• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * The input core
3   *
4   * Copyright (c) 1999-2002 Vojtech Pavlik
5   */
6  
7  /*
8   * This program is free software; you can redistribute it and/or modify it
9   * under the terms of the GNU General Public License version 2 as published by
10   * the Free Software Foundation.
11   */
12  
13  #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
14  
15  #include <linux/init.h>
16  #include <linux/types.h>
17  #include <linux/idr.h>
18  #include <linux/input/mt.h>
19  #include <linux/module.h>
20  #include <linux/slab.h>
21  #include <linux/random.h>
22  #include <linux/major.h>
23  #include <linux/proc_fs.h>
24  #include <linux/sched.h>
25  #include <linux/seq_file.h>
26  #include <linux/poll.h>
27  #include <linux/device.h>
28  #include <linux/mutex.h>
29  #include <linux/rcupdate.h>
30  #include "input-compat.h"
31  
32  MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33  MODULE_DESCRIPTION("Input core");
34  MODULE_LICENSE("GPL");
35  
36  #define INPUT_MAX_CHAR_DEVICES		1024
37  #define INPUT_FIRST_DYNAMIC_DEV		256
38  static DEFINE_IDA(input_ida);
39  
40  static LIST_HEAD(input_dev_list);
41  static LIST_HEAD(input_handler_list);
42  
43  /*
44   * input_mutex protects access to both input_dev_list and input_handler_list.
45   * This also causes input_[un]register_device and input_[un]register_handler
46   * be mutually exclusive which simplifies locking in drivers implementing
47   * input handlers.
48   */
49  static DEFINE_MUTEX(input_mutex);
50  
51  static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52  
is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)53  static inline int is_event_supported(unsigned int code,
54  				     unsigned long *bm, unsigned int max)
55  {
56  	return code <= max && test_bit(code, bm);
57  }
58  
input_defuzz_abs_event(int value,int old_val,int fuzz)59  static int input_defuzz_abs_event(int value, int old_val, int fuzz)
60  {
61  	if (fuzz) {
62  		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
63  			return old_val;
64  
65  		if (value > old_val - fuzz && value < old_val + fuzz)
66  			return (old_val * 3 + value) / 4;
67  
68  		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
69  			return (old_val + value) / 2;
70  	}
71  
72  	return value;
73  }
74  
input_start_autorepeat(struct input_dev * dev,int code)75  static void input_start_autorepeat(struct input_dev *dev, int code)
76  {
77  	if (test_bit(EV_REP, dev->evbit) &&
78  	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
79  	    dev->timer.data) {
80  		dev->repeat_key = code;
81  		mod_timer(&dev->timer,
82  			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
83  	}
84  }
85  
input_stop_autorepeat(struct input_dev * dev)86  static void input_stop_autorepeat(struct input_dev *dev)
87  {
88  	del_timer(&dev->timer);
89  }
90  
91  /*
92   * Pass event first through all filters and then, if event has not been
93   * filtered out, through all open handles. This function is called with
94   * dev->event_lock held and interrupts disabled.
95   */
input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)96  static unsigned int input_to_handler(struct input_handle *handle,
97  			struct input_value *vals, unsigned int count)
98  {
99  	struct input_handler *handler = handle->handler;
100  	struct input_value *end = vals;
101  	struct input_value *v;
102  
103  	if (handler->filter) {
104  		for (v = vals; v != vals + count; v++) {
105  			if (handler->filter(handle, v->type, v->code, v->value))
106  				continue;
107  			if (end != v)
108  				*end = *v;
109  			end++;
110  		}
111  		count = end - vals;
112  	}
113  
114  	if (!count)
115  		return 0;
116  
117  	if (handler->events)
118  		handler->events(handle, vals, count);
119  	else if (handler->event)
120  		for (v = vals; v != vals + count; v++)
121  			handler->event(handle, v->type, v->code, v->value);
122  
123  	return count;
124  }
125  
126  /*
127   * Pass values first through all filters and then, if event has not been
128   * filtered out, through all open handles. This function is called with
129   * dev->event_lock held and interrupts disabled.
130   */
input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)131  static void input_pass_values(struct input_dev *dev,
132  			      struct input_value *vals, unsigned int count)
133  {
134  	struct input_handle *handle;
135  	struct input_value *v;
136  
137  	if (!count)
138  		return;
139  
140  	rcu_read_lock();
141  
142  	handle = rcu_dereference(dev->grab);
143  	if (handle) {
144  		count = input_to_handler(handle, vals, count);
145  	} else {
146  		list_for_each_entry_rcu(handle, &dev->h_list, d_node)
147  			if (handle->open) {
148  				count = input_to_handler(handle, vals, count);
149  				if (!count)
150  					break;
151  			}
152  	}
153  
154  	rcu_read_unlock();
155  
156  	/* trigger auto repeat for key events */
157  	if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
158  		for (v = vals; v != vals + count; v++) {
159  			if (v->type == EV_KEY && v->value != 2) {
160  				if (v->value)
161  					input_start_autorepeat(dev, v->code);
162  				else
163  					input_stop_autorepeat(dev);
164  			}
165  		}
166  	}
167  }
168  
input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)169  static void input_pass_event(struct input_dev *dev,
170  			     unsigned int type, unsigned int code, int value)
171  {
172  	struct input_value vals[] = { { type, code, value } };
173  
174  	input_pass_values(dev, vals, ARRAY_SIZE(vals));
175  }
176  
177  /*
178   * Generate software autorepeat event. Note that we take
179   * dev->event_lock here to avoid racing with input_event
180   * which may cause keys get "stuck".
181   */
input_repeat_key(unsigned long data)182  static void input_repeat_key(unsigned long data)
183  {
184  	struct input_dev *dev = (void *) data;
185  	unsigned long flags;
186  
187  	spin_lock_irqsave(&dev->event_lock, flags);
188  
189  	if (test_bit(dev->repeat_key, dev->key) &&
190  	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
191  		struct input_value vals[] =  {
192  			{ EV_KEY, dev->repeat_key, 2 },
193  			input_value_sync
194  		};
195  
196  		input_pass_values(dev, vals, ARRAY_SIZE(vals));
197  
198  		if (dev->rep[REP_PERIOD])
199  			mod_timer(&dev->timer, jiffies +
200  					msecs_to_jiffies(dev->rep[REP_PERIOD]));
201  	}
202  
203  	spin_unlock_irqrestore(&dev->event_lock, flags);
204  }
205  
206  #define INPUT_IGNORE_EVENT	0
207  #define INPUT_PASS_TO_HANDLERS	1
208  #define INPUT_PASS_TO_DEVICE	2
209  #define INPUT_SLOT		4
210  #define INPUT_FLUSH		8
211  #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
212  
input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)213  static int input_handle_abs_event(struct input_dev *dev,
214  				  unsigned int code, int *pval)
215  {
216  	struct input_mt *mt = dev->mt;
217  	bool is_mt_event;
218  	int *pold;
219  
220  	if (code == ABS_MT_SLOT) {
221  		/*
222  		 * "Stage" the event; we'll flush it later, when we
223  		 * get actual touch data.
224  		 */
225  		if (mt && *pval >= 0 && *pval < mt->num_slots)
226  			mt->slot = *pval;
227  
228  		return INPUT_IGNORE_EVENT;
229  	}
230  
231  	is_mt_event = input_is_mt_value(code);
232  
233  	if (!is_mt_event) {
234  		pold = &dev->absinfo[code].value;
235  	} else if (mt) {
236  		pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
237  	} else {
238  		/*
239  		 * Bypass filtering for multi-touch events when
240  		 * not employing slots.
