2954 	 * atomic_t mode, and lun->lun_ref.count has reached zero.
2955 	 *
2956 	 * At this point all target-core lun->lun_ref references have
2957 	 * been dropped via transport_lun_remove_cmd(), and it's safe
2958 	 * to proceed with the remaining LUN shutdown.
2959 	 */
2960 	wait_for_completion(&lun->lun_shutdown_comp);
2961 }
2962 
2963 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2964 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2965 			   bool *aborted, bool *tas, unsigned long *flags)
2966 	__releases(&cmd->t_state_lock)
2967 	__acquires(&cmd->t_state_lock)
2968 {
2969 
2970 	assert_spin_locked(&cmd->t_state_lock);
2971 	WARN_ON_ONCE(!irqs_disabled());
2972 
2973 	if (fabric_stop)
2974 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2975 
2976 	if (cmd->transport_state & CMD_T_ABORTED)
2977 		*aborted = true;
2978 
2979 	if (cmd->transport_state & CMD_T_TAS)
2980 		*tas = true;
2981 
2982 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2983 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2984 		return false;
2985 
2986 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2987 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2988 		return false;
2989 
2990 	if (!(cmd->transport_state & CMD_T_ACTIVE))
2991 		return false;
2992 
2993 	if (fabric_stop && *aborted)
2994 		return false;
2995 
2996 	cmd->transport_state |= CMD_T_STOP;
2997 
2998 	target_show_cmd("wait_for_tasks: Stopping ", cmd);
2999 
3000 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3001 
3002 	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3003 					    180 * HZ))
3004 		target_show_cmd("wait for tasks: ", cmd);
3005 
3006 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3007 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3008 
3009 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3010 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3011 
3012 	return true;
3013 }
3014 
3015 /**
3016  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3017  * @cmd: command to wait on
3018  */
transport_wait_for_tasks(struct se_cmd * cmd)3019 bool transport_wait_for_tasks(struct se_cmd *cmd)
3020 {
3021 	unsigned long flags;
3022 	bool ret, aborted = false, tas = false;
3023 
3024 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3025 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3026 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3027 
3028 	return ret;
3029 }
3030 EXPORT_SYMBOL(transport_wait_for_tasks);
3031 
3032 struct sense_info {
3033 	u8 key;
3034 	u8 asc;
3035 	u8 ascq;
3036 	bool add_sector_info;
3037 };
3038 
3039 static const struct sense_info sense_info_table[] = {
3040 	[TCM_NO_SENSE] = {
3041 		.key = NOT_READY
3042 	},
3043 	[TCM_NON_EXISTENT_LUN] = {
3044 		.key = ILLEGAL_REQUEST,
3045 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3046 	},
3047 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
3048 		.key = ILLEGAL_REQUEST,
3049 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3050 	},
3051 	[TCM_SECTOR_COUNT_TOO_MANY] = {
3052 		.key = ILLEGAL_REQUEST,
3053 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3054 	},
3055 	[TCM_UNKNOWN_MODE_PAGE] = {
3056 		.key = ILLEGAL_REQUEST,
3057 		.asc = 0x24, /* INVALID FIELD IN CDB */
3058 	},
3059 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
3060 		.key = ABORTED_COMMAND,
3061 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3062 		.ascq = 0x03,
3063 	},
3064 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
3065 		.key = ABORTED_COMMAND,
3066 		.asc = 0x0c, /* WRITE ERROR */
3067 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3068 	},
3069 	[TCM_INVALID_CDB_FIELD] = {
3070 		.key = ILLEGAL_REQUEST,
3071 		.asc = 0x24, /* INVALID FIELD IN CDB */
3072 	},
3073 	[TCM_INVALID_PARAMETER_LIST] = {
3074 		.key = ILLEGAL_REQUEST,
3075 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3076 	},
3077 	[TCM_TOO_MANY_TARGET_DESCS] = {
3078 		.key = ILLEGAL_REQUEST,
3079 		.asc = 0x26,
3080 		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3081 	},
3082 	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3083 		.key = ILLEGAL_REQUEST,
3084 		.asc = 0x26,
3085 		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3086 	},
3087 	[TCM_TOO_MANY_SEGMENT_DESCS] = {
3088 		.key = ILLEGAL_REQUEST,
3089 		.asc = 0x26,
3090 		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3091 	},
3092 	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3093 		.key = ILLEGAL_REQUEST,
3094 		.asc = 0x26,
3095 		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3096 	},
3097 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3098 		.key = ILLEGAL_REQUEST,
3099 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3100 	},
3101 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3102 		.key = ILLEGAL_REQUEST,
3103 		.asc = 0x0c, /* WRITE ERROR */
3104 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3105 	},
3106 	[TCM_SERVICE_CRC_ERROR] = {
3107 		.key = ABORTED_COMMAND,
3108 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3109 		.ascq = 0x05, /* N/A */
3110 	},
3111 	[TCM_SNACK_REJECTED] = {
3112 		.key = ABORTED_COMMAND,
3113 		.asc = 0x11, /* READ ERROR */
3114 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3115 	},
3116 	[TCM_WRITE_PROTECTED] = {
3117 		.key = DATA_PROTECT,
3118 		.asc = 0x27, /* WRITE PROTECTED */
3119 	},
3120 	[TCM_ADDRESS_OUT_OF_RANGE] = {
3121 		.key = ILLEGAL_REQUEST,
3122 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3123 	},
3124 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3125 		.key = UNIT_ATTENTION,
3126 	},
3127 	[TCM_CHECK_CONDITION_NOT_READY] = {
3128 		.key = NOT_READY,
3129 	},
3130 	[TCM_MISCOMPARE_VERIFY] = {
3131 		.key = MISCOMPARE,
