1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _SPARC64_HYPERVISOR_H 3 #define _SPARC64_HYPERVISOR_H 4 5 /* Sun4v hypervisor interfaces and defines. 6 * 7 * Hypervisor calls are made via traps to software traps number 0x80 8 * and above. Registers %o0 to %o5 serve as argument, status, and 9 * return value registers. 10 * 11 * There are two kinds of these traps. First there are the normal 12 * "fast traps" which use software trap 0x80 and encode the function 13 * to invoke by number in register %o5. Argument and return value 14 * handling is as follows: 15 * 16 * ----------------------------------------------- 17 * | %o5 | function number | undefined | 18 * | %o0 | argument 0 | return status | 19 * | %o1 | argument 1 | return value 1 | 20 * | %o2 | argument 2 | return value 2 | 21 * | %o3 | argument 3 | return value 3 | 22 * | %o4 | argument 4 | return value 4 | 23 * ----------------------------------------------- 24 * 25 * The second type are "hyper-fast traps" which encode the function 26 * number in the software trap number itself. So these use trap 27 * numbers > 0x80. The register usage for hyper-fast traps is as 28 * follows: 29 * 30 * ----------------------------------------------- 31 * | %o0 | argument 0 | return status | 32 * | %o1 | argument 1 | return value 1 | 33 * | %o2 | argument 2 | return value 2 | 34 * | %o3 | argument 3 | return value 3 | 35 * | %o4 | argument 4 | return value 4 | 36 * ----------------------------------------------- 37 * 38 * Registers providing explicit arguments to the hypervisor calls 39 * are volatile across the call. Upon return their values are 40 * undefined unless explicitly specified as containing a particular 41 * return value by the specific call. The return status is always 42 * returned in register %o0, zero indicates a successful execution of 43 * the hypervisor call and other values indicate an error status as 44 * defined below. So, for example, if a hyper-fast trap takes 45 * arguments 0, 1, and 2, then %o0, %o1, and %o2 are volatile across 46 * the call and %o3, %o4, and %o5 would be preserved. 47 * 48 * If the hypervisor trap is invalid, or the fast trap function number 49 * is invalid, HV_EBADTRAP will be returned in %o0. Also, all 64-bits 50 * of the argument and return values are significant. 51 */ 52 53 /* Trap numbers. */ 54 #define HV_FAST_TRAP 0x80 55 #define HV_MMU_MAP_ADDR_TRAP 0x83 56 #define HV_MMU_UNMAP_ADDR_TRAP 0x84 57 #define HV_TTRACE_ADDENTRY_TRAP 0x85 58 #define HV_CORE_TRAP 0xff 59 60 /* Error codes. */ 61 #define HV_EOK 0 /* Successful return */ 62 #define HV_ENOCPU 1 /* Invalid CPU id */ 63 #define HV_ENORADDR 2 /* Invalid real address */ 64 #define HV_ENOINTR 3 /* Invalid interrupt id */ 65 #define HV_EBADPGSZ 4 /* Invalid pagesize encoding */ 66 #define HV_EBADTSB 5 /* Invalid TSB description */ 67 #define HV_EINVAL 6 /* Invalid argument */ 68 #define HV_EBADTRAP 7 /* Invalid function number */ 69 #define HV_EBADALIGN 8 /* Invalid address alignment */ 70 #define HV_EWOULDBLOCK 9 /* Cannot complete w/o blocking */ 71 #define HV_ENOACCESS 10 /* No access to resource */ 72 #define HV_EIO 11 /* I/O error */ 73 #define HV_ECPUERROR 12 /* CPU in error state */ 74 #define HV_ENOTSUPPORTED 13 /* Function not supported */ 75 #define HV_ENOMAP 14 /* No mapping found */ 76 #define HV_ETOOMANY 15 /* Too many items specified */ 77 #define HV_ECHANNEL 16 /* Invalid LDC channel */ 78 #define HV_EBUSY 17 /* Resource busy */ 79 80 /* mach_exit() 81 * TRAP: HV_FAST_TRAP 82 * FUNCTION: HV_FAST_MACH_EXIT 83 * ARG0: exit code 84 * ERRORS: This service does not return. 85 * 86 * Stop all CPUs in the virtual domain and place them into the stopped 87 * state. The 64-bit exit code may be passed to a service entity as 88 * the domain's exit status. On systems without a service entity, the 89 * domain will undergo a reset, and the boot firmware will be 90 * reloaded. 91 * 92 * This function will never return to the guest that invokes it. 93 * 94 * Note: By convention an exit code of zero denotes a successful exit by 95 * the guest code. A non-zero exit code denotes a guest specific 96 * error indication. 97 * 98 */ 99 #define HV_FAST_MACH_EXIT 0x00 100 101 #ifndef __ASSEMBLY__ 102 void sun4v_mach_exit(unsigned long exit_code); 103 #endif 104 105 /* Domain services. */ 106 107 /* mach_desc() 108 * TRAP: HV_FAST_TRAP 109 * FUNCTION: HV_FAST_MACH_DESC 110 * ARG0: buffer 111 * ARG1: length 112 * RET0: status 113 * RET1: length 114 * ERRORS: HV_EBADALIGN Buffer is badly aligned 115 * HV_ENORADDR Buffer is to an illegal real address. 116 * HV_EINVAL Buffer length is too small for complete 117 * machine description. 118 * 119 * Copy the most current machine description into the buffer indicated 120 * by the real address in ARG0. The buffer provided must be 16 byte 121 * aligned. Upon success or HV_EINVAL, this service returns the 122 * actual size of the machine description in the RET1 return value. 123 * 124 * Note: A method of determining the appropriate buffer size for the 125 * machine description is to first call this service with a buffer 126 * length of 0 bytes. 127 */ 128 #define HV_FAST_MACH_DESC 0x01 129 130 #ifndef __ASSEMBLY__ 131 unsigned long sun4v_mach_desc(unsigned long buffer_pa, 132 unsigned long buf_len, 133 unsigned long *real_buf_len); 134 #endif 135 136 /* mach_sir() 137 * TRAP: HV_FAST_TRAP 138 * FUNCTION: HV_FAST_MACH_SIR 139 * ERRORS: This service does not return. 140 * 141 * Perform a software initiated reset of the virtual machine domain. 142 * All CPUs are captured as soon as possible, all hardware devices are 143 * returned to the entry default state, and the domain is restarted at 144 * the SIR (trap type 0x04) real trap table (RTBA) entry point on one 145 * of the CPUs. The single CPU restarted is selected as determined by 146 * platform specific policy. Memory is preserved across this 147 * operation. 148 */ 149 #define HV_FAST_MACH_SIR 0x02 150 151 #ifndef __ASSEMBLY__ 152 void sun4v_mach_sir(void); 153 #endif 154 155 /* mach_set_watchdog() 156 * TRAP: HV_FAST_TRAP 157 * FUNCTION: HV_FAST_MACH_SET_WATCHDOG 158 * ARG0: timeout in milliseconds 159 * RET0: status 160 * RET1: time remaining in milliseconds 161 * 162 * A guest uses this API to set a watchdog timer. Once the gues has set 163 * the timer, it must call the timer service again either to disable or 164 * postpone the expiration. If the timer expires before being reset or 165 * disabled, then the hypervisor take a platform specific action leading 166 * to guest termination within a bounded time period. The platform action 167 * may include recovery actions such as reporting the expiration to a 168 * Service Processor, and/or automatically restarting the gues. 169 * 170 * The 'timeout' parameter is specified in milliseconds, however the 171 * implementated granularity is given by the 'watchdog-resolution' 172 * property in the 'platform' node of the guest's machine description. 173 * The largest allowed timeout value is specified by the 174 * 'watchdog-max-timeout' property of the 'platform' node. 175 * 176 * If the 'timeout' argument is not zero, the watchdog timer is set to 177 * expire after a minimum of 'timeout' milliseconds. 178 * 179 * If the 'timeout' argument is zero, the watchdog timer is disabled. 180 * 181 * If the 'timeout' value exceeds the value of the 'max-watchdog-timeout' 182 * property, the hypervisor leaves the watchdog timer state unchanged, 183 * and returns a status of EINVAL. 184 * 185 * The 'time remaining' return value is valid regardless of whether the 186 * return status is EOK or EINVAL. A non-zero return value indicates the 187 * number of milliseconds that were remaining until the timer was to expire. 188 * If less than one millisecond remains, the return value is '1'. If the 189 * watchdog timer was disabled at the time of the call, the return value is 190 * zero. 191 * 192 * If the hypervisor cannot support the exact timeout value requested, but 193 * can support a larger timeout value, the hypervisor may round the actual 194 * timeout to a value larger than the requested timeout, consequently the 195 * 'time remaining' return value may be larger than the previously requested 196 * timeout value. 197 * 198 * Any guest OS debugger should be aware that the watchdog service may be in 199 * use. Consequently, it is recommended that the watchdog service is 200 * disabled upon debugger entry (e.g. reaching a breakpoint), and then 201 * re-enabled upon returning to normal execution. The API has been designed 202 * with this in mind, and the 'time remaining' result of the disable call may 203 * be used directly as the timeout argument of the re-enable call. 204 */ 205 #define HV_FAST_MACH_SET_WATCHDOG 0x05 206 207 #ifndef __ASSEMBLY__ 208 unsigned long sun4v_mach_set_watchdog(unsigned long timeout, 209 unsigned long *orig_timeout); 210 #endif 211 212 /* CPU services. 213 * 214 * CPUs represent devices that can execute software threads. A single 215 * chip that contains multiple cores or strands is represented as 216 * multiple CPUs with unique CPU identifiers. CPUs are exported to 217 * OBP via the machine description (and to the OS via the OBP device 218 * tree). CPUs are always in one of three states: stopped, running, 219 * or error. 220 * 221 * A CPU ID is a pre-assigned 16-bit value that uniquely identifies a 222 * CPU within a logical domain. Operations that are to be performed 223 * on multiple CPUs specify them via a CPU list. A CPU list is an 224 * array in real memory, of which each 16-bit word is a CPU ID. CPU 225 * lists are passed through the API as two arguments. The first is 226 * the number of entries (16-bit words) in the CPU list, and the 227 * second is the (real address) pointer to the CPU ID list. 228 */ 229 230 /* cpu_start() 231 * TRAP: HV_FAST_TRAP 232 * FUNCTION: HV_FAST_CPU_START 233 * ARG0: CPU ID 234 * ARG1: PC 235 * ARG2: RTBA 236 * ARG3: target ARG0 237 * RET0: status 238 * ERRORS: ENOCPU Invalid CPU ID 239 * EINVAL Target CPU ID is not in the stopped state 240 * ENORADDR Invalid PC or RTBA real address 241 * EBADALIGN Unaligned PC or unaligned RTBA 242 * EWOULDBLOCK Starting resources are not available 243 * 244 * Start CPU with given CPU ID with PC in %pc and with a real trap 245 * base address value of RTBA. The indicated CPU must be in the 246 * stopped state. The supplied RTBA must be aligned on a 256 byte 247 * boundary. On successful completion, the specified CPU will be in 248 * the running state and will be supplied with "target ARG0" in %o0 249 * and RTBA in %tba. 250 */ 251 #define HV_FAST_CPU_START 0x10 252 253 #ifndef __ASSEMBLY__ 254 unsigned long sun4v_cpu_start(unsigned long cpuid, 255 unsigned long pc, 256 unsigned long rtba, 257 unsigned long arg0); 258 #endif 259 260 /* cpu_stop() 261 * TRAP: HV_FAST_TRAP 262 * FUNCTION: HV_FAST_CPU_STOP 263 * ARG0: CPU ID 264 * RET0: status 265 * ERRORS: ENOCPU Invalid CPU ID 266 * EINVAL Target CPU ID is the current cpu 267 * EINVAL Target CPU ID is not in the running state 268 * EWOULDBLOCK Stopping resources are not available 269 * ENOTSUPPORTED Not supported on this platform 270 * 271 * The specified CPU is stopped. The indicated CPU must be in the 272 * running state. On completion, it will be in the stopped state. It 273 * is not legal to stop the current CPU. 274 * 275 * Note: As this service cannot be used to stop the current cpu, this service 276 * may not be used to stop the last running CPU in a domain. To stop 277 * and exit a running domain, a guest must use the mach_exit() service. 278 */ 279 #define HV_FAST_CPU_STOP 0x11 280 281 #ifndef __ASSEMBLY__ 282 unsigned long sun4v_cpu_stop(unsigned long cpuid); 283 #endif 284 285 /* cpu_yield() 286 * TRAP: HV_FAST_TRAP 287 * FUNCTION: HV_FAST_CPU_YIELD 288 * RET0: status 289 * ERRORS: No possible error. 290 * 291 * Suspend execution on the current CPU. Execution will resume when 292 * an interrupt (device, %stick_compare, or cross-call) is targeted to 293 * the CPU. On some CPUs, this API may be used by the hypervisor to 294 * save power by disabling hardware strands. 295 */ 296 #define HV_FAST_CPU_YIELD 0x12 297 298 #ifndef __ASSEMBLY__ 299 unsigned long sun4v_cpu_yield(void); 300 #endif 301 302 /* cpu_poke() 303 * TRAP: HV_FAST_TRAP 304 * FUNCTION: HV_FAST_CPU_POKE 305 * RET0: status 306 * ERRORS: ENOCPU cpuid refers to a CPU that does not exist 307 * EINVAL cpuid is current CPU 308 * 309 * Poke CPU cpuid. If the target CPU is currently suspended having 310 * invoked the cpu-yield service, that vCPU will be resumed. 311 * Poke interrupts may only be sent to valid, non-local CPUs. 312 * It is not legal to poke the current vCPU. 313 */ 314 #define HV_FAST_CPU_POKE 0x13 315 316 #ifndef __ASSEMBLY__ 317 unsigned long sun4v_cpu_poke(unsigned long cpuid); 318 #endif 319 320 /* cpu_qconf() 321 * TRAP: HV_FAST_TRAP 322 * FUNCTION: HV_FAST_CPU_QCONF 323 * ARG0: queue 324 * ARG1: base real address 325 * ARG2: number of entries 326 * RET0: status 327 * ERRORS: ENORADDR Invalid base real address 328 * EINVAL Invalid queue or number of entries is less 329 * than 2 or too large. 330 * EBADALIGN Base real address is not correctly aligned 331 * for size. 332 * 333 * Configure the given queue to be placed at the given base real 334 * address, with the given number of entries. The number of entries 335 * must be a power of 2. The base real address must be aligned 336 * exactly to match the queue size. Each queue entry is 64 bytes 337 * long, so for example a 32 entry queue must be aligned on a 2048 338 * byte real address boundary. 339 * 340 * The specified queue is unconfigured if the number of entries is given 341 * as zero. 342 * 343 * For the current version of this API service, the argument queue is defined 344 * as follows: 345 * 346 * queue description 347 * ----- ------------------------- 348 * 0x3c cpu mondo queue 349 * 0x3d device mondo queue 350 * 0x3e resumable error queue 351 * 0x3f non-resumable error queue 352 * 353 * Note: The maximum number of entries for each queue for a specific cpu may 354 * be determined from the machine description. 355 */ 356 #define HV_FAST_CPU_QCONF 0x14 357 #define HV_CPU_QUEUE_CPU_MONDO 0x3c 358 #define HV_CPU_QUEUE_DEVICE_MONDO 0x3d 359 #define HV_CPU_QUEUE_RES_ERROR 0x3e 360 #define HV_CPU_QUEUE_NONRES_ERROR 0x3f 361 362 #ifndef __ASSEMBLY__ 363 unsigned long sun4v_cpu_qconf(unsigned long type, 364 unsigned long queue_paddr, 365 unsigned long num_queue_entries); 366 #endif 367 368 /* cpu_qinfo() 369 * TRAP: HV_FAST_TRAP 370 * FUNCTION: HV_FAST_CPU_QINFO 371 * ARG0: queue 372 * RET0: status 373 * RET1: base real address 374 * RET1: number of entries 375 * ERRORS: EINVAL Invalid queue 376 * 377 * Return the configuration info for the given queue. The base real 378 * address and number of entries of the defined queue are returned. 379 * The queue argument values are the same as for cpu_qconf() above. 380 * 381 * If the specified queue is a valid queue number, but no queue has 382 * been defined, the number of entries will be set to zero and the 383 * base real address returned is undefined. 384 */ 385 #define HV_FAST_CPU_QINFO 0x15 386 387 /* cpu_mondo_send() 388 * TRAP: HV_FAST_TRAP 389 * FUNCTION: HV_FAST_CPU_MONDO_SEND 390 * ARG0-1: CPU list 391 * ARG2: data real address 392 * RET0: status 393 * ERRORS: EBADALIGN Mondo data is not 64-byte aligned or CPU list 394 * is not 2-byte aligned. 395 * ENORADDR Invalid data mondo address, or invalid cpu list 396 * address. 