• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <linux/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
free_work(struct work_struct * w)49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *t, *llnode;
53 
54 	llist_for_each_safe(llnode, t, llist_del_all(&p->list))
55 		__vunmap((void *)llnode, 1);
56 }
57 
58 /*** Page table manipulation functions ***/
59 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end)60 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
61 {
62 	pte_t *pte;
63 
64 	pte = pte_offset_kernel(pmd, addr);
65 	do {
66 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
67 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
68 	} while (pte++, addr += PAGE_SIZE, addr != end);
69 }
70 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end)71 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
72 {
73 	pmd_t *pmd;
74 	unsigned long next;
75 
76 	pmd = pmd_offset(pud, addr);
77 	do {
78 		next = pmd_addr_end(addr, end);
79 		if (pmd_clear_huge(pmd))
80 			continue;
81 		if (pmd_none_or_clear_bad(pmd))
82 			continue;
83 		vunmap_pte_range(pmd, addr, next);
84 	} while (pmd++, addr = next, addr != end);
85 }
86 
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end)87 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
88 {
89 	pud_t *pud;
90 	unsigned long next;
91 
92 	pud = pud_offset(p4d, addr);
93 	do {
94 		next = pud_addr_end(addr, end);
95 		if (pud_clear_huge(pud))
96 			continue;
97 		if (pud_none_or_clear_bad(pud))
98 			continue;
99 		vunmap_pmd_range(pud, addr, next);
100 	} while (pud++, addr = next, addr != end);
101 }
102 
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end)103 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
104 {
105 	p4d_t *p4d;
106 	unsigned long next;
107 
108 	p4d = p4d_offset(pgd, addr);
109 	do {
110 		next = p4d_addr_end(addr, end);
111 		if (p4d_clear_huge(p4d))
112 			continue;
113 		if (p4d_none_or_clear_bad(p4d))
114 			continue;
115 		vunmap_pud_range(p4d, addr, next);
116 	} while (p4d++, addr = next, addr != end);
117 }
118 
vunmap_page_range(unsigned long addr,unsigned long end)119 static void vunmap_page_range(unsigned long addr, unsigned long end)
120 {
121 	pgd_t *pgd;
122 	unsigned long next;
123 
124 	BUG_ON(addr >= end);
125 	pgd = pgd_offset_k(addr);
126 	do {
127 		next = pgd_addr_end(addr, end);
128 		if (pgd_none_or_clear_bad(pgd))
129 			continue;
130 		vunmap_p4d_range(pgd, addr, next);
131 	} while (pgd++, addr = next, addr != end);
132 }
133 
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)134 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
135 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 {
137 	pte_t *pte;
138 
139 	/*
140 	 * nr is a running index into the array which helps higher level
141 	 * callers keep track of where we're up to.
142 	 */
143 
144 	pte = pte_alloc_kernel(pmd, addr);
145 	if (!pte)
146 		return -ENOMEM;
147 	do {
148 		struct page *page = pages[*nr];
149 
150 		if (WARN_ON(!pte_none(*pte)))
151 			return -EBUSY;
152 		if (WARN_ON(!page))
153 			return -ENOMEM;
154 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
155 		(*nr)++;
156 	} while (pte++, addr += PAGE_SIZE, addr != end);
157 	return 0;
158 }
159 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)160 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
161 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
162 {
163 	pmd_t *pmd;
164 	unsigned long next;
165 
166 	pmd = pmd_alloc(&init_mm, pud, addr);
167 	if (!pmd)
168 		return -ENOMEM;
169 	do {
170 		next = pmd_addr_end(addr, end);
171 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
172 			return -ENOMEM;
173 	} while (pmd++, addr = next, addr != end);
174 	return 0;
175 }
176 
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)177 static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
178 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
179 {
180 	pud_t *pud;
181 	unsigned long next;
182 
183 	pud = pud_alloc(&init_mm, p4d, addr);
184 	if (!pud)
185 		return -ENOMEM;
186 	do {
187 		next = pud_addr_end(addr, end);
188 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
189 			return -ENOMEM;
190 	} while (pud++, addr = next, addr != end);
191 	return 0;
192 }
193 
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)194 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
195 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
196 {
197 	p4d_t *p4d;
198 	unsigned long next;
199 
200 	p4d = p4d_alloc(&init_mm, pgd, addr);
201 	if (!p4d)
202 		return -ENOMEM;
203 	do {
204 		next = p4d_addr_end(addr, end);
205 		if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
206 			return -ENOMEM;
207 	} while (p4d++, addr = next, addr != end);
208 	return 0;
209 }
210 
211 /*
212  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
213  * will have pfns corresponding to the "pages" array.
214  *
215  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
216  */
vmap_page_range_noflush(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)217 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
218 				   pgprot_t prot, struct page **pages)
219 {
220 	pgd_t *pgd;
221 	unsigned long next;
222 	unsigned long addr = start;
223 	int err = 0;
224 	int nr = 0;
225 
226 	BUG_ON(addr >= end);
227 	pgd = pgd_offset_k(addr);
228 	do {
229 		next = pgd_addr_end(addr, end);
230 		err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
231 		if (err)
232 			return err;
233 	} while (pgd++, addr = next, addr != end);
234 
235 	return nr;
236 }
237 
vmap_page_range(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)238 static int vmap_page_range(unsigned long start, unsigned long end,
239 			   pgprot_t prot, struct page **pages)
240 {
241 	int ret;
242 
243 	ret = vmap_page_range_noflush(start, end, prot, pages);
244 	flush_cache_vmap(start, end);
245 	return ret;
246 }
247 
is_vmalloc_or_module_addr(const void * x)248 int is_vmalloc_or_module_addr(const void *x)
249 {
250 	/*
251 	 * ARM, x86-64 and sparc64 put modules in a special place,
252 	 * and fall back on vmalloc() if that fails. Others
253 	 * just put it in the vmalloc space.
254 	 */
255 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
256 	unsigned long addr = (unsigned long)x;
257 	if (addr >= MODULES_VADDR && addr < MODULES_END)
258 		return 1;
259 #endif
260 	return is_vmalloc_addr(x);
261 }
262 
263 /*
264  * Walk a vmap address to the struct page it maps.
265  */
vmalloc_to_page(const void * vmalloc_addr)266 struct page *vmalloc_to_page(const void *vmalloc_addr)
267 {
268 	unsigned long addr = (unsigned long) vmalloc_addr;
269 	struct page *page = NULL;
270 	pgd_t *pgd = pgd_offset_k(addr);
271 	p4d_t *p4d;
272 	pud_t *pud;
273 	pmd_t *pmd;
274 	pte_t *ptep, pte;
275 
276 	/*
277 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
278 	 * architectures that do not vmalloc module space
279 	 */
280 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
281 
282 	if (pgd_none(*pgd))
283 		return NULL;
284 	p4d = p4d_offset(pgd, addr);
285 	if (p4d_none(*p4d))
286 		return NULL;
287 	pud = pud_offset(p4d, addr);
288 
289 	/*
290 	 * Don't dereference bad PUD or PMD (below) entries. This will also
291 	 * identify huge mappings, which we may encounter on architectures
292 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
293 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
294 	 * not [unambiguously] associated with a struct page, so there is
295 	 * no correct value to return for them.
296 	 */
297 	WARN_ON_ONCE(pud_bad(*pud));
298 	if (pud_none(*pud) || pud_bad(*pud))
299 		return NULL;
300 	pmd = pmd_offset(pud, addr);
301 	WARN_ON_ONCE(pmd_bad(*pmd));
302 	if (pmd_none(*pmd) || pmd_bad(*pmd))
303 		return NULL;
304 
305 	ptep = pte_offset_map(pmd, addr);
306 	pte = *ptep;
307 	if (pte_present(pte))
308 		page = pte_page(pte);
309 	pte_unmap(ptep);
310 	return page;
311 }
312 EXPORT_SYMBOL(vmalloc_to_page);
313 
314 /*
315  * Map a vmalloc()-space virtual address to the physical page frame number.
316  */
vmalloc_to_pfn(const void * vmalloc_addr)317 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
318 {
319 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
320 }
321 EXPORT_SYMBOL(vmalloc_to_pfn);
322 
323 
324 /*** Global kva allocator ***/
325 
326 #define VM_LAZY_FREE	0x02
327 #define VM_VM_AREA	0x04
328 
329 static DEFINE_SPINLOCK(vmap_area_lock);
330 /* Export for kexec only */
331 LIST_HEAD(vmap_area_list);
332 static LLIST_HEAD(vmap_purge_list);
333 static struct rb_root vmap_area_root = RB_ROOT;
334 
335 /* The vmap cache globals are protected by vmap_area_lock */
336 static struct rb_node *free_vmap_cache;
337 static unsigned long cached_hole_size;
338 static unsigned long cached_vstart;
339 static unsigned long cached_align;
340 
341 static unsigned long vmap_area_pcpu_hole;
342 
__find_vmap_area(unsigned long addr)343 static struct vmap_area *__find_vmap_area(unsigned long addr)
344 {
345 	struct rb_node *n = vmap_area_root.rb_node;
346 
347 	while (n) {
348 		struct vmap_area *va;
349 
350 		va = rb_entry(n, struct vmap_area, rb_node);
351 		if (addr < va->va_start)
352 			n = n->rb_left;
353 		else if (addr >= va->va_end)
354 			n = n->rb_right;
355 		else
356 			return va;
357 	}
358 
359 	return NULL;
360 }
361 
__insert_vmap_area(struct vmap_area * va)362 static void __insert_vmap_area(struct vmap_area *va)
363 {
364 	struct rb_node **p = &vmap_area_root.rb_node;
365 	struct rb_node *parent = NULL;
366 	struct rb_node *tmp;
367 
368 	while (*p) {
369 		struct vmap_area *tmp_va;
370 
371 		parent = *p;
372 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
373 		if (va->va_start < tmp_va->va_end)
374 			p = &(*p)->rb_left;
375 		else if (va->va_end > tmp_va->va_start)
376 			p = &(*p)->rb_right;
377 		else
378 			BUG();
379 	}
380 
381 	rb_link_node(&va->rb_node, parent, p);
382 	rb_insert_color(&va->rb_node, &vmap_area_root);
383 
384 	/* address-sort this list */
385 	tmp = rb_prev(&va->rb_node);
386 	if (tmp) {
387 		struct vmap_area *prev;
388 		prev = rb_entry(tmp, struct vmap_area, rb_node);
389 		list_add_rcu(&va->list, &prev->list);
390 	} else
391 		list_add_rcu(&va->list, &vmap_area_list);
392 }
393 
394 static void purge_vmap_area_lazy(void);
395 
396 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
397 
398 /*
399  * Allocate a region of KVA of the specified size and alignment, within the
400  * vstart and vend.
