1 /*
2 * Copyright (C) 2014-2015 Broadcom Corporation
3 * Copyright 2014 Linaro Limited
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
8 *
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/errno.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/jiffies.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/sched.h>
24 #include <linux/sched/clock.h>
25 #include <linux/smp.h>
26
27 #include <asm/cacheflush.h>
28 #include <asm/smp.h>
29 #include <asm/smp_plat.h>
30 #include <asm/smp_scu.h>
31
32 /* Size of mapped Cortex A9 SCU address space */
33 #define CORTEX_A9_SCU_SIZE 0x58
34
35 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
36 #define BOOT_ADDR_CPUID_MASK 0x3
37
38 /* Name of device node property defining secondary boot register location */
39 #define OF_SECONDARY_BOOT "secondary-boot-reg"
40 #define MPIDR_CPUID_BITMASK 0x3
41
42 /*
43 * Enable the Cortex A9 Snoop Control Unit
44 *
45 * By the time this is called we already know there are multiple
46 * cores present. We assume we're running on a Cortex A9 processor,
47 * so any trouble getting the base address register or getting the
48 * SCU base is a problem.
49 *
50 * Return 0 if successful or an error code otherwise.
51 */
scu_a9_enable(void)52 static int __init scu_a9_enable(void)
53 {
54 unsigned long config_base;
55 void __iomem *scu_base;
56
57 if (!scu_a9_has_base()) {
58 pr_err("no configuration base address register!\n");
59 return -ENXIO;
60 }
61
62 /* Config base address register value is zero for uniprocessor */
63 config_base = scu_a9_get_base();
64 if (!config_base) {
65 pr_err("hardware reports only one core\n");
66 return -ENOENT;
67 }
68
69 scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
70 if (!scu_base) {
71 pr_err("failed to remap config base (%lu/%u) for SCU\n",
72 config_base, CORTEX_A9_SCU_SIZE);
73 return -ENOMEM;
74 }
75
76 scu_enable(scu_base);
77
78 iounmap(scu_base); /* That's the last we'll need of this */
79
80 return 0;
81 }
82
secondary_boot_addr_for(unsigned int cpu)83 static u32 secondary_boot_addr_for(unsigned int cpu)
84 {
85 u32 secondary_boot_addr = 0;
86 struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
87
88 if (!cpu_node) {
89 pr_err("Failed to find device tree node for CPU%u\n", cpu);
90 return 0;
91 }
92
93 if (of_property_read_u32(cpu_node,
94 OF_SECONDARY_BOOT,
95 &secondary_boot_addr))
96 pr_err("required secondary boot register not specified for CPU%u\n",
97 cpu);
98
99 of_node_put(cpu_node);
100
101 return secondary_boot_addr;
102 }
103
nsp_write_lut(unsigned int cpu)104 static int nsp_write_lut(unsigned int cpu)
105 {
106 void __iomem *sku_rom_lut;
107 phys_addr_t secondary_startup_phy;
108 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
109
110 if (!secondary_boot_addr)
111 return -EINVAL;
112
113 sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
114 sizeof(phys_addr_t));
115 if (!sku_rom_lut) {
116 pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
117 return -ENOMEM;
118 }
119
120 secondary_startup_phy = __pa_symbol(secondary_startup);
121 BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
122
123 writel_relaxed(secondary_startup_phy, sku_rom_lut);
124
125 /* Ensure the write is visible to the secondary core */
126 smp_wmb();
127
128 iounmap(sku_rom_lut);
129
130 return 0;
131 }
132
bcm_smp_prepare_cpus(unsigned int max_cpus)133 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
134 {
135 const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
136
137 /* Enable the SCU on Cortex A9 based SoCs */
138 if (scu_a9_enable()) {
139 /* Update the CPU present map to reflect uniprocessor mode */
140 pr_warn("failed to enable A9 SCU - disabling SMP\n");
141 init_cpu_present(&only_cpu_0);
142 }
143 }
144
145 /*
146 * The ROM code has the secondary cores looping, waiting for an event.
147 * When an event occurs each core examines the bottom two bits of the
148 * secondary boot register. When a core finds those bits contain its
149 * own core id, it performs initialization, including computing its boot
150 * address by clearing the boot register value's bottom two bits. The
151 * core signals that it is beginning its execution by writing its boot
152 * address back to the secondary boot register, and finally jumps to
153 * that address.
154 *
155 * So to start a core executing we need to:
156 * - Encode the (hardware) CPU id with the bottom bits of the secondary
157 * start address.
158 * - Write that value into the secondary boot register.
