• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Blackfin architecture-dependent process handling
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later
7  */
8 
9 #include <linux/module.h>
10 #include <linux/unistd.h>
11 #include <linux/user.h>
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/mm_types.h>
19 #include <linux/tick.h>
20 #include <linux/fs.h>
21 #include <linux/err.h>
22 
23 #include <asm/blackfin.h>
24 #include <asm/fixed_code.h>
25 #include <asm/mem_map.h>
26 #include <asm/irq.h>
27 
28 asmlinkage void ret_from_fork(void);
29 
30 /* Points to the SDRAM backup memory for the stack that is currently in
31  * L1 scratchpad memory.
32  */
33 void *current_l1_stack_save;
34 
35 /* The number of tasks currently using a L1 stack area.  The SRAM is
36  * allocated/deallocated whenever this changes from/to zero.
37  */
38 int nr_l1stack_tasks;
39 
40 /* Start and length of the area in L1 scratchpad memory which we've allocated
41  * for process stacks.
42  */
43 void *l1_stack_base;
44 unsigned long l1_stack_len;
45 
46 void (*pm_power_off)(void) = NULL;
47 EXPORT_SYMBOL(pm_power_off);
48 
49 /*
50  * The idle loop on BFIN
51  */
52 #ifdef CONFIG_IDLE_L1
53 void arch_cpu_idle(void)__attribute__((l1_text));
54 #endif
55 
56 /*
57  * This is our default idle handler.  We need to disable
58  * interrupts here to ensure we don't miss a wakeup call.
59  */
arch_cpu_idle(void)60 void arch_cpu_idle(void)
61 {
62 #ifdef CONFIG_IPIPE
63 	ipipe_suspend_domain();
64 #endif
65 	hard_local_irq_disable();
66 	if (!need_resched())
67 		idle_with_irq_disabled();
68 
69 	hard_local_irq_enable();
70 }
71 
72 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)73 void arch_cpu_idle_dead(void)
74 {
75 	cpu_die();
76 }
77 #endif
78 
79 /*
80  * Do necessary setup to start up a newly executed thread.
81  *
82  * pass the data segment into user programs if it exists,
83  * it can't hurt anything as far as I can tell
84  */
start_thread(struct pt_regs * regs,unsigned long new_ip,unsigned long new_sp)85 void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
86 {
87 	regs->pc = new_ip;
88 	if (current->mm)
89 		regs->p5 = current->mm->start_data;
90 #ifndef CONFIG_SMP
91 	task_thread_info(current)->l1_task_info.stack_start =
92 		(void *)current->mm->context.stack_start;
93 	task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
94 	memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
95 	       sizeof(*L1_SCRATCH_TASK_INFO));
96 #endif
97 	wrusp(new_sp);
98 }
99 EXPORT_SYMBOL_GPL(start_thread);
100 
flush_thread(void)101 void flush_thread(void)
102 {
103 }
104 
bfin_clone(unsigned long clone_flags,unsigned long newsp)105 asmlinkage int bfin_clone(unsigned long clone_flags, unsigned long newsp)
106 {
107 #ifdef __ARCH_SYNC_CORE_DCACHE
108 	if (current->nr_cpus_allowed == num_possible_cpus())
109 		set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
110 #endif
111 	if (newsp)
112 		newsp -= 12;
113 	return do_fork(clone_flags, newsp, 0, NULL, NULL);
114 }
115 
116 int
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long topstk,struct task_struct * p)117 copy_thread(unsigned long clone_flags,
118 	    unsigned long usp, unsigned long topstk,
119 	    struct task_struct *p)
120 {
121 	struct pt_regs *childregs;
122 	unsigned long *v;
123 
124 	childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
125 	v = ((unsigned long *)childregs) - 2;
126 	if (unlikely(p->flags & PF_KTHREAD)) {
127 		memset(childregs, 0, sizeof(struct pt_regs));
128 		v[0] = usp;
129 		v[1] = topstk;
130 		childregs->orig_p0 = -1;
131 		childregs->ipend = 0x8000;
132 		__asm__ __volatile__("%0 = syscfg;":"=da"(childregs->syscfg):);
133 		p->thread.usp = 0;
134 	} else {
135 		*childregs = *current_pt_regs();
136 		childregs->r0 = 0;
137 		p->thread.usp = usp ? : rdusp();