3132 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3133 		.ascq = 0x00,
3134 	},
3135 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3136 		.key = ABORTED_COMMAND,
3137 		.asc = 0x10,
3138 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3139 		.add_sector_info = true,
3140 	},
3141 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3142 		.key = ABORTED_COMMAND,
3143 		.asc = 0x10,
3144 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3145 		.add_sector_info = true,
3146 	},
3147 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3148 		.key = ABORTED_COMMAND,
3149 		.asc = 0x10,
3150 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3151 		.add_sector_info = true,
3152 	},
3153 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3154 		.key = COPY_ABORTED,
3155 		.asc = 0x0d,
3156 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3157 
3158 	},
3159 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3160 		/*
3161 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3162 		 * Solaris initiators.  Returning NOT READY instead means the
3163 		 * operations will be retried a finite number of times and we
3164 		 * can survive intermittent errors.
3165 		 */
3166 		.key = NOT_READY,
3167 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3168 	},
3169 };
3170 
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3171 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3172 {
3173 	const struct sense_info *si;
3174 	u8 *buffer = cmd->sense_buffer;
3175 	int r = (__force int)reason;
3176 	u8 asc, ascq;
3177 	bool desc_format = target_sense_desc_format(cmd->se_dev);
3178 
3179 	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3180 		si = &sense_info_table[r];
3181 	else
3182 		si = &sense_info_table[(__force int)
3183 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3184 
3185 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3186 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3187 		WARN_ON_ONCE(asc == 0);
3188 	} else if (si->asc == 0) {
3189 		WARN_ON_ONCE(cmd->scsi_asc == 0);
3190 		asc = cmd->scsi_asc;
3191 		ascq = cmd->scsi_ascq;
3192 	} else {
3193 		asc = si->asc;
3194 		ascq = si->ascq;
3195 	}
3196 
3197 	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3198 	if (si->add_sector_info)
3199 		return scsi_set_sense_information(buffer,
3200 						  cmd->scsi_sense_length,
3201 						  cmd->bad_sector);
3202 
3203 	return 0;
3204 }
3205 
3206 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3207 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3208 		sense_reason_t reason, int from_transport)
3209 {
3210 	unsigned long flags;
3211 
3212 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3213 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3214 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3215 		return 0;
3216 	}
3217 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3218 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3219 
3220 	if (!from_transport) {
3221 		int rc;
3222 
3223 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3224 		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3225 		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3226 		rc = translate_sense_reason(cmd, reason);
3227 		if (rc)
3228 			return rc;
3229 	}
3230 
3231 	trace_target_cmd_complete(cmd);
3232 	return cmd->se_tfo->queue_status(cmd);
3233 }
3234 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3235 
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)3236 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3237 	__releases(&cmd->t_state_lock)
3238 	__acquires(&cmd->t_state_lock)
3239 {
3240 	int ret;
3241 
3242 	assert_spin_locked(&cmd->t_state_lock);
3243 	WARN_ON_ONCE(!irqs_disabled());
3244 
3245 	if (!(cmd->transport_state & CMD_T_ABORTED))
3246 		return 0;
3247 	/*
3248 	 * If cmd has been aborted but either no status is to be sent or it has
3249 	 * already been sent, just return
3250 	 */
3251 	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3252 		if (send_status)
3253 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3254 		return 1;
3255 	}
3256 
3257 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3258 		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3259 
3260 	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3261 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3262 	trace_target_cmd_complete(cmd);
3263 
3264 	spin_unlock_irq(&cmd->t_state_lock);
3265 	ret = cmd->se_tfo->queue_status(cmd);
3266 	if (ret)
3267 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3268 	spin_lock_irq(&cmd->t_state_lock);
3269 
3270 	return 1;
3271 }
3272 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)3273 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3274 {
3275 	int ret;
3276 
3277 	spin_lock_irq(&cmd->t_state_lock);
3278 	ret = __transport_check_aborted_status(cmd, send_status);
3279 	spin_unlock_irq(&cmd->t_state_lock);
3280 
3281 	return ret;
3282 }
3283 EXPORT_SYMBOL(transport_check_aborted_status);
3284 
transport_send_task_abort(struct se_cmd * cmd)3285 void transport_send_task_abort(struct se_cmd *cmd)
3286 {
3287 	unsigned long flags;
3288 	int ret;
3289 
3290 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3291 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3292 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3293 		return;
3294 	}
3295 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3296 
3297 	/*
3298 	 * If there are still expected incoming fabric WRITEs, we wait
3299 	 * until until they have completed before sending a TASK_ABORTED
3300 	 * response.  This response with TASK_ABORTED status will be
3301 	 * queued back to fabric module by transport_check_aborted_status().