241  		 */
242  		pold = NULL;
243  	}
244  
245  	if (pold) {
246  		*pval = input_defuzz_abs_event(*pval, *pold,
247  						dev->absinfo[code].fuzz);
248  		if (*pold == *pval)
249  			return INPUT_IGNORE_EVENT;
250  
251  		*pold = *pval;
252  	}
253  
254  	/* Flush pending "slot" event */
255  	if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
256  		input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
257  		return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
258  	}
259  
260  	return INPUT_PASS_TO_HANDLERS;
261  }
262  
input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)263  static int input_get_disposition(struct input_dev *dev,
264  			  unsigned int type, unsigned int code, int *pval)
265  {
266  	int disposition = INPUT_IGNORE_EVENT;
267  	int value = *pval;
268  
269  	switch (type) {
270  
271  	case EV_SYN:
272  		switch (code) {
273  		case SYN_CONFIG:
274  			disposition = INPUT_PASS_TO_ALL;
275  			break;
276  
277  		case SYN_REPORT:
278  			disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
279  			break;
280  		case SYN_MT_REPORT:
281  			disposition = INPUT_PASS_TO_HANDLERS;
282  			break;
283  		}
284  		break;
285  
286  	case EV_KEY:
287  		if (is_event_supported(code, dev->keybit, KEY_MAX)) {
288  
289  			/* auto-repeat bypasses state updates */
290  			if (value == 2) {
291  				disposition = INPUT_PASS_TO_HANDLERS;
292  				break;
293  			}
294  
295  			if (!!test_bit(code, dev->key) != !!value) {
296  
297  				__change_bit(code, dev->key);
298  				disposition = INPUT_PASS_TO_HANDLERS;
299  			}
300  		}
301  		break;
302  
303  	case EV_SW:
304  		if (is_event_supported(code, dev->swbit, SW_MAX) &&
305  		    !!test_bit(code, dev->sw) != !!value) {
306  
307  			__change_bit(code, dev->sw);
308  			disposition = INPUT_PASS_TO_HANDLERS;
309  		}
310  		break;
311  
312  	case EV_ABS:
313  		if (is_event_supported(code, dev->absbit, ABS_MAX))
314  			disposition = input_handle_abs_event(dev, code, &value);
315  
316  		break;
317  
318  	case EV_REL:
319  		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
320  			disposition = INPUT_PASS_TO_HANDLERS;
321  
322  		break;
323  
324  	case EV_MSC:
325  		if (is_event_supported(code, dev->mscbit, MSC_MAX))
326  			disposition = INPUT_PASS_TO_ALL;
327  
328  		break;
329  
330  	case EV_LED:
331  		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
332  		    !!test_bit(code, dev->led) != !!value) {
333  
334  			__change_bit(code, dev->led);
335  			disposition = INPUT_PASS_TO_ALL;
336  		}
337  		break;
338  
339  	case EV_SND:
340  		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
341  
342  			if (!!test_bit(code, dev->snd) != !!value)
343  				__change_bit(code, dev->snd);
344  			disposition = INPUT_PASS_TO_ALL;
345  		}
346  		break;
347  
348  	case EV_REP:
349  		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
350  			dev->rep[code] = value;
351  			disposition = INPUT_PASS_TO_ALL;
352  		}
353  		break;
354  
355  	case EV_FF:
356  		if (value >= 0)
357  			disposition = INPUT_PASS_TO_ALL;
358  		break;
359  
360  	case EV_PWR:
361  		disposition = INPUT_PASS_TO_ALL;
362  		break;
363  	}
364  
365  	*pval = value;
366  	return disposition;
367  }
368  
input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)369  static void input_handle_event(struct input_dev *dev,
370  			       unsigned int type, unsigned int code, int value)
371  {
372  	int disposition = input_get_disposition(dev, type, code, &value);
373  
374  	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
375  		add_input_randomness(type, code, value);
376  
377  	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
378  		dev->event(dev, type, code, value);
379  
380  	if (!dev->vals)
381  		return;
382  
383  	if (disposition & INPUT_PASS_TO_HANDLERS) {
384  		struct input_value *v;
385  
386  		if (disposition & INPUT_SLOT) {
387  			v = &dev->vals[dev->num_vals++];
388  			v->type = EV_ABS;
389  			v->code = ABS_MT_SLOT;
390  			v->value = dev->mt->slot;
391  		}
392  
393  		v = &dev->vals[dev->num_vals++];
394  		v->type = type;
395  		v->code = code;
396  		v->value = value;
397  	}
398  
399  	if (disposition & INPUT_FLUSH) {
400  		if (dev->num_vals >= 2)
401  			input_pass_values(dev, dev->vals, dev->num_vals);
402  		dev->num_vals = 0;
403  	} else if (dev->num_vals >= dev->max_vals - 2) {
404  		dev->vals[dev->num_vals++] = input_value_sync;
405  		input_pass_values(dev, dev->vals, dev->num_vals);
406  		dev->num_vals = 0;
407  	}
408  
409  }
410  
411  /**
412   * input_event() - report new input event
413   * @dev: device that generated the event
414   * @type: type of the event
415   * @code: event code
416   * @value: value of the event
417   *
418   * This function should be used by drivers implementing various input
419   * devices to report input events. See also input_inject_event().
420   *
421   * NOTE: input_event() may be safely used right after input device was
422   * allocated with input_allocate_device(), even before it is registered
423   * with input_register_device(), but the event will not reach any of the
424   * input handlers. Such early invocation of input_event() may be used
425   * to 'seed' initial state of a switch or initial position of absolute
426   * axis, etc.
427   */
input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)428  void input_event(struct input_dev *dev,
429  		 unsigned int type, unsigned int code, int value)
430  {
431  	unsigned long flags;
432  
433  	if (is_event_supported(type, dev->evbit, EV_MAX)) {
434  
435  		spin_lock_irqsave(&dev->event_lock, flags);
436  		input_handle_event(dev, type, code, value);
437  		spin_unlock_irqrestore(&dev->event_lock, flags);
438  	}
439  }
440  EXPORT_SYMBOL(input_event);
441  
442  /**
443   * input_inject_event() - send input event from input handler
444   * @handle: input handle to send event through
445   * @type: type of the event
446   * @code: event code
447   * @value: value of the event
448   *
449   * Similar to input_event() but will ignore event if device is
450   * "grabbed" and handle injecting event is not the one that owns
451   * the device.
452   */
input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)453  void input_inject_event(struct input_handle *handle,
454  			unsigned int type, unsigned int code, int value)
455  {
456  	struct input_dev *dev = handle->dev;
457  	struct input_handle *grab;
458  	unsigned long flags;
459  
460  	if (is_event_supported(type, dev->evbit, EV_MAX)) {
461  		spin_lock_irqsave(&dev->event_lock, flags);
462  
463  		rcu_read_lock();
464  		grab = rcu_dereference(dev->grab);
465  		if (!grab || grab == handle)
466  			input_handle_event(dev, type, code, value);
467  		rcu_read_unlock();
468  
469  		spin_unlock_irqrestore(&dev->event_lock, flags);
470  	}
471  }
472  EXPORT_SYMBOL(input_inject_event);
473  
474  /**
475   * input_alloc_absinfo - allocates array of input_absinfo structs
476   * @dev: the input device emitting absolute events
477   *
478   * If the absinfo struct the caller asked for is already allocated, this
479   * functions will not do anything.
480   */
input_alloc_absinfo(struct input_dev * dev)481  void input_alloc_absinfo(struct input_dev *dev)
482  {
483  	if (dev->absinfo)
484  		return;
485  
486  	dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
487  	if (!dev->absinfo) {
488  		dev_err(dev->dev.parent ?: &dev->dev,
489  			"%s: unable to allocate memory\n", __func__);
490  		/*
491  		 * We will handle this allocation failure in
492  		 * input_register_device() when we refuse to register input
493  		 * device with ABS bits but without absinfo.
494  		 */
495  	}
496  }
497  EXPORT_SYMBOL(input_alloc_absinfo);
498  
input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)499  void input_set_abs_params(struct input_dev *dev, unsigned int axis,
500  			  int min, int max, int fuzz, int flat)
501  {
502  	struct input_absinfo *absinfo;
503  
504  	input_alloc_absinfo(dev);
505  	if (!dev->absinfo)
506  		return;
507  
508  	absinfo = &dev->absinfo[axis];
509  	absinfo->minimum = min;
510  	absinfo->maximum = max;
511  	absinfo->fuzz = fuzz;
512  	absinfo->flat = flat;
513  
514  	__set_bit(EV_ABS, dev->evbit);
515  	__set_bit(axis, dev->absbit);
516  }
517  EXPORT_SYMBOL(input_set_abs_params);
518  
519  
520  /**
521   * input_grab_device - grabs device for exclusive use
522   * @handle: input handle that wants to own the device
523   *
524   * When a device is grabbed by an input handle all events generated by
525   * the device are delivered only to this handle. Also events injected
526   * by other input handles are ignored while device is grabbed.
527   */
input_grab_device(struct input_handle * handle)528  int input_grab_device(struct input_handle *handle)
529  {
530  	struct input_dev *dev = handle->dev;
531  	int retval;
532  
533  	retval = mutex_lock_interruptible(&dev->mutex);
534  	if (retval)
535  		return retval;
536  
537  	if (dev->grab) {
538  		retval = -EBUSY;
539  		goto out;
540  	}
541  
542  	rcu_assign_pointer(dev->grab, handle);
543  
544   out:
545  	mutex_unlock(&dev->mutex);
546  	return retval;
547  }
548  EXPORT_SYMBOL(input_grab_device);
549  
__input_release_device(struct input_handle * handle)550  static void __input_release_device(struct input_handle *handle)
551  {
552  	struct input_dev *dev = handle->dev;
553  	struct input_handle *grabber;
554  
555  	grabber = rcu_dereference_protected(dev->grab,
556  					    lockdep_is_held(&dev->mutex));
557  	if (grabber == handle) {
558  		rcu_assign_pointer(dev->grab, NULL);
559  		/* Make sure input_pass_event() notices that grab is gone */
560  		synchronize_rcu();
561  
562  		list_for_each_entry(handle, &dev->h_list, d_node)
563  			if (handle->open && handle->handler->start)
564  				handle->handler->start(handle);
565  	}
566  }
567  
568  /**
569   * input_release_device - release previously grabbed device
570   * @handle: input handle that owns the device
571   *
572   * Releases previously grabbed device so that other input handles can
573   * start receiving input events. Upon release all handlers attached
574   * to the device have their start() method called so they have a change
575   * to synchronize device state with the rest of the system.
576   */
input_release_device(struct input_handle * handle)577  void input_release_device(struct input_handle *handle)
578  {
579  	struct input_dev *dev = handle->dev;
580  
581  	mutex_lock(&dev->mutex);
582  	__input_release_device(handle);
583  	mutex_unlock(&dev->mutex);
584  }
585  EXPORT_SYMBOL(input_release_device);
586  
587  /**
588   * input_open_device - open input device
589   * @handle: handle through which device is being accessed
590   *
591   * This function should be called by input handlers when they
592   * want to start receive events from given input device.
593   */
input_open_device(struct input_handle * handle)594  int input_open_device(struct input_handle *handle)
595  {
596  	struct input_dev *dev = handle->dev;
597  	int retval;
598  
599  	retval = mutex_lock_interruptible(&dev->mutex);
600  	if (retval)
601  		return retval;
602  
603  	if (dev->going_away) {
604  		retval = -ENODEV;
605  		goto out;
606  	}
607  
608  	handle->open++;
609  
610  	if (!dev->users++ && dev->open)
611  		retval = dev->open(dev);
612  
613  	if (retval) {
614  		dev->users--;
615  		if (!--handle->open) {
616  			/*
617  			 * Make sure we are not delivering any more events
618  			 * through this handle
619  			 */
620  			synchronize_rcu();
621  		}
622  	}
623  
624   out:
625  	mutex_unlock(&dev->mutex);
626  	return retval;
627  }
628  EXPORT_SYMBOL(input_open_device);
629  
input_flush_device(struct input_handle * handle,struct file * file)630  int input_flush_device(struct input_handle *handle, struct file *file)
631  {
632  	struct input_dev *dev = handle->dev;
633  	int retval;
634  
635  	retval = mutex_lock_interruptible(&dev->mutex);
636  	if (retval)
637  		return retval;
638  
639  	if (dev->flush)
640  		retval = dev->flush(dev, file);
641  
642  	mutex_unlock(&dev->mutex);
643  	return retval;
644  }
645  EXPORT_SYMBOL(input_flush_device);
646  
647  /**
648   * input_close_device - close input device
649   * @handle: handle through which device is being accessed
650   *
651   * This function should be called by input handlers when they
652   * want to stop receive events from given input device.
