1 /*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
37
38 /**
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
41 *
42 * Set PE auxillary data size
43 */
eeh_set_pe_aux_size(int size)44 void eeh_set_pe_aux_size(int size)
45 {
46 if (size < 0)
47 return;
48
49 eeh_pe_aux_size = size;
50 }
51
52 /**
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
55 * @type: PE type
56 *
57 * Allocate PE instance dynamically.
58 */
eeh_pe_alloc(struct pci_controller * phb,int type)59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60 {
61 struct eeh_pe *pe;
62 size_t alloc_size;
63
64 alloc_size = sizeof(struct eeh_pe);
65 if (eeh_pe_aux_size) {
66 alloc_size = ALIGN(alloc_size, cache_line_size());
67 alloc_size += eeh_pe_aux_size;
68 }
69
70 /* Allocate PHB PE */
71 pe = kzalloc(alloc_size, GFP_KERNEL);
72 if (!pe) return NULL;
73
74 /* Initialize PHB PE */
75 pe->type = type;
76 pe->phb = phb;
77 INIT_LIST_HEAD(&pe->child_list);
78 INIT_LIST_HEAD(&pe->child);
79 INIT_LIST_HEAD(&pe->edevs);
80
81 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82 cache_line_size());
83 return pe;
84 }
85
86 /**
87 * eeh_phb_pe_create - Create PHB PE
88 * @phb: PCI controller
89 *
90 * The function should be called while the PHB is detected during
91 * system boot or PCI hotplug in order to create PHB PE.
92 */
eeh_phb_pe_create(struct pci_controller * phb)93 int eeh_phb_pe_create(struct pci_controller *phb)
94 {
95 struct eeh_pe *pe;
96
97 /* Allocate PHB PE */
98 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99 if (!pe) {
100 pr_err("%s: out of memory!\n", __func__);
101 return -ENOMEM;
102 }
103
104 /* Put it into the list */
105 list_add_tail(&pe->child, &eeh_phb_pe);
106
107 pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
108
109 return 0;
110 }
111
112 /**
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
115 *
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
119 */
eeh_phb_pe_get(struct pci_controller * phb)120 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121 {
122 struct eeh_pe *pe;
123
124 list_for_each_entry(pe, &eeh_phb_pe, child) {
125 /*
126 * Actually, we needn't check the type since
127 * the PE for PHB has been determined when that
128 * was created.
129 */
130 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131 return pe;
132 }
133
134 return NULL;
135 }
136
137 /**
138 * eeh_pe_next - Retrieve the next PE in the tree
139 * @pe: current PE
140 * @root: root PE
141 *
142 * The function is used to retrieve the next PE in the
143 * hierarchy PE tree.
144 */
eeh_pe_next(struct eeh_pe * pe,struct eeh_pe * root)145 static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146 struct eeh_pe *root)
147 {
148 struct list_head *next = pe->child_list.next;
149
150 if (next == &pe->child_list) {
151 while (1) {
152 if (pe == root)
153 return NULL;
154 next = pe->child.next;
155 if (next != &pe->parent->child_list)
156 break;
157 pe = pe->parent;
158 }
159 }
160
161 return list_entry(next, struct eeh_pe, child);
162 }
163
164 /**
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
166 * @root: root PE
167 * @fn: callback
168 * @flag: extra parameter to callback
169 *
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
173 * to be traversed.
