1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ioport.c: Simple io mapping allocator.
4 *
5 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
7 *
8 * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
9 *
10 * 2000/01/29
11 * <rth> zait: as long as pci_alloc_consistent produces something addressable,
12 * things are ok.
13 * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
14 * pointer into the big page mapping
15 * <rth> zait: so what?
16 * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
17 * <zaitcev> Hmm
18 * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
19 * So far so good.
20 * <zaitcev> Now, driver calls pci_free_consistent(with result of
21 * remap_it_my_way()).
22 * <zaitcev> How do you find the address to pass to free_pages()?
23 * <rth> zait: walk the page tables? It's only two or three level after all.
24 * <rth> zait: you have to walk them anyway to remove the mapping.
25 * <zaitcev> Hmm
26 * <zaitcev> Sounds reasonable
27 */
28
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/kernel.h>
32 #include <linux/errno.h>
33 #include <linux/types.h>
34 #include <linux/ioport.h>
35 #include <linux/mm.h>
36 #include <linux/slab.h>
37 #include <linux/pci.h> /* struct pci_dev */
38 #include <linux/proc_fs.h>
39 #include <linux/seq_file.h>
40 #include <linux/scatterlist.h>
41 #include <linux/of_device.h>
42
43 #include <asm/io.h>
44 #include <asm/vaddrs.h>
45 #include <asm/oplib.h>
46 #include <asm/prom.h>
47 #include <asm/page.h>
48 #include <asm/pgalloc.h>
49 #include <asm/dma.h>
50 #include <asm/iommu.h>
51 #include <asm/io-unit.h>
52 #include <asm/leon.h>
53
54 const struct sparc32_dma_ops *sparc32_dma_ops;
55
56 /* This function must make sure that caches and memory are coherent after DMA
57 * On LEON systems without cache snooping it flushes the entire D-CACHE.
58 */
dma_make_coherent(unsigned long pa,unsigned long len)59 static inline void dma_make_coherent(unsigned long pa, unsigned long len)
60 {
61 if (sparc_cpu_model == sparc_leon) {
62 if (!sparc_leon3_snooping_enabled())
63 leon_flush_dcache_all();
64 }
65 }
66
67 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
68 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
69 unsigned long size, char *name);
70 static void _sparc_free_io(struct resource *res);
71
72 static void register_proc_sparc_ioport(void);
73
74 /* This points to the next to use virtual memory for DVMA mappings */
75 static struct resource _sparc_dvma = {
76 .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
77 };
78 /* This points to the start of I/O mappings, cluable from outside. */
79 /*ext*/ struct resource sparc_iomap = {
80 .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
81 };
82
83 /*
84 * Our mini-allocator...
85 * Boy this is gross! We need it because we must map I/O for
86 * timers and interrupt controller before the kmalloc is available.
87 */
88
89 #define XNMLN 15
90 #define XNRES 10 /* SS-10 uses 8 */
91
92 struct xresource {
93 struct resource xres; /* Must be first */
94 int xflag; /* 1 == used */
95 char xname[XNMLN+1];
96 };
97
98 static struct xresource xresv[XNRES];
99
xres_alloc(void)100 static struct xresource *xres_alloc(void) {
101 struct xresource *xrp;
102 int n;
103
104 xrp = xresv;
105 for (n = 0; n < XNRES; n++) {
106 if (xrp->xflag == 0) {
107 xrp->xflag = 1;
108 return xrp;
109 }
110 xrp++;
111 }
112 return NULL;
113 }
114
xres_free(struct xresource * xrp)115 static void xres_free(struct xresource *xrp) {
116 xrp->xflag = 0;
117 }
118
119 /*
120 * These are typically used in PCI drivers
121 * which are trying to be cross-platform.
122 *
123 * Bus type is always zero on IIep.
124 */
ioremap(unsigned long offset,unsigned long size)125 void __iomem *ioremap(unsigned long offset, unsigned long size)
126 {
127 char name[14];
128
129 sprintf(name, "phys_%08x", (u32)offset);
130 return _sparc_alloc_io(0, offset, size, name);
131 }
132 EXPORT_SYMBOL(ioremap);
133
134 /*
135 * Complementary to ioremap().
136 */
iounmap(volatile void __iomem * virtual)137 void iounmap(volatile void __iomem *virtual)
138 {
139 unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
140 struct resource *res;
141
142 /*
143 * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
144 * This probably warrants some sort of hashing.
