• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3  * Internal non-public definitions that provide either classic
4  * or preemptible semantics.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, you can access it online at
18  * http://www.gnu.org/licenses/gpl-2.0.html.
19  *
20  * Copyright Red Hat, 2009
21  * Copyright IBM Corporation, 2009
22  *
23  * Author: Ingo Molnar <mingo@elte.hu>
24  *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
25  */
26 
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <uapi/linux/sched/types.h>
33 #include "../time/tick-internal.h"
34 
35 #ifdef CONFIG_RCU_BOOST
36 
37 #include "../locking/rtmutex_common.h"
38 
39 /*
40  * Control variables for per-CPU and per-rcu_node kthreads.  These
41  * handle all flavors of RCU.
42  */
43 static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work);
47 
48 #else /* #ifdef CONFIG_RCU_BOOST */
49 
50 /*
51  * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52  * all uses are in dead code.  Provide a definition to keep the compiler
53  * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54  * This probably needs to be excluded from -rt builds.
55  */
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57 
58 #endif /* #else #ifdef CONFIG_RCU_BOOST */
59 
60 #ifdef CONFIG_RCU_NOCB_CPU
61 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
62 static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
63 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
65 
66 /*
67  * Check the RCU kernel configuration parameters and print informative
68  * messages about anything out of the ordinary.
69  */
rcu_bootup_announce_oddness(void)70 static void __init rcu_bootup_announce_oddness(void)
71 {
72 	if (IS_ENABLED(CONFIG_RCU_TRACE))
73 		pr_info("\tRCU event tracing is enabled.\n");
74 	if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
75 	    (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
76 		pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
77 		       RCU_FANOUT);
78 	if (rcu_fanout_exact)
79 		pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 	if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
81 		pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 	if (IS_ENABLED(CONFIG_PROVE_RCU))
83 		pr_info("\tRCU lockdep checking is enabled.\n");
84 	if (RCU_NUM_LVLS >= 4)
85 		pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 	if (RCU_FANOUT_LEAF != 16)
87 		pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
88 			RCU_FANOUT_LEAF);
89 	if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
90 		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
91 	if (nr_cpu_ids != NR_CPUS)
92 		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
93 #ifdef CONFIG_RCU_BOOST
94 	pr_info("\tRCU priority boosting: priority %d delay %d ms.\n", kthread_prio, CONFIG_RCU_BOOST_DELAY);
95 #endif
96 	if (blimit != DEFAULT_RCU_BLIMIT)
97 		pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
98 	if (qhimark != DEFAULT_RCU_QHIMARK)
99 		pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
100 	if (qlowmark != DEFAULT_RCU_QLOMARK)
101 		pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
102 	if (jiffies_till_first_fqs != ULONG_MAX)
103 		pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
104 	if (jiffies_till_next_fqs != ULONG_MAX)
105 		pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
106 	if (rcu_kick_kthreads)
107 		pr_info("\tKick kthreads if too-long grace period.\n");
108 	if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
109 		pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
110 	if (gp_preinit_delay)
111 		pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
112 	if (gp_init_delay)
113 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
114 	if (gp_cleanup_delay)
115 		pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
116 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
117 		pr_info("\tRCU debug extended QS entry/exit.\n");
118 	rcupdate_announce_bootup_oddness();
119 }
120 
121 #ifdef CONFIG_PREEMPT_RCU
122 
123 RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
124 static struct rcu_state *const rcu_state_p = &rcu_preempt_state;
125 static struct rcu_data __percpu *const rcu_data_p = &rcu_preempt_data;
126 
127 static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
128 			       bool wake);
129 
130 /*
131  * Tell them what RCU they are running.
132  */
rcu_bootup_announce(void)133 static void __init rcu_bootup_announce(void)
134 {
135 	pr_info("Preemptible hierarchical RCU implementation.\n");
136 	rcu_bootup_announce_oddness();
137 }
138 
139 /* Flags for rcu_preempt_ctxt_queue() decision table. */
140 #define RCU_GP_TASKS	0x8
141 #define RCU_EXP_TASKS	0x4
142 #define RCU_GP_BLKD	0x2
143 #define RCU_EXP_BLKD	0x1
144 
145 /*
146  * Queues a task preempted within an RCU-preempt read-side critical
147  * section into the appropriate location within the ->blkd_tasks list,
148  * depending on the states of any ongoing normal and expedited grace
149  * periods.  The ->gp_tasks pointer indicates which element the normal
150  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
151  * indicates which element the expedited grace period is waiting on (again,
152  * NULL if none).  If a grace period is waiting on a given element in the
153  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
154  * adding a task to the tail of the list blocks any grace period that is
155  * already waiting on one of the elements.  In contrast, adding a task
156  * to the head of the list won't block any grace period that is already
157  * waiting on one of the elements.
158  *
159  * This queuing is imprecise, and can sometimes make an ongoing grace
160  * period wait for a task that is not strictly speaking blocking it.
161  * Given the choice, we needlessly block a normal grace period rather than
162  * blocking an expedited grace period.
163  *
164  * Note that an endless sequence of expedited grace periods still cannot
165  * indefinitely postpone a normal grace period.  Eventually, all of the
166  * fixed number of preempted tasks blocking the normal grace period that are
167  * not also blocking the expedited grace period will resume and complete
168  * their RCU read-side critical sections.  At that point, the ->gp_tasks
169  * pointer will equal the ->exp_tasks pointer, at which point the end of
170  * the corresponding expedited grace period will also be the end of the
171  * normal grace period.
172  */
rcu_preempt_ctxt_queue(struct rcu_node * rnp,struct rcu_data * rdp)173 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
174 	__releases(rnp->lock) /* But leaves rrupts disabled. */
175 {
176 	int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
177 			 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
178 			 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
179 			 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
180 	struct task_struct *t = current;
181 
182 	lockdep_assert_held(&rnp->lock);
183 	WARN_ON_ONCE(rdp->mynode != rnp);
184 	WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
185 
186 	/*
187 	 * Decide where to queue the newly blocked task.  In theory,
188 	 * this could be an if-statement.  In practice, when I tried
189 	 * that, it was quite messy.
190 	 */
191 	switch (blkd_state) {
192 	case 0:
193 	case                RCU_EXP_TASKS:
194 	case                RCU_EXP_TASKS + RCU_GP_BLKD:
195 	case RCU_GP_TASKS:
196 	case RCU_GP_TASKS + RCU_EXP_TASKS:
197 
198 		/*
199 		 * Blocking neither GP, or first task blocking the normal
200 		 * GP but not blocking the already-waiting expedited GP.
201 		 * Queue at the head of the list to avoid unnecessarily
202 		 * blocking the already-waiting GPs.
203 		 */
204 		list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
205 		break;
206 
207 	case                                              RCU_EXP_BLKD:
208 	case                                RCU_GP_BLKD:
209 	case                                RCU_GP_BLKD + RCU_EXP_BLKD:
210 	case RCU_GP_TASKS +                               RCU_EXP_BLKD:
211 	case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
212 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
213 
214 		/*
215 		 * First task arriving that blocks either GP, or first task
216 		 * arriving that blocks the expedited GP (with the normal
217 		 * GP already waiting), or a task arriving that blocks
218 		 * both GPs with both GPs already waiting.  Queue at the
219 		 * tail of the list to avoid any GP waiting on any of the
220 		 * already queued tasks that are not blocking it.
221 		 */
222 		list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
223 		break;
224 
225 	case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
226 	case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
227 	case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
228 
229 		/*
230 		 * Second or subsequent task blocking the expedited GP.
231 		 * The task either does not block the normal GP, or is the
232 		 * first task blocking the normal GP.  Queue just after
233 		 * the first task blocking the expedited GP.
234 		 */
235 		list_add(&t->rcu_node_entry, rnp->exp_tasks);
236 		break;
237 
238 	case RCU_GP_TASKS +                 RCU_GP_BLKD:
239 	case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
240 
241 		/*
242 		 * Second or subsequent task blocking the normal GP.
243 		 * The task does not block the expedited GP. Queue just
244 		 * after the first task blocking the normal GP.
245 		 */
246 		list_add(&t->rcu_node_entry, rnp->gp_tasks);
247 		break;
248 
249 	default:
250 
251 		/* Yet another exercise in excessive paranoia. */
252 		WARN_ON_ONCE(1);
253 		break;
254 	}
255 
256 	/*
257 	 * We have now queued the task.  If it was the first one to
258 	 * block either grace period, update the ->gp_tasks and/or
259 	 * ->exp_tasks pointers, respectively, to reference the newly
260 	 * blocked tasks.
261 	 */
262 	if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD))
263 		rnp->gp_tasks = &t->rcu_node_entry;
264 	if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
265 		rnp->exp_tasks = &t->rcu_node_entry;
266 	WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
267 		     !(rnp->qsmask & rdp->grpmask));
268 	WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
269 		     !(rnp->expmask & rdp->grpmask));
270 	raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
271 
272 	/*
273 	 * Report the quiescent state for the expedited GP.  This expedited
274 	 * GP should not be able to end until we report, so there should be
275 	 * no need to check for a subsequent expedited GP.  (Though we are
276 	 * still in a quiescent state in any case.)
277 	 */
278 	if (blkd_state & RCU_EXP_BLKD &&
279 	    t->rcu_read_unlock_special.b.exp_need_qs) {
280 		t->rcu_read_unlock_special.b.exp_need_qs = false;
281 		rcu_report_exp_rdp(rdp->rsp, rdp, true);
282 	} else {
283 		WARN_ON_ONCE(t->rcu_read_unlock_special.b.exp_need_qs);
284 	}
285 }
286 
287 /*
288  * Record a preemptible-RCU quiescent state for the specified CPU.  Note
289  * that this just means that the task currently running on the CPU is
290  * not in a quiescent state.  There might be any number of tasks blocked
291  * while in an RCU read-side critical section.
292  *
293  * As with the other rcu_*_qs() functions, callers to this function
294  * must disable preemption.
295  */
rcu_preempt_qs(void)296 static void rcu_preempt_qs(void)
297 {
298 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_qs() invoked with preemption enabled!!!\n");
299 	if (__this_cpu_read(rcu_data_p->cpu_no_qs.s)) {
300 		trace_rcu_grace_period(TPS("rcu_preempt"),
301 				       __this_cpu_read(rcu_data_p->gpnum),
302 				       TPS("cpuqs"));
303 		__this_cpu_write(rcu_data_p->cpu_no_qs.b.norm, false);
304 		barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
305 		current->rcu_read_unlock_special.b.need_qs = false;
306 	}
307 }
308 
309 /*
310  * We have entered the scheduler, and the current task might soon be
311  * context-switched away from.  If this task is in an RCU read-side
312  * critical section, we will no longer be able to rely on the CPU to
313  * record that fact, so we enqueue the task on the blkd_tasks list.
314  * The task will dequeue itself when it exits the outermost enclosing
315  * RCU read-side critical section.  Therefore, the current grace period
316  * cannot be permitted to complete until the blkd_tasks list entries
317  * predating the current grace period drain, in other words, until
318  * rnp->gp_tasks becomes NULL.
319  *
320  * Caller must disable interrupts.
321  */
rcu_preempt_note_context_switch(bool preempt)322 static void rcu_preempt_note_context_switch(bool preempt)
323 {
324 	struct task_struct *t = current;
325 	struct rcu_data *rdp;
326 	struct rcu_node *rnp;
327 
328 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_preempt_note_context_switch() invoked with interrupts enabled!!!\n");
329 	WARN_ON_ONCE(!preempt && t->rcu_read_lock_nesting > 0);
330 	if (t->rcu_read_lock_nesting > 0 &&
331 	    !t->rcu_read_unlock_special.b.blocked) {
332 
333 		/* Possibly blocking in an RCU read-side critical section. */
334 		rdp = this_cpu_ptr(rcu_state_p->rda);
335 		rnp = rdp->mynode;
336 		raw_spin_lock_rcu_node(rnp);
337 		t->rcu_read_unlock_special.b.blocked = true;
338 		t->rcu_blocked_node = rnp;
339 
340 		/*
341 		 * Verify the CPU's sanity, trace the preemption, and
342 		 * then queue the task as required based on the states
343 		 * of any ongoing and expedited grace periods.