174 */
eeh_pe_traverse(struct eeh_pe * root,eeh_traverse_func fn,void * flag)175 void *eeh_pe_traverse(struct eeh_pe *root,
176 eeh_traverse_func fn, void *flag)
177 {
178 struct eeh_pe *pe;
179 void *ret;
180
181 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182 ret = fn(pe, flag);
183 if (ret) return ret;
184 }
185
186 return NULL;
187 }
188
189 /**
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
191 * @root: EEH PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
194 *
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
197 */
eeh_pe_dev_traverse(struct eeh_pe * root,eeh_traverse_func fn,void * flag)198 void *eeh_pe_dev_traverse(struct eeh_pe *root,
199 eeh_traverse_func fn, void *flag)
200 {
201 struct eeh_pe *pe;
202 struct eeh_dev *edev, *tmp;
203 void *ret;
204
205 if (!root) {
206 pr_warn("%s: Invalid PE %p\n",
207 __func__, root);
208 return NULL;
209 }
210
211 /* Traverse root PE */
212 for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213 eeh_pe_for_each_dev(pe, edev, tmp) {
214 ret = fn(edev, flag);
215 if (ret)
216 return ret;
217 }
218 }
219
220 return NULL;
221 }
222
223 /**
224 * __eeh_pe_get - Check the PE address
225 * @data: EEH PE
226 * @flag: EEH device
227 *
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
232 */
233 struct eeh_pe_get_flag {
234 int pe_no;
235 int config_addr;
236 };
237
__eeh_pe_get(void * data,void * flag)238 static void *__eeh_pe_get(void *data, void *flag)
239 {
240 struct eeh_pe *pe = (struct eeh_pe *)data;
241 struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
242
243 /* Unexpected PHB PE */
244 if (pe->type & EEH_PE_PHB)
245 return NULL;
246
247 /*
248 * We prefer PE address. For most cases, we should
249 * have non-zero PE address
250 */
251 if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
252 if (tmp->pe_no == pe->addr)
253 return pe;
254 } else {
255 if (tmp->pe_no &&
256 (tmp->pe_no == pe->addr))
257 return pe;
258 }
259
260 /* Try BDF address */
261 if (tmp->config_addr &&
262 (tmp->config_addr == pe->config_addr))
263 return pe;
264
265 return NULL;
266 }
267
268 /**
269 * eeh_pe_get - Search PE based on the given address
270 * @phb: PCI controller
271 * @pe_no: PE number
272 * @config_addr: Config address
273 *
274 * Search the corresponding PE based on the specified address which
275 * is included in the eeh device. The function is used to check if
276 * the associated PE has been created against the PE address. It's
277 * notable that the PE address has 2 format: traditional PE address
278 * which is composed of PCI bus/device/function number, or unified
279 * PE address.
280 */
eeh_pe_get(struct pci_controller * phb,int pe_no,int config_addr)281 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
282 int pe_no, int config_addr)
283 {
284 struct eeh_pe *root = eeh_phb_pe_get(phb);
285 struct eeh_pe_get_flag tmp = { pe_no, config_addr };
286 struct eeh_pe *pe;
287
288 pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
289
290 return pe;
291 }
292
293 /**
294 * eeh_pe_get_parent - Retrieve the parent PE
295 * @edev: EEH device
296 *
297 * The whole PEs existing in the system are organized as hierarchy
298 * tree. The function is used to retrieve the parent PE according
299 * to the parent EEH device.
300 */
eeh_pe_get_parent(struct eeh_dev * edev)301 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
302 {
303 struct eeh_dev *parent;
304 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
305
306 /*
307 * It might have the case for the indirect parent
308 * EEH device already having associated PE, but
309 * the direct parent EEH device doesn't have yet.
310 */
311 if (edev->physfn)
312 pdn = pci_get_pdn(edev->physfn);
313 else
314 pdn = pdn ? pdn->parent : NULL;
315 while (pdn) {
316 /* We're poking out of PCI territory */
317 parent = pdn_to_eeh_dev(pdn);
318 if (!parent)
319 return NULL;
320
321 if (parent->pe)
322 return parent->pe;
323
324 pdn = pdn->parent;
325 }
326
327 return NULL;
328 }
329
330 /**
331 * eeh_add_to_parent_pe - Add EEH device to parent PE
332 * @edev: EEH device
333 *
334 * Add EEH device to the parent PE. If the parent PE already
335 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
336 * we have to create new PE to hold the EEH device and the new
337 * PE will be linked to its parent PE as well.
338 */
eeh_add_to_parent_pe(struct eeh_dev * edev)339 int eeh_add_to_parent_pe(struct eeh_dev *edev)
340 {
341 struct eeh_pe *pe, *parent;
342 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
343 int config_addr = (pdn->busno << 8) | (pdn->devfn);
344
345 /* Check if the PE number is valid */
346 if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
347 pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
348 __func__, config_addr, pdn->phb->global_number);
349 return -EINVAL;
350 }
351
352 /*
353 * Search the PE has been existing or not according
354 * to the PE address. If that has been existing, the
355 * PE should be composed of PCI bus and its subordinate
356 * components.