397 * ENOCPU Invalid cpu in CPU list 398 * EWOULDBLOCK Some or all of the listed CPUs did not receive 399 * the mondo 400 * ECPUERROR One or more of the listed CPUs are in error 401 * state, use HV_FAST_CPU_STATE to see which ones 402 * EINVAL CPU list includes caller's CPU ID 403 * 404 * Send a mondo interrupt to the CPUs in the given CPU list with the 405 * 64-bytes at the given data real address. The data must be 64-byte 406 * aligned. The mondo data will be delivered to the cpu_mondo queues 407 * of the recipient CPUs. 408 * 409 * In all cases, error or not, the CPUs in the CPU list to which the 410 * mondo has been successfully delivered will be indicated by having 411 * their entry in CPU list updated with the value 0xffff. 412 */ 413 #define HV_FAST_CPU_MONDO_SEND 0x42 414 415 #ifndef __ASSEMBLY__ 416 unsigned long sun4v_cpu_mondo_send(unsigned long cpu_count, 417 unsigned long cpu_list_pa, 418 unsigned long mondo_block_pa); 419 #endif 420 421 /* cpu_myid() 422 * TRAP: HV_FAST_TRAP 423 * FUNCTION: HV_FAST_CPU_MYID 424 * RET0: status 425 * RET1: CPU ID 426 * ERRORS: No errors defined. 427 * 428 * Return the hypervisor ID handle for the current CPU. Use by a 429 * virtual CPU to discover it's own identity. 430 */ 431 #define HV_FAST_CPU_MYID 0x16 432 433 /* cpu_state() 434 * TRAP: HV_FAST_TRAP 435 * FUNCTION: HV_FAST_CPU_STATE 436 * ARG0: CPU ID 437 * RET0: status 438 * RET1: state 439 * ERRORS: ENOCPU Invalid CPU ID 440 * 441 * Retrieve the current state of the CPU with the given CPU ID. 442 */ 443 #define HV_FAST_CPU_STATE 0x17 444 #define HV_CPU_STATE_STOPPED 0x01 445 #define HV_CPU_STATE_RUNNING 0x02 446 #define HV_CPU_STATE_ERROR 0x03 447 448 #ifndef __ASSEMBLY__ 449 long sun4v_cpu_state(unsigned long cpuid); 450 #endif 451 452 /* cpu_set_rtba() 453 * TRAP: HV_FAST_TRAP 454 * FUNCTION: HV_FAST_CPU_SET_RTBA 455 * ARG0: RTBA 456 * RET0: status 457 * RET1: previous RTBA 458 * ERRORS: ENORADDR Invalid RTBA real address 459 * EBADALIGN RTBA is incorrectly aligned for a trap table 460 * 461 * Set the real trap base address of the local cpu to the given RTBA. 462 * The supplied RTBA must be aligned on a 256 byte boundary. Upon 463 * success the previous value of the RTBA is returned in RET1. 464 * 465 * Note: This service does not affect %tba 466 */ 467 #define HV_FAST_CPU_SET_RTBA 0x18 468 469 /* cpu_set_rtba() 470 * TRAP: HV_FAST_TRAP 471 * FUNCTION: HV_FAST_CPU_GET_RTBA 472 * RET0: status 473 * RET1: previous RTBA 474 * ERRORS: No possible error. 475 * 476 * Returns the current value of RTBA in RET1. 477 */ 478 #define HV_FAST_CPU_GET_RTBA 0x19 479 480 /* MMU services. 481 * 482 * Layout of a TSB description for mmu_tsb_ctx{,non}0() calls. 483 */ 484 #ifndef __ASSEMBLY__ 485 struct hv_tsb_descr { 486 unsigned short pgsz_idx; 487 unsigned short assoc; 488 unsigned int num_ttes; /* in TTEs */ 489 unsigned int ctx_idx; 490 unsigned int pgsz_mask; 491 unsigned long tsb_base; 492 unsigned long resv; 493 }; 494 #endif 495 #define HV_TSB_DESCR_PGSZ_IDX_OFFSET 0x00 496 #define HV_TSB_DESCR_ASSOC_OFFSET 0x02 497 #define HV_TSB_DESCR_NUM_TTES_OFFSET 0x04 498 #define HV_TSB_DESCR_CTX_IDX_OFFSET 0x08 499 #define HV_TSB_DESCR_PGSZ_MASK_OFFSET 0x0c 500 #define HV_TSB_DESCR_TSB_BASE_OFFSET 0x10 501 #define HV_TSB_DESCR_RESV_OFFSET 0x18 502 503 /* Page size bitmask. */ 504 #define HV_PGSZ_MASK_8K (1 << 0) 505 #define HV_PGSZ_MASK_64K (1 << 1) 506 #define HV_PGSZ_MASK_512K (1 << 2) 507 #define HV_PGSZ_MASK_4MB (1 << 3) 508 #define HV_PGSZ_MASK_32MB (1 << 4) 509 #define HV_PGSZ_MASK_256MB (1 << 5) 510 #define HV_PGSZ_MASK_2GB (1 << 6) 511 #define HV_PGSZ_MASK_16GB (1 << 7) 512 513 /* Page size index. The value given in the TSB descriptor must correspond 514 * to the smallest page size specified in the pgsz_mask page size bitmask. 515 */ 516 #define HV_PGSZ_IDX_8K 0 517 #define HV_PGSZ_IDX_64K 1 518 #define HV_PGSZ_IDX_512K 2 519 #define HV_PGSZ_IDX_4MB 3 520 #define HV_PGSZ_IDX_32MB 4 521 #define HV_PGSZ_IDX_256MB 5 522 #define HV_PGSZ_IDX_2GB 6 523 #define HV_PGSZ_IDX_16GB 7 524 525 /* MMU fault status area. 526 * 527 * MMU related faults have their status and fault address information 528 * placed into a memory region made available by privileged code. Each 529 * virtual processor must make a mmu_fault_area_conf() call to tell the 530 * hypervisor where that processor's fault status should be stored. 531 * 532 * The fault status block is a multiple of 64-bytes and must be aligned 533 * on a 64-byte boundary. 534 */ 535 #ifndef __ASSEMBLY__ 536 struct hv_fault_status { 537 unsigned long i_fault_type; 538 unsigned long i_fault_addr; 539 unsigned long i_fault_ctx; 540 unsigned long i_reserved[5]; 541 unsigned long d_fault_type; 542 unsigned long d_fault_addr; 543 unsigned long d_fault_ctx; 544 unsigned long d_reserved[5]; 545 }; 546 #endif 547 #define HV_FAULT_I_TYPE_OFFSET 0x00 548 #define HV_FAULT_I_ADDR_OFFSET 0x08 549 #define HV_FAULT_I_CTX_OFFSET 0x10 550 #define HV_FAULT_D_TYPE_OFFSET 0x40 551 #define HV_FAULT_D_ADDR_OFFSET 0x48 552 #define HV_FAULT_D_CTX_OFFSET 0x50 553 554 #define HV_FAULT_TYPE_FAST_MISS 1 555 #define HV_FAULT_TYPE_FAST_PROT 2 556 #define HV_FAULT_TYPE_MMU_MISS 3 557 #define HV_FAULT_TYPE_INV_RA 4 558 #define HV_FAULT_TYPE_PRIV_VIOL 5 559 #define HV_FAULT_TYPE_PROT_VIOL 6 560 #define HV_FAULT_TYPE_NFO 7 561 #define HV_FAULT_TYPE_NFO_SEFF 8 562 #define HV_FAULT_TYPE_INV_VA 9 563 #define HV_FAULT_TYPE_INV_ASI 10 564 #define HV_FAULT_TYPE_NC_ATOMIC 11 565 #define HV_FAULT_TYPE_PRIV_ACT 12 566 #define HV_FAULT_TYPE_RESV1 13 567 #define HV_FAULT_TYPE_UNALIGNED 14 568 #define HV_FAULT_TYPE_INV_PGSZ 15 569 /* Values 16 --> -2 are reserved. */ 570 #define HV_FAULT_TYPE_MULTIPLE -1 571 572 /* Flags argument for mmu_{map,unmap}_addr(), mmu_demap_{page,context,all}(), 573 * and mmu_{map,unmap}_perm_addr(). 574 */ 575 #define HV_MMU_DMMU 0x01 576 #define HV_MMU_IMMU 0x02 577 #define HV_MMU_ALL (HV_MMU_DMMU | HV_MMU_IMMU) 578 579 /* mmu_map_addr() 580 * TRAP: HV_MMU_MAP_ADDR_TRAP 581 * ARG0: virtual address 582 * ARG1: mmu context 583 * ARG2: TTE 584 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 585 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags 586 * EBADPGSZ Invalid page size value 587 * ENORADDR Invalid real address in TTE 588 * 589 * Create a non-permanent mapping using the given TTE, virtual 590 * address, and mmu context. The flags argument determines which 591 * (data, or instruction, or both) TLB the mapping gets loaded into. 592 * 593 * The behavior is undefined if the valid bit is clear in the TTE. 594 * 595 * Note: This API call is for privileged code to specify temporary translation 596 * mappings without the need to create and manage a TSB. 597 */ 598 599 /* mmu_unmap_addr() 600 * TRAP: HV_MMU_UNMAP_ADDR_TRAP 601 * ARG0: virtual address 602 * ARG1: mmu context 603 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 604 * ERRORS: EINVAL Invalid virtual address, mmu context, or flags 605 * 606 * Demaps the given virtual address in the given mmu context on this 607 * CPU. This function is intended to be used to demap pages mapped 608 * with mmu_map_addr. This service is equivalent to invoking 609 * mmu_demap_page() with only the current CPU in the CPU list. The 610 * flags argument determines which (data, or instruction, or both) TLB 611 * the mapping gets unmapped from. 612 * 613 * Attempting to perform an unmap operation for a previously defined 614 * permanent mapping will have undefined results. 615 */ 616 617 /* mmu_tsb_ctx0() 618 * TRAP: HV_FAST_TRAP 619 * FUNCTION: HV_FAST_MMU_TSB_CTX0 620 * ARG0: number of TSB descriptions 621 * ARG1: TSB descriptions pointer 622 * RET0: status 623 * ERRORS: ENORADDR Invalid TSB descriptions pointer or 624 * TSB base within a descriptor 625 * EBADALIGN TSB descriptions pointer is not aligned 626 * to an 8-byte boundary, or TSB base 627 * within a descriptor is not aligned for 628 * the given TSB size 629 * EBADPGSZ Invalid page size in a TSB descriptor 630 * EBADTSB Invalid associativity or size in a TSB 631 * descriptor 632 * EINVAL Invalid number of TSB descriptions, or 633 * invalid context index in a TSB 634 * descriptor, or index page size not 635 * equal to smallest page size in page 636 * size bitmask field. 637 * 638 * Configures the TSBs for the current CPU for virtual addresses with 639 * context zero. The TSB descriptions pointer is a pointer to an 640 * array of the given number of TSB descriptions. 641 * 642 * Note: The maximum number of TSBs available to a virtual CPU is given by the 643 * mmu-max-#tsbs property of the cpu's corresponding "cpu" node in the 644 * machine description. 645 */ 646 #define HV_FAST_MMU_TSB_CTX0 0x20 647 648 #ifndef __ASSEMBLY__ 649 unsigned long sun4v_mmu_tsb_ctx0(unsigned long num_descriptions, 650 unsigned long tsb_desc_ra); 651 #endif 652 653 /* mmu_tsb_ctxnon0() 654 * TRAP: HV_FAST_TRAP 655 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0 656 * ARG0: number of TSB descriptions 657 * ARG1: TSB descriptions pointer 658 * RET0: status 659 * ERRORS: Same as for mmu_tsb_ctx0() above. 660 * 661 * Configures the TSBs for the current CPU for virtual addresses with 662 * non-zero contexts. The TSB descriptions pointer is a pointer to an 663 * array of the given number of TSB descriptions. 664 * 665 * Note: A maximum of 16 TSBs may be specified in the TSB description list. 666 */ 667 #define HV_FAST_MMU_TSB_CTXNON0 0x21 668 669 /* mmu_demap_page() 670 * TRAP: HV_FAST_TRAP 671 * FUNCTION: HV_FAST_MMU_DEMAP_PAGE 672 * ARG0: reserved, must be zero 673 * ARG1: reserved, must be zero 674 * ARG2: virtual address 675 * ARG3: mmu context 676 * ARG4: flags (HV_MMU_{IMMU,DMMU}) 677 * RET0: status 678 * ERRORS: EINVAL Invalid virtual address, context, or 679 * flags value 680 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 681 * 682 * Demaps any page mapping of the given virtual address in the given 683 * mmu context for the current virtual CPU. Any virtually tagged 684 * caches are guaranteed to be kept consistent. The flags argument 685 * determines which TLB (instruction, or data, or both) participate in 686 * the operation. 687 * 688 * ARG0 and ARG1 are both reserved and must be set to zero. 689 */ 690 #define HV_FAST_MMU_DEMAP_PAGE 0x22 691 692 /* mmu_demap_ctx() 693 * TRAP: HV_FAST_TRAP 694 * FUNCTION: HV_FAST_MMU_DEMAP_CTX 695 * ARG0: reserved, must be zero 696 * ARG1: reserved, must be zero 697 * ARG2: mmu context 698 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 699 * RET0: status 700 * ERRORS: EINVAL Invalid context or flags value 701 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 702 * 703 * Demaps all non-permanent virtual page mappings previously specified 704 * for the given context for the current virtual CPU. Any virtual 705 * tagged caches are guaranteed to be kept consistent. The flags 706 * argument determines which TLB (instruction, or data, or both) 707 * participate in the operation. 708 * 709 * ARG0 and ARG1 are both reserved and must be set to zero. 710 */ 711 #define HV_FAST_MMU_DEMAP_CTX 0x23 712 713 /* mmu_demap_all() 714 * TRAP: HV_FAST_TRAP 715 * FUNCTION: HV_FAST_MMU_DEMAP_ALL 716 * ARG0: reserved, must be zero 717 * ARG1: reserved, must be zero 718 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 719 * RET0: status 720 * ERRORS: EINVAL Invalid flags value 721 * ENOTSUPPORTED ARG0 or ARG1 is non-zero 722 * 723 * Demaps all non-permanent virtual page mappings previously specified 724 * for the current virtual CPU. Any virtual tagged caches are 725 * guaranteed to be kept consistent. The flags argument determines 726 * which TLB (instruction, or data, or both) participate in the 727 * operation. 728 * 729 * ARG0 and ARG1 are both reserved and must be set to zero. 730 */ 731 #define HV_FAST_MMU_DEMAP_ALL 0x24 732 733 #ifndef __ASSEMBLY__ 734 void sun4v_mmu_demap_all(void); 735 #endif 736 737 /* mmu_map_perm_addr() 738 * TRAP: HV_FAST_TRAP 739 * FUNCTION: HV_FAST_MMU_MAP_PERM_ADDR 740 * ARG0: virtual address 741 * ARG1: reserved, must be zero 742 * ARG2: TTE 743 * ARG3: flags (HV_MMU_{IMMU,DMMU}) 744 * RET0: status 745 * ERRORS: EINVAL Invalid virtual address or flags value 746 * EBADPGSZ Invalid page size value 747 * ENORADDR Invalid real address in TTE 748 * ETOOMANY Too many mappings (max of 8 reached) 749 * 750 * Create a permanent mapping using the given TTE and virtual address 751 * for context 0 on the calling virtual CPU. A maximum of 8 such 752 * permanent mappings may be specified by privileged code. Mappings 753 * may be removed with mmu_unmap_perm_addr(). 754 * 755 * The behavior is undefined if a TTE with the valid bit clear is given. 756 * 757 * Note: This call is used to specify address space mappings for which 758 * privileged code does not expect to receive misses. For example, 759 * this mechanism can be used to map kernel nucleus code and data. 760 */ 761 #define HV_FAST_MMU_MAP_PERM_ADDR 0x25 762 763 #ifndef __ASSEMBLY__ 764 unsigned long sun4v_mmu_map_perm_addr(unsigned long vaddr, 765 unsigned long set_to_zero, 766 unsigned long tte, 767 unsigned long flags); 768 #endif 769 770 /* mmu_fault_area_conf() 771 * TRAP: HV_FAST_TRAP 772 * FUNCTION: HV_FAST_MMU_FAULT_AREA_CONF 773 * ARG0: real address 774 * RET0: status 775 * RET1: previous mmu fault area real address 776 * ERRORS: ENORADDR Invalid real address 777 * EBADALIGN Invalid alignment for fault area 778 * 779 * Configure the MMU fault status area for the calling CPU. A 64-byte 780 * aligned real address specifies where MMU fault status information 781 * is placed. The return value is the previously specified area, or 0 782 * for the first invocation. Specifying a fault area at real address 783 * 0 is not allowed. 784 */ 785 #define HV_FAST_MMU_FAULT_AREA_CONF 0x26 786 787 /* mmu_enable() 788 * TRAP: HV_FAST_TRAP 789 * FUNCTION: HV_FAST_MMU_ENABLE 790 * ARG0: enable flag 791 * ARG1: return target address 792 * RET0: status 793 * ERRORS: ENORADDR Invalid real address when disabling 794 * translation. 795 * EBADALIGN The return target address is not 796 * aligned to an instruction. 797 * EINVAL The enable flag request the current 798 * operating mode (e.g. disable if already 799 * disabled) 800 * 801 * Enable or disable virtual address translation for the calling CPU 802 * within the virtual machine domain. If the enable flag is zero, 803 * translation is disabled, any non-zero value will enable 804 * translation. 805 * 806 * When this function returns, the newly selected translation mode 807 * will be active. If the mmu is being enabled, then the return 808 * target address is a virtual address else it is a real address. 809 * 810 * Upon successful completion, control will be returned to the given 811 * return target address (ie. the cpu will jump to that address). On 812 * failure, the previous mmu mode remains and the trap simply returns 813 * as normal with the appropriate error code in RET0. 814 */ 815 #define HV_FAST_MMU_ENABLE 0x27 816 817 /* mmu_unmap_perm_addr() 818 * TRAP: HV_FAST_TRAP 819 * FUNCTION: HV_FAST_MMU_UNMAP_PERM_ADDR 820 * ARG0: virtual address 821 * ARG1: reserved, must be zero 822 * ARG2: flags (HV_MMU_{IMMU,DMMU}) 823 * RET0: status 824 * ERRORS: EINVAL Invalid virtual address or flags value 825 * ENOMAP Specified mapping was not found 826 * 827 * Demaps any permanent page mapping (established via 828 * mmu_map_perm_addr()) at the given virtual address for context 0 on 829 * the current virtual CPU. Any virtual tagged caches are guaranteed 830 * to be kept consistent. 