653   */
input_close_device(struct input_handle * handle)654  void input_close_device(struct input_handle *handle)
655  {
656  	struct input_dev *dev = handle->dev;
657  
658  	mutex_lock(&dev->mutex);
659  
660  	__input_release_device(handle);
661  
662  	if (!--dev->users && dev->close)
663  		dev->close(dev);
664  
665  	if (!--handle->open) {
666  		/*
667  		 * synchronize_rcu() makes sure that input_pass_event()
668  		 * completed and that no more input events are delivered
669  		 * through this handle
670  		 */
671  		synchronize_rcu();
672  	}
673  
674  	mutex_unlock(&dev->mutex);
675  }
676  EXPORT_SYMBOL(input_close_device);
677  
678  /*
679   * Simulate keyup events for all keys that are marked as pressed.
680   * The function must be called with dev->event_lock held.
681   */
input_dev_release_keys(struct input_dev * dev)682  static void input_dev_release_keys(struct input_dev *dev)
683  {
684  	bool need_sync = false;
685  	int code;
686  
687  	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
688  		for_each_set_bit(code, dev->key, KEY_CNT) {
689  			input_pass_event(dev, EV_KEY, code, 0);
690  			need_sync = true;
691  		}
692  
693  		if (need_sync)
694  			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
695  
696  		memset(dev->key, 0, sizeof(dev->key));
697  	}
698  }
699  
700  /*
701   * Prepare device for unregistering
702   */
input_disconnect_device(struct input_dev * dev)703  static void input_disconnect_device(struct input_dev *dev)
704  {
705  	struct input_handle *handle;
706  
707  	/*
708  	 * Mark device as going away. Note that we take dev->mutex here
709  	 * not to protect access to dev->going_away but rather to ensure
710  	 * that there are no threads in the middle of input_open_device()
711  	 */
712  	mutex_lock(&dev->mutex);
713  	dev->going_away = true;
714  	mutex_unlock(&dev->mutex);
715  
716  	spin_lock_irq(&dev->event_lock);
717  
718  	/*
719  	 * Simulate keyup events for all pressed keys so that handlers
720  	 * are not left with "stuck" keys. The driver may continue
721  	 * generate events even after we done here but they will not
722  	 * reach any handlers.
723  	 */
724  	input_dev_release_keys(dev);
725  
726  	list_for_each_entry(handle, &dev->h_list, d_node)
727  		handle->open = 0;
728  
729  	spin_unlock_irq(&dev->event_lock);
730  }
731  
732  /**
733   * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
734   * @ke: keymap entry containing scancode to be converted.
735   * @scancode: pointer to the location where converted scancode should
736   *	be stored.
737   *
738   * This function is used to convert scancode stored in &struct keymap_entry
739   * into scalar form understood by legacy keymap handling methods. These
740   * methods expect scancodes to be represented as 'unsigned int'.
741   */
input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)742  int input_scancode_to_scalar(const struct input_keymap_entry *ke,
743  			     unsigned int *scancode)
744  {
745  	switch (ke->len) {
746  	case 1:
747  		*scancode = *((u8 *)ke->scancode);
748  		break;
749  
750  	case 2:
751  		*scancode = *((u16 *)ke->scancode);
752  		break;
753  
754  	case 4:
755  		*scancode = *((u32 *)ke->scancode);
756  		break;
757  
758  	default:
759  		return -EINVAL;
760  	}
761  
762  	return 0;
763  }
764  EXPORT_SYMBOL(input_scancode_to_scalar);
765  
766  /*
767   * Those routines handle the default case where no [gs]etkeycode() is
768   * defined. In this case, an array indexed by the scancode is used.
769   */
770  
input_fetch_keycode(struct input_dev * dev,unsigned int index)771  static unsigned int input_fetch_keycode(struct input_dev *dev,
772  					unsigned int index)
773  {
774  	switch (dev->keycodesize) {
775  	case 1:
776  		return ((u8 *)dev->keycode)[index];
777  
778  	case 2:
779  		return ((u16 *)dev->keycode)[index];
780  
781  	default:
782  		return ((u32 *)dev->keycode)[index];
783  	}
784  }
785  
input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)786  static int input_default_getkeycode(struct input_dev *dev,
787  				    struct input_keymap_entry *ke)
788  {
789  	unsigned int index;
790  	int error;
791  
792  	if (!dev->keycodesize)
793  		return -EINVAL;
794  
795  	if (ke->flags & INPUT_KEYMAP_BY_INDEX)
796  		index = ke->index;
797  	else {
798  		error = input_scancode_to_scalar(ke, &index);
799  		if (error)
800  			return error;
801  	}
802  
803  	if (index >= dev->keycodemax)
804  		return -EINVAL;
805  
806  	ke->keycode = input_fetch_keycode(dev, index);
807  	ke->index = index;
808  	ke->len = sizeof(index);
809  	memcpy(ke->scancode, &index, sizeof(index));
810  
811  	return 0;
812  }
813  
input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)814  static int input_default_setkeycode(struct input_dev *dev,
815  				    const struct input_keymap_entry *ke,
816  				    unsigned int *old_keycode)
817  {
818  	unsigned int index;
819  	int error;
820  	int i;
821  
822  	if (!dev->keycodesize)
823  		return -EINVAL;
824  
825  	if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
826  		index = ke->index;
827  	} else {
828  		error = input_scancode_to_scalar(ke, &index);
829  		if (error)
830  			return error;
831  	}
832  
833  	if (index >= dev->keycodemax)
834  		return -EINVAL;
835  
836  	if (dev->keycodesize < sizeof(ke->keycode) &&
837  			(ke->keycode >> (dev->keycodesize * 8)))
838  		return -EINVAL;
839  
840  	switch (dev->keycodesize) {
841  		case 1: {
842  			u8 *k = (u8 *)dev->keycode;
843  			*old_keycode = k[index];
844  			k[index] = ke->keycode;
845  			break;
846  		}
847  		case 2: {
848  			u16 *k = (u16 *)dev->keycode;
849  			*old_keycode = k[index];
850  			k[index] = ke->keycode;
851  			break;
852  		}
853  		default: {
854  			u32 *k = (u32 *)dev->keycode;
855  			*old_keycode = k[index];
856  			k[index] = ke->keycode;
857  			break;
858  		}
859  	}
860  
861  	if (*old_keycode <= KEY_MAX) {
862  		__clear_bit(*old_keycode, dev->keybit);
863  		for (i = 0; i < dev->keycodemax; i++) {
864  			if (input_fetch_keycode(dev, i) == *old_keycode) {
865  				__set_bit(*old_keycode, dev->keybit);
866  				/* Setting the bit twice is useless, so break */
867  				break;
868  			}
869  		}
870  	}
871  
872  	__set_bit(ke->keycode, dev->keybit);
873  	return 0;
874  }
875  
876  /**
877   * input_get_keycode - retrieve keycode currently mapped to a given scancode
878   * @dev: input device which keymap is being queried
879   * @ke: keymap entry
880   *
881   * This function should be called by anyone interested in retrieving current
882   * keymap. Presently evdev handlers use it.
883   */
input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)884  int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
885  {
886  	unsigned long flags;
887  	int retval;
888  
889  	spin_lock_irqsave(&dev->event_lock, flags);
890  	retval = dev->getkeycode(dev, ke);
891  	spin_unlock_irqrestore(&dev->event_lock, flags);
892  
893  	return retval;
894  }
895  EXPORT_SYMBOL(input_get_keycode);
896  
897  /**
898   * input_set_keycode - attribute a keycode to a given scancode
899   * @dev: input device which keymap is being updated
900   * @ke: new keymap entry
901   *
902   * This function should be called by anyone needing to update current
903   * keymap. Presently keyboard and evdev handlers use it.
904   */
input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)905  int input_set_keycode(struct input_dev *dev,
906  		      const struct input_keymap_entry *ke)
907  {
908  	unsigned long flags;
909  	unsigned int old_keycode;
910  	int retval;
911  
912  	if (ke->keycode > KEY_MAX)
913  		return -EINVAL;
914  
915  	spin_lock_irqsave(&dev->event_lock, flags);
916  
917  	retval = dev->setkeycode(dev, ke, &old_keycode);
918  	if (retval)
919  		goto out;
920  
921  	/* Make sure KEY_RESERVED did not get enabled. */
922  	__clear_bit(KEY_RESERVED, dev->keybit);
923  
924  	/*
925  	 * Simulate keyup event if keycode is not present
926  	 * in the keymap anymore
927  	 */
928  	if (old_keycode > KEY_MAX) {
929  		dev_warn(dev->dev.parent ?: &dev->dev,
930  			 "%s: got too big old keycode %#x\n",
931  			 __func__, old_keycode);
932  	} else if (test_bit(EV_KEY, dev->evbit) &&
933  		   !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
934  		   __test_and_clear_bit(old_keycode, dev->key)) {
935  		struct input_value vals[] =  {
936  			{ EV_KEY, old_keycode, 0 },
937  			input_value_sync
938  		};
939  
940  		input_pass_values(dev, vals, ARRAY_SIZE(vals));
941  	}
942  
943   out:
944  	spin_unlock_irqrestore(&dev->event_lock, flags);
945  
946  	return retval;
947  }
948  EXPORT_SYMBOL(input_set_keycode);
949  
input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)950  bool input_match_device_id(const struct input_dev *dev,
951  			   const struct input_device_id *id)
952  {
953  	if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
954  		if (id->bustype != dev->id.bustype)
955  			return false;
956  
957  	if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
958  		if (id->vendor != dev->id.vendor)
959  			return false;
960  
961  	if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
962  		if (id->product != dev->id.product)
963  			return false;
964  
965  	if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
966  		if (id->version != dev->id.version)
967  			return false;
968  
969  	if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
970  	    !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
971  	    !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
972  	    !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
973  	    !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
974  	    !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
975  	    !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
976  	    !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
977  	    !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
978  	    !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
979  		return false;
980  	}
981  
982  	return true;
983  }
984  EXPORT_SYMBOL(input_match_device_id);
985  
input_match_device(struct input_handler * handler,struct input_dev * dev)986  static const struct input_device_id *input_match_device(struct input_handler *handler,
987  							struct input_dev *dev)
988  {
989  	const struct input_device_id *id;
990  
991  	for (id = handler->id_table; id->flags || id->driver_info; id++) {
992  		if (input_match_device_id(dev, id) &&
993  		    (!handler->match || handler->match(handler, dev))) {
994  			return id;
995  		}
996  	}
997  
998  	return NULL;
999  }
1000  
input_attach_handler(struct input_dev * dev,struct input_handler * handler)1001  static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1002  {
1003  	const struct input_device_id *id;
1004  	int error;
1005  
1006  	id = input_match_device(handler, dev);
1007  	if (!id)
1008  		return -ENODEV;
1009  
1010  	error = handler->connect(handler, dev, id);
1011  	if (error && error != -ENODEV)
1012  		pr_err("failed to attach handler %s to device %s, error: %d\n",
1013  		       handler->name, kobject_name(&dev->dev.kobj), error);
1014  
1015  	return error;
1016  }
1017  
1018  #ifdef CONFIG_COMPAT
1019  
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1020  static int input_bits_to_string(char *buf, int buf_size,
1021  				unsigned long bits, bool skip_empty)
1022  {
1023  	int len = 0;
1024  
1025  	if (in_compat_syscall()) {
1026  		u32 dword = bits >> 32;
1027  		if (dword || !skip_empty)
1028  			len += snprintf(buf, buf_size, "%x ", dword);
1029  
1030  		dword = bits & 0xffffffffUL;
1031  		if (dword || !skip_empty || len)
1032  			len += snprintf(buf + len, max(buf_size - len, 0),
1033  					"%x", dword);
1034  	} else {
1035  		if (bits || !skip_empty)
1036  			len += snprintf(buf, buf_size, "%lx", bits);
1037  	}
1038  
1039  	return len;
1040  }
1041  
1042  #else /* !CONFIG_COMPAT */
1043  
input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1044  static int input_bits_to_string(char *buf, int buf_size,
1045  				unsigned long bits, bool skip_empty)
1046  {
1047  	return bits || !skip_empty ?
