1 /*
2 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_mount.h"
26 #include "xfs_btree.h"
27 #include "xfs_alloc_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_extent_busy.h"
30 #include "xfs_error.h"
31 #include "xfs_trace.h"
32 #include "xfs_cksum.h"
33 #include "xfs_trans.h"
34
35
36 STATIC struct xfs_btree_cur *
xfs_allocbt_dup_cursor(struct xfs_btree_cur * cur)37 xfs_allocbt_dup_cursor(
38 struct xfs_btree_cur *cur)
39 {
40 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
41 cur->bc_private.a.agbp, cur->bc_private.a.agno,
42 cur->bc_btnum);
43 }
44
45 STATIC void
xfs_allocbt_set_root(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int inc)46 xfs_allocbt_set_root(
47 struct xfs_btree_cur *cur,
48 union xfs_btree_ptr *ptr,
49 int inc)
50 {
51 struct xfs_buf *agbp = cur->bc_private.a.agbp;
52 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
53 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
54 int btnum = cur->bc_btnum;
55 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
56
57 ASSERT(ptr->s != 0);
58
59 agf->agf_roots[btnum] = ptr->s;
60 be32_add_cpu(&agf->agf_levels[btnum], inc);
61 pag->pagf_levels[btnum] += inc;
62 xfs_perag_put(pag);
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65 }
66
67 STATIC int
xfs_allocbt_alloc_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)68 xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73 {
74 int error;
75 xfs_agblock_t bno;
76
77 XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
78
79 /* Allocate the new block from the freelist. If we can't, give up. */
80 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
81 &bno, 1);
82 if (error) {
83 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
84 return error;
85 }
86
87 if (bno == NULLAGBLOCK) {
88 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
89 *stat = 0;
90 return 0;
91 }
92
93 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1, false);
94
95 xfs_trans_agbtree_delta(cur->bc_tp, 1);
96 new->s = cpu_to_be32(bno);
97
98 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
99 *stat = 1;
100 return 0;
101 }
102
103 STATIC int
xfs_allocbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)104 xfs_allocbt_free_block(
105 struct xfs_btree_cur *cur,
106 struct xfs_buf *bp)
107 {
108 struct xfs_buf *agbp = cur->bc_private.a.agbp;
109 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
110 xfs_agblock_t bno;
111 int error;
112
113 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
114 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
115 if (error)
116 return error;
117
118 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
119 XFS_EXTENT_BUSY_SKIP_DISCARD);
120 xfs_trans_agbtree_delta(cur->bc_tp, -1);
121 return 0;
122 }
123
124 /*
125 * Update the longest extent in the AGF
126 */
127 STATIC void
xfs_allocbt_update_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_rec * rec,int ptr,int reason)128 xfs_allocbt_update_lastrec(
129 struct xfs_btree_cur *cur,
130 struct xfs_btree_block *block,
131 union xfs_btree_rec *rec,
132 int ptr,
133 int reason)
134 {
135 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
136 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
137 struct xfs_perag *pag;
138 __be32 len;
139 int numrecs;
140
141 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
142
143 switch (reason) {
144 case LASTREC_UPDATE:
145 /*
146 * If this is the last leaf block and it's the last record,
147 * then update the size of the longest extent in the AG.