401  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)402 static struct vmap_area *alloc_vmap_area(unsigned long size,
403 				unsigned long align,
404 				unsigned long vstart, unsigned long vend,
405 				int node, gfp_t gfp_mask)
406 {
407 	struct vmap_area *va;
408 	struct rb_node *n;
409 	unsigned long addr;
410 	int purged = 0;
411 	struct vmap_area *first;
412 
413 	BUG_ON(!size);
414 	BUG_ON(offset_in_page(size));
415 	BUG_ON(!is_power_of_2(align));
416 
417 	might_sleep();
418 
419 	va = kmalloc_node(sizeof(struct vmap_area),
420 			gfp_mask & GFP_RECLAIM_MASK, node);
421 	if (unlikely(!va))
422 		return ERR_PTR(-ENOMEM);
423 
424 	/*
425 	 * Only scan the relevant parts containing pointers to other objects
426 	 * to avoid false negatives.
427 	 */
428 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
429 
430 retry:
431 	spin_lock(&vmap_area_lock);
432 	/*
433 	 * Invalidate cache if we have more permissive parameters.
434 	 * cached_hole_size notes the largest hole noticed _below_
435 	 * the vmap_area cached in free_vmap_cache: if size fits
436 	 * into that hole, we want to scan from vstart to reuse
437 	 * the hole instead of allocating above free_vmap_cache.
438 	 * Note that __free_vmap_area may update free_vmap_cache
439 	 * without updating cached_hole_size or cached_align.
440 	 */
441 	if (!free_vmap_cache ||
442 			size < cached_hole_size ||
443 			vstart < cached_vstart ||
444 			align < cached_align) {
445 nocache:
446 		cached_hole_size = 0;
447 		free_vmap_cache = NULL;
448 	}
449 	/* record if we encounter less permissive parameters */
450 	cached_vstart = vstart;
451 	cached_align = align;
452 
453 	/* find starting point for our search */
454 	if (free_vmap_cache) {
455 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
456 		addr = ALIGN(first->va_end, align);
457 		if (addr < vstart)
458 			goto nocache;
459 		if (addr + size < addr)
460 			goto overflow;
461 
462 	} else {
463 		addr = ALIGN(vstart, align);
464 		if (addr + size < addr)
465 			goto overflow;
466 
467 		n = vmap_area_root.rb_node;
468 		first = NULL;
469 
470 		while (n) {
471 			struct vmap_area *tmp;
472 			tmp = rb_entry(n, struct vmap_area, rb_node);
473 			if (tmp->va_end >= addr) {
474 				first = tmp;
475 				if (tmp->va_start <= addr)
476 					break;
477 				n = n->rb_left;
478 			} else
479 				n = n->rb_right;
480 		}
481 
482 		if (!first)
483 			goto found;
484 	}
485 
486 	/* from the starting point, walk areas until a suitable hole is found */
487 	while (addr + size > first->va_start && addr + size <= vend) {
488 		if (addr + cached_hole_size < first->va_start)
489 			cached_hole_size = first->va_start - addr;
490 		addr = ALIGN(first->va_end, align);
491 		if (addr + size < addr)
492 			goto overflow;
493 
494 		if (list_is_last(&first->list, &vmap_area_list))
495 			goto found;
496 
497 		first = list_next_entry(first, list);
498 	}
499 
500 found:
501 	/*
502 	 * Check also calculated address against the vstart,
503 	 * because it can be 0 because of big align request.
504 	 */
505 	if (addr + size > vend || addr < vstart)
506 		goto overflow;
507 
508 	va->va_start = addr;
509 	va->va_end = addr + size;
510 	va->flags = 0;
511 	__insert_vmap_area(va);
512 	free_vmap_cache = &va->rb_node;
513 	spin_unlock(&vmap_area_lock);
514 
515 	BUG_ON(!IS_ALIGNED(va->va_start, align));
516 	BUG_ON(va->va_start < vstart);
517 	BUG_ON(va->va_end > vend);
518 
519 	return va;
520 
521 overflow:
522 	spin_unlock(&vmap_area_lock);
523 	if (!purged) {
524 		purge_vmap_area_lazy();
525 		purged = 1;
526 		goto retry;
527 	}
528 
529 	if (gfpflags_allow_blocking(gfp_mask)) {
530 		unsigned long freed = 0;
531 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
532 		if (freed > 0) {
533 			purged = 0;
534 			goto retry;
535 		}
536 	}
537 
538 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
539 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
540 			size);
541 	kfree(va);
542 	return ERR_PTR(-EBUSY);
543 }
544 
register_vmap_purge_notifier(struct notifier_block * nb)545 int register_vmap_purge_notifier(struct notifier_block *nb)
546 {
547 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
548 }
549 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
550 
unregister_vmap_purge_notifier(struct notifier_block * nb)551 int unregister_vmap_purge_notifier(struct notifier_block *nb)
552 {
553 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
554 }
555 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
556 
__free_vmap_area(struct vmap_area * va)557 static void __free_vmap_area(struct vmap_area *va)
558 {
559 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
560 
561 	if (free_vmap_cache) {
562 		if (va->va_end < cached_vstart) {
563 			free_vmap_cache = NULL;
564 		} else {
565 			struct vmap_area *cache;
566 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
567 			if (va->va_start <= cache->va_start) {
568 				free_vmap_cache = rb_prev(&va->rb_node);
569 				/*
570 				 * We don't try to update cached_hole_size or
571 				 * cached_align, but it won't go very wrong.
572 				 */
573 			}
574 		}
575 	}
576 	rb_erase(&va->rb_node, &vmap_area_root);
577 	RB_CLEAR_NODE(&va->rb_node);
578 	list_del_rcu(&va->list);
579 
580 	/*
581 	 * Track the highest possible candidate for pcpu area
582 	 * allocation.  Areas outside of vmalloc area can be returned
583 	 * here too, consider only end addresses which fall inside
584 	 * vmalloc area proper.
585 	 */
586 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
587 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
588 
589 	kfree_rcu(va, rcu_head);
590 }
591 
592 /*
593  * Free a region of KVA allocated by alloc_vmap_area
594  */
free_vmap_area(struct vmap_area * va)595 static void free_vmap_area(struct vmap_area *va)
596 {
597 	spin_lock(&vmap_area_lock);
598 	__free_vmap_area(va);
599 	spin_unlock(&vmap_area_lock);
600 }
601 
602 /*
603  * Clear the pagetable entries of a given vmap_area
604  */
unmap_vmap_area(struct vmap_area * va)605 static void unmap_vmap_area(struct vmap_area *va)
606 {
607 	vunmap_page_range(va->va_start, va->va_end);
608 }
609 
vmap_debug_free_range(unsigned long start,unsigned long end)610 static void vmap_debug_free_range(unsigned long start, unsigned long end)
611 {
612 	/*
613 	 * Unmap page tables and force a TLB flush immediately if pagealloc
614 	 * debugging is enabled.  This catches use after free bugs similarly to
615 	 * those in linear kernel virtual address space after a page has been
616 	 * freed.
617 	 *
618 	 * All the lazy freeing logic is still retained, in order to minimise
619 	 * intrusiveness of this debugging feature.
620 	 *
621 	 * This is going to be *slow* (linear kernel virtual address debugging
622 	 * doesn't do a broadcast TLB flush so it is a lot faster).
623 	 */
624 	if (debug_pagealloc_enabled()) {
625 		vunmap_page_range(start, end);
626 		flush_tlb_kernel_range(start, end);
627 	}
628 }
629 
630 /*
631  * lazy_max_pages is the maximum amount of virtual address space we gather up
632  * before attempting to purge with a TLB flush.
633  *
634  * There is a tradeoff here: a larger number will cover more kernel page tables
635  * and take slightly longer to purge, but it will linearly reduce the number of
636  * global TLB flushes that must be performed. It would seem natural to scale
637  * this number up linearly with the number of CPUs (because vmapping activity
638  * could also scale linearly with the number of CPUs), however it is likely
639  * that in practice, workloads might be constrained in other ways that mean
640  * vmap activity will not scale linearly with CPUs. Also, I want to be
641  * conservative and not introduce a big latency on huge systems, so go with
642  * a less aggressive log scale. It will still be an improvement over the old
643  * code, and it will be simple to change the scale factor if we find that it
644  * becomes a problem on bigger systems.
645  */
lazy_max_pages(void)646 static unsigned long lazy_max_pages(void)
647 {
648 	unsigned int log;
649 
650 	log = fls(num_online_cpus());
651 
652 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
653 }
654 
655 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
656 
657 /*
658  * Serialize vmap purging.  There is no actual criticial section protected
659  * by this look, but we want to avoid concurrent calls for performance
660  * reasons and to make the pcpu_get_vm_areas more deterministic.
661  */
662 static DEFINE_MUTEX(vmap_purge_lock);
663 
664 /* for per-CPU blocks */
665 static void purge_fragmented_blocks_allcpus(void);
666 
667 /*
668  * called before a call to iounmap() if the caller wants vm_area_struct's
669  * immediately freed.
670  */
set_iounmap_nonlazy(void)671 void set_iounmap_nonlazy(void)
672 {
673 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
674 }
675 
676 /*
677  * Purges all lazily-freed vmap areas.
678  */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)679 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
680 {
681 	struct llist_node *valist;
682 	struct vmap_area *va;
683 	struct vmap_area *n_va;
684 	bool do_free = false;
685 
686 	lockdep_assert_held(&vmap_purge_lock);
687 
688 	valist = llist_del_all(&vmap_purge_list);
689 	llist_for_each_entry(va, valist, purge_list) {
690 		if (va->va_start < start)
691 			start = va->va_start;
692 		if (va->va_end > end)
693 			end = va->va_end;
694 		do_free = true;
695 	}
696 
697 	if (!do_free)
698 		return false;
699 
700 	flush_tlb_kernel_range(start, end);
701 
702 	spin_lock(&vmap_area_lock);
703 	llist_for_each_entry_safe(va, n_va, valist, purge_list) {
704 		int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
705 
706 		__free_vmap_area(va);
707 		atomic_sub(nr, &vmap_lazy_nr);
708 		cond_resched_lock(&vmap_area_lock);
709 	}
710 	spin_unlock(&vmap_area_lock);
711 	return true;
712 }
713 
714 /*
715  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
716  * is already purging.
717  */
try_purge_vmap_area_lazy(void)718 static void try_purge_vmap_area_lazy(void)
719 {
720 	if (mutex_trylock(&vmap_purge_lock)) {
721 		__purge_vmap_area_lazy(ULONG_MAX, 0);
722 		mutex_unlock(&vmap_purge_lock);
723 	}
724 }
725 
726 /*
727  * Kick off a purge of the outstanding lazy areas.
728  */
purge_vmap_area_lazy(void)729 static void purge_vmap_area_lazy(void)
730 {
731 	mutex_lock(&vmap_purge_lock);
732 	purge_fragmented_blocks_allcpus();
733 	__purge_vmap_area_lazy(ULONG_MAX, 0);
734 	mutex_unlock(&vmap_purge_lock);
735 }
736 
737 /*
738  * Free a vmap area, caller ensuring that the area has been unmapped
739  * and flush_cache_vunmap had been called for the correct range
740  * previously.