344 		 */
345 		WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
346 		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
347 		trace_rcu_preempt_task(rdp->rsp->name,
348 				       t->pid,
349 				       (rnp->qsmask & rdp->grpmask)
350 				       ? rnp->gpnum
351 				       : rnp->gpnum + 1);
352 		rcu_preempt_ctxt_queue(rnp, rdp);
353 	} else if (t->rcu_read_lock_nesting < 0 &&
354 		   t->rcu_read_unlock_special.s) {
355 
356 		/*
357 		 * Complete exit from RCU read-side critical section on
358 		 * behalf of preempted instance of __rcu_read_unlock().
359 		 */
360 		rcu_read_unlock_special(t);
361 	}
362 
363 	/*
364 	 * Either we were not in an RCU read-side critical section to
365 	 * begin with, or we have now recorded that critical section
366 	 * globally.  Either way, we can now note a quiescent state
367 	 * for this CPU.  Again, if we were in an RCU read-side critical
368 	 * section, and if that critical section was blocking the current
369 	 * grace period, then the fact that the task has been enqueued
370 	 * means that we continue to block the current grace period.
371 	 */
372 	rcu_preempt_qs();
373 }
374 
375 /*
376  * Check for preempted RCU readers blocking the current grace period
377  * for the specified rcu_node structure.  If the caller needs a reliable
378  * answer, it must hold the rcu_node's ->lock.
379  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)380 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
381 {
382 	return rnp->gp_tasks != NULL;
383 }
384 
385 /*
386  * Advance a ->blkd_tasks-list pointer to the next entry, instead
387  * returning NULL if at the end of the list.
388  */
rcu_next_node_entry(struct task_struct * t,struct rcu_node * rnp)389 static struct list_head *rcu_next_node_entry(struct task_struct *t,
390 					     struct rcu_node *rnp)
391 {
392 	struct list_head *np;
393 
394 	np = t->rcu_node_entry.next;
395 	if (np == &rnp->blkd_tasks)
396 		np = NULL;
397 	return np;
398 }
399 
400 /*
401  * Return true if the specified rcu_node structure has tasks that were
402  * preempted within an RCU read-side critical section.
403  */
rcu_preempt_has_tasks(struct rcu_node * rnp)404 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
405 {
406 	return !list_empty(&rnp->blkd_tasks);
407 }
408 
409 /*
410  * Handle special cases during rcu_read_unlock(), such as needing to
411  * notify RCU core processing or task having blocked during the RCU
412  * read-side critical section.
413  */
rcu_read_unlock_special(struct task_struct * t)414 void rcu_read_unlock_special(struct task_struct *t)
415 {
416 	bool empty_exp;
417 	bool empty_norm;
418 	bool empty_exp_now;
419 	unsigned long flags;
420 	struct list_head *np;
421 	bool drop_boost_mutex = false;
422 	struct rcu_data *rdp;
423 	struct rcu_node *rnp;
424 	union rcu_special special;
425 
426 	/* NMI handlers cannot block and cannot safely manipulate state. */
427 	if (in_nmi())
428 		return;
429 
430 	local_irq_save(flags);
431 
432 	/*
433 	 * If RCU core is waiting for this CPU to exit its critical section,
434 	 * report the fact that it has exited.  Because irqs are disabled,
435 	 * t->rcu_read_unlock_special cannot change.
436 	 */
437 	special = t->rcu_read_unlock_special;
438 	if (special.b.need_qs) {
439 		rcu_preempt_qs();
440 		t->rcu_read_unlock_special.b.need_qs = false;
441 		if (!t->rcu_read_unlock_special.s) {
442 			local_irq_restore(flags);
443 			return;
444 		}
445 	}
446 
447 	/*
448 	 * Respond to a request for an expedited grace period, but only if
449 	 * we were not preempted, meaning that we were running on the same
450 	 * CPU throughout.  If we were preempted, the exp_need_qs flag
451 	 * would have been cleared at the time of the first preemption,
452 	 * and the quiescent state would be reported when we were dequeued.
453 	 */
454 	if (special.b.exp_need_qs) {
455 		WARN_ON_ONCE(special.b.blocked);
456 		t->rcu_read_unlock_special.b.exp_need_qs = false;
457 		rdp = this_cpu_ptr(rcu_state_p->rda);
458 		rcu_report_exp_rdp(rcu_state_p, rdp, true);
459 		if (!t->rcu_read_unlock_special.s) {
460 			local_irq_restore(flags);
461 			return;
462 		}
463 	}
464 
465 	/* Hardware IRQ handlers cannot block, complain if they get here. */
466 	if (in_irq() || in_serving_softirq()) {
467 		lockdep_rcu_suspicious(__FILE__, __LINE__,
468 				       "rcu_read_unlock() from irq or softirq with blocking in critical section!!!\n");
469 		pr_alert("->rcu_read_unlock_special: %#x (b: %d, enq: %d nq: %d)\n",
470 			 t->rcu_read_unlock_special.s,
471 			 t->rcu_read_unlock_special.b.blocked,
472 			 t->rcu_read_unlock_special.b.exp_need_qs,
473 			 t->rcu_read_unlock_special.b.need_qs);
474 		local_irq_restore(flags);
475 		return;
476 	}
477 
478 	/* Clean up if blocked during RCU read-side critical section. */
479 	if (special.b.blocked) {
480 		t->rcu_read_unlock_special.b.blocked = false;
481 
482 		/*
483 		 * Remove this task from the list it blocked on.  The task
484 		 * now remains queued on the rcu_node corresponding to the
485 		 * CPU it first blocked on, so there is no longer any need
486 		 * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
487 		 */
488 		rnp = t->rcu_blocked_node;
489 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
490 		WARN_ON_ONCE(rnp != t->rcu_blocked_node);
491 		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1);
492 		empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
493 		empty_exp = sync_rcu_preempt_exp_done(rnp);
494 		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
495 		np = rcu_next_node_entry(t, rnp);
496 		list_del_init(&t->rcu_node_entry);
497 		t->rcu_blocked_node = NULL;
498 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
499 						rnp->gpnum, t->pid);
500 		if (&t->rcu_node_entry == rnp->gp_tasks)
501 			rnp->gp_tasks = np;
502 		if (&t->rcu_node_entry == rnp->exp_tasks)
503 			rnp->exp_tasks = np;
504 		if (IS_ENABLED(CONFIG_RCU_BOOST)) {
505 			/* Snapshot ->boost_mtx ownership w/rnp->lock held. */
506 			drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
507 			if (&t->rcu_node_entry == rnp->boost_tasks)
508 				rnp->boost_tasks = np;
509 		}
510 
511 		/*
512 		 * If this was the last task on the current list, and if
513 		 * we aren't waiting on any CPUs, report the quiescent state.
514 		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
515 		 * so we must take a snapshot of the expedited state.
516 		 */
517 		empty_exp_now = sync_rcu_preempt_exp_done(rnp);
518 		if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
519 			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
520 							 rnp->gpnum,
521 							 0, rnp->qsmask,
522 							 rnp->level,
523 							 rnp->grplo,
524 							 rnp->grphi,
525 							 !!rnp->gp_tasks);
526 			rcu_report_unblock_qs_rnp(rcu_state_p, rnp, flags);
527 		} else {
528 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529 		}
530 
531 		/* Unboost if we were boosted. */
532 		if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
533 			rt_mutex_unlock(&rnp->boost_mtx);
534 
535 		/*
536 		 * If this was the last task on the expedited lists,
537 		 * then we need to report up the rcu_node hierarchy.
538 		 */
539 		if (!empty_exp && empty_exp_now)
540 			rcu_report_exp_rnp(rcu_state_p, rnp, true);
541 	} else {
542 		local_irq_restore(flags);
543 	}
544 }
545 
546 /*
547  * Dump detailed information for all tasks blocking the current RCU
548  * grace period on the specified rcu_node structure.
549  */
rcu_print_detail_task_stall_rnp(struct rcu_node * rnp)550 static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
551 {
552 	unsigned long flags;
553 	struct task_struct *t;
554 
555 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
556 	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
557 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
558 		return;
559 	}
560 	t = list_entry(rnp->gp_tasks->prev,
561 		       struct task_struct, rcu_node_entry);
562 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
563 		/*
564 		 * We could be printing a lot while holding a spinlock.
565 		 * Avoid triggering hard lockup.
566 		 */
567 		touch_nmi_watchdog();
568 		sched_show_task(t);
569 	}
570 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
571 }
572 
573 /*
574  * Dump detailed information for all tasks blocking the current RCU
575  * grace period.
576  */
rcu_print_detail_task_stall(struct rcu_state * rsp)577 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
578 {
579 	struct rcu_node *rnp = rcu_get_root(rsp);
580 
581 	rcu_print_detail_task_stall_rnp(rnp);
582 	rcu_for_each_leaf_node(rsp, rnp)
583 		rcu_print_detail_task_stall_rnp(rnp);
584 }
585 
rcu_print_task_stall_begin(struct rcu_node * rnp)586 static void rcu_print_task_stall_begin(struct rcu_node *rnp)
587 {
588 	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
589 	       rnp->level, rnp->grplo, rnp->grphi);
590 }
591 
rcu_print_task_stall_end(void)592 static void rcu_print_task_stall_end(void)
593 {
594 	pr_cont("\n");
595 }
596 
597 /*
598  * Scan the current list of tasks blocked within RCU read-side critical
599  * sections, printing out the tid of each.
600  */
rcu_print_task_stall(struct rcu_node * rnp)601 static int rcu_print_task_stall(struct rcu_node *rnp)
602 {
603 	struct task_struct *t;
604 	int ndetected = 0;
605 
606 	if (!rcu_preempt_blocked_readers_cgp(rnp))
607 		return 0;
608 	rcu_print_task_stall_begin(rnp);
609 	t = list_entry(rnp->gp_tasks->prev,
610 		       struct task_struct, rcu_node_entry);
611 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
612 		pr_cont(" P%d", t->pid);
613 		ndetected++;
614 	}
615 	rcu_print_task_stall_end();
616 	return ndetected;
617 }
618 
619 /*
620  * Scan the current list of tasks blocked within RCU read-side critical
621  * sections, printing out the tid of each that is blocking the current
622  * expedited grace period.
623  */
rcu_print_task_exp_stall(struct rcu_node * rnp)624 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
625 {
626 	struct task_struct *t;
627 	int ndetected = 0;
628 
629 	if (!rnp->exp_tasks)
630 		return 0;
631 	t = list_entry(rnp->exp_tasks->prev,
632 		       struct task_struct, rcu_node_entry);
633 	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
634 		pr_cont(" P%d", t->pid);
635 		ndetected++;
636 	}
637 	return ndetected;
638 }
639 
640 /*
641  * Check that the list of blocked tasks for the newly completed grace
642  * period is in fact empty.  It is a serious bug to complete a grace
643  * period that still has RCU readers blocked!  This function must be
644  * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
645  * must be held by the caller.
646  *
647  * Also, if there are blocked tasks on the list, they automatically
648  * block the newly created grace period, so set up ->gp_tasks accordingly.
649  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)650 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
651 {
652 	struct task_struct *t;
653 
654 	RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
655 	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
656 	if (rcu_preempt_has_tasks(rnp)) {
657 		rnp->gp_tasks = rnp->blkd_tasks.next;
658 		t = container_of(rnp->gp_tasks, struct task_struct,
659 				 rcu_node_entry);
660 		trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
661 						rnp->gpnum, t->pid);
662 	}
663 	WARN_ON_ONCE(rnp->qsmask);
664 }
665 
666 /*
667  * Check for a quiescent state from the current CPU.  When a task blocks,
668  * the task is recorded in the corresponding CPU's rcu_node structure,
669  * which is checked elsewhere.
670  *
671  * Caller must disable hard irqs.