159 * - Generate an event to wake up the secondary CPU(s).
160 * - Wait for the secondary boot register to be re-written, which
161 * indicates the secondary core has started.
162 */
kona_boot_secondary(unsigned int cpu,struct task_struct * idle)163 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
164 {
165 void __iomem *boot_reg;
166 phys_addr_t boot_func;
167 u64 start_clock;
168 u32 cpu_id;
169 u32 boot_val;
170 bool timeout = false;
171 const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
172
173 cpu_id = cpu_logical_map(cpu);
174 if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
175 pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
176 return -EINVAL;
177 }
178
179 if (!secondary_boot_addr)
180 return -EINVAL;
181
182 boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
183 sizeof(phys_addr_t));
184 if (!boot_reg) {
185 pr_err("unable to map boot register for cpu %u\n", cpu_id);
186 return -ENOMEM;
187 }
188
189 /*
190 * Secondary cores will start in secondary_startup(),
191 * defined in "arch/arm/kernel/head.S"
192 */
193 boot_func = __pa_symbol(secondary_startup);
194 BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
195 BUG_ON(boot_func > (phys_addr_t)U32_MAX);
196
197 /* The core to start is encoded in the low bits */
198 boot_val = (u32)boot_func | cpu_id;
199 writel_relaxed(boot_val, boot_reg);
200
201 sev();
202
203 /* The low bits will be cleared once the core has started */
204 start_clock = local_clock();
205 while (!timeout && readl_relaxed(boot_reg) == boot_val)
206 timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
207
208 iounmap(boot_reg);
209
210 if (!timeout)
211 return 0;
212
213 pr_err("timeout waiting for cpu %u to start\n", cpu_id);
214
215 return -ENXIO;
216 }
217
218 /* Cluster Dormant Control command to bring CPU into a running state */
219 #define CDC_CMD 6
220 #define CDC_CMD_OFFSET 0
221 #define CDC_CMD_REG(cpu) (CDC_CMD_OFFSET + 4*(cpu))
222
223 /*
224 * BCM23550 has a Cluster Dormant Control block that keeps the core in
225 * idle state. A command needs to be sent to the block to bring the CPU
226 * into running state.
227 */
bcm23550_boot_secondary(unsigned int cpu,struct task_struct * idle)228 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
229 {
230 void __iomem *cdc_base;
231 struct device_node *dn;
232 char *name;
233 int ret;
234
235 /* Make sure a CDC node exists before booting the
236 * secondary core.
237 */
238 name = "brcm,bcm23550-cdc";
239 dn = of_find_compatible_node(NULL, NULL, name);
240 if (!dn) {
241 pr_err("unable to find cdc node\n");
242 return -ENODEV;
243 }
244
245 cdc_base = of_iomap(dn, 0);
246 of_node_put(dn);
247
248 if (!cdc_base) {
249 pr_err("unable to remap cdc base register\n");
250 return -ENOMEM;
251 }
252
253 /* Boot the secondary core */
254 ret = kona_boot_secondary(cpu, idle);
255 if (ret)
256 goto out;
257
258 /* Bring this CPU to RUN state so that nIRQ nFIQ
259 * signals are unblocked.
260 */
261 writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
262
263 out:
264 iounmap(cdc_base);
265
266 return ret;
267 }
268
nsp_boot_secondary(unsigned int cpu,struct task_struct * idle)269 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
270 {
271 int ret;
272
273 /*
274 * After wake up, secondary core branches to the startup
275 * address programmed at SKU ROM LUT location.
276 */
277 ret = nsp_write_lut(cpu);
278 if (ret) {
279 pr_err("unable to write startup addr to SKU ROM LUT\n");
280 goto out;
281 }
282
283 /* Send a CPU wakeup interrupt to the secondary core */
284 arch_send_wakeup_ipi_mask(cpumask_of(cpu));
285
286 out:
287 return ret;
288 }
289
290 static const struct smp_operations kona_smp_ops __initconst = {
291 .smp_prepare_cpus = bcm_smp_prepare_cpus,
292 .smp_boot_secondary = kona_boot_secondary,
293 };
294 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
295 &kona_smp_ops);
296
297 static const struct smp_operations bcm23550_smp_ops __initconst = {
298 .smp_boot_secondary = bcm23550_boot_secondary,
299 };
300 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
301 &bcm23550_smp_ops);
302
303 static const struct smp_operations nsp_smp_ops __initconst = {
304 .smp_prepare_cpus = bcm_smp_prepare_cpus,
305 .smp_boot_secondary = nsp_boot_secondary,
306 };
307 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
308