1048  		snprintf(buf, buf_size, "%lx", bits) : 0;
1049  }
1050  
1051  #endif
1052  
1053  #ifdef CONFIG_PROC_FS
1054  
1055  static struct proc_dir_entry *proc_bus_input_dir;
1056  static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1057  static int input_devices_state;
1058  
input_wakeup_procfs_readers(void)1059  static inline void input_wakeup_procfs_readers(void)
1060  {
1061  	input_devices_state++;
1062  	wake_up(&input_devices_poll_wait);
1063  }
1064  
input_proc_devices_poll(struct file * file,poll_table * wait)1065  static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
1066  {
1067  	poll_wait(file, &input_devices_poll_wait, wait);
1068  	if (file->f_version != input_devices_state) {
1069  		file->f_version = input_devices_state;
1070  		return POLLIN | POLLRDNORM;
1071  	}
1072  
1073  	return 0;
1074  }
1075  
1076  union input_seq_state {
1077  	struct {
1078  		unsigned short pos;
1079  		bool mutex_acquired;
1080  	};
1081  	void *p;
1082  };
1083  
input_devices_seq_start(struct seq_file * seq,loff_t * pos)1084  static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1085  {
1086  	union input_seq_state *state = (union input_seq_state *)&seq->private;
1087  	int error;
1088  
1089  	/* We need to fit into seq->private pointer */
1090  	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1091  
1092  	error = mutex_lock_interruptible(&input_mutex);
1093  	if (error) {
1094  		state->mutex_acquired = false;
1095  		return ERR_PTR(error);
1096  	}
1097  
1098  	state->mutex_acquired = true;
1099  
1100  	return seq_list_start(&input_dev_list, *pos);
1101  }
1102  
input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1103  static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1104  {
1105  	return seq_list_next(v, &input_dev_list, pos);
1106  }
1107  
input_seq_stop(struct seq_file * seq,void * v)1108  static void input_seq_stop(struct seq_file *seq, void *v)
1109  {
1110  	union input_seq_state *state = (union input_seq_state *)&seq->private;
1111  
1112  	if (state->mutex_acquired)
1113  		mutex_unlock(&input_mutex);
1114  }
1115  
input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1116  static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1117  				   unsigned long *bitmap, int max)
1118  {
1119  	int i;
1120  	bool skip_empty = true;
1121  	char buf[18];
1122  
1123  	seq_printf(seq, "B: %s=", name);
1124  
1125  	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1126  		if (input_bits_to_string(buf, sizeof(buf),
1127  					 bitmap[i], skip_empty)) {
1128  			skip_empty = false;
1129  			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1130  		}
1131  	}
1132  
1133  	/*
1134  	 * If no output was produced print a single 0.
1135  	 */
1136  	if (skip_empty)
1137  		seq_putc(seq, '0');
1138  
1139  	seq_putc(seq, '\n');
1140  }
1141  
input_devices_seq_show(struct seq_file * seq,void * v)1142  static int input_devices_seq_show(struct seq_file *seq, void *v)
1143  {
1144  	struct input_dev *dev = container_of(v, struct input_dev, node);
1145  	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1146  	struct input_handle *handle;
1147  
1148  	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1149  		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1150  
1151  	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1152  	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1153  	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1154  	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1155  	seq_puts(seq, "H: Handlers=");
1156  
1157  	list_for_each_entry(handle, &dev->h_list, d_node)
1158  		seq_printf(seq, "%s ", handle->name);
1159  	seq_putc(seq, '\n');
1160  
1161  	input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1162  
1163  	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1164  	if (test_bit(EV_KEY, dev->evbit))
1165  		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1166  	if (test_bit(EV_REL, dev->evbit))
1167  		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1168  	if (test_bit(EV_ABS, dev->evbit))
1169  		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1170  	if (test_bit(EV_MSC, dev->evbit))
1171  		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1172  	if (test_bit(EV_LED, dev->evbit))
1173  		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1174  	if (test_bit(EV_SND, dev->evbit))
1175  		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1176  	if (test_bit(EV_FF, dev->evbit))
1177  		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1178  	if (test_bit(EV_SW, dev->evbit))
1179  		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1180  
1181  	seq_putc(seq, '\n');
1182  
1183  	kfree(path);
1184  	return 0;
1185  }
1186  
1187  static const struct seq_operations input_devices_seq_ops = {
1188  	.start	= input_devices_seq_start,
1189  	.next	= input_devices_seq_next,
1190  	.stop	= input_seq_stop,
1191  	.show	= input_devices_seq_show,
1192  };
1193  
input_proc_devices_open(struct inode * inode,struct file * file)1194  static int input_proc_devices_open(struct inode *inode, struct file *file)
1195  {
1196  	return seq_open(file, &input_devices_seq_ops);
1197  }
1198  
1199  static const struct file_operations input_devices_fileops = {
1200  	.owner		= THIS_MODULE,
1201  	.open		= input_proc_devices_open,
1202  	.poll		= input_proc_devices_poll,
1203  	.read		= seq_read,
1204  	.llseek		= seq_lseek,
1205  	.release	= seq_release,
1206  };
1207  
input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1208  static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1209  {
1210  	union input_seq_state *state = (union input_seq_state *)&seq->private;
1211  	int error;
1212  
1213  	/* We need to fit into seq->private pointer */
1214  	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1215  
1216  	error = mutex_lock_interruptible(&input_mutex);
1217  	if (error) {
1218  		state->mutex_acquired = false;
1219  		return ERR_PTR(error);
1220  	}
1221  
1222  	state->mutex_acquired = true;
1223  	state->pos = *pos;
1224  
1225  	return seq_list_start(&input_handler_list, *pos);
1226  }
1227  
input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1228  static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1229  {
1230  	union input_seq_state *state = (union input_seq_state *)&seq->private;
1231  
1232  	state->pos = *pos + 1;
1233  	return seq_list_next(v, &input_handler_list, pos);
1234  }
1235  
input_handlers_seq_show(struct seq_file * seq,void * v)1236  static int input_handlers_seq_show(struct seq_file *seq, void *v)
1237  {
1238  	struct input_handler *handler = container_of(v, struct input_handler, node);
1239  	union input_seq_state *state = (union input_seq_state *)&seq->private;
1240  
1241  	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1242  	if (handler->filter)
1243  		seq_puts(seq, " (filter)");
1244  	if (handler->legacy_minors)
1245  		seq_printf(seq, " Minor=%d", handler->minor);
1246  	seq_putc(seq, '\n');
1247  
1248  	return 0;
1249  }
1250  
1251  static const struct seq_operations input_handlers_seq_ops = {
1252  	.start	= input_handlers_seq_start,
1253  	.next	= input_handlers_seq_next,
1254  	.stop	= input_seq_stop,
1255  	.show	= input_handlers_seq_show,
1256  };
1257  
input_proc_handlers_open(struct inode * inode,struct file * file)1258  static int input_proc_handlers_open(struct inode *inode, struct file *file)
1259  {
1260  	return seq_open(file, &input_handlers_seq_ops);
1261  }
1262  
1263  static const struct file_operations input_handlers_fileops = {
1264  	.owner		= THIS_MODULE,
1265  	.open		= input_proc_handlers_open,
1266  	.read		= seq_read,
1267  	.llseek		= seq_lseek,
1268  	.release	= seq_release,
1269  };
1270  
input_proc_init(void)1271  static int __init input_proc_init(void)
1272  {
1273  	struct proc_dir_entry *entry;
1274  
1275  	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1276  	if (!proc_bus_input_dir)
1277  		return -ENOMEM;
1278  
1279  	entry = proc_create("devices", 0, proc_bus_input_dir,
1280  			    &input_devices_fileops);
1281  	if (!entry)
1282  		goto fail1;
1283  
1284  	entry = proc_create("handlers", 0, proc_bus_input_dir,
1285  			    &input_handlers_fileops);
1286  	if (!entry)
1287  		goto fail2;
1288  
1289  	return 0;
1290  
1291   fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1292   fail1: remove_proc_entry("bus/input", NULL);