148 */
149 if (ptr != xfs_btree_get_numrecs(block))
150 return;
151 len = rec->alloc.ar_blockcount;
152 break;
153 case LASTREC_INSREC:
154 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
155 be32_to_cpu(agf->agf_longest))
156 return;
157 len = rec->alloc.ar_blockcount;
158 break;
159 case LASTREC_DELREC:
160 numrecs = xfs_btree_get_numrecs(block);
161 if (ptr <= numrecs)
162 return;
163 ASSERT(ptr == numrecs + 1);
164
165 if (numrecs) {
166 xfs_alloc_rec_t *rrp;
167
168 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
169 len = rrp->ar_blockcount;
170 } else {
171 len = 0;
172 }
173
174 break;
175 default:
176 ASSERT(0);
177 return;
178 }
179
180 agf->agf_longest = len;
181 pag = xfs_perag_get(cur->bc_mp, seqno);
182 pag->pagf_longest = be32_to_cpu(len);
183 xfs_perag_put(pag);
184 xfs_alloc_log_agf(cur->bc_tp, cur->bc_private.a.agbp, XFS_AGF_LONGEST);
185 }
186
187 STATIC int
xfs_allocbt_get_minrecs(struct xfs_btree_cur * cur,int level)188 xfs_allocbt_get_minrecs(
189 struct xfs_btree_cur *cur,
190 int level)
191 {
192 return cur->bc_mp->m_alloc_mnr[level != 0];
193 }
194
195 STATIC int
xfs_allocbt_get_maxrecs(struct xfs_btree_cur * cur,int level)196 xfs_allocbt_get_maxrecs(
197 struct xfs_btree_cur *cur,
198 int level)
199 {
200 return cur->bc_mp->m_alloc_mxr[level != 0];
201 }
202
203 STATIC void
xfs_allocbt_init_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)204 xfs_allocbt_init_key_from_rec(
205 union xfs_btree_key *key,
206 union xfs_btree_rec *rec)
207 {
208 key->alloc.ar_startblock = rec->alloc.ar_startblock;
209 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
210 }
211
212 STATIC void
xfs_bnobt_init_high_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)213 xfs_bnobt_init_high_key_from_rec(
214 union xfs_btree_key *key,
215 union xfs_btree_rec *rec)
216 {
217 __u32 x;
218
219 x = be32_to_cpu(rec->alloc.ar_startblock);
220 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
221 key->alloc.ar_startblock = cpu_to_be32(x);
222 key->alloc.ar_blockcount = 0;
223 }
224
225 STATIC void
xfs_cntbt_init_high_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)226 xfs_cntbt_init_high_key_from_rec(
227 union xfs_btree_key *key,
228 union xfs_btree_rec *rec)
229 {
230 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
231 key->alloc.ar_startblock = 0;
232 }
233
234 STATIC void
xfs_allocbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)235 xfs_allocbt_init_rec_from_cur(
236 struct xfs_btree_cur *cur,
237 union xfs_btree_rec *rec)
238 {
239 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
240 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
241 }
242
243 STATIC void
xfs_allocbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)244 xfs_allocbt_init_ptr_from_cur(
245 struct xfs_btree_cur *cur,
246 union xfs_btree_ptr *ptr)
247 {
248 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
249
250 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
251 ASSERT(agf->agf_roots[cur->bc_btnum] != 0);
252
253 ptr->s = agf->agf_roots[cur->bc_btnum];
254 }
255
256 STATIC int64_t
xfs_bnobt_key_diff(struct xfs_btree_cur * cur,union xfs_btree_key * key)257 xfs_bnobt_key_diff(
258 struct xfs_btree_cur *cur,
259 union xfs_btree_key *key)
260 {
261 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
262 xfs_alloc_key_t *kp = &key->alloc;
263
264 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
265 }
266
267 STATIC int64_t
xfs_cntbt_key_diff(struct xfs_btree_cur * cur,union xfs_btree_key * key)268 xfs_cntbt_key_diff(
269 struct xfs_btree_cur *cur,
270 union xfs_btree_key *key)
271 {
272 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
273 xfs_alloc_key_t *kp = &key->alloc;
274 int64_t diff;
275
276 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
277 if (diff)
278 return diff;
279
280 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
281 }
282
283 STATIC int64_t
xfs_bnobt_diff_two_keys(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)284 xfs_bnobt_diff_two_keys(
285 struct xfs_btree_cur *cur,
286 union xfs_btree_key *k1,
287 union xfs_btree_key *k2)
288 {
289 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
290 be32_to_cpu(k2->alloc.ar_startblock);
291 }
292
293 STATIC int64_t
xfs_cntbt_diff_two_keys(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)294 xfs_cntbt_diff_two_keys(
295 struct xfs_btree_cur *cur,
296 union xfs_btree_key *k1,
297 union xfs_btree_key *k2)
298 {
299 int64_t diff;
300
301 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
302 be32_to_cpu(k2->alloc.ar_blockcount);
303 if (diff)
304 return diff;
305
306 return be32_to_cpu(k1->alloc.ar_startblock) -
307 be32_to_cpu(k2->alloc.ar_startblock);
308 }
309
310 static bool
xfs_allocbt_verify(struct xfs_buf * bp)311 xfs_allocbt_verify(
312 struct xfs_buf *bp)
313 {
314 struct xfs_mount *mp = bp->b_target->bt_mount;
315 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
316 struct xfs_perag *pag = bp->b_pag;
317 unsigned int level;
318
319 /*
320 * magic number and level verification
321 *
322 * During growfs operations, we can't verify the exact level or owner as
323 * the perag is not fully initialised and hence not attached to the
324 * buffer. In this case, check against the maximum tree depth.