741  */
free_vmap_area_noflush(struct vmap_area * va)742 static void free_vmap_area_noflush(struct vmap_area *va)
743 {
744 	int nr_lazy;
745 
746 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
747 				    &vmap_lazy_nr);
748 
749 	/* After this point, we may free va at any time */
750 	llist_add(&va->purge_list, &vmap_purge_list);
751 
752 	if (unlikely(nr_lazy > lazy_max_pages()))
753 		try_purge_vmap_area_lazy();
754 }
755 
756 /*
757  * Free and unmap a vmap area
758  */
free_unmap_vmap_area(struct vmap_area * va)759 static void free_unmap_vmap_area(struct vmap_area *va)
760 {
761 	flush_cache_vunmap(va->va_start, va->va_end);
762 	unmap_vmap_area(va);
763 	free_vmap_area_noflush(va);
764 }
765 
find_vmap_area(unsigned long addr)766 static struct vmap_area *find_vmap_area(unsigned long addr)
767 {
768 	struct vmap_area *va;
769 
770 	spin_lock(&vmap_area_lock);
771 	va = __find_vmap_area(addr);
772 	spin_unlock(&vmap_area_lock);
773 
774 	return va;
775 }
776 
777 /*** Per cpu kva allocator ***/
778 
779 /*
780  * vmap space is limited especially on 32 bit architectures. Ensure there is
781  * room for at least 16 percpu vmap blocks per CPU.
782  */
783 /*
784  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
785  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
786  * instead (we just need a rough idea)
787  */
788 #if BITS_PER_LONG == 32
789 #define VMALLOC_SPACE		(128UL*1024*1024)
790 #else
791 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
792 #endif
793 
794 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
795 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
796 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
797 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
798 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
799 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
800 #define VMAP_BBMAP_BITS		\
801 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
802 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
803 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
804 
805 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
806 
807 static bool vmap_initialized __read_mostly = false;
808 
809 struct vmap_block_queue {
810 	spinlock_t lock;
811 	struct list_head free;
812 };
813 
814 struct vmap_block {
815 	spinlock_t lock;
816 	struct vmap_area *va;
817 	unsigned long free, dirty;
818 	unsigned long dirty_min, dirty_max; /*< dirty range */
819 	struct list_head free_list;
820 	struct rcu_head rcu_head;
821 	struct list_head purge;
822 };
823 
824 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
825 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
826 
827 /*
828  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
829  * in the free path. Could get rid of this if we change the API to return a
830  * "cookie" from alloc, to be passed to free. But no big deal yet.
831  */
832 static DEFINE_SPINLOCK(vmap_block_tree_lock);
833 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
834 
835 /*
836  * We should probably have a fallback mechanism to allocate virtual memory
837  * out of partially filled vmap blocks. However vmap block sizing should be
838  * fairly reasonable according to the vmalloc size, so it shouldn't be a
839  * big problem.
840  */
841 
addr_to_vb_idx(unsigned long addr)842 static unsigned long addr_to_vb_idx(unsigned long addr)
843 {
844 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
845 	addr /= VMAP_BLOCK_SIZE;
846 	return addr;
847 }
848 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)849 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
850 {
851 	unsigned long addr;
852 
853 	addr = va_start + (pages_off << PAGE_SHIFT);
854 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
855 	return (void *)addr;
856 }
857 
858 /**
859  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
860  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
861  * @order:    how many 2^order pages should be occupied in newly allocated block
862  * @gfp_mask: flags for the page level allocator
863  *
864  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
865  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)866 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
867 {
868 	struct vmap_block_queue *vbq;
869 	struct vmap_block *vb;
870 	struct vmap_area *va;
871 	unsigned long vb_idx;
872 	int node, err;
873 	void *vaddr;
874 
875 	node = numa_node_id();
876 
877 	vb = kmalloc_node(sizeof(struct vmap_block),
878 			gfp_mask & GFP_RECLAIM_MASK, node);
879 	if (unlikely(!vb))
880 		return ERR_PTR(-ENOMEM);
881 
882 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
883 					VMALLOC_START, VMALLOC_END,
884 					node, gfp_mask);
885 	if (IS_ERR(va)) {
886 		kfree(vb);
887 		return ERR_CAST(va);
888 	}
889 
890 	err = radix_tree_preload(gfp_mask);
891 	if (unlikely(err)) {
892 		kfree(vb);
893 		free_vmap_area(va);
894 		return ERR_PTR(err);
895 	}
896 
897 	vaddr = vmap_block_vaddr(va->va_start, 0);
898 	spin_lock_init(&vb->lock);
899 	vb->va = va;
900 	/* At least something should be left free */
901 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
902 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
903 	vb->dirty = 0;
904 	vb->dirty_min = VMAP_BBMAP_BITS;
905 	vb->dirty_max = 0;
906 	INIT_LIST_HEAD(&vb->free_list);
907 
908 	vb_idx = addr_to_vb_idx(va->va_start);
909 	spin_lock(&vmap_block_tree_lock);
910 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
911 	spin_unlock(&vmap_block_tree_lock);
912 	BUG_ON(err);
913 	radix_tree_preload_end();
914 
915 	vbq = &get_cpu_var(vmap_block_queue);
916 	spin_lock(&vbq->lock);
917 	list_add_tail_rcu(&vb->free_list, &vbq->free);
918 	spin_unlock(&vbq->lock);
919 	put_cpu_var(vmap_block_queue);
920 
921 	return vaddr;
922 }
923 
free_vmap_block(struct vmap_block * vb)924 static void free_vmap_block(struct vmap_block *vb)
925 {
926 	struct vmap_block *tmp;
927 	unsigned long vb_idx;
928 
929 	vb_idx = addr_to_vb_idx(vb->va->va_start);
930 	spin_lock(&vmap_block_tree_lock);
931 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
932 	spin_unlock(&vmap_block_tree_lock);
933 	BUG_ON(tmp != vb);
934 
935 	free_vmap_area_noflush(vb->va);
936 	kfree_rcu(vb, rcu_head);
937 }
938 
purge_fragmented_blocks(int cpu)939 static void purge_fragmented_blocks(int cpu)
940 {
941 	LIST_HEAD(purge);
942 	struct vmap_block *vb;
943 	struct vmap_block *n_vb;
944 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
945 
946 	rcu_read_lock();
947 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
948 
949 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
950 			continue;
951 
952 		spin_lock(&vb->lock);
953 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
954 			vb->free = 0; /* prevent further allocs after releasing lock */
955 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
956 			vb->dirty_min = 0;
957 			vb->dirty_max = VMAP_BBMAP_BITS;
958 			spin_lock(&vbq->lock);
959 			list_del_rcu(&vb->free_list);
960 			spin_unlock(&vbq->lock);
961 			spin_unlock(&vb->lock);
962 			list_add_tail(&vb->purge, &purge);
963 		} else
964 			spin_unlock(&vb->lock);
965 	}
966 	rcu_read_unlock();
967 
968 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
969 		list_del(&vb->purge);
970 		free_vmap_block(vb);
971 	}
972 }
973 
purge_fragmented_blocks_allcpus(void)974 static void purge_fragmented_blocks_allcpus(void)
975 {
976 	int cpu;
977 
978 	for_each_possible_cpu(cpu)
979 		purge_fragmented_blocks(cpu);
980 }
981 
vb_alloc(unsigned long size,gfp_t gfp_mask)982 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
983 {
984 	struct vmap_block_queue *vbq;
985 	struct vmap_block *vb;
986 	void *vaddr = NULL;
987 	unsigned int order;
988 
989 	BUG_ON(offset_in_page(size));
990 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
991 	if (WARN_ON(size == 0)) {
992 		/*
993 		 * Allocating 0 bytes isn't what caller wants since
994 		 * get_order(0) returns funny result. Just warn and terminate
995 		 * early.
996 		 */
997 		return NULL;
998 	}
999 	order = get_order(size);
1000 
1001 	rcu_read_lock();
1002 	vbq = &get_cpu_var(vmap_block_queue);
1003 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1004 		unsigned long pages_off;
1005 
1006 		spin_lock(&vb->lock);
1007 		if (vb->free < (1UL << order)) {
1008 			spin_unlock(&vb->lock);
1009 			continue;
1010 		}
1011 
1012 		pages_off = VMAP_BBMAP_BITS - vb->free;
1013 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1014 		vb->free -= 1UL << order;
1015 		if (vb->free == 0) {
1016 			spin_lock(&vbq->lock);
1017 			list_del_rcu(&vb->free_list);
1018 			spin_unlock(&vbq->lock);
1019 		}
1020 
1021 		spin_unlock(&vb->lock);
1022 		break;
1023 	}
1024 
1025 	put_cpu_var(vmap_block_queue);
1026 	rcu_read_unlock();
1027 
1028 	/* Allocate new block if nothing was found */
1029 	if (!vaddr)
1030 		vaddr = new_vmap_block(order, gfp_mask);
1031 
1032 	return vaddr;
1033 }
1034 
vb_free(const void * addr,unsigned long size)1035 static void vb_free(const void *addr, unsigned long size)
1036 {
1037 	unsigned long offset;
1038 	unsigned long vb_idx;
1039 	unsigned int order;
1040 	struct vmap_block *vb;
1041 
1042 	BUG_ON(offset_in_page(size));
1043 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1044 
1045 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1046 
1047 	order = get_order(size);
1048 
1049 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1050 	offset >>= PAGE_SHIFT;
1051 
1052 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1053 	rcu_read_lock();
1054 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1055 	rcu_read_unlock();
1056 	BUG_ON(!vb);
1057 
1058 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1059 
1060 	spin_lock(&vb->lock);
1061 
1062 	/* Expand dirty range */
1063 	vb->dirty_min = min(vb->dirty_min, offset);
1064 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1065 
1066 	vb->dirty += 1UL << order;
1067 	if (vb->dirty == VMAP_BBMAP_BITS) {
1068 		BUG_ON(vb->free);
1069 		spin_unlock(&vb->lock);
1070 		free_vmap_block(vb);
1071 	} else
1072 		spin_unlock(&vb->lock);
1073 }
1074 
1075 /**
1076  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1077  *
1078  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1079  * to amortize TLB flushing overheads. What this means is that any page you
1080  * have now, may, in a former life, have been mapped into kernel virtual
1081  * address by the vmap layer and so there might be some CPUs with TLB entries
1082  * still referencing that page (additional to the regular 1:1 kernel mapping).
1083  *
1084  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1085  * be sure that none of the pages we have control over will have any aliases
1086  * from the vmap layer.