831 */ 832 #define HV_FAST_MMU_UNMAP_PERM_ADDR 0x28 833 834 /* mmu_tsb_ctx0_info() 835 * TRAP: HV_FAST_TRAP 836 * FUNCTION: HV_FAST_MMU_TSB_CTX0_INFO 837 * ARG0: max TSBs 838 * ARG1: buffer pointer 839 * RET0: status 840 * RET1: number of TSBs 841 * ERRORS: EINVAL Supplied buffer is too small 842 * EBADALIGN The buffer pointer is badly aligned 843 * ENORADDR Invalid real address for buffer pointer 844 * 845 * Return the TSB configuration as previous defined by mmu_tsb_ctx0() 846 * into the provided buffer. The size of the buffer is given in ARG1 847 * in terms of the number of TSB description entries. 848 * 849 * Upon return, RET1 always contains the number of TSB descriptions 850 * previously configured. If zero TSBs were configured, EOK is 851 * returned with RET1 containing 0. 852 */ 853 #define HV_FAST_MMU_TSB_CTX0_INFO 0x29 854 855 /* mmu_tsb_ctxnon0_info() 856 * TRAP: HV_FAST_TRAP 857 * FUNCTION: HV_FAST_MMU_TSB_CTXNON0_INFO 858 * ARG0: max TSBs 859 * ARG1: buffer pointer 860 * RET0: status 861 * RET1: number of TSBs 862 * ERRORS: EINVAL Supplied buffer is too small 863 * EBADALIGN The buffer pointer is badly aligned 864 * ENORADDR Invalid real address for buffer pointer 865 * 866 * Return the TSB configuration as previous defined by 867 * mmu_tsb_ctxnon0() into the provided buffer. The size of the buffer 868 * is given in ARG1 in terms of the number of TSB description entries. 869 * 870 * Upon return, RET1 always contains the number of TSB descriptions 871 * previously configured. If zero TSBs were configured, EOK is 872 * returned with RET1 containing 0. 873 */ 874 #define HV_FAST_MMU_TSB_CTXNON0_INFO 0x2a 875 876 /* mmu_fault_area_info() 877 * TRAP: HV_FAST_TRAP 878 * FUNCTION: HV_FAST_MMU_FAULT_AREA_INFO 879 * RET0: status 880 * RET1: fault area real address 881 * ERRORS: No errors defined. 882 * 883 * Return the currently defined MMU fault status area for the current 884 * CPU. The real address of the fault status area is returned in 885 * RET1, or 0 is returned in RET1 if no fault status area is defined. 886 * 887 * Note: mmu_fault_area_conf() may be called with the return value (RET1) 888 * from this service if there is a need to save and restore the fault 889 * area for a cpu. 890 */ 891 #define HV_FAST_MMU_FAULT_AREA_INFO 0x2b 892 893 /* Cache and Memory services. */ 894 895 /* mem_scrub() 896 * TRAP: HV_FAST_TRAP 897 * FUNCTION: HV_FAST_MEM_SCRUB 898 * ARG0: real address 899 * ARG1: length 900 * RET0: status 901 * RET1: length scrubbed 902 * ERRORS: ENORADDR Invalid real address 903 * EBADALIGN Start address or length are not correctly 904 * aligned 905 * EINVAL Length is zero 906 * 907 * Zero the memory contents in the range real address to real address 908 * plus length minus 1. Also, valid ECC will be generated for that 909 * memory address range. Scrubbing is started at the given real 910 * address, but may not scrub the entire given length. The actual 911 * length scrubbed will be returned in RET1. 912 * 913 * The real address and length must be aligned on an 8K boundary, or 914 * contain the start address and length from a sun4v error report. 915 * 916 * Note: There are two uses for this function. The first use is to block clear 917 * and initialize memory and the second is to scrub an u ncorrectable 918 * error reported via a resumable or non-resumable trap. The second 919 * use requires the arguments to be equal to the real address and length 920 * provided in a sun4v memory error report. 921 */ 922 #define HV_FAST_MEM_SCRUB 0x31 923 924 /* mem_sync() 925 * TRAP: HV_FAST_TRAP 926 * FUNCTION: HV_FAST_MEM_SYNC 927 * ARG0: real address 928 * ARG1: length 929 * RET0: status 930 * RET1: length synced 931 * ERRORS: ENORADDR Invalid real address 932 * EBADALIGN Start address or length are not correctly 933 * aligned 934 * EINVAL Length is zero 935 * 936 * Force the next access within the real address to real address plus 937 * length minus 1 to be fetches from main system memory. Less than 938 * the given length may be synced, the actual amount synced is 939 * returned in RET1. The real address and length must be aligned on 940 * an 8K boundary. 941 */ 942 #define HV_FAST_MEM_SYNC 0x32 943 944 /* Time of day services. 945 * 946 * The hypervisor maintains the time of day on a per-domain basis. 947 * Changing the time of day in one domain does not affect the time of 948 * day on any other domain. 949 * 950 * Time is described by a single unsigned 64-bit word which is the 951 * number of seconds since the UNIX Epoch (00:00:00 UTC, January 1, 952 * 1970). 953 */ 954 955 /* tod_get() 956 * TRAP: HV_FAST_TRAP 957 * FUNCTION: HV_FAST_TOD_GET 958 * RET0: status 959 * RET1: TOD 960 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable 961 * ENOTSUPPORTED If TOD not supported on this platform 962 * 963 * Return the current time of day. May block if TOD access is 964 * temporarily not possible. 965 */ 966 #define HV_FAST_TOD_GET 0x50 967 968 #ifndef __ASSEMBLY__ 969 unsigned long sun4v_tod_get(unsigned long *time); 970 #endif 971 972 /* tod_set() 973 * TRAP: HV_FAST_TRAP 974 * FUNCTION: HV_FAST_TOD_SET 975 * ARG0: TOD 976 * RET0: status 977 * ERRORS: EWOULDBLOCK TOD resource is temporarily unavailable 978 * ENOTSUPPORTED If TOD not supported on this platform 979 * 980 * The current time of day is set to the value specified in ARG0. May 981 * block if TOD access is temporarily not possible. 982 */ 983 #define HV_FAST_TOD_SET 0x51 984 985 #ifndef __ASSEMBLY__ 986 unsigned long sun4v_tod_set(unsigned long time); 987 #endif 988 989 /* Console services */ 990 991 /* con_getchar() 992 * TRAP: HV_FAST_TRAP 993 * FUNCTION: HV_FAST_CONS_GETCHAR 994 * RET0: status 995 * RET1: character 996 * ERRORS: EWOULDBLOCK No character available. 997 * 998 * Returns a character from the console device. If no character is 999 * available then an EWOULDBLOCK error is returned. If a character is 1000 * available, then the returned status is EOK and the character value 1001 * is in RET1. 1002 * 1003 * A virtual BREAK is represented by the 64-bit value -1. 1004 * 1005 * A virtual HUP signal is represented by the 64-bit value -2. 1006 */ 1007 #define HV_FAST_CONS_GETCHAR 0x60 1008 1009 /* con_putchar() 1010 * TRAP: HV_FAST_TRAP 1011 * FUNCTION: HV_FAST_CONS_PUTCHAR 1012 * ARG0: character 1013 * RET0: status 1014 * ERRORS: EINVAL Illegal character 1015 * EWOULDBLOCK Output buffer currently full, would block 1016 * 1017 * Send a character to the console device. Only character values 1018 * between 0 and 255 may be used. Values outside this range are 1019 * invalid except for the 64-bit value -1 which is used to send a 1020 * virtual BREAK. 1021 */ 1022 #define HV_FAST_CONS_PUTCHAR 0x61 1023 1024 /* con_read() 1025 * TRAP: HV_FAST_TRAP 1026 * FUNCTION: HV_FAST_CONS_READ 1027 * ARG0: buffer real address 1028 * ARG1: buffer size in bytes 1029 * RET0: status 1030 * RET1: bytes read or BREAK or HUP 1031 * ERRORS: EWOULDBLOCK No character available. 1032 * 1033 * Reads characters into a buffer from the console device. If no 1034 * character is available then an EWOULDBLOCK error is returned. 1035 * If a character is available, then the returned status is EOK 1036 * and the number of bytes read into the given buffer is provided 1037 * in RET1. 1038 * 1039 * A virtual BREAK is represented by the 64-bit RET1 value -1. 1040 * 1041 * A virtual HUP signal is represented by the 64-bit RET1 value -2. 1042 * 1043 * If BREAK or HUP are indicated, no bytes were read into buffer. 1044 */ 1045 #define HV_FAST_CONS_READ 0x62 1046 1047 /* con_write() 1048 * TRAP: HV_FAST_TRAP 1049 * FUNCTION: HV_FAST_CONS_WRITE 1050 * ARG0: buffer real address 1051 * ARG1: buffer size in bytes 1052 * RET0: status 1053 * RET1: bytes written 1054 * ERRORS: EWOULDBLOCK Output buffer currently full, would block 1055 * 1056 * Send a characters in buffer to the console device. Breaks must be 1057 * sent using con_putchar(). 1058 */ 1059 #define HV_FAST_CONS_WRITE 0x63 1060 1061 #ifndef __ASSEMBLY__ 1062 long sun4v_con_getchar(long *status); 1063 long sun4v_con_putchar(long c); 1064 long sun4v_con_read(unsigned long buffer, 1065 unsigned long size, 1066 unsigned long *bytes_read); 1067 unsigned long sun4v_con_write(unsigned long buffer, 1068 unsigned long size, 1069 unsigned long *bytes_written); 1070 #endif 1071 1072 /* mach_set_soft_state() 1073 * TRAP: HV_FAST_TRAP 1074 * FUNCTION: HV_FAST_MACH_SET_SOFT_STATE 1075 * ARG0: software state 1076 * ARG1: software state description pointer 1077 * RET0: status 1078 * ERRORS: EINVAL software state not valid or software state 1079 * description is not NULL terminated 1080 * ENORADDR software state description pointer is not a 1081 * valid real address 1082 * EBADALIGNED software state description is not correctly 1083 * aligned 1084 * 1085 * This allows the guest to report it's soft state to the hypervisor. There 1086 * are two primary components to this state. The first part states whether 1087 * the guest software is running or not. The second containts optional 1088 * details specific to the software. 1089 * 1090 * The software state argument is defined below in HV_SOFT_STATE_*, and 1091 * indicates whether the guest is operating normally or in a transitional 1092 * state. 1093 * 1094 * The software state description argument is a real address of a data buffer 1095 * of size 32-bytes aligned on a 32-byte boundary. It is treated as a NULL 1096 * terminated 7-bit ASCII string of up to 31 characters not including the 1097 * NULL termination. 1098 */ 1099 #define HV_FAST_MACH_SET_SOFT_STATE 0x70 1100 #define HV_SOFT_STATE_NORMAL 0x01 1101 #define HV_SOFT_STATE_TRANSITION 0x02 1102 1103 #ifndef __ASSEMBLY__ 1104 unsigned long sun4v_mach_set_soft_state(unsigned long soft_state, 1105 unsigned long msg_string_ra); 1106 #endif 1107 1108 /* mach_get_soft_state() 1109 * TRAP: HV_FAST_TRAP 1110 * FUNCTION: HV_FAST_MACH_GET_SOFT_STATE 1111 * ARG0: software state description pointer 1112 * RET0: status 1113 * RET1: software state 1114 * ERRORS: ENORADDR software state description pointer is not a 1115 * valid real address 1116 * EBADALIGNED software state description is not correctly 1117 * aligned 1118 * 1119 * Retrieve the current value of the guest's software state. The rules 1120 * for the software state pointer are the same as for mach_set_soft_state() 1121 * above. 1122 */ 1123 #define HV_FAST_MACH_GET_SOFT_STATE 0x71 1124 1125 /* svc_send() 1126 * TRAP: HV_FAST_TRAP 1127 * FUNCTION: HV_FAST_SVC_SEND 1128 * ARG0: service ID 1129 * ARG1: buffer real address 1130 * ARG2: buffer size 1131 * RET0: STATUS 1132 * RET1: sent_bytes 1133 * 1134 * Be careful, all output registers are clobbered by this operation, 1135 * so for example it is not possible to save away a value in %o4 1136 * across the trap. 1137 */ 1138 #define HV_FAST_SVC_SEND 0x80 1139 1140 /* svc_recv() 1141 * TRAP: HV_FAST_TRAP 1142 * FUNCTION: HV_FAST_SVC_RECV 1143 * ARG0: service ID 1144 * ARG1: buffer real address 1145 * ARG2: buffer size 1146 * RET0: STATUS 1147 * RET1: recv_bytes 1148 * 1149 * Be careful, all output registers are clobbered by this operation, 1150 * so for example it is not possible to save away a value in %o4 1151 * across the trap. 1152 */ 1153 #define HV_FAST_SVC_RECV 0x81 1154 1155 /* svc_getstatus() 1156 * TRAP: HV_FAST_TRAP 1157 * FUNCTION: HV_FAST_SVC_GETSTATUS 1158 * ARG0: service ID 1159 * RET0: STATUS 1160 * RET1: status bits 1161 */ 1162 #define HV_FAST_SVC_GETSTATUS 0x82 1163 1164 /* svc_setstatus() 1165 * TRAP: HV_FAST_TRAP 1166 * FUNCTION: HV_FAST_SVC_SETSTATUS 1167 * ARG0: service ID 1168 * ARG1: bits to set 1169 * RET0: STATUS 1170 */ 1171 #define HV_FAST_SVC_SETSTATUS 0x83 1172 1173 /* svc_clrstatus() 1174 * TRAP: HV_FAST_TRAP 1175 * FUNCTION: HV_FAST_SVC_CLRSTATUS 1176 * ARG0: service ID 1177 * ARG1: bits to clear 1178 * RET0: STATUS 1179 */ 1180 #define HV_FAST_SVC_CLRSTATUS 0x84 1181 1182 #ifndef __ASSEMBLY__ 1183 unsigned long sun4v_svc_send(unsigned long svc_id, 1184 unsigned long buffer, 1185 unsigned long buffer_size, 1186 unsigned long *sent_bytes); 1187 unsigned long sun4v_svc_recv(unsigned long svc_id, 1188 unsigned long buffer, 1189 unsigned long buffer_size, 1190 unsigned long *recv_bytes); 1191 unsigned long sun4v_svc_getstatus(unsigned long svc_id, 1192 unsigned long *status_bits); 1193 unsigned long sun4v_svc_setstatus(unsigned long svc_id, 1194 unsigned long status_bits); 1195 unsigned long sun4v_svc_clrstatus(unsigned long svc_id, 1196 unsigned long status_bits); 1197 #endif 1198 1199 /* Trap trace services. 1200 * 1201 * The hypervisor provides a trap tracing capability for privileged 1202 * code running on each virtual CPU. Privileged code provides a 1203 * round-robin trap trace queue within which the hypervisor writes 1204 * 64-byte entries detailing hyperprivileged traps taken n behalf of 1205 * privileged code. This is provided as a debugging capability for 1206 * privileged code. 1207 * 1208 * The trap trace control structure is 64-bytes long and placed at the 1209 * start (offset 0) of the trap trace buffer, and is described as 1210 * follows: 1211 */ 1212 #ifndef __ASSEMBLY__ 1213 struct hv_trap_trace_control { 1214 unsigned long head_offset; 1215 unsigned long tail_offset; 1216 unsigned long __reserved[0x30 / sizeof(unsigned long)]; 1217 }; 1218 #endif 1219 #define HV_TRAP_TRACE_CTRL_HEAD_OFFSET 0x00 1220 #define HV_TRAP_TRACE_CTRL_TAIL_OFFSET 0x08 1221 1222 /* The head offset is the offset of the most recently completed entry 1223 * in the trap-trace buffer. The tail offset is the offset of the 1224 * next entry to be written. The control structure is owned and 1225 * modified by the hypervisor. A guest may not modify the control 1226 * structure contents. Attempts to do so will result in undefined 1227 * behavior for the guest. 1228 * 1229 * Each trap trace buffer entry is laid out as follows: 1230 */ 1231 #ifndef __ASSEMBLY__ 1232 struct hv_trap_trace_entry { 1233 unsigned char type; /* Hypervisor or guest entry? */ 1234 unsigned char hpstate; /* Hyper-privileged state */ 1235 unsigned char tl; /* Trap level */ 1236 unsigned char gl; /* Global register level */ 1237 unsigned short tt; /* Trap type */ 1238 unsigned short tag; /* Extended trap identifier */ 1239 unsigned long tstate; /* Trap state */ 1240 unsigned long tick; /* Tick */ 1241 unsigned long tpc; /* Trap PC */ 1242 unsigned long f1; /* Entry specific */ 1243 unsigned long f2; /* Entry specific */ 1244 unsigned long f3; /* Entry specific */ 1245 unsigned long f4; /* Entry specific */ 1246 }; 1247 #endif 1248 #define HV_TRAP_TRACE_ENTRY_TYPE 0x00 1249 #define HV_TRAP_TRACE_ENTRY_HPSTATE 0x01 1250 #define HV_TRAP_TRACE_ENTRY_TL 0x02 1251 #define HV_TRAP_TRACE_ENTRY_GL 0x03 1252 #define HV_TRAP_TRACE_ENTRY_TT 0x04 1253 #define HV_TRAP_TRACE_ENTRY_TAG 0x06 1254 #define HV_TRAP_TRACE_ENTRY_TSTATE 0x08 1255 #define HV_TRAP_TRACE_ENTRY_TICK 0x10 1256 #define HV_TRAP_TRACE_ENTRY_TPC 0x18 1257 #define HV_TRAP_TRACE_ENTRY_F1 0x20 1258 #define HV_TRAP_TRACE_ENTRY_F2 0x28 1259 #define HV_TRAP_TRACE_ENTRY_F3 0x30 1260 #define HV_TRAP_TRACE_ENTRY_F4 0x38 1261 1262 /* The type field is encoded as follows. */ 1263 #define HV_TRAP_TYPE_UNDEF 0x00 /* Entry content undefined */ 1264 #define HV_TRAP_TYPE_HV 0x01 /* Hypervisor trap entry */ 1265 #define HV_TRAP_TYPE_GUEST 0xff /* Added via ttrace_addentry() */ 1266 1267 /* ttrace_buf_conf() 1268 * TRAP: HV_FAST_TRAP 1269 * FUNCTION: HV_FAST_TTRACE_BUF_CONF 1270 * ARG0: real address 1271 * ARG1: number of entries 1272 * RET0: status 1273 * RET1: number of entries 1274 * ERRORS: ENORADDR Invalid real address 1275 * EINVAL Size is too small 1276 * EBADALIGN Real address not aligned on 64-byte boundary 1277 * 1278 * Requests hypervisor trap tracing and declares a virtual CPU's trap 1279 * trace buffer to the hypervisor. The real address supplies the real 1280 * base address of the trap trace queue and must be 64-byte aligned. 