357 */
358 pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr);
359 if (pe && !(pe->type & EEH_PE_INVALID)) {
360 /* Mark the PE as type of PCI bus */
361 pe->type = EEH_PE_BUS;
362 edev->pe = pe;
363
364 /* Put the edev to PE */
365 list_add_tail(&edev->list, &pe->edevs);
366 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
367 pdn->phb->global_number,
368 pdn->busno,
369 PCI_SLOT(pdn->devfn),
370 PCI_FUNC(pdn->devfn),
371 pe->addr);
372 return 0;
373 } else if (pe && (pe->type & EEH_PE_INVALID)) {
374 list_add_tail(&edev->list, &pe->edevs);
375 edev->pe = pe;
376 /*
377 * We're running to here because of PCI hotplug caused by
378 * EEH recovery. We need clear EEH_PE_INVALID until the top.
379 */
380 parent = pe;
381 while (parent) {
382 if (!(parent->type & EEH_PE_INVALID))
383 break;
384 parent->type &= ~EEH_PE_INVALID;
385 parent = parent->parent;
386 }
387
388 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
389 "PE#%x, Parent PE#%x\n",
390 pdn->phb->global_number,
391 pdn->busno,
392 PCI_SLOT(pdn->devfn),
393 PCI_FUNC(pdn->devfn),
394 pe->addr, pe->parent->addr);
395 return 0;
396 }
397
398 /* Create a new EEH PE */
399 if (edev->physfn)
400 pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF);
401 else
402 pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE);
403 if (!pe) {
404 pr_err("%s: out of memory!\n", __func__);
405 return -ENOMEM;
406 }
407 pe->addr = edev->pe_config_addr;
408 pe->config_addr = config_addr;
409
410 /*
411 * Put the new EEH PE into hierarchy tree. If the parent
412 * can't be found, the newly created PE will be attached
413 * to PHB directly. Otherwise, we have to associate the
414 * PE with its parent.
415 */
416 parent = eeh_pe_get_parent(edev);
417 if (!parent) {
418 parent = eeh_phb_pe_get(pdn->phb);
419 if (!parent) {
420 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
421 __func__, pdn->phb->global_number);
422 edev->pe = NULL;
423 kfree(pe);
424 return -EEXIST;
425 }
426 }
427 pe->parent = parent;
428
429 /*
430 * Put the newly created PE into the child list and
431 * link the EEH device accordingly.
432 */
433 list_add_tail(&pe->child, &parent->child_list);
434 list_add_tail(&edev->list, &pe->edevs);
435 edev->pe = pe;
436 pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
437 "Device PE#%x, Parent PE#%x\n",
438 pdn->phb->global_number,
439 pdn->busno,
440 PCI_SLOT(pdn->devfn),
441 PCI_FUNC(pdn->devfn),
442 pe->addr, pe->parent->addr);
443
444 return 0;
445 }
446
447 /**
448 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
449 * @edev: EEH device
450 *
451 * The PE hierarchy tree might be changed when doing PCI hotplug.
452 * Also, the PCI devices or buses could be removed from the system
453 * during EEH recovery. So we have to call the function remove the
454 * corresponding PE accordingly if necessary.
455 */
eeh_rmv_from_parent_pe(struct eeh_dev * edev)456 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
457 {
458 struct eeh_pe *pe, *parent, *child;
459 int cnt;
460 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
461
462 if (!edev->pe) {
463 pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
464 __func__, pdn->phb->global_number,
465 pdn->busno,
466 PCI_SLOT(pdn->devfn),
467 PCI_FUNC(pdn->devfn));
468 return -EEXIST;
469 }
470
471 /* Remove the EEH device */
472 pe = eeh_dev_to_pe(edev);
473 edev->pe = NULL;
474 list_del(&edev->list);
475
476 /*
477 * Check if the parent PE includes any EEH devices.
478 * If not, we should delete that. Also, we should
479 * delete the parent PE if it doesn't have associated
480 * child PEs and EEH devices.
481 */
482 while (1) {
483 parent = pe->parent;
484 if (pe->type & EEH_PE_PHB)
485 break;
486
487 if (!(pe->state & EEH_PE_KEEP)) {
488 if (list_empty(&pe->edevs) &&
489 list_empty(&pe->child_list)) {
490 list_del(&pe->child);
491 kfree(pe);
492 } else {
493 break;
494 }
495 } else {
496 if (list_empty(&pe->edevs)) {
497 cnt = 0;
498 list_for_each_entry(child, &pe->child_list, child) {
499 if (!(child->type & EEH_PE_INVALID)) {
500 cnt++;
501 break;
502 }
503 }
504
505 if (!cnt)
506 pe->type |= EEH_PE_INVALID;
507 else
508 break;
509 }
510 }
511
512 pe = parent;
513 }
514
515 return 0;
516 }
517
518 /**
519 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
520 * @pe: EEH PE
521 *
522 * We have time stamp for each PE to trace its time of getting
523 * frozen in last hour. The function should be called to update
524 * the time stamp on first error of the specific PE. On the other
525 * handle, we needn't account for errors happened in last hour.