1087  */
vm_unmap_aliases(void)1088 void vm_unmap_aliases(void)
1089 {
1090 	unsigned long start = ULONG_MAX, end = 0;
1091 	int cpu;
1092 	int flush = 0;
1093 
1094 	if (unlikely(!vmap_initialized))
1095 		return;
1096 
1097 	might_sleep();
1098 
1099 	for_each_possible_cpu(cpu) {
1100 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1101 		struct vmap_block *vb;
1102 
1103 		rcu_read_lock();
1104 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1105 			spin_lock(&vb->lock);
1106 			if (vb->dirty) {
1107 				unsigned long va_start = vb->va->va_start;
1108 				unsigned long s, e;
1109 
1110 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1111 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1112 
1113 				start = min(s, start);
1114 				end   = max(e, end);
1115 
1116 				flush = 1;
1117 			}
1118 			spin_unlock(&vb->lock);
1119 		}
1120 		rcu_read_unlock();
1121 	}
1122 
1123 	mutex_lock(&vmap_purge_lock);
1124 	purge_fragmented_blocks_allcpus();
1125 	if (!__purge_vmap_area_lazy(start, end) && flush)
1126 		flush_tlb_kernel_range(start, end);
1127 	mutex_unlock(&vmap_purge_lock);
1128 }
1129 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1130 
1131 /**
1132  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1133  * @mem: the pointer returned by vm_map_ram
1134  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1135  */
vm_unmap_ram(const void * mem,unsigned int count)1136 void vm_unmap_ram(const void *mem, unsigned int count)
1137 {
1138 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1139 	unsigned long addr = (unsigned long)mem;
1140 	struct vmap_area *va;
1141 
1142 	might_sleep();
1143 	BUG_ON(!addr);
1144 	BUG_ON(addr < VMALLOC_START);
1145 	BUG_ON(addr > VMALLOC_END);
1146 	BUG_ON(!PAGE_ALIGNED(addr));
1147 
1148 	debug_check_no_locks_freed(mem, size);
1149 	vmap_debug_free_range(addr, addr+size);
1150 
1151 	if (likely(count <= VMAP_MAX_ALLOC)) {
1152 		vb_free(mem, size);
1153 		return;
1154 	}
1155 
1156 	va = find_vmap_area(addr);
1157 	BUG_ON(!va);
1158 	free_unmap_vmap_area(va);
1159 }
1160 EXPORT_SYMBOL(vm_unmap_ram);
1161 
1162 /**
1163  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1164  * @pages: an array of pointers to the pages to be mapped
1165  * @count: number of pages
1166  * @node: prefer to allocate data structures on this node
1167  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1168  *
1169  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1170  * faster than vmap so it's good.  But if you mix long-life and short-life
1171  * objects with vm_map_ram(), it could consume lots of address space through
1172  * fragmentation (especially on a 32bit machine).  You could see failures in
1173  * the end.  Please use this function for short-lived objects.
1174  *
1175  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1176  */
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)1177 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1178 {
1179 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1180 	unsigned long addr;
1181 	void *mem;
1182 
1183 	if (likely(count <= VMAP_MAX_ALLOC)) {
1184 		mem = vb_alloc(size, GFP_KERNEL);
1185 		if (IS_ERR(mem))
1186 			return NULL;
1187 		addr = (unsigned long)mem;
1188 	} else {
1189 		struct vmap_area *va;
1190 		va = alloc_vmap_area(size, PAGE_SIZE,
1191 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1192 		if (IS_ERR(va))
1193 			return NULL;
1194 
1195 		addr = va->va_start;
1196 		mem = (void *)addr;
1197 	}
1198 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1199 		vm_unmap_ram(mem, count);
1200 		return NULL;
1201 	}
1202 	return mem;
1203 }
1204 EXPORT_SYMBOL(vm_map_ram);
1205 
1206 static struct vm_struct *vmlist __initdata;
1207 /**
1208  * vm_area_add_early - add vmap area early during boot
1209  * @vm: vm_struct to add
1210  *
1211  * This function is used to add fixed kernel vm area to vmlist before
1212  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1213  * should contain proper values and the other fields should be zero.
1214  *
1215  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1216  */
vm_area_add_early(struct vm_struct * vm)1217 void __init vm_area_add_early(struct vm_struct *vm)
1218 {
1219 	struct vm_struct *tmp, **p;
1220 
1221 	BUG_ON(vmap_initialized);
1222 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1223 		if (tmp->addr >= vm->addr) {
1224 			BUG_ON(tmp->addr < vm->addr + vm->size);
1225 			break;
1226 		} else
1227 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1228 	}
1229 	vm->next = *p;
1230 	*p = vm;
1231 }
1232 
1233 /**
1234  * vm_area_register_early - register vmap area early during boot
1235  * @vm: vm_struct to register
1236  * @align: requested alignment
1237  *
1238  * This function is used to register kernel vm area before
1239  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1240  * proper values on entry and other fields should be zero.  On return,
1241  * vm->addr contains the allocated address.
1242  *
1243  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1244  */
vm_area_register_early(struct vm_struct * vm,size_t align)1245 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1246 {
1247 	static size_t vm_init_off __initdata;
1248 	unsigned long addr;
1249 
1250 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1251 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1252 
1253 	vm->addr = (void *)addr;
1254 
1255 	vm_area_add_early(vm);
1256 }
1257 
vmalloc_init(void)1258 void __init vmalloc_init(void)
1259 {
1260 	struct vmap_area *va;
1261 	struct vm_struct *tmp;
1262 	int i;
1263 
1264 	for_each_possible_cpu(i) {
1265 		struct vmap_block_queue *vbq;
1266 		struct vfree_deferred *p;
1267 
1268 		vbq = &per_cpu(vmap_block_queue, i);
1269 		spin_lock_init(&vbq->lock);
1270 		INIT_LIST_HEAD(&vbq->free);
1271 		p = &per_cpu(vfree_deferred, i);
1272 		init_llist_head(&p->list);
1273 		INIT_WORK(&p->wq, free_work);
1274 	}
1275 
1276 	/* Import existing vmlist entries. */
1277 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1278 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1279 		va->flags = VM_VM_AREA;
1280 		va->va_start = (unsigned long)tmp->addr;
1281 		va->va_end = va->va_start + tmp->size;
1282 		va->vm = tmp;
1283 		__insert_vmap_area(va);
1284 	}
1285 
1286 	vmap_area_pcpu_hole = VMALLOC_END;
1287 
1288 	vmap_initialized = true;
1289 }
1290 
1291 /**
1292  * map_kernel_range_noflush - map kernel VM area with the specified pages
1293  * @addr: start of the VM area to map
1294  * @size: size of the VM area to map
1295  * @prot: page protection flags to use
1296  * @pages: pages to map
1297  *
1298  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1299  * specify should have been allocated using get_vm_area() and its
1300  * friends.
1301  *
1302  * NOTE:
1303  * This function does NOT do any cache flushing.  The caller is
1304  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1305  * before calling this function.
1306  *
1307  * RETURNS:
1308  * The number of pages mapped on success, -errno on failure.
1309  */
map_kernel_range_noflush(unsigned long addr,unsigned long size,pgprot_t prot,struct page ** pages)1310 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1311 			     pgprot_t prot, struct page **pages)
1312 {
1313 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1314 }
1315 
1316 /**
1317  * unmap_kernel_range_noflush - unmap kernel VM area
1318  * @addr: start of the VM area to unmap
1319  * @size: size of the VM area to unmap
1320  *
1321  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1322  * specify should have been allocated using get_vm_area() and its
1323  * friends.
1324  *
1325  * NOTE:
1326  * This function does NOT do any cache flushing.  The caller is
1327  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1328  * before calling this function and flush_tlb_kernel_range() after.
1329  */
unmap_kernel_range_noflush(unsigned long addr,unsigned long size)1330 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1331 {
1332 	vunmap_page_range(addr, addr + size);
1333 }
1334 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1335 
1336 /**
1337  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1338  * @addr: start of the VM area to unmap
1339  * @size: size of the VM area to unmap
1340  *
1341  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1342  * the unmapping and tlb after.
1343  */
unmap_kernel_range(unsigned long addr,unsigned long size)1344 void unmap_kernel_range(unsigned long addr, unsigned long size)
1345 {
1346 	unsigned long end = addr + size;
1347 
1348 	flush_cache_vunmap(addr, end);
1349 	vunmap_page_range(addr, end);
1350 	flush_tlb_kernel_range(addr, end);
1351 }
1352 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1353 
map_vm_area(struct vm_struct * area,pgprot_t prot,struct page ** pages)1354 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1355 {
1356 	unsigned long addr = (unsigned long)area->addr;
1357 	unsigned long end = addr + get_vm_area_size(area);
1358 	int err;
1359 
1360 	err = vmap_page_range(addr, end, prot, pages);
1361 
1362 	return err > 0 ? 0 : err;
1363 }
1364 EXPORT_SYMBOL_GPL(map_vm_area);
1365 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)1366 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1367 			      unsigned long flags, const void *caller)
1368 {
1369 	spin_lock(&vmap_area_lock);
1370 	vm->flags = flags;
1371 	vm->addr = (void *)va->va_start;
1372 	vm->size = va->va_end - va->va_start;
1373 	vm->caller = caller;
1374 	va->vm = vm;
1375 	va->flags |= VM_VM_AREA;
1376 	spin_unlock(&vmap_area_lock);
1377 }
1378 
clear_vm_uninitialized_flag(struct vm_struct * vm)1379 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1380 {
1381 	/*
1382 	 * Before removing VM_UNINITIALIZED,
1383 	 * we should make sure that vm has proper values.
1384 	 * Pair with smp_rmb() in show_numa_info().
1385 	 */
1386 	smp_wmb();
1387 	vm->flags &= ~VM_UNINITIALIZED;
1388 }
1389 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)1390 static struct vm_struct *__get_vm_area_node(unsigned long size,
1391 		unsigned long align, unsigned long flags, unsigned long start,
1392 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1393 {
1394 	struct vmap_area *va;
1395 	struct vm_struct *area;
1396 
1397 	BUG_ON(in_interrupt());
1398 	size = PAGE_ALIGN(size);
1399 	if (unlikely(!size))
1400 		return NULL;
1401 
1402 	if (flags & VM_IOREMAP)
1403 		align = 1ul << clamp_t(int, get_count_order_long(size),
1404 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1405 
1406 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1407 	if (unlikely(!area))
1408 		return NULL;
1409 
1410 	if (!(flags & VM_NO_GUARD))
1411 		size += PAGE_SIZE;
1412 
1413 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1414 	if (IS_ERR(va)) {
1415 		kfree(area);
1416 		return NULL;
1417 	}
1418 
1419 	setup_vmalloc_vm(area, va, flags, caller);
1420 
1421 	return area;
1422 }
1423 
__get_vm_area(unsigned long size,unsigned long flags,unsigned long start,unsigned long end)1424 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1425 				unsigned long start, unsigned long end)
1426 {
1427 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1428 				  GFP_KERNEL, __builtin_return_address(0));
1429 }
1430 EXPORT_SYMBOL_GPL(__get_vm_area);
1431 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)1432 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1433 				       unsigned long start, unsigned long end,
1434 				       const void *caller)
1435 {
1436 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1437 				  GFP_KERNEL, caller);
1438 }
1439 
1440 /**
1441  *	get_vm_area  -  reserve a contiguous kernel virtual area
1442  *	@size:		size of the area
1443  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1444  *
1445  *	Search an area of @size in the kernel virtual mapping area,
1446  *	and reserved it for out purposes.  Returns the area descriptor
1447  *	on success or %NULL on failure.