672  */
rcu_preempt_check_callbacks(void)673 static void rcu_preempt_check_callbacks(void)
674 {
675 	struct task_struct *t = current;
676 
677 	if (t->rcu_read_lock_nesting == 0) {
678 		rcu_preempt_qs();
679 		return;
680 	}
681 	if (t->rcu_read_lock_nesting > 0 &&
682 	    __this_cpu_read(rcu_data_p->core_needs_qs) &&
683 	    __this_cpu_read(rcu_data_p->cpu_no_qs.b.norm))
684 		t->rcu_read_unlock_special.b.need_qs = true;
685 }
686 
687 #ifdef CONFIG_RCU_BOOST
688 
rcu_preempt_do_callbacks(void)689 static void rcu_preempt_do_callbacks(void)
690 {
691 	rcu_do_batch(rcu_state_p, this_cpu_ptr(rcu_data_p));
692 }
693 
694 #endif /* #ifdef CONFIG_RCU_BOOST */
695 
696 /**
697  * call_rcu() - Queue an RCU callback for invocation after a grace period.
698  * @head: structure to be used for queueing the RCU updates.
699  * @func: actual callback function to be invoked after the grace period
700  *
701  * The callback function will be invoked some time after a full grace
702  * period elapses, in other words after all pre-existing RCU read-side
703  * critical sections have completed.  However, the callback function
704  * might well execute concurrently with RCU read-side critical sections
705  * that started after call_rcu() was invoked.  RCU read-side critical
706  * sections are delimited by rcu_read_lock() and rcu_read_unlock(),
707  * and may be nested.
708  *
709  * Note that all CPUs must agree that the grace period extended beyond
710  * all pre-existing RCU read-side critical section.  On systems with more
711  * than one CPU, this means that when "func()" is invoked, each CPU is
712  * guaranteed to have executed a full memory barrier since the end of its
713  * last RCU read-side critical section whose beginning preceded the call
714  * to call_rcu().  It also means that each CPU executing an RCU read-side
715  * critical section that continues beyond the start of "func()" must have
716  * executed a memory barrier after the call_rcu() but before the beginning
717  * of that RCU read-side critical section.  Note that these guarantees
718  * include CPUs that are offline, idle, or executing in user mode, as
719  * well as CPUs that are executing in the kernel.
720  *
721  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
722  * resulting RCU callback function "func()", then both CPU A and CPU B are
723  * guaranteed to execute a full memory barrier during the time interval
724  * between the call to call_rcu() and the invocation of "func()" -- even
725  * if CPU A and CPU B are the same CPU (but again only if the system has
726  * more than one CPU).
727  */
call_rcu(struct rcu_head * head,rcu_callback_t func)728 void call_rcu(struct rcu_head *head, rcu_callback_t func)
729 {
730 	__call_rcu(head, func, rcu_state_p, -1, 0);
731 }
732 EXPORT_SYMBOL_GPL(call_rcu);
733 
734 /**
735  * synchronize_rcu - wait until a grace period has elapsed.
736  *
737  * Control will return to the caller some time after a full grace
738  * period has elapsed, in other words after all currently executing RCU
739  * read-side critical sections have completed.  Note, however, that
740  * upon return from synchronize_rcu(), the caller might well be executing
741  * concurrently with new RCU read-side critical sections that began while
742  * synchronize_rcu() was waiting.  RCU read-side critical sections are
743  * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
744  *
745  * See the description of synchronize_sched() for more detailed
746  * information on memory-ordering guarantees.  However, please note
747  * that -only- the memory-ordering guarantees apply.  For example,
748  * synchronize_rcu() is -not- guaranteed to wait on things like code
749  * protected by preempt_disable(), instead, synchronize_rcu() is -only-
750  * guaranteed to wait on RCU read-side critical sections, that is, sections
751  * of code protected by rcu_read_lock().
752  */
synchronize_rcu(void)753 void synchronize_rcu(void)
754 {
755 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
756 			 lock_is_held(&rcu_lock_map) ||
757 			 lock_is_held(&rcu_sched_lock_map),
758 			 "Illegal synchronize_rcu() in RCU read-side critical section");
759 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
760 		return;
761 	if (rcu_gp_is_expedited())
762 		synchronize_rcu_expedited();
763 	else
764 		wait_rcu_gp(call_rcu);
765 }
766 EXPORT_SYMBOL_GPL(synchronize_rcu);
767 
768 /**
769  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
770  *
771  * Note that this primitive does not necessarily wait for an RCU grace period
772  * to complete.  For example, if there are no RCU callbacks queued anywhere
773  * in the system, then rcu_barrier() is within its rights to return
774  * immediately, without waiting for anything, much less an RCU grace period.
775  */
rcu_barrier(void)776 void rcu_barrier(void)
777 {
778 	_rcu_barrier(rcu_state_p);
779 }
780 EXPORT_SYMBOL_GPL(rcu_barrier);
781 
782 /*
783  * Initialize preemptible RCU's state structures.
784  */
__rcu_init_preempt(void)785 static void __init __rcu_init_preempt(void)
786 {
787 	rcu_init_one(rcu_state_p);
788 }
789 
790 /*
791  * Check for a task exiting while in a preemptible-RCU read-side
792  * critical section, clean up if so.  No need to issue warnings,
793  * as debug_check_no_locks_held() already does this if lockdep
794  * is enabled.
795  */
exit_rcu(void)796 void exit_rcu(void)
797 {
798 	struct task_struct *t = current;
799 
800 	if (likely(list_empty(&current->rcu_node_entry)))
801 		return;
802 	t->rcu_read_lock_nesting = 1;
803 	barrier();
804 	t->rcu_read_unlock_special.b.blocked = true;
805 	__rcu_read_unlock();
806 }
807 
808 #else /* #ifdef CONFIG_PREEMPT_RCU */
809 
810 static struct rcu_state *const rcu_state_p = &rcu_sched_state;
811 
812 /*
813  * Tell them what RCU they are running.
814  */
rcu_bootup_announce(void)815 static void __init rcu_bootup_announce(void)
816 {
817 	pr_info("Hierarchical RCU implementation.\n");
818 	rcu_bootup_announce_oddness();
819 }
820 
821 /*
822  * Because preemptible RCU does not exist, we never have to check for
823  * CPUs being in quiescent states.
824  */
rcu_preempt_note_context_switch(bool preempt)825 static void rcu_preempt_note_context_switch(bool preempt)
826 {
827 }
828 
829 /*
830  * Because preemptible RCU does not exist, there are never any preempted
831  * RCU readers.
832  */
rcu_preempt_blocked_readers_cgp(struct rcu_node * rnp)833 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
834 {
835 	return 0;
836 }
837 
838 /*
839  * Because there is no preemptible RCU, there can be no readers blocked.
840  */
rcu_preempt_has_tasks(struct rcu_node * rnp)841 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
842 {
843 	return false;
844 }
845 
846 /*
847  * Because preemptible RCU does not exist, we never have to check for
848  * tasks blocked within RCU read-side critical sections.
849  */
rcu_print_detail_task_stall(struct rcu_state * rsp)850 static void rcu_print_detail_task_stall(struct rcu_state *rsp)
851 {
852 }
853 
854 /*
855  * Because preemptible RCU does not exist, we never have to check for
856  * tasks blocked within RCU read-side critical sections.
857  */
rcu_print_task_stall(struct rcu_node * rnp)858 static int rcu_print_task_stall(struct rcu_node *rnp)
859 {
860 	return 0;
861 }
862 
863 /*
864  * Because preemptible RCU does not exist, we never have to check for
865  * tasks blocked within RCU read-side critical sections that are
866  * blocking the current expedited grace period.
867  */
rcu_print_task_exp_stall(struct rcu_node * rnp)868 static int rcu_print_task_exp_stall(struct rcu_node *rnp)
869 {
870 	return 0;
871 }
872 
873 /*
874  * Because there is no preemptible RCU, there can be no readers blocked,
875  * so there is no need to check for blocked tasks.  So check only for
876  * bogus qsmask values.
877  */
rcu_preempt_check_blocked_tasks(struct rcu_node * rnp)878 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
879 {
880 	WARN_ON_ONCE(rnp->qsmask);
881 }
882 
883 /*
884  * Because preemptible RCU does not exist, it never has any callbacks
885  * to check.
886  */
rcu_preempt_check_callbacks(void)887 static void rcu_preempt_check_callbacks(void)
888 {
889 }
890 
891 /*
892  * Because preemptible RCU does not exist, rcu_barrier() is just
893  * another name for rcu_barrier_sched().
894  */
rcu_barrier(void)895 void rcu_barrier(void)
896 {
897 	rcu_barrier_sched();
898 }
899 EXPORT_SYMBOL_GPL(rcu_barrier);
900 
901 /*
902  * Because preemptible RCU does not exist, it need not be initialized.
903  */
__rcu_init_preempt(void)904 static void __init __rcu_init_preempt(void)
905 {
906 }
907 
908 /*
909  * Because preemptible RCU does not exist, tasks cannot possibly exit
910  * while in preemptible RCU read-side critical sections.
911  */
exit_rcu(void)912 void exit_rcu(void)
913 {
914 }
915 
916 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
917 
918 #ifdef CONFIG_RCU_BOOST
919 
920 #include "../locking/rtmutex_common.h"
921 
rcu_wake_cond(struct task_struct * t,int status)922 static void rcu_wake_cond(struct task_struct *t, int status)
923 {
924 	/*
925 	 * If the thread is yielding, only wake it when this
926 	 * is invoked from idle
927 	 */
928 	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
929 		wake_up_process(t);
930 }
931 
932 /*
933  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
934  * or ->boost_tasks, advancing the pointer to the next task in the
935  * ->blkd_tasks list.
936  *
937  * Note that irqs must be enabled: boosting the task can block.
938  * Returns 1 if there are more tasks needing to be boosted.
939  */
rcu_boost(struct rcu_node * rnp)940 static int rcu_boost(struct rcu_node *rnp)
941 {
942 	unsigned long flags;
943 	struct task_struct *t;
944 	struct list_head *tb;
945 
946 	if (READ_ONCE(rnp->exp_tasks) == NULL &&
947 	    READ_ONCE(rnp->boost_tasks) == NULL)
948 		return 0;  /* Nothing left to boost. */
949 
950 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
951 
952 	/*
953 	 * Recheck under the lock: all tasks in need of boosting
954 	 * might exit their RCU read-side critical sections on their own.
955 	 */
956 	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
957 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
958 		return 0;
959 	}
960 
961 	/*
962 	 * Preferentially boost tasks blocking expedited grace periods.
963 	 * This cannot starve the normal grace periods because a second
964 	 * expedited grace period must boost all blocked tasks, including
965 	 * those blocking the pre-existing normal grace period.
966 	 */
967 	if (rnp->exp_tasks != NULL) {
968 		tb = rnp->exp_tasks;
969 		rnp->n_exp_boosts++;
970 	} else {
971 		tb = rnp->boost_tasks;
972 		rnp->n_normal_boosts++;
973 	}
974 	rnp->n_tasks_boosted++;
975 
976 	/*
977 	 * We boost task t by manufacturing an rt_mutex that appears to
978 	 * be held by task t.  We leave a pointer to that rt_mutex where
979 	 * task t can find it, and task t will release the mutex when it
980 	 * exits its outermost RCU read-side critical section.  Then
981 	 * simply acquiring this artificial rt_mutex will boost task
982 	 * t's priority.  (Thanks to tglx for suggesting this approach!)
983 	 *
984 	 * Note that task t must acquire rnp->lock to remove itself from
985 	 * the ->blkd_tasks list, which it will do from exit() if from
986 	 * nowhere else.  We therefore are guaranteed that task t will
987 	 * stay around at least until we drop rnp->lock.  Note that
988 	 * rnp->lock also resolves races between our priority boosting
989 	 * and task t's exiting its outermost RCU read-side critical
990 	 * section.
