• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23 
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26 
27 #include "internal.h"
28 
29 /*
30  * Sometimes for failures during very early init the trace
31  * infrastructure isn't available early enough to be used.  For this
32  * sort of problem defining LOG_DEVICE will add printks for basic
33  * register I/O on a specific device.
34  */
35 #undef LOG_DEVICE
36 
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 			       unsigned int mask, unsigned int val,
39 			       bool *change, bool force_write);
40 
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 				unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44 			    unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 				       unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 				 unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 				 unsigned int val);
51 
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)52 bool regmap_reg_in_ranges(unsigned int reg,
53 			  const struct regmap_range *ranges,
54 			  unsigned int nranges)
55 {
56 	const struct regmap_range *r;
57 	int i;
58 
59 	for (i = 0, r = ranges; i < nranges; i++, r++)
60 		if (regmap_reg_in_range(reg, r))
61 			return true;
62 	return false;
63 }
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65 
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 			      const struct regmap_access_table *table)
68 {
69 	/* Check "no ranges" first */
70 	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 		return false;
72 
73 	/* In case zero "yes ranges" are supplied, any reg is OK */
74 	if (!table->n_yes_ranges)
75 		return true;
76 
77 	return regmap_reg_in_ranges(reg, table->yes_ranges,
78 				    table->n_yes_ranges);
79 }
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81 
regmap_writeable(struct regmap * map,unsigned int reg)82 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 {
84 	if (map->max_register && reg > map->max_register)
85 		return false;
86 
87 	if (map->writeable_reg)
88 		return map->writeable_reg(map->dev, reg);
89 
90 	if (map->wr_table)
91 		return regmap_check_range_table(map, reg, map->wr_table);
92 
93 	return true;
94 }
95 
regmap_cached(struct regmap * map,unsigned int reg)96 bool regmap_cached(struct regmap *map, unsigned int reg)
97 {
98 	int ret;
99 	unsigned int val;
100 
101 	if (map->cache_type == REGCACHE_NONE)
102 		return false;
103 
104 	if (!map->cache_ops)
105 		return false;
106 
107 	if (map->max_register && reg > map->max_register)
108 		return false;
109 
110 	map->lock(map->lock_arg);
111 	ret = regcache_read(map, reg, &val);
112 	map->unlock(map->lock_arg);
113 	if (ret)
114 		return false;
115 
116 	return true;
117 }
118 
regmap_readable(struct regmap * map,unsigned int reg)119 bool regmap_readable(struct regmap *map, unsigned int reg)
120 {
121 	if (!map->reg_read)
122 		return false;
123 
124 	if (map->max_register && reg > map->max_register)
125 		return false;
126 
127 	if (map->format.format_write)
128 		return false;
129 
130 	if (map->readable_reg)
131 		return map->readable_reg(map->dev, reg);
132 
133 	if (map->rd_table)
134 		return regmap_check_range_table(map, reg, map->rd_table);
135 
136 	return true;
137 }
138 
regmap_volatile(struct regmap * map,unsigned int reg)139 bool regmap_volatile(struct regmap *map, unsigned int reg)
140 {
141 	if (!map->format.format_write && !regmap_readable(map, reg))
142 		return false;
143 
144 	if (map->volatile_reg)
145 		return map->volatile_reg(map->dev, reg);
146 
147 	if (map->volatile_table)
148 		return regmap_check_range_table(map, reg, map->volatile_table);
149 
150 	if (map->cache_ops)
151 		return false;
152 	else
153 		return true;
154 }
155 
regmap_precious(struct regmap * map,unsigned int reg)156 bool regmap_precious(struct regmap *map, unsigned int reg)
157 {
158 	if (!regmap_readable(map, reg))
159 		return false;
160 
161 	if (map->precious_reg)
162 		return map->precious_reg(map->dev, reg);
163 
164 	if (map->precious_table)
165 		return regmap_check_range_table(map, reg, map->precious_table);
166 
167 	return false;
168 }
169 
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)170 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
171 	size_t num)
172 {
173 	unsigned int i;
174 
175 	for (i = 0; i < num; i++)
176 		if (!regmap_volatile(map, reg + i))
177 			return false;
178 
179 	return true;
180 }
181 
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)182 static void regmap_format_2_6_write(struct regmap *map,
183 				     unsigned int reg, unsigned int val)
184 {
185 	u8 *out = map->work_buf;
186 
187 	*out = (reg << 6) | val;
188 }
189 
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)190 static void regmap_format_4_12_write(struct regmap *map,
191 				     unsigned int reg, unsigned int val)
192 {
193 	__be16 *out = map->work_buf;
194 	*out = cpu_to_be16((reg << 12) | val);
195 }
196 
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)197 static void regmap_format_7_9_write(struct regmap *map,
198 				    unsigned int reg, unsigned int val)
199 {
200 	__be16 *out = map->work_buf;
201 	*out = cpu_to_be16((reg << 9) | val);
202 }
203 
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)204 static void regmap_format_10_14_write(struct regmap *map,
205 				    unsigned int reg, unsigned int val)
206 {
207 	u8 *out = map->work_buf;
208 
209 	out[2] = val;
210 	out[1] = (val >> 8) | (reg << 6);
211 	out[0] = reg >> 2;
212 }
213 
regmap_format_8(void * buf,unsigned int val,unsigned int shift)214 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
215 {
216 	u8 *b = buf;
217 
218 	b[0] = val << shift;
219 }
220 
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)221 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
222 {
223 	__be16 *b = buf;
224 
225 	b[0] = cpu_to_be16(val << shift);
226 }
227 
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)228 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
229 {
230 	__le16 *b = buf;
231 
232 	b[0] = cpu_to_le16(val << shift);
233 }
234 
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)235 static void regmap_format_16_native(void *buf, unsigned int val,
236 				    unsigned int shift)
237 {
238 	*(u16 *)buf = val << shift;
239 }
240 
regmap_format_24(void * buf,unsigned int val,unsigned int shift)241 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
242 {
243 	u8 *b = buf;
244 
245 	val <<= shift;
246 
247 	b[0] = val >> 16;
248 	b[1] = val >> 8;
249 	b[2] = val;
250 }
251 
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)252 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
253 {
254 	__be32 *b = buf;
255 
256 	b[0] = cpu_to_be32(val << shift);
257 }
258 
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)259 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
260 {
261 	__le32 *b = buf;
262 
263 	b[0] = cpu_to_le32(val << shift);
264 }
265 
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_32_native(void *buf, unsigned int val,
267 				    unsigned int shift)
268 {
269 	*(u32 *)buf = val << shift;
270 }
271 
272 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 	__be64 *b = buf;
276 
277 	b[0] = cpu_to_be64((u64)val << shift);
278 }
279 
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)280 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
281 {
282 	__le64 *b = buf;
283 
284 	b[0] = cpu_to_le64((u64)val << shift);
285 }
286 
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)287 static void regmap_format_64_native(void *buf, unsigned int val,
288 				    unsigned int shift)
289 {
290 	*(u64 *)buf = (u64)val << shift;
291 }
292 #endif
293 
regmap_parse_inplace_noop(void * buf)294 static void regmap_parse_inplace_noop(void *buf)
295 {
296 }
297 
regmap_parse_8(const void * buf)298 static unsigned int regmap_parse_8(const void *buf)
299 {
300 	const u8 *b = buf;
301 
302 	return b[0];
303 }
304 
regmap_parse_16_be(const void * buf)305 static unsigned int regmap_parse_16_be(const void *buf)
306 {
307 	const __be16 *b = buf;
308 
309 	return be16_to_cpu(b[0]);
310 }
311 
regmap_parse_16_le(const void * buf)312 static unsigned int regmap_parse_16_le(const void *buf)
313 {
314 	const __le16 *b = buf;
315 
316 	return le16_to_cpu(b[0]);
317 }
318 
regmap_parse_16_be_inplace(void * buf)319 static void regmap_parse_16_be_inplace(void *buf)
320 {
321 	__be16 *b = buf;
322 
323 	b[0] = be16_to_cpu(b[0]);
324 }
325 
regmap_parse_16_le_inplace(void * buf)326 static void regmap_parse_16_le_inplace(void *buf)
327 {
328 	__le16 *b = buf;
329 
330 	b[0] = le16_to_cpu(b[0]);
331 }
332 
regmap_parse_16_native(const void * buf)333 static unsigned int regmap_parse_16_native(const void *buf)
334 {
335 	return *(u16 *)buf;
336 }
337 
regmap_parse_24(const void * buf)338 static unsigned int regmap_parse_24(const void *buf)
339 {
340 	const u8 *b = buf;
341 	unsigned int ret = b[2];
342 	ret |= ((unsigned int)b[1]) << 8;
343 	ret |= ((unsigned int)b[0]) << 16;
344 
345 	return ret;
346 }
347 
regmap_parse_32_be(const void * buf)348 static unsigned int regmap_parse_32_be(const void *buf)
349 {
350 	const __be32 *b = buf;
351 
352 	return be32_to_cpu(b[0]);
353 }
354 
regmap_parse_32_le(const void * buf)355 static unsigned int regmap_parse_32_le(const void *buf)
356 {
357 	const __le32 *b = buf;
358 
359 	return le32_to_cpu(b[0]);
360 }
361 
regmap_parse_32_be_inplace(void * buf)362 static void regmap_parse_32_be_inplace(void *buf)
363 {
364 	__be32 *b = buf;
365 
366 	b[0] = be32_to_cpu(b[0]);
367 }
368 
regmap_parse_32_le_inplace(void * buf)369 static void regmap_parse_32_le_inplace(void *buf)
370 {
371 	__le32 *b = buf;
372 
373 	b[0] = le32_to_cpu(b[0]);
374 }
375 
regmap_parse_32_native(const void * buf)376 static unsigned int regmap_parse_32_native(const void *buf)
377 {
378 	return *(u32 *)buf;
379 }
380 
381 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)382 static unsigned int regmap_parse_64_be(const void *buf)
383 {
384 	const __be64 *b = buf;
385 
386 	return be64_to_cpu(b[0]);
387 }
388 
regmap_parse_64_le(const void * buf)389 static unsigned int regmap_parse_64_le(const void *buf)
390 {
391 	const __le64 *b = buf;
392 
393 	return le64_to_cpu(b[0]);
394 }
395 
regmap_parse_64_be_inplace(void * buf)396 static void regmap_parse_64_be_inplace(void *buf)
397 {
398 	__be64 *b = buf;
399 
400 	b[0] = be64_to_cpu(b[0]);
401 }
402 
regmap_parse_64_le_inplace(void * buf)403 static void regmap_parse_64_le_inplace(void *buf)
404 {
405 	__le64 *b = buf;
406 
407 	b[0] = le64_to_cpu(b[0]);
408 }
409 
regmap_parse_64_native(const void * buf)410 static unsigned int regmap_parse_64_native(const void *buf)
411 {
412 	return *(u64 *)buf;
413 }
414 #endif
415 
regmap_lock_mutex(void * __map)416 static void regmap_lock_mutex(void *__map)
417 {
418 	struct regmap *map = __map;
419 	mutex_lock(&map->mutex);
420 }
421 
regmap_unlock_mutex(void * __map)422 static void regmap_unlock_mutex(void *__map)
423 {
424 	struct regmap *map = __map;
425 	mutex_unlock(&map->mutex);
426 }
427 
regmap_lock_spinlock(void * __map)428 static void regmap_lock_spinlock(void *__map)
429 __acquires(&map->spinlock)
430 {
431 	struct regmap *map = __map;
432 	unsigned long flags;
433 
434 	spin_lock_irqsave(&map->spinlock, flags);
435 	map->spinlock_flags = flags;
436 }
437 
regmap_unlock_spinlock(void * __map)438 static void regmap_unlock_spinlock(void *__map)
439 __releases(&map->spinlock)
440 {
441 	struct regmap *map = __map;
442 	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
443 }
444 
dev_get_regmap_release(struct device * dev,void * res)445 static void dev_get_regmap_release(struct device *dev, void *res)
446 {
447 	/*
448 	 * We don't actually have anything to do here; the goal here
449 	 * is not to manage the regmap but to provide a simple way to
450 	 * get the regmap back given a struct device.