145 */
146 if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
147 printk("free_io/iounmap: cannot free %lx\n", vaddr);
148 return;
149 }
150 _sparc_free_io(res);
151
152 if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
153 xres_free((struct xresource *)res);
154 } else {
155 kfree(res);
156 }
157 }
158 EXPORT_SYMBOL(iounmap);
159
of_ioremap(struct resource * res,unsigned long offset,unsigned long size,char * name)160 void __iomem *of_ioremap(struct resource *res, unsigned long offset,
161 unsigned long size, char *name)
162 {
163 return _sparc_alloc_io(res->flags & 0xF,
164 res->start + offset,
165 size, name);
166 }
167 EXPORT_SYMBOL(of_ioremap);
168
of_iounmap(struct resource * res,void __iomem * base,unsigned long size)169 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
170 {
171 iounmap(base);
172 }
173 EXPORT_SYMBOL(of_iounmap);
174
175 /*
176 * Meat of mapping
177 */
_sparc_alloc_io(unsigned int busno,unsigned long phys,unsigned long size,char * name)178 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
179 unsigned long size, char *name)
180 {
181 static int printed_full;
182 struct xresource *xres;
183 struct resource *res;
184 char *tack;
185 int tlen;
186 void __iomem *va; /* P3 diag */
187
188 if (name == NULL) name = "???";
189
190 if ((xres = xres_alloc()) != NULL) {
191 tack = xres->xname;
192 res = &xres->xres;
193 } else {
194 if (!printed_full) {
195 printk("ioremap: done with statics, switching to malloc\n");
196 printed_full = 1;
197 }
198 tlen = strlen(name);
199 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
200 if (tack == NULL) return NULL;
201 memset(tack, 0, sizeof(struct resource));
202 res = (struct resource *) tack;
203 tack += sizeof (struct resource);
204 }
205
206 strlcpy(tack, name, XNMLN+1);
207 res->name = tack;
208
209 va = _sparc_ioremap(res, busno, phys, size);
210 /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
211 return va;
212 }
213
214 /*
215 */
216 static void __iomem *
_sparc_ioremap(struct resource * res,u32 bus,u32 pa,int sz)217 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
218 {
219 unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
220
221 if (allocate_resource(&sparc_iomap, res,
222 (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
223 sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
224 /* Usually we cannot see printks in this case. */
225 prom_printf("alloc_io_res(%s): cannot occupy\n",
226 (res->name != NULL)? res->name: "???");
227 prom_halt();
228 }
229
230 pa &= PAGE_MASK;
231 srmmu_mapiorange(bus, pa, res->start, resource_size(res));
232
233 return (void __iomem *)(unsigned long)(res->start + offset);
234 }
235
236 /*
237 * Complementary to _sparc_ioremap().
238 */
_sparc_free_io(struct resource * res)239 static void _sparc_free_io(struct resource *res)
240 {
241 unsigned long plen;
242
243 plen = resource_size(res);
244 BUG_ON((plen & (PAGE_SIZE-1)) != 0);
245 srmmu_unmapiorange(res->start, plen);
246 release_resource(res);
247 }
248
249 #ifdef CONFIG_SBUS
250
sbus_set_sbus64(struct device * dev,int x)251 void sbus_set_sbus64(struct device *dev, int x)
252 {
253 printk("sbus_set_sbus64: unsupported\n");
254 }
255 EXPORT_SYMBOL(sbus_set_sbus64);
256
257 /*
258 * Allocate a chunk of memory suitable for DMA.
259 * Typically devices use them for control blocks.
260 * CPU may access them without any explicit flushing.
261 */
sbus_alloc_coherent(struct device * dev,size_t len,dma_addr_t * dma_addrp,gfp_t gfp,unsigned long attrs)262 static void *sbus_alloc_coherent(struct device *dev, size_t len,
263 dma_addr_t *dma_addrp, gfp_t gfp,
264 unsigned long attrs)
265 {
266 struct platform_device *op = to_platform_device(dev);
267 unsigned long len_total = PAGE_ALIGN(len);
268 unsigned long va;
269 struct resource *res;
270 int order;
271
272 /* XXX why are some lengths signed, others unsigned? */
273 if (len <= 0) {
274 return NULL;
275 }
276 /* XXX So what is maxphys for us and how do drivers know it? */
277 if (len > 256*1024) { /* __get_free_pages() limit */
278 return NULL;
279 }
280
281 order = get_order(len_total);
282 va = __get_free_pages(gfp, order);
283 if (va == 0)
284 goto err_nopages;
285
286 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
287 goto err_nomem;
288
289 if (allocate_resource(&_sparc_dvma, res, len_total,
290 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
291 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
292 goto err_nova;
293 }
294
295 // XXX The sbus_map_dma_area does this for us below, see comments.