1448  */
get_vm_area(unsigned long size,unsigned long flags)1449 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1450 {
1451 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1452 				  NUMA_NO_NODE, GFP_KERNEL,
1453 				  __builtin_return_address(0));
1454 }
1455 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)1456 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1457 				const void *caller)
1458 {
1459 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1460 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1461 }
1462 
1463 /**
1464  *	find_vm_area  -  find a continuous kernel virtual area
1465  *	@addr:		base address
1466  *
1467  *	Search for the kernel VM area starting at @addr, and return it.
1468  *	It is up to the caller to do all required locking to keep the returned
1469  *	pointer valid.
1470  */
find_vm_area(const void * addr)1471 struct vm_struct *find_vm_area(const void *addr)
1472 {
1473 	struct vmap_area *va;
1474 
1475 	va = find_vmap_area((unsigned long)addr);
1476 	if (va && va->flags & VM_VM_AREA)
1477 		return va->vm;
1478 
1479 	return NULL;
1480 }
1481 
1482 /**
1483  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1484  *	@addr:		base address
1485  *
1486  *	Search for the kernel VM area starting at @addr, and remove it.
1487  *	This function returns the found VM area, but using it is NOT safe
1488  *	on SMP machines, except for its size or flags.
1489  */
remove_vm_area(const void * addr)1490 struct vm_struct *remove_vm_area(const void *addr)
1491 {
1492 	struct vmap_area *va;
1493 
1494 	might_sleep();
1495 
1496 	va = find_vmap_area((unsigned long)addr);
1497 	if (va && va->flags & VM_VM_AREA) {
1498 		struct vm_struct *vm = va->vm;
1499 
1500 		spin_lock(&vmap_area_lock);
1501 		va->vm = NULL;
1502 		va->flags &= ~VM_VM_AREA;
1503 		va->flags |= VM_LAZY_FREE;
1504 		spin_unlock(&vmap_area_lock);
1505 
1506 		vmap_debug_free_range(va->va_start, va->va_end);
1507 		kasan_free_shadow(vm);
1508 		free_unmap_vmap_area(va);
1509 
1510 		return vm;
1511 	}
1512 	return NULL;
1513 }
1514 
__vunmap(const void * addr,int deallocate_pages)1515 static void __vunmap(const void *addr, int deallocate_pages)
1516 {
1517 	struct vm_struct *area;
1518 
1519 	if (!addr)
1520 		return;
1521 
1522 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1523 			addr))
1524 		return;
1525 
1526 	area = find_vmap_area((unsigned long)addr)->vm;
1527 	if (unlikely(!area)) {
1528 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1529 				addr);
1530 		return;
1531 	}
1532 
1533 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1534 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1535 
1536 	remove_vm_area(addr);
1537 	if (deallocate_pages) {
1538 		int i;
1539 
1540 		for (i = 0; i < area->nr_pages; i++) {
1541 			struct page *page = area->pages[i];
1542 
1543 			BUG_ON(!page);
1544 			__free_pages(page, 0);
1545 		}
1546 
1547 		kvfree(area->pages);
1548 	}
1549 
1550 	kfree(area);
1551 	return;
1552 }
1553 
__vfree_deferred(const void * addr)1554 static inline void __vfree_deferred(const void *addr)
1555 {
1556 	/*
1557 	 * Use raw_cpu_ptr() because this can be called from preemptible
1558 	 * context. Preemption is absolutely fine here, because the llist_add()
1559 	 * implementation is lockless, so it works even if we are adding to
1560 	 * nother cpu's list.  schedule_work() should be fine with this too.
1561 	 */
1562 	struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1563 
1564 	if (llist_add((struct llist_node *)addr, &p->list))
1565 		schedule_work(&p->wq);
1566 }
1567 
1568 /**
1569  *	vfree_atomic  -  release memory allocated by vmalloc()
1570  *	@addr:		memory base address
1571  *
1572  *	This one is just like vfree() but can be called in any atomic context
1573  *	except NMIs.
1574  */
vfree_atomic(const void * addr)1575 void vfree_atomic(const void *addr)
1576 {
1577 	BUG_ON(in_nmi());
1578 
1579 	kmemleak_free(addr);
1580 
1581 	if (!addr)
1582 		return;
1583 	__vfree_deferred(addr);
1584 }
1585 
1586 /**
1587  *	vfree  -  release memory allocated by vmalloc()
1588  *	@addr:		memory base address
1589  *
1590  *	Free the virtually continuous memory area starting at @addr, as
1591  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1592  *	NULL, no operation is performed.
1593  *
1594  *	Must not be called in NMI context (strictly speaking, only if we don't
1595  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1596  *	conventions for vfree() arch-depenedent would be a really bad idea)
1597  *
1598  *	NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1599  */
vfree(const void * addr)1600 void vfree(const void *addr)
1601 {
1602 	BUG_ON(in_nmi());
1603 
1604 	kmemleak_free(addr);
1605 
1606 	if (!addr)
1607 		return;
1608 	if (unlikely(in_interrupt()))
1609 		__vfree_deferred(addr);
1610 	else
1611 		__vunmap(addr, 1);
1612 }
1613 EXPORT_SYMBOL(vfree);
1614 
1615 /**
1616  *	vunmap  -  release virtual mapping obtained by vmap()
1617  *	@addr:		memory base address
1618  *
1619  *	Free the virtually contiguous memory area starting at @addr,
1620  *	which was created from the page array passed to vmap().
1621  *
1622  *	Must not be called in interrupt context.
1623  */
vunmap(const void * addr)1624 void vunmap(const void *addr)
1625 {
1626 	BUG_ON(in_interrupt());
1627 	might_sleep();
1628 	if (addr)
1629 		__vunmap(addr, 0);
1630 }
1631 EXPORT_SYMBOL(vunmap);
1632 
1633 /**
1634  *	vmap  -  map an array of pages into virtually contiguous space
1635  *	@pages:		array of page pointers
1636  *	@count:		number of pages to map
1637  *	@flags:		vm_area->flags
1638  *	@prot:		page protection for the mapping
1639  *
1640  *	Maps @count pages from @pages into contiguous kernel virtual
1641  *	space.
1642  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)1643 void *vmap(struct page **pages, unsigned int count,
1644 		unsigned long flags, pgprot_t prot)
1645 {
1646 	struct vm_struct *area;
1647 	unsigned long size;		/* In bytes */
1648 
1649 	might_sleep();
1650 
1651 	if (count > totalram_pages)
1652 		return NULL;
1653 
1654 	size = (unsigned long)count << PAGE_SHIFT;
1655 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1656 	if (!area)
1657 		return NULL;
1658 
1659 	if (map_vm_area(area, prot, pages)) {
1660 		vunmap(area->addr);
1661 		return NULL;
1662 	}
1663 
1664 	return area->addr;
1665 }
1666 EXPORT_SYMBOL(vmap);
1667 
1668 static void *__vmalloc_node(unsigned long size, unsigned long align,
1669 			    gfp_t gfp_mask, pgprot_t prot,
1670 			    int node, const void *caller);
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node)1671 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1672 				 pgprot_t prot, int node)
1673 {
1674 	struct page **pages;
1675 	unsigned int nr_pages, array_size, i;
1676 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1677 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1678 	const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1679 					0 :
1680 					__GFP_HIGHMEM;
1681 
1682 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1683 	array_size = (nr_pages * sizeof(struct page *));
1684 
1685 	area->nr_pages = nr_pages;
1686 	/* Please note that the recursion is strictly bounded. */
1687 	if (array_size > PAGE_SIZE) {
1688 		pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1689 				PAGE_KERNEL, node, area->caller);
1690 	} else {
1691 		pages = kmalloc_node(array_size, nested_gfp, node);
1692 	}
1693 	area->pages = pages;
1694 	if (!area->pages) {
1695 		remove_vm_area(area->addr);
1696 		kfree(area);
1697 		return NULL;
1698 	}
1699 
1700 	for (i = 0; i < area->nr_pages; i++) {
1701 		struct page *page;
1702 
1703 		if (node == NUMA_NO_NODE)
1704 			page = alloc_page(alloc_mask|highmem_mask);
1705 		else
1706 			page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1707 
1708 		if (unlikely(!page)) {
1709 			/* Successfully allocated i pages, free them in __vunmap() */
1710 			area->nr_pages = i;
1711 			goto fail;
1712 		}
1713 		area->pages[i] = page;
1714 		if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1715 			cond_resched();
1716 	}
1717 
1718 	if (map_vm_area(area, prot, pages))
1719 		goto fail;
1720 	return area->addr;
1721 
1722 fail:
1723 	warn_alloc(gfp_mask, NULL,
1724 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1725 			  (area->nr_pages*PAGE_SIZE), area->size);
1726 	vfree(area->addr);
1727 	return NULL;
1728 }
1729 
1730 /**
1731  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1732  *	@size:		allocation size
1733  *	@align:		desired alignment
1734  *	@start:		vm area range start
1735  *	@end:		vm area range end
1736  *	@gfp_mask:	flags for the page level allocator
1737  *	@prot:		protection mask for the allocated pages
1738  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1739  *	@node:		node to use for allocation or NUMA_NO_NODE
1740  *	@caller:	caller's return address
1741  *
1742  *	Allocate enough pages to cover @size from the page level
1743  *	allocator with @gfp_mask flags.  Map them into contiguous
1744  *	kernel virtual space, using a pagetable protection of @prot.
1745  */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)1746 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1747 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1748 			pgprot_t prot, unsigned long vm_flags, int node,
1749 			const void *caller)
1750 {
1751 	struct vm_struct *area;
1752 	void *addr;
1753 	unsigned long real_size = size;
1754 
1755 	size = PAGE_ALIGN(size);
1756 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1757 		goto fail;
1758 
1759 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1760 				vm_flags, start, end, node, gfp_mask, caller);
1761 	if (!area)
1762 		goto fail;
1763 
1764 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1765 	if (!addr)
1766 		return NULL;
1767 
1768 	/*
1769 	 * First make sure the mappings are removed from all page-tables
1770 	 * before they are freed.
1771 	 */
1772 	vmalloc_sync_unmappings();
1773 
1774 	/*
1775 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1776 	 * flag. It means that vm_struct is not fully initialized.
1777 	 * Now, it is fully initialized, so remove this flag here.
1778 	 */
1779 	clear_vm_uninitialized_flag(area);
1780 
1781 	kmemleak_vmalloc(area, size, gfp_mask);
1782 
1783 	return addr;
1784 
1785 fail:
1786 	warn_alloc(gfp_mask, NULL,
1787 			  "vmalloc: allocation failure: %lu bytes", real_size);
1788 	return NULL;
1789 }
1790 
1791 /**
1792  *	__vmalloc_node  -  allocate virtually contiguous memory
1793  *	@size:		allocation size
1794  *	@align:		desired alignment
1795  *	@gfp_mask:	flags for the page level allocator
1796  *	@prot:		protection mask for the allocated pages
1797  *	@node:		node to use for allocation or NUMA_NO_NODE
1798  *	@caller:	caller's return address
1799  *
1800  *	Allocate enough pages to cover @size from the page level
1801  *	allocator with @gfp_mask flags.  Map them into contiguous
1802  *	kernel virtual space, using a pagetable protection of @prot.