138 		v[0] = v[1] = 0;
139 	}
140 
141 	p->thread.ksp = (unsigned long)v;
142 	p->thread.pc = (unsigned long)ret_from_fork;
143 
144 	return 0;
145 }
146 
get_wchan(struct task_struct * p)147 unsigned long get_wchan(struct task_struct *p)
148 {
149 	unsigned long fp, pc;
150 	unsigned long stack_page;
151 	int count = 0;
152 	if (!p || p == current || p->state == TASK_RUNNING)
153 		return 0;
154 
155 	stack_page = (unsigned long)p;
156 	fp = p->thread.usp;
157 	do {
158 		if (fp < stack_page + sizeof(struct thread_info) ||
159 		    fp >= 8184 + stack_page)
160 			return 0;
161 		pc = ((unsigned long *)fp)[1];
162 		if (!in_sched_functions(pc))
163 			return pc;
164 		fp = *(unsigned long *)fp;
165 	}
166 	while (count++ < 16);
167 	return 0;
168 }
169 
finish_atomic_sections(struct pt_regs * regs)170 void finish_atomic_sections (struct pt_regs *regs)
171 {
172 	int __user *up0 = (int __user *)regs->p0;
173 
174 	switch (regs->pc) {
175 	default:
176 		/* not in middle of an atomic step, so resume like normal */
177 		return;
178 
179 	case ATOMIC_XCHG32 + 2:
180 		put_user(regs->r1, up0);
181 		break;
182 
183 	case ATOMIC_CAS32 + 2:
184 	case ATOMIC_CAS32 + 4:
185 		if (regs->r0 == regs->r1)
186 	case ATOMIC_CAS32 + 6:
187 			put_user(regs->r2, up0);
188 		break;
189 
190 	case ATOMIC_ADD32 + 2:
191 		regs->r0 = regs->r1 + regs->r0;
192 		/* fall through */
193 	case ATOMIC_ADD32 + 4:
194 		put_user(regs->r0, up0);
195 		break;
196 
197 	case ATOMIC_SUB32 + 2:
198 		regs->r0 = regs->r1 - regs->r0;
199 		/* fall through */
200 	case ATOMIC_SUB32 + 4:
201 		put_user(regs->r0, up0);
202 		break;
203 
204 	case ATOMIC_IOR32 + 2:
205 		regs->r0 = regs->r1 | regs->r0;
206 		/* fall through */
207 	case ATOMIC_IOR32 + 4:
208 		put_user(regs->r0, up0);
209 		break;
210 
211 	case ATOMIC_AND32 + 2:
212 		regs->r0 = regs->r1 & regs->r0;
213 		/* fall through */
214 	case ATOMIC_AND32 + 4:
215 		put_user(regs->r0, up0);
216 		break;
217 
218 	case ATOMIC_XOR32 + 2:
219 		regs->r0 = regs->r1 ^ regs->r0;
220 		/* fall through */
221 	case ATOMIC_XOR32 + 4:
222 		put_user(regs->r0, up0);
223 		break;
224 	}
225 
226 	/*
227 	 * We've finished the atomic section, and the only thing left for
228 	 * userspace is to do a RTS, so we might as well handle that too
229 	 * since we need to update the PC anyways.
230 	 */
231 	regs->pc = regs->rets;
232 }
233 
234 static inline
in_mem(unsigned long addr,unsigned long size,unsigned long start,unsigned long end)235 int in_mem(unsigned long addr, unsigned long size,
236            unsigned long start, unsigned long end)
237 {
238 	return addr >= start && addr + size <= end;
239 }
240 static inline
in_mem_const_off(unsigned long addr,unsigned long size,unsigned long off,unsigned long const_addr,unsigned long const_size)241 int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
242                      unsigned long const_addr, unsigned long const_size)
243 {
244 	return const_size &&
245 	       in_mem(addr, size, const_addr + off, const_addr + const_size);
246 }
247 static inline
in_mem_const(unsigned long addr,unsigned long size,unsigned long const_addr,unsigned long const_size)248 int in_mem_const(unsigned long addr, unsigned long size,
249                  unsigned long const_addr, unsigned long const_size)
250 {
251 	return in_mem_const_off(addr, size, 0, const_addr, const_size);
252 }
253 #ifdef CONFIG_BF60x
254 #define ASYNC_ENABLED(bnum, bctlnum)	1
255 #else
256 #define ASYNC_ENABLED(bnum, bctlnum) \
257 ({ \
258 	(bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
259 	bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
260 	1; \
261 })
262 #endif
263 /*
264  * We can't read EBIU banks that aren't enabled or we end up hanging
265  * on the access to the async space.  Make sure we validate accesses
266  * that cross async banks too.