325 *
326 * Similarly, during log recovery we will have a perag structure
327 * attached, but the agf information will not yet have been initialised
328 * from the on disk AGF. Again, we can only check against maximum limits
329 * in this case.
330 */
331 level = be16_to_cpu(block->bb_level);
332 switch (block->bb_magic) {
333 case cpu_to_be32(XFS_ABTB_CRC_MAGIC):
334 if (!xfs_btree_sblock_v5hdr_verify(bp))
335 return false;
336 /* fall through */
337 case cpu_to_be32(XFS_ABTB_MAGIC):
338 if (pag && pag->pagf_init) {
339 if (level >= pag->pagf_levels[XFS_BTNUM_BNOi])
340 return false;
341 } else if (level >= mp->m_ag_maxlevels)
342 return false;
343 break;
344 case cpu_to_be32(XFS_ABTC_CRC_MAGIC):
345 if (!xfs_btree_sblock_v5hdr_verify(bp))
346 return false;
347 /* fall through */
348 case cpu_to_be32(XFS_ABTC_MAGIC):
349 if (pag && pag->pagf_init) {
350 if (level >= pag->pagf_levels[XFS_BTNUM_CNTi])
351 return false;
352 } else if (level >= mp->m_ag_maxlevels)
353 return false;
354 break;
355 default:
356 return false;
357 }
358
359 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
360 }
361
362 static void
xfs_allocbt_read_verify(struct xfs_buf * bp)363 xfs_allocbt_read_verify(
364 struct xfs_buf *bp)
365 {
366 if (!xfs_btree_sblock_verify_crc(bp))
367 xfs_buf_ioerror(bp, -EFSBADCRC);
368 else if (!xfs_allocbt_verify(bp))
369 xfs_buf_ioerror(bp, -EFSCORRUPTED);
370
371 if (bp->b_error) {
372 trace_xfs_btree_corrupt(bp, _RET_IP_);
373 xfs_verifier_error(bp);
374 }
375 }
376
377 static void
xfs_allocbt_write_verify(struct xfs_buf * bp)378 xfs_allocbt_write_verify(
379 struct xfs_buf *bp)
380 {
381 if (!xfs_allocbt_verify(bp)) {
382 trace_xfs_btree_corrupt(bp, _RET_IP_);
383 xfs_buf_ioerror(bp, -EFSCORRUPTED);
384 xfs_verifier_error(bp);
385 return;
386 }
387 xfs_btree_sblock_calc_crc(bp);
388
389 }
390
391 const struct xfs_buf_ops xfs_allocbt_buf_ops = {
392 .name = "xfs_allocbt",
393 .verify_read = xfs_allocbt_read_verify,
394 .verify_write = xfs_allocbt_write_verify,
395 };
396
397
398 STATIC int
xfs_bnobt_keys_inorder(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)399 xfs_bnobt_keys_inorder(
400 struct xfs_btree_cur *cur,
401 union xfs_btree_key *k1,
402 union xfs_btree_key *k2)
403 {
404 return be32_to_cpu(k1->alloc.ar_startblock) <
405 be32_to_cpu(k2->alloc.ar_startblock);
406 }
407
408 STATIC int
xfs_bnobt_recs_inorder(struct xfs_btree_cur * cur,union xfs_btree_rec * r1,union xfs_btree_rec * r2)409 xfs_bnobt_recs_inorder(
410 struct xfs_btree_cur *cur,
411 union xfs_btree_rec *r1,
412 union xfs_btree_rec *r2)
413 {
414 return be32_to_cpu(r1->alloc.ar_startblock) +
415 be32_to_cpu(r1->alloc.ar_blockcount) <=
416 be32_to_cpu(r2->alloc.ar_startblock);
417 }
418
419 STATIC int
xfs_cntbt_keys_inorder(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)420 xfs_cntbt_keys_inorder(
421 struct xfs_btree_cur *cur,
422 union xfs_btree_key *k1,
423 union xfs_btree_key *k2)
424 {
425 return be32_to_cpu(k1->alloc.ar_blockcount) <
426 be32_to_cpu(k2->alloc.ar_blockcount) ||
427 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
428 be32_to_cpu(k1->alloc.ar_startblock) <
429 be32_to_cpu(k2->alloc.ar_startblock));
430 }
431
432 STATIC int
xfs_cntbt_recs_inorder(struct xfs_btree_cur * cur,union xfs_btree_rec * r1,union xfs_btree_rec * r2)433 xfs_cntbt_recs_inorder(
434 struct xfs_btree_cur *cur,
435 union xfs_btree_rec *r1,
436 union xfs_btree_rec *r2)
437 {
438 return be32_to_cpu(r1->alloc.ar_blockcount) <
439 be32_to_cpu(r2->alloc.ar_blockcount) ||
440 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
441 be32_to_cpu(r1->alloc.ar_startblock) <
442 be32_to_cpu(r2->alloc.ar_startblock));
443 }
444