451 	 */
452 }
453 
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)454 static bool _regmap_range_add(struct regmap *map,
455 			      struct regmap_range_node *data)
456 {
457 	struct rb_root *root = &map->range_tree;
458 	struct rb_node **new = &(root->rb_node), *parent = NULL;
459 
460 	while (*new) {
461 		struct regmap_range_node *this =
462 			rb_entry(*new, struct regmap_range_node, node);
463 
464 		parent = *new;
465 		if (data->range_max < this->range_min)
466 			new = &((*new)->rb_left);
467 		else if (data->range_min > this->range_max)
468 			new = &((*new)->rb_right);
469 		else
470 			return false;
471 	}
472 
473 	rb_link_node(&data->node, parent, new);
474 	rb_insert_color(&data->node, root);
475 
476 	return true;
477 }
478 
_regmap_range_lookup(struct regmap * map,unsigned int reg)479 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
480 						      unsigned int reg)
481 {
482 	struct rb_node *node = map->range_tree.rb_node;
483 
484 	while (node) {
485 		struct regmap_range_node *this =
486 			rb_entry(node, struct regmap_range_node, node);
487 
488 		if (reg < this->range_min)
489 			node = node->rb_left;
490 		else if (reg > this->range_max)
491 			node = node->rb_right;
492 		else
493 			return this;
494 	}
495 
496 	return NULL;
497 }
498 
regmap_range_exit(struct regmap * map)499 static void regmap_range_exit(struct regmap *map)
500 {
501 	struct rb_node *next;
502 	struct regmap_range_node *range_node;
503 
504 	next = rb_first(&map->range_tree);
505 	while (next) {
506 		range_node = rb_entry(next, struct regmap_range_node, node);
507 		next = rb_next(&range_node->node);
508 		rb_erase(&range_node->node, &map->range_tree);
509 		kfree(range_node);
510 	}
511 
512 	kfree(map->selector_work_buf);
513 }
514 
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)515 int regmap_attach_dev(struct device *dev, struct regmap *map,
516 		      const struct regmap_config *config)
517 {
518 	struct regmap **m;
519 
520 	map->dev = dev;
521 
522 	regmap_debugfs_init(map, config->name);
523 
524 	/* Add a devres resource for dev_get_regmap() */
525 	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
526 	if (!m) {
527 		regmap_debugfs_exit(map);
528 		return -ENOMEM;
529 	}
530 	*m = map;
531 	devres_add(dev, m);
532 
533 	return 0;
534 }
535 EXPORT_SYMBOL_GPL(regmap_attach_dev);
536 
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)537 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
538 					const struct regmap_config *config)
539 {
540 	enum regmap_endian endian;
541 
542 	/* Retrieve the endianness specification from the regmap config */
543 	endian = config->reg_format_endian;
544 
545 	/* If the regmap config specified a non-default value, use that */
546 	if (endian != REGMAP_ENDIAN_DEFAULT)
547 		return endian;
548 
549 	/* Retrieve the endianness specification from the bus config */
550 	if (bus && bus->reg_format_endian_default)
551 		endian = bus->reg_format_endian_default;
552 
553 	/* If the bus specified a non-default value, use that */
554 	if (endian != REGMAP_ENDIAN_DEFAULT)
555 		return endian;
556 
557 	/* Use this if no other value was found */
558 	return REGMAP_ENDIAN_BIG;
559 }
560 
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)561 enum regmap_endian regmap_get_val_endian(struct device *dev,
562 					 const struct regmap_bus *bus,
563 					 const struct regmap_config *config)
564 {
565 	struct device_node *np;
566 	enum regmap_endian endian;
567 
568 	/* Retrieve the endianness specification from the regmap config */
569 	endian = config->val_format_endian;
570 
571 	/* If the regmap config specified a non-default value, use that */
572 	if (endian != REGMAP_ENDIAN_DEFAULT)
573 		return endian;
574 
575 	/* If the dev and dev->of_node exist try to get endianness from DT */
576 	if (dev && dev->of_node) {
577 		np = dev->of_node;
578 
579 		/* Parse the device's DT node for an endianness specification */
580 		if (of_property_read_bool(np, "big-endian"))
581 			endian = REGMAP_ENDIAN_BIG;
582 		else if (of_property_read_bool(np, "little-endian"))
583 			endian = REGMAP_ENDIAN_LITTLE;
584 		else if (of_property_read_bool(np, "native-endian"))
585 			endian = REGMAP_ENDIAN_NATIVE;
586 
587 		/* If the endianness was specified in DT, use that */
588 		if (endian != REGMAP_ENDIAN_DEFAULT)
589 			return endian;
590 	}
591 
592 	/* Retrieve the endianness specification from the bus config */
593 	if (bus && bus->val_format_endian_default)
594 		endian = bus->val_format_endian_default;
595 
596 	/* If the bus specified a non-default value, use that */
597 	if (endian != REGMAP_ENDIAN_DEFAULT)
598 		return endian;
599 
600 	/* Use this if no other value was found */
601 	return REGMAP_ENDIAN_BIG;
602 }
603 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
604 
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)605 struct regmap *__regmap_init(struct device *dev,
606 			     const struct regmap_bus *bus,
607 			     void *bus_context,
608 			     const struct regmap_config *config,
609 			     struct lock_class_key *lock_key,
610 			     const char *lock_name)
611 {
612 	struct regmap *map;
613 	int ret = -EINVAL;
614 	enum regmap_endian reg_endian, val_endian;
615 	int i, j;
616 
617 	if (!config)
618 		goto err;
619 
620 	map = kzalloc(sizeof(*map), GFP_KERNEL);
621 	if (map == NULL) {
622 		ret = -ENOMEM;
623 		goto err;
624 	}
625 
626 	if (config->lock && config->unlock) {
627 		map->lock = config->lock;
628 		map->unlock = config->unlock;
629 		map->lock_arg = config->lock_arg;
630 	} else {
631 		if ((bus && bus->fast_io) ||
632 		    config->fast_io) {
633 			spin_lock_init(&map->spinlock);
634 			map->lock = regmap_lock_spinlock;
635 			map->unlock = regmap_unlock_spinlock;
636 			lockdep_set_class_and_name(&map->spinlock,
637 						   lock_key, lock_name);
638 		} else {
639 			mutex_init(&map->mutex);
640 			map->lock = regmap_lock_mutex;
641 			map->unlock = regmap_unlock_mutex;
642 			lockdep_set_class_and_name(&map->mutex,
643 						   lock_key, lock_name);
644 		}
645 		map->lock_arg = map;
646 	}
647 
648 	/*
649 	 * When we write in fast-paths with regmap_bulk_write() don't allocate
650 	 * scratch buffers with sleeping allocations.
651 	 */
652 	if ((bus && bus->fast_io) || config->fast_io)
653 		map->alloc_flags = GFP_ATOMIC;
654 	else
655 		map->alloc_flags = GFP_KERNEL;
656 
657 	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
658 	map->format.pad_bytes = config->pad_bits / 8;
659 	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
660 	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
661 			config->val_bits + config->pad_bits, 8);
662 	map->reg_shift = config->pad_bits % 8;
663 	if (config->reg_stride)
664 		map->reg_stride = config->reg_stride;
665 	else
666 		map->reg_stride = 1;
667 	if (is_power_of_2(map->reg_stride))
668 		map->reg_stride_order = ilog2(map->reg_stride);
669 	else
670 		map->reg_stride_order = -1;
671 	map->use_single_read = config->use_single_rw || !bus || !bus->read;
672 	map->use_single_write = config->use_single_rw || !bus || !bus->write;
673 	map->can_multi_write = config->can_multi_write && bus && bus->write;
674 	if (bus) {
675 		map->max_raw_read = bus->max_raw_read;
676 		map->max_raw_write = bus->max_raw_write;
677 	}
678 	map->dev = dev;
679 	map->bus = bus;
680 	map->bus_context = bus_context;
681 	map->max_register = config->max_register;
682 	map->wr_table = config->wr_table;
683 	map->rd_table = config->rd_table;
684 	map->volatile_table = config->volatile_table;
685 	map->precious_table = config->precious_table;
686 	map->writeable_reg = config->writeable_reg;
687 	map->readable_reg = config->readable_reg;
688 	map->volatile_reg = config->volatile_reg;
689 	map->precious_reg = config->precious_reg;
690 	map->cache_type = config->cache_type;
691 	map->name = config->name;
692 
693 	spin_lock_init(&map->async_lock);
694 	INIT_LIST_HEAD(&map->async_list);
695 	INIT_LIST_HEAD(&map->async_free);
696 	init_waitqueue_head(&map->async_waitq);
697 
698 	if (config->read_flag_mask || config->write_flag_mask) {
699 		map->read_flag_mask = config->read_flag_mask;
700 		map->write_flag_mask = config->write_flag_mask;
701 	} else if (bus) {
702 		map->read_flag_mask = bus->read_flag_mask;
703 	}
704 
705 	if (!bus) {
706 		map->reg_read  = config->reg_read;
707 		map->reg_write = config->reg_write;
708 
709 		map->defer_caching = false;
710 		goto skip_format_initialization;
711 	} else if (!bus->read || !bus->write) {
712 		map->reg_read = _regmap_bus_reg_read;
713 		map->reg_write = _regmap_bus_reg_write;
714 
715 		map->defer_caching = false;
716 		goto skip_format_initialization;
717 	} else {
718 		map->reg_read  = _regmap_bus_read;
719 		map->reg_update_bits = bus->reg_update_bits;
720 	}
721 
722 	reg_endian = regmap_get_reg_endian(bus, config);
723 	val_endian = regmap_get_val_endian(dev, bus, config);
724 
725 	switch (config->reg_bits + map->reg_shift) {
726 	case 2:
727 		switch (config->val_bits) {
728 		case 6:
729 			map->format.format_write = regmap_format_2_6_write;
730 			break;
731 		default:
732 			goto err_map;
733 		}
734 		break;
735 
736 	case 4:
737 		switch (config->val_bits) {
738 		case 12:
739 			map->format.format_write = regmap_format_4_12_write;
740 			break;
741 		default:
742 			goto err_map;
743 		}
744 		break;
745 
746 	case 7:
747 		switch (config->val_bits) {
748 		case 9:
749 			map->format.format_write = regmap_format_7_9_write;
750 			break;
751 		default:
752 			goto err_map;
753 		}
754 		break;
755 
756 	case 10:
757 		switch (config->val_bits) {
758 		case 14:
759 			map->format.format_write = regmap_format_10_14_write;
760 			break;
761 		default:
762 			goto err_map;
763 		}
764 		break;
765 
766 	case 8:
767 		map->format.format_reg = regmap_format_8;
768 		break;
769 
770 	case 16:
771 		switch (reg_endian) {
772 		case REGMAP_ENDIAN_BIG:
773 			map->format.format_reg = regmap_format_16_be;
774 			break;
775 		case REGMAP_ENDIAN_LITTLE:
776 			map->format.format_reg = regmap_format_16_le;
777 			break;
778 		case REGMAP_ENDIAN_NATIVE:
779 			map->format.format_reg = regmap_format_16_native;
780 			break;
781 		default:
782 			goto err_map;
783 		}
784 		break;
785 
786 	case 24:
787 		if (reg_endian != REGMAP_ENDIAN_BIG)
788 			goto err_map;
789 		map->format.format_reg = regmap_format_24;
790 		break;
791 
792 	case 32:
793 		switch (reg_endian) {
794 		case REGMAP_ENDIAN_BIG:
795 			map->format.format_reg = regmap_format_32_be;
796 			break;
797 		case REGMAP_ENDIAN_LITTLE:
798 			map->format.format_reg = regmap_format_32_le;
799 			break;
800 		case REGMAP_ENDIAN_NATIVE:
801 			map->format.format_reg = regmap_format_32_native;
802 			break;
803 		default:
804 			goto err_map;
805 		}
806 		break;
807 
808 #ifdef CONFIG_64BIT
809 	case 64:
810 		switch (reg_endian) {
811 		case REGMAP_ENDIAN_BIG:
812 			map->format.format_reg = regmap_format_64_be;
813 			break;
814 		case REGMAP_ENDIAN_LITTLE:
815 			map->format.format_reg = regmap_format_64_le;
816 			break;
817 		case REGMAP_ENDIAN_NATIVE:
818 			map->format.format_reg = regmap_format_64_native;
819 			break;
820 		default:
821 			goto err_map;
822 		}
823 		break;
824 #endif
825 
826 	default:
827 		goto err_map;
828 	}
829 
830 	if (val_endian == REGMAP_ENDIAN_NATIVE)
831 		map->format.parse_inplace = regmap_parse_inplace_noop;
832 
833 	switch (config->val_bits) {
834 	case 8:
835 		map->format.format_val = regmap_format_8;
836 		map->format.parse_val = regmap_parse_8;
837 		map->format.parse_inplace = regmap_parse_inplace_noop;
838 		break;
839 	case 16:
840 		switch (val_endian) {
841 		case REGMAP_ENDIAN_BIG:
842 			map->format.format_val = regmap_format_16_be;
843 			map->format.parse_val = regmap_parse_16_be;
844 			map->format.parse_inplace = regmap_parse_16_be_inplace;
845 			break;
846 		case REGMAP_ENDIAN_LITTLE:
847 			map->format.format_val = regmap_format_16_le;
848 			map->format.parse_val = regmap_parse_16_le;
849 			map->format.parse_inplace = regmap_parse_16_le_inplace;
850 			break;
851 		case REGMAP_ENDIAN_NATIVE:
852 			map->format.format_val = regmap_format_16_native;
853 			map->format.parse_val = regmap_parse_16_native;
854 			break;
855 		default:
856 			goto err_map;
857 		}
858 		break;
859 	case 24:
860 		if (val_endian != REGMAP_ENDIAN_BIG)
861 			goto err_map;
862 		map->format.format_val = regmap_format_24;
863 		map->format.parse_val = regmap_parse_24;
864 		break;
865 	case 32:
866 		switch (val_endian) {
867 		case REGMAP_ENDIAN_BIG:
868 			map->format.format_val = regmap_format_32_be;
869 			map->format.parse_val = regmap_parse_32_be;
870 			map->format.parse_inplace = regmap_parse_32_be_inplace;
871 			break;
872 		case REGMAP_ENDIAN_LITTLE:
873 			map->format.format_val = regmap_format_32_le;
874 			map->format.parse_val = regmap_parse_32_le;
875 			map->format.parse_inplace = regmap_parse_32_le_inplace;
876 			break;
877 		case REGMAP_ENDIAN_NATIVE:
878 			map->format.format_val = regmap_format_32_native;
879 			map->format.parse_val = regmap_parse_32_native;
880 			break;
881 		default:
882 			goto err_map;
883 		}
884 		break;
885 #ifdef CONFIG_64BIT
886 	case 64:
887 		switch (val_endian) {
888 		case REGMAP_ENDIAN_BIG:
889 			map->format.format_val = regmap_format_64_be;
890 			map->format.parse_val = regmap_parse_64_be;
891 			map->format.parse_inplace = regmap_parse_64_be_inplace;
892 			break;
893 		case REGMAP_ENDIAN_LITTLE:
894 			map->format.format_val = regmap_format_64_le;
895 			map->format.parse_val = regmap_parse_64_le;
896 			map->format.parse_inplace = regmap_parse_64_le_inplace;
897 			break;
898 		case REGMAP_ENDIAN_NATIVE:
899 			map->format.format_val = regmap_format_64_native;
900 			map->format.parse_val = regmap_parse_64_native;
901 			break;
902 		default:
903 			goto err_map;
904 		}
905 		break;
906 #endif
907 	}
908 
909 	if (map->format.format_write) {
910 		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
911 		    (val_endian != REGMAP_ENDIAN_BIG))
912 			goto err_map;
913 		map->use_single_write = true;
914 	}
915 
916 	if (!map->format.format_write &&
917 	    !(map->format.format_reg && map->format.format_val))
918 		goto err_map;
919 
920 	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
921 	if (map->work_buf == NULL) {
922 		ret = -ENOMEM;
923 		goto err_map;
924 	}
925 
926 	if (map->format.format_write) {
927 		map->defer_caching = false;
928 		map->reg_write = _regmap_bus_formatted_write;
929 	} else if (map->format.format_val) {
930 		map->defer_caching = true;
931 		map->reg_write = _regmap_bus_raw_write;
932 	}
933 
934 skip_format_initialization:
935 
936 	map->range_tree = RB_ROOT;
937 	for (i = 0; i < config->num_ranges; i++) {
938 		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
939 		struct regmap_range_node *new;
940 
941 		/* Sanity check */
942 		if (range_cfg->range_max < range_cfg->range_min) {
943 			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
944 				range_cfg->range_max, range_cfg->range_min);
945 			goto err_range;
946 		}
947 
948 		if (range_cfg->range_max > map->max_register) {
949 			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
950 				range_cfg->range_max, map->max_register);
951 			goto err_range;
952 		}
953 
954 		if (range_cfg->selector_reg > map->max_register) {
955 			dev_err(map->dev,
956 				"Invalid range %d: selector out of map\n", i);
957 			goto err_range;
958 		}
959 
960 		if (range_cfg->window_len == 0) {
961 			dev_err(map->dev, "Invalid range %d: window_len 0\n",
962 				i);
963 			goto err_range;
964 		}
965 
966 		/* Make sure, that this register range has no selector
967 		   or data window within its boundary */
968 		for (j = 0; j < config->num_ranges; j++) {
969 			unsigned sel_reg = config->ranges[j].selector_reg;
970 			unsigned win_min = config->ranges[j].window_start;
971 			unsigned win_max = win_min +
972 					   config->ranges[j].window_len - 1;
973 
974 			/* Allow data window inside its own virtual range */
975 			if (j == i)
976 				continue;
977 
978 			if (range_cfg->range_min <= sel_reg &&
979 			    sel_reg <= range_cfg->range_max) {
980 				dev_err(map->dev,
981 					"Range %d: selector for %d in window\n",
982 					i, j);
983 				goto err_range;
984 			}
985 
986 			if (!(win_max < range_cfg->range_min ||
987 			      win_min > range_cfg->range_max)) {
988 				dev_err(map->dev,
989 					"Range %d: window for %d in window\n",
990 					i, j);
991 				goto err_range;
992 			}
993 		}
994 
995 		new = kzalloc(sizeof(*new), GFP_KERNEL);
996 		if (new == NULL) {
997 			ret = -ENOMEM;
998 			goto err_range;
999 		}
1000 
1001 		new->map = map;
1002 		new->name = range_cfg->name;
1003 		new->range_min = range_cfg->range_min;
1004 		new->range_max = range_cfg->range_max;
1005 		new->selector_reg = range_cfg->selector_reg;
1006 		new->selector_mask = range_cfg->selector_mask;
1007 		new->selector_shift = range_cfg->selector_shift;
1008 		new->window_start = range_cfg->window_start;
1009 		new->window_len = range_cfg->window_len;
1010 
1011 		if (!_regmap_range_add(map, new)) {
1012 			dev_err(map->dev, "Failed to add range %d\n", i);
1013 			kfree(new);
1014 			goto err_range;
1015 		}
1016 
1017 		if (map->selector_work_buf == NULL) {
1018 			map->selector_work_buf =
1019 				kzalloc(map->format.buf_size, GFP_KERNEL);
1020 			if (map->selector_work_buf == NULL) {
1021 				ret = -ENOMEM;
1022 				goto err_range;
1023 			}
1024 		}
1025 	}
1026 
1027 	ret = regcache_init(map, config);
1028 	if (ret != 0)
1029 		goto err_range;
1030 
1031 	if (dev) {
1032 		ret = regmap_attach_dev(dev, map, config);
1033 		if (ret != 0)
1034 			goto err_regcache;
1035 	}
1036 
1037 	return map;
1038 
1039 err_regcache:
1040 	regcache_exit(map);
1041 err_range:
1042 	regmap_range_exit(map);
1043 	kfree(map->work_buf);
1044 err_map:
1045 	kfree(map);
1046 err:
1047 	return ERR_PTR(ret);
1048 }
1049 EXPORT_SYMBOL_GPL(__regmap_init);
1050 
devm_regmap_release(struct device * dev,void * res)1051 static void devm_regmap_release(struct device *dev, void *res)
1052 {
1053 	regmap_exit(*(struct regmap **)res);
1054 }
1055 
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1056 struct regmap *__devm_regmap_init(struct device *dev,
1057 				  const struct regmap_bus *bus,
1058 				  void *bus_context,
1059 				  const struct regmap_config *config,
1060 				  struct lock_class_key *lock_key,
1061 				  const char *lock_name)
1062 {
1063 	struct regmap **ptr, *regmap;
1064 
1065 	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066 	if (!ptr)
1067 		return ERR_PTR(-ENOMEM);
1068 
1069 	regmap = __regmap_init(dev, bus, bus_context, config,
1070 			       lock_key, lock_name);
1071 	if (!IS_ERR(regmap)) {
1072 		*ptr = regmap;
1073 		devres_add(dev, ptr);
1074 	} else {
1075 		devres_free(ptr);
1076 	}
1077 
1078 	return regmap;
1079 }
1080 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1081 
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1082 static void regmap_field_init(struct regmap_field *rm_field,
1083 	struct regmap *regmap, struct reg_field reg_field)
1084 {
1085 	rm_field->regmap = regmap;
1086 	rm_field->reg = reg_field.reg;
1087 	rm_field->shift = reg_field.lsb;
1088 	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089 	rm_field->id_size = reg_field.id_size;
1090 	rm_field->id_offset = reg_field.id_offset;
1091 }
1092 
1093 /**
1094  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1095  *
1096  * @dev: Device that will be interacted with
1097  * @regmap: regmap bank in which this register field is located.
1098  * @reg_field: Register field with in the bank.
1099  *
1100  * The return value will be an ERR_PTR() on error or a valid pointer
1101  * to a struct regmap_field. The regmap_field will be automatically freed
1102  * by the device management code.