991 	 */
992 	t = container_of(tb, struct task_struct, rcu_node_entry);
993 	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
994 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
995 	/* Lock only for side effect: boosts task t's priority. */
996 	rt_mutex_lock(&rnp->boost_mtx);
997 	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
998 
999 	return READ_ONCE(rnp->exp_tasks) != NULL ||
1000 	       READ_ONCE(rnp->boost_tasks) != NULL;
1001 }
1002 
1003 /*
1004  * Priority-boosting kthread, one per leaf rcu_node.
1005  */
rcu_boost_kthread(void * arg)1006 static int rcu_boost_kthread(void *arg)
1007 {
1008 	struct rcu_node *rnp = (struct rcu_node *)arg;
1009 	int spincnt = 0;
1010 	int more2boost;
1011 
1012 	trace_rcu_utilization(TPS("Start boost kthread@init"));
1013 	for (;;) {
1014 		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
1015 		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1016 		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1017 		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1018 		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
1019 		more2boost = rcu_boost(rnp);
1020 		if (more2boost)
1021 			spincnt++;
1022 		else
1023 			spincnt = 0;
1024 		if (spincnt > 10) {
1025 			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
1026 			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1027 			schedule_timeout_interruptible(2);
1028 			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1029 			spincnt = 0;
1030 		}
1031 	}
1032 	/* NOTREACHED */
1033 	trace_rcu_utilization(TPS("End boost kthread@notreached"));
1034 	return 0;
1035 }
1036 
1037 /*
1038  * Check to see if it is time to start boosting RCU readers that are
1039  * blocking the current grace period, and, if so, tell the per-rcu_node
1040  * kthread to start boosting them.  If there is an expedited grace
1041  * period in progress, it is always time to boost.
1042  *
1043  * The caller must hold rnp->lock, which this function releases.
1044  * The ->boost_kthread_task is immortal, so we don't need to worry
1045  * about it going away.
1046  */
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1047 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1048 	__releases(rnp->lock)
1049 {
1050 	struct task_struct *t;
1051 
1052 	lockdep_assert_held(&rnp->lock);
1053 	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1054 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1055 		return;
1056 	}
1057 	if (rnp->exp_tasks != NULL ||
1058 	    (rnp->gp_tasks != NULL &&
1059 	     rnp->boost_tasks == NULL &&
1060 	     rnp->qsmask == 0 &&
1061 	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
1062 		if (rnp->exp_tasks == NULL)
1063 			rnp->boost_tasks = rnp->gp_tasks;
1064 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1065 		t = rnp->boost_kthread_task;
1066 		if (t)
1067 			rcu_wake_cond(t, rnp->boost_kthread_status);
1068 	} else {
1069 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1070 	}
1071 }
1072 
1073 /*
1074  * Wake up the per-CPU kthread to invoke RCU callbacks.
1075  */
invoke_rcu_callbacks_kthread(void)1076 static void invoke_rcu_callbacks_kthread(void)
1077 {
1078 	unsigned long flags;
1079 
1080 	local_irq_save(flags);
1081 	__this_cpu_write(rcu_cpu_has_work, 1);
1082 	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
1083 	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
1084 		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
1085 			      __this_cpu_read(rcu_cpu_kthread_status));
1086 	}
1087 	local_irq_restore(flags);
1088 }
1089 
1090 /*
1091  * Is the current CPU running the RCU-callbacks kthread?
1092  * Caller must have preemption disabled.
1093  */
rcu_is_callbacks_kthread(void)1094 static bool rcu_is_callbacks_kthread(void)
1095 {
1096 	return __this_cpu_read(rcu_cpu_kthread_task) == current;
1097 }
1098 
1099 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1100 
1101 /*
1102  * Do priority-boost accounting for the start of a new grace period.
1103  */
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1104 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1105 {
1106 	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1107 }
1108 
1109 /*
1110  * Create an RCU-boost kthread for the specified node if one does not
1111  * already exist.  We only create this kthread for preemptible RCU.
1112  * Returns zero if all is well, a negated errno otherwise.
1113  */
rcu_spawn_one_boost_kthread(struct rcu_state * rsp,struct rcu_node * rnp)1114 static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
1115 				       struct rcu_node *rnp)
1116 {
1117 	int rnp_index = rnp - &rsp->node[0];
1118 	unsigned long flags;
1119 	struct sched_param sp;
1120 	struct task_struct *t;
1121 
1122 	if (rcu_state_p != rsp)
1123 		return 0;
1124 
1125 	if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1126 		return 0;
1127 
1128 	rsp->boost = 1;
1129 	if (rnp->boost_kthread_task != NULL)
1130 		return 0;
1131 	t = kthread_create(rcu_boost_kthread, (void *)rnp,
1132 			   "rcub/%d", rnp_index);
1133 	if (IS_ERR(t))
1134 		return PTR_ERR(t);
1135 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1136 	rnp->boost_kthread_task = t;
1137 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1138 	sp.sched_priority = kthread_prio;
1139 	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1140 	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1141 	return 0;
1142 }
1143 
rcu_kthread_do_work(void)1144 static void rcu_kthread_do_work(void)
1145 {
1146 	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
1147 	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
1148 	rcu_preempt_do_callbacks();
1149 }
1150 
rcu_cpu_kthread_setup(unsigned int cpu)1151 static void rcu_cpu_kthread_setup(unsigned int cpu)
1152 {
1153 	struct sched_param sp;
1154 
1155 	sp.sched_priority = kthread_prio;
1156 	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
1157 }
1158 
rcu_cpu_kthread_park(unsigned int cpu)1159 static void rcu_cpu_kthread_park(unsigned int cpu)
1160 {
1161 	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
1162 }
1163 
rcu_cpu_kthread_should_run(unsigned int cpu)1164 static int rcu_cpu_kthread_should_run(unsigned int cpu)
1165 {
1166 	return __this_cpu_read(rcu_cpu_has_work);
1167 }
1168 
1169 /*
1170  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
1171  * RCU softirq used in flavors and configurations of RCU that do not
1172  * support RCU priority boosting.
1173  */
rcu_cpu_kthread(unsigned int cpu)1174 static void rcu_cpu_kthread(unsigned int cpu)
1175 {
1176 	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
1177 	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
1178 	int spincnt;
1179 
1180 	for (spincnt = 0; spincnt < 10; spincnt++) {
1181 		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1182 		local_bh_disable();
1183 		*statusp = RCU_KTHREAD_RUNNING;
1184 		this_cpu_inc(rcu_cpu_kthread_loops);
1185 		local_irq_disable();
1186 		work = *workp;
1187 		*workp = 0;
1188 		local_irq_enable();
1189 		if (work)
1190 			rcu_kthread_do_work();
1191 		local_bh_enable();
1192 		if (*workp == 0) {
1193 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1194 			*statusp = RCU_KTHREAD_WAITING;
1195 			return;
1196 		}
1197 	}
1198 	*statusp = RCU_KTHREAD_YIELDING;
1199 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1200 	schedule_timeout_interruptible(2);
1201 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1202 	*statusp = RCU_KTHREAD_WAITING;
1203 }
1204 
1205 /*
1206  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1207  * served by the rcu_node in question.  The CPU hotplug lock is still
1208  * held, so the value of rnp->qsmaskinit will be stable.
1209  *
1210  * We don't include outgoingcpu in the affinity set, use -1 if there is
1211  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1212  * this function allows the kthread to execute on any CPU.
1213  */
rcu_boost_kthread_setaffinity(struct rcu_node * rnp,int outgoingcpu)1214 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1215 {
1216 	struct task_struct *t = rnp->boost_kthread_task;
1217 	unsigned long mask = rcu_rnp_online_cpus(rnp);
1218 	cpumask_var_t cm;
1219 	int cpu;
1220 
1221 	if (!t)
1222 		return;
1223 	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1224 		return;
1225 	for_each_leaf_node_possible_cpu(rnp, cpu)
1226 		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1227 		    cpu != outgoingcpu)
1228 			cpumask_set_cpu(cpu, cm);
1229 	if (cpumask_weight(cm) == 0)
1230 		cpumask_setall(cm);
1231 	set_cpus_allowed_ptr(t, cm);
1232 	free_cpumask_var(cm);
1233 }
1234 
1235 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
1236 	.store			= &rcu_cpu_kthread_task,
1237 	.thread_should_run	= rcu_cpu_kthread_should_run,
1238 	.thread_fn		= rcu_cpu_kthread,
1239 	.thread_comm		= "rcuc/%u",
1240 	.setup			= rcu_cpu_kthread_setup,
1241 	.park			= rcu_cpu_kthread_park,
1242 };
1243 
1244 /*
1245  * Spawn boost kthreads -- called as soon as the scheduler is running.
1246  */
rcu_spawn_boost_kthreads(void)1247 static void __init rcu_spawn_boost_kthreads(void)
1248 {
1249 	struct rcu_node *rnp;
1250 	int cpu;
1251 
1252 	for_each_possible_cpu(cpu)
1253 		per_cpu(rcu_cpu_has_work, cpu) = 0;
1254 	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
1255 	rcu_for_each_leaf_node(rcu_state_p, rnp)
1256 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1257 }
1258 
rcu_prepare_kthreads(int cpu)1259 static void rcu_prepare_kthreads(int cpu)
1260 {
1261 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
1262 	struct rcu_node *rnp = rdp->mynode;
1263 
1264 	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1265 	if (rcu_scheduler_fully_active)
1266 		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
1267 }
1268 
1269 #else /* #ifdef CONFIG_RCU_BOOST */
1270 
rcu_initiate_boost(struct rcu_node * rnp,unsigned long flags)1271 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1272 	__releases(rnp->lock)
1273 {
1274 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1275 }
1276 
invoke_rcu_callbacks_kthread(void)1277 static void invoke_rcu_callbacks_kthread(void)
1278 {
1279 	WARN_ON_ONCE(1);
1280 }
1281 
rcu_is_callbacks_kthread(void)1282 static bool rcu_is_callbacks_kthread(void)
1283 {
1284 	return false;
1285 }
1286 
rcu_preempt_boost_start_gp(struct rcu_node * rnp)1287 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1288 {
1289 }
1290 
rcu_boost_kthread_setaffinity(struct rcu_node * rnp,int outgoingcpu)1291 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1292 {
1293 }
1294 
rcu_spawn_boost_kthreads(void)1295 static void __init rcu_spawn_boost_kthreads(void)
1296 {
1297 }
1298 
rcu_prepare_kthreads(int cpu)1299 static void rcu_prepare_kthreads(int cpu)
1300 {
1301 }
1302 
1303 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1304 
1305 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1306 
1307 /*
1308  * Check to see if any future RCU-related work will need to be done
1309  * by the current CPU, even if none need be done immediately, returning
1310  * 1 if so.  This function is part of the RCU implementation; it is -not-
1311  * an exported member of the RCU API.
1312  *
1313  * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
1314  * any flavor of RCU.
1315  */
rcu_needs_cpu(u64 basemono,u64 * nextevt)1316 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1317 {
1318 	*nextevt = KTIME_MAX;
1319 	return rcu_cpu_has_callbacks(NULL);
1320 }
1321 
1322 /*
1323  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1324  * after it.
1325  */
rcu_cleanup_after_idle(void)1326 static void rcu_cleanup_after_idle(void)
1327 {
1328 }
1329 
1330 /*
1331  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1332  * is nothing.
1333  */
rcu_prepare_for_idle(void)1334 static void rcu_prepare_for_idle(void)
1335 {
1336 }
1337 
1338 /*
1339  * Don't bother keeping a running count of the number of RCU callbacks
1340  * posted because CONFIG_RCU_FAST_NO_HZ=n.
1341  */
rcu_idle_count_callbacks_posted(void)1342 static void rcu_idle_count_callbacks_posted(void)
1343 {
1344 }
1345 
1346 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1347 
1348 /*
1349  * This code is invoked when a CPU goes idle, at which point we want
1350  * to have the CPU do everything required for RCU so that it can enter
1351  * the energy-efficient dyntick-idle mode.  This is handled by a
1352  * state machine implemented by rcu_prepare_for_idle() below.