1281 * Specifying a value of 0 for the number of entries disables trap 1282 * tracing for the calling virtual CPU. The buffer allocated must be 1283 * sized for a power of two number of 64-byte trap trace entries plus 1284 * an initial 64-byte control structure. 1285 * 1286 * This may be invoked any number of times so that a virtual CPU may 1287 * relocate a trap trace buffer or create "snapshots" of information. 1288 * 1289 * If the real address is illegal or badly aligned, then trap tracing 1290 * is disabled and an error is returned. 1291 * 1292 * Upon failure with EINVAL, this service call returns in RET1 the 1293 * minimum number of buffer entries required. Upon other failures 1294 * RET1 is undefined. 1295 */ 1296 #define HV_FAST_TTRACE_BUF_CONF 0x90 1297 1298 /* ttrace_buf_info() 1299 * TRAP: HV_FAST_TRAP 1300 * FUNCTION: HV_FAST_TTRACE_BUF_INFO 1301 * RET0: status 1302 * RET1: real address 1303 * RET2: size 1304 * ERRORS: None defined. 1305 * 1306 * Returns the size and location of the previously declared trap-trace 1307 * buffer. In the event that no buffer was previously defined, or the 1308 * buffer is disabled, this call will return a size of zero bytes. 1309 */ 1310 #define HV_FAST_TTRACE_BUF_INFO 0x91 1311 1312 /* ttrace_enable() 1313 * TRAP: HV_FAST_TRAP 1314 * FUNCTION: HV_FAST_TTRACE_ENABLE 1315 * ARG0: enable 1316 * RET0: status 1317 * RET1: previous enable state 1318 * ERRORS: EINVAL No trap trace buffer currently defined 1319 * 1320 * Enable or disable trap tracing, and return the previous enabled 1321 * state in RET1. Future systems may define various flags for the 1322 * enable argument (ARG0), for the moment a guest should pass 1323 * "(uint64_t) -1" to enable, and "(uint64_t) 0" to disable all 1324 * tracing - which will ensure future compatibility. 1325 */ 1326 #define HV_FAST_TTRACE_ENABLE 0x92 1327 1328 /* ttrace_freeze() 1329 * TRAP: HV_FAST_TRAP 1330 * FUNCTION: HV_FAST_TTRACE_FREEZE 1331 * ARG0: freeze 1332 * RET0: status 1333 * RET1: previous freeze state 1334 * ERRORS: EINVAL No trap trace buffer currently defined 1335 * 1336 * Freeze or unfreeze trap tracing, returning the previous freeze 1337 * state in RET1. A guest should pass a non-zero value to freeze and 1338 * a zero value to unfreeze all tracing. The returned previous state 1339 * is 0 for not frozen and 1 for frozen. 1340 */ 1341 #define HV_FAST_TTRACE_FREEZE 0x93 1342 1343 /* ttrace_addentry() 1344 * TRAP: HV_TTRACE_ADDENTRY_TRAP 1345 * ARG0: tag (16-bits) 1346 * ARG1: data word 0 1347 * ARG2: data word 1 1348 * ARG3: data word 2 1349 * ARG4: data word 3 1350 * RET0: status 1351 * ERRORS: EINVAL No trap trace buffer currently defined 1352 * 1353 * Add an entry to the trap trace buffer. Upon return only ARG0/RET0 1354 * is modified - none of the other registers holding arguments are 1355 * volatile across this hypervisor service. 1356 */ 1357 1358 /* Core dump services. 1359 * 1360 * Since the hypervisor viraulizes and thus obscures a lot of the 1361 * physical machine layout and state, traditional OS crash dumps can 1362 * be difficult to diagnose especially when the problem is a 1363 * configuration error of some sort. 1364 * 1365 * The dump services provide an opaque buffer into which the 1366 * hypervisor can place it's internal state in order to assist in 1367 * debugging such situations. The contents are opaque and extremely 1368 * platform and hypervisor implementation specific. The guest, during 1369 * a core dump, requests that the hypervisor update any information in 1370 * the dump buffer in preparation to being dumped as part of the 1371 * domain's memory image. 1372 */ 1373 1374 /* dump_buf_update() 1375 * TRAP: HV_FAST_TRAP 1376 * FUNCTION: HV_FAST_DUMP_BUF_UPDATE 1377 * ARG0: real address 1378 * ARG1: size 1379 * RET0: status 1380 * RET1: required size of dump buffer 1381 * ERRORS: ENORADDR Invalid real address 1382 * EBADALIGN Real address is not aligned on a 64-byte 1383 * boundary 1384 * EINVAL Size is non-zero but less than minimum size 1385 * required 1386 * ENOTSUPPORTED Operation not supported on current logical 1387 * domain 1388 * 1389 * Declare a domain dump buffer to the hypervisor. The real address 1390 * provided for the domain dump buffer must be 64-byte aligned. The 1391 * size specifies the size of the dump buffer and may be larger than 1392 * the minimum size specified in the machine description. The 1393 * hypervisor will fill the dump buffer with opaque data. 1394 * 1395 * Note: A guest may elect to include dump buffer contents as part of a crash 1396 * dump to assist with debugging. This function may be called any number 1397 * of times so that a guest may relocate a dump buffer, or create 1398 * "snapshots" of any dump-buffer information. Each call to 1399 * dump_buf_update() atomically declares the new dump buffer to the 1400 * hypervisor. 1401 * 1402 * A specified size of 0 unconfigures the dump buffer. If the real 1403 * address is illegal or badly aligned, then any currently active dump 1404 * buffer is disabled and an error is returned. 1405 * 1406 * In the event that the call fails with EINVAL, RET1 contains the 1407 * minimum size requires by the hypervisor for a valid dump buffer. 1408 */ 1409 #define HV_FAST_DUMP_BUF_UPDATE 0x94 1410 1411 /* dump_buf_info() 1412 * TRAP: HV_FAST_TRAP 1413 * FUNCTION: HV_FAST_DUMP_BUF_INFO 1414 * RET0: status 1415 * RET1: real address of current dump buffer 1416 * RET2: size of current dump buffer 1417 * ERRORS: No errors defined. 1418 * 1419 * Return the currently configures dump buffer description. A 1420 * returned size of 0 bytes indicates an undefined dump buffer. In 1421 * this case the return address in RET1 is undefined. 1422 */ 1423 #define HV_FAST_DUMP_BUF_INFO 0x95 1424 1425 /* Device interrupt services. 1426 * 1427 * Device interrupts are allocated to system bus bridges by the hypervisor, 1428 * and described to OBP in the machine description. OBP then describes 1429 * these interrupts to the OS via properties in the device tree. 1430 * 1431 * Terminology: 1432 * 1433 * cpuid Unique opaque value which represents a target cpu. 1434 * 1435 * devhandle Device handle. It uniquely identifies a device, and 1436 * consistes of the lower 28-bits of the hi-cell of the 1437 * first entry of the device's "reg" property in the 1438 * OBP device tree. 1439 * 1440 * devino Device interrupt number. Specifies the relative 1441 * interrupt number within the device. The unique 1442 * combination of devhandle and devino are used to 1443 * identify a specific device interrupt. 1444 * 1445 * Note: The devino value is the same as the values in the 1446 * "interrupts" property or "interrupt-map" property 1447 * in the OBP device tree for that device. 1448 * 1449 * sysino System interrupt number. A 64-bit unsigned interger 1450 * representing a unique interrupt within a virtual 1451 * machine. 1452 * 1453 * intr_state A flag representing the interrupt state for a given 1454 * sysino. The state values are defined below. 1455 * 1456 * intr_enabled A flag representing the 'enabled' state for a given 1457 * sysino. The enable values are defined below. 1458 */ 1459 1460 #define HV_INTR_STATE_IDLE 0 /* Nothing pending */ 1461 #define HV_INTR_STATE_RECEIVED 1 /* Interrupt received by hardware */ 1462 #define HV_INTR_STATE_DELIVERED 2 /* Interrupt delivered to queue */ 1463 1464 #define HV_INTR_DISABLED 0 /* sysino not enabled */ 1465 #define HV_INTR_ENABLED 1 /* sysino enabled */ 1466 1467 /* intr_devino_to_sysino() 1468 * TRAP: HV_FAST_TRAP 1469 * FUNCTION: HV_FAST_INTR_DEVINO2SYSINO 1470 * ARG0: devhandle 1471 * ARG1: devino 1472 * RET0: status 1473 * RET1: sysino 1474 * ERRORS: EINVAL Invalid devhandle/devino 1475 * 1476 * Converts a device specific interrupt number of the given 1477 * devhandle/devino into a system specific ino (sysino). 1478 */ 1479 #define HV_FAST_INTR_DEVINO2SYSINO 0xa0 1480 1481 #ifndef __ASSEMBLY__ 1482 unsigned long sun4v_devino_to_sysino(unsigned long devhandle, 1483 unsigned long devino); 1484 #endif 1485 1486 /* intr_getenabled() 1487 * TRAP: HV_FAST_TRAP 1488 * FUNCTION: HV_FAST_INTR_GETENABLED 1489 * ARG0: sysino 1490 * RET0: status 1491 * RET1: intr_enabled (HV_INTR_{DISABLED,ENABLED}) 1492 * ERRORS: EINVAL Invalid sysino 1493 * 1494 * Returns interrupt enabled state in RET1 for the interrupt defined 1495 * by the given sysino. 1496 */ 1497 #define HV_FAST_INTR_GETENABLED 0xa1 1498 1499 #ifndef __ASSEMBLY__ 1500 unsigned long sun4v_intr_getenabled(unsigned long sysino); 1501 #endif 1502 1503 /* intr_setenabled() 1504 * TRAP: HV_FAST_TRAP 1505 * FUNCTION: HV_FAST_INTR_SETENABLED 1506 * ARG0: sysino 1507 * ARG1: intr_enabled (HV_INTR_{DISABLED,ENABLED}) 1508 * RET0: status 1509 * ERRORS: EINVAL Invalid sysino or intr_enabled value 1510 * 1511 * Set the 'enabled' state of the interrupt sysino. 1512 */ 1513 #define HV_FAST_INTR_SETENABLED 0xa2 1514 1515 #ifndef __ASSEMBLY__ 1516 unsigned long sun4v_intr_setenabled(unsigned long sysino, 1517 unsigned long intr_enabled); 1518 #endif 1519 1520 /* intr_getstate() 1521 * TRAP: HV_FAST_TRAP 1522 * FUNCTION: HV_FAST_INTR_GETSTATE 1523 * ARG0: sysino 1524 * RET0: status 1525 * RET1: intr_state (HV_INTR_STATE_*) 1526 * ERRORS: EINVAL Invalid sysino 1527 * 1528 * Returns current state of the interrupt defined by the given sysino. 1529 */ 1530 #define HV_FAST_INTR_GETSTATE 0xa3 1531 1532 #ifndef __ASSEMBLY__ 1533 unsigned long sun4v_intr_getstate(unsigned long sysino); 1534 #endif 1535 1536 /* intr_setstate() 1537 * TRAP: HV_FAST_TRAP 1538 * FUNCTION: HV_FAST_INTR_SETSTATE 1539 * ARG0: sysino 1540 * ARG1: intr_state (HV_INTR_STATE_*) 1541 * RET0: status 1542 * ERRORS: EINVAL Invalid sysino or intr_state value 1543 * 1544 * Sets the current state of the interrupt described by the given sysino 1545 * value. 1546 * 1547 * Note: Setting the state to HV_INTR_STATE_IDLE clears any pending 1548 * interrupt for sysino. 1549 */ 1550 #define HV_FAST_INTR_SETSTATE 0xa4 1551 1552 #ifndef __ASSEMBLY__ 1553 unsigned long sun4v_intr_setstate(unsigned long sysino, unsigned long intr_state); 1554 #endif 1555 1556 /* intr_gettarget() 1557 * TRAP: HV_FAST_TRAP 1558 * FUNCTION: HV_FAST_INTR_GETTARGET 1559 * ARG0: sysino 1560 * RET0: status 1561 * RET1: cpuid 1562 * ERRORS: EINVAL Invalid sysino 1563 * 1564 * Returns CPU that is the current target of the interrupt defined by 1565 * the given sysino. The CPU value returned is undefined if the target 1566 * has not been set via intr_settarget(). 1567 */ 1568 #define HV_FAST_INTR_GETTARGET 0xa5 1569 1570 #ifndef __ASSEMBLY__ 1571 unsigned long sun4v_intr_gettarget(unsigned long sysino); 1572 #endif 1573 1574 /* intr_settarget() 1575 * TRAP: HV_FAST_TRAP 1576 * FUNCTION: HV_FAST_INTR_SETTARGET 1577 * ARG0: sysino 1578 * ARG1: cpuid 1579 * RET0: status 1580 * ERRORS: EINVAL Invalid sysino 1581 * ENOCPU Invalid cpuid 1582 * 1583 * Set the target CPU for the interrupt defined by the given sysino. 1584 */ 1585 #define HV_FAST_INTR_SETTARGET 0xa6 1586 1587 #ifndef __ASSEMBLY__ 1588 unsigned long sun4v_intr_settarget(unsigned long sysino, unsigned long cpuid); 1589 #endif 1590 1591 /* vintr_get_cookie() 1592 * TRAP: HV_FAST_TRAP 1593 * FUNCTION: HV_FAST_VINTR_GET_COOKIE 1594 * ARG0: device handle 1595 * ARG1: device ino 1596 * RET0: status 1597 * RET1: cookie 1598 */ 1599 #define HV_FAST_VINTR_GET_COOKIE 0xa7 1600 1601 /* vintr_set_cookie() 1602 * TRAP: HV_FAST_TRAP 1603 * FUNCTION: HV_FAST_VINTR_SET_COOKIE 1604 * ARG0: device handle 1605 * ARG1: device ino 1606 * ARG2: cookie 1607 * RET0: status 1608 */ 1609 #define HV_FAST_VINTR_SET_COOKIE 0xa8 1610 1611 /* vintr_get_valid() 1612 * TRAP: HV_FAST_TRAP 1613 * FUNCTION: HV_FAST_VINTR_GET_VALID 1614 * ARG0: device handle 1615 * ARG1: device ino 1616 * RET0: status 1617 * RET1: valid state 1618 */ 1619 #define HV_FAST_VINTR_GET_VALID 0xa9 1620 1621 /* vintr_set_valid() 1622 * TRAP: HV_FAST_TRAP 1623 * FUNCTION: HV_FAST_VINTR_SET_VALID 1624 * ARG0: device handle 1625 * ARG1: device ino 1626 * ARG2: valid state 1627 * RET0: status 1628 */ 1629 #define HV_FAST_VINTR_SET_VALID 0xaa 1630 1631 /* vintr_get_state() 1632 * TRAP: HV_FAST_TRAP 1633 * FUNCTION: HV_FAST_VINTR_GET_STATE 1634 * ARG0: device handle 1635 * ARG1: device ino 1636 * RET0: status 1637 * RET1: state 1638 */ 1639 #define HV_FAST_VINTR_GET_STATE 0xab 1640 1641 /* vintr_set_state() 1642 * TRAP: HV_FAST_TRAP 1643 * FUNCTION: HV_FAST_VINTR_SET_STATE 1644 * ARG0: device handle 1645 * ARG1: device ino 1646 * ARG2: state 1647 * RET0: status 1648 */ 1649 #define HV_FAST_VINTR_SET_STATE 0xac 1650 1651 /* vintr_get_target() 1652 * TRAP: HV_FAST_TRAP 1653 * FUNCTION: HV_FAST_VINTR_GET_TARGET 1654 * ARG0: device handle 1655 * ARG1: device ino 1656 * RET0: status 1657 * RET1: cpuid 1658 */ 1659 #define HV_FAST_VINTR_GET_TARGET 0xad 1660 1661 /* vintr_set_target() 1662 * TRAP: HV_FAST_TRAP 1663 * FUNCTION: HV_FAST_VINTR_SET_TARGET 1664 * ARG0: device handle 1665 * ARG1: device ino 1666 * ARG2: cpuid 1667 * RET0: status 1668 */ 1669 #define HV_FAST_VINTR_SET_TARGET 0xae 1670 1671 #ifndef __ASSEMBLY__ 1672 unsigned long sun4v_vintr_get_cookie(unsigned long dev_handle, 1673 unsigned long dev_ino, 1674 unsigned long *cookie); 1675 unsigned long sun4v_vintr_set_cookie(unsigned long dev_handle, 1676 unsigned long dev_ino, 1677 unsigned long cookie); 1678 unsigned long sun4v_vintr_get_valid(unsigned long dev_handle, 1679 unsigned long dev_ino, 1680 unsigned long *valid); 1681 unsigned long sun4v_vintr_set_valid(unsigned long dev_handle, 1682 unsigned long dev_ino, 1683 unsigned long valid); 1684 unsigned long sun4v_vintr_get_state(unsigned long dev_handle, 1685 unsigned long dev_ino, 1686 unsigned long *state); 1687 unsigned long sun4v_vintr_set_state(unsigned long dev_handle, 1688 unsigned long dev_ino, 1689 unsigned long state); 1690 unsigned long sun4v_vintr_get_target(unsigned long dev_handle, 1691 unsigned long dev_ino, 1692 unsigned long *cpuid); 1693 unsigned long sun4v_vintr_set_target(unsigned long dev_handle, 1694 unsigned long dev_ino, 1695 unsigned long cpuid); 1696 #endif 1697 1698 /* PCI IO services. 1699 * 1700 * See the terminology descriptions in the device interrupt services 1701 * section above as those apply here too. Here are terminology 1702 * definitions specific to these PCI IO services: 1703 * 1704 * tsbnum TSB number. Indentifies which io-tsb is used. 1705 * For this version of the specification, tsbnum 1706 * must be zero. 1707 * 1708 * tsbindex TSB index. Identifies which entry in the TSB 1709 * is used. The first entry is zero. 1710 * 1711 * tsbid A 64-bit aligned data structure which contains 1712 * a tsbnum and a tsbindex. Bits 63:32 contain the 1713 * tsbnum and bits 31:00 contain the tsbindex. 1714 * 1715 * Use the HV_PCI_TSBID() macro to construct such 1716 * values. 1717 * 1718 * io_attributes IO attributes for IOMMU mappings. One of more 1719 * of the attritbute bits are stores in a 64-bit 1720 * value. The values are defined below. 1721 * 1722 * r_addr 64-bit real address 1723 * 1724 * pci_device PCI device address. A PCI device address identifies 1725 * a specific device on a specific PCI bus segment. 