1103  */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1104 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1105 		struct regmap *regmap, struct reg_field reg_field)
1106 {
1107 	struct regmap_field *rm_field = devm_kzalloc(dev,
1108 					sizeof(*rm_field), GFP_KERNEL);
1109 	if (!rm_field)
1110 		return ERR_PTR(-ENOMEM);
1111 
1112 	regmap_field_init(rm_field, regmap, reg_field);
1113 
1114 	return rm_field;
1115 
1116 }
1117 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1118 
1119 /**
1120  * devm_regmap_field_free() - Free a register field allocated using
1121  *                            devm_regmap_field_alloc.
1122  *
1123  * @dev: Device that will be interacted with
1124  * @field: regmap field which should be freed.
1125  *
1126  * Free register field allocated using devm_regmap_field_alloc(). Usually
1127  * drivers need not call this function, as the memory allocated via devm
1128  * will be freed as per device-driver life-cyle.
1129  */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1130 void devm_regmap_field_free(struct device *dev,
1131 	struct regmap_field *field)
1132 {
1133 	devm_kfree(dev, field);
1134 }
1135 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1136 
1137 /**
1138  * regmap_field_alloc() - Allocate and initialise a register field.
1139  *
1140  * @regmap: regmap bank in which this register field is located.
1141  * @reg_field: Register field with in the bank.
1142  *
1143  * The return value will be an ERR_PTR() on error or a valid pointer
1144  * to a struct regmap_field. The regmap_field should be freed by the
1145  * user once its finished working with it using regmap_field_free().
1146  */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1147 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148 		struct reg_field reg_field)
1149 {
1150 	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1151 
1152 	if (!rm_field)
1153 		return ERR_PTR(-ENOMEM);
1154 
1155 	regmap_field_init(rm_field, regmap, reg_field);
1156 
1157 	return rm_field;
1158 }
1159 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1160 
1161 /**
1162  * regmap_field_free() - Free register field allocated using
1163  *                       regmap_field_alloc.
1164  *
1165  * @field: regmap field which should be freed.
1166  */
regmap_field_free(struct regmap_field * field)1167 void regmap_field_free(struct regmap_field *field)
1168 {
1169 	kfree(field);
1170 }
1171 EXPORT_SYMBOL_GPL(regmap_field_free);
1172 
1173 /**
1174  * regmap_reinit_cache() - Reinitialise the current register cache
1175  *
1176  * @map: Register map to operate on.
1177  * @config: New configuration.  Only the cache data will be used.
1178  *
1179  * Discard any existing register cache for the map and initialize a
1180  * new cache.  This can be used to restore the cache to defaults or to
1181  * update the cache configuration to reflect runtime discovery of the
1182  * hardware.
1183  *
1184  * No explicit locking is done here, the user needs to ensure that
1185  * this function will not race with other calls to regmap.
1186  */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1187 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1188 {
1189 	regcache_exit(map);
1190 	regmap_debugfs_exit(map);
1191 
1192 	map->max_register = config->max_register;
1193 	map->writeable_reg = config->writeable_reg;
1194 	map->readable_reg = config->readable_reg;
1195 	map->volatile_reg = config->volatile_reg;
1196 	map->precious_reg = config->precious_reg;
1197 	map->cache_type = config->cache_type;
1198 
1199 	regmap_debugfs_init(map, config->name);
1200 
1201 	map->cache_bypass = false;
1202 	map->cache_only = false;
1203 
1204 	return regcache_init(map, config);
1205 }
1206 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1207 
1208 /**
1209  * regmap_exit() - Free a previously allocated register map
1210  *
1211  * @map: Register map to operate on.
1212  */
regmap_exit(struct regmap * map)1213 void regmap_exit(struct regmap *map)
1214 {
1215 	struct regmap_async *async;
1216 
1217 	regcache_exit(map);
1218 	regmap_debugfs_exit(map);
1219 	regmap_range_exit(map);
1220 	if (map->bus && map->bus->free_context)
1221 		map->bus->free_context(map->bus_context);
1222 	kfree(map->work_buf);
1223 	while (!list_empty(&map->async_free)) {
1224 		async = list_first_entry_or_null(&map->async_free,
1225 						 struct regmap_async,
1226 						 list);
1227 		list_del(&async->list);
1228 		kfree(async->work_buf);
1229 		kfree(async);
1230 	}
1231 	kfree(map);
1232 }
1233 EXPORT_SYMBOL_GPL(regmap_exit);
1234 
dev_get_regmap_match(struct device * dev,void * res,void * data)1235 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1236 {
1237 	struct regmap **r = res;
1238 	if (!r || !*r) {
1239 		WARN_ON(!r || !*r);
1240 		return 0;
1241 	}
1242 
1243 	/* If the user didn't specify a name match any */
1244 	if (data)
1245 		return (*r)->name == data;
1246 	else
1247 		return 1;
1248 }
1249 
1250 /**
1251  * dev_get_regmap() - Obtain the regmap (if any) for a device
1252  *
1253  * @dev: Device to retrieve the map for
1254  * @name: Optional name for the register map, usually NULL.
1255  *
1256  * Returns the regmap for the device if one is present, or NULL.  If
1257  * name is specified then it must match the name specified when
1258  * registering the device, if it is NULL then the first regmap found
1259  * will be used.  Devices with multiple register maps are very rare,
1260  * generic code should normally not need to specify a name.
1261  */
dev_get_regmap(struct device * dev,const char * name)1262 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1263 {
1264 	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1265 					dev_get_regmap_match, (void *)name);
1266 
1267 	if (!r)
1268 		return NULL;
1269 	return *r;
1270 }
1271 EXPORT_SYMBOL_GPL(dev_get_regmap);
1272 
1273 /**
1274  * regmap_get_device() - Obtain the device from a regmap
1275  *
1276  * @map: Register map to operate on.
1277  *
1278  * Returns the underlying device that the regmap has been created for.
1279  */
regmap_get_device(struct regmap * map)1280 struct device *regmap_get_device(struct regmap *map)
1281 {
1282 	return map->dev;
1283 }
1284 EXPORT_SYMBOL_GPL(regmap_get_device);
1285 
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1286 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1287 			       struct regmap_range_node *range,
1288 			       unsigned int val_num)
1289 {
1290 	void *orig_work_buf;
1291 	unsigned int win_offset;
1292 	unsigned int win_page;
1293 	bool page_chg;
1294 	int ret;
1295 
1296 	win_offset = (*reg - range->range_min) % range->window_len;
1297 	win_page = (*reg - range->range_min) / range->window_len;
1298 
1299 	if (val_num > 1) {
1300 		/* Bulk write shouldn't cross range boundary */
1301 		if (*reg + val_num - 1 > range->range_max)
1302 			return -EINVAL;
1303 
1304 		/* ... or single page boundary */
1305 		if (val_num > range->window_len - win_offset)
1306 			return -EINVAL;
1307 	}
1308 
1309 	/* It is possible to have selector register inside data window.
1310 	   In that case, selector register is located on every page and
1311 	   it needs no page switching, when accessed alone. */
1312 	if (val_num > 1 ||
1313 	    range->window_start + win_offset != range->selector_reg) {
1314 		/* Use separate work_buf during page switching */
1315 		orig_work_buf = map->work_buf;
1316 		map->work_buf = map->selector_work_buf;
1317 
1318 		ret = _regmap_update_bits(map, range->selector_reg,
1319 					  range->selector_mask,
1320 					  win_page << range->selector_shift,
1321 					  &page_chg, false);
1322 
1323 		map->work_buf = orig_work_buf;
1324 
1325 		if (ret != 0)
1326 			return ret;
1327 	}
1328 
1329 	*reg = range->window_start + win_offset;
1330 
1331 	return 0;
1332 }
1333 
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1334 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1335 					  unsigned long mask)
1336 {
1337 	u8 *buf;
1338 	int i;
1339 
1340 	if (!mask || !map->work_buf)
1341 		return;
1342 
1343 	buf = map->work_buf;
1344 
1345 	for (i = 0; i < max_bytes; i++)
1346 		buf[i] |= (mask >> (8 * i)) & 0xff;
1347 }
1348 
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)1349 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1350 		      const void *val, size_t val_len)
1351 {
1352 	struct regmap_range_node *range;
1353 	unsigned long flags;
1354 	void *work_val = map->work_buf + map->format.reg_bytes +
1355 		map->format.pad_bytes;
1356 	void *buf;
1357 	int ret = -ENOTSUPP;
1358 	size_t len;
1359 	int i;
1360 
1361 	WARN_ON(!map->bus);
1362 
1363 	/* Check for unwritable registers before we start */
1364 	if (map->writeable_reg)
1365 		for (i = 0; i < val_len / map->format.val_bytes; i++)
1366 			if (!map->writeable_reg(map->dev,
1367 					       reg + regmap_get_offset(map, i)))
1368 				return -EINVAL;
1369 
1370 	if (!map->cache_bypass && map->format.parse_val) {
1371 		unsigned int ival;
1372 		int val_bytes = map->format.val_bytes;
1373 		for (i = 0; i < val_len / val_bytes; i++) {
1374 			ival = map->format.parse_val(val + (i * val_bytes));
1375 			ret = regcache_write(map,
1376 					     reg + regmap_get_offset(map, i),
1377 					     ival);
1378 			if (ret) {
1379 				dev_err(map->dev,
1380 					"Error in caching of register: %x ret: %d\n",
1381 					reg + i, ret);
1382 				return ret;
1383 			}
1384 		}
1385 		if (map->cache_only) {
1386 			map->cache_dirty = true;
1387 			return 0;
1388 		}
1389 	}
1390 
1391 	range = _regmap_range_lookup(map, reg);
1392 	if (range) {
1393 		int val_num = val_len / map->format.val_bytes;
1394 		int win_offset = (reg - range->range_min) % range->window_len;
1395 		int win_residue = range->window_len - win_offset;
1396 
1397 		/* If the write goes beyond the end of the window split it */
1398 		while (val_num > win_residue) {
1399 			dev_dbg(map->dev, "Writing window %d/%zu\n",
1400 				win_residue, val_len / map->format.val_bytes);
1401 			ret = _regmap_raw_write(map, reg, val, win_residue *
1402 						map->format.val_bytes);
1403 			if (ret != 0)
1404 				return ret;
1405 
1406 			reg += win_residue;
1407 			val_num -= win_residue;
1408 			val += win_residue * map->format.val_bytes;
1409 			val_len -= win_residue * map->format.val_bytes;
1410 
1411 			win_offset = (reg - range->range_min) %
1412 				range->window_len;
1413 			win_residue = range->window_len - win_offset;
1414 		}
1415 
1416 		ret = _regmap_select_page(map, &reg, range, val_num);
1417 		if (ret != 0)
1418 			return ret;
1419 	}
1420 
1421 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1422 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1423 				      map->write_flag_mask);
1424 
1425 	/*
1426 	 * Essentially all I/O mechanisms will be faster with a single
1427 	 * buffer to write.  Since register syncs often generate raw
1428 	 * writes of single registers optimise that case.