267  *	0 - found, but unusable
268  *	1 - found & usable
269  *	2 - not found
270  */
271 static
in_async(unsigned long addr,unsigned long size)272 int in_async(unsigned long addr, unsigned long size)
273 {
274 	if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
275 		if (!ASYNC_ENABLED(0, 0))
276 			return 0;
277 		if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
278 			return 1;
279 		size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
280 		addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
281 	}
282 	if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
283 		if (!ASYNC_ENABLED(1, 0))
284 			return 0;
285 		if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
286 			return 1;
287 		size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
288 		addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
289 	}
290 	if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
291 		if (!ASYNC_ENABLED(2, 1))
292 			return 0;
293 		if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
294 			return 1;
295 		size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
296 		addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
297 	}
298 	if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
299 		if (ASYNC_ENABLED(3, 1))
300 			return 0;
301 		if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
302 			return 1;
303 		return 0;
304 	}
305 
306 	/* not within async bounds */
307 	return 2;
308 }
309 
bfin_mem_access_type(unsigned long addr,unsigned long size)310 int bfin_mem_access_type(unsigned long addr, unsigned long size)
311 {
312 	int cpu = raw_smp_processor_id();
313 
314 	/* Check that things do not wrap around */
315 	if (addr > ULONG_MAX - size)
316 		return -EFAULT;
317 
318 	if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
319 		return BFIN_MEM_ACCESS_CORE;
320 
321 	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
322 		return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
323 	if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
324 		return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
325 	if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
326 		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
327 	if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
328 		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
329 #ifdef COREB_L1_CODE_START
330 	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
331 		return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
332 	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
333 		return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
334 	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
335 		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
336 	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
337 		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
338 #endif
339 	if (in_mem_const(addr, size, L2_START, L2_LENGTH))
340 		return BFIN_MEM_ACCESS_CORE;
341 
342 	if (addr >= SYSMMR_BASE)
343 		return BFIN_MEM_ACCESS_CORE_ONLY;
344 
345 	switch (in_async(addr, size)) {
346 	case 0: return -EFAULT;
347 	case 1: return BFIN_MEM_ACCESS_CORE;
348 	case 2: /* fall through */;
349 	}
350 
351 	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
352 		return BFIN_MEM_ACCESS_CORE;
353 	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
354 		return BFIN_MEM_ACCESS_DMA;
355 
356 	return -EFAULT;
357 }
358 
359 #if defined(CONFIG_ACCESS_CHECK)
360 #ifdef CONFIG_ACCESS_OK_L1
361 __attribute__((l1_text))
362 #endif
363 /* Return 1 if access to memory range is OK, 0 otherwise */
_access_ok(unsigned long addr,unsigned long size)364 int _access_ok(unsigned long addr, unsigned long size)
365 {
366 	int aret;
367 
368 	if (size == 0)
369 		return 1;
370 	/* Check that things do not wrap around */
371 	if (addr > ULONG_MAX - size)
372 		return 0;
373 	if (uaccess_kernel())
374 		return 1;
375 #ifdef CONFIG_MTD_UCLINUX
376 	if (1)
377 #else
378 	if (0)
379 #endif
380 	{
381 		if (in_mem(addr, size, memory_start, memory_end))
382 			return 1;
383 		if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
384 			return 1;
385 # ifndef CONFIG_ROMFS_ON_MTD
386 		if (0)
387 # endif
388 			/* For XIP, allow user space to use pointers within the ROMFS.  */
389 			if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
390 				return 1;
391 	} else {
392 		if (in_mem(addr, size, memory_start, physical_mem_end))
393 			return 1;
394 	}
395 
396 	if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
397 		return 1;
398 
399 	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
400 		return 1;
401 	if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
402 		return 1;
403 	if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
404 		return 1;
405 	if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
406 		return 1;
407 #ifdef COREB_L1_CODE_START
408 	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
409 		return 1;
410 	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
411 		return 1;
412 	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
413 		return 1;
414 	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
415 		return 1;
416 #endif
417 
418 #ifndef CONFIG_EXCEPTION_L1_SCRATCH
419 	if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
420 		return 1;
421 #endif
422 
423 	aret = in_async(addr, size);
424 	if (aret < 2)
425 		return aret;
426 
427 	if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
428 		return 1;
429 
430 	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
431 		return 1;
432 	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
433 		return 1;
434 
435 	return 0;
436 }
437 EXPORT_SYMBOL(_access_ok);
438 #endif /* CONFIG_ACCESS_CHECK */
439