526 */
eeh_pe_update_time_stamp(struct eeh_pe * pe)527 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
528 {
529 struct timeval tstamp;
530
531 if (!pe) return;
532
533 if (pe->freeze_count <= 0) {
534 pe->freeze_count = 0;
535 do_gettimeofday(&pe->tstamp);
536 } else {
537 do_gettimeofday(&tstamp);
538 if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
539 pe->tstamp = tstamp;
540 pe->freeze_count = 0;
541 }
542 }
543 }
544
545 /**
546 * __eeh_pe_state_mark - Mark the state for the PE
547 * @data: EEH PE
548 * @flag: state
549 *
550 * The function is used to mark the indicated state for the given
551 * PE. Also, the associated PCI devices will be put into IO frozen
552 * state as well.
553 */
__eeh_pe_state_mark(void * data,void * flag)554 static void *__eeh_pe_state_mark(void *data, void *flag)
555 {
556 struct eeh_pe *pe = (struct eeh_pe *)data;
557 int state = *((int *)flag);
558 struct eeh_dev *edev, *tmp;
559 struct pci_dev *pdev;
560
561 /* Keep the state of permanently removed PE intact */
562 if (pe->state & EEH_PE_REMOVED)
563 return NULL;
564
565 pe->state |= state;
566
567 /* Offline PCI devices if applicable */
568 if (!(state & EEH_PE_ISOLATED))
569 return NULL;
570
571 eeh_pe_for_each_dev(pe, edev, tmp) {
572 pdev = eeh_dev_to_pci_dev(edev);
573 if (pdev)
574 pdev->error_state = pci_channel_io_frozen;
575 }
576
577 /* Block PCI config access if required */
578 if (pe->state & EEH_PE_CFG_RESTRICTED)
579 pe->state |= EEH_PE_CFG_BLOCKED;
580
581 return NULL;
582 }
583
584 /**
585 * eeh_pe_state_mark - Mark specified state for PE and its associated device
586 * @pe: EEH PE
587 *
588 * EEH error affects the current PE and its child PEs. The function
589 * is used to mark appropriate state for the affected PEs and the
590 * associated devices.
591 */
eeh_pe_state_mark(struct eeh_pe * pe,int state)592 void eeh_pe_state_mark(struct eeh_pe *pe, int state)
593 {
594 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
595 }
596 EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
597
__eeh_pe_dev_mode_mark(void * data,void * flag)598 static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
599 {
600 struct eeh_dev *edev = data;
601 int mode = *((int *)flag);
602
603 edev->mode |= mode;
604
605 return NULL;
606 }
607
608 /**
609 * eeh_pe_dev_state_mark - Mark state for all device under the PE
610 * @pe: EEH PE
611 *
612 * Mark specific state for all child devices of the PE.
613 */
eeh_pe_dev_mode_mark(struct eeh_pe * pe,int mode)614 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
615 {
616 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
617 }
618
619 /**
620 * __eeh_pe_state_clear - Clear state for the PE
621 * @data: EEH PE
622 * @flag: state
623 *
624 * The function is used to clear the indicated state from the
625 * given PE. Besides, we also clear the check count of the PE
626 * as well.
627 */
__eeh_pe_state_clear(void * data,void * flag)628 static void *__eeh_pe_state_clear(void *data, void *flag)
629 {
630 struct eeh_pe *pe = (struct eeh_pe *)data;
631 int state = *((int *)flag);
632 struct eeh_dev *edev, *tmp;
633 struct pci_dev *pdev;
634
635 /* Keep the state of permanently removed PE intact */
636 if (pe->state & EEH_PE_REMOVED)
637 return NULL;
638
639 pe->state &= ~state;
640
641 /*
642 * Special treatment on clearing isolated state. Clear
643 * check count since last isolation and put all affected
644 * devices to normal state.