1293  	return -ENOMEM;
1294  }
1295  
input_proc_exit(void)1296  static void input_proc_exit(void)
1297  {
1298  	remove_proc_entry("devices", proc_bus_input_dir);
1299  	remove_proc_entry("handlers", proc_bus_input_dir);
1300  	remove_proc_entry("bus/input", NULL);
1301  }
1302  
1303  #else /* !CONFIG_PROC_FS */
input_wakeup_procfs_readers(void)1304  static inline void input_wakeup_procfs_readers(void) { }
input_proc_init(void)1305  static inline int input_proc_init(void) { return 0; }
input_proc_exit(void)1306  static inline void input_proc_exit(void) { }
1307  #endif
1308  
1309  #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1310  static ssize_t input_dev_show_##name(struct device *dev,		\
1311  				     struct device_attribute *attr,	\
1312  				     char *buf)				\
1313  {									\
1314  	struct input_dev *input_dev = to_input_dev(dev);		\
1315  									\
1316  	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1317  			 input_dev->name ? input_dev->name : "");	\
1318  }									\
1319  static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1320  
1321  INPUT_DEV_STRING_ATTR_SHOW(name);
1322  INPUT_DEV_STRING_ATTR_SHOW(phys);
1323  INPUT_DEV_STRING_ATTR_SHOW(uniq);
1324  
input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1325  static int input_print_modalias_bits(char *buf, int size,
1326  				     char name, unsigned long *bm,
1327  				     unsigned int min_bit, unsigned int max_bit)
1328  {
1329  	int len = 0, i;
1330  
1331  	len += snprintf(buf, max(size, 0), "%c", name);
1332  	for (i = min_bit; i < max_bit; i++)
1333  		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1334  			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1335  	return len;
1336  }
1337  
input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1338  static int input_print_modalias(char *buf, int size, struct input_dev *id,
1339  				int add_cr)
1340  {
1341  	int len;
1342  
1343  	len = snprintf(buf, max(size, 0),
1344  		       "input:b%04Xv%04Xp%04Xe%04X-",
1345  		       id->id.bustype, id->id.vendor,
1346  		       id->id.product, id->id.version);
1347  
1348  	len += input_print_modalias_bits(buf + len, size - len,
1349  				'e', id->evbit, 0, EV_MAX);
1350  	len += input_print_modalias_bits(buf + len, size - len,
1351  				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1352  	len += input_print_modalias_bits(buf + len, size - len,
1353  				'r', id->relbit, 0, REL_MAX);
1354  	len += input_print_modalias_bits(buf + len, size - len,
1355  				'a', id->absbit, 0, ABS_MAX);
1356  	len += input_print_modalias_bits(buf + len, size - len,
1357  				'm', id->mscbit, 0, MSC_MAX);
1358  	len += input_print_modalias_bits(buf + len, size - len,
1359  				'l', id->ledbit, 0, LED_MAX);
1360  	len += input_print_modalias_bits(buf + len, size - len,
1361  				's', id->sndbit, 0, SND_MAX);
1362  	len += input_print_modalias_bits(buf + len, size - len,
1363  				'f', id->ffbit, 0, FF_MAX);
1364  	len += input_print_modalias_bits(buf + len, size - len,
1365  				'w', id->swbit, 0, SW_MAX);
1366  
1367  	if (add_cr)
1368  		len += snprintf(buf + len, max(size - len, 0), "\n");
1369  
1370  	return len;
1371  }
1372  
input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1373  static ssize_t input_dev_show_modalias(struct device *dev,
1374  				       struct device_attribute *attr,
1375  				       char *buf)
1376  {
1377  	struct input_dev *id = to_input_dev(dev);
1378  	ssize_t len;
1379  
1380  	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1381  
1382  	return min_t(int, len, PAGE_SIZE);
1383  }
1384  static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1385  
1386  static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1387  			      int max, int add_cr);
1388  
input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1389  static ssize_t input_dev_show_properties(struct device *dev,
1390  					 struct device_attribute *attr,
1391  					 char *buf)
1392  {
1393  	struct input_dev *input_dev = to_input_dev(dev);
1394  	int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1395  				     INPUT_PROP_MAX, true);
1396  	return min_t(int, len, PAGE_SIZE);
1397  }
1398  static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1399  
1400  static struct attribute *input_dev_attrs[] = {
1401  	&dev_attr_name.attr,
1402  	&dev_attr_phys.attr,
1403  	&dev_attr_uniq.attr,
1404  	&dev_attr_modalias.attr,
1405  	&dev_attr_properties.attr,
1406  	NULL
1407  };
1408  
1409  static const struct attribute_group input_dev_attr_group = {
1410  	.attrs	= input_dev_attrs,
1411  };
1412  
1413  #define INPUT_DEV_ID_ATTR(name)						\
1414  static ssize_t input_dev_show_id_##name(struct device *dev,		\
1415  					struct device_attribute *attr,	\
1416  					char *buf)			\
1417  {									\
1418  	struct input_dev *input_dev = to_input_dev(dev);		\
1419  	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1420  }									\
1421  static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1422  
1423  INPUT_DEV_ID_ATTR(bustype);
1424  INPUT_DEV_ID_ATTR(vendor);
1425  INPUT_DEV_ID_ATTR(product);
1426  INPUT_DEV_ID_ATTR(version);
1427  
1428  static struct attribute *input_dev_id_attrs[] = {
1429  	&dev_attr_bustype.attr,
1430  	&dev_attr_vendor.attr,
1431  	&dev_attr_product.attr,
1432  	&dev_attr_version.attr,
1433  	NULL
1434  };
1435  
1436  static const struct attribute_group input_dev_id_attr_group = {
1437  	.name	= "id",
1438  	.attrs	= input_dev_id_attrs,
1439  };
1440  
input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1441  static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1442  			      int max, int add_cr)
1443  {
1444  	int i;
1445  	int len = 0;
1446  	bool skip_empty = true;
1447  
1448  	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1449  		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1450  					    bitmap[i], skip_empty);
1451  		if (len) {
1452  			skip_empty = false;
1453  			if (i > 0)
1454  				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1455  		}
1456  	}
1457  
1458  	/*
1459  	 * If no output was produced print a single 0.
1460  	 */
1461  	if (len == 0)
1462  		len = snprintf(buf, buf_size, "%d", 0);
1463  
1464  	if (add_cr)
1465  		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1466  
1467  	return len;
1468  }
1469  
1470  #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1471  static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1472  				       struct device_attribute *attr,	\
1473  				       char *buf)			\
1474  {									\
1475  	struct input_dev *input_dev = to_input_dev(dev);		\
1476  	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1477  				     input_dev->bm##bit, ev##_MAX,	\
1478  				     true);				\
1479  	return min_t(int, len, PAGE_SIZE);				\
1480  }									\
1481  static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1482  
1483  INPUT_DEV_CAP_ATTR(EV, ev);
1484  INPUT_DEV_CAP_ATTR(KEY, key);
1485  INPUT_DEV_CAP_ATTR(REL, rel);
1486  INPUT_DEV_CAP_ATTR(ABS, abs);
1487  INPUT_DEV_CAP_ATTR(MSC, msc);
1488  INPUT_DEV_CAP_ATTR(LED, led);
1489  INPUT_DEV_CAP_ATTR(SND, snd);
1490  INPUT_DEV_CAP_ATTR(FF, ff);
1491  INPUT_DEV_CAP_ATTR(SW, sw);
1492  
1493  static struct attribute *input_dev_caps_attrs[] = {
1494  	&dev_attr_ev.attr,
1495  	&dev_attr_key.attr,
1496  	&dev_attr_rel.attr,
1497  	&dev_attr_abs.attr,
1498  	&dev_attr_msc.attr,
1499  	&dev_attr_led.attr,
1500  	&dev_attr_snd.attr,
1501  	&dev_attr_ff.attr,
1502  	&dev_attr_sw.attr,
1503  	NULL
1504  };
1505  
1506  static const struct attribute_group input_dev_caps_attr_group = {
1507  	.name	= "capabilities",
1508  	.attrs	= input_dev_caps_attrs,
1509  };
1510  
1511  static const struct attribute_group *input_dev_attr_groups[] = {
1512  	&input_dev_attr_group,
1513  	&input_dev_id_attr_group,
1514  	&input_dev_caps_attr_group,
1515  	NULL
1516  };
1517  
input_dev_release(struct device * device)1518  static void input_dev_release(struct device *device)
1519  {
1520  	struct input_dev *dev = to_input_dev(device);
1521  
1522  	input_ff_destroy(dev);
1523  	input_mt_destroy_slots(dev);
1524  	kfree(dev->absinfo);
1525  	kfree(dev->vals);
1526  	kfree(dev);
1527  
1528  	module_put(THIS_MODULE);
1529  }
1530  
1531  /*
1532   * Input uevent interface - loading event handlers based on
1533   * device bitfields.