1429 	 */
1430 	if (val != work_val && val_len == map->format.val_bytes) {
1431 		memcpy(work_val, val, map->format.val_bytes);
1432 		val = work_val;
1433 	}
1434 
1435 	if (map->async && map->bus->async_write) {
1436 		struct regmap_async *async;
1437 
1438 		trace_regmap_async_write_start(map, reg, val_len);
1439 
1440 		spin_lock_irqsave(&map->async_lock, flags);
1441 		async = list_first_entry_or_null(&map->async_free,
1442 						 struct regmap_async,
1443 						 list);
1444 		if (async)
1445 			list_del(&async->list);
1446 		spin_unlock_irqrestore(&map->async_lock, flags);
1447 
1448 		if (!async) {
1449 			async = map->bus->async_alloc();
1450 			if (!async)
1451 				return -ENOMEM;
1452 
1453 			async->work_buf = kzalloc(map->format.buf_size,
1454 						  GFP_KERNEL | GFP_DMA);
1455 			if (!async->work_buf) {
1456 				kfree(async);
1457 				return -ENOMEM;
1458 			}
1459 		}
1460 
1461 		async->map = map;
1462 
1463 		/* If the caller supplied the value we can use it safely. */
1464 		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1465 		       map->format.reg_bytes + map->format.val_bytes);
1466 
1467 		spin_lock_irqsave(&map->async_lock, flags);
1468 		list_add_tail(&async->list, &map->async_list);
1469 		spin_unlock_irqrestore(&map->async_lock, flags);
1470 
1471 		if (val != work_val)
1472 			ret = map->bus->async_write(map->bus_context,
1473 						    async->work_buf,
1474 						    map->format.reg_bytes +
1475 						    map->format.pad_bytes,
1476 						    val, val_len, async);
1477 		else
1478 			ret = map->bus->async_write(map->bus_context,
1479 						    async->work_buf,
1480 						    map->format.reg_bytes +
1481 						    map->format.pad_bytes +
1482 						    val_len, NULL, 0, async);
1483 
1484 		if (ret != 0) {
1485 			dev_err(map->dev, "Failed to schedule write: %d\n",
1486 				ret);
1487 
1488 			spin_lock_irqsave(&map->async_lock, flags);
1489 			list_move(&async->list, &map->async_free);
1490 			spin_unlock_irqrestore(&map->async_lock, flags);
1491 		}
1492 
1493 		return ret;
1494 	}
1495 
1496 	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1497 
1498 	/* If we're doing a single register write we can probably just
1499 	 * send the work_buf directly, otherwise try to do a gather
1500 	 * write.
1501 	 */
1502 	if (val == work_val)
1503 		ret = map->bus->write(map->bus_context, map->work_buf,
1504 				      map->format.reg_bytes +
1505 				      map->format.pad_bytes +
1506 				      val_len);
1507 	else if (map->bus->gather_write)
1508 		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1509 					     map->format.reg_bytes +
1510 					     map->format.pad_bytes,
1511 					     val, val_len);
1512 	else
1513 		ret = -ENOTSUPP;
1514 
1515 	/* If that didn't work fall back on linearising by hand. */
1516 	if (ret == -ENOTSUPP) {
1517 		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1518 		buf = kzalloc(len, GFP_KERNEL);
1519 		if (!buf)
1520 			return -ENOMEM;
1521 
1522 		memcpy(buf, map->work_buf, map->format.reg_bytes);
1523 		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1524 		       val, val_len);
1525 		ret = map->bus->write(map->bus_context, buf, len);
1526 
1527 		kfree(buf);
1528 	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1529 		/* regcache_drop_region() takes lock that we already have,
1530 		 * thus call map->cache_ops->drop() directly
1531 		 */
1532 		if (map->cache_ops && map->cache_ops->drop)
1533 			map->cache_ops->drop(map, reg, reg + 1);
1534 	}
1535 
1536 	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1537 
1538 	return ret;
1539 }
1540 
1541 /**
1542  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1543  *
1544  * @map: Map to check.
1545  */
regmap_can_raw_write(struct regmap * map)1546 bool regmap_can_raw_write(struct regmap *map)
1547 {
1548 	return map->bus && map->bus->write && map->format.format_val &&
1549 		map->format.format_reg;
1550 }
1551 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1552 
1553 /**
1554  * regmap_get_raw_read_max - Get the maximum size we can read
1555  *
1556  * @map: Map to check.
1557  */
regmap_get_raw_read_max(struct regmap * map)1558 size_t regmap_get_raw_read_max(struct regmap *map)
1559 {
1560 	return map->max_raw_read;
1561 }
1562 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1563 
1564 /**
1565  * regmap_get_raw_write_max - Get the maximum size we can read
1566  *
1567  * @map: Map to check.
1568  */
regmap_get_raw_write_max(struct regmap * map)1569 size_t regmap_get_raw_write_max(struct regmap *map)
1570 {
1571 	return map->max_raw_write;
1572 }
1573 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1574 
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1575 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1576 				       unsigned int val)
1577 {
1578 	int ret;
1579 	struct regmap_range_node *range;
1580 	struct regmap *map = context;
1581 
1582 	WARN_ON(!map->bus || !map->format.format_write);
1583 
1584 	range = _regmap_range_lookup(map, reg);
1585 	if (range) {
1586 		ret = _regmap_select_page(map, &reg, range, 1);
1587 		if (ret != 0)
1588 			return ret;
1589 	}
1590 
1591 	map->format.format_write(map, reg, val);
1592 
1593 	trace_regmap_hw_write_start(map, reg, 1);
1594 
1595 	ret = map->bus->write(map->bus_context, map->work_buf,
1596 			      map->format.buf_size);
1597 
1598 	trace_regmap_hw_write_done(map, reg, 1);
1599 
1600 	return ret;
1601 }
1602 
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1603 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1604 				 unsigned int val)
1605 {
1606 	struct regmap *map = context;
1607 
1608 	return map->bus->reg_write(map->bus_context, reg, val);
1609 }
1610 
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1611 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1612 				 unsigned int val)
1613 {
1614 	struct regmap *map = context;
1615 
1616 	WARN_ON(!map->bus || !map->format.format_val);
1617 
1618 	map->format.format_val(map->work_buf + map->format.reg_bytes
1619 			       + map->format.pad_bytes, val, 0);
1620 	return _regmap_raw_write(map, reg,
1621 				 map->work_buf +
1622 				 map->format.reg_bytes +
1623 				 map->format.pad_bytes,
1624 				 map->format.val_bytes);
1625 }
1626 
_regmap_map_get_context(struct regmap * map)1627 static inline void *_regmap_map_get_context(struct regmap *map)
1628 {
1629 	return (map->bus) ? map : map->bus_context;
1630 }
1631 
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1632 int _regmap_write(struct regmap *map, unsigned int reg,
1633 		  unsigned int val)
1634 {
1635 	int ret;
1636 	void *context = _regmap_map_get_context(map);
1637 
1638 	if (!regmap_writeable(map, reg))
1639 		return -EIO;
1640 
1641 	if (!map->cache_bypass && !map->defer_caching) {
1642 		ret = regcache_write(map, reg, val);
1643 		if (ret != 0)
1644 			return ret;
1645 		if (map->cache_only) {
1646 			map->cache_dirty = true;
1647 			return 0;
1648 		}
1649 	}
1650 
1651 #ifdef LOG_DEVICE
1652 	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1653 		dev_info(map->dev, "%x <= %x\n", reg, val);
1654 #endif
1655 
1656 	trace_regmap_reg_write(map, reg, val);
1657 
1658 	return map->reg_write(context, reg, val);
1659 }
1660 
1661 /**
1662  * regmap_write() - Write a value to a single register
1663  *
1664  * @map: Register map to write to
1665  * @reg: Register to write to
1666  * @val: Value to be written
1667  *
1668  * A value of zero will be returned on success, a negative errno will
1669  * be returned in error cases.
1670  */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1671 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1672 {
1673 	int ret;
1674 
1675 	if (!IS_ALIGNED(reg, map->reg_stride))
1676 		return -EINVAL;
1677 
1678 	map->lock(map->lock_arg);
1679 
1680 	ret = _regmap_write(map, reg, val);
1681 
1682 	map->unlock(map->lock_arg);
1683 
1684 	return ret;
1685 }
1686 EXPORT_SYMBOL_GPL(regmap_write);
1687 
1688 /**
1689  * regmap_write_async() - Write a value to a single register asynchronously
1690  *
1691  * @map: Register map to write to
1692  * @reg: Register to write to
1693  * @val: Value to be written
1694  *
1695  * A value of zero will be returned on success, a negative errno will
1696  * be returned in error cases.
1697  */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)1698 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1699 {
1700 	int ret;
1701 
1702 	if (!IS_ALIGNED(reg, map->reg_stride))
1703 		return -EINVAL;
1704 
1705 	map->lock(map->lock_arg);
1706 
1707 	map->async = true;
1708 
1709 	ret = _regmap_write(map, reg, val);
1710 
1711 	map->async = false;
1712 
1713 	map->unlock(map->lock_arg);
1714 
1715 	return ret;
1716 }
1717 EXPORT_SYMBOL_GPL(regmap_write_async);
1718 
1719 /**
1720  * regmap_raw_write() - Write raw values to one or more registers
1721  *
1722  * @map: Register map to write to
1723  * @reg: Initial register to write to
1724  * @val: Block of data to be written, laid out for direct transmission to the
1725  *       device
1726  * @val_len: Length of data pointed to by val.
1727  *
1728  * This function is intended to be used for things like firmware
1729  * download where a large block of data needs to be transferred to the
1730  * device.  No formatting will be done on the data provided.
1731  *
1732  * A value of zero will be returned on success, a negative errno will
1733  * be returned in error cases.
1734  */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)1735 int regmap_raw_write(struct regmap *map, unsigned int reg,
1736 		     const void *val, size_t val_len)
1737 {
1738 	int ret;
1739 
1740 	if (!regmap_can_raw_write(map))
1741 		return -EINVAL;
1742 	if (val_len % map->format.val_bytes)
1743 		return -EINVAL;
1744 	if (map->max_raw_write && map->max_raw_write < val_len)
1745 		return -E2BIG;
1746 
1747 	map->lock(map->lock_arg);
1748 
1749 	ret = _regmap_raw_write(map, reg, val, val_len);
1750 
1751 	map->unlock(map->lock_arg);
1752 
1753 	return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(regmap_raw_write);
1756 
1757 /**
1758  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1759  *                                   register field.
1760  *
1761  * @field: Register field to write to
1762  * @mask: Bitmask to change
1763  * @val: Value to be written
1764  * @change: Boolean indicating if a write was done
1765  * @async: Boolean indicating asynchronously
1766  * @force: Boolean indicating use force update
1767  *
1768  * Perform a read/modify/write cycle on the register field with change,
1769  * async, force option.
1770  *
1771  * A value of zero will be returned on success, a negative errno will
1772  * be returned in error cases.
1773  */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)1774 int regmap_field_update_bits_base(struct regmap_field *field,
1775 				  unsigned int mask, unsigned int val,
1776 				  bool *change, bool async, bool force)
1777 {
1778 	mask = (mask << field->shift) & field->mask;
1779 
1780 	return regmap_update_bits_base(field->regmap, field->reg,
1781 				       mask, val << field->shift,
1782 				       change, async, force);
1783 }
1784 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1785 
1786 /**
1787  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1788  *                                    register field with port ID
1789  *
1790  * @field: Register field to write to
1791  * @id: port ID
1792  * @mask: Bitmask to change
1793  * @val: Value to be written
1794  * @change: Boolean indicating if a write was done
1795  * @async: Boolean indicating asynchronously
1796  * @force: Boolean indicating use force update
1797  *
1798  * A value of zero will be returned on success, a negative errno will
1799  * be returned in error cases.
1800  */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)1801 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1802 				   unsigned int mask, unsigned int val,
1803 				   bool *change, bool async, bool force)
1804 {
1805 	if (id >= field->id_size)
1806 		return -EINVAL;
1807 
1808 	mask = (mask << field->shift) & field->mask;
1809 
1810 	return regmap_update_bits_base(field->regmap,
1811 				       field->reg + (field->id_offset * id),
1812 				       mask, val << field->shift,
1813 				       change, async, force);
1814 }
1815 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1816 
1817 /**
1818  * regmap_bulk_write() - Write multiple registers to the device
1819  *
1820  * @map: Register map to write to
1821  * @reg: First register to be write from
1822  * @val: Block of data to be written, in native register size for device
1823  * @val_count: Number of registers to write
1824  *
1825  * This function is intended to be used for writing a large block of
1826  * data to the device either in single transfer or multiple transfer.
