1 /* 2 * The input core 3 * 4 * Copyright (c) 1999-2002 Vojtech Pavlik 5 */ 6 7 /* 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License version 2 as published by 10 * the Free Software Foundation. 11 */ 12 13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt 14 15 #include <linux/init.h> 16 #include <linux/types.h> 17 #include <linux/idr.h> 18 #include <linux/input/mt.h> 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/random.h> 22 #include <linux/major.h> 23 #include <linux/proc_fs.h> 24 #include <linux/sched.h> 25 #include <linux/seq_file.h> 26 #include <linux/poll.h> 27 #include <linux/device.h> 28 #include <linux/mutex.h> 29 #include <linux/rcupdate.h> 30 #include "input-compat.h" 31 32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>"); 33 MODULE_DESCRIPTION("Input core"); 34 MODULE_LICENSE("GPL"); 35 36 #define INPUT_MAX_CHAR_DEVICES 1024 37 #define INPUT_FIRST_DYNAMIC_DEV 256 38 static DEFINE_IDA(input_ida); 39 40 static LIST_HEAD(input_dev_list); 41 static LIST_HEAD(input_handler_list); 42 43 /* 44 * input_mutex protects access to both input_dev_list and input_handler_list. 45 * This also causes input_[un]register_device and input_[un]register_handler 46 * be mutually exclusive which simplifies locking in drivers implementing 47 * input handlers. 48 */ 49 static DEFINE_MUTEX(input_mutex); 50 51 static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 }; 52 is_event_supported(unsigned int code,unsigned long * bm,unsigned int max)53 static inline int is_event_supported(unsigned int code, 54 unsigned long *bm, unsigned int max) 55 { 56 return code <= max && test_bit(code, bm); 57 } 58 input_defuzz_abs_event(int value,int old_val,int fuzz)59 static int input_defuzz_abs_event(int value, int old_val, int fuzz) 60 { 61 if (fuzz) { 62 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2) 63 return old_val; 64 65 if (value > old_val - fuzz && value < old_val + fuzz) 66 return (old_val * 3 + value) / 4; 67 68 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2) 69 return (old_val + value) / 2; 70 } 71 72 return value; 73 } 74 input_start_autorepeat(struct input_dev * dev,int code)75 static void input_start_autorepeat(struct input_dev *dev, int code) 76 { 77 if (test_bit(EV_REP, dev->evbit) && 78 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && 79 dev->timer.data) { 80 dev->repeat_key = code; 81 mod_timer(&dev->timer, 82 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY])); 83 } 84 } 85 input_stop_autorepeat(struct input_dev * dev)86 static void input_stop_autorepeat(struct input_dev *dev) 87 { 88 del_timer(&dev->timer); 89 } 90 91 /* 92 * Pass event first through all filters and then, if event has not been 93 * filtered out, through all open handles. This function is called with 94 * dev->event_lock held and interrupts disabled. 95 */ input_to_handler(struct input_handle * handle,struct input_value * vals,unsigned int count)96 static unsigned int input_to_handler(struct input_handle *handle, 97 struct input_value *vals, unsigned int count) 98 { 99 struct input_handler *handler = handle->handler; 100 struct input_value *end = vals; 101 struct input_value *v; 102 103 if (handler->filter) { 104 for (v = vals; v != vals + count; v++) { 105 if (handler->filter(handle, v->type, v->code, v->value)) 106 continue; 107 if (end != v) 108 *end = *v; 109 end++; 110 } 111 count = end - vals; 112 } 113 114 if (!count) 115 return 0; 116 117 if (handler->events) 118 handler->events(handle, vals, count); 119 else if (handler->event) 120 for (v = vals; v != vals + count; v++) 121 handler->event(handle, v->type, v->code, v->value); 122 123 return count; 124 } 125 126 /* 127 * Pass values first through all filters and then, if event has not been 128 * filtered out, through all open handles. This function is called with 129 * dev->event_lock held and interrupts disabled. 