• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014-2015 Broadcom Corporation
3  * Copyright 2014 Linaro Limited
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation version 2.
8  *
9  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10  * kind, whether express or implied; without even the implied warranty
11  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/errno.h>
18 #include <linux/init.h>
19 #include <linux/io.h>
20 #include <linux/jiffies.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/sched.h>
24 #include <linux/sched/clock.h>
25 #include <linux/smp.h>
26 
27 #include <asm/cacheflush.h>
28 #include <asm/smp.h>
29 #include <asm/smp_plat.h>
30 #include <asm/smp_scu.h>
31 
32 /* Size of mapped Cortex A9 SCU address space */
33 #define CORTEX_A9_SCU_SIZE	0x58
34 
35 #define SECONDARY_TIMEOUT_NS	NSEC_PER_MSEC	/* 1 msec (in nanoseconds) */
36 #define BOOT_ADDR_CPUID_MASK	0x3
37 
38 /* Name of device node property defining secondary boot register location */
39 #define OF_SECONDARY_BOOT	"secondary-boot-reg"
40 #define MPIDR_CPUID_BITMASK	0x3
41 
42 /*
43  * Enable the Cortex A9 Snoop Control Unit
44  *
45  * By the time this is called we already know there are multiple
46  * cores present.  We assume we're running on a Cortex A9 processor,
47  * so any trouble getting the base address register or getting the
48  * SCU base is a problem.
49  *
50  * Return 0 if successful or an error code otherwise.
51  */
scu_a9_enable(void)52 static int __init scu_a9_enable(void)
53 {
54 	unsigned long config_base;
55 	void __iomem *scu_base;
56 
57 	if (!scu_a9_has_base()) {
58 		pr_err("no configuration base address register!\n");
59 		return -ENXIO;
60 	}
61 
62 	/* Config base address register value is zero for uniprocessor */
63 	config_base = scu_a9_get_base();
64 	if (!config_base) {
65 		pr_err("hardware reports only one core\n");
66 		return -ENOENT;
67 	}
68 
69 	scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
70 	if (!scu_base) {
71 		pr_err("failed to remap config base (%lu/%u) for SCU\n",
72 			config_base, CORTEX_A9_SCU_SIZE);
73 		return -ENOMEM;
74 	}
75 
76 	scu_enable(scu_base);
77 
78 	iounmap(scu_base);	/* That's the last we'll need of this */
79 
80 	return 0;
81 }
82 
secondary_boot_addr_for(unsigned int cpu)83 static u32 secondary_boot_addr_for(unsigned int cpu)
84 {
85 	u32 secondary_boot_addr = 0;
86 	struct device_node *cpu_node = of_get_cpu_node(cpu, NULL);
87 
88         if (!cpu_node) {
89 		pr_err("Failed to find device tree node for CPU%u\n", cpu);
90 		return 0;
91 	}
92 
93 	if (of_property_read_u32(cpu_node,
94 				 OF_SECONDARY_BOOT,
95 				 &secondary_boot_addr))
96 		pr_err("required secondary boot register not specified for CPU%u\n",
97 			cpu);
98 
99 	of_node_put(cpu_node);
100 
101 	return secondary_boot_addr;
102 }
103 
nsp_write_lut(unsigned int cpu)104 static int nsp_write_lut(unsigned int cpu)
105 {
106 	void __iomem *sku_rom_lut;
107 	phys_addr_t secondary_startup_phy;
108 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
109 
110 	if (!secondary_boot_addr)
111 		return -EINVAL;
112 
113 	sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
114 				      sizeof(phys_addr_t));
115 	if (!sku_rom_lut) {
116 		pr_warn("unable to ioremap SKU-ROM LUT register for cpu %u\n", cpu);
117 		return -ENOMEM;
118 	}
119 
120 	secondary_startup_phy = __pa_symbol(secondary_startup);
121 	BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
122 
123 	writel_relaxed(secondary_startup_phy, sku_rom_lut);
124 
125 	/* Ensure the write is visible to the secondary core */
126 	smp_wmb();
127 
128 	iounmap(sku_rom_lut);
129 
130 	return 0;
131 }
132 
bcm_smp_prepare_cpus(unsigned int max_cpus)133 static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
134 {
135 	const cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
136 
137 	/* Enable the SCU on Cortex A9 based SoCs */
138 	if (scu_a9_enable()) {
139 		/* Update the CPU present map to reflect uniprocessor mode */
140 		pr_warn("failed to enable A9 SCU - disabling SMP\n");
141 		init_cpu_present(&only_cpu_0);
142 	}
143 }
144 
145 /*
146  * The ROM code has the secondary cores looping, waiting for an event.
147  * When an event occurs each core examines the bottom two bits of the
148  * secondary boot register.  When a core finds those bits contain its
149  * own core id, it performs initialization, including computing its boot
150  * address by clearing the boot register value's bottom two bits.  The
151  * core signals that it is beginning its execution by writing its boot
152  * address back to the secondary boot register, and finally jumps to
153  * that address.
154  *
155  * So to start a core executing we need to:
156  * - Encode the (hardware) CPU id with the bottom bits of the secondary
157  *   start address.
158  * - Write that value into the secondary boot register.
159  * - Generate an event to wake up the secondary CPU(s).