1534   */
input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1535  static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1536  				   const char *name, unsigned long *bitmap, int max)
1537  {
1538  	int len;
1539  
1540  	if (add_uevent_var(env, "%s", name))
1541  		return -ENOMEM;
1542  
1543  	len = input_print_bitmap(&env->buf[env->buflen - 1],
1544  				 sizeof(env->buf) - env->buflen,
1545  				 bitmap, max, false);
1546  	if (len >= (sizeof(env->buf) - env->buflen))
1547  		return -ENOMEM;
1548  
1549  	env->buflen += len;
1550  	return 0;
1551  }
1552  
input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1553  static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1554  					 struct input_dev *dev)
1555  {
1556  	int len;
1557  
1558  	if (add_uevent_var(env, "MODALIAS="))
1559  		return -ENOMEM;
1560  
1561  	len = input_print_modalias(&env->buf[env->buflen - 1],
1562  				   sizeof(env->buf) - env->buflen,
1563  				   dev, 0);
1564  	if (len >= (sizeof(env->buf) - env->buflen))
1565  		return -ENOMEM;
1566  
1567  	env->buflen += len;
1568  	return 0;
1569  }
1570  
1571  #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1572  	do {								\
1573  		int err = add_uevent_var(env, fmt, val);		\
1574  		if (err)						\
1575  			return err;					\
1576  	} while (0)
1577  
1578  #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1579  	do {								\
1580  		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1581  		if (err)						\
1582  			return err;					\
1583  	} while (0)
1584  
1585  #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1586  	do {								\
1587  		int err = input_add_uevent_modalias_var(env, dev);	\
1588  		if (err)						\
1589  			return err;					\
1590  	} while (0)
1591  
input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1592  static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1593  {
1594  	struct input_dev *dev = to_input_dev(device);
1595  
1596  	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1597  				dev->id.bustype, dev->id.vendor,
1598  				dev->id.product, dev->id.version);
1599  	if (dev->name)
1600  		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1601  	if (dev->phys)
1602  		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1603  	if (dev->uniq)
1604  		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1605  
1606  	INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1607  
1608  	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1609  	if (test_bit(EV_KEY, dev->evbit))
1610  		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1611  	if (test_bit(EV_REL, dev->evbit))
1612  		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1613  	if (test_bit(EV_ABS, dev->evbit))
1614  		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1615  	if (test_bit(EV_MSC, dev->evbit))
1616  		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1617  	if (test_bit(EV_LED, dev->evbit))
1618  		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1619  	if (test_bit(EV_SND, dev->evbit))
1620  		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1621  	if (test_bit(EV_FF, dev->evbit))
1622  		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1623  	if (test_bit(EV_SW, dev->evbit))
1624  		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1625  
1626  	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1627  
1628  	return 0;
1629  }
1630  
1631  #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1632  	do {								\
1633  		int i;							\
1634  		bool active;						\
1635  									\
1636  		if (!test_bit(EV_##type, dev->evbit))			\
1637  			break;						\
1638  									\
1639  		for_each_set_bit(i, dev->bits##bit, type##_CNT) {	\
1640  			active = test_bit(i, dev->bits);		\
1641  			if (!active && !on)				\
1642  				continue;				\
1643  									\
1644  			dev->event(dev, EV_##type, i, on ? active : 0);	\
1645  		}							\
1646  	} while (0)
1647  
input_dev_toggle(struct input_dev * dev,bool activate)1648  static void input_dev_toggle(struct input_dev *dev, bool activate)
1649  {
1650  	if (!dev->event)
1651  		return;
1652  
1653  	INPUT_DO_TOGGLE(dev, LED, led, activate);
1654  	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1655  
1656  	if (activate && test_bit(EV_REP, dev->evbit)) {
1657  		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1658  		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1659  	}
1660  }
1661  
1662  /**
1663   * input_reset_device() - reset/restore the state of input device
1664   * @dev: input device whose state needs to be reset
1665   *
1666   * This function tries to reset the state of an opened input device and
1667   * bring internal state and state if the hardware in sync with each other.
1668   * We mark all keys as released, restore LED state, repeat rate, etc.
1669   */
input_reset_device(struct input_dev * dev)1670  void input_reset_device(struct input_dev *dev)
1671  {
1672  	unsigned long flags;
1673  
1674  	mutex_lock(&dev->mutex);
1675  	spin_lock_irqsave(&dev->event_lock, flags);
1676  
1677  	input_dev_toggle(dev, true);
1678  	input_dev_release_keys(dev);
1679  
1680  	spin_unlock_irqrestore(&dev->event_lock, flags);
1681  	mutex_unlock(&dev->mutex);
1682  }
1683  EXPORT_SYMBOL(input_reset_device);
1684  
1685  #ifdef CONFIG_PM_SLEEP
input_dev_suspend(struct device * dev)1686  static int input_dev_suspend(struct device *dev)
1687  {
1688  	struct input_dev *input_dev = to_input_dev(dev);
1689  
1690  	spin_lock_irq(&input_dev->event_lock);
1691  
1692  	/*
1693  	 * Keys that are pressed now are unlikely to be
1694  	 * still pressed when we resume.
1695  	 */
1696  	input_dev_release_keys(input_dev);
1697  
1698  	/* Turn off LEDs and sounds, if any are active. */
1699  	input_dev_toggle(input_dev, false);
1700  
1701  	spin_unlock_irq(&input_dev->event_lock);
1702  
1703  	return 0;
1704  }
1705  
input_dev_resume(struct device * dev)1706  static int input_dev_resume(struct device *dev)
1707  {
1708  	struct input_dev *input_dev = to_input_dev(dev);
1709  
1710  	spin_lock_irq(&input_dev->event_lock);
1711  
1712  	/* Restore state of LEDs and sounds, if any were active. */
1713  	input_dev_toggle(input_dev, true);
1714  
1715  	spin_unlock_irq(&input_dev->event_lock);
1716  
1717  	return 0;
1718  }
1719  
input_dev_freeze(struct device * dev)1720  static int input_dev_freeze(struct device *dev)
1721  {
1722  	struct input_dev *input_dev = to_input_dev(dev);
1723  
1724  	spin_lock_irq(&input_dev->event_lock);
1725  
1726  	/*
1727  	 * Keys that are pressed now are unlikely to be
1728  	 * still pressed when we resume.
1729  	 */
1730  	input_dev_release_keys(input_dev);
1731  
1732  	spin_unlock_irq(&input_dev->event_lock);
1733  
1734  	return 0;
1735  }
1736  
input_dev_poweroff(struct device * dev)1737  static int input_dev_poweroff(struct device *dev)
1738  {
1739  	struct input_dev *input_dev = to_input_dev(dev);
1740  
1741  	spin_lock_irq(&input_dev->event_lock);
1742  
1743  	/* Turn off LEDs and sounds, if any are active. */
1744  	input_dev_toggle(input_dev, false);
1745  
1746  	spin_unlock_irq(&input_dev->event_lock);
1747  
1748  	return 0;
1749  }
1750  
1751  static const struct dev_pm_ops input_dev_pm_ops = {
1752  	.suspend	= input_dev_suspend,
1753  	.resume		= input_dev_resume,
1754  	.freeze		= input_dev_freeze,
1755  	.poweroff	= input_dev_poweroff,
1756  	.restore	= input_dev_resume,
1757  };
1758  #endif /* CONFIG_PM */
1759  
1760  static const struct device_type input_dev_type = {
1761  	.groups		= input_dev_attr_groups,
1762  	.release	= input_dev_release,
1763  	.uevent		= input_dev_uevent,
1764  #ifdef CONFIG_PM_SLEEP
1765  	.pm		= &input_dev_pm_ops,
1766  #endif
1767  };
1768  
input_devnode(struct device * dev,umode_t * mode)1769  static char *input_devnode(struct device *dev, umode_t *mode)
1770  {
1771  	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1772  }
1773  
1774  struct class input_class = {
1775  	.name		= "input",
1776  	.devnode	= input_devnode,
1777  };
1778  EXPORT_SYMBOL_GPL(input_class);
1779  
1780  /**
1781   * input_allocate_device - allocate memory for new input device
1782   *
1783   * Returns prepared struct input_dev or %NULL.
1784   *
1785   * NOTE: Use input_free_device() to free devices that have not been
1786   * registered; input_unregister_device() should be used for already
1787   * registered devices.
1788   */
input_allocate_device(void)1789  struct input_dev *input_allocate_device(void)
1790  {
1791  	static atomic_t input_no = ATOMIC_INIT(-1);
1792  	struct input_dev *dev;
1793  
1794  	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1795  	if (dev) {
1796  		dev->dev.type = &input_dev_type;
1797  		dev->dev.class = &input_class;
1798  		device_initialize(&dev->dev);
1799  		mutex_init(&dev->mutex);
1800  		spin_lock_init(&dev->event_lock);
1801  		init_timer(&dev->timer);
1802  		INIT_LIST_HEAD(&dev->h_list);
1803  		INIT_LIST_HEAD(&dev->node);
1804  
1805  		dev_set_name(&dev->dev, "input%lu",
1806  			     (unsigned long)atomic_inc_return(&input_no));
1807  
1808  		__module_get(THIS_MODULE);
1809  	}
1810  
1811  	return dev;
1812  }
1813  EXPORT_SYMBOL(input_allocate_device);
1814  
1815  struct input_devres {
1816  	struct input_dev *input;
1817  };
1818  
devm_input_device_match(struct device * dev,void * res,void * data)1819  static int devm_input_device_match(struct device *dev, void *res, void *data)
1820  {
1821  	struct input_devres *devres = res;
1822  
1823  	return devres->input == data;
1824  }
1825  
devm_input_device_release(struct device * dev,void * res)1826  static void devm_input_device_release(struct device *dev, void *res)
1827  {
1828  	struct input_devres *devres = res;
1829  	struct input_dev *input = devres->input;
1830  
1831  	dev_dbg(dev, "%s: dropping reference to %s\n",
1832  		__func__, dev_name(&input->dev));
1833  	input_put_device(input);
1834  }
1835  
1836  /**
1837   * devm_input_allocate_device - allocate managed input device
1838   * @dev: device owning the input device being created
1839   *
1840   * Returns prepared struct input_dev or %NULL.
1841   *
1842   * Managed input devices do not need to be explicitly unregistered or
1843   * freed as it will be done automatically when owner device unbinds from
1844   * its driver (or binding fails). Once managed input device is allocated,
1845   * it is ready to be set up and registered in the same fashion as regular
1846   * input device. There are no special devm_input_device_[un]register()
1847   * variants, regular ones work with both managed and unmanaged devices,
1848   * should you need them. In most cases however, managed input device need
1849   * not be explicitly unregistered or freed.
1850   *
1851   * NOTE: the owner device is set up as parent of input device and users
1852   * should not override it.