645 */
646 if (!(state & EEH_PE_ISOLATED))
647 return NULL;
648
649 pe->check_count = 0;
650 eeh_pe_for_each_dev(pe, edev, tmp) {
651 pdev = eeh_dev_to_pci_dev(edev);
652 if (!pdev)
653 continue;
654
655 pdev->error_state = pci_channel_io_normal;
656 }
657
658 /* Unblock PCI config access if required */
659 if (pe->state & EEH_PE_CFG_RESTRICTED)
660 pe->state &= ~EEH_PE_CFG_BLOCKED;
661
662 return NULL;
663 }
664
665 /**
666 * eeh_pe_state_clear - Clear state for the PE and its children
667 * @pe: PE
668 * @state: state to be cleared
669 *
670 * When the PE and its children has been recovered from error,
671 * we need clear the error state for that. The function is used
672 * for the purpose.
673 */
eeh_pe_state_clear(struct eeh_pe * pe,int state)674 void eeh_pe_state_clear(struct eeh_pe *pe, int state)
675 {
676 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
677 }
678
679 /**
680 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
681 * @pe: PE
682 * @state: PE state to be set
683 *
684 * Set specified flag to PE and its child PEs. The PCI config space
685 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
686 * which isn't needed in some situations. The function allows to set
687 * the specified flag to indicated PEs without blocking their PCI
688 * config space.
689 */
eeh_pe_state_mark_with_cfg(struct eeh_pe * pe,int state)690 void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
691 {
692 eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
693 if (!(state & EEH_PE_ISOLATED))
694 return;
695
696 /* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
697 state = EEH_PE_CFG_BLOCKED;
698 eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
699 }
700
701 /*
702 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
703 * buses assigned explicitly by firmware, and we probably have
704 * lost that after reset. So we have to delay the check until
705 * the PCI-CFG registers have been restored for the parent
706 * bridge.
707 *
708 * Don't use normal PCI-CFG accessors, which probably has been
709 * blocked on normal path during the stage. So we need utilize
710 * eeh operations, which is always permitted.
711 */
eeh_bridge_check_link(struct eeh_dev * edev)712 static void eeh_bridge_check_link(struct eeh_dev *edev)
713 {
714 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
715 int cap;
716 uint32_t val;
717 int timeout = 0;
718
719 /*
720 * We only check root port and downstream ports of
721 * PCIe switches
722 */
723 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
724 return;
725
726 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
727 __func__, pdn->phb->global_number,
728 pdn->busno,
729 PCI_SLOT(pdn->devfn),
730 PCI_FUNC(pdn->devfn));
731
732 /* Check slot status */
733 cap = edev->pcie_cap;
734 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
735 if (!(val & PCI_EXP_SLTSTA_PDS)) {
736 pr_debug(" No card in the slot (0x%04x) !\n", val);
737 return;
738 }
739
740 /* Check power status if we have the capability */
741 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
742 if (val & PCI_EXP_SLTCAP_PCP) {
743 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
744 if (val & PCI_EXP_SLTCTL_PCC) {
745 pr_debug(" In power-off state, power it on ...\n");
746 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
747 val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
748 eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
749 msleep(2 * 1000);
750 }
751 }
752
753 /* Enable link */
754 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
755 val &= ~PCI_EXP_LNKCTL_LD;
756 eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
757
758 /* Check link */
759 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
760 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
761 pr_debug(" No link reporting capability (0x%08x) \n", val);
762 msleep(1000);
763 return;
764 }
765
766 /* Wait the link is up until timeout (5s) */
767 timeout = 0;
768 while (timeout < 5000) {
769 msleep(20);
770 timeout += 20;
771
772 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
773 if (val & PCI_EXP_LNKSTA_DLLLA)
774 break;
775 }
776
777 if (val & PCI_EXP_LNKSTA_DLLLA)
778 pr_debug(" Link up (%s)\n",
779 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
780 else
781 pr_debug(" Link not ready (0x%04x)\n", val);
782 }
783
784 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
785 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
786
eeh_restore_bridge_bars(struct eeh_dev * edev)787 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
788 {
789 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
790 int i;
791
792 /*
793 * Device BARs: 0x10 - 0x18
794 * Bus numbers and windows: 0x18 - 0x30
795 */
796 for (i = 4; i < 13; i++)
797 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
798 /* Rom: 0x38 */
799 eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
800
801 /* Cache line & Latency timer: 0xC 0xD */
802 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
803 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
804 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
805 SAVED_BYTE(PCI_LATENCY_TIMER));
806 /* Max latency, min grant, interrupt ping and line: 0x3C */
807 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
808
809 /* PCI Command: 0x4 */
810 eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1] |
811 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
812
813 /* Check the PCIe link is ready */
814 eeh_bridge_check_link(edev);
815 }
816
eeh_restore_device_bars(struct eeh_dev * edev)817 static void eeh_restore_device_bars(struct eeh_dev *edev)
818 {
819 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
820 int i;
821 u32 cmd;
822
823 for (i = 4; i < 10; i++)
824 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
825 /* 12 == Expansion ROM Address */
826 eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
827
828 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
829 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
830 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
831 SAVED_BYTE(PCI_LATENCY_TIMER));
832
833 /* max latency, min grant, interrupt pin and line */
834 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
835
836 /*
837 * Restore PERR & SERR bits, some devices require it,
838 * don't touch the other command bits
839 */
840 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
841 if (edev->config_space[1] & PCI_COMMAND_PARITY)
842 cmd |= PCI_COMMAND_PARITY;
843 else
844 cmd &= ~PCI_COMMAND_PARITY;
845 if (edev->config_space[1] & PCI_COMMAND_SERR)
846 cmd |= PCI_COMMAND_SERR;
847 else
848 cmd &= ~PCI_COMMAND_SERR;
849 eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
850 }
851
852 /**
853 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
854 * @data: EEH device
855 * @flag: Unused
856 *
857 * Loads the PCI configuration space base address registers,
858 * the expansion ROM base address, the latency timer, and etc.