1827  *
1828  * A value of zero will be returned on success, a negative errno will
1829  * be returned in error cases.
1830  */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)1831 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1832 		     size_t val_count)
1833 {
1834 	int ret = 0, i;
1835 	size_t val_bytes = map->format.val_bytes;
1836 	size_t total_size = val_bytes * val_count;
1837 
1838 	if (!IS_ALIGNED(reg, map->reg_stride))
1839 		return -EINVAL;
1840 
1841 	/*
1842 	 * Some devices don't support bulk write, for
1843 	 * them we have a series of single write operations in the first two if
1844 	 * blocks.
1845 	 *
1846 	 * The first if block is used for memory mapped io. It does not allow
1847 	 * val_bytes of 3 for example.
1848 	 * The second one is for busses that do not provide raw I/O.
1849 	 * The third one is used for busses which do not have these limitations
1850 	 * and can write arbitrary value lengths.
1851 	 */
1852 	if (!map->bus) {
1853 		map->lock(map->lock_arg);
1854 		for (i = 0; i < val_count; i++) {
1855 			unsigned int ival;
1856 
1857 			switch (val_bytes) {
1858 			case 1:
1859 				ival = *(u8 *)(val + (i * val_bytes));
1860 				break;
1861 			case 2:
1862 				ival = *(u16 *)(val + (i * val_bytes));
1863 				break;
1864 			case 4:
1865 				ival = *(u32 *)(val + (i * val_bytes));
1866 				break;
1867 #ifdef CONFIG_64BIT
1868 			case 8:
1869 				ival = *(u64 *)(val + (i * val_bytes));
1870 				break;
1871 #endif
1872 			default:
1873 				ret = -EINVAL;
1874 				goto out;
1875 			}
1876 
1877 			ret = _regmap_write(map,
1878 					    reg + regmap_get_offset(map, i),
1879 					    ival);
1880 			if (ret != 0)
1881 				goto out;
1882 		}
1883 out:
1884 		map->unlock(map->lock_arg);
1885 	} else if (map->bus && !map->format.parse_inplace) {
1886 		const u8 *u8 = val;
1887 		const u16 *u16 = val;
1888 		const u32 *u32 = val;
1889 		unsigned int ival;
1890 
1891 		for (i = 0; i < val_count; i++) {
1892 			switch (map->format.val_bytes) {
1893 			case 4:
1894 				ival = u32[i];
1895 				break;
1896 			case 2:
1897 				ival = u16[i];
1898 				break;
1899 			case 1:
1900 				ival = u8[i];
1901 				break;
1902 			default:
1903 				return -EINVAL;
1904 			}
1905 
1906 			ret = regmap_write(map, reg + (i * map->reg_stride),
1907 					   ival);
1908 			if (ret)
1909 				return ret;
1910 		}
1911 	} else if (map->use_single_write ||
1912 		   (map->max_raw_write && map->max_raw_write < total_size)) {
1913 		int chunk_stride = map->reg_stride;
1914 		size_t chunk_size = val_bytes;
1915 		size_t chunk_count = val_count;
1916 
1917 		if (!map->use_single_write) {
1918 			chunk_size = map->max_raw_write;
1919 			if (chunk_size % val_bytes)
1920 				chunk_size -= chunk_size % val_bytes;
1921 			chunk_count = total_size / chunk_size;
1922 			chunk_stride *= chunk_size / val_bytes;
1923 		}
1924 
1925 		map->lock(map->lock_arg);
1926 		/* Write as many bytes as possible with chunk_size */
1927 		for (i = 0; i < chunk_count; i++) {
1928 			ret = _regmap_raw_write(map,
1929 						reg + (i * chunk_stride),
1930 						val + (i * chunk_size),
1931 						chunk_size);
1932 			if (ret)
1933 				break;
1934 		}
1935 
1936 		/* Write remaining bytes */
1937 		if (!ret && chunk_size * i < total_size) {
1938 			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1939 						val + (i * chunk_size),
1940 						total_size - i * chunk_size);
1941 		}
1942 		map->unlock(map->lock_arg);
1943 	} else {
1944 		void *wval;
1945 
1946 		if (!val_count)
1947 			return -EINVAL;
1948 
1949 		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1950 		if (!wval) {
1951 			dev_err(map->dev, "Error in memory allocation\n");
1952 			return -ENOMEM;
1953 		}
1954 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1955 			map->format.parse_inplace(wval + i);
1956 
1957 		map->lock(map->lock_arg);
1958 		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1959 		map->unlock(map->lock_arg);
1960 
1961 		kfree(wval);
1962 	}
1963 	return ret;
1964 }
1965 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1966 
1967 /*
1968  * _regmap_raw_multi_reg_write()
1969  *
1970  * the (register,newvalue) pairs in regs have not been formatted, but
1971  * they are all in the same page and have been changed to being page
1972  * relative. The page register has been written if that was necessary.
1973  */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)1974 static int _regmap_raw_multi_reg_write(struct regmap *map,
1975 				       const struct reg_sequence *regs,
1976 				       size_t num_regs)
1977 {
1978 	int ret;
1979 	void *buf;
1980 	int i;
1981 	u8 *u8;
1982 	size_t val_bytes = map->format.val_bytes;
1983 	size_t reg_bytes = map->format.reg_bytes;
1984 	size_t pad_bytes = map->format.pad_bytes;
1985 	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1986 	size_t len = pair_size * num_regs;
1987 
1988 	if (!len)
1989 		return -EINVAL;
1990 
1991 	buf = kzalloc(len, GFP_KERNEL);
1992 	if (!buf)
1993 		return -ENOMEM;
1994 
1995 	/* We have to linearise by hand. */
1996 
1997 	u8 = buf;
1998 
1999 	for (i = 0; i < num_regs; i++) {
2000 		unsigned int reg = regs[i].reg;
2001 		unsigned int val = regs[i].def;
2002 		trace_regmap_hw_write_start(map, reg, 1);
2003 		map->format.format_reg(u8, reg, map->reg_shift);
2004 		u8 += reg_bytes + pad_bytes;
2005 		map->format.format_val(u8, val, 0);
2006 		u8 += val_bytes;
2007 	}
2008 	u8 = buf;
2009 	*u8 |= map->write_flag_mask;
2010 
2011 	ret = map->bus->write(map->bus_context, buf, len);
2012 
2013 	kfree(buf);
2014 
2015 	for (i = 0; i < num_regs; i++) {
2016 		int reg = regs[i].reg;
2017 		trace_regmap_hw_write_done(map, reg, 1);
2018 	}
2019 	return ret;
2020 }
2021 
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2022 static unsigned int _regmap_register_page(struct regmap *map,
2023 					  unsigned int reg,
2024 					  struct regmap_range_node *range)
2025 {
2026 	unsigned int win_page = (reg - range->range_min) / range->window_len;
2027 
2028 	return win_page;
2029 }
2030 
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2031 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2032 					       struct reg_sequence *regs,
2033 					       size_t num_regs)
2034 {
2035 	int ret;
2036 	int i, n;
2037 	struct reg_sequence *base;
2038 	unsigned int this_page = 0;
2039 	unsigned int page_change = 0;
2040 	/*
2041 	 * the set of registers are not neccessarily in order, but
2042 	 * since the order of write must be preserved this algorithm
2043 	 * chops the set each time the page changes. This also applies
2044 	 * if there is a delay required at any point in the sequence.
2045 	 */
2046 	base = regs;
2047 	for (i = 0, n = 0; i < num_regs; i++, n++) {
2048 		unsigned int reg = regs[i].reg;
2049 		struct regmap_range_node *range;
2050 
2051 		range = _regmap_range_lookup(map, reg);
2052 		if (range) {
2053 			unsigned int win_page = _regmap_register_page(map, reg,
2054 								      range);
2055 
2056 			if (i == 0)
2057 				this_page = win_page;
2058 			if (win_page != this_page) {
2059 				this_page = win_page;
2060 				page_change = 1;
2061 			}
2062 		}
2063 
2064 		/* If we have both a page change and a delay make sure to
2065 		 * write the regs and apply the delay before we change the
2066 		 * page.
2067 		 */
2068 
2069 		if (page_change || regs[i].delay_us) {
2070 
2071 				/* For situations where the first write requires
2072 				 * a delay we need to make sure we don't call
2073 				 * raw_multi_reg_write with n=0
2074 				 * This can't occur with page breaks as we
2075 				 * never write on the first iteration
2076 				 */
2077 				if (regs[i].delay_us && i == 0)
2078 					n = 1;
2079 
2080 				ret = _regmap_raw_multi_reg_write(map, base, n);
2081 				if (ret != 0)
2082 					return ret;
2083 
2084 				if (regs[i].delay_us)
2085 					udelay(regs[i].delay_us);
2086 
2087 				base += n;
2088 				n = 0;
2089 
2090 				if (page_change) {
2091 					ret = _regmap_select_page(map,
2092 								  &base[n].reg,
2093 								  range, 1);
2094 					if (ret != 0)
2095 						return ret;
2096 
2097 					page_change = 0;
2098 				}
2099 
2100 		}
2101 
2102 	}
2103 	if (n > 0)
2104 		return _regmap_raw_multi_reg_write(map, base, n);
2105 	return 0;
2106 }
2107 
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2108 static int _regmap_multi_reg_write(struct regmap *map,
2109 				   const struct reg_sequence *regs,
2110 				   size_t num_regs)
2111 {
2112 	int i;
2113 	int ret;
2114 
2115 	if (!map->can_multi_write) {
2116 		for (i = 0; i < num_regs; i++) {
2117 			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2118 			if (ret != 0)
2119 				return ret;
2120 
2121 			if (regs[i].delay_us)
2122 				udelay(regs[i].delay_us);
2123 		}
2124 		return 0;
2125 	}
2126 
2127 	if (!map->format.parse_inplace)
2128 		return -EINVAL;
2129 
2130 	if (map->writeable_reg)
2131 		for (i = 0; i < num_regs; i++) {
2132 			int reg = regs[i].reg;
2133 			if (!map->writeable_reg(map->dev, reg))
2134 				return -EINVAL;
2135 			if (!IS_ALIGNED(reg, map->reg_stride))
2136 				return -EINVAL;
2137 		}
2138 
2139 	if (!map->cache_bypass) {
2140 		for (i = 0; i < num_regs; i++) {
2141 			unsigned int val = regs[i].def;
2142 			unsigned int reg = regs[i].reg;
2143 			ret = regcache_write(map, reg, val);
2144 			if (ret) {
2145 				dev_err(map->dev,
2146 				"Error in caching of register: %x ret: %d\n",
2147 								reg, ret);
2148 				return ret;
2149 			}
2150 		}
2151 		if (map->cache_only) {
2152 			map->cache_dirty = true;
2153 			return 0;
2154 		}
2155 	}
2156 
2157 	WARN_ON(!map->bus);
2158 
2159 	for (i = 0; i < num_regs; i++) {
2160 		unsigned int reg = regs[i].reg;
2161 		struct regmap_range_node *range;
2162 
2163 		/* Coalesce all the writes between a page break or a delay
2164 		 * in a sequence
2165 		 */
2166 		range = _regmap_range_lookup(map, reg);
2167 		if (range || regs[i].delay_us) {
2168 			size_t len = sizeof(struct reg_sequence)*num_regs;
2169 			struct reg_sequence *base = kmemdup(regs, len,
2170 							   GFP_KERNEL);
2171 			if (!base)
2172 				return -ENOMEM;
2173 			ret = _regmap_range_multi_paged_reg_write(map, base,
2174 								  num_regs);
2175 			kfree(base);
2176 
2177 			return ret;
2178 		}
2179 	}
2180 	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2181 }
2182 
2183 /**
2184  * regmap_multi_reg_write() - Write multiple registers to the device
2185  *
2186  * @map: Register map to write to
2187  * @regs: Array of structures containing register,value to be written
2188  * @num_regs: Number of registers to write
2189  *
2190  * Write multiple registers to the device where the set of register, value
2191  * pairs are supplied in any order, possibly not all in a single range.