1726 * A PCI device address ia a 32-bit unsigned integer 1727 * with the following format: 1728 * 1729 * 00000000.bbbbbbbb.dddddfff.00000000 1730 * 1731 * Use the HV_PCI_DEVICE_BUILD() macro to construct 1732 * such values. 1733 * 1734 * pci_config_offset 1735 * PCI configureation space offset. For conventional 1736 * PCI a value between 0 and 255. For extended 1737 * configuration space, a value between 0 and 4095. 1738 * 1739 * Note: For PCI configuration space accesses, the offset 1740 * must be aligned to the access size. 1741 * 1742 * error_flag A return value which specifies if the action succeeded 1743 * or failed. 0 means no error, non-0 means some error 1744 * occurred while performing the service. 1745 * 1746 * io_sync_direction 1747 * Direction definition for pci_dma_sync(), defined 1748 * below in HV_PCI_SYNC_*. 1749 * 1750 * io_page_list A list of io_page_addresses, an io_page_address is 1751 * a real address. 1752 * 1753 * io_page_list_p A pointer to an io_page_list. 1754 * 1755 * "size based byte swap" - Some functions do size based byte swapping 1756 * which allows sw to access pointers and 1757 * counters in native form when the processor 1758 * operates in a different endianness than the 1759 * IO bus. Size-based byte swapping converts a 1760 * multi-byte field between big-endian and 1761 * little-endian format. 1762 */ 1763 1764 #define HV_PCI_MAP_ATTR_READ 0x01 1765 #define HV_PCI_MAP_ATTR_WRITE 0x02 1766 #define HV_PCI_MAP_ATTR_RELAXED_ORDER 0x04 1767 1768 #define HV_PCI_DEVICE_BUILD(b,d,f) \ 1769 ((((b) & 0xff) << 16) | \ 1770 (((d) & 0x1f) << 11) | \ 1771 (((f) & 0x07) << 8)) 1772 1773 #define HV_PCI_TSBID(__tsb_num, __tsb_index) \ 1774 ((((u64)(__tsb_num)) << 32UL) | ((u64)(__tsb_index))) 1775 1776 #define HV_PCI_SYNC_FOR_DEVICE 0x01 1777 #define HV_PCI_SYNC_FOR_CPU 0x02 1778 1779 /* pci_iommu_map() 1780 * TRAP: HV_FAST_TRAP 1781 * FUNCTION: HV_FAST_PCI_IOMMU_MAP 1782 * ARG0: devhandle 1783 * ARG1: tsbid 1784 * ARG2: #ttes 1785 * ARG3: io_attributes 1786 * ARG4: io_page_list_p 1787 * RET0: status 1788 * RET1: #ttes mapped 1789 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex/io_attributes 1790 * EBADALIGN Improperly aligned real address 1791 * ENORADDR Invalid real address 1792 * 1793 * Create IOMMU mappings in the sun4v device defined by the given 1794 * devhandle. The mappings are created in the TSB defined by the 1795 * tsbnum component of the given tsbid. The first mapping is created 1796 * in the TSB i ndex defined by the tsbindex component of the given tsbid. 1797 * The call creates up to #ttes mappings, the first one at tsbnum, tsbindex, 1798 * the second at tsbnum, tsbindex + 1, etc. 1799 * 1800 * All mappings are created with the attributes defined by the io_attributes 1801 * argument. The page mapping addresses are described in the io_page_list 1802 * defined by the given io_page_list_p, which is a pointer to the io_page_list. 1803 * The first entry in the io_page_list is the address for the first iotte, the 1804 * 2nd for the 2nd iotte, and so on. 1805 * 1806 * Each io_page_address in the io_page_list must be appropriately aligned. 1807 * #ttes must be greater than zero. For this version of the spec, the tsbnum 1808 * component of the given tsbid must be zero. 1809 * 1810 * Returns the actual number of mappings creates, which may be less than 1811 * or equal to the argument #ttes. If the function returns a value which 1812 * is less than the #ttes, the caller may continus to call the function with 1813 * an updated tsbid, #ttes, io_page_list_p arguments until all pages are 1814 * mapped. 1815 * 1816 * Note: This function does not imply an iotte cache flush. The guest must 1817 * demap an entry before re-mapping it. 1818 */ 1819 #define HV_FAST_PCI_IOMMU_MAP 0xb0 1820 1821 /* pci_iommu_demap() 1822 * TRAP: HV_FAST_TRAP 1823 * FUNCTION: HV_FAST_PCI_IOMMU_DEMAP 1824 * ARG0: devhandle 1825 * ARG1: tsbid 1826 * ARG2: #ttes 1827 * RET0: status 1828 * RET1: #ttes demapped 1829 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex 1830 * 1831 * Demap and flush IOMMU mappings in the device defined by the given 1832 * devhandle. Demaps up to #ttes entries in the TSB defined by the tsbnum 1833 * component of the given tsbid, starting at the TSB index defined by the 1834 * tsbindex component of the given tsbid. 1835 * 1836 * For this version of the spec, the tsbnum of the given tsbid must be zero. 1837 * #ttes must be greater than zero. 1838 * 1839 * Returns the actual number of ttes demapped, which may be less than or equal 1840 * to the argument #ttes. If #ttes demapped is less than #ttes, the caller 1841 * may continue to call this function with updated tsbid and #ttes arguments 1842 * until all pages are demapped. 1843 * 1844 * Note: Entries do not have to be mapped to be demapped. A demap of an 1845 * unmapped page will flush the entry from the tte cache. 1846 */ 1847 #define HV_FAST_PCI_IOMMU_DEMAP 0xb1 1848 1849 /* pci_iommu_getmap() 1850 * TRAP: HV_FAST_TRAP 1851 * FUNCTION: HV_FAST_PCI_IOMMU_GETMAP 1852 * ARG0: devhandle 1853 * ARG1: tsbid 1854 * RET0: status 1855 * RET1: io_attributes 1856 * RET2: real address 1857 * ERRORS: EINVAL Invalid devhandle/tsbnum/tsbindex 1858 * ENOMAP Mapping is not valid, no translation exists 1859 * 1860 * Read and return the mapping in the device described by the given devhandle 1861 * and tsbid. If successful, the io_attributes shall be returned in RET1 1862 * and the page address of the mapping shall be returned in RET2. 1863 * 1864 * For this version of the spec, the tsbnum component of the given tsbid 1865 * must be zero. 1866 */ 1867 #define HV_FAST_PCI_IOMMU_GETMAP 0xb2 1868 1869 /* pci_iommu_getbypass() 1870 * TRAP: HV_FAST_TRAP 1871 * FUNCTION: HV_FAST_PCI_IOMMU_GETBYPASS 1872 * ARG0: devhandle 1873 * ARG1: real address 1874 * ARG2: io_attributes 1875 * RET0: status 1876 * RET1: io_addr 1877 * ERRORS: EINVAL Invalid devhandle/io_attributes 1878 * ENORADDR Invalid real address 1879 * ENOTSUPPORTED Function not supported in this implementation. 1880 * 1881 * Create a "special" mapping in the device described by the given devhandle, 1882 * for the given real address and attributes. Return the IO address in RET1 1883 * if successful. 1884 */ 1885 #define HV_FAST_PCI_IOMMU_GETBYPASS 0xb3 1886 1887 /* pci_config_get() 1888 * TRAP: HV_FAST_TRAP 1889 * FUNCTION: HV_FAST_PCI_CONFIG_GET 1890 * ARG0: devhandle 1891 * ARG1: pci_device 1892 * ARG2: pci_config_offset 1893 * ARG3: size 1894 * RET0: status 1895 * RET1: error_flag 1896 * RET2: data 1897 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size 1898 * EBADALIGN pci_config_offset not size aligned 1899 * ENOACCESS Access to this offset is not permitted 1900 * 1901 * Read PCI configuration space for the adapter described by the given 1902 * devhandle. Read size (1, 2, or 4) bytes of data from the given 1903 * pci_device, at pci_config_offset from the beginning of the device's 1904 * configuration space. If there was no error, RET1 is set to zero and 1905 * RET2 is set to the data read. Insignificant bits in RET2 are not 1906 * guaranteed to have any specific value and therefore must be ignored. 1907 * 1908 * The data returned in RET2 is size based byte swapped. 1909 * 1910 * If an error occurs during the read, set RET1 to a non-zero value. The 1911 * given pci_config_offset must be 'size' aligned. 1912 */ 1913 #define HV_FAST_PCI_CONFIG_GET 0xb4 1914 1915 /* pci_config_put() 1916 * TRAP: HV_FAST_TRAP 1917 * FUNCTION: HV_FAST_PCI_CONFIG_PUT 1918 * ARG0: devhandle 1919 * ARG1: pci_device 1920 * ARG2: pci_config_offset 1921 * ARG3: size 1922 * ARG4: data 1923 * RET0: status 1924 * RET1: error_flag 1925 * ERRORS: EINVAL Invalid devhandle/pci_device/offset/size 1926 * EBADALIGN pci_config_offset not size aligned 1927 * ENOACCESS Access to this offset is not permitted 1928 * 1929 * Write PCI configuration space for the adapter described by the given 1930 * devhandle. Write size (1, 2, or 4) bytes of data in a single operation, 1931 * at pci_config_offset from the beginning of the device's configuration 1932 * space. The data argument contains the data to be written to configuration 1933 * space. Prior to writing, the data is size based byte swapped. 1934 * 1935 * If an error occurs during the write access, do not generate an error 1936 * report, do set RET1 to a non-zero value. Otherwise RET1 is zero. 1937 * The given pci_config_offset must be 'size' aligned. 1938 * 1939 * This function is permitted to read from offset zero in the configuration 1940 * space described by the given pci_device if necessary to ensure that the 1941 * write access to config space completes. 1942 */ 1943 #define HV_FAST_PCI_CONFIG_PUT 0xb5 1944 1945 /* pci_peek() 1946 * TRAP: HV_FAST_TRAP 1947 * FUNCTION: HV_FAST_PCI_PEEK 1948 * ARG0: devhandle 1949 * ARG1: real address 1950 * ARG2: size 1951 * RET0: status 1952 * RET1: error_flag 1953 * RET2: data 1954 * ERRORS: EINVAL Invalid devhandle or size 1955 * EBADALIGN Improperly aligned real address 1956 * ENORADDR Bad real address 1957 * ENOACCESS Guest access prohibited 1958 * 1959 * Attempt to read the IO address given by the given devhandle, real address, 1960 * and size. Size must be 1, 2, 4, or 8. The read is performed as a single 1961 * access operation using the given size. If an error occurs when reading 1962 * from the given location, do not generate an error report, but return a 1963 * non-zero value in RET1. If the read was successful, return zero in RET1 1964 * and return the actual data read in RET2. The data returned is size based 1965 * byte swapped. 1966 * 1967 * Non-significant bits in RET2 are not guaranteed to have any specific value 1968 * and therefore must be ignored. If RET1 is returned as non-zero, the data 1969 * value is not guaranteed to have any specific value and should be ignored. 1970 * 1971 * The caller must have permission to read from the given devhandle, real 1972 * address, which must be an IO address. The argument real address must be a 1973 * size aligned address. 1974 * 1975 * The hypervisor implementation of this function must block access to any 1976 * IO address that the guest does not have explicit permission to access. 1977 */ 1978 #define HV_FAST_PCI_PEEK 0xb6 1979 1980 /* pci_poke() 1981 * TRAP: HV_FAST_TRAP 1982 * FUNCTION: HV_FAST_PCI_POKE 1983 * ARG0: devhandle 1984 * ARG1: real address 1985 * ARG2: size 1986 * ARG3: data 1987 * ARG4: pci_device 1988 * RET0: status 1989 * RET1: error_flag 1990 * ERRORS: EINVAL Invalid devhandle, size, or pci_device 1991 * EBADALIGN Improperly aligned real address 1992 * ENORADDR Bad real address 1993 * ENOACCESS Guest access prohibited 1994 * ENOTSUPPORTED Function is not supported by implementation 1995 * 1996 * Attempt to write data to the IO address given by the given devhandle, 1997 * real address, and size. Size must be 1, 2, 4, or 8. The write is 1998 * performed as a single access operation using the given size. Prior to 1999 * writing the data is size based swapped. 2000 * 2001 * If an error occurs when writing to the given location, do not generate an 2002 * error report, but return a non-zero value in RET1. If the write was 2003 * successful, return zero in RET1. 2004 * 2005 * pci_device describes the configuration address of the device being 2006 * written to. The implementation may safely read from offset 0 with 2007 * the configuration space of the device described by devhandle and 2008 * pci_device in order to guarantee that the write portion of the operation 2009 * completes 2010 * 2011 * Any error that occurs due to the read shall be reported using the normal 2012 * error reporting mechanisms .. the read error is not suppressed. 2013 * 2014 * The caller must have permission to write to the given devhandle, real 2015 * address, which must be an IO address. The argument real address must be a 2016 * size aligned address. The caller must have permission to read from 2017 * the given devhandle, pci_device cofiguration space offset 0. 2018 * 2019 * The hypervisor implementation of this function must block access to any 2020 * IO address that the guest does not have explicit permission to access. 2021 */ 2022 #define HV_FAST_PCI_POKE 0xb7 2023 2024 /* pci_dma_sync() 2025 * TRAP: HV_FAST_TRAP 2026 * FUNCTION: HV_FAST_PCI_DMA_SYNC 2027 * ARG0: devhandle 2028 * ARG1: real address 2029 * ARG2: size 2030 * ARG3: io_sync_direction 2031 * RET0: status 2032 * RET1: #synced 2033 * ERRORS: EINVAL Invalid devhandle or io_sync_direction 2034 * ENORADDR Bad real address 2035 * 2036 * Synchronize a memory region described by the given real address and size, 2037 * for the device defined by the given devhandle using the direction(s) 2038 * defined by the given io_sync_direction. The argument size is the size of 2039 * the memory region in bytes. 2040 * 2041 * Return the actual number of bytes synchronized in the return value #synced, 2042 * which may be less than or equal to the argument size. If the return 2043 * value #synced is less than size, the caller must continue to call this 2044 * function with updated real address and size arguments until the entire 2045 * memory region is synchronized. 2046 */ 2047 #define HV_FAST_PCI_DMA_SYNC 0xb8 2048 2049 /* PCI MSI services. */ 2050 2051 #define HV_MSITYPE_MSI32 0x00 2052 #define HV_MSITYPE_MSI64 0x01 2053 2054 #define HV_MSIQSTATE_IDLE 0x00 2055 #define HV_MSIQSTATE_ERROR 0x01 2056 2057 #define HV_MSIQ_INVALID 0x00 2058 #define HV_MSIQ_VALID 0x01 2059 2060 #define HV_MSISTATE_IDLE 0x00 2061 #define HV_MSISTATE_DELIVERED 0x01 2062 2063 #define HV_MSIVALID_INVALID 0x00 2064 #define HV_MSIVALID_VALID 0x01 2065 2066 #define HV_PCIE_MSGTYPE_PME_MSG 0x18 2067 #define HV_PCIE_MSGTYPE_PME_ACK_MSG 0x1b 2068 #define HV_PCIE_MSGTYPE_CORR_MSG 0x30 2069 #define HV_PCIE_MSGTYPE_NONFATAL_MSG 0x31 2070 #define HV_PCIE_MSGTYPE_FATAL_MSG 0x33 2071 2072 #define HV_MSG_INVALID 0x00 2073 #define HV_MSG_VALID 0x01 2074 2075 /* pci_msiq_conf() 2076 * TRAP: HV_FAST_TRAP 2077 * FUNCTION: HV_FAST_PCI_MSIQ_CONF 2078 * ARG0: devhandle 2079 * ARG1: msiqid 2080 * ARG2: real address 2081 * ARG3: number of entries 2082 * RET0: status 2083 * ERRORS: EINVAL Invalid devhandle, msiqid or nentries 2084 * EBADALIGN Improperly aligned real address 2085 * ENORADDR Bad real address 2086 * 2087 * Configure the MSI queue given by the devhandle and msiqid arguments, 2088 * and to be placed at the given real address and be of the given 2089 * number of entries. The real address must be aligned exactly to match 2090 * the queue size. Each queue entry is 64-bytes long, so f.e. a 32 entry 2091 * queue must be aligned on a 2048 byte real address boundary. The MSI-EQ 2092 * Head and Tail are initialized so that the MSI-EQ is 'empty'. 2093 * 2094 * Implementation Note: Certain implementations have fixed sized queues. In 2095 * that case, number of entries must contain the correct 2096 * value. 2097 */ 2098 #define HV_FAST_PCI_MSIQ_CONF 0xc0 2099 2100 /* pci_msiq_info() 2101 * TRAP: HV_FAST_TRAP 2102 * FUNCTION: HV_FAST_PCI_MSIQ_INFO 2103 * ARG0: devhandle 2104 * ARG1: msiqid 2105 * RET0: status 2106 * RET1: real address 2107 * RET2: number of entries 2108 * ERRORS: EINVAL Invalid devhandle or msiqid 2109 * 2110 * Return the configuration information for the MSI queue described 2111 * by the given devhandle and msiqid. The base address of the queue 2112 * is returned in ARG1 and the number of entries is returned in ARG2. 