445 static const struct xfs_btree_ops xfs_bnobt_ops = {
446 .rec_len = sizeof(xfs_alloc_rec_t),
447 .key_len = sizeof(xfs_alloc_key_t),
448
449 .dup_cursor = xfs_allocbt_dup_cursor,
450 .set_root = xfs_allocbt_set_root,
451 .alloc_block = xfs_allocbt_alloc_block,
452 .free_block = xfs_allocbt_free_block,
453 .update_lastrec = xfs_allocbt_update_lastrec,
454 .get_minrecs = xfs_allocbt_get_minrecs,
455 .get_maxrecs = xfs_allocbt_get_maxrecs,
456 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
457 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
458 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
459 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
460 .key_diff = xfs_bnobt_key_diff,
461 .buf_ops = &xfs_allocbt_buf_ops,
462 .diff_two_keys = xfs_bnobt_diff_two_keys,
463 .keys_inorder = xfs_bnobt_keys_inorder,
464 .recs_inorder = xfs_bnobt_recs_inorder,
465 };
466
467 static const struct xfs_btree_ops xfs_cntbt_ops = {
468 .rec_len = sizeof(xfs_alloc_rec_t),
469 .key_len = sizeof(xfs_alloc_key_t),
470
471 .dup_cursor = xfs_allocbt_dup_cursor,
472 .set_root = xfs_allocbt_set_root,
473 .alloc_block = xfs_allocbt_alloc_block,
474 .free_block = xfs_allocbt_free_block,
475 .update_lastrec = xfs_allocbt_update_lastrec,
476 .get_minrecs = xfs_allocbt_get_minrecs,
477 .get_maxrecs = xfs_allocbt_get_maxrecs,
478 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
479 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
480 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
481 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
482 .key_diff = xfs_cntbt_key_diff,
483 .buf_ops = &xfs_allocbt_buf_ops,
484 .diff_two_keys = xfs_cntbt_diff_two_keys,
485 .keys_inorder = xfs_cntbt_keys_inorder,
486 .recs_inorder = xfs_cntbt_recs_inorder,
487 };
488
489 /*
490 * Allocate a new allocation btree cursor.
491 */
492 struct xfs_btree_cur * /* new alloc btree cursor */
xfs_allocbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agnumber_t agno,xfs_btnum_t btnum)493 xfs_allocbt_init_cursor(
494 struct xfs_mount *mp, /* file system mount point */
495 struct xfs_trans *tp, /* transaction pointer */
496 struct xfs_buf *agbp, /* buffer for agf structure */
497 xfs_agnumber_t agno, /* allocation group number */
498 xfs_btnum_t btnum) /* btree identifier */
499 {
500 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
501 struct xfs_btree_cur *cur;
502
503 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
504
505 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
506
507 cur->bc_tp = tp;
508 cur->bc_mp = mp;
509 cur->bc_btnum = btnum;
510 cur->bc_blocklog = mp->m_sb.sb_blocklog;
511
512 if (btnum == XFS_BTNUM_CNT) {
513 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
514 cur->bc_ops = &xfs_cntbt_ops;
515 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
516 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
517 } else {
518 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
519 cur->bc_ops = &xfs_bnobt_ops;
520 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
521 }
522
523 cur->bc_private.a.agbp = agbp;
524 cur->bc_private.a.agno = agno;
525
526 if (xfs_sb_version_hascrc(&mp->m_sb))
527 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
528
529 return cur;
530 }
531
532 /*
533 * Calculate number of records in an alloc btree block.
534 */
535 int
xfs_allocbt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)536 xfs_allocbt_maxrecs(
537 struct xfs_mount *mp,
538 int blocklen,
539 int leaf)
540 {
541 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
542
543 if (leaf)
544 return blocklen / sizeof(xfs_alloc_rec_t);
545 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
546 }
547