2192  *
2193  * The 'normal' block write mode will send ultimately send data on the
2194  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2195  * addressed. However, this alternative block multi write mode will send
2196  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2197  * must of course support the mode.
2198  *
2199  * A value of zero will be returned on success, a negative errno will be
2200  * returned in error cases.
2201  */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2202 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2203 			   int num_regs)
2204 {
2205 	int ret;
2206 
2207 	map->lock(map->lock_arg);
2208 
2209 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2210 
2211 	map->unlock(map->lock_arg);
2212 
2213 	return ret;
2214 }
2215 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2216 
2217 /**
2218  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2219  *                                     device but not the cache
2220  *
2221  * @map: Register map to write to
2222  * @regs: Array of structures containing register,value to be written
2223  * @num_regs: Number of registers to write
2224  *
2225  * Write multiple registers to the device but not the cache where the set
2226  * of register are supplied in any order.
2227  *
2228  * This function is intended to be used for writing a large block of data
2229  * atomically to the device in single transfer for those I2C client devices
2230  * that implement this alternative block write mode.
2231  *
2232  * A value of zero will be returned on success, a negative errno will
2233  * be returned in error cases.
2234  */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2235 int regmap_multi_reg_write_bypassed(struct regmap *map,
2236 				    const struct reg_sequence *regs,
2237 				    int num_regs)
2238 {
2239 	int ret;
2240 	bool bypass;
2241 
2242 	map->lock(map->lock_arg);
2243 
2244 	bypass = map->cache_bypass;
2245 	map->cache_bypass = true;
2246 
2247 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2248 
2249 	map->cache_bypass = bypass;
2250 
2251 	map->unlock(map->lock_arg);
2252 
2253 	return ret;
2254 }
2255 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2256 
2257 /**
2258  * regmap_raw_write_async() - Write raw values to one or more registers
2259  *                            asynchronously
2260  *
2261  * @map: Register map to write to
2262  * @reg: Initial register to write to
2263  * @val: Block of data to be written, laid out for direct transmission to the
2264  *       device.  Must be valid until regmap_async_complete() is called.
2265  * @val_len: Length of data pointed to by val.
2266  *
2267  * This function is intended to be used for things like firmware
2268  * download where a large block of data needs to be transferred to the
2269  * device.  No formatting will be done on the data provided.
2270  *
2271  * If supported by the underlying bus the write will be scheduled
2272  * asynchronously, helping maximise I/O speed on higher speed buses
2273  * like SPI.  regmap_async_complete() can be called to ensure that all
2274  * asynchrnous writes have been completed.
2275  *
2276  * A value of zero will be returned on success, a negative errno will
2277  * be returned in error cases.
2278  */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2279 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2280 			   const void *val, size_t val_len)
2281 {
2282 	int ret;
2283 
2284 	if (val_len % map->format.val_bytes)
2285 		return -EINVAL;
2286 	if (!IS_ALIGNED(reg, map->reg_stride))
2287 		return -EINVAL;
2288 
2289 	map->lock(map->lock_arg);
2290 
2291 	map->async = true;
2292 
2293 	ret = _regmap_raw_write(map, reg, val, val_len);
2294 
2295 	map->async = false;
2296 
2297 	map->unlock(map->lock_arg);
2298 
2299 	return ret;
2300 }
2301 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2302 
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len)2303 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2304 			    unsigned int val_len)
2305 {
2306 	struct regmap_range_node *range;
2307 	int ret;
2308 
2309 	WARN_ON(!map->bus);
2310 
2311 	if (!map->bus || !map->bus->read)
2312 		return -EINVAL;
2313 
2314 	range = _regmap_range_lookup(map, reg);
2315 	if (range) {
2316 		ret = _regmap_select_page(map, &reg, range,
2317 					  val_len / map->format.val_bytes);
2318 		if (ret != 0)
2319 			return ret;
2320 	}
2321 
2322 	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2323 	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2324 				      map->read_flag_mask);
2325 	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2326 
2327 	ret = map->bus->read(map->bus_context, map->work_buf,
2328 			     map->format.reg_bytes + map->format.pad_bytes,
2329 			     val, val_len);
2330 
2331 	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2332 
2333 	return ret;
2334 }
2335 
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2336 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2337 				unsigned int *val)
2338 {
2339 	struct regmap *map = context;
2340 
2341 	return map->bus->reg_read(map->bus_context, reg, val);
2342 }
2343 
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2344 static int _regmap_bus_read(void *context, unsigned int reg,
2345 			    unsigned int *val)
2346 {
2347 	int ret;
2348 	struct regmap *map = context;
2349 
2350 	if (!map->format.parse_val)
2351 		return -EINVAL;
2352 
2353 	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2354 	if (ret == 0)
2355 		*val = map->format.parse_val(map->work_buf);
2356 
2357 	return ret;
2358 }
2359 
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2360 static int _regmap_read(struct regmap *map, unsigned int reg,
2361 			unsigned int *val)
2362 {
2363 	int ret;
2364 	void *context = _regmap_map_get_context(map);
2365 
2366 	if (!map->cache_bypass) {
2367 		ret = regcache_read(map, reg, val);
2368 		if (ret == 0)
2369 			return 0;
2370 	}
2371 
2372 	if (map->cache_only)
2373 		return -EBUSY;
2374 
2375 	if (!regmap_readable(map, reg))
2376 		return -EIO;
2377 
2378 	ret = map->reg_read(context, reg, val);
2379 	if (ret == 0) {
2380 #ifdef LOG_DEVICE
2381 		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2382 			dev_info(map->dev, "%x => %x\n", reg, *val);
2383 #endif
2384 
2385 		trace_regmap_reg_read(map, reg, *val);
2386 
2387 		if (!map->cache_bypass)
2388 			regcache_write(map, reg, *val);
2389 	}
2390 
2391 	return ret;
2392 }
2393 
2394 /**
2395  * regmap_read() - Read a value from a single register
2396  *
2397  * @map: Register map to read from
2398  * @reg: Register to be read from
2399  * @val: Pointer to store read value
2400  *
2401  * A value of zero will be returned on success, a negative errno will
2402  * be returned in error cases.
2403  */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2404 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2405 {
2406 	int ret;
2407 
2408 	if (!IS_ALIGNED(reg, map->reg_stride))
2409 		return -EINVAL;
2410 
2411 	map->lock(map->lock_arg);
2412 
2413 	ret = _regmap_read(map, reg, val);
2414 
2415 	map->unlock(map->lock_arg);
2416 
2417 	return ret;
2418 }
2419 EXPORT_SYMBOL_GPL(regmap_read);
2420 
2421 /**
2422  * regmap_raw_read() - Read raw data from the device
2423  *
2424  * @map: Register map to read from
2425  * @reg: First register to be read from
2426  * @val: Pointer to store read value
2427  * @val_len: Size of data to read
2428  *
2429  * A value of zero will be returned on success, a negative errno will
2430  * be returned in error cases.
2431  */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2432 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2433 		    size_t val_len)
2434 {
2435 	size_t val_bytes = map->format.val_bytes;
2436 	size_t val_count = val_len / val_bytes;
2437 	unsigned int v;
2438 	int ret, i;
2439 
2440 	if (!map->bus)
2441 		return -EINVAL;
2442 	if (val_len % map->format.val_bytes)
2443 		return -EINVAL;
2444 	if (!IS_ALIGNED(reg, map->reg_stride))
2445 		return -EINVAL;
2446 	if (val_count == 0)
2447 		return -EINVAL;
2448 
2449 	map->lock(map->lock_arg);
2450 
2451 	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2452 	    map->cache_type == REGCACHE_NONE) {
2453 		if (!map->bus->read) {
2454 			ret = -ENOTSUPP;
2455 			goto out;
2456 		}
2457 		if (map->max_raw_read && map->max_raw_read < val_len) {
2458 			ret = -E2BIG;
2459 			goto out;
2460 		}
2461 
2462 		/* Physical block read if there's no cache involved */
2463 		ret = _regmap_raw_read(map, reg, val, val_len);
2464 
2465 	} else {
2466 		/* Otherwise go word by word for the cache; should be low
2467 		 * cost as we expect to hit the cache.
2468 		 */
2469 		for (i = 0; i < val_count; i++) {
2470 			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2471 					   &v);
2472 			if (ret != 0)
2473 				goto out;
2474 
2475 			map->format.format_val(val + (i * val_bytes), v, 0);
2476 		}
2477 	}
2478 
2479  out:
2480 	map->unlock(map->lock_arg);
2481 
2482 	return ret;
2483 }
2484 EXPORT_SYMBOL_GPL(regmap_raw_read);
2485 
2486 /**
2487  * regmap_field_read() - Read a value to a single register field
2488  *
2489  * @field: Register field to read from
2490  * @val: Pointer to store read value
2491  *
2492  * A value of zero will be returned on success, a negative errno will
2493  * be returned in error cases.
2494  */
regmap_field_read(struct regmap_field * field,unsigned int * val)2495 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2496 {
2497 	int ret;
2498 	unsigned int reg_val;
2499 	ret = regmap_read(field->regmap, field->reg, &reg_val);
2500 	if (ret != 0)
2501 		return ret;
2502 
2503 	reg_val &= field->mask;
2504 	reg_val >>= field->shift;
2505 	*val = reg_val;
2506 
2507 	return ret;
2508 }
2509 EXPORT_SYMBOL_GPL(regmap_field_read);
2510 
2511 /**
2512  * regmap_fields_read() - Read a value to a single register field with port ID
2513  *
2514  * @field: Register field to read from
2515  * @id: port ID
2516  * @val: Pointer to store read value
2517  *
2518  * A value of zero will be returned on success, a negative errno will
2519  * be returned in error cases.
2520  */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2521 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2522 		       unsigned int *val)
2523 {
2524 	int ret;
2525 	unsigned int reg_val;
2526 
2527 	if (id >= field->id_size)
2528 		return -EINVAL;
2529 
2530 	ret = regmap_read(field->regmap,
2531 			  field->reg + (field->id_offset * id),
2532 			  &reg_val);
2533 	if (ret != 0)
2534 		return ret;
2535 
2536 	reg_val &= field->mask;
2537 	reg_val >>= field->shift;
2538 	*val = reg_val;
2539 
2540 	return ret;
2541 }
2542 EXPORT_SYMBOL_GPL(regmap_fields_read);
2543 
2544 /**
2545  * regmap_bulk_read() - Read multiple registers from the device
2546  *
2547  * @map: Register map to read from
2548  * @reg: First register to be read from
2549  * @val: Pointer to store read value, in native register size for device
2550  * @val_count: Number of registers to read
2551  *
2552  * A value of zero will be returned on success, a negative errno will
2553  * be returned in error cases.