2113 * If the queue is unconfigured, the real address is undefined and the 2114 * number of entries will be returned as zero. 2115 */ 2116 #define HV_FAST_PCI_MSIQ_INFO 0xc1 2117 2118 /* pci_msiq_getvalid() 2119 * TRAP: HV_FAST_TRAP 2120 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID 2121 * ARG0: devhandle 2122 * ARG1: msiqid 2123 * RET0: status 2124 * RET1: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID) 2125 * ERRORS: EINVAL Invalid devhandle or msiqid 2126 * 2127 * Get the valid state of the MSI-EQ described by the given devhandle and 2128 * msiqid. 2129 */ 2130 #define HV_FAST_PCI_MSIQ_GETVALID 0xc2 2131 2132 /* pci_msiq_setvalid() 2133 * TRAP: HV_FAST_TRAP 2134 * FUNCTION: HV_FAST_PCI_MSIQ_SETVALID 2135 * ARG0: devhandle 2136 * ARG1: msiqid 2137 * ARG2: msiqvalid (HV_MSIQ_VALID or HV_MSIQ_INVALID) 2138 * RET0: status 2139 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqvalid 2140 * value or MSI EQ is uninitialized 2141 * 2142 * Set the valid state of the MSI-EQ described by the given devhandle and 2143 * msiqid to the given msiqvalid. 2144 */ 2145 #define HV_FAST_PCI_MSIQ_SETVALID 0xc3 2146 2147 /* pci_msiq_getstate() 2148 * TRAP: HV_FAST_TRAP 2149 * FUNCTION: HV_FAST_PCI_MSIQ_GETSTATE 2150 * ARG0: devhandle 2151 * ARG1: msiqid 2152 * RET0: status 2153 * RET1: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR) 2154 * ERRORS: EINVAL Invalid devhandle or msiqid 2155 * 2156 * Get the state of the MSI-EQ described by the given devhandle and 2157 * msiqid. 2158 */ 2159 #define HV_FAST_PCI_MSIQ_GETSTATE 0xc4 2160 2161 /* pci_msiq_getvalid() 2162 * TRAP: HV_FAST_TRAP 2163 * FUNCTION: HV_FAST_PCI_MSIQ_GETVALID 2164 * ARG0: devhandle 2165 * ARG1: msiqid 2166 * ARG2: msiqstate (HV_MSIQSTATE_IDLE or HV_MSIQSTATE_ERROR) 2167 * RET0: status 2168 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqstate 2169 * value or MSI EQ is uninitialized 2170 * 2171 * Set the state of the MSI-EQ described by the given devhandle and 2172 * msiqid to the given msiqvalid. 2173 */ 2174 #define HV_FAST_PCI_MSIQ_SETSTATE 0xc5 2175 2176 /* pci_msiq_gethead() 2177 * TRAP: HV_FAST_TRAP 2178 * FUNCTION: HV_FAST_PCI_MSIQ_GETHEAD 2179 * ARG0: devhandle 2180 * ARG1: msiqid 2181 * RET0: status 2182 * RET1: msiqhead 2183 * ERRORS: EINVAL Invalid devhandle or msiqid 2184 * 2185 * Get the current MSI EQ queue head for the MSI-EQ described by the 2186 * given devhandle and msiqid. 2187 */ 2188 #define HV_FAST_PCI_MSIQ_GETHEAD 0xc6 2189 2190 /* pci_msiq_sethead() 2191 * TRAP: HV_FAST_TRAP 2192 * FUNCTION: HV_FAST_PCI_MSIQ_SETHEAD 2193 * ARG0: devhandle 2194 * ARG1: msiqid 2195 * ARG2: msiqhead 2196 * RET0: status 2197 * ERRORS: EINVAL Invalid devhandle or msiqid or msiqhead, 2198 * or MSI EQ is uninitialized 2199 * 2200 * Set the current MSI EQ queue head for the MSI-EQ described by the 2201 * given devhandle and msiqid. 2202 */ 2203 #define HV_FAST_PCI_MSIQ_SETHEAD 0xc7 2204 2205 /* pci_msiq_gettail() 2206 * TRAP: HV_FAST_TRAP 2207 * FUNCTION: HV_FAST_PCI_MSIQ_GETTAIL 2208 * ARG0: devhandle 2209 * ARG1: msiqid 2210 * RET0: status 2211 * RET1: msiqtail 2212 * ERRORS: EINVAL Invalid devhandle or msiqid 2213 * 2214 * Get the current MSI EQ queue tail for the MSI-EQ described by the 2215 * given devhandle and msiqid. 2216 */ 2217 #define HV_FAST_PCI_MSIQ_GETTAIL 0xc8 2218 2219 /* pci_msi_getvalid() 2220 * TRAP: HV_FAST_TRAP 2221 * FUNCTION: HV_FAST_PCI_MSI_GETVALID 2222 * ARG0: devhandle 2223 * ARG1: msinum 2224 * RET0: status 2225 * RET1: msivalidstate 2226 * ERRORS: EINVAL Invalid devhandle or msinum 2227 * 2228 * Get the current valid/enabled state for the MSI defined by the 2229 * given devhandle and msinum. 2230 */ 2231 #define HV_FAST_PCI_MSI_GETVALID 0xc9 2232 2233 /* pci_msi_setvalid() 2234 * TRAP: HV_FAST_TRAP 2235 * FUNCTION: HV_FAST_PCI_MSI_SETVALID 2236 * ARG0: devhandle 2237 * ARG1: msinum 2238 * ARG2: msivalidstate 2239 * RET0: status 2240 * ERRORS: EINVAL Invalid devhandle or msinum or msivalidstate 2241 * 2242 * Set the current valid/enabled state for the MSI defined by the 2243 * given devhandle and msinum. 2244 */ 2245 #define HV_FAST_PCI_MSI_SETVALID 0xca 2246 2247 /* pci_msi_getmsiq() 2248 * TRAP: HV_FAST_TRAP 2249 * FUNCTION: HV_FAST_PCI_MSI_GETMSIQ 2250 * ARG0: devhandle 2251 * ARG1: msinum 2252 * RET0: status 2253 * RET1: msiqid 2254 * ERRORS: EINVAL Invalid devhandle or msinum or MSI is unbound 2255 * 2256 * Get the MSI EQ that the MSI defined by the given devhandle and 2257 * msinum is bound to. 2258 */ 2259 #define HV_FAST_PCI_MSI_GETMSIQ 0xcb 2260 2261 /* pci_msi_setmsiq() 2262 * TRAP: HV_FAST_TRAP 2263 * FUNCTION: HV_FAST_PCI_MSI_SETMSIQ 2264 * ARG0: devhandle 2265 * ARG1: msinum 2266 * ARG2: msitype 2267 * ARG3: msiqid 2268 * RET0: status 2269 * ERRORS: EINVAL Invalid devhandle or msinum or msiqid 2270 * 2271 * Set the MSI EQ that the MSI defined by the given devhandle and 2272 * msinum is bound to. 2273 */ 2274 #define HV_FAST_PCI_MSI_SETMSIQ 0xcc 2275 2276 /* pci_msi_getstate() 2277 * TRAP: HV_FAST_TRAP 2278 * FUNCTION: HV_FAST_PCI_MSI_GETSTATE 2279 * ARG0: devhandle 2280 * ARG1: msinum 2281 * RET0: status 2282 * RET1: msistate 2283 * ERRORS: EINVAL Invalid devhandle or msinum 2284 * 2285 * Get the state of the MSI defined by the given devhandle and msinum. 2286 * If not initialized, return HV_MSISTATE_IDLE. 2287 */ 2288 #define HV_FAST_PCI_MSI_GETSTATE 0xcd 2289 2290 /* pci_msi_setstate() 2291 * TRAP: HV_FAST_TRAP 2292 * FUNCTION: HV_FAST_PCI_MSI_SETSTATE 2293 * ARG0: devhandle 2294 * ARG1: msinum 2295 * ARG2: msistate 2296 * RET0: status 2297 * ERRORS: EINVAL Invalid devhandle or msinum or msistate 2298 * 2299 * Set the state of the MSI defined by the given devhandle and msinum. 2300 */ 2301 #define HV_FAST_PCI_MSI_SETSTATE 0xce 2302 2303 /* pci_msg_getmsiq() 2304 * TRAP: HV_FAST_TRAP 2305 * FUNCTION: HV_FAST_PCI_MSG_GETMSIQ 2306 * ARG0: devhandle 2307 * ARG1: msgtype 2308 * RET0: status 2309 * RET1: msiqid 2310 * ERRORS: EINVAL Invalid devhandle or msgtype 2311 * 2312 * Get the MSI EQ of the MSG defined by the given devhandle and msgtype. 2313 */ 2314 #define HV_FAST_PCI_MSG_GETMSIQ 0xd0 2315 2316 /* pci_msg_setmsiq() 2317 * TRAP: HV_FAST_TRAP 2318 * FUNCTION: HV_FAST_PCI_MSG_SETMSIQ 2319 * ARG0: devhandle 2320 * ARG1: msgtype 2321 * ARG2: msiqid 2322 * RET0: status 2323 * ERRORS: EINVAL Invalid devhandle, msgtype, or msiqid 2324 * 2325 * Set the MSI EQ of the MSG defined by the given devhandle and msgtype. 2326 */ 2327 #define HV_FAST_PCI_MSG_SETMSIQ 0xd1 2328 2329 /* pci_msg_getvalid() 2330 * TRAP: HV_FAST_TRAP 2331 * FUNCTION: HV_FAST_PCI_MSG_GETVALID 2332 * ARG0: devhandle 2333 * ARG1: msgtype 2334 * RET0: status 2335 * RET1: msgvalidstate 2336 * ERRORS: EINVAL Invalid devhandle or msgtype 2337 * 2338 * Get the valid/enabled state of the MSG defined by the given 2339 * devhandle and msgtype. 2340 */ 2341 #define HV_FAST_PCI_MSG_GETVALID 0xd2 2342 2343 /* pci_msg_setvalid() 2344 * TRAP: HV_FAST_TRAP 2345 * FUNCTION: HV_FAST_PCI_MSG_SETVALID 2346 * ARG0: devhandle 2347 * ARG1: msgtype 2348 * ARG2: msgvalidstate 2349 * RET0: status 2350 * ERRORS: EINVAL Invalid devhandle or msgtype or msgvalidstate 2351 * 2352 * Set the valid/enabled state of the MSG defined by the given 2353 * devhandle and msgtype. 2354 */ 2355 #define HV_FAST_PCI_MSG_SETVALID 0xd3 2356 2357 /* PCI IOMMU v2 definitions and services 2358 * 2359 * While the PCI IO definitions above is valid IOMMU v2 adds new PCI IO 2360 * definitions and services. 2361 * 2362 * CTE Clump Table Entry. First level table entry in the ATU. 2363 * 2364 * pci_device_list 2365 * A 32-bit aligned list of pci_devices. 2366 * 2367 * pci_device_listp 2368 * real address of a pci_device_list. 32-bit aligned. 2369 * 2370 * iotte IOMMU translation table entry. 2371 * 2372 * iotte_attributes 2373 * IO Attributes for IOMMU v2 mappings. In addition to 2374 * read, write IOMMU v2 supports relax ordering 2375 * 2376 * io_page_list A 64-bit aligned list of real addresses. Each real 2377 * address in an io_page_list must be properly aligned 2378 * to the pagesize of the given IOTSB. 2379 * 2380 * io_page_list_p Real address of an io_page_list, 64-bit aligned. 2381 * 2382 * IOTSB IO Translation Storage Buffer. An aligned table of 2383 * IOTTEs. Each IOTSB has a pagesize, table size, and 2384 * virtual address associated with it that must match 2385 * a pagesize and table size supported by the un-derlying 2386 * hardware implementation. The alignment requirements 2387 * for an IOTSB depend on the pagesize used for that IOTSB. 2388 * Each IOTTE in an IOTSB maps one pagesize-sized page. 2389 * The size of the IOTSB dictates how large of a virtual 2390 * address space the IOTSB is capable of mapping. 2391 * 2392 * iotsb_handle An opaque identifier for an IOTSB. A devhandle plus 2393 * iotsb_handle represents a binding of an IOTSB to a 2394 * PCI root complex. 2395 * 2396 * iotsb_index Zero-based IOTTE number within an IOTSB. 2397 */ 2398 2399 /* The index_count argument consists of two fields: 2400 * bits 63:48 #iottes and bits 47:0 iotsb_index 2401 */ 2402 #define HV_PCI_IOTSB_INDEX_COUNT(__iottes, __iotsb_index) \ 2403 (((u64)(__iottes) << 48UL) | ((u64)(__iotsb_index))) 2404 2405 /* pci_iotsb_conf() 2406 * TRAP: HV_FAST_TRAP 2407 * FUNCTION: HV_FAST_PCI_IOTSB_CONF 2408 * ARG0: devhandle 2409 * ARG1: r_addr 2410 * ARG2: size 2411 * ARG3: pagesize 2412 * ARG4: iova 2413 * RET0: status 2414 * RET1: iotsb_handle 2415 * ERRORS: EINVAL Invalid devhandle, size, iova, or pagesize 2416 * EBADALIGN r_addr is not properly aligned 2417 * ENORADDR r_addr is not a valid real address 2418 * ETOOMANY No further IOTSBs may be configured 2419 * EBUSY Duplicate devhandle, raddir, iova combination 2420 * 2421 * Create an IOTSB suitable for the PCI root complex identified by devhandle, 2422 * for the DMA virtual address defined by the argument iova. 2423 * 2424 * r_addr is the properly aligned base address of the IOTSB and size is the 2425 * IOTSB (table) size in bytes.The IOTSB is required to be zeroed prior to 2426 * being configured. If it contains any values other than zeros then the 2427 * behavior is undefined. 2428 * 2429 * pagesize is the size of each page in the IOTSB. Note that the combination of 2430 * size (table size) and pagesize must be valid. 2431 * 2432 * virt is the DMA virtual address this IOTSB will map. 2433 * 2434 * If successful, the opaque 64-bit handle iotsb_handle is returned in ret1. 2435 * Once configured, privileged access to the IOTSB memory is prohibited and 2436 * creates undefined behavior. The only permitted access is indirect via these 2437 * services. 2438 */ 2439 #define HV_FAST_PCI_IOTSB_CONF 0x190 2440 2441 /* pci_iotsb_info() 2442 * TRAP: HV_FAST_TRAP 2443 * FUNCTION: HV_FAST_PCI_IOTSB_INFO 2444 * ARG0: devhandle 2445 * ARG1: iotsb_handle 2446 * RET0: status 2447 * RET1: r_addr 2448 * RET2: size 2449 * RET3: pagesize 2450 * RET4: iova 2451 * RET5: #bound 2452 * ERRORS: EINVAL Invalid devhandle or iotsb_handle 2453 * 2454 * This service returns configuration information about an IOTSB previously 2455 * created with pci_iotsb_conf. 2456 * 2457 * iotsb_handle value 0 may be used with this service to inquire about the 2458 * legacy IOTSB that may or may not exist. If the service succeeds, the return 2459 * values describe the legacy IOTSB and I/O virtual addresses mapped by that 2460 * table. However, the table base address r_addr may contain the value -1 which 2461 * indicates a memory range that cannot be accessed or be reclaimed. 2462 * 2463 * The return value #bound contains the number of PCI devices that iotsb_handle 2464 * is currently bound to. 2465 */ 2466 #define HV_FAST_PCI_IOTSB_INFO 0x191 2467 2468 /* pci_iotsb_unconf() 2469 * TRAP: HV_FAST_TRAP 2470 * FUNCTION: HV_FAST_PCI_IOTSB_UNCONF 2471 * ARG0: devhandle 2472 * ARG1: iotsb_handle 2473 * RET0: status 2474 * ERRORS: EINVAL Invalid devhandle or iotsb_handle 2475 * EBUSY The IOTSB is bound and may not be unconfigured 2476 * 2477 * This service unconfigures the IOTSB identified by the devhandle and 2478 * iotsb_handle arguments, previously created with pci_iotsb_conf. 2479 * The IOTSB must not be currently bound to any device or the service will fail 2480 * 2481 * If the call succeeds, iotsb_handle is no longer valid. 2482 */ 2483 #define HV_FAST_PCI_IOTSB_UNCONF 0x192 2484 2485 /* pci_iotsb_bind() 2486 * TRAP: HV_FAST_TRAP 2487 * FUNCTION: HV_FAST_PCI_IOTSB_BIND 2488 * ARG0: devhandle 2489 * ARG1: iotsb_handle 2490 * ARG2: pci_device 2491 * RET0: status 2492 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or pci_device 2493 * EBUSY A PCI function is already bound to an IOTSB at the same 2494 * address range as specified by devhandle, iotsb_handle. 2495 * 2496 * This service binds the PCI function specified by the argument pci_device to 2497 * the IOTSB specified by the arguments devhandle and iotsb_handle. 2498 * 2499 * The PCI device function is bound to the specified IOTSB with the IOVA range 2500 * specified when the IOTSB was configured via pci_iotsb_conf. If the function 2501 * is already bound then it is unbound first. 2502 */ 2503 #define HV_FAST_PCI_IOTSB_BIND 0x193 2504 2505 /* pci_iotsb_unbind() 2506 * TRAP: HV_FAST_TRAP 2507 * FUNCTION: HV_FAST_PCI_IOTSB_UNBIND 2508 * ARG0: devhandle 2509 * ARG1: iotsb_handle 2510 * ARG2: pci_device 2511 * RET0: status 2512 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or pci_device 2513 * ENOMAP The PCI function was not bound to the specified IOTSB 2514 * 2515 * This service unbinds the PCI device specified by the argument pci_device 2516 * from the IOTSB identified * by the arguments devhandle and iotsb_handle. 2517 * 2518 * If the PCI device is not bound to the specified IOTSB then this service will 2519 * fail with status ENOMAP 2520 */ 2521 #define HV_FAST_PCI_IOTSB_UNBIND 0x194 2522 2523 /* pci_iotsb_get_binding() 2524 * TRAP: HV_FAST_TRAP 2525 * FUNCTION: HV_FAST_PCI_IOTSB_GET_BINDING 2526 * ARG0: devhandle 2527 * ARG1: iotsb_handle 2528 * ARG2: iova 2529 * RET0: status 2530 * RET1: iotsb_handle 2531 * ERRORS: EINVAL Invalid devhandle, pci_device, or iova 2532 * ENOMAP The PCI function is not bound to an IOTSB at iova 2533 * 2534 * This service returns the IOTSB binding, iotsb_handle, for a given pci_device 2535 * and DMA virtual address, iova. 2536 * 2537 * iova must be the base address of a DMA virtual address range as defined by 2538 * the iommu-address-ranges property in the root complex device node defined 2539 * by the argument devhandle. 2540 */ 2541 #define HV_FAST_PCI_IOTSB_GET_BINDING 0x195 2542 2543 /* pci_iotsb_map() 2544 * TRAP: HV_FAST_TRAP 2545 * FUNCTION: HV_FAST_PCI_IOTSB_MAP 2546 * ARG0: devhandle 2547 * ARG1: iotsb_handle 2548 * ARG2: index_count 2549 * ARG3: iotte_attributes 2550 * ARG4: io_page_list_p 2551 * RET0: status 2552 * RET1: #mapped 2553 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, #iottes, 2554 * iotsb_index or iotte_attributes 2555 * EBADALIGN Improperly aligned io_page_list_p or I/O page 2556 * address in the I/O page list. 2557 * ENORADDR Invalid io_page_list_p or I/O page address in 2558 * the I/O page list. 2559 * 2560 * This service creates and flushes mappings in the IOTSB defined by the 2561 * arguments devhandle, iotsb. 2562 * 2563 * The index_count argument consists of two fields. Bits 63:48 contain #iotte 2564 * and bits 47:0 contain iotsb_index 2565 * 2566 * The first mapping is created in the IOTSB index specified by iotsb_index. 2567 * Subsequent mappings are created at iotsb_index+1 and so on. 2568 * 2569 * The attributes of each mapping are defined by the argument iotte_attributes. 