1853   */
devm_input_allocate_device(struct device * dev)1854  struct input_dev *devm_input_allocate_device(struct device *dev)
1855  {
1856  	struct input_dev *input;
1857  	struct input_devres *devres;
1858  
1859  	devres = devres_alloc(devm_input_device_release,
1860  			      sizeof(*devres), GFP_KERNEL);
1861  	if (!devres)
1862  		return NULL;
1863  
1864  	input = input_allocate_device();
1865  	if (!input) {
1866  		devres_free(devres);
1867  		return NULL;
1868  	}
1869  
1870  	input->dev.parent = dev;
1871  	input->devres_managed = true;
1872  
1873  	devres->input = input;
1874  	devres_add(dev, devres);
1875  
1876  	return input;
1877  }
1878  EXPORT_SYMBOL(devm_input_allocate_device);
1879  
1880  /**
1881   * input_free_device - free memory occupied by input_dev structure
1882   * @dev: input device to free
1883   *
1884   * This function should only be used if input_register_device()
1885   * was not called yet or if it failed. Once device was registered
1886   * use input_unregister_device() and memory will be freed once last
1887   * reference to the device is dropped.
1888   *
1889   * Device should be allocated by input_allocate_device().
1890   *
1891   * NOTE: If there are references to the input device then memory
1892   * will not be freed until last reference is dropped.
1893   */
input_free_device(struct input_dev * dev)1894  void input_free_device(struct input_dev *dev)
1895  {
1896  	if (dev) {
1897  		if (dev->devres_managed)
1898  			WARN_ON(devres_destroy(dev->dev.parent,
1899  						devm_input_device_release,
1900  						devm_input_device_match,
1901  						dev));
1902  		input_put_device(dev);
1903  	}
1904  }
1905  EXPORT_SYMBOL(input_free_device);
1906  
1907  /**
1908   * input_set_capability - mark device as capable of a certain event
1909   * @dev: device that is capable of emitting or accepting event
1910   * @type: type of the event (EV_KEY, EV_REL, etc...)
1911   * @code: event code
1912   *
1913   * In addition to setting up corresponding bit in appropriate capability
1914   * bitmap the function also adjusts dev->evbit.
1915   */
input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1916  void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1917  {
1918  	switch (type) {
1919  	case EV_KEY:
1920  		__set_bit(code, dev->keybit);
1921  		break;
1922  
1923  	case EV_REL:
1924  		__set_bit(code, dev->relbit);
1925  		break;
1926  
1927  	case EV_ABS:
1928  		input_alloc_absinfo(dev);
1929  		if (!dev->absinfo)
1930  			return;
1931  
1932  		__set_bit(code, dev->absbit);
1933  		break;
1934  
1935  	case EV_MSC:
1936  		__set_bit(code, dev->mscbit);
1937  		break;
1938  
1939  	case EV_SW:
1940  		__set_bit(code, dev->swbit);
1941  		break;
1942  
1943  	case EV_LED:
1944  		__set_bit(code, dev->ledbit);
1945  		break;
1946  
1947  	case EV_SND:
1948  		__set_bit(code, dev->sndbit);
1949  		break;
1950  
1951  	case EV_FF:
1952  		__set_bit(code, dev->ffbit);
1953  		break;
1954  
1955  	case EV_PWR:
1956  		/* do nothing */
1957  		break;
1958  
1959  	default:
1960  		pr_err("input_set_capability: unknown type %u (code %u)\n",
1961  		       type, code);
1962  		dump_stack();
1963  		return;
1964  	}
1965  
1966  	__set_bit(type, dev->evbit);
1967  }
1968  EXPORT_SYMBOL(input_set_capability);
1969  
input_estimate_events_per_packet(struct input_dev * dev)1970  static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
1971  {
1972  	int mt_slots;
1973  	int i;
1974  	unsigned int events;
1975  
1976  	if (dev->mt) {
1977  		mt_slots = dev->mt->num_slots;
1978  	} else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
1979  		mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
1980  			   dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
1981  		mt_slots = clamp(mt_slots, 2, 32);
1982  	} else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
1983  		mt_slots = 2;
1984  	} else {
1985  		mt_slots = 0;
1986  	}
1987  
1988  	events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
1989  
1990  	if (test_bit(EV_ABS, dev->evbit))
1991  		for_each_set_bit(i, dev->absbit, ABS_CNT)
1992  			events += input_is_mt_axis(i) ? mt_slots : 1;
1993  
1994  	if (test_bit(EV_REL, dev->evbit))
1995  		events += bitmap_weight(dev->relbit, REL_CNT);
1996  
1997  	/* Make room for KEY and MSC events */
1998  	events += 7;
1999  
2000  	return events;
2001  }
2002  
2003  #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
2004  	do {								\
2005  		if (!test_bit(EV_##type, dev->evbit))			\
2006  			memset(dev->bits##bit, 0,			\
2007  				sizeof(dev->bits##bit));		\
2008  	} while (0)
2009  
input_cleanse_bitmasks(struct input_dev * dev)2010  static void input_cleanse_bitmasks(struct input_dev *dev)
2011  {
2012  	INPUT_CLEANSE_BITMASK(dev, KEY, key);
2013  	INPUT_CLEANSE_BITMASK(dev, REL, rel);
2014  	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2015  	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2016  	INPUT_CLEANSE_BITMASK(dev, LED, led);
2017  	INPUT_CLEANSE_BITMASK(dev, SND, snd);
2018  	INPUT_CLEANSE_BITMASK(dev, FF, ff);
2019  	INPUT_CLEANSE_BITMASK(dev, SW, sw);
2020  }
2021  
__input_unregister_device(struct input_dev * dev)2022  static void __input_unregister_device(struct input_dev *dev)
2023  {
2024  	struct input_handle *handle, *next;
2025  
2026  	input_disconnect_device(dev);
2027  
2028  	mutex_lock(&input_mutex);
2029  
2030  	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2031  		handle->handler->disconnect(handle);
2032  	WARN_ON(!list_empty(&dev->h_list));
2033  
2034  	del_timer_sync(&dev->timer);
2035  	list_del_init(&dev->node);
2036  
2037  	input_wakeup_procfs_readers();
2038  
2039  	mutex_unlock(&input_mutex);
2040  
2041  	device_del(&dev->dev);
2042  }
2043  
devm_input_device_unregister(struct device * dev,void * res)2044  static void devm_input_device_unregister(struct device *dev, void *res)
2045  {
2046  	struct input_devres *devres = res;
2047  	struct input_dev *input = devres->input;
2048  
2049  	dev_dbg(dev, "%s: unregistering device %s\n",
2050  		__func__, dev_name(&input->dev));
2051  	__input_unregister_device(input);
2052  }
2053  
2054  /**
2055   * input_enable_softrepeat - enable software autorepeat
2056   * @dev: input device
2057   * @delay: repeat delay
2058   * @period: repeat period
2059   *
2060   * Enable software autorepeat on the input device.
2061   */
input_enable_softrepeat(struct input_dev * dev,int delay,int period)2062  void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2063  {
2064  	dev->timer.data = (unsigned long) dev;
2065  	dev->timer.function = input_repeat_key;
2066  	dev->rep[REP_DELAY] = delay;
2067  	dev->rep[REP_PERIOD] = period;
2068  }
2069  EXPORT_SYMBOL(input_enable_softrepeat);
2070  
2071  /**
2072   * input_register_device - register device with input core
2073   * @dev: device to be registered
2074   *
2075   * This function registers device with input core. The device must be
2076   * allocated with input_allocate_device() and all it's capabilities
2077   * set up before registering.
2078   * If function fails the device must be freed with input_free_device().
2079   * Once device has been successfully registered it can be unregistered
2080   * with input_unregister_device(); input_free_device() should not be
2081   * called in this case.
2082   *
2083   * Note that this function is also used to register managed input devices
2084   * (ones allocated with devm_input_allocate_device()). Such managed input
2085   * devices need not be explicitly unregistered or freed, their tear down
2086   * is controlled by the devres infrastructure. It is also worth noting
2087   * that tear down of managed input devices is internally a 2-step process:
2088   * registered managed input device is first unregistered, but stays in
2089   * memory and can still handle input_event() calls (although events will
2090   * not be delivered anywhere). The freeing of managed input device will
2091   * happen later, when devres stack is unwound to the point where device
2092   * allocation was made.
2093   */
input_register_device(struct input_dev * dev)2094  int input_register_device(struct input_dev *dev)
2095  {
2096  	struct input_devres *devres = NULL;
2097  	struct input_handler *handler;
2098  	unsigned int packet_size;
2099  	const char *path;
2100  	int error;
2101  
2102  	if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2103  		dev_err(&dev->dev,
2104  			"Absolute device without dev->absinfo, refusing to register\n");
2105  		return -EINVAL;
2106  	}
2107  
2108  	if (dev->devres_managed) {
2109  		devres = devres_alloc(devm_input_device_unregister,
2110  				      sizeof(*devres), GFP_KERNEL);
2111  		if (!devres)
2112  			return -ENOMEM;
2113  
2114  		devres->input = dev;
2115  	}
2116  
2117  	/* Every input device generates EV_SYN/SYN_REPORT events. */
2118  	__set_bit(EV_SYN, dev->evbit);
2119  
2120  	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
2121  	__clear_bit(KEY_RESERVED, dev->keybit);
2122  
2123  	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2124  	input_cleanse_bitmasks(dev);
2125  
2126  	packet_size = input_estimate_events_per_packet(dev);
2127  	if (dev->hint_events_per_packet < packet_size)
2128  		dev->hint_events_per_packet = packet_size;
2129  
2130  	dev->max_vals = dev->hint_events_per_packet + 2;
2131  	dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2132  	if (!dev->vals) {
2133  		error = -ENOMEM;
2134  		goto err_devres_free;
2135  	}
2136  
2137  	/*
2138  	 * If delay and period are pre-set by the driver, then autorepeating
2139  	 * is handled by the driver itself and we don't do it in input.c.