859 * from the saved values in the device node.
860 */
eeh_restore_one_device_bars(void * data,void * flag)861 static void *eeh_restore_one_device_bars(void *data, void *flag)
862 {
863 struct eeh_dev *edev = (struct eeh_dev *)data;
864 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
865
866 /* Do special restore for bridges */
867 if (edev->mode & EEH_DEV_BRIDGE)
868 eeh_restore_bridge_bars(edev);
869 else
870 eeh_restore_device_bars(edev);
871
872 if (eeh_ops->restore_config && pdn)
873 eeh_ops->restore_config(pdn);
874
875 return NULL;
876 }
877
878 /**
879 * eeh_pe_restore_bars - Restore the PCI config space info
880 * @pe: EEH PE
881 *
882 * This routine performs a recursive walk to the children
883 * of this device as well.
884 */
eeh_pe_restore_bars(struct eeh_pe * pe)885 void eeh_pe_restore_bars(struct eeh_pe *pe)
886 {
887 /*
888 * We needn't take the EEH lock since eeh_pe_dev_traverse()
889 * will take that.
890 */
891 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
892 }
893
894 /**
895 * eeh_pe_loc_get - Retrieve location code binding to the given PE
896 * @pe: EEH PE
897 *
898 * Retrieve the location code of the given PE. If the primary PE bus
899 * is root bus, we will grab location code from PHB device tree node
900 * or root port. Otherwise, the upstream bridge's device tree node
901 * of the primary PE bus will be checked for the location code.
902 */
eeh_pe_loc_get(struct eeh_pe * pe)903 const char *eeh_pe_loc_get(struct eeh_pe *pe)
904 {
905 struct pci_bus *bus = eeh_pe_bus_get(pe);
906 struct device_node *dn;
907 const char *loc = NULL;
908
909 while (bus) {
910 dn = pci_bus_to_OF_node(bus);
911 if (!dn) {
912 bus = bus->parent;
913 continue;
914 }
915
916 if (pci_is_root_bus(bus))
917 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
918 else
919 loc = of_get_property(dn, "ibm,slot-location-code",
920 NULL);
921
922 if (loc)
923 return loc;
924
925 bus = bus->parent;
926 }
927
928 return "N/A";
929 }
930
931 /**
932 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
933 * @pe: EEH PE
934 *
935 * Retrieve the PCI bus according to the given PE. Basically,
936 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
937 * primary PCI bus will be retrieved. The parent bus will be
938 * returned for BUS PE. However, we don't have associated PCI
939 * bus for DEVICE PE.
940 */
eeh_pe_bus_get(struct eeh_pe * pe)941 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
942 {
943 struct eeh_dev *edev;
944 struct pci_dev *pdev;
945
946 if (pe->type & EEH_PE_PHB)
947 return pe->phb->bus;
948
949 /* The primary bus might be cached during probe time */
950 if (pe->state & EEH_PE_PRI_BUS)
951 return pe->bus;
952
953 /* Retrieve the parent PCI bus of first (top) PCI device */
954 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
955 pdev = eeh_dev_to_pci_dev(edev);
956 if (pdev)
957 return pdev->bus;
958
959 return NULL;
960 }
961