2570 * 2571 * The io_page_list_p specifies the real address of the 64-bit-aligned list of 2572 * #iottes I/O page addresses. Each page address must be a properly aligned 2573 * real address of a page to be mapped in the IOTSB. The first entry in the I/O 2574 * page list contains the real address of the first page, the 2nd entry for the 2575 * 2nd page, and so on. 2576 * 2577 * #iottes must be greater than zero. 2578 * 2579 * The return value #mapped is the actual number of mappings created, which may 2580 * be less than or equal to the argument #iottes. If the function returns 2581 * successfully with a #mapped value less than the requested #iottes then the 2582 * caller should continue to invoke the service with updated iotsb_index, 2583 * #iottes, and io_page_list_p arguments until all pages are mapped. 2584 * 2585 * This service must not be used to demap a mapping. In other words, all 2586 * mappings must be valid and have one or both of the RW attribute bits set. 2587 * 2588 * Note: 2589 * It is implementation-defined whether I/O page real address validity checking 2590 * is done at time mappings are established or deferred until they are 2591 * accessed. 2592 */ 2593 #define HV_FAST_PCI_IOTSB_MAP 0x196 2594 2595 /* pci_iotsb_map_one() 2596 * TRAP: HV_FAST_TRAP 2597 * FUNCTION: HV_FAST_PCI_IOTSB_MAP_ONE 2598 * ARG0: devhandle 2599 * ARG1: iotsb_handle 2600 * ARG2: iotsb_index 2601 * ARG3: iotte_attributes 2602 * ARG4: r_addr 2603 * RET0: status 2604 * ERRORS: EINVAL Invalid devhandle,iotsb_handle, iotsb_index 2605 * or iotte_attributes 2606 * EBADALIGN Improperly aligned r_addr 2607 * ENORADDR Invalid r_addr 2608 * 2609 * This service creates and flushes a single mapping in the IOTSB defined by the 2610 * arguments devhandle, iotsb. 2611 * 2612 * The mapping for the page at r_addr is created at the IOTSB index specified by 2613 * iotsb_index with the attributes iotte_attributes. 2614 * 2615 * This service must not be used to demap a mapping. In other words, the mapping 2616 * must be valid and have one or both of the RW attribute bits set. 2617 * 2618 * Note: 2619 * It is implementation-defined whether I/O page real address validity checking 2620 * is done at time mappings are established or deferred until they are 2621 * accessed. 2622 */ 2623 #define HV_FAST_PCI_IOTSB_MAP_ONE 0x197 2624 2625 /* pci_iotsb_demap() 2626 * TRAP: HV_FAST_TRAP 2627 * FUNCTION: HV_FAST_PCI_IOTSB_DEMAP 2628 * ARG0: devhandle 2629 * ARG1: iotsb_handle 2630 * ARG2: iotsb_index 2631 * ARG3: #iottes 2632 * RET0: status 2633 * RET1: #unmapped 2634 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, iotsb_index or #iottes 2635 * 2636 * This service unmaps and flushes up to #iottes mappings starting at index 2637 * iotsb_index from the IOTSB defined by the arguments devhandle, iotsb. 2638 * 2639 * #iottes must be greater than zero. 2640 * 2641 * The actual number of IOTTEs unmapped is returned in #unmapped and may be less 2642 * than or equal to the requested number of IOTTEs, #iottes. 2643 * 2644 * If #unmapped is less than #iottes, the caller should continue to invoke this 2645 * service with updated iotsb_index and #iottes arguments until all pages are 2646 * demapped. 2647 */ 2648 #define HV_FAST_PCI_IOTSB_DEMAP 0x198 2649 2650 /* pci_iotsb_getmap() 2651 * TRAP: HV_FAST_TRAP 2652 * FUNCTION: HV_FAST_PCI_IOTSB_GETMAP 2653 * ARG0: devhandle 2654 * ARG1: iotsb_handle 2655 * ARG2: iotsb_index 2656 * RET0: status 2657 * RET1: r_addr 2658 * RET2: iotte_attributes 2659 * ERRORS: EINVAL Invalid devhandle, iotsb_handle, or iotsb_index 2660 * ENOMAP No mapping was found 2661 * 2662 * This service returns the mapping specified by index iotsb_index from the 2663 * IOTSB defined by the arguments devhandle, iotsb. 2664 * 2665 * Upon success, the real address of the mapping shall be returned in 2666 * r_addr and thethe IOTTE mapping attributes shall be returned in 2667 * iotte_attributes. 2668 * 2669 * The return value iotte_attributes may not include optional features used in 2670 * the call to create the mapping. 2671 */ 2672 #define HV_FAST_PCI_IOTSB_GETMAP 0x199 2673 2674 /* pci_iotsb_sync_mappings() 2675 * TRAP: HV_FAST_TRAP 2676 * FUNCTION: HV_FAST_PCI_IOTSB_SYNC_MAPPINGS 2677 * ARG0: devhandle 2678 * ARG1: iotsb_handle 2679 * ARG2: iotsb_index 2680 * ARG3: #iottes 2681 * RET0: status 2682 * RET1: #synced 2683 * ERROS: EINVAL Invalid devhandle, iotsb_handle, iotsb_index, or #iottes 2684 * 2685 * This service synchronizes #iottes mappings starting at index iotsb_index in 2686 * the IOTSB defined by the arguments devhandle, iotsb. 2687 * 2688 * #iottes must be greater than zero. 2689 * 2690 * The actual number of IOTTEs synchronized is returned in #synced, which may 2691 * be less than or equal to the requested number, #iottes. 2692 * 2693 * Upon a successful return, #synced is less than #iottes, the caller should 2694 * continue to invoke this service with updated iotsb_index and #iottes 2695 * arguments until all pages are synchronized. 2696 */ 2697 #define HV_FAST_PCI_IOTSB_SYNC_MAPPINGS 0x19a 2698 2699 /* Logical Domain Channel services. */ 2700 2701 #define LDC_CHANNEL_DOWN 0 2702 #define LDC_CHANNEL_UP 1 2703 #define LDC_CHANNEL_RESETTING 2 2704 2705 /* ldc_tx_qconf() 2706 * TRAP: HV_FAST_TRAP 2707 * FUNCTION: HV_FAST_LDC_TX_QCONF 2708 * ARG0: channel ID 2709 * ARG1: real address base of queue 2710 * ARG2: num entries in queue 2711 * RET0: status 2712 * 2713 * Configure transmit queue for the LDC endpoint specified by the 2714 * given channel ID, to be placed at the given real address, and 2715 * be of the given num entries. Num entries must be a power of two. 2716 * The real address base of the queue must be aligned on the queue 2717 * size. Each queue entry is 64-bytes, so for example, a 32 entry 2718 * queue must be aligned on a 2048 byte real address boundary. 2719 * 2720 * Upon configuration of a valid transmit queue the head and tail 2721 * pointers are set to a hypervisor specific identical value indicating 2722 * that the queue initially is empty. 2723 * 2724 * The endpoint's transmit queue is un-configured if num entries is zero. 2725 * 2726 * The maximum number of entries for each queue for a specific cpu may be 2727 * determined from the machine description. A transmit queue may be 2728 * specified even in the event that the LDC is down (peer endpoint has no 2729 * receive queue specified). Transmission will begin as soon as the peer 2730 * endpoint defines a receive queue. 2731 * 2732 * It is recommended that a guest wait for a transmit queue to empty prior 2733 * to reconfiguring it, or un-configuring it. Re or un-configuring of a 2734 * non-empty transmit queue behaves exactly as defined above, however it 2735 * is undefined as to how many of the pending entries in the original queue 2736 * will be delivered prior to the re-configuration taking effect. 2737 * Furthermore, as the queue configuration causes a reset of the head and 2738 * tail pointers there is no way for a guest to determine how many entries 2739 * have been sent after the configuration operation. 2740 */ 2741 #define HV_FAST_LDC_TX_QCONF 0xe0 2742 2743 /* ldc_tx_qinfo() 2744 * TRAP: HV_FAST_TRAP 2745 * FUNCTION: HV_FAST_LDC_TX_QINFO 2746 * ARG0: channel ID 2747 * RET0: status 2748 * RET1: real address base of queue 2749 * RET2: num entries in queue 2750 * 2751 * Return the configuration info for the transmit queue of LDC endpoint 2752 * defined by the given channel ID. The real address is the currently 2753 * defined real address base of the defined queue, and num entries is the 2754 * size of the queue in terms of number of entries. 2755 * 2756 * If the specified channel ID is a valid endpoint number, but no transmit 2757 * queue has been defined this service will return success, but with num 2758 * entries set to zero and the real address will have an undefined value. 2759 */ 2760 #define HV_FAST_LDC_TX_QINFO 0xe1 2761 2762 /* ldc_tx_get_state() 2763 * TRAP: HV_FAST_TRAP 2764 * FUNCTION: HV_FAST_LDC_TX_GET_STATE 2765 * ARG0: channel ID 2766 * RET0: status 2767 * RET1: head offset 2768 * RET2: tail offset 2769 * RET3: channel state 2770 * 2771 * Return the transmit state, and the head and tail queue pointers, for 2772 * the transmit queue of the LDC endpoint defined by the given channel ID. 2773 * The head and tail values are the byte offset of the head and tail 2774 * positions of the transmit queue for the specified endpoint. 2775 */ 2776 #define HV_FAST_LDC_TX_GET_STATE 0xe2 2777 2778 /* ldc_tx_set_qtail() 2779 * TRAP: HV_FAST_TRAP 2780 * FUNCTION: HV_FAST_LDC_TX_SET_QTAIL 2781 * ARG0: channel ID 2782 * ARG1: tail offset 2783 * RET0: status 2784 * 2785 * Update the tail pointer for the transmit queue associated with the LDC 2786 * endpoint defined by the given channel ID. The tail offset specified 2787 * must be aligned on a 64 byte boundary, and calculated so as to increase 2788 * the number of pending entries on the transmit queue. Any attempt to 2789 * decrease the number of pending transmit queue entires is considered 2790 * an invalid tail offset and will result in an EINVAL error. 2791 * 2792 * Since the tail of the transmit queue may not be moved backwards, the 2793 * transmit queue may be flushed by configuring a new transmit queue, 2794 * whereupon the hypervisor will configure the initial transmit head and 2795 * tail pointers to be equal. 2796 */ 2797 #define HV_FAST_LDC_TX_SET_QTAIL 0xe3 2798 2799 /* ldc_rx_qconf() 2800 * TRAP: HV_FAST_TRAP 2801 * FUNCTION: HV_FAST_LDC_RX_QCONF 2802 * ARG0: channel ID 2803 * ARG1: real address base of queue 2804 * ARG2: num entries in queue 2805 * RET0: status 2806 * 2807 * Configure receive queue for the LDC endpoint specified by the 2808 * given channel ID, to be placed at the given real address, and 2809 * be of the given num entries. Num entries must be a power of two. 2810 * The real address base of the queue must be aligned on the queue 2811 * size. Each queue entry is 64-bytes, so for example, a 32 entry 2812 * queue must be aligned on a 2048 byte real address boundary. 2813 * 2814 * The endpoint's transmit queue is un-configured if num entries is zero. 2815 * 2816 * If a valid receive queue is specified for a local endpoint the LDC is 2817 * in the up state for the purpose of transmission to this endpoint. 2818 * 2819 * The maximum number of entries for each queue for a specific cpu may be 2820 * determined from the machine description. 2821 * 2822 * As receive queue configuration causes a reset of the queue's head and 2823 * tail pointers there is no way for a gues to determine how many entries 2824 * have been received between a preceding ldc_get_rx_state() API call 2825 * and the completion of the configuration operation. It should be noted 2826 * that datagram delivery is not guaranteed via domain channels anyway, 2827 * and therefore any higher protocol should be resilient to datagram 2828 * loss if necessary. However, to overcome this specific race potential 2829 * it is recommended, for example, that a higher level protocol be employed 2830 * to ensure either retransmission, or ensure that no datagrams are pending 2831 * on the peer endpoint's transmit queue prior to the configuration process. 2832 */ 2833 #define HV_FAST_LDC_RX_QCONF 0xe4 2834 2835 /* ldc_rx_qinfo() 2836 * TRAP: HV_FAST_TRAP 2837 * FUNCTION: HV_FAST_LDC_RX_QINFO 2838 * ARG0: channel ID 2839 * RET0: status 2840 * RET1: real address base of queue 2841 * RET2: num entries in queue 2842 * 2843 * Return the configuration info for the receive queue of LDC endpoint 2844 * defined by the given channel ID. The real address is the currently 2845 * defined real address base of the defined queue, and num entries is the 2846 * size of the queue in terms of number of entries. 2847 * 2848 * If the specified channel ID is a valid endpoint number, but no receive 2849 * queue has been defined this service will return success, but with num 2850 * entries set to zero and the real address will have an undefined value. 2851 */ 2852 #define HV_FAST_LDC_RX_QINFO 0xe5 2853 2854 /* ldc_rx_get_state() 2855 * TRAP: HV_FAST_TRAP 2856 * FUNCTION: HV_FAST_LDC_RX_GET_STATE 2857 * ARG0: channel ID 2858 * RET0: status 2859 * RET1: head offset 2860 * RET2: tail offset 2861 * RET3: channel state 2862 * 2863 * Return the receive state, and the head and tail queue pointers, for 2864 * the receive queue of the LDC endpoint defined by the given channel ID. 2865 * The head and tail values are the byte offset of the head and tail 2866 * positions of the receive queue for the specified endpoint. 2867 */ 2868 #define HV_FAST_LDC_RX_GET_STATE 0xe6 2869 2870 /* ldc_rx_set_qhead() 2871 * TRAP: HV_FAST_TRAP 2872 * FUNCTION: HV_FAST_LDC_RX_SET_QHEAD 2873 * ARG0: channel ID 2874 * ARG1: head offset 2875 * RET0: status 2876 * 2877 * Update the head pointer for the receive queue associated with the LDC 2878 * endpoint defined by the given channel ID. The head offset specified 2879 * must be aligned on a 64 byte boundary, and calculated so as to decrease 2880 * the number of pending entries on the receive queue. Any attempt to 2881 * increase the number of pending receive queue entires is considered 2882 * an invalid head offset and will result in an EINVAL error. 2883 * 2884 * The receive queue may be flushed by setting the head offset equal 2885 * to the current tail offset. 2886 */ 2887 #define HV_FAST_LDC_RX_SET_QHEAD 0xe7 2888 2889 /* LDC Map Table Entry. Each slot is defined by a translation table 2890 * entry, as specified by the LDC_MTE_* bits below, and a 64-bit 2891 * hypervisor invalidation cookie. 