2554  */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2555 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2556 		     size_t val_count)
2557 {
2558 	int ret, i;
2559 	size_t val_bytes = map->format.val_bytes;
2560 	bool vol = regmap_volatile_range(map, reg, val_count);
2561 
2562 	if (!IS_ALIGNED(reg, map->reg_stride))
2563 		return -EINVAL;
2564 
2565 	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2566 		/*
2567 		 * Some devices does not support bulk read, for
2568 		 * them we have a series of single read operations.
2569 		 */
2570 		size_t total_size = val_bytes * val_count;
2571 
2572 		if (!map->use_single_read &&
2573 		    (!map->max_raw_read || map->max_raw_read > total_size)) {
2574 			ret = regmap_raw_read(map, reg, val,
2575 					      val_bytes * val_count);
2576 			if (ret != 0)
2577 				return ret;
2578 		} else {
2579 			/*
2580 			 * Some devices do not support bulk read or do not
2581 			 * support large bulk reads, for them we have a series
2582 			 * of read operations.
2583 			 */
2584 			int chunk_stride = map->reg_stride;
2585 			size_t chunk_size = val_bytes;
2586 			size_t chunk_count = val_count;
2587 
2588 			if (!map->use_single_read) {
2589 				chunk_size = map->max_raw_read;
2590 				if (chunk_size % val_bytes)
2591 					chunk_size -= chunk_size % val_bytes;
2592 				chunk_count = total_size / chunk_size;
2593 				chunk_stride *= chunk_size / val_bytes;
2594 			}
2595 
2596 			/* Read bytes that fit into a multiple of chunk_size */
2597 			for (i = 0; i < chunk_count; i++) {
2598 				ret = regmap_raw_read(map,
2599 						      reg + (i * chunk_stride),
2600 						      val + (i * chunk_size),
2601 						      chunk_size);
2602 				if (ret != 0)
2603 					return ret;
2604 			}
2605 
2606 			/* Read remaining bytes */
2607 			if (chunk_size * i < total_size) {
2608 				ret = regmap_raw_read(map,
2609 						      reg + (i * chunk_stride),
2610 						      val + (i * chunk_size),
2611 						      total_size - i * chunk_size);
2612 				if (ret != 0)
2613 					return ret;
2614 			}
2615 		}
2616 
2617 		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2618 			map->format.parse_inplace(val + i);
2619 	} else {
2620 		for (i = 0; i < val_count; i++) {
2621 			unsigned int ival;
2622 			ret = regmap_read(map, reg + regmap_get_offset(map, i),
2623 					  &ival);
2624 			if (ret != 0)
2625 				return ret;
2626 
2627 			if (map->format.format_val) {
2628 				map->format.format_val(val + (i * val_bytes), ival, 0);
2629 			} else {
2630 				/* Devices providing read and write
2631 				 * operations can use the bulk I/O
2632 				 * functions if they define a val_bytes,
2633 				 * we assume that the values are native
2634 				 * endian.
2635 				 */
2636 #ifdef CONFIG_64BIT
2637 				u64 *u64 = val;
2638 #endif
2639 				u32 *u32 = val;
2640 				u16 *u16 = val;
2641 				u8 *u8 = val;
2642 
2643 				switch (map->format.val_bytes) {
2644 #ifdef CONFIG_64BIT
2645 				case 8:
2646 					u64[i] = ival;
2647 					break;
2648 #endif
2649 				case 4:
2650 					u32[i] = ival;
2651 					break;
2652 				case 2:
2653 					u16[i] = ival;
2654 					break;
2655 				case 1:
2656 					u8[i] = ival;
2657 					break;
2658 				default:
2659 					return -EINVAL;
2660 				}
2661 			}
2662 		}
2663 	}
2664 
2665 	return 0;
2666 }
2667 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2668 
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)2669 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2670 			       unsigned int mask, unsigned int val,
2671 			       bool *change, bool force_write)
2672 {
2673 	int ret;
2674 	unsigned int tmp, orig;
2675 
2676 	if (change)
2677 		*change = false;
2678 
2679 	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2680 		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2681 		if (ret == 0 && change)
2682 			*change = true;
2683 	} else {
2684 		ret = _regmap_read(map, reg, &orig);
2685 		if (ret != 0)
2686 			return ret;
2687 
2688 		tmp = orig & ~mask;
2689 		tmp |= val & mask;
2690 
2691 		if (force_write || (tmp != orig)) {
2692 			ret = _regmap_write(map, reg, tmp);
2693 			if (ret == 0 && change)
2694 				*change = true;
2695 		}
2696 	}
2697 
2698 	return ret;
2699 }
2700 
2701 /**
2702  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2703  *
2704  * @map: Register map to update
2705  * @reg: Register to update
2706  * @mask: Bitmask to change
2707  * @val: New value for bitmask
2708  * @change: Boolean indicating if a write was done
2709  * @async: Boolean indicating asynchronously
2710  * @force: Boolean indicating use force update
2711  *
2712  * Perform a read/modify/write cycle on a register map with change, async, force
2713  * options.
2714  *
2715  * If async is true:
2716  *
2717  * With most buses the read must be done synchronously so this is most useful
2718  * for devices with a cache which do not need to interact with the hardware to
2719  * determine the current register value.
2720  *
2721  * Returns zero for success, a negative number on error.
2722  */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2723 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2724 			    unsigned int mask, unsigned int val,
2725 			    bool *change, bool async, bool force)
2726 {
2727 	int ret;
2728 
2729 	map->lock(map->lock_arg);
2730 
2731 	map->async = async;
2732 
2733 	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2734 
2735 	map->async = false;
2736 
2737 	map->unlock(map->lock_arg);
2738 
2739 	return ret;
2740 }
2741 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2742 
regmap_async_complete_cb(struct regmap_async * async,int ret)2743 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2744 {
2745 	struct regmap *map = async->map;
2746 	bool wake;
2747 
2748 	trace_regmap_async_io_complete(map);
2749 
2750 	spin_lock(&map->async_lock);
2751 	list_move(&async->list, &map->async_free);
2752 	wake = list_empty(&map->async_list);
2753 
2754 	if (ret != 0)
2755 		map->async_ret = ret;
2756 
2757 	spin_unlock(&map->async_lock);
2758 
2759 	if (wake)
2760 		wake_up(&map->async_waitq);
2761 }
2762 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2763 
regmap_async_is_done(struct regmap * map)2764 static int regmap_async_is_done(struct regmap *map)
2765 {
2766 	unsigned long flags;
2767 	int ret;
2768 
2769 	spin_lock_irqsave(&map->async_lock, flags);
2770 	ret = list_empty(&map->async_list);
2771 	spin_unlock_irqrestore(&map->async_lock, flags);
2772 
2773 	return ret;
2774 }
2775 
2776 /**
2777  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2778  *
2779  * @map: Map to operate on.
2780  *
2781  * Blocks until any pending asynchronous I/O has completed.  Returns
2782  * an error code for any failed I/O operations.
2783  */
regmap_async_complete(struct regmap * map)2784 int regmap_async_complete(struct regmap *map)
2785 {
2786 	unsigned long flags;
2787 	int ret;
2788 
2789 	/* Nothing to do with no async support */
2790 	if (!map->bus || !map->bus->async_write)
2791 		return 0;
2792 
2793 	trace_regmap_async_complete_start(map);
2794 
2795 	wait_event(map->async_waitq, regmap_async_is_done(map));
2796 
2797 	spin_lock_irqsave(&map->async_lock, flags);
2798 	ret = map->async_ret;
2799 	map->async_ret = 0;
2800 	spin_unlock_irqrestore(&map->async_lock, flags);
2801 
2802 	trace_regmap_async_complete_done(map);
2803 
2804 	return ret;
2805 }
2806 EXPORT_SYMBOL_GPL(regmap_async_complete);
2807 
2808 /**
2809  * regmap_register_patch - Register and apply register updates to be applied
2810  *                         on device initialistion
2811  *
2812  * @map: Register map to apply updates to.
2813  * @regs: Values to update.
2814  * @num_regs: Number of entries in regs.
2815  *
2816  * Register a set of register updates to be applied to the device
2817  * whenever the device registers are synchronised with the cache and
2818  * apply them immediately.  Typically this is used to apply
2819  * corrections to be applied to the device defaults on startup, such
2820  * as the updates some vendors provide to undocumented registers.
2821  *
2822  * The caller must ensure that this function cannot be called
2823  * concurrently with either itself or regcache_sync().
2824  */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)2825 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2826 			  int num_regs)
2827 {
2828 	struct reg_sequence *p;
2829 	int ret;
2830 	bool bypass;
2831 
2832 	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2833 	    num_regs))
2834 		return 0;
2835 
2836 	p = krealloc(map->patch,
2837 		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2838 		     GFP_KERNEL);
2839 	if (p) {
2840 		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2841 		map->patch = p;
2842 		map->patch_regs += num_regs;
2843 	} else {
2844 		return -ENOMEM;
2845 	}
2846 
2847 	map->lock(map->lock_arg);
2848 
2849 	bypass = map->cache_bypass;
2850 
2851 	map->cache_bypass = true;
2852 	map->async = true;
2853 
2854 	ret = _regmap_multi_reg_write(map, regs, num_regs);
2855 
2856 	map->async = false;
2857 	map->cache_bypass = bypass;
2858 
2859 	map->unlock(map->lock_arg);
2860 
2861 	regmap_async_complete(map);
2862 
2863 	return ret;
2864 }
2865 EXPORT_SYMBOL_GPL(regmap_register_patch);
2866 
2867 /**
2868  * regmap_get_val_bytes() - Report the size of a register value
2869  *
2870  * @map: Register map to operate on.
2871  *
2872  * Report the size of a register value, mainly intended to for use by
2873  * generic infrastructure built on top of regmap.
2874  */
regmap_get_val_bytes(struct regmap * map)2875 int regmap_get_val_bytes(struct regmap *map)
2876 {
2877 	if (map->format.format_write)
2878 		return -EINVAL;
2879 
2880 	return map->format.val_bytes;
2881 }
2882 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2883 
2884 /**
2885  * regmap_get_max_register() - Report the max register value
2886  *
2887  * @map: Register map to operate on.
2888  *
2889  * Report the max register value, mainly intended to for use by
2890  * generic infrastructure built on top of regmap.
2891  */
regmap_get_max_register(struct regmap * map)2892 int regmap_get_max_register(struct regmap *map)
2893 {
2894 	return map->max_register ? map->max_register : -EINVAL;
2895 }
2896 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2897 
2898 /**
2899  * regmap_get_reg_stride() - Report the register address stride
2900  *
2901  * @map: Register map to operate on.
2902  *
2903  * Report the register address stride, mainly intended to for use by
2904  * generic infrastructure built on top of regmap.
2905  */
regmap_get_reg_stride(struct regmap * map)2906 int regmap_get_reg_stride(struct regmap *map)
2907 {
2908 	return map->reg_stride;
2909 }
2910 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2911 
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)2912 int regmap_parse_val(struct regmap *map, const void *buf,
2913 			unsigned int *val)
2914 {
2915 	if (!map->format.parse_val)
2916 		return -EINVAL;
2917 
2918 	*val = map->format.parse_val(buf);
2919 
2920 	return 0;
2921 }
2922 EXPORT_SYMBOL_GPL(regmap_parse_val);
2923 
regmap_initcall(void)2924 static int __init regmap_initcall(void)
2925 {
2926 	regmap_debugfs_initcall();
2927 
2928 	return 0;
2929 }
2930 postcore_initcall(regmap_initcall);
2931