296 // srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
297 /*
298 * XXX That's where sdev would be used. Currently we load
299 * all iommu tables with the same translations.
300 */
301 if (sbus_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
302 goto err_noiommu;
303
304 res->name = op->dev.of_node->name;
305
306 return (void *)(unsigned long)res->start;
307
308 err_noiommu:
309 release_resource(res);
310 err_nova:
311 kfree(res);
312 err_nomem:
313 free_pages(va, order);
314 err_nopages:
315 return NULL;
316 }
317
sbus_free_coherent(struct device * dev,size_t n,void * p,dma_addr_t ba,unsigned long attrs)318 static void sbus_free_coherent(struct device *dev, size_t n, void *p,
319 dma_addr_t ba, unsigned long attrs)
320 {
321 struct resource *res;
322 struct page *pgv;
323
324 if ((res = lookup_resource(&_sparc_dvma,
325 (unsigned long)p)) == NULL) {
326 printk("sbus_free_consistent: cannot free %p\n", p);
327 return;
328 }
329
330 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
331 printk("sbus_free_consistent: unaligned va %p\n", p);
332 return;
333 }
334
335 n = PAGE_ALIGN(n);
336 if (resource_size(res) != n) {
337 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
338 (long)resource_size(res), n);
339 return;
340 }
341
342 release_resource(res);
343 kfree(res);
344
345 pgv = virt_to_page(p);
346 sbus_unmap_dma_area(dev, ba, n);
347
348 __free_pages(pgv, get_order(n));
349 }
350
351 /*
352 * Map a chunk of memory so that devices can see it.
353 * CPU view of this memory may be inconsistent with
354 * a device view and explicit flushing is necessary.
355 */
sbus_map_page(struct device * dev,struct page * page,unsigned long offset,size_t len,enum dma_data_direction dir,unsigned long attrs)356 static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
357 unsigned long offset, size_t len,
358 enum dma_data_direction dir,
359 unsigned long attrs)
360 {
361 void *va = page_address(page) + offset;
362
363 /* XXX why are some lengths signed, others unsigned? */
364 if (len <= 0) {
365 return 0;
366 }
367 /* XXX So what is maxphys for us and how do drivers know it? */
368 if (len > 256*1024) { /* __get_free_pages() limit */
369 return 0;
370 }
371 return mmu_get_scsi_one(dev, va, len);
372 }
373
sbus_unmap_page(struct device * dev,dma_addr_t ba,size_t n,enum dma_data_direction dir,unsigned long attrs)374 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
375 enum dma_data_direction dir, unsigned long attrs)
376 {
377 mmu_release_scsi_one(dev, ba, n);
378 }
379
sbus_map_sg(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir,unsigned long attrs)380 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
381 enum dma_data_direction dir, unsigned long attrs)
382 {
383 mmu_get_scsi_sgl(dev, sg, n);
384 return n;
385 }
386
sbus_unmap_sg(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir,unsigned long attrs)387 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
388 enum dma_data_direction dir, unsigned long attrs)
389 {
390 mmu_release_scsi_sgl(dev, sg, n);
391 }
392
sbus_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir)393 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
394 int n, enum dma_data_direction dir)
395 {
396 BUG();
397 }
398
sbus_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int n,enum dma_data_direction dir)399 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
400 int n, enum dma_data_direction dir)
401 {
402 BUG();
403 }
404
sbus_dma_supported(struct device * dev,u64 mask)405 static int sbus_dma_supported(struct device *dev, u64 mask)
406 {
407 return 0;
408 }
409
410 static const struct dma_map_ops sbus_dma_ops = {
411 .alloc = sbus_alloc_coherent,
412 .free = sbus_free_coherent,
413 .map_page = sbus_map_page,
414 .unmap_page = sbus_unmap_page,
415 .map_sg = sbus_map_sg,
416 .unmap_sg = sbus_unmap_sg,
417 .sync_sg_for_cpu = sbus_sync_sg_for_cpu,
418 .sync_sg_for_device = sbus_sync_sg_for_device,
419 .dma_supported = sbus_dma_supported,
420 };
421
sparc_register_ioport(void)422 static int __init sparc_register_ioport(void)
423 {
424 register_proc_sparc_ioport();
425
426 return 0;
427 }
428
429 arch_initcall(sparc_register_ioport);
430
431 #endif /* CONFIG_SBUS */
432
433
434 /* Allocate and map kernel buffer using consistent mode DMA for a device.