1353  *
1354  * The following three proprocessor symbols control this state machine:
1355  *
1356  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1357  *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
1358  *	is sized to be roughly one RCU grace period.  Those energy-efficiency
1359  *	benchmarkers who might otherwise be tempted to set this to a large
1360  *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1361  *	system.  And if you are -that- concerned about energy efficiency,
1362  *	just power the system down and be done with it!
1363  * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1364  *	permitted to sleep in dyntick-idle mode with only lazy RCU
1365  *	callbacks pending.  Setting this too high can OOM your system.
1366  *
1367  * The values below work well in practice.  If future workloads require
1368  * adjustment, they can be converted into kernel config parameters, though
1369  * making the state machine smarter might be a better option.
1370  */
1371 #define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
1372 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */
1373 
1374 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1375 module_param(rcu_idle_gp_delay, int, 0644);
1376 static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
1377 module_param(rcu_idle_lazy_gp_delay, int, 0644);
1378 
1379 /*
1380  * Try to advance callbacks for all flavors of RCU on the current CPU, but
1381  * only if it has been awhile since the last time we did so.  Afterwards,
1382  * if there are any callbacks ready for immediate invocation, return true.
1383  */
rcu_try_advance_all_cbs(void)1384 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1385 {
1386 	bool cbs_ready = false;
1387 	struct rcu_data *rdp;
1388 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1389 	struct rcu_node *rnp;
1390 	struct rcu_state *rsp;
1391 
1392 	/* Exit early if we advanced recently. */
1393 	if (jiffies == rdtp->last_advance_all)
1394 		return false;
1395 	rdtp->last_advance_all = jiffies;
1396 
1397 	for_each_rcu_flavor(rsp) {
1398 		rdp = this_cpu_ptr(rsp->rda);
1399 		rnp = rdp->mynode;
1400 
1401 		/*
1402 		 * Don't bother checking unless a grace period has
1403 		 * completed since we last checked and there are
1404 		 * callbacks not yet ready to invoke.
1405 		 */
1406 		if ((rdp->completed != rnp->completed ||
1407 		     unlikely(READ_ONCE(rdp->gpwrap))) &&
1408 		    rcu_segcblist_pend_cbs(&rdp->cblist))
1409 			note_gp_changes(rsp, rdp);
1410 
1411 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
1412 			cbs_ready = true;
1413 	}
1414 	return cbs_ready;
1415 }
1416 
1417 /*
1418  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1419  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1420  * caller to set the timeout based on whether or not there are non-lazy
1421  * callbacks.
1422  *
1423  * The caller must have disabled interrupts.
1424  */
rcu_needs_cpu(u64 basemono,u64 * nextevt)1425 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1426 {
1427 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1428 	unsigned long dj;
1429 
1430 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_needs_cpu() invoked with irqs enabled!!!");
1431 
1432 	/* Snapshot to detect later posting of non-lazy callback. */
1433 	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1434 
1435 	/* If no callbacks, RCU doesn't need the CPU. */
1436 	if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
1437 		*nextevt = KTIME_MAX;
1438 		return 0;
1439 	}
1440 
1441 	/* Attempt to advance callbacks. */
1442 	if (rcu_try_advance_all_cbs()) {
1443 		/* Some ready to invoke, so initiate later invocation. */
1444 		invoke_rcu_core();
1445 		return 1;
1446 	}
1447 	rdtp->last_accelerate = jiffies;
1448 
1449 	/* Request timer delay depending on laziness, and round. */
1450 	if (!rdtp->all_lazy) {
1451 		dj = round_up(rcu_idle_gp_delay + jiffies,
1452 			       rcu_idle_gp_delay) - jiffies;
1453 	} else {
1454 		dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
1455 	}
1456 	*nextevt = basemono + dj * TICK_NSEC;
1457 	return 0;
1458 }
1459 
1460 /*
1461  * Prepare a CPU for idle from an RCU perspective.  The first major task
1462  * is to sense whether nohz mode has been enabled or disabled via sysfs.
1463  * The second major task is to check to see if a non-lazy callback has
1464  * arrived at a CPU that previously had only lazy callbacks.  The third
1465  * major task is to accelerate (that is, assign grace-period numbers to)
1466  * any recently arrived callbacks.
1467  *
1468  * The caller must have disabled interrupts.
1469  */
rcu_prepare_for_idle(void)1470 static void rcu_prepare_for_idle(void)
1471 {
1472 	bool needwake;
1473 	struct rcu_data *rdp;
1474 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1475 	struct rcu_node *rnp;
1476 	struct rcu_state *rsp;
1477 	int tne;
1478 
1479 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_prepare_for_idle() invoked with irqs enabled!!!");
1480 	if (rcu_is_nocb_cpu(smp_processor_id()))
1481 		return;
1482 
1483 	/* Handle nohz enablement switches conservatively. */
1484 	tne = READ_ONCE(tick_nohz_active);
1485 	if (tne != rdtp->tick_nohz_enabled_snap) {
1486 		if (rcu_cpu_has_callbacks(NULL))
1487 			invoke_rcu_core(); /* force nohz to see update. */
1488 		rdtp->tick_nohz_enabled_snap = tne;
1489 		return;
1490 	}
1491 	if (!tne)
1492 		return;
1493 
1494 	/*
1495 	 * If a non-lazy callback arrived at a CPU having only lazy
1496 	 * callbacks, invoke RCU core for the side-effect of recalculating
1497 	 * idle duration on re-entry to idle.
1498 	 */
1499 	if (rdtp->all_lazy &&
1500 	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
1501 		rdtp->all_lazy = false;
1502 		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
1503 		invoke_rcu_core();
1504 		return;
1505 	}
1506 
1507 	/*
1508 	 * If we have not yet accelerated this jiffy, accelerate all
1509 	 * callbacks on this CPU.
1510 	 */
1511 	if (rdtp->last_accelerate == jiffies)
1512 		return;
1513 	rdtp->last_accelerate = jiffies;
1514 	for_each_rcu_flavor(rsp) {
1515 		rdp = this_cpu_ptr(rsp->rda);
1516 		if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1517 			continue;
1518 		rnp = rdp->mynode;
1519 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1520 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1521 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1522 		if (needwake)
1523 			rcu_gp_kthread_wake(rsp);
1524 	}
1525 }
1526 
1527 /*
1528  * Clean up for exit from idle.  Attempt to advance callbacks based on
1529  * any grace periods that elapsed while the CPU was idle, and if any
1530  * callbacks are now ready to invoke, initiate invocation.
1531  */
rcu_cleanup_after_idle(void)1532 static void rcu_cleanup_after_idle(void)
1533 {
1534 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_cleanup_after_idle() invoked with irqs enabled!!!");
1535 	if (rcu_is_nocb_cpu(smp_processor_id()))
1536 		return;
1537 	if (rcu_try_advance_all_cbs())
1538 		invoke_rcu_core();
1539 }
1540 
1541 /*
1542  * Keep a running count of the number of non-lazy callbacks posted
1543  * on this CPU.  This running counter (which is never decremented) allows
1544  * rcu_prepare_for_idle() to detect when something out of the idle loop
1545  * posts a callback, even if an equal number of callbacks are invoked.
1546  * Of course, callbacks should only be posted from within a trace event
1547  * designed to be called from idle or from within RCU_NONIDLE().
1548  */
rcu_idle_count_callbacks_posted(void)1549 static void rcu_idle_count_callbacks_posted(void)
1550 {
1551 	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
1552 }
1553 
1554 /*
1555  * Data for flushing lazy RCU callbacks at OOM time.
1556  */
1557 static atomic_t oom_callback_count;
1558 static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
1559 
1560 /*
1561  * RCU OOM callback -- decrement the outstanding count and deliver the
1562  * wake-up if we are the last one.
1563  */
rcu_oom_callback(struct rcu_head * rhp)1564 static void rcu_oom_callback(struct rcu_head *rhp)
1565 {
1566 	if (atomic_dec_and_test(&oom_callback_count))
1567 		wake_up(&oom_callback_wq);
1568 }
1569 
1570 /*
1571  * Post an rcu_oom_notify callback on the current CPU if it has at
1572  * least one lazy callback.  This will unnecessarily post callbacks
1573  * to CPUs that already have a non-lazy callback at the end of their
1574  * callback list, but this is an infrequent operation, so accept some
1575  * extra overhead to keep things simple.
1576  */
rcu_oom_notify_cpu(void * unused)1577 static void rcu_oom_notify_cpu(void *unused)
1578 {
1579 	struct rcu_state *rsp;
1580 	struct rcu_data *rdp;
1581 
1582 	for_each_rcu_flavor(rsp) {
1583 		rdp = raw_cpu_ptr(rsp->rda);
1584 		if (rcu_segcblist_n_lazy_cbs(&rdp->cblist)) {
1585 			atomic_inc(&oom_callback_count);
1586 			rsp->call(&rdp->oom_head, rcu_oom_callback);
1587 		}
1588 	}
1589 }
1590 
1591 /*
1592  * If low on memory, ensure that each CPU has a non-lazy callback.
1593  * This will wake up CPUs that have only lazy callbacks, in turn
1594  * ensuring that they free up the corresponding memory in a timely manner.
1595  * Because an uncertain amount of memory will be freed in some uncertain
1596  * timeframe, we do not claim to have freed anything.
1597  */
rcu_oom_notify(struct notifier_block * self,unsigned long notused,void * nfreed)1598 static int rcu_oom_notify(struct notifier_block *self,
1599 			  unsigned long notused, void *nfreed)
1600 {
1601 	int cpu;
1602 
1603 	/* Wait for callbacks from earlier instance to complete. */
1604 	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
1605 	smp_mb(); /* Ensure callback reuse happens after callback invocation. */
1606 
1607 	/*
1608 	 * Prevent premature wakeup: ensure that all increments happen
1609 	 * before there is a chance of the counter reaching zero.
1610 	 */
1611 	atomic_set(&oom_callback_count, 1);
1612 
1613 	for_each_online_cpu(cpu) {
1614 		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
1615 		cond_resched_rcu_qs();
1616 	}
1617 
1618 	/* Unconditionally decrement: no need to wake ourselves up. */
1619 	atomic_dec(&oom_callback_count);
1620 
1621 	return NOTIFY_OK;
1622 }
1623 
1624 static struct notifier_block rcu_oom_nb = {
1625 	.notifier_call = rcu_oom_notify
1626 };
1627 
rcu_register_oom_notifier(void)1628 static int __init rcu_register_oom_notifier(void)
1629 {
1630 	register_oom_notifier(&rcu_oom_nb);
1631 	return 0;
1632 }
1633 early_initcall(rcu_register_oom_notifier);
1634 
1635 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1636 
1637 #ifdef CONFIG_RCU_FAST_NO_HZ
1638 
print_cpu_stall_fast_no_hz(char * cp,int cpu)1639 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1640 {
1641 	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
1642 	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
1643 
1644 	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1645 		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
1646 		ulong2long(nlpd),
1647 		rdtp->all_lazy ? 'L' : '.',
1648 		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
1649 }
1650 
1651 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1652 
print_cpu_stall_fast_no_hz(char * cp,int cpu)1653 static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
1654 {
1655 	*cp = '\0';
1656 }
1657 
1658 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1659 
1660 /* Initiate the stall-info list. */
print_cpu_stall_info_begin(void)1661 static void print_cpu_stall_info_begin(void)
1662 {
1663 	pr_cont("\n");
1664 }
1665 
1666 /*
1667  * Print out diagnostic information for the specified stalled CPU.
1668  *
1669  * If the specified CPU is aware of the current RCU grace period
1670  * (flavor specified by rsp), then print the number of scheduling
1671  * clock interrupts the CPU has taken during the time that it has
1672  * been aware.  Otherwise, print the number of RCU grace periods
1673  * that this CPU is ignorant of, for example, "1" if the CPU was
1674  * aware of the previous grace period.
1675  *
1676  * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1677  */
print_cpu_stall_info(struct rcu_state * rsp,int cpu)1678 static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
1679 {
1680 	char fast_no_hz[72];
1681 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1682 	struct rcu_dynticks *rdtp = rdp->dynticks;
1683 	char *ticks_title;
1684 	unsigned long ticks_value;
1685 
1686 	/*
1687 	 * We could be printing a lot while holding a spinlock.  Avoid
1688 	 * triggering hard lockup.