130 */ input_pass_values(struct input_dev * dev,struct input_value * vals,unsigned int count)131 static void input_pass_values(struct input_dev *dev, 132 struct input_value *vals, unsigned int count) 133 { 134 struct input_handle *handle; 135 struct input_value *v; 136 137 if (!count) 138 return; 139 140 rcu_read_lock(); 141 142 handle = rcu_dereference(dev->grab); 143 if (handle) { 144 count = input_to_handler(handle, vals, count); 145 } else { 146 list_for_each_entry_rcu(handle, &dev->h_list, d_node) 147 if (handle->open) { 148 count = input_to_handler(handle, vals, count); 149 if (!count) 150 break; 151 } 152 } 153 154 rcu_read_unlock(); 155 156 /* trigger auto repeat for key events */ 157 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) { 158 for (v = vals; v != vals + count; v++) { 159 if (v->type == EV_KEY && v->value != 2) { 160 if (v->value) 161 input_start_autorepeat(dev, v->code); 162 else 163 input_stop_autorepeat(dev); 164 } 165 } 166 } 167 } 168 input_pass_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)169 static void input_pass_event(struct input_dev *dev, 170 unsigned int type, unsigned int code, int value) 171 { 172 struct input_value vals[] = { { type, code, value } }; 173 174 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 175 } 176 177 /* 178 * Generate software autorepeat event. Note that we take 179 * dev->event_lock here to avoid racing with input_event 180 * which may cause keys get "stuck". 181 */ input_repeat_key(unsigned long data)182 static void input_repeat_key(unsigned long data) 183 { 184 struct input_dev *dev = (void *) data; 185 unsigned long flags; 186 187 spin_lock_irqsave(&dev->event_lock, flags); 188 189 if (test_bit(dev->repeat_key, dev->key) && 190 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) { 191 struct input_value vals[] = { 192 { EV_KEY, dev->repeat_key, 2 }, 193 input_value_sync 194 }; 195 196 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 197 198 if (dev->rep[REP_PERIOD]) 199 mod_timer(&dev->timer, jiffies + 200 msecs_to_jiffies(dev->rep[REP_PERIOD])); 201 } 202 203 spin_unlock_irqrestore(&dev->event_lock, flags); 204 } 205 206 #define INPUT_IGNORE_EVENT 0 207 #define INPUT_PASS_TO_HANDLERS 1 208 #define INPUT_PASS_TO_DEVICE 2 209 #define INPUT_SLOT 4 210 #define INPUT_FLUSH 8 211 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE) 212 input_handle_abs_event(struct input_dev * dev,unsigned int code,int * pval)213 static int input_handle_abs_event(struct input_dev *dev, 214 unsigned int code, int *pval) 215 { 216 struct input_mt *mt = dev->mt; 217 bool is_mt_event; 218 int *pold; 219 220 if (code == ABS_MT_SLOT) { 221 /* 222 * "Stage" the event; we'll flush it later, when we 223 * get actual touch data. 224 */ 225 if (mt && *pval >= 0 && *pval < mt->num_slots) 226 mt->slot = *pval; 227 228 return INPUT_IGNORE_EVENT; 229 } 230 231 is_mt_event = input_is_mt_value(code); 232 233 if (!is_mt_event) { 234 pold = &dev->absinfo[code].value; 235 } else if (mt) { 236 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST]; 237 } else { 238 /* 239 * Bypass filtering for multi-touch events when 240 * not employing slots. 