1803  *
1804  *	Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1805  *	and __GFP_NOFAIL are not supported
1806  *
1807  *	Any use of gfp flags outside of GFP_KERNEL should be consulted
1808  *	with mm people.
1809  *
1810  */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,pgprot_t prot,int node,const void * caller)1811 static void *__vmalloc_node(unsigned long size, unsigned long align,
1812 			    gfp_t gfp_mask, pgprot_t prot,
1813 			    int node, const void *caller)
1814 {
1815 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1816 				gfp_mask, prot, 0, node, caller);
1817 }
1818 
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)1819 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1820 {
1821 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1822 				__builtin_return_address(0));
1823 }
1824 EXPORT_SYMBOL(__vmalloc);
1825 
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)1826 static inline void *__vmalloc_node_flags(unsigned long size,
1827 					int node, gfp_t flags)
1828 {
1829 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1830 					node, __builtin_return_address(0));
1831 }
1832 
1833 
__vmalloc_node_flags_caller(unsigned long size,int node,gfp_t flags,void * caller)1834 void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1835 				  void *caller)
1836 {
1837 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1838 }
1839 
1840 /**
1841  *	vmalloc  -  allocate virtually contiguous memory
1842  *	@size:		allocation size
1843  *	Allocate enough pages to cover @size from the page level
1844  *	allocator and map them into contiguous kernel virtual space.
1845  *
1846  *	For tight control over page level allocator and protection flags
1847  *	use __vmalloc() instead.
1848  */
vmalloc(unsigned long size)1849 void *vmalloc(unsigned long size)
1850 {
1851 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1852 				    GFP_KERNEL);
1853 }
1854 EXPORT_SYMBOL(vmalloc);
1855 
1856 /**
1857  *	vzalloc - allocate virtually contiguous memory with zero fill
1858  *	@size:	allocation size
1859  *	Allocate enough pages to cover @size from the page level
1860  *	allocator and map them into contiguous kernel virtual space.
1861  *	The memory allocated is set to zero.
1862  *
1863  *	For tight control over page level allocator and protection flags
1864  *	use __vmalloc() instead.
1865  */
vzalloc(unsigned long size)1866 void *vzalloc(unsigned long size)
1867 {
1868 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1869 				GFP_KERNEL | __GFP_ZERO);
1870 }
1871 EXPORT_SYMBOL(vzalloc);
1872 
1873 /**
1874  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1875  * @size: allocation size
1876  *
1877  * The resulting memory area is zeroed so it can be mapped to userspace
1878  * without leaking data.
1879  */
vmalloc_user(unsigned long size)1880 void *vmalloc_user(unsigned long size)
1881 {
1882 	struct vm_struct *area;
1883 	void *ret;
1884 
1885 	ret = __vmalloc_node(size, SHMLBA,
1886 			     GFP_KERNEL | __GFP_ZERO,
1887 			     PAGE_KERNEL, NUMA_NO_NODE,
1888 			     __builtin_return_address(0));
1889 	if (ret) {
1890 		area = find_vm_area(ret);
1891 		area->flags |= VM_USERMAP;
1892 	}
1893 	return ret;
1894 }
1895 EXPORT_SYMBOL(vmalloc_user);
1896 
1897 /**
1898  *	vmalloc_node  -  allocate memory on a specific node
1899  *	@size:		allocation size
1900  *	@node:		numa node
1901  *
1902  *	Allocate enough pages to cover @size from the page level
1903  *	allocator and map them into contiguous kernel virtual space.
1904  *
1905  *	For tight control over page level allocator and protection flags
1906  *	use __vmalloc() instead.
1907  */
vmalloc_node(unsigned long size,int node)1908 void *vmalloc_node(unsigned long size, int node)
1909 {
1910 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1911 					node, __builtin_return_address(0));
1912 }
1913 EXPORT_SYMBOL(vmalloc_node);
1914 
1915 /**
1916  * vzalloc_node - allocate memory on a specific node with zero fill
1917  * @size:	allocation size
1918  * @node:	numa node
1919  *
1920  * Allocate enough pages to cover @size from the page level
1921  * allocator and map them into contiguous kernel virtual space.
1922  * The memory allocated is set to zero.
1923  *
1924  * For tight control over page level allocator and protection flags
1925  * use __vmalloc_node() instead.
1926  */
vzalloc_node(unsigned long size,int node)1927 void *vzalloc_node(unsigned long size, int node)
1928 {
1929 	return __vmalloc_node_flags(size, node,
1930 			 GFP_KERNEL | __GFP_ZERO);
1931 }
1932 EXPORT_SYMBOL(vzalloc_node);
1933 
1934 #ifndef PAGE_KERNEL_EXEC
1935 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1936 #endif
1937 
1938 /**
1939  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1940  *	@size:		allocation size
1941  *
1942  *	Kernel-internal function to allocate enough pages to cover @size
1943  *	the page level allocator and map them into contiguous and
1944  *	executable kernel virtual space.
1945  *
1946  *	For tight control over page level allocator and protection flags
1947  *	use __vmalloc() instead.
1948  */
1949 
vmalloc_exec(unsigned long size)1950 void *vmalloc_exec(unsigned long size)
1951 {
1952 	return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1953 			      NUMA_NO_NODE, __builtin_return_address(0));
1954 }
1955 
1956 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1957 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1958 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1959 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1960 #else
1961 /*
1962  * 64b systems should always have either DMA or DMA32 zones. For others
1963  * GFP_DMA32 should do the right thing and use the normal zone.
1964  */
1965 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1966 #endif
1967 
1968 /**
1969  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1970  *	@size:		allocation size
1971  *
1972  *	Allocate enough 32bit PA addressable pages to cover @size from the
1973  *	page level allocator and map them into contiguous kernel virtual space.
1974  */
vmalloc_32(unsigned long size)1975 void *vmalloc_32(unsigned long size)
1976 {
1977 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1978 			      NUMA_NO_NODE, __builtin_return_address(0));
1979 }
1980 EXPORT_SYMBOL(vmalloc_32);
1981 
1982 /**
1983  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1984  *	@size:		allocation size
1985  *
1986  * The resulting memory area is 32bit addressable and zeroed so it can be
1987  * mapped to userspace without leaking data.
1988  */
vmalloc_32_user(unsigned long size)1989 void *vmalloc_32_user(unsigned long size)
1990 {
1991 	struct vm_struct *area;
1992 	void *ret;
1993 
1994 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1995 			     NUMA_NO_NODE, __builtin_return_address(0));
1996 	if (ret) {
1997 		area = find_vm_area(ret);
1998 		area->flags |= VM_USERMAP;
1999 	}
2000 	return ret;
2001 }
2002 EXPORT_SYMBOL(vmalloc_32_user);
2003 
2004 /*
2005  * small helper routine , copy contents to buf from addr.
2006  * If the page is not present, fill zero.
2007  */
2008 
aligned_vread(char * buf,char * addr,unsigned long count)2009 static int aligned_vread(char *buf, char *addr, unsigned long count)
2010 {
2011 	struct page *p;
2012 	int copied = 0;
2013 
2014 	while (count) {
2015 		unsigned long offset, length;
2016 
2017 		offset = offset_in_page(addr);
2018 		length = PAGE_SIZE - offset;
2019 		if (length > count)
2020 			length = count;
2021 		p = vmalloc_to_page(addr);
2022 		/*
2023 		 * To do safe access to this _mapped_ area, we need
2024 		 * lock. But adding lock here means that we need to add
2025 		 * overhead of vmalloc()/vfree() calles for this _debug_
2026 		 * interface, rarely used. Instead of that, we'll use
2027 		 * kmap() and get small overhead in this access function.
2028 		 */
2029 		if (p) {
2030 			/*
2031 			 * we can expect USER0 is not used (see vread/vwrite's
2032 			 * function description)
2033 			 */
2034 			void *map = kmap_atomic(p);
2035 			memcpy(buf, map + offset, length);
2036 			kunmap_atomic(map);
2037 		} else
2038 			memset(buf, 0, length);
2039 
2040 		addr += length;
2041 		buf += length;
2042 		copied += length;
2043 		count -= length;
2044 	}
2045 	return copied;
2046 }
2047 
aligned_vwrite(char * buf,char * addr,unsigned long count)2048 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2049 {
2050 	struct page *p;
2051 	int copied = 0;
2052 
2053 	while (count) {
2054 		unsigned long offset, length;
2055 
2056 		offset = offset_in_page(addr);
2057 		length = PAGE_SIZE - offset;
2058 		if (length > count)
2059 			length = count;
2060 		p = vmalloc_to_page(addr);
2061 		/*
2062 		 * To do safe access to this _mapped_ area, we need
2063 		 * lock. But adding lock here means that we need to add
2064 		 * overhead of vmalloc()/vfree() calles for this _debug_
2065 		 * interface, rarely used. Instead of that, we'll use
2066 		 * kmap() and get small overhead in this access function.
2067 		 */
2068 		if (p) {
2069 			/*
2070 			 * we can expect USER0 is not used (see vread/vwrite's
2071 			 * function description)
2072 			 */
2073 			void *map = kmap_atomic(p);
2074 			memcpy(map + offset, buf, length);
2075 			kunmap_atomic(map);
2076 		}
2077 		addr += length;
2078 		buf += length;
2079 		copied += length;
2080 		count -= length;
2081 	}
2082 	return copied;
2083 }
2084 
2085 /**
2086  *	vread() -  read vmalloc area in a safe way.
2087  *	@buf:		buffer for reading data
2088  *	@addr:		vm address.
2089  *	@count:		number of bytes to be read.
2090  *
2091  *	Returns # of bytes which addr and buf should be increased.
2092  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2093  *	includes any intersect with alive vmalloc area.
2094  *
2095  *	This function checks that addr is a valid vmalloc'ed area, and
2096  *	copy data from that area to a given buffer. If the given memory range
2097  *	of [addr...addr+count) includes some valid address, data is copied to
2098  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2099  *	IOREMAP area is treated as memory hole and no copy is done.
2100  *
2101  *	If [addr...addr+count) doesn't includes any intersects with alive
2102  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2103  *
2104  *	Note: In usual ops, vread() is never necessary because the caller
2105  *	should know vmalloc() area is valid and can use memcpy().
2106  *	This is for routines which have to access vmalloc area without
2107  *	any informaion, as /dev/kmem.