3302 	 */
3303 	if (cmd->data_direction == DMA_TO_DEVICE) {
3304 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3305 			spin_lock_irqsave(&cmd->t_state_lock, flags);
3306 			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3307 				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3308 				goto send_abort;
3309 			}
3310 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3311 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3312 			return;
3313 		}
3314 	}
3315 send_abort:
3316 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3317 
3318 	transport_lun_remove_cmd(cmd);
3319 
3320 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3321 		 cmd->t_task_cdb[0], cmd->tag);
3322 
3323 	trace_target_cmd_complete(cmd);
3324 	ret = cmd->se_tfo->queue_status(cmd);
3325 	if (ret)
3326 		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3327 }
3328 
target_tmr_work(struct work_struct * work)3329 static void target_tmr_work(struct work_struct *work)
3330 {
3331 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3332 	struct se_device *dev = cmd->se_dev;
3333 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3334 	unsigned long flags;
3335 	int ret;
3336 
3337 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3338 	if (cmd->transport_state & CMD_T_ABORTED) {
3339 		tmr->response = TMR_FUNCTION_REJECTED;
3340 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3341 		goto check_stop;
3342 	}
3343 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3344 
3345 	switch (tmr->function) {
3346 	case TMR_ABORT_TASK:
3347 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3348 		break;
3349 	case TMR_ABORT_TASK_SET:
3350 	case TMR_CLEAR_ACA:
3351 	case TMR_CLEAR_TASK_SET:
3352 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3353 		break;
3354 	case TMR_LUN_RESET:
3355 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3356 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3357 					 TMR_FUNCTION_REJECTED;
3358 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3359 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3360 					       cmd->orig_fe_lun, 0x29,
3361 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3362 		}
3363 		break;
3364 	case TMR_TARGET_WARM_RESET:
3365 		tmr->response = TMR_FUNCTION_REJECTED;
3366 		break;
3367 	case TMR_TARGET_COLD_RESET:
3368 		tmr->response = TMR_FUNCTION_REJECTED;
3369 		break;
3370 	default:
3371 		pr_err("Uknown TMR function: 0x%02x.\n",
3372 				tmr->function);
3373 		tmr->response = TMR_FUNCTION_REJECTED;
3374 		break;
3375 	}
3376 
3377 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3378 	if (cmd->transport_state & CMD_T_ABORTED) {
3379 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3380 		goto check_stop;
3381 	}
3382 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3383 
3384 	cmd->se_tfo->queue_tm_rsp(cmd);
3385 
3386 check_stop:
3387 	transport_lun_remove_cmd(cmd);
3388 	transport_cmd_check_stop_to_fabric(cmd);
3389 }
3390 
transport_generic_handle_tmr(struct se_cmd * cmd)3391 int transport_generic_handle_tmr(
3392 	struct se_cmd *cmd)
3393 {
3394 	unsigned long flags;
3395 	bool aborted = false;
3396 
3397 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3398 	if (cmd->transport_state & CMD_T_ABORTED) {
3399 		aborted = true;
3400 	} else {
3401 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3402 		cmd->transport_state |= CMD_T_ACTIVE;
3403 	}
3404 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3405 
3406 	if (aborted) {
3407 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3408 			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3409 			cmd->se_tmr_req->ref_task_tag, cmd->tag);
3410 		transport_lun_remove_cmd(cmd);
3411 		transport_cmd_check_stop_to_fabric(cmd);
3412 		return 0;
3413 	}
3414 
3415 	INIT_WORK(&cmd->work, target_tmr_work);
3416 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3417 	return 0;
3418 }
3419 EXPORT_SYMBOL(transport_generic_handle_tmr);
3420 
3421 bool
target_check_wce(struct se_device * dev)3422 target_check_wce(struct se_device *dev)
3423 {
3424 	bool wce = false;
3425 
3426 	if (dev->transport->get_write_cache)
3427 		wce = dev->transport->get_write_cache(dev);
3428 	else if (dev->dev_attrib.emulate_write_cache > 0)
3429 		wce = true;
3430 
3431 	return wce;
3432 }
3433 
3434 bool
target_check_fua(struct se_device * dev)3435 target_check_fua(struct se_device *dev)
3436 {
3437 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3438 }
3439