241 */ 242 pold = NULL; 243 } 244 245 if (pold) { 246 *pval = input_defuzz_abs_event(*pval, *pold, 247 dev->absinfo[code].fuzz); 248 if (*pold == *pval) 249 return INPUT_IGNORE_EVENT; 250 251 *pold = *pval; 252 } 253 254 /* Flush pending "slot" event */ 255 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) { 256 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot); 257 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT; 258 } 259 260 return INPUT_PASS_TO_HANDLERS; 261 } 262 input_get_disposition(struct input_dev * dev,unsigned int type,unsigned int code,int * pval)263 static int input_get_disposition(struct input_dev *dev, 264 unsigned int type, unsigned int code, int *pval) 265 { 266 int disposition = INPUT_IGNORE_EVENT; 267 int value = *pval; 268 269 switch (type) { 270 271 case EV_SYN: 272 switch (code) { 273 case SYN_CONFIG: 274 disposition = INPUT_PASS_TO_ALL; 275 break; 276 277 case SYN_REPORT: 278 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH; 279 break; 280 case SYN_MT_REPORT: 281 disposition = INPUT_PASS_TO_HANDLERS; 282 break; 283 } 284 break; 285 286 case EV_KEY: 287 if (is_event_supported(code, dev->keybit, KEY_MAX)) { 288 289 /* auto-repeat bypasses state updates */ 290 if (value == 2) { 291 disposition = INPUT_PASS_TO_HANDLERS; 292 break; 293 } 294 295 if (!!test_bit(code, dev->key) != !!value) { 296 297 __change_bit(code, dev->key); 298 disposition = INPUT_PASS_TO_HANDLERS; 299 } 300 } 301 break; 302 303 case EV_SW: 304 if (is_event_supported(code, dev->swbit, SW_MAX) && 305 !!test_bit(code, dev->sw) != !!value) { 306 307 __change_bit(code, dev->sw); 308 disposition = INPUT_PASS_TO_HANDLERS; 309 } 310 break; 311 312 case EV_ABS: 313 if (is_event_supported(code, dev->absbit, ABS_MAX)) 314 disposition = input_handle_abs_event(dev, code, &value); 315 316 break; 317 318 case EV_REL: 319 if (is_event_supported(code, dev->relbit, REL_MAX) && value) 320 disposition = INPUT_PASS_TO_HANDLERS; 321 322 break; 323 324 case EV_MSC: 325 if (is_event_supported(code, dev->mscbit, MSC_MAX)) 326 disposition = INPUT_PASS_TO_ALL; 327 328 break; 329 330 case EV_LED: 331 if (is_event_supported(code, dev->ledbit, LED_MAX) && 332 !!test_bit(code, dev->led) != !!value) { 333 334 __change_bit(code, dev->led); 335 disposition = INPUT_PASS_TO_ALL; 336 } 337 break; 338 339 case EV_SND: 340 if (is_event_supported(code, dev->sndbit, SND_MAX)) { 341 342 if (!!test_bit(code, dev->snd) != !!value) 343 __change_bit(code, dev->snd); 344 disposition = INPUT_PASS_TO_ALL; 345 } 346 break; 347 348 case EV_REP: 349 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) { 350 dev->rep[code] = value; 351 disposition = INPUT_PASS_TO_ALL; 352 } 353 break; 354 355 case EV_FF: 356 if (value >= 0) 357 disposition = INPUT_PASS_TO_ALL; 358 break; 359 360 case EV_PWR: 361 disposition = INPUT_PASS_TO_ALL; 362 break; 363 } 364 365 *pval = value; 366 return disposition; 367 } 368 input_handle_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)369 static void input_handle_event(struct input_dev *dev, 370 unsigned int type, unsigned int code, int value) 371 { 372 int disposition = input_get_disposition(dev, type, code, &value); 373 374 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN) 375 add_input_randomness(type, code, value); 376 377 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event) 378 dev->event(dev, type, code, value); 379 380 if (!dev->vals) 381 return; 382 383 if (disposition & INPUT_PASS_TO_HANDLERS) { 384 struct input_value *v; 385 386 if (disposition & INPUT_SLOT) { 387 v = &dev->vals[dev->num_vals++]; 388 v->type = EV_ABS; 389 v->code = ABS_MT_SLOT; 390 v->value = dev->mt->slot; 391 } 392 393 v = &dev->vals[dev->num_vals++]; 394 v->type = type; 395 v->code = code; 396 v->value = value; 397 } 398 399 if (disposition & INPUT_FLUSH) { 400 if (dev->num_vals >= 2) 401 input_pass_values(dev, dev->vals, dev->num_vals); 402 dev->num_vals = 0; 403 } else if (dev->num_vals >= dev->max_vals - 2) { 404 dev->vals[dev->num_vals++] = input_value_sync; 405 input_pass_values(dev, dev->vals, dev->num_vals); 406 dev->num_vals = 0; 407 } 408 409 } 410 411 /** 412 * input_event() - report new input event 413 * @dev: device that generated the event 414 * @type: type of the event 415 * @code: event code 416 * @value: value of the event 417 * 418 * This function should be used by drivers implementing various input 419 * devices to report input events. See also input_inject_event(). 