1======================================= 2Real Time Clock (RTC) Drivers for Linux 3======================================= 4 5When Linux developers talk about a "Real Time Clock", they usually mean 6something that tracks wall clock time and is battery backed so that it 7works even with system power off. Such clocks will normally not track 8the local time zone or daylight savings time -- unless they dual boot 9with MS-Windows -- but will instead be set to Coordinated Universal Time 10(UTC, formerly "Greenwich Mean Time"). 11 12The newest non-PC hardware tends to just count seconds, like the time(2) 13system call reports, but RTCs also very commonly represent time using 14the Gregorian calendar and 24 hour time, as reported by gmtime(3). 15 16Linux has two largely-compatible userspace RTC API families you may 17need to know about: 18 19 * /dev/rtc ... is the RTC provided by PC compatible systems, 20 so it's not very portable to non-x86 systems. 21 22 * /dev/rtc0, /dev/rtc1 ... are part of a framework that's 23 supported by a wide variety of RTC chips on all systems. 24 25Programmers need to understand that the PC/AT functionality is not 26always available, and some systems can do much more. That is, the 27RTCs use the same API to make requests in both RTC frameworks (using 28different filenames of course), but the hardware may not offer the 29same functionality. For example, not every RTC is hooked up to an 30IRQ, so they can't all issue alarms; and where standard PC RTCs can 31only issue an alarm up to 24 hours in the future, other hardware may 32be able to schedule one any time in the upcoming century. 33 34 35Old PC/AT-Compatible driver: /dev/rtc 36-------------------------------------- 37 38All PCs (even Alpha machines) have a Real Time Clock built into them. 39Usually they are built into the chipset of the computer, but some may 40actually have a Motorola MC146818 (or clone) on the board. This is the 41clock that keeps the date and time while your computer is turned off. 42 43ACPI has standardized that MC146818 functionality, and extended it in 44a few ways (enabling longer alarm periods, and wake-from-hibernate). 45That functionality is NOT exposed in the old driver. 46 47However it can also be used to generate signals from a slow 2Hz to a 48relatively fast 8192Hz, in increments of powers of two. These signals 49are reported by interrupt number 8. (Oh! So *that* is what IRQ 8 is 50for...) It can also function as a 24hr alarm, raising IRQ 8 when the 51alarm goes off. The alarm can also be programmed to only check any 52subset of the three programmable values, meaning that it could be set to 53ring on the 30th second of the 30th minute of every hour, for example. 54The clock can also be set to generate an interrupt upon every clock 55update, thus generating a 1Hz signal. 56 57The interrupts are reported via /dev/rtc (major 10, minor 135, read only 58character device) in the form of an unsigned long. The low byte contains 59the type of interrupt (update-done, alarm-rang, or periodic) that was 60raised, and the remaining bytes contain the number of interrupts since 61the last read. Status information is reported through the pseudo-file 62/proc/driver/rtc if the /proc filesystem was enabled. The driver has 63built in locking so that only one process is allowed to have the /dev/rtc 64interface open at a time. 65 66A user process can monitor these interrupts by doing a read(2) or a 67select(2) on /dev/rtc -- either will block/stop the user process until 68the next interrupt is received. This is useful for things like 69reasonably high frequency data acquisition where one doesn't want to 70burn up 100% CPU by polling gettimeofday etc. etc. 71 72At high frequencies, or under high loads, the user process should check 73the number of interrupts received since the last read to determine if 74there has been any interrupt "pileup" so to speak. Just for reference, a 75typical 486-33 running a tight read loop on /dev/rtc will start to suffer 76occasional interrupt pileup (i.e. > 1 IRQ event since last read) for 77frequencies above 1024Hz. So you really should check the high bytes 78of the value you read, especially at frequencies above that of the 79normal timer interrupt, which is 100Hz. 80 81Programming and/or enabling interrupt frequencies greater than 64Hz is 82only allowed by root. This is perhaps a bit conservative, but we don't want 83an evil user generating lots of IRQs on a slow 386sx-16, where it might have 84a negative impact on performance. This 64Hz limit can be changed by writing 85a different value to /proc/sys/dev/rtc/max-user-freq. Note that the 86interrupt handler is only a few lines of code to minimize any possibility 87of this effect. 88 89Also, if the kernel time is synchronized with an external source, the 90kernel will write the time back to the CMOS clock every 11 minutes. In 91the process of doing this, the kernel briefly turns off RTC periodic 92interrupts, so be aware of this if you are doing serious work. If you 93don't synchronize the kernel time with an external source (via ntp or 94whatever) then the kernel will keep its hands off the RTC, allowing you 95exclusive access to the device for your applications. 96 97The alarm and/or interrupt frequency are programmed into the RTC via 98various ioctl(2) calls as listed in ./include/linux/rtc.h 99Rather than write 50 pages describing the ioctl() and so on, it is 100perhaps more useful to include a small test program that demonstrates 101how to use them, and demonstrates the features of the driver. This is 102probably a lot more useful to people interested in writing applications 103that will be using this driver. See the code at the end of this document. 