435 * hwdev should be valid struct pci_dev pointer for PCI devices.
436 */
pci32_alloc_coherent(struct device * dev,size_t len,dma_addr_t * pba,gfp_t gfp,unsigned long attrs)437 static void *pci32_alloc_coherent(struct device *dev, size_t len,
438 dma_addr_t *pba, gfp_t gfp,
439 unsigned long attrs)
440 {
441 unsigned long len_total = PAGE_ALIGN(len);
442 void *va;
443 struct resource *res;
444 int order;
445
446 if (len == 0) {
447 return NULL;
448 }
449 if (len > 256*1024) { /* __get_free_pages() limit */
450 return NULL;
451 }
452
453 order = get_order(len_total);
454 va = (void *) __get_free_pages(gfp, order);
455 if (va == NULL) {
456 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
457 goto err_nopages;
458 }
459
460 if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
461 printk("pci_alloc_consistent: no core\n");
462 goto err_nomem;
463 }
464
465 if (allocate_resource(&_sparc_dvma, res, len_total,
466 _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
467 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
468 goto err_nova;
469 }
470 srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
471
472 *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
473 return (void *) res->start;
474
475 err_nova:
476 kfree(res);
477 err_nomem:
478 free_pages((unsigned long)va, order);
479 err_nopages:
480 return NULL;
481 }
482
483 /* Free and unmap a consistent DMA buffer.
484 * cpu_addr is what was returned from pci_alloc_consistent,
485 * size must be the same as what as passed into pci_alloc_consistent,
486 * and likewise dma_addr must be the same as what *dma_addrp was set to.
487 *
488 * References to the memory and mappings associated with cpu_addr/dma_addr
489 * past this call are illegal.
490 */
pci32_free_coherent(struct device * dev,size_t n,void * p,dma_addr_t ba,unsigned long attrs)491 static void pci32_free_coherent(struct device *dev, size_t n, void *p,
492 dma_addr_t ba, unsigned long attrs)
493 {
494 struct resource *res;
495
496 if ((res = lookup_resource(&_sparc_dvma,
497 (unsigned long)p)) == NULL) {
498 printk("pci_free_consistent: cannot free %p\n", p);
499 return;
500 }
501
502 if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
503 printk("pci_free_consistent: unaligned va %p\n", p);
504 return;
505 }
506
507 n = PAGE_ALIGN(n);
508 if (resource_size(res) != n) {
509 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
510 (long)resource_size(res), (long)n);
511 return;
512 }
513
514 dma_make_coherent(ba, n);
515 srmmu_unmapiorange((unsigned long)p, n);
516
517 release_resource(res);
518 kfree(res);
519 free_pages((unsigned long)phys_to_virt(ba), get_order(n));
520 }
521
522 /*
523 * Same as pci_map_single, but with pages.
524 */
pci32_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)525 static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
526 unsigned long offset, size_t size,
527 enum dma_data_direction dir,
528 unsigned long attrs)
529 {
530 /* IIep is write-through, not flushing. */
531 return page_to_phys(page) + offset;
532 }
533
pci32_unmap_page(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir,unsigned long attrs)534 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
535 enum dma_data_direction dir, unsigned long attrs)
536 {
537 if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
538 dma_make_coherent(ba, PAGE_ALIGN(size));
539 }
540
541 /* Map a set of buffers described by scatterlist in streaming
542 * mode for DMA. This is the scatter-gather version of the
543 * above pci_map_single interface. Here the scatter gather list
544 * elements are each tagged with the appropriate dma address
545 * and length. They are obtained via sg_dma_{address,length}(SG).
546 *
547 * NOTE: An implementation may be able to use a smaller number of
548 * DMA address/length pairs than there are SG table elements.
549 * (for example via virtual mapping capabilities)
550 * The routine returns the number of addr/length pairs actually
551 * used, at most nents.
552 *
553 * Device ownership issues as mentioned above for pci_map_single are
554 * the same here.
555 */
pci32_map_sg(struct device * device,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)556 static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
557 int nents, enum dma_data_direction dir,
558 unsigned long attrs)
559 {
560 struct scatterlist *sg;
561 int n;
562
563 /* IIep is write-through, not flushing. */
564 for_each_sg(sgl, sg, nents, n) {
565 sg->dma_address = sg_phys(sg);
566 sg->dma_length = sg->length;
567 }
568 return nents;
569 }
570
571 /* Unmap a set of streaming mode DMA translations.
572 * Again, cpu read rules concerning calls here are the same as for
573 * pci_unmap_single() above.