1689 	 */
1690 	touch_nmi_watchdog();
1691 
1692 	if (rsp->gpnum == rdp->gpnum) {
1693 		ticks_title = "ticks this GP";
1694 		ticks_value = rdp->ticks_this_gp;
1695 	} else {
1696 		ticks_title = "GPs behind";
1697 		ticks_value = rsp->gpnum - rdp->gpnum;
1698 	}
1699 	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
1700 	pr_err("\t%d-%c%c%c: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u fqs=%ld %s\n",
1701 	       cpu,
1702 	       "O."[!!cpu_online(cpu)],
1703 	       "o."[!!(rdp->grpmask & rdp->mynode->qsmaskinit)],
1704 	       "N."[!!(rdp->grpmask & rdp->mynode->qsmaskinitnext)],
1705 	       ticks_value, ticks_title,
1706 	       rcu_dynticks_snap(rdtp) & 0xfff,
1707 	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
1708 	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
1709 	       READ_ONCE(rsp->n_force_qs) - rsp->n_force_qs_gpstart,
1710 	       fast_no_hz);
1711 }
1712 
1713 /* Terminate the stall-info list. */
print_cpu_stall_info_end(void)1714 static void print_cpu_stall_info_end(void)
1715 {
1716 	pr_err("\t");
1717 }
1718 
1719 /* Zero ->ticks_this_gp for all flavors of RCU. */
zero_cpu_stall_ticks(struct rcu_data * rdp)1720 static void zero_cpu_stall_ticks(struct rcu_data *rdp)
1721 {
1722 	rdp->ticks_this_gp = 0;
1723 	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
1724 }
1725 
1726 /* Increment ->ticks_this_gp for all flavors of RCU. */
increment_cpu_stall_ticks(void)1727 static void increment_cpu_stall_ticks(void)
1728 {
1729 	struct rcu_state *rsp;
1730 
1731 	for_each_rcu_flavor(rsp)
1732 		raw_cpu_inc(rsp->rda->ticks_this_gp);
1733 }
1734 
1735 #ifdef CONFIG_RCU_NOCB_CPU
1736 
1737 /*
1738  * Offload callback processing from the boot-time-specified set of CPUs
1739  * specified by rcu_nocb_mask.  For each CPU in the set, there is a
1740  * kthread created that pulls the callbacks from the corresponding CPU,
1741  * waits for a grace period to elapse, and invokes the callbacks.
1742  * The no-CBs CPUs do a wake_up() on their kthread when they insert
1743  * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1744  * has been specified, in which case each kthread actively polls its
1745  * CPU.  (Which isn't so great for energy efficiency, but which does
1746  * reduce RCU's overhead on that CPU.)
1747  *
1748  * This is intended to be used in conjunction with Frederic Weisbecker's
1749  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1750  * running CPU-bound user-mode computations.
1751  *
1752  * Offloading of callback processing could also in theory be used as
1753  * an energy-efficiency measure because CPUs with no RCU callbacks
1754  * queued are more aggressive about entering dyntick-idle mode.
1755  */
1756 
1757 
1758 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
rcu_nocb_setup(char * str)1759 static int __init rcu_nocb_setup(char *str)
1760 {
1761 	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1762 	have_rcu_nocb_mask = true;
1763 	cpulist_parse(str, rcu_nocb_mask);
1764 	return 1;
1765 }
1766 __setup("rcu_nocbs=", rcu_nocb_setup);
1767 
parse_rcu_nocb_poll(char * arg)1768 static int __init parse_rcu_nocb_poll(char *arg)
1769 {
1770 	rcu_nocb_poll = true;
1771 	return 0;
1772 }
1773 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1774 
1775 /*
1776  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1777  * grace period.
1778  */
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)1779 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1780 {
1781 	swake_up_all(sq);
1782 }
1783 
1784 /*
1785  * Set the root rcu_node structure's ->need_future_gp field
1786  * based on the sum of those of all rcu_node structures.  This does
1787  * double-count the root rcu_node structure's requests, but this
1788  * is necessary to handle the possibility of a rcu_nocb_kthread()
1789  * having awakened during the time that the rcu_node structures
1790  * were being updated for the end of the previous grace period.
1791  */
rcu_nocb_gp_set(struct rcu_node * rnp,int nrq)1792 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
1793 {
1794 	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
1795 }
1796 
rcu_nocb_gp_get(struct rcu_node * rnp)1797 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1798 {
1799 	return &rnp->nocb_gp_wq[rnp->completed & 0x1];
1800 }
1801 
rcu_init_one_nocb(struct rcu_node * rnp)1802 static void rcu_init_one_nocb(struct rcu_node *rnp)
1803 {
1804 	init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1805 	init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1806 }
1807 
1808 /* Is the specified CPU a no-CBs CPU? */
rcu_is_nocb_cpu(int cpu)1809 bool rcu_is_nocb_cpu(int cpu)
1810 {
1811 	if (have_rcu_nocb_mask)
1812 		return cpumask_test_cpu(cpu, rcu_nocb_mask);
1813 	return false;
1814 }
1815 
1816 /*
1817  * Kick the leader kthread for this NOCB group.  Caller holds ->nocb_lock
1818  * and this function releases it.
1819  */
__wake_nocb_leader(struct rcu_data * rdp,bool force,unsigned long flags)1820 static void __wake_nocb_leader(struct rcu_data *rdp, bool force,
1821 			       unsigned long flags)
1822 	__releases(rdp->nocb_lock)
1823 {
1824 	struct rcu_data *rdp_leader = rdp->nocb_leader;
1825 
1826 	lockdep_assert_held(&rdp->nocb_lock);
1827 	if (!READ_ONCE(rdp_leader->nocb_kthread)) {
1828 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1829 		return;
1830 	}
1831 	if (rdp_leader->nocb_leader_sleep || force) {
1832 		/* Prior smp_mb__after_atomic() orders against prior enqueue. */
1833 		WRITE_ONCE(rdp_leader->nocb_leader_sleep, false);
1834 		del_timer(&rdp->nocb_timer);
1835 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1836 		smp_mb(); /* ->nocb_leader_sleep before swake_up(). */
1837 		swake_up(&rdp_leader->nocb_wq);
1838 	} else {
1839 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1840 	}
1841 }
1842 
1843 /*
1844  * Kick the leader kthread for this NOCB group, but caller has not
1845  * acquired locks.
1846  */
wake_nocb_leader(struct rcu_data * rdp,bool force)1847 static void wake_nocb_leader(struct rcu_data *rdp, bool force)
1848 {
1849 	unsigned long flags;
1850 
1851 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1852 	__wake_nocb_leader(rdp, force, flags);
1853 }
1854 
1855 /*
1856  * Arrange to wake the leader kthread for this NOCB group at some
1857  * future time when it is safe to do so.
1858  */
wake_nocb_leader_defer(struct rcu_data * rdp,int waketype,const char * reason)1859 static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
1860 				   const char *reason)
1861 {
1862 	unsigned long flags;
1863 
1864 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
1865 	if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1866 		mod_timer(&rdp->nocb_timer, jiffies + 1);
1867 	WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1868 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, reason);
1869 	raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1870 }
1871 
1872 /*
1873  * Does the specified CPU need an RCU callback for the specified flavor
1874  * of rcu_barrier()?
1875  */
rcu_nocb_cpu_needs_barrier(struct rcu_state * rsp,int cpu)1876 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
1877 {
1878 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
1879 	unsigned long ret;
1880 #ifdef CONFIG_PROVE_RCU
1881 	struct rcu_head *rhp;
1882 #endif /* #ifdef CONFIG_PROVE_RCU */
1883 
1884 	/*
1885 	 * Check count of all no-CBs callbacks awaiting invocation.
1886 	 * There needs to be a barrier before this function is called,
1887 	 * but associated with a prior determination that no more
1888 	 * callbacks would be posted.  In the worst case, the first
1889 	 * barrier in _rcu_barrier() suffices (but the caller cannot
1890 	 * necessarily rely on this, not a substitute for the caller
1891 	 * getting the concurrency design right!).  There must also be
1892 	 * a barrier between the following load an posting of a callback
1893 	 * (if a callback is in fact needed).  This is associated with an
1894 	 * atomic_inc() in the caller.
1895 	 */
1896 	ret = atomic_long_read(&rdp->nocb_q_count);
1897 
1898 #ifdef CONFIG_PROVE_RCU
1899 	rhp = READ_ONCE(rdp->nocb_head);
1900 	if (!rhp)
1901 		rhp = READ_ONCE(rdp->nocb_gp_head);
1902 	if (!rhp)
1903 		rhp = READ_ONCE(rdp->nocb_follower_head);
1904 
1905 	/* Having no rcuo kthread but CBs after scheduler starts is bad! */
1906 	if (!READ_ONCE(rdp->nocb_kthread) && rhp &&
1907 	    rcu_scheduler_fully_active) {
1908 		/* RCU callback enqueued before CPU first came online??? */
1909 		pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
1910 		       cpu, rhp->func);
1911 		WARN_ON_ONCE(1);
1912 	}
1913 #endif /* #ifdef CONFIG_PROVE_RCU */
1914 
1915 	return !!ret;
1916 }
1917 
1918 /*
1919  * Enqueue the specified string of rcu_head structures onto the specified
1920  * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
1921  * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
1922  * counts are supplied by rhcount and rhcount_lazy.
1923  *
1924  * If warranted, also wake up the kthread servicing this CPUs queues.
1925  */
__call_rcu_nocb_enqueue(struct rcu_data * rdp,struct rcu_head * rhp,struct rcu_head ** rhtp,int rhcount,int rhcount_lazy,unsigned long flags)1926 static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
1927 				    struct rcu_head *rhp,
1928 				    struct rcu_head **rhtp,
1929 				    int rhcount, int rhcount_lazy,
1930 				    unsigned long flags)
1931 {
1932 	int len;
1933 	struct rcu_head **old_rhpp;
1934 	struct task_struct *t;
1935 
1936 	/* Enqueue the callback on the nocb list and update counts. */
1937 	atomic_long_add(rhcount, &rdp->nocb_q_count);
1938 	/* rcu_barrier() relies on ->nocb_q_count add before xchg. */
1939 	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
1940 	WRITE_ONCE(*old_rhpp, rhp);
1941 	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
1942 	smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
1943 
1944 	/* If we are not being polled and there is a kthread, awaken it ... */
1945 	t = READ_ONCE(rdp->nocb_kthread);
1946 	if (rcu_nocb_poll || !t) {
1947 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1948 				    TPS("WakeNotPoll"));
1949 		return;
1950 	}
1951 	len = atomic_long_read(&rdp->nocb_q_count);
1952 	if (old_rhpp == &rdp->nocb_head) {
1953 		if (!irqs_disabled_flags(flags)) {
1954 			/* ... if queue was empty ... */
1955 			wake_nocb_leader(rdp, false);
1956 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1957 					    TPS("WakeEmpty"));
1958 		} else {
1959 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1960 					       TPS("WakeEmptyIsDeferred"));
1961 		}
1962 		rdp->qlen_last_fqs_check = 0;
1963 	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
1964 		/* ... or if many callbacks queued. */
1965 		if (!irqs_disabled_flags(flags)) {
1966 			wake_nocb_leader(rdp, true);
1967 			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
1968 					    TPS("WakeOvf"));
1969 		} else {
1970 			wake_nocb_leader_defer(rdp, RCU_NOCB_WAKE,
1971 					       TPS("WakeOvfIsDeferred"));
1972 		}
1973 		rdp->qlen_last_fqs_check = LONG_MAX / 2;
1974 	} else {
1975 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
1976 	}
1977 	return;
1978 }
1979 
1980 /*
1981  * This is a helper for __call_rcu(), which invokes this when the normal
1982  * callback queue is inoperable.  If this is not a no-CBs CPU, this
1983  * function returns failure back to __call_rcu(), which can complain
1984  * appropriately.