104 105(The original /dev/rtc driver was written by Paul Gortmaker.) 106 107 108New portable "RTC Class" drivers: /dev/rtcN 109-------------------------------------------- 110 111Because Linux supports many non-ACPI and non-PC platforms, some of which 112have more than one RTC style clock, it needed a more portable solution 113than expecting a single battery-backed MC146818 clone on every system. 114Accordingly, a new "RTC Class" framework has been defined. It offers 115three different userspace interfaces: 116 117 * /dev/rtcN ... much the same as the older /dev/rtc interface 118 119 * /sys/class/rtc/rtcN ... sysfs attributes support readonly 120 access to some RTC attributes. 121 122 * /proc/driver/rtc ... the system clock RTC may expose itself 123 using a procfs interface. If there is no RTC for the system clock, 124 rtc0 is used by default. More information is (currently) shown 125 here than through sysfs. 126 127The RTC Class framework supports a wide variety of RTCs, ranging from those 128integrated into embeddable system-on-chip (SOC) processors to discrete chips 129using I2C, SPI, or some other bus to communicate with the host CPU. There's 130even support for PC-style RTCs ... including the features exposed on newer PCs 131through ACPI. 132 133The new framework also removes the "one RTC per system" restriction. For 134example, maybe the low-power battery-backed RTC is a discrete I2C chip, but 135a high functionality RTC is integrated into the SOC. That system might read 136the system clock from the discrete RTC, but use the integrated one for all 137other tasks, because of its greater functionality. 138 139SYSFS interface 140--------------- 141 142The sysfs interface under /sys/class/rtc/rtcN provides access to various 143rtc attributes without requiring the use of ioctls. All dates and times 144are in the RTC's timezone, rather than in system time. 145 146================ ============================================================== 147date RTC-provided date 148hctosys 1 if the RTC provided the system time at boot via the 149 CONFIG_RTC_HCTOSYS kernel option, 0 otherwise 150max_user_freq The maximum interrupt rate an unprivileged user may request 151 from this RTC. 152name The name of the RTC corresponding to this sysfs directory 153since_epoch The number of seconds since the epoch according to the RTC 154time RTC-provided time 155wakealarm The time at which the clock will generate a system wakeup 156 event. This is a one shot wakeup event, so must be reset 157 after wake if a daily wakeup is required. Format is seconds 158 since the epoch by default, or if there's a leading +, seconds 159 in the future, or if there is a leading +=, seconds ahead of 160 the current alarm. 161offset The amount which the rtc clock has been adjusted in firmware. 162 Visible only if the driver supports clock offset adjustment. 163 The unit is parts per billion, i.e. The number of clock ticks 164 which are added to or removed from the rtc's base clock per 165 billion ticks. A positive value makes a day pass more slowly, 166 longer, and a negative value makes a day pass more quickly. 167*/nvmem The non volatile storage exported as a raw file, as described 168 in Documentation/nvmem/nvmem.txt 169================ ============================================================== 170 171IOCTL interface 172--------------- 173 174The ioctl() calls supported by /dev/rtc are also supported by the RTC class 175framework. However, because the chips and systems are not standardized, 176some PC/AT functionality might not be provided. And in the same way, some 177newer features -- including those enabled by ACPI -- are exposed by the 178RTC class framework, but can't be supported by the older driver. 179 180 * RTC_RD_TIME, RTC_SET_TIME ... every RTC supports at least reading 181 time, returning the result as a Gregorian calendar date and 24 hour 182 wall clock time. To be most useful, this time may also be updated. 183 184 * RTC_AIE_ON, RTC_AIE_OFF, RTC_ALM_SET, RTC_ALM_READ ... when the RTC 185 is connected to an IRQ line, it can often issue an alarm IRQ up to 186 24 hours in the future. (Use RTC_WKALM_* by preference.) 187 188 * RTC_WKALM_SET, RTC_WKALM_RD ... RTCs that can issue alarms beyond 189 the next 24 hours use a slightly more powerful API, which supports 190 setting the longer alarm time and enabling its IRQ using a single 191 request (using the same model as EFI firmware). 192 193 * RTC_UIE_ON, RTC_UIE_OFF ... if the RTC offers IRQs, the RTC framework 194 will emulate this mechanism. 195 196 * RTC_PIE_ON, RTC_PIE_OFF, RTC_IRQP_SET, RTC_IRQP_READ ... these icotls 197 are emulated via a kernel hrtimer. 198 199In many cases, the RTC alarm can be a system wake event, used to force 200Linux out of a low power sleep state (or hibernation) back to a fully 201operational state. For example, a system could enter a deep power saving 202state until it's time to execute some scheduled tasks. 203 204Note that many of these ioctls are handled by the common rtc-dev interface. 205Some common examples: 206 207 * RTC_RD_TIME, RTC_SET_TIME: the read_time/set_time functions will be 208 called with appropriate values. 209 210 * RTC_ALM_SET, RTC_ALM_READ, RTC_WKALM_SET, RTC_WKALM_RD: gets or sets 211 the alarm rtc_timer. May call the set_alarm driver function. 212 213 * RTC_IRQP_SET, RTC_IRQP_READ: These are emulated by the generic code. 214 215 * RTC_PIE_ON, RTC_PIE_OFF: These are also emulated by the generic code. 216 217If all else fails, check out the tools/testing/selftests/timers/rtctest.c test! 218