2892 */ 2893 #define LDC_MTE_PADDR 0x0fffffffffffe000 /* pa[55:13] */ 2894 #define LDC_MTE_COPY_W 0x0000000000000400 /* copy write access */ 2895 #define LDC_MTE_COPY_R 0x0000000000000200 /* copy read access */ 2896 #define LDC_MTE_IOMMU_W 0x0000000000000100 /* IOMMU write access */ 2897 #define LDC_MTE_IOMMU_R 0x0000000000000080 /* IOMMU read access */ 2898 #define LDC_MTE_EXEC 0x0000000000000040 /* execute */ 2899 #define LDC_MTE_WRITE 0x0000000000000020 /* read */ 2900 #define LDC_MTE_READ 0x0000000000000010 /* write */ 2901 #define LDC_MTE_SZALL 0x000000000000000f /* page size bits */ 2902 #define LDC_MTE_SZ16GB 0x0000000000000007 /* 16GB page */ 2903 #define LDC_MTE_SZ2GB 0x0000000000000006 /* 2GB page */ 2904 #define LDC_MTE_SZ256MB 0x0000000000000005 /* 256MB page */ 2905 #define LDC_MTE_SZ32MB 0x0000000000000004 /* 32MB page */ 2906 #define LDC_MTE_SZ4MB 0x0000000000000003 /* 4MB page */ 2907 #define LDC_MTE_SZ512K 0x0000000000000002 /* 512K page */ 2908 #define LDC_MTE_SZ64K 0x0000000000000001 /* 64K page */ 2909 #define LDC_MTE_SZ8K 0x0000000000000000 /* 8K page */ 2910 2911 #ifndef __ASSEMBLY__ 2912 struct ldc_mtable_entry { 2913 unsigned long mte; 2914 unsigned long cookie; 2915 }; 2916 #endif 2917 2918 /* ldc_set_map_table() 2919 * TRAP: HV_FAST_TRAP 2920 * FUNCTION: HV_FAST_LDC_SET_MAP_TABLE 2921 * ARG0: channel ID 2922 * ARG1: table real address 2923 * ARG2: num entries 2924 * RET0: status 2925 * 2926 * Register the MTE table at the given table real address, with the 2927 * specified num entries, for the LDC indicated by the given channel 2928 * ID. 2929 */ 2930 #define HV_FAST_LDC_SET_MAP_TABLE 0xea 2931 2932 /* ldc_get_map_table() 2933 * TRAP: HV_FAST_TRAP 2934 * FUNCTION: HV_FAST_LDC_GET_MAP_TABLE 2935 * ARG0: channel ID 2936 * RET0: status 2937 * RET1: table real address 2938 * RET2: num entries 2939 * 2940 * Return the configuration of the current mapping table registered 2941 * for the given channel ID. 2942 */ 2943 #define HV_FAST_LDC_GET_MAP_TABLE 0xeb 2944 2945 #define LDC_COPY_IN 0 2946 #define LDC_COPY_OUT 1 2947 2948 /* ldc_copy() 2949 * TRAP: HV_FAST_TRAP 2950 * FUNCTION: HV_FAST_LDC_COPY 2951 * ARG0: channel ID 2952 * ARG1: LDC_COPY_* direction code 2953 * ARG2: target real address 2954 * ARG3: local real address 2955 * ARG4: length in bytes 2956 * RET0: status 2957 * RET1: actual length in bytes 2958 */ 2959 #define HV_FAST_LDC_COPY 0xec 2960 2961 #define LDC_MEM_READ 1 2962 #define LDC_MEM_WRITE 2 2963 #define LDC_MEM_EXEC 4 2964 2965 /* ldc_mapin() 2966 * TRAP: HV_FAST_TRAP 2967 * FUNCTION: HV_FAST_LDC_MAPIN 2968 * ARG0: channel ID 2969 * ARG1: cookie 2970 * RET0: status 2971 * RET1: real address 2972 * RET2: LDC_MEM_* permissions 2973 */ 2974 #define HV_FAST_LDC_MAPIN 0xed 2975 2976 /* ldc_unmap() 2977 * TRAP: HV_FAST_TRAP 2978 * FUNCTION: HV_FAST_LDC_UNMAP 2979 * ARG0: real address 2980 * RET0: status 2981 */ 2982 #define HV_FAST_LDC_UNMAP 0xee 2983 2984 /* ldc_revoke() 2985 * TRAP: HV_FAST_TRAP 2986 * FUNCTION: HV_FAST_LDC_REVOKE 2987 * ARG0: channel ID 2988 * ARG1: cookie 2989 * ARG2: ldc_mtable_entry cookie 2990 * RET0: status 2991 */ 2992 #define HV_FAST_LDC_REVOKE 0xef 2993 2994 #ifndef __ASSEMBLY__ 2995 unsigned long sun4v_ldc_tx_qconf(unsigned long channel, 2996 unsigned long ra, 2997 unsigned long num_entries); 2998 unsigned long sun4v_ldc_tx_qinfo(unsigned long channel, 2999 unsigned long *ra, 3000 unsigned long *num_entries); 3001 unsigned long sun4v_ldc_tx_get_state(unsigned long channel, 3002 unsigned long *head_off, 3003 unsigned long *tail_off, 3004 unsigned long *chan_state); 3005 unsigned long sun4v_ldc_tx_set_qtail(unsigned long channel, 3006 unsigned long tail_off); 3007 unsigned long sun4v_ldc_rx_qconf(unsigned long channel, 3008 unsigned long ra, 3009 unsigned long num_entries); 3010 unsigned long sun4v_ldc_rx_qinfo(unsigned long channel, 3011 unsigned long *ra, 3012 unsigned long *num_entries); 3013 unsigned long sun4v_ldc_rx_get_state(unsigned long channel, 3014 unsigned long *head_off, 3015 unsigned long *tail_off, 3016 unsigned long *chan_state); 3017 unsigned long sun4v_ldc_rx_set_qhead(unsigned long channel, 3018 unsigned long head_off); 3019 unsigned long sun4v_ldc_set_map_table(unsigned long channel, 3020 unsigned long ra, 3021 unsigned long num_entries); 3022 unsigned long sun4v_ldc_get_map_table(unsigned long channel, 3023 unsigned long *ra, 3024 unsigned long *num_entries); 3025 unsigned long sun4v_ldc_copy(unsigned long channel, 3026 unsigned long dir_code, 3027 unsigned long tgt_raddr, 3028 unsigned long lcl_raddr, 3029 unsigned long len, 3030 unsigned long *actual_len); 3031 unsigned long sun4v_ldc_mapin(unsigned long channel, 3032 unsigned long cookie, 3033 unsigned long *ra, 3034 unsigned long *perm); 3035 unsigned long sun4v_ldc_unmap(unsigned long ra); 3036 unsigned long sun4v_ldc_revoke(unsigned long channel, 3037 unsigned long cookie, 3038 unsigned long mte_cookie); 3039 #endif 3040 3041 /* Performance counter services. */ 3042 3043 #define HV_PERF_JBUS_PERF_CTRL_REG 0x00 3044 #define HV_PERF_JBUS_PERF_CNT_REG 0x01 3045 #define HV_PERF_DRAM_PERF_CTRL_REG_0 0x02 3046 #define HV_PERF_DRAM_PERF_CNT_REG_0 0x03 3047 #define HV_PERF_DRAM_PERF_CTRL_REG_1 0x04 3048 #define HV_PERF_DRAM_PERF_CNT_REG_1 0x05 3049 #define HV_PERF_DRAM_PERF_CTRL_REG_2 0x06 3050 #define HV_PERF_DRAM_PERF_CNT_REG_2 0x07 3051 #define HV_PERF_DRAM_PERF_CTRL_REG_3 0x08 3052 #define HV_PERF_DRAM_PERF_CNT_REG_3 0x09 3053 3054 /* get_perfreg() 3055 * TRAP: HV_FAST_TRAP 3056 * FUNCTION: HV_FAST_GET_PERFREG 3057 * ARG0: performance reg number 3058 * RET0: status 3059 * RET1: performance reg value 3060 * ERRORS: EINVAL Invalid performance register number 3061 * ENOACCESS No access allowed to performance counters 3062 * 3063 * Read the value of the given DRAM/JBUS performance counter/control register. 3064 */ 3065 #define HV_FAST_GET_PERFREG 0x100 3066 3067 /* set_perfreg() 3068 * TRAP: HV_FAST_TRAP 3069 * FUNCTION: HV_FAST_SET_PERFREG 3070 * ARG0: performance reg number 3071 * ARG1: performance reg value 3072 * RET0: status 3073 * ERRORS: EINVAL Invalid performance register number 3074 * ENOACCESS No access allowed to performance counters 3075 * 3076 * Write the given performance reg value to the given DRAM/JBUS 3077 * performance counter/control register. 3078 */ 3079 #define HV_FAST_SET_PERFREG 0x101 3080 3081 #define HV_N2_PERF_SPARC_CTL 0x0 3082 #define HV_N2_PERF_DRAM_CTL0 0x1 3083 #define HV_N2_PERF_DRAM_CNT0 0x2 3084 #define HV_N2_PERF_DRAM_CTL1 0x3 3085 #define HV_N2_PERF_DRAM_CNT1 0x4 3086 #define HV_N2_PERF_DRAM_CTL2 0x5 3087 #define HV_N2_PERF_DRAM_CNT2 0x6 3088 #define HV_N2_PERF_DRAM_CTL3 0x7 3089 #define HV_N2_PERF_DRAM_CNT3 0x8 3090 3091 #define HV_FAST_N2_GET_PERFREG 0x104 3092 #define HV_FAST_N2_SET_PERFREG 0x105 3093 3094 #ifndef __ASSEMBLY__ 3095 unsigned long sun4v_niagara_getperf(unsigned long reg, 3096 unsigned long *val); 3097 unsigned long sun4v_niagara_setperf(unsigned long reg, 3098 unsigned long val); 3099 unsigned long sun4v_niagara2_getperf(unsigned long reg, 3100 unsigned long *val); 3101 unsigned long sun4v_niagara2_setperf(unsigned long reg, 3102 unsigned long val); 3103 #endif 3104 3105 /* MMU statistics services. 3106 * 3107 * The hypervisor maintains MMU statistics and privileged code provides 3108 * a buffer where these statistics can be collected. It is continually 3109 * updated once configured. The layout is as follows: 3110 */ 3111 #ifndef __ASSEMBLY__ 3112 struct hv_mmu_statistics { 3113 unsigned long immu_tsb_hits_ctx0_8k_tte; 3114 unsigned long immu_tsb_ticks_ctx0_8k_tte; 3115 unsigned long immu_tsb_hits_ctx0_64k_tte; 3116 unsigned long immu_tsb_ticks_ctx0_64k_tte; 3117 unsigned long __reserved1[2]; 3118 unsigned long immu_tsb_hits_ctx0_4mb_tte; 3119 unsigned long immu_tsb_ticks_ctx0_4mb_tte; 3120 unsigned long __reserved2[2]; 3121 unsigned long immu_tsb_hits_ctx0_256mb_tte; 3122 unsigned long immu_tsb_ticks_ctx0_256mb_tte; 3123 unsigned long __reserved3[4]; 3124 unsigned long immu_tsb_hits_ctxnon0_8k_tte; 3125 unsigned long immu_tsb_ticks_ctxnon0_8k_tte; 3126 unsigned long immu_tsb_hits_ctxnon0_64k_tte; 3127 unsigned long immu_tsb_ticks_ctxnon0_64k_tte; 3128 unsigned long __reserved4[2]; 3129 unsigned long immu_tsb_hits_ctxnon0_4mb_tte; 3130 unsigned long immu_tsb_ticks_ctxnon0_4mb_tte; 3131 unsigned long __reserved5[2]; 3132 unsigned long immu_tsb_hits_ctxnon0_256mb_tte; 3133 unsigned long immu_tsb_ticks_ctxnon0_256mb_tte; 3134 unsigned long __reserved6[4]; 3135 unsigned long dmmu_tsb_hits_ctx0_8k_tte; 3136 unsigned long dmmu_tsb_ticks_ctx0_8k_tte; 3137 unsigned long dmmu_tsb_hits_ctx0_64k_tte; 3138 unsigned long dmmu_tsb_ticks_ctx0_64k_tte; 3139 unsigned long __reserved7[2]; 3140 unsigned long dmmu_tsb_hits_ctx0_4mb_tte; 3141 unsigned long dmmu_tsb_ticks_ctx0_4mb_tte; 3142 unsigned long __reserved8[2]; 3143 unsigned long dmmu_tsb_hits_ctx0_256mb_tte; 3144 unsigned long dmmu_tsb_ticks_ctx0_256mb_tte; 3145 unsigned long __reserved9[4]; 3146 unsigned long dmmu_tsb_hits_ctxnon0_8k_tte; 3147 unsigned long dmmu_tsb_ticks_ctxnon0_8k_tte; 3148 unsigned long dmmu_tsb_hits_ctxnon0_64k_tte; 3149 unsigned long dmmu_tsb_ticks_ctxnon0_64k_tte; 3150 unsigned long __reserved10[2]; 3151 unsigned long dmmu_tsb_hits_ctxnon0_4mb_tte; 3152 unsigned long dmmu_tsb_ticks_ctxnon0_4mb_tte; 3153 unsigned long __reserved11[2]; 3154 unsigned long dmmu_tsb_hits_ctxnon0_256mb_tte; 3155 unsigned long dmmu_tsb_ticks_ctxnon0_256mb_tte; 3156 unsigned long __reserved12[4]; 3157 }; 3158 #endif 3159 3160 /* mmustat_conf() 3161 * TRAP: HV_FAST_TRAP 3162 * FUNCTION: HV_FAST_MMUSTAT_CONF 3163 * ARG0: real address 3164 * RET0: status 3165 * RET1: real address 3166 * ERRORS: ENORADDR Invalid real address 3167 * EBADALIGN Real address not aligned on 64-byte boundary 3168 * EBADTRAP API not supported on this processor 3169 * 3170 * Enable MMU statistic gathering using the buffer at the given real 3171 * address on the current virtual CPU. The new buffer real address 3172 * is given in ARG1, and the previously specified buffer real address 3173 * is returned in RET1, or is returned as zero for the first invocation. 3174 * 3175 * If the passed in real address argument is zero, this will disable 3176 * MMU statistic collection on the current virtual CPU. If an error is 3177 * returned then no statistics are collected. 3178 * 3179 * The buffer contents should be initialized to all zeros before being 3180 * given to the hypervisor or else the statistics will be meaningless. 3181 */ 3182 #define HV_FAST_MMUSTAT_CONF 0x102 3183 3184 /* mmustat_info() 3185 * TRAP: HV_FAST_TRAP 3186 * FUNCTION: HV_FAST_MMUSTAT_INFO 3187 * RET0: status 3188 * RET1: real address 3189 * ERRORS: EBADTRAP API not supported on this processor 3190 * 3191 * Return the current state and real address of the currently configured 3192 * MMU statistics buffer on the current virtual CPU. 3193 */ 3194 #define HV_FAST_MMUSTAT_INFO 0x103 3195 3196 #ifndef __ASSEMBLY__ 3197 unsigned long sun4v_mmustat_conf(unsigned long ra, unsigned long *orig_ra); 3198 unsigned long sun4v_mmustat_info(unsigned long *ra); 3199 #endif 3200 3201 /* NCS crypto services */ 3202 3203 /* ncs_request() sub-function numbers */ 3204 #define HV_NCS_QCONF 0x01 3205 #define HV_NCS_QTAIL_UPDATE 0x02 3206 3207 #ifndef __ASSEMBLY__ 3208 struct hv_ncs_queue_entry { 3209 /* MAU Control Register */ 3210 unsigned long mau_control; 3211 #define MAU_CONTROL_INV_PARITY 0x0000000000002000 3212 #define MAU_CONTROL_STRAND 0x0000000000001800 3213 #define MAU_CONTROL_BUSY 0x0000000000000400 3214 #define MAU_CONTROL_INT 0x0000000000000200 3215 #define MAU_CONTROL_OP 0x00000000000001c0 3216 #define MAU_CONTROL_OP_SHIFT 6 3217 #define MAU_OP_LOAD_MA_MEMORY 0x0 3218 #define MAU_OP_STORE_MA_MEMORY 0x1 3219 #define MAU_OP_MODULAR_MULT 0x2 3220 #define MAU_OP_MODULAR_REDUCE 0x3 3221 #define MAU_OP_MODULAR_EXP_LOOP 0x4 3222 #define MAU_CONTROL_LEN 0x000000000000003f 3223 #define MAU_CONTROL_LEN_SHIFT 0 3224 3225 /* Real address of bytes to load or store bytes 3226 * into/out-of the MAU. 3227 */ 3228 unsigned long mau_mpa; 3229 3230 /* Modular Arithmetic MA Offset Register. */ 3231 unsigned long mau_ma; 3232 3233 /* Modular Arithmetic N Prime Register. */ 3234 unsigned long mau_np; 3235 }; 3236 3237 struct hv_ncs_qconf_arg { 3238 unsigned long mid; /* MAU ID, 1 per core on Niagara */ 3239 unsigned long base; /* Real address base of queue */ 3240 unsigned long end; /* Real address end of queue */ 3241 unsigned long num_ents; /* Number of entries in queue */ 3242 }; 3243 3244 struct hv_ncs_qtail_update_arg { 3245 unsigned long mid; /* MAU ID, 1 per core on Niagara */ 3246 unsigned long tail; /* New tail index to use */ 3247 unsigned long syncflag; /* only SYNCFLAG_SYNC is implemented */ 3248 #define HV_NCS_SYNCFLAG_SYNC 0x00 3249 #define HV_NCS_SYNCFLAG_ASYNC 0x01 3250 }; 3251 #endif 3252 3253 /* ncs_request() 3254 * TRAP: HV_FAST_TRAP 3255 * FUNCTION: HV_FAST_NCS_REQUEST 3256 * ARG0: NCS sub-function 3257 * ARG1: sub-function argument real address 3258 * ARG2: size in bytes of sub-function argument 3259 * RET0: status 3260 * 3261 * The MAU chip of the Niagara processor is not directly accessible 3262 * to privileged code, instead it is programmed indirectly via this 3263 * hypervisor API. 3264 * 3265 * The interfaces defines a queue of MAU operations to perform. 3266 * Privileged code registers a queue with the hypervisor by invoking 3267 * this HVAPI with the HV_NCS_QCONF sub-function, which defines the 3268 * base, end, and number of entries of the queue. Each queue entry 3269 * contains a MAU register struct block. 3270 * 3271 * The privileged code then proceeds to add entries to the queue and 3272 * then invoke the HV_NCS_QTAIL_UPDATE sub-function. Since only 3273 * synchronous operations are supported by the current hypervisor, 3274 * HV_NCS_QTAIL_UPDATE will run all the pending queue entries to 3275 * completion and return HV_EOK, or return an error code. 3276 * 3277 * The real address of the sub-function argument must be aligned on at 3278 * least an 8-byte boundary. 3279 * 3280 * The tail argument of HV_NCS_QTAIL_UPDATE is an index, not a byte 3281 * offset, into the queue and must be less than or equal the 'num_ents' 3282 * argument given in the HV_NCS_QCONF call. 3283 */ 3284 #define HV_FAST_NCS_REQUEST 0x110 3285 3286 #ifndef __ASSEMBLY__ 3287 unsigned long sun4v_ncs_request(unsigned long request, 3288 unsigned long arg_ra, 3289 unsigned long arg_size); 3290 #endif 3291 3292 #define HV_FAST_FIRE_GET_PERFREG 0x120 3293 #define HV_FAST_FIRE_SET_PERFREG 0x121 3294 3295 #define HV_FAST_REBOOT_DATA_SET 0x172 3296 3297 #ifndef __ASSEMBLY__ 3298 unsigned long sun4v_reboot_data_set(unsigned long ra, 3299 unsigned long len); 3300 #endif 3301 3302 #define HV_FAST_VT_GET_PERFREG 0x184 3303 #define HV_FAST_VT_SET_PERFREG 0x185 3304 3305 #ifndef __ASSEMBLY__ 3306 unsigned long sun4v_vt_get_perfreg(unsigned long reg_num, 3307 unsigned long *reg_val); 3308 unsigned long sun4v_vt_set_perfreg(unsigned long reg_num, 3309 unsigned long reg_val); 3310 #endif 3311 3312 #define HV_FAST_T5_GET_PERFREG 0x1a8 3313 #define HV_FAST_T5_SET_PERFREG 0x1a9 3314 3315 #ifndef __ASSEMBLY__ 3316 unsigned long sun4v_t5_get_perfreg(unsigned long reg_num, 3317 unsigned long *reg_val); 3318 unsigned long sun4v_t5_set_perfreg(unsigned long reg_num, 3319 unsigned long reg_val); 3320 #endif 3321 3322 3323 #define HV_FAST_M7_GET_PERFREG 0x43 3324 #define HV_FAST_M7_SET_PERFREG 0x44 3325 3326 #ifndef __ASSEMBLY__ 3327 unsigned long sun4v_m7_get_perfreg(unsigned long reg_num, 3328 unsigned long *reg_val); 3329 unsigned long sun4v_m7_set_perfreg(unsigned long reg_num, 3330 unsigned long reg_val); 3331 #endif 3332 3333 /* Function numbers for HV_CORE_TRAP. */ 3334 #define HV_CORE_SET_VER 0x00 3335 #define HV_CORE_PUTCHAR 0x01 3336 #define HV_CORE_EXIT 0x02 3337 #define HV_CORE_GET_VER 0x03 3338 3339 /* Hypervisor API groups for use with HV_CORE_SET_VER and 3340 * HV_CORE_GET_VER. 3341 */ 3342 #define HV_GRP_SUN4V 0x0000 3343 #define HV_GRP_CORE 0x0001 3344 #define HV_GRP_INTR 0x0002 3345 #define HV_GRP_SOFT_STATE 0x0003 3346 #define HV_GRP_TM 0x0080 3347 #define HV_GRP_PCI 0x0100 3348 #define HV_GRP_LDOM 0x0101 3349 #define HV_GRP_SVC_CHAN 0x0102 3350 #define HV_GRP_NCS 0x0103 3351 #define HV_GRP_RNG 0x0104 3352 #define HV_GRP_PBOOT 0x0105 3353 #define HV_GRP_TPM 0x0107 3354 #define HV_GRP_SDIO 0x0108 3355 #define HV_GRP_SDIO_ERR 0x0109 3356 #define HV_GRP_REBOOT_DATA 0x0110 3357 #define HV_GRP_ATU 0x0111 3358 #define HV_GRP_M7_PERF 0x0114 3359 #define HV_GRP_NIAG_PERF 0x0200 3360 #define HV_GRP_FIRE_PERF 0x0201 3361 #define HV_GRP_N2_CPU 0x0202 3362 #define HV_GRP_NIU 0x0204 3363 #define HV_GRP_VF_CPU 0x0205 3364 #define HV_GRP_KT_CPU 0x0209 3365 #define HV_GRP_VT_CPU 0x020c 3366 #define HV_GRP_T5_CPU 0x0211 3367 #define HV_GRP_DIAG 0x0300 3368 3369 #ifndef __ASSEMBLY__ 3370 unsigned long sun4v_get_version(unsigned long group, 3371 unsigned long *major, 3372 unsigned long *minor); 3373 unsigned long sun4v_set_version(unsigned long group, 3374 unsigned long major, 3375 unsigned long minor, 3376 unsigned long *actual_minor); 3377 3378 int sun4v_hvapi_register(unsigned long group, unsigned long major, 3379 unsigned long *minor); 3380 void sun4v_hvapi_unregister(unsigned long group); 3381 int sun4v_hvapi_get(unsigned long group, 3382 unsigned long *major, 3383 unsigned long *minor); 3384 void sun4v_hvapi_init(void); 3385 #endif 3386 3387 #endif /* !(_SPARC64_HYPERVISOR_H) */ 3388