1985  *
1986  * Otherwise, this function queues the callback where the corresponding
1987  * "rcuo" kthread can find it.
1988  */
__call_rcu_nocb(struct rcu_data * rdp,struct rcu_head * rhp,bool lazy,unsigned long flags)1989 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
1990 			    bool lazy, unsigned long flags)
1991 {
1992 
1993 	if (!rcu_is_nocb_cpu(rdp->cpu))
1994 		return false;
1995 	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
1996 	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
1997 		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
1998 					 (unsigned long)rhp->func,
1999 					 -atomic_long_read(&rdp->nocb_q_count_lazy),
2000 					 -atomic_long_read(&rdp->nocb_q_count));
2001 	else
2002 		trace_rcu_callback(rdp->rsp->name, rhp,
2003 				   -atomic_long_read(&rdp->nocb_q_count_lazy),
2004 				   -atomic_long_read(&rdp->nocb_q_count));
2005 
2006 	/*
2007 	 * If called from an extended quiescent state with interrupts
2008 	 * disabled, invoke the RCU core in order to allow the idle-entry
2009 	 * deferred-wakeup check to function.
2010 	 */
2011 	if (irqs_disabled_flags(flags) &&
2012 	    !rcu_is_watching() &&
2013 	    cpu_online(smp_processor_id()))
2014 		invoke_rcu_core();
2015 
2016 	return true;
2017 }
2018 
2019 /*
2020  * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2021  * not a no-CBs CPU.
2022  */
rcu_nocb_adopt_orphan_cbs(struct rcu_data * my_rdp,struct rcu_data * rdp,unsigned long flags)2023 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2024 						     struct rcu_data *rdp,
2025 						     unsigned long flags)
2026 {
2027 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_nocb_adopt_orphan_cbs() invoked with irqs enabled!!!");
2028 	if (!rcu_is_nocb_cpu(smp_processor_id()))
2029 		return false; /* Not NOCBs CPU, caller must migrate CBs. */
2030 	__call_rcu_nocb_enqueue(my_rdp, rcu_segcblist_head(&rdp->cblist),
2031 				rcu_segcblist_tail(&rdp->cblist),
2032 				rcu_segcblist_n_cbs(&rdp->cblist),
2033 				rcu_segcblist_n_lazy_cbs(&rdp->cblist), flags);
2034 	rcu_segcblist_init(&rdp->cblist);
2035 	rcu_segcblist_disable(&rdp->cblist);
2036 	return true;
2037 }
2038 
2039 /*
2040  * If necessary, kick off a new grace period, and either way wait
2041  * for a subsequent grace period to complete.
2042  */
rcu_nocb_wait_gp(struct rcu_data * rdp)2043 static void rcu_nocb_wait_gp(struct rcu_data *rdp)
2044 {
2045 	unsigned long c;
2046 	bool d;
2047 	unsigned long flags;
2048 	bool needwake;
2049 	struct rcu_node *rnp = rdp->mynode;
2050 
2051 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2052 	needwake = rcu_start_future_gp(rnp, rdp, &c);
2053 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2054 	if (needwake)
2055 		rcu_gp_kthread_wake(rdp->rsp);
2056 
2057 	/*
2058 	 * Wait for the grace period.  Do so interruptibly to avoid messing
2059 	 * up the load average.
2060 	 */
2061 	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
2062 	for (;;) {
2063 		swait_event_interruptible(
2064 			rnp->nocb_gp_wq[c & 0x1],
2065 			(d = ULONG_CMP_GE(READ_ONCE(rnp->completed), c)));
2066 		if (likely(d))
2067 			break;
2068 		WARN_ON(signal_pending(current));
2069 		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
2070 	}
2071 	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
2072 	smp_mb(); /* Ensure that CB invocation happens after GP end. */
2073 }
2074 
2075 /*
2076  * Leaders come here to wait for additional callbacks to show up.
2077  * This function does not return until callbacks appear.
2078  */
nocb_leader_wait(struct rcu_data * my_rdp)2079 static void nocb_leader_wait(struct rcu_data *my_rdp)
2080 {
2081 	bool firsttime = true;
2082 	unsigned long flags;
2083 	bool gotcbs;
2084 	struct rcu_data *rdp;
2085 	struct rcu_head **tail;
2086 
2087 wait_again:
2088 
2089 	/* Wait for callbacks to appear. */
2090 	if (!rcu_nocb_poll) {
2091 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Sleep"));
2092 		swait_event_interruptible(my_rdp->nocb_wq,
2093 				!READ_ONCE(my_rdp->nocb_leader_sleep));
2094 		raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2095 		my_rdp->nocb_leader_sleep = true;
2096 		WRITE_ONCE(my_rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2097 		del_timer(&my_rdp->nocb_timer);
2098 		raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2099 	} else if (firsttime) {
2100 		firsttime = false; /* Don't drown trace log with "Poll"! */
2101 		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, TPS("Poll"));
2102 	}
2103 
2104 	/*
2105 	 * Each pass through the following loop checks a follower for CBs.
2106 	 * We are our own first follower.  Any CBs found are moved to
2107 	 * nocb_gp_head, where they await a grace period.
2108 	 */
2109 	gotcbs = false;
2110 	smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2111 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2112 		rdp->nocb_gp_head = READ_ONCE(rdp->nocb_head);
2113 		if (!rdp->nocb_gp_head)
2114 			continue;  /* No CBs here, try next follower. */
2115 
2116 		/* Move callbacks to wait-for-GP list, which is empty. */
2117 		WRITE_ONCE(rdp->nocb_head, NULL);
2118 		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
2119 		gotcbs = true;
2120 	}
2121 
2122 	/* No callbacks?  Sleep a bit if polling, and go retry.  */
2123 	if (unlikely(!gotcbs)) {
2124 		WARN_ON(signal_pending(current));
2125 		if (rcu_nocb_poll) {
2126 			schedule_timeout_interruptible(1);
2127 		} else {
2128 			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
2129 					    TPS("WokeEmpty"));
2130 		}
2131 		goto wait_again;
2132 	}
2133 
2134 	/* Wait for one grace period. */
2135 	rcu_nocb_wait_gp(my_rdp);
2136 
2137 	/* Each pass through the following loop wakes a follower, if needed. */
2138 	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
2139 		if (!rcu_nocb_poll &&
2140 		    READ_ONCE(rdp->nocb_head) &&
2141 		    READ_ONCE(my_rdp->nocb_leader_sleep)) {
2142 			raw_spin_lock_irqsave(&my_rdp->nocb_lock, flags);
2143 			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
2144 			raw_spin_unlock_irqrestore(&my_rdp->nocb_lock, flags);
2145 		}
2146 		if (!rdp->nocb_gp_head)
2147 			continue; /* No CBs, so no need to wake follower. */
2148 
2149 		/* Append callbacks to follower's "done" list. */
2150 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2151 		tail = rdp->nocb_follower_tail;
2152 		rdp->nocb_follower_tail = rdp->nocb_gp_tail;
2153 		*tail = rdp->nocb_gp_head;
2154 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2155 		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
2156 			/* List was empty, so wake up the follower.  */
2157 			swake_up(&rdp->nocb_wq);
2158 		}
2159 	}
2160 
2161 	/* If we (the leader) don't have CBs, go wait some more. */
2162 	if (!my_rdp->nocb_follower_head)
2163 		goto wait_again;
2164 }
2165 
2166 /*
2167  * Followers come here to wait for additional callbacks to show up.
2168  * This function does not return until callbacks appear.
2169  */
nocb_follower_wait(struct rcu_data * rdp)2170 static void nocb_follower_wait(struct rcu_data *rdp)
2171 {
2172 	for (;;) {
2173 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("FollowerSleep"));
2174 		swait_event_interruptible(rdp->nocb_wq,
2175 					 READ_ONCE(rdp->nocb_follower_head));
2176 		if (smp_load_acquire(&rdp->nocb_follower_head)) {
2177 			/* ^^^ Ensure CB invocation follows _head test. */
2178 			return;
2179 		}
2180 		WARN_ON(signal_pending(current));
2181 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeEmpty"));
2182 	}
2183 }
2184 
2185 /*
2186  * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
2187  * callbacks queued by the corresponding no-CBs CPU, however, there is
2188  * an optional leader-follower relationship so that the grace-period
2189  * kthreads don't have to do quite so many wakeups.
2190  */
rcu_nocb_kthread(void * arg)2191 static int rcu_nocb_kthread(void *arg)
2192 {
2193 	int c, cl;
2194 	unsigned long flags;
2195 	struct rcu_head *list;
2196 	struct rcu_head *next;
2197 	struct rcu_head **tail;
2198 	struct rcu_data *rdp = arg;
2199 
2200 	/* Each pass through this loop invokes one batch of callbacks */
2201 	for (;;) {
2202 		/* Wait for callbacks. */
2203 		if (rdp->nocb_leader == rdp)
2204 			nocb_leader_wait(rdp);
2205 		else
2206 			nocb_follower_wait(rdp);
2207 
2208 		/* Pull the ready-to-invoke callbacks onto local list. */
2209 		raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2210 		list = rdp->nocb_follower_head;
2211 		rdp->nocb_follower_head = NULL;
2212 		tail = rdp->nocb_follower_tail;
2213 		rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2214 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2215 		BUG_ON(!list);
2216 		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WokeNonEmpty"));
2217 
2218 		/* Each pass through the following loop invokes a callback. */
2219 		trace_rcu_batch_start(rdp->rsp->name,
2220 				      atomic_long_read(&rdp->nocb_q_count_lazy),
2221 				      atomic_long_read(&rdp->nocb_q_count), -1);
2222 		c = cl = 0;
2223 		while (list) {
2224 			next = list->next;
2225 			/* Wait for enqueuing to complete, if needed. */
2226 			while (next == NULL && &list->next != tail) {
2227 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2228 						    TPS("WaitQueue"));
2229 				schedule_timeout_interruptible(1);
2230 				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
2231 						    TPS("WokeQueue"));
2232 				next = list->next;
2233 			}
2234 			debug_rcu_head_unqueue(list);
2235 			local_bh_disable();
2236 			if (__rcu_reclaim(rdp->rsp->name, list))
2237 				cl++;
2238 			c++;
2239 			local_bh_enable();
2240 			cond_resched_rcu_qs();
2241 			list = next;
2242 		}
2243 		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
2244 		smp_mb__before_atomic();  /* _add after CB invocation. */
2245 		atomic_long_add(-c, &rdp->nocb_q_count);
2246 		atomic_long_add(-cl, &rdp->nocb_q_count_lazy);
2247 		rdp->n_nocbs_invoked += c;
2248 	}
2249 	return 0;
2250 }
2251 
2252 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp)2253 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2254 {
2255 	return READ_ONCE(rdp->nocb_defer_wakeup);
2256 }
2257 
2258 /* Do a deferred wakeup of rcu_nocb_kthread(). */
do_nocb_deferred_wakeup_common(struct rcu_data * rdp)2259 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2260 {
2261 	unsigned long flags;
2262 	int ndw;
2263 
2264 	raw_spin_lock_irqsave(&rdp->nocb_lock, flags);
2265 	if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2266 		raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
2267 		return;
2268 	}
2269 	ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2270 	WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2271 	__wake_nocb_leader(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2272 	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
2273 }
2274 
2275 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
do_nocb_deferred_wakeup_timer(unsigned long x)2276 static void do_nocb_deferred_wakeup_timer(unsigned long x)
2277 {
2278 	do_nocb_deferred_wakeup_common((struct rcu_data *)x);
2279 }
2280 
2281 /*
2282  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2283  * This means we do an inexact common-case check.  Note that if
2284  * we miss, ->nocb_timer will eventually clean things up.