574 */
pci32_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)575 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
576 int nents, enum dma_data_direction dir,
577 unsigned long attrs)
578 {
579 struct scatterlist *sg;
580 int n;
581
582 if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
583 for_each_sg(sgl, sg, nents, n) {
584 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
585 }
586 }
587 }
588
589 /* Make physical memory consistent for a single
590 * streaming mode DMA translation before or after a transfer.
591 *
592 * If you perform a pci_map_single() but wish to interrogate the
593 * buffer using the cpu, yet do not wish to teardown the PCI dma
594 * mapping, you must call this function before doing so. At the
595 * next point you give the PCI dma address back to the card, you
596 * must first perform a pci_dma_sync_for_device, and then the
597 * device again owns the buffer.
598 */
pci32_sync_single_for_cpu(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir)599 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
600 size_t size, enum dma_data_direction dir)
601 {
602 if (dir != PCI_DMA_TODEVICE) {
603 dma_make_coherent(ba, PAGE_ALIGN(size));
604 }
605 }
606
pci32_sync_single_for_device(struct device * dev,dma_addr_t ba,size_t size,enum dma_data_direction dir)607 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
608 size_t size, enum dma_data_direction dir)
609 {
610 if (dir != PCI_DMA_TODEVICE) {
611 dma_make_coherent(ba, PAGE_ALIGN(size));
612 }
613 }
614
615 /* Make physical memory consistent for a set of streaming
616 * mode DMA translations after a transfer.
617 *
618 * The same as pci_dma_sync_single_* but for a scatter-gather list,
619 * same rules and usage.
620 */
pci32_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)621 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
622 int nents, enum dma_data_direction dir)
623 {
624 struct scatterlist *sg;
625 int n;
626
627 if (dir != PCI_DMA_TODEVICE) {
628 for_each_sg(sgl, sg, nents, n) {
629 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
630 }
631 }
632 }
633
pci32_sync_sg_for_device(struct device * device,struct scatterlist * sgl,int nents,enum dma_data_direction dir)634 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
635 int nents, enum dma_data_direction dir)
636 {
637 struct scatterlist *sg;
638 int n;
639
640 if (dir != PCI_DMA_TODEVICE) {
641 for_each_sg(sgl, sg, nents, n) {
642 dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
643 }
644 }
645 }
646
647 /* note: leon re-uses pci32_dma_ops */
648 const struct dma_map_ops pci32_dma_ops = {
649 .alloc = pci32_alloc_coherent,
650 .free = pci32_free_coherent,
651 .map_page = pci32_map_page,
652 .unmap_page = pci32_unmap_page,
653 .map_sg = pci32_map_sg,
654 .unmap_sg = pci32_unmap_sg,
655 .sync_single_for_cpu = pci32_sync_single_for_cpu,
656 .sync_single_for_device = pci32_sync_single_for_device,
657 .sync_sg_for_cpu = pci32_sync_sg_for_cpu,
658 .sync_sg_for_device = pci32_sync_sg_for_device,
659 };
660 EXPORT_SYMBOL(pci32_dma_ops);
661
662 const struct dma_map_ops *dma_ops = &sbus_dma_ops;
663 EXPORT_SYMBOL(dma_ops);
664
665 #ifdef CONFIG_PROC_FS
666
sparc_io_proc_show(struct seq_file * m,void * v)667 static int sparc_io_proc_show(struct seq_file *m, void *v)
668 {
669 struct resource *root = m->private, *r;
670 const char *nm;
671
672 for (r = root->child; r != NULL; r = r->sibling) {
673 if ((nm = r->name) == NULL) nm = "???";
674 seq_printf(m, "%016llx-%016llx: %s\n",
675 (unsigned long long)r->start,
676 (unsigned long long)r->end, nm);
677 }
678
679 return 0;
680 }
681
sparc_io_proc_open(struct inode * inode,struct file * file)682 static int sparc_io_proc_open(struct inode *inode, struct file *file)
683 {
684 return single_open(file, sparc_io_proc_show, PDE_DATA(inode));
685 }
686
687 static const struct file_operations sparc_io_proc_fops = {
688 .owner = THIS_MODULE,
689 .open = sparc_io_proc_open,
690 .read = seq_read,
691 .llseek = seq_lseek,
692 .release = single_release,
693 };
694 #endif /* CONFIG_PROC_FS */
695
register_proc_sparc_ioport(void)696 static void register_proc_sparc_ioport(void)
697 {
698 #ifdef CONFIG_PROC_FS
699 proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
700 proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
701 #endif
702 }
703