2108  *
2109  */
2110 
vread(char * buf,char * addr,unsigned long count)2111 long vread(char *buf, char *addr, unsigned long count)
2112 {
2113 	struct vmap_area *va;
2114 	struct vm_struct *vm;
2115 	char *vaddr, *buf_start = buf;
2116 	unsigned long buflen = count;
2117 	unsigned long n;
2118 
2119 	/* Don't allow overflow */
2120 	if ((unsigned long) addr + count < count)
2121 		count = -(unsigned long) addr;
2122 
2123 	spin_lock(&vmap_area_lock);
2124 	list_for_each_entry(va, &vmap_area_list, list) {
2125 		if (!count)
2126 			break;
2127 
2128 		if (!(va->flags & VM_VM_AREA))
2129 			continue;
2130 
2131 		vm = va->vm;
2132 		vaddr = (char *) vm->addr;
2133 		if (addr >= vaddr + get_vm_area_size(vm))
2134 			continue;
2135 		while (addr < vaddr) {
2136 			if (count == 0)
2137 				goto finished;
2138 			*buf = '\0';
2139 			buf++;
2140 			addr++;
2141 			count--;
2142 		}
2143 		n = vaddr + get_vm_area_size(vm) - addr;
2144 		if (n > count)
2145 			n = count;
2146 		if (!(vm->flags & VM_IOREMAP))
2147 			aligned_vread(buf, addr, n);
2148 		else /* IOREMAP area is treated as memory hole */
2149 			memset(buf, 0, n);
2150 		buf += n;
2151 		addr += n;
2152 		count -= n;
2153 	}
2154 finished:
2155 	spin_unlock(&vmap_area_lock);
2156 
2157 	if (buf == buf_start)
2158 		return 0;
2159 	/* zero-fill memory holes */
2160 	if (buf != buf_start + buflen)
2161 		memset(buf, 0, buflen - (buf - buf_start));
2162 
2163 	return buflen;
2164 }
2165 
2166 /**
2167  *	vwrite() -  write vmalloc area in a safe way.
2168  *	@buf:		buffer for source data
2169  *	@addr:		vm address.
2170  *	@count:		number of bytes to be read.
2171  *
2172  *	Returns # of bytes which addr and buf should be incresed.
2173  *	(same number to @count).
2174  *	If [addr...addr+count) doesn't includes any intersect with valid
2175  *	vmalloc area, returns 0.
2176  *
2177  *	This function checks that addr is a valid vmalloc'ed area, and
2178  *	copy data from a buffer to the given addr. If specified range of
2179  *	[addr...addr+count) includes some valid address, data is copied from
2180  *	proper area of @buf. If there are memory holes, no copy to hole.
2181  *	IOREMAP area is treated as memory hole and no copy is done.
2182  *
2183  *	If [addr...addr+count) doesn't includes any intersects with alive
2184  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2185  *
2186  *	Note: In usual ops, vwrite() is never necessary because the caller
2187  *	should know vmalloc() area is valid and can use memcpy().
2188  *	This is for routines which have to access vmalloc area without
2189  *	any informaion, as /dev/kmem.
2190  */
2191 
vwrite(char * buf,char * addr,unsigned long count)2192 long vwrite(char *buf, char *addr, unsigned long count)
2193 {
2194 	struct vmap_area *va;
2195 	struct vm_struct *vm;
2196 	char *vaddr;
2197 	unsigned long n, buflen;
2198 	int copied = 0;
2199 
2200 	/* Don't allow overflow */
2201 	if ((unsigned long) addr + count < count)
2202 		count = -(unsigned long) addr;
2203 	buflen = count;
2204 
2205 	spin_lock(&vmap_area_lock);
2206 	list_for_each_entry(va, &vmap_area_list, list) {
2207 		if (!count)
2208 			break;
2209 
2210 		if (!(va->flags & VM_VM_AREA))
2211 			continue;
2212 
2213 		vm = va->vm;
2214 		vaddr = (char *) vm->addr;
2215 		if (addr >= vaddr + get_vm_area_size(vm))
2216 			continue;
2217 		while (addr < vaddr) {
2218 			if (count == 0)
2219 				goto finished;
2220 			buf++;
2221 			addr++;
2222 			count--;
2223 		}
2224 		n = vaddr + get_vm_area_size(vm) - addr;
2225 		if (n > count)
2226 			n = count;
2227 		if (!(vm->flags & VM_IOREMAP)) {
2228 			aligned_vwrite(buf, addr, n);
2229 			copied++;
2230 		}
2231 		buf += n;
2232 		addr += n;
2233 		count -= n;
2234 	}
2235 finished:
2236 	spin_unlock(&vmap_area_lock);
2237 	if (!copied)
2238 		return 0;
2239 	return buflen;
2240 }
2241 
2242 /**
2243  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2244  *	@vma:		vma to cover
2245  *	@uaddr:		target user address to start at
2246  *	@kaddr:		virtual address of vmalloc kernel memory
2247  *	@size:		size of map area
2248  *
2249  *	Returns:	0 for success, -Exxx on failure
2250  *
2251  *	This function checks that @kaddr is a valid vmalloc'ed area,
2252  *	and that it is big enough to cover the range starting at
2253  *	@uaddr in @vma. Will return failure if that criteria isn't
2254  *	met.
2255  *
2256  *	Similar to remap_pfn_range() (see mm/memory.c)
2257  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long size)2258 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2259 				void *kaddr, unsigned long size)
2260 {
2261 	struct vm_struct *area;
2262 
2263 	size = PAGE_ALIGN(size);
2264 
2265 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2266 		return -EINVAL;
2267 
2268 	area = find_vm_area(kaddr);
2269 	if (!area)
2270 		return -EINVAL;
2271 
2272 	if (!(area->flags & VM_USERMAP))
2273 		return -EINVAL;
2274 
2275 	if (kaddr + size > area->addr + get_vm_area_size(area))
2276 		return -EINVAL;
2277 
2278 	do {
2279 		struct page *page = vmalloc_to_page(kaddr);
2280 		int ret;
2281 
2282 		ret = vm_insert_page(vma, uaddr, page);
2283 		if (ret)
2284 			return ret;
2285 
2286 		uaddr += PAGE_SIZE;
2287 		kaddr += PAGE_SIZE;
2288 		size -= PAGE_SIZE;
2289 	} while (size > 0);
2290 
2291 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2292 
2293 	return 0;
2294 }
2295 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2296 
2297 /**
2298  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2299  *	@vma:		vma to cover (map full range of vma)
2300  *	@addr:		vmalloc memory
2301  *	@pgoff:		number of pages into addr before first page to map
2302  *
2303  *	Returns:	0 for success, -Exxx on failure
2304  *
2305  *	This function checks that addr is a valid vmalloc'ed area, and
2306  *	that it is big enough to cover the vma. Will return failure if
2307  *	that criteria isn't met.
2308  *
2309  *	Similar to remap_pfn_range() (see mm/memory.c)
2310  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)2311 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2312 						unsigned long pgoff)
2313 {
2314 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2315 					   addr + (pgoff << PAGE_SHIFT),
2316 					   vma->vm_end - vma->vm_start);
2317 }
2318 EXPORT_SYMBOL(remap_vmalloc_range);
2319 
2320 /*
2321  * Implement stubs for vmalloc_sync_[un]mappings () if the architecture chose
2322  * not to have one.
2323  *
2324  * The purpose of this function is to make sure the vmalloc area
2325  * mappings are identical in all page-tables in the system.
2326  */
vmalloc_sync_mappings(void)2327 void __weak vmalloc_sync_mappings(void)
2328 {
2329 }
2330 
vmalloc_sync_unmappings(void)2331 void __weak vmalloc_sync_unmappings(void)
2332 {
2333 }
2334 
f(pte_t * pte,pgtable_t table,unsigned long addr,void * data)2335 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2336 {
2337 	pte_t ***p = data;
2338 
2339 	if (p) {
2340 		*(*p) = pte;
2341 		(*p)++;
2342 	}
2343 	return 0;
2344 }
2345 
2346 /**
2347  *	alloc_vm_area - allocate a range of kernel address space
2348  *	@size:		size of the area
2349  *	@ptes:		returns the PTEs for the address space
2350  *
2351  *	Returns:	NULL on failure, vm_struct on success
2352  *
2353  *	This function reserves a range of kernel address space, and
2354  *	allocates pagetables to map that range.  No actual mappings
2355  *	are created.
2356  *
2357  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2358  *	allocated for the VM area are returned.
2359  */
alloc_vm_area(size_t size,pte_t ** ptes)2360 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2361 {
2362 	struct vm_struct *area;
2363 
2364 	area = get_vm_area_caller(size, VM_IOREMAP,
2365 				__builtin_return_address(0));
2366 	if (area == NULL)
2367 		return NULL;
2368 
2369 	/*
2370 	 * This ensures that page tables are constructed for this region
2371 	 * of kernel virtual address space and mapped into init_mm.
2372 	 */
2373 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2374 				size, f, ptes ? &ptes : NULL)) {
2375 		free_vm_area(area);
2376 		return NULL;
2377 	}
2378 
2379 	return area;
2380 }
2381 EXPORT_SYMBOL_GPL(alloc_vm_area);
2382 
free_vm_area(struct vm_struct * area)2383 void free_vm_area(struct vm_struct *area)
2384 {
2385 	struct vm_struct *ret;
2386 	ret = remove_vm_area(area->addr);
2387 	BUG_ON(ret != area);
2388 	kfree(area);
2389 }
2390 EXPORT_SYMBOL_GPL(free_vm_area);
2391 
2392 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)2393 static struct vmap_area *node_to_va(struct rb_node *n)
2394 {
2395 	return rb_entry_safe(n, struct vmap_area, rb_node);
2396 }
2397 
2398 /**
2399  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2400  * @end: target address
2401  * @pnext: out arg for the next vmap_area
2402  * @pprev: out arg for the previous vmap_area
2403  *
2404  * Returns: %true if either or both of next and prev are found,
2405  *	    %false if no vmap_area exists
2406  *
2407  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2408  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2409  */
pvm_find_next_prev(unsigned long end,struct vmap_area ** pnext,struct vmap_area ** pprev)2410 static bool pvm_find_next_prev(unsigned long end,
2411 			       struct vmap_area **pnext,
2412 			       struct vmap_area **pprev)
2413 {
2414 	struct rb_node *n = vmap_area_root.rb_node;
2415 	struct vmap_area *va = NULL;
2416 
2417 	while (n) {
2418 		va = rb_entry(n, struct vmap_area, rb_node);
2419 		if (end < va->va_end)
2420 			n = n->rb_left;
2421 		else if (end > va->va_end)
2422 			n = n->rb_right;
2423 		else
2424 			break;
2425 	}
2426 
2427 	if (!va)
2428 		return false;
2429 
2430 	if (va->va_end > end) {
2431 		*pnext = va;
2432 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2433 	} else {
2434 		*pprev = va;
2435 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2436 	}
2437 	return true;
2438 }
2439 
2440 /**
2441  * pvm_determine_end - find the highest aligned address between two vmap_areas
2442  * @pnext: in/out arg for the next vmap_area
2443  * @pprev: in/out arg for the previous vmap_area
2444  * @align: alignment
2445  *
2446  * Returns: determined end address
2447  *
2448  * Find the highest aligned address between *@pnext and *@pprev below
2449  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2450  * down address is between the end addresses of the two vmap_areas.