2140  	 */
2141  	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2142  		input_enable_softrepeat(dev, 250, 33);
2143  
2144  	if (!dev->getkeycode)
2145  		dev->getkeycode = input_default_getkeycode;
2146  
2147  	if (!dev->setkeycode)
2148  		dev->setkeycode = input_default_setkeycode;
2149  
2150  	error = device_add(&dev->dev);
2151  	if (error)
2152  		goto err_free_vals;
2153  
2154  	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2155  	pr_info("%s as %s\n",
2156  		dev->name ? dev->name : "Unspecified device",
2157  		path ? path : "N/A");
2158  	kfree(path);
2159  
2160  	error = mutex_lock_interruptible(&input_mutex);
2161  	if (error)
2162  		goto err_device_del;
2163  
2164  	list_add_tail(&dev->node, &input_dev_list);
2165  
2166  	list_for_each_entry(handler, &input_handler_list, node)
2167  		input_attach_handler(dev, handler);
2168  
2169  	input_wakeup_procfs_readers();
2170  
2171  	mutex_unlock(&input_mutex);
2172  
2173  	if (dev->devres_managed) {
2174  		dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2175  			__func__, dev_name(&dev->dev));
2176  		devres_add(dev->dev.parent, devres);
2177  	}
2178  	return 0;
2179  
2180  err_device_del:
2181  	device_del(&dev->dev);
2182  err_free_vals:
2183  	kfree(dev->vals);
2184  	dev->vals = NULL;
2185  err_devres_free:
2186  	devres_free(devres);
2187  	return error;
2188  }
2189  EXPORT_SYMBOL(input_register_device);
2190  
2191  /**
2192   * input_unregister_device - unregister previously registered device
2193   * @dev: device to be unregistered
2194   *
2195   * This function unregisters an input device. Once device is unregistered
2196   * the caller should not try to access it as it may get freed at any moment.
2197   */
input_unregister_device(struct input_dev * dev)2198  void input_unregister_device(struct input_dev *dev)
2199  {
2200  	if (dev->devres_managed) {
2201  		WARN_ON(devres_destroy(dev->dev.parent,
2202  					devm_input_device_unregister,
2203  					devm_input_device_match,
2204  					dev));
2205  		__input_unregister_device(dev);
2206  		/*
2207  		 * We do not do input_put_device() here because it will be done
2208  		 * when 2nd devres fires up.
2209  		 */
2210  	} else {
2211  		__input_unregister_device(dev);
2212  		input_put_device(dev);
2213  	}
2214  }
2215  EXPORT_SYMBOL(input_unregister_device);
2216  
2217  /**
2218   * input_register_handler - register a new input handler
2219   * @handler: handler to be registered
2220   *
2221   * This function registers a new input handler (interface) for input
2222   * devices in the system and attaches it to all input devices that
2223   * are compatible with the handler.
2224   */
input_register_handler(struct input_handler * handler)2225  int input_register_handler(struct input_handler *handler)
2226  {
2227  	struct input_dev *dev;
2228  	int error;
2229  
2230  	error = mutex_lock_interruptible(&input_mutex);
2231  	if (error)
2232  		return error;
2233  
2234  	INIT_LIST_HEAD(&handler->h_list);
2235  
2236  	list_add_tail(&handler->node, &input_handler_list);
2237  
2238  	list_for_each_entry(dev, &input_dev_list, node)
2239  		input_attach_handler(dev, handler);
2240  
2241  	input_wakeup_procfs_readers();
2242  
2243  	mutex_unlock(&input_mutex);
2244  	return 0;
2245  }
2246  EXPORT_SYMBOL(input_register_handler);
2247  
2248  /**
2249   * input_unregister_handler - unregisters an input handler
2250   * @handler: handler to be unregistered
2251   *
2252   * This function disconnects a handler from its input devices and
2253   * removes it from lists of known handlers.
2254   */
input_unregister_handler(struct input_handler * handler)2255  void input_unregister_handler(struct input_handler *handler)
2256  {
2257  	struct input_handle *handle, *next;
2258  
2259  	mutex_lock(&input_mutex);
2260  
2261  	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2262  		handler->disconnect(handle);
2263  	WARN_ON(!list_empty(&handler->h_list));
2264  
2265  	list_del_init(&handler->node);
2266  
2267  	input_wakeup_procfs_readers();
2268  
2269  	mutex_unlock(&input_mutex);
2270  }
2271  EXPORT_SYMBOL(input_unregister_handler);
2272  
2273  /**
2274   * input_handler_for_each_handle - handle iterator
2275   * @handler: input handler to iterate
2276   * @data: data for the callback
2277   * @fn: function to be called for each handle
2278   *
2279   * Iterate over @bus's list of devices, and call @fn for each, passing
2280   * it @data and stop when @fn returns a non-zero value. The function is
2281   * using RCU to traverse the list and therefore may be using in atomic
2282   * contexts. The @fn callback is invoked from RCU critical section and
2283   * thus must not sleep.
2284   */
input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2285  int input_handler_for_each_handle(struct input_handler *handler, void *data,
2286  				  int (*fn)(struct input_handle *, void *))
2287  {
2288  	struct input_handle *handle;
2289  	int retval = 0;
2290  
2291  	rcu_read_lock();
2292  
2293  	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2294  		retval = fn(handle, data);
2295  		if (retval)
2296  			break;
2297  	}
2298  
2299  	rcu_read_unlock();
2300  
2301  	return retval;
2302  }
2303  EXPORT_SYMBOL(input_handler_for_each_handle);
2304  
2305  /**
2306   * input_register_handle - register a new input handle
2307   * @handle: handle to register
2308   *
2309   * This function puts a new input handle onto device's
2310   * and handler's lists so that events can flow through
2311   * it once it is opened using input_open_device().
2312   *
2313   * This function is supposed to be called from handler's
2314   * connect() method.
2315   */
input_register_handle(struct input_handle * handle)2316  int input_register_handle(struct input_handle *handle)
2317  {
2318  	struct input_handler *handler = handle->handler;
2319  	struct input_dev *dev = handle->dev;
2320  	int error;
2321  
2322  	/*
2323  	 * We take dev->mutex here to prevent race with
2324  	 * input_release_device().
2325  	 */
2326  	error = mutex_lock_interruptible(&dev->mutex);
2327  	if (error)
2328  		return error;
2329  
2330  	/*
2331  	 * Filters go to the head of the list, normal handlers
2332  	 * to the tail.
2333  	 */
2334  	if (handler->filter)
2335  		list_add_rcu(&handle->d_node, &dev->h_list);
2336  	else
2337  		list_add_tail_rcu(&handle->d_node, &dev->h_list);
2338  
2339  	mutex_unlock(&dev->mutex);
2340  
2341  	/*
2342  	 * Since we are supposed to be called from ->connect()
2343  	 * which is mutually exclusive with ->disconnect()
2344  	 * we can't be racing with input_unregister_handle()
2345  	 * and so separate lock is not needed here.
2346  	 */
2347  	list_add_tail_rcu(&handle->h_node, &handler->h_list);
2348  
2349  	if (handler->start)
2350  		handler->start(handle);
2351  
2352  	return 0;
2353  }
2354  EXPORT_SYMBOL(input_register_handle);
2355  
2356  /**
2357   * input_unregister_handle - unregister an input handle
2358   * @handle: handle to unregister
2359   *
2360   * This function removes input handle from device's
2361   * and handler's lists.
2362   *
2363   * This function is supposed to be called from handler's
2364   * disconnect() method.
2365   */
input_unregister_handle(struct input_handle * handle)2366  void input_unregister_handle(struct input_handle *handle)
2367  {
2368  	struct input_dev *dev = handle->dev;
2369  
2370  	list_del_rcu(&handle->h_node);
2371  
2372  	/*
2373  	 * Take dev->mutex to prevent race with input_release_device().
2374  	 */
2375  	mutex_lock(&dev->mutex);
2376  	list_del_rcu(&handle->d_node);
2377  	mutex_unlock(&dev->mutex);
2378  
2379  	synchronize_rcu();
2380  }
2381  EXPORT_SYMBOL(input_unregister_handle);
2382  
2383  /**
2384   * input_get_new_minor - allocates a new input minor number
2385   * @legacy_base: beginning or the legacy range to be searched
2386   * @legacy_num: size of legacy range
2387   * @allow_dynamic: whether we can also take ID from the dynamic range
2388   *
2389   * This function allocates a new device minor for from input major namespace.
2390   * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2391   * parameters and whether ID can be allocated from dynamic range if there are
2392   * no free IDs in legacy range.
2393   */
input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2394  int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2395  			bool allow_dynamic)
2396  {
2397  	/*
2398  	 * This function should be called from input handler's ->connect()
2399  	 * methods, which are serialized with input_mutex, so no additional
2400  	 * locking is needed here.
2401  	 */
2402  	if (legacy_base >= 0) {
2403  		int minor = ida_simple_get(&input_ida,
2404  					   legacy_base,
2405  					   legacy_base + legacy_num,
2406  					   GFP_KERNEL);
2407  		if (minor >= 0 || !allow_dynamic)
2408  			return minor;
2409  	}
2410  
2411  	return ida_simple_get(&input_ida,
2412  			      INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2413  			      GFP_KERNEL);
2414  }
2415  EXPORT_SYMBOL(input_get_new_minor);
2416  
2417  /**
2418   * input_free_minor - release previously allocated minor
2419   * @minor: minor to be released
2420   *
2421   * This function releases previously allocated input minor so that it can be
2422   * reused later.
2423   */
input_free_minor(unsigned int minor)2424  void input_free_minor(unsigned int minor)
2425  {
2426  	ida_simple_remove(&input_ida, minor);
2427  }
2428  EXPORT_SYMBOL(input_free_minor);
2429  
input_init(void)2430  static int __init input_init(void)
2431  {
2432  	int err;
2433  
2434  	err = class_register(&input_class);
2435  	if (err) {
2436  		pr_err("unable to register input_dev class\n");
2437  		return err;
2438  	}
2439  
2440  	err = input_proc_init();
2441  	if (err)
2442  		goto fail1;
2443  
2444  	err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2445  				     INPUT_MAX_CHAR_DEVICES, "input");
2446  	if (err) {
2447  		pr_err("unable to register char major %d", INPUT_MAJOR);
2448  		goto fail2;
2449  	}
2450  
2451  	return 0;
2452  
2453   fail2:	input_proc_exit();
2454   fail1:	class_unregister(&input_class);
2455  	return err;
2456  }
2457  
input_exit(void)2458  static void __exit input_exit(void)
2459  {
2460  	input_proc_exit();
2461  	unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2462  				 INPUT_MAX_CHAR_DEVICES);
2463  	class_unregister(&input_class);
2464  }
2465  
2466  subsys_initcall(input_init);
2467  module_exit(input_exit);
2468