2285  */
do_nocb_deferred_wakeup(struct rcu_data * rdp)2286 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2287 {
2288 	if (rcu_nocb_need_deferred_wakeup(rdp))
2289 		do_nocb_deferred_wakeup_common(rdp);
2290 }
2291 
rcu_init_nohz(void)2292 void __init rcu_init_nohz(void)
2293 {
2294 	int cpu;
2295 	bool need_rcu_nocb_mask = true;
2296 	struct rcu_state *rsp;
2297 
2298 #if defined(CONFIG_NO_HZ_FULL)
2299 	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2300 		need_rcu_nocb_mask = true;
2301 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2302 
2303 	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
2304 		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2305 			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2306 			return;
2307 		}
2308 		have_rcu_nocb_mask = true;
2309 	}
2310 	if (!have_rcu_nocb_mask)
2311 		return;
2312 
2313 #if defined(CONFIG_NO_HZ_FULL)
2314 	if (tick_nohz_full_running)
2315 		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2316 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2317 
2318 	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2319 		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
2320 		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2321 			    rcu_nocb_mask);
2322 	}
2323 	pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2324 		cpumask_pr_args(rcu_nocb_mask));
2325 	if (rcu_nocb_poll)
2326 		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2327 
2328 	for_each_rcu_flavor(rsp) {
2329 		for_each_cpu(cpu, rcu_nocb_mask)
2330 			init_nocb_callback_list(per_cpu_ptr(rsp->rda, cpu));
2331 		rcu_organize_nocb_kthreads(rsp);
2332 	}
2333 }
2334 
2335 /* Initialize per-rcu_data variables for no-CBs CPUs. */
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)2336 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2337 {
2338 	rdp->nocb_tail = &rdp->nocb_head;
2339 	init_swait_queue_head(&rdp->nocb_wq);
2340 	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
2341 	raw_spin_lock_init(&rdp->nocb_lock);
2342 	setup_timer(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer,
2343 		    (unsigned long)rdp);
2344 }
2345 
2346 /*
2347  * If the specified CPU is a no-CBs CPU that does not already have its
2348  * rcuo kthread for the specified RCU flavor, spawn it.  If the CPUs are
2349  * brought online out of order, this can require re-organizing the
2350  * leader-follower relationships.
2351  */
rcu_spawn_one_nocb_kthread(struct rcu_state * rsp,int cpu)2352 static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
2353 {
2354 	struct rcu_data *rdp;
2355 	struct rcu_data *rdp_last;
2356 	struct rcu_data *rdp_old_leader;
2357 	struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
2358 	struct task_struct *t;
2359 
2360 	/*
2361 	 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2362 	 * then nothing to do.
2363 	 */
2364 	if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
2365 		return;
2366 
2367 	/* If we didn't spawn the leader first, reorganize! */
2368 	rdp_old_leader = rdp_spawn->nocb_leader;
2369 	if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
2370 		rdp_last = NULL;
2371 		rdp = rdp_old_leader;
2372 		do {
2373 			rdp->nocb_leader = rdp_spawn;
2374 			if (rdp_last && rdp != rdp_spawn)
2375 				rdp_last->nocb_next_follower = rdp;
2376 			if (rdp == rdp_spawn) {
2377 				rdp = rdp->nocb_next_follower;
2378 			} else {
2379 				rdp_last = rdp;
2380 				rdp = rdp->nocb_next_follower;
2381 				rdp_last->nocb_next_follower = NULL;
2382 			}
2383 		} while (rdp);
2384 		rdp_spawn->nocb_next_follower = rdp_old_leader;
2385 	}
2386 
2387 	/* Spawn the kthread for this CPU and RCU flavor. */
2388 	t = kthread_run(rcu_nocb_kthread, rdp_spawn,
2389 			"rcuo%c/%d", rsp->abbr, cpu);
2390 	BUG_ON(IS_ERR(t));
2391 	WRITE_ONCE(rdp_spawn->nocb_kthread, t);
2392 }
2393 
2394 /*
2395  * If the specified CPU is a no-CBs CPU that does not already have its
2396  * rcuo kthreads, spawn them.
2397  */
rcu_spawn_all_nocb_kthreads(int cpu)2398 static void rcu_spawn_all_nocb_kthreads(int cpu)
2399 {
2400 	struct rcu_state *rsp;
2401 
2402 	if (rcu_scheduler_fully_active)
2403 		for_each_rcu_flavor(rsp)
2404 			rcu_spawn_one_nocb_kthread(rsp, cpu);
2405 }
2406 
2407 /*
2408  * Once the scheduler is running, spawn rcuo kthreads for all online
2409  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2410  * non-boot CPUs come online -- if this changes, we will need to add
2411  * some mutual exclusion.
2412  */
rcu_spawn_nocb_kthreads(void)2413 static void __init rcu_spawn_nocb_kthreads(void)
2414 {
2415 	int cpu;
2416 
2417 	for_each_online_cpu(cpu)
2418 		rcu_spawn_all_nocb_kthreads(cpu);
2419 }
2420 
2421 /* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
2422 static int rcu_nocb_leader_stride = -1;
2423 module_param(rcu_nocb_leader_stride, int, 0444);
2424 
2425 /*
2426  * Initialize leader-follower relationships for all no-CBs CPU.
2427  */
rcu_organize_nocb_kthreads(struct rcu_state * rsp)2428 static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
2429 {
2430 	int cpu;
2431 	int ls = rcu_nocb_leader_stride;
2432 	int nl = 0;  /* Next leader. */
2433 	struct rcu_data *rdp;
2434 	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
2435 	struct rcu_data *rdp_prev = NULL;
2436 
2437 	if (!have_rcu_nocb_mask)
2438 		return;
2439 	if (ls == -1) {
2440 		ls = int_sqrt(nr_cpu_ids);
2441 		rcu_nocb_leader_stride = ls;
2442 	}
2443 
2444 	/*
2445 	 * Each pass through this loop sets up one rcu_data structure.
2446 	 * Should the corresponding CPU come online in the future, then
2447 	 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2448 	 */
2449 	for_each_cpu(cpu, rcu_nocb_mask) {
2450 		rdp = per_cpu_ptr(rsp->rda, cpu);
2451 		if (rdp->cpu >= nl) {
2452 			/* New leader, set up for followers & next leader. */
2453 			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2454 			rdp->nocb_leader = rdp;
2455 			rdp_leader = rdp;
2456 		} else {
2457 			/* Another follower, link to previous leader. */
2458 			rdp->nocb_leader = rdp_leader;
2459 			rdp_prev->nocb_next_follower = rdp;
2460 		}
2461 		rdp_prev = rdp;
2462 	}
2463 }
2464 
2465 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
init_nocb_callback_list(struct rcu_data * rdp)2466 static bool init_nocb_callback_list(struct rcu_data *rdp)
2467 {
2468 	if (!rcu_is_nocb_cpu(rdp->cpu))
2469 		return false;
2470 
2471 	/* If there are early-boot callbacks, move them to nocb lists. */
2472 	if (!rcu_segcblist_empty(&rdp->cblist)) {
2473 		rdp->nocb_head = rcu_segcblist_head(&rdp->cblist);
2474 		rdp->nocb_tail = rcu_segcblist_tail(&rdp->cblist);
2475 		atomic_long_set(&rdp->nocb_q_count,
2476 				rcu_segcblist_n_cbs(&rdp->cblist));
2477 		atomic_long_set(&rdp->nocb_q_count_lazy,
2478 				rcu_segcblist_n_lazy_cbs(&rdp->cblist));
2479 		rcu_segcblist_init(&rdp->cblist);
2480 	}
2481 	rcu_segcblist_disable(&rdp->cblist);
2482 	return true;
2483 }
2484 
2485 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2486 
rcu_nocb_cpu_needs_barrier(struct rcu_state * rsp,int cpu)2487 static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
2488 {
2489 	WARN_ON_ONCE(1); /* Should be dead code. */
2490 	return false;
2491 }
2492 
rcu_nocb_gp_cleanup(struct swait_queue_head * sq)2493 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2494 {
2495 }
2496 
rcu_nocb_gp_set(struct rcu_node * rnp,int nrq)2497 static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
2498 {
2499 }
2500 
rcu_nocb_gp_get(struct rcu_node * rnp)2501 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2502 {
2503 	return NULL;
2504 }
2505 
rcu_init_one_nocb(struct rcu_node * rnp)2506 static void rcu_init_one_nocb(struct rcu_node *rnp)
2507 {
2508 }
2509 
__call_rcu_nocb(struct rcu_data * rdp,struct rcu_head * rhp,bool lazy,unsigned long flags)2510 static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
2511 			    bool lazy, unsigned long flags)
2512 {
2513 	return false;
2514 }
2515 
rcu_nocb_adopt_orphan_cbs(struct rcu_data * my_rdp,struct rcu_data * rdp,unsigned long flags)2516 static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_data *my_rdp,
2517 						     struct rcu_data *rdp,
2518 						     unsigned long flags)
2519 {
2520 	return false;
2521 }
2522 
rcu_boot_init_nocb_percpu_data(struct rcu_data * rdp)2523 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2524 {
2525 }
2526 
rcu_nocb_need_deferred_wakeup(struct rcu_data * rdp)2527 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2528 {
2529 	return false;
2530 }
2531 
do_nocb_deferred_wakeup(struct rcu_data * rdp)2532 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2533 {
2534 }
2535 
rcu_spawn_all_nocb_kthreads(int cpu)2536 static void rcu_spawn_all_nocb_kthreads(int cpu)
2537 {
2538 }
2539 
rcu_spawn_nocb_kthreads(void)2540 static void __init rcu_spawn_nocb_kthreads(void)
2541 {
2542 }
2543 
init_nocb_callback_list(struct rcu_data * rdp)2544 static bool init_nocb_callback_list(struct rcu_data *rdp)
2545 {
2546 	return false;
2547 }
2548 
2549 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2550 
2551 /*
2552  * An adaptive-ticks CPU can potentially execute in kernel mode for an
2553  * arbitrarily long period of time with the scheduling-clock tick turned
2554  * off.  RCU will be paying attention to this CPU because it is in the
2555  * kernel, but the CPU cannot be guaranteed to be executing the RCU state
2556  * machine because the scheduling-clock tick has been disabled.  Therefore,
2557  * if an adaptive-ticks CPU is failing to respond to the current grace
2558  * period and has not be idle from an RCU perspective, kick it.
2559  */
rcu_kick_nohz_cpu(int cpu)2560 static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
2561 {
2562 #ifdef CONFIG_NO_HZ_FULL
2563 	if (tick_nohz_full_cpu(cpu))
2564 		smp_send_reschedule(cpu);
2565 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2566 }
2567 
2568 /*
2569  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2570  * grace-period kthread will do force_quiescent_state() processing?
2571  * The idea is to avoid waking up RCU core processing on such a
2572  * CPU unless the grace period has extended for too long.
2573  *
2574  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2575  * CONFIG_RCU_NOCB_CPU CPUs.
2576  */
rcu_nohz_full_cpu(struct rcu_state * rsp)2577 static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
2578 {
2579 #ifdef CONFIG_NO_HZ_FULL
2580 	if (tick_nohz_full_cpu(smp_processor_id()) &&
2581 	    (!rcu_gp_in_progress(rsp) ||
2582 	     ULONG_CMP_LT(jiffies, READ_ONCE(rsp->gp_start) + HZ)))
2583 		return true;
2584 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2585 	return false;
2586 }
2587 
2588 /*
2589  * Bind the grace-period kthread for the sysidle flavor of RCU to the
2590  * timekeeping CPU.
2591  */
rcu_bind_gp_kthread(void)2592 static void rcu_bind_gp_kthread(void)
2593 {
2594 	int __maybe_unused cpu;
2595 
2596 	if (!tick_nohz_full_enabled())
2597 		return;
2598 	housekeeping_affine(current);
2599 }
2600 
2601 /* Record the current task on dyntick-idle entry. */
rcu_dynticks_task_enter(void)2602 static void rcu_dynticks_task_enter(void)
2603 {
2604 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2605 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2606 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2607 }
2608 
2609 /* Record no current task on dyntick-idle exit. */
rcu_dynticks_task_exit(void)2610 static void rcu_dynticks_task_exit(void)
2611 {
2612 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2613 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2614 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2615 }
2616