2451  *
2452  * Please note that the address returned by this function may fall
2453  * inside *@pnext vmap_area.  The caller is responsible for checking
2454  * that.
2455  */
pvm_determine_end(struct vmap_area ** pnext,struct vmap_area ** pprev,unsigned long align)2456 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2457 				       struct vmap_area **pprev,
2458 				       unsigned long align)
2459 {
2460 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2461 	unsigned long addr;
2462 
2463 	if (*pnext)
2464 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2465 	else
2466 		addr = vmalloc_end;
2467 
2468 	while (*pprev && (*pprev)->va_end > addr) {
2469 		*pnext = *pprev;
2470 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2471 	}
2472 
2473 	return addr;
2474 }
2475 
2476 /**
2477  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2478  * @offsets: array containing offset of each area
2479  * @sizes: array containing size of each area
2480  * @nr_vms: the number of areas to allocate
2481  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2482  *
2483  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2484  *	    vm_structs on success, %NULL on failure
2485  *
2486  * Percpu allocator wants to use congruent vm areas so that it can
2487  * maintain the offsets among percpu areas.  This function allocates
2488  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2489  * be scattered pretty far, distance between two areas easily going up
2490  * to gigabytes.  To avoid interacting with regular vmallocs, these
2491  * areas are allocated from top.
2492  *
2493  * Despite its complicated look, this allocator is rather simple.  It
2494  * does everything top-down and scans areas from the end looking for
2495  * matching slot.  While scanning, if any of the areas overlaps with
2496  * existing vmap_area, the base address is pulled down to fit the
2497  * area.  Scanning is repeated till all the areas fit and then all
2498  * necessary data structures are inserted and the result is returned.
2499  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)2500 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2501 				     const size_t *sizes, int nr_vms,
2502 				     size_t align)
2503 {
2504 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2505 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2506 	struct vmap_area **vas, *prev, *next;
2507 	struct vm_struct **vms;
2508 	int area, area2, last_area, term_area;
2509 	unsigned long base, start, end, last_end;
2510 	bool purged = false;
2511 
2512 	/* verify parameters and allocate data structures */
2513 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2514 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2515 		start = offsets[area];
2516 		end = start + sizes[area];
2517 
2518 		/* is everything aligned properly? */
2519 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2520 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2521 
2522 		/* detect the area with the highest address */
2523 		if (start > offsets[last_area])
2524 			last_area = area;
2525 
2526 		for (area2 = area + 1; area2 < nr_vms; area2++) {
2527 			unsigned long start2 = offsets[area2];
2528 			unsigned long end2 = start2 + sizes[area2];
2529 
2530 			BUG_ON(start2 < end && start < end2);
2531 		}
2532 	}
2533 	last_end = offsets[last_area] + sizes[last_area];
2534 
2535 	if (vmalloc_end - vmalloc_start < last_end) {
2536 		WARN_ON(true);
2537 		return NULL;
2538 	}
2539 
2540 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2541 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2542 	if (!vas || !vms)
2543 		goto err_free2;
2544 
2545 	for (area = 0; area < nr_vms; area++) {
2546 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2547 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2548 		if (!vas[area] || !vms[area])
2549 			goto err_free;
2550 	}
2551 retry:
2552 	spin_lock(&vmap_area_lock);
2553 
2554 	/* start scanning - we scan from the top, begin with the last area */
2555 	area = term_area = last_area;
2556 	start = offsets[area];
2557 	end = start + sizes[area];
2558 
2559 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2560 		base = vmalloc_end - last_end;
2561 		goto found;
2562 	}
2563 	base = pvm_determine_end(&next, &prev, align) - end;
2564 
2565 	while (true) {
2566 		BUG_ON(next && next->va_end <= base + end);
2567 		BUG_ON(prev && prev->va_end > base + end);
2568 
2569 		/*
2570 		 * base might have underflowed, add last_end before
2571 		 * comparing.
2572 		 */
2573 		if (base + last_end < vmalloc_start + last_end) {
2574 			spin_unlock(&vmap_area_lock);
2575 			if (!purged) {
2576 				purge_vmap_area_lazy();
2577 				purged = true;
2578 				goto retry;
2579 			}
2580 			goto err_free;
2581 		}
2582 
2583 		/*
2584 		 * If next overlaps, move base downwards so that it's
2585 		 * right below next and then recheck.
2586 		 */
2587 		if (next && next->va_start < base + end) {
2588 			base = pvm_determine_end(&next, &prev, align) - end;
2589 			term_area = area;
2590 			continue;
2591 		}
2592 
2593 		/*
2594 		 * If prev overlaps, shift down next and prev and move
2595 		 * base so that it's right below new next and then
2596 		 * recheck.
2597 		 */
2598 		if (prev && prev->va_end > base + start)  {
2599 			next = prev;
2600 			prev = node_to_va(rb_prev(&next->rb_node));
2601 			base = pvm_determine_end(&next, &prev, align) - end;
2602 			term_area = area;
2603 			continue;
2604 		}
2605 
2606 		/*
2607 		 * This area fits, move on to the previous one.  If
2608 		 * the previous one is the terminal one, we're done.
2609 		 */
2610 		area = (area + nr_vms - 1) % nr_vms;
2611 		if (area == term_area)
2612 			break;
2613 		start = offsets[area];
2614 		end = start + sizes[area];
2615 		pvm_find_next_prev(base + end, &next, &prev);
2616 	}
2617 found:
2618 	/* we've found a fitting base, insert all va's */
2619 	for (area = 0; area < nr_vms; area++) {
2620 		struct vmap_area *va = vas[area];
2621 
2622 		va->va_start = base + offsets[area];
2623 		va->va_end = va->va_start + sizes[area];
2624 		__insert_vmap_area(va);
2625 	}
2626 
2627 	vmap_area_pcpu_hole = base + offsets[last_area];
2628 
2629 	spin_unlock(&vmap_area_lock);
2630 
2631 	/* insert all vm's */
2632 	for (area = 0; area < nr_vms; area++)
2633 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2634 				 pcpu_get_vm_areas);
2635 
2636 	kfree(vas);
2637 	return vms;
2638 
2639 err_free:
2640 	for (area = 0; area < nr_vms; area++) {
2641 		kfree(vas[area]);
2642 		kfree(vms[area]);
2643 	}
2644 err_free2:
2645 	kfree(vas);
2646 	kfree(vms);
2647 	return NULL;
2648 }
2649 
2650 /**
2651  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2652  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2653  * @nr_vms: the number of allocated areas
2654  *
2655  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2656  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)2657 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2658 {
2659 	int i;
2660 
2661 	for (i = 0; i < nr_vms; i++)
2662 		free_vm_area(vms[i]);
2663 	kfree(vms);
2664 }
2665 #endif	/* CONFIG_SMP */
2666 
2667 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)2668 static void *s_start(struct seq_file *m, loff_t *pos)
2669 	__acquires(&vmap_area_lock)
2670 {
2671 	spin_lock(&vmap_area_lock);
2672 	return seq_list_start(&vmap_area_list, *pos);
2673 }
2674 
s_next(struct seq_file * m,void * p,loff_t * pos)2675 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2676 {
2677 	return seq_list_next(p, &vmap_area_list, pos);
2678 }
2679 
s_stop(struct seq_file * m,void * p)2680 static void s_stop(struct seq_file *m, void *p)
2681 	__releases(&vmap_area_lock)
2682 {
2683 	spin_unlock(&vmap_area_lock);
2684 }
2685 
show_numa_info(struct seq_file * m,struct vm_struct * v)2686 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2687 {
2688 	if (IS_ENABLED(CONFIG_NUMA)) {
2689 		unsigned int nr, *counters = m->private;
2690 
2691 		if (!counters)
2692 			return;
2693 
2694 		if (v->flags & VM_UNINITIALIZED)
2695 			return;
2696 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2697 		smp_rmb();
2698 
2699 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2700 
2701 		for (nr = 0; nr < v->nr_pages; nr++)
2702 			counters[page_to_nid(v->pages[nr])]++;
2703 
2704 		for_each_node_state(nr, N_HIGH_MEMORY)
2705 			if (counters[nr])
2706 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2707 	}
2708 }
2709 
s_show(struct seq_file * m,void * p)2710 static int s_show(struct seq_file *m, void *p)
2711 {
2712 	struct vmap_area *va;
2713 	struct vm_struct *v;
2714 
2715 	va = list_entry(p, struct vmap_area, list);
2716 
2717 	/*
2718 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2719 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2720 	 */
2721 	if (!(va->flags & VM_VM_AREA)) {
2722 		seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2723 			(void *)va->va_start, (void *)va->va_end,
2724 			va->va_end - va->va_start,
2725 			va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2726 
2727 		return 0;
2728 	}
2729 
2730 	v = va->vm;
2731 
2732 	seq_printf(m, "0x%pK-0x%pK %7ld",
2733 		v->addr, v->addr + v->size, v->size);
2734 
2735 	if (v->caller)
2736 		seq_printf(m, " %pS", v->caller);
2737 
2738 	if (v->nr_pages)
2739 		seq_printf(m, " pages=%d", v->nr_pages);
2740 
2741 	if (v->phys_addr)
2742 		seq_printf(m, " phys=%pa", &v->phys_addr);
2743 
2744 	if (v->flags & VM_IOREMAP)
2745 		seq_puts(m, " ioremap");
2746 
2747 	if (v->flags & VM_ALLOC)
2748 		seq_puts(m, " vmalloc");
2749 
2750 	if (v->flags & VM_MAP)
2751 		seq_puts(m, " vmap");
2752 
2753 	if (v->flags & VM_USERMAP)
2754 		seq_puts(m, " user");
2755 
2756 	if (is_vmalloc_addr(v->pages))
2757 		seq_puts(m, " vpages");
2758 
2759 	show_numa_info(m, v);
2760 	seq_putc(m, '\n');
2761 	return 0;
2762 }
2763 
2764 static const struct seq_operations vmalloc_op = {
2765 	.start = s_start,
2766 	.next = s_next,
2767 	.stop = s_stop,
2768 	.show = s_show,
2769 };
2770 
vmalloc_open(struct inode * inode,struct file * file)2771 static int vmalloc_open(struct inode *inode, struct file *file)
2772 {
2773 	if (IS_ENABLED(CONFIG_NUMA))
2774 		return seq_open_private(file, &vmalloc_op,
2775 					nr_node_ids * sizeof(unsigned int));
2776 	else
2777 		return seq_open(file, &vmalloc_op);
2778 }
2779 
2780 static const struct file_operations proc_vmalloc_operations = {
2781 	.open		= vmalloc_open,
2782 	.read		= seq_read,
2783 	.llseek		= seq_lseek,
2784 	.release	= seq_release_private,
2785 };
2786 
proc_vmalloc_init(void)2787 static int __init proc_vmalloc_init(void)
2788 {
2789 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2790 	return 0;
2791 }
2792 module_init(proc_vmalloc_init);
2793 
2794 #endif
2795 
2796