160  * - Wait for the secondary boot register to be re-written, which
161  *   indicates the secondary core has started.
162  */
kona_boot_secondary(unsigned int cpu,struct task_struct * idle)163 static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
164 {
165 	void __iomem *boot_reg;
166 	phys_addr_t boot_func;
167 	u64 start_clock;
168 	u32 cpu_id;
169 	u32 boot_val;
170 	bool timeout = false;
171 	const u32 secondary_boot_addr = secondary_boot_addr_for(cpu);
172 
173 	cpu_id = cpu_logical_map(cpu);
174 	if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
175 		pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
176 		return -EINVAL;
177 	}
178 
179 	if (!secondary_boot_addr)
180 		return -EINVAL;
181 
182 	boot_reg = ioremap_nocache((phys_addr_t)secondary_boot_addr,
183 				   sizeof(phys_addr_t));
184 	if (!boot_reg) {
185 		pr_err("unable to map boot register for cpu %u\n", cpu_id);
186 		return -ENOMEM;
187 	}
188 
189 	/*
190 	 * Secondary cores will start in secondary_startup(),
191 	 * defined in "arch/arm/kernel/head.S"
192 	 */
193 	boot_func = __pa_symbol(secondary_startup);
194 	BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
195 	BUG_ON(boot_func > (phys_addr_t)U32_MAX);
196 
197 	/* The core to start is encoded in the low bits */
198 	boot_val = (u32)boot_func | cpu_id;
199 	writel_relaxed(boot_val, boot_reg);
200 
201 	sev();
202 
203 	/* The low bits will be cleared once the core has started */
204 	start_clock = local_clock();
205 	while (!timeout && readl_relaxed(boot_reg) == boot_val)
206 		timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
207 
208 	iounmap(boot_reg);
209 
210 	if (!timeout)
211 		return 0;
212 
213 	pr_err("timeout waiting for cpu %u to start\n", cpu_id);
214 
215 	return -ENXIO;
216 }
217 
218 /* Cluster Dormant Control command to bring CPU into a running state */
219 #define CDC_CMD			6
220 #define CDC_CMD_OFFSET		0
221 #define CDC_CMD_REG(cpu)	(CDC_CMD_OFFSET + 4*(cpu))
222 
223 /*
224  * BCM23550 has a Cluster Dormant Control block that keeps the core in
225  * idle state. A command needs to be sent to the block to bring the CPU
226  * into running state.
227  */
bcm23550_boot_secondary(unsigned int cpu,struct task_struct * idle)228 static int bcm23550_boot_secondary(unsigned int cpu, struct task_struct *idle)
229 {
230 	void __iomem *cdc_base;
231 	struct device_node *dn;
232 	char *name;
233 	int ret;
234 
235 	/* Make sure a CDC node exists before booting the
236 	 * secondary core.
237 	 */
238 	name = "brcm,bcm23550-cdc";
239 	dn = of_find_compatible_node(NULL, NULL, name);
240 	if (!dn) {
241 		pr_err("unable to find cdc node\n");
242 		return -ENODEV;
243 	}
244 
245 	cdc_base = of_iomap(dn, 0);
246 	of_node_put(dn);
247 
248 	if (!cdc_base) {
249 		pr_err("unable to remap cdc base register\n");
250 		return -ENOMEM;
251 	}
252 
253 	/* Boot the secondary core */
254 	ret = kona_boot_secondary(cpu, idle);
255 	if (ret)
256 		goto out;
257 
258 	/* Bring this CPU to RUN state so that nIRQ nFIQ
259 	 * signals are unblocked.
260 	 */
261 	writel_relaxed(CDC_CMD, cdc_base + CDC_CMD_REG(cpu));
262 
263 out:
264 	iounmap(cdc_base);
265 
266 	return ret;
267 }
268 
nsp_boot_secondary(unsigned int cpu,struct task_struct * idle)269 static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
270 {
271 	int ret;
272 
273 	/*
274 	 * After wake up, secondary core branches to the startup
275 	 * address programmed at SKU ROM LUT location.
276 	 */
277 	ret = nsp_write_lut(cpu);
278 	if (ret) {
279 		pr_err("unable to write startup addr to SKU ROM LUT\n");
280 		goto out;
281 	}
282 
283 	/* Send a CPU wakeup interrupt to the secondary core */
284 	arch_send_wakeup_ipi_mask(cpumask_of(cpu));
285 
286 out:
287 	return ret;
288 }
289 
290 static const struct smp_operations kona_smp_ops __initconst = {
291 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
292 	.smp_boot_secondary	= kona_boot_secondary,
293 };
294 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
295 			&kona_smp_ops);
296 
297 static const struct smp_operations bcm23550_smp_ops __initconst = {
298 	.smp_boot_secondary	= bcm23550_boot_secondary,
299 };
300 CPU_METHOD_OF_DECLARE(bcm_smp_bcm23550, "brcm,bcm23550",
301 			&bcm23550_smp_ops);
302 
303 static const struct smp_operations nsp_smp_ops __initconst = {
304 	.smp_prepare_cpus	= bcm_smp_prepare_cpus,
305 	.smp_boot_secondary	= nsp_boot_secondary,
306 };
307 CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
308