420 * 421 * NOTE: input_event() may be safely used right after input device was 422 * allocated with input_allocate_device(), even before it is registered 423 * with input_register_device(), but the event will not reach any of the 424 * input handlers. Such early invocation of input_event() may be used 425 * to 'seed' initial state of a switch or initial position of absolute 426 * axis, etc. 427 */ input_event(struct input_dev * dev,unsigned int type,unsigned int code,int value)428 void input_event(struct input_dev *dev, 429 unsigned int type, unsigned int code, int value) 430 { 431 unsigned long flags; 432 433 if (is_event_supported(type, dev->evbit, EV_MAX)) { 434 435 spin_lock_irqsave(&dev->event_lock, flags); 436 input_handle_event(dev, type, code, value); 437 spin_unlock_irqrestore(&dev->event_lock, flags); 438 } 439 } 440 EXPORT_SYMBOL(input_event); 441 442 /** 443 * input_inject_event() - send input event from input handler 444 * @handle: input handle to send event through 445 * @type: type of the event 446 * @code: event code 447 * @value: value of the event 448 * 449 * Similar to input_event() but will ignore event if device is 450 * "grabbed" and handle injecting event is not the one that owns 451 * the device. 452 */ input_inject_event(struct input_handle * handle,unsigned int type,unsigned int code,int value)453 void input_inject_event(struct input_handle *handle, 454 unsigned int type, unsigned int code, int value) 455 { 456 struct input_dev *dev = handle->dev; 457 struct input_handle *grab; 458 unsigned long flags; 459 460 if (is_event_supported(type, dev->evbit, EV_MAX)) { 461 spin_lock_irqsave(&dev->event_lock, flags); 462 463 rcu_read_lock(); 464 grab = rcu_dereference(dev->grab); 465 if (!grab || grab == handle) 466 input_handle_event(dev, type, code, value); 467 rcu_read_unlock(); 468 469 spin_unlock_irqrestore(&dev->event_lock, flags); 470 } 471 } 472 EXPORT_SYMBOL(input_inject_event); 473 474 /** 475 * input_alloc_absinfo - allocates array of input_absinfo structs 476 * @dev: the input device emitting absolute events 477 * 478 * If the absinfo struct the caller asked for is already allocated, this 479 * functions will not do anything. 480 */ input_alloc_absinfo(struct input_dev * dev)481 void input_alloc_absinfo(struct input_dev *dev) 482 { 483 if (dev->absinfo) 484 return; 485 486 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL); 487 if (!dev->absinfo) { 488 dev_err(dev->dev.parent ?: &dev->dev, 489 "%s: unable to allocate memory\n", __func__); 490 /* 491 * We will handle this allocation failure in 492 * input_register_device() when we refuse to register input 493 * device with ABS bits but without absinfo. 494 */ 495 } 496 } 497 EXPORT_SYMBOL(input_alloc_absinfo); 498 input_set_abs_params(struct input_dev * dev,unsigned int axis,int min,int max,int fuzz,int flat)499 void input_set_abs_params(struct input_dev *dev, unsigned int axis, 500 int min, int max, int fuzz, int flat) 501 { 502 struct input_absinfo *absinfo; 503 504 input_alloc_absinfo(dev); 505 if (!dev->absinfo) 506 return; 507 508 absinfo = &dev->absinfo[axis]; 509 absinfo->minimum = min; 510 absinfo->maximum = max; 511 absinfo->fuzz = fuzz; 512 absinfo->flat = flat; 513 514 __set_bit(EV_ABS, dev->evbit); 515 __set_bit(axis, dev->absbit); 516 } 517 EXPORT_SYMBOL(input_set_abs_params); 518 519 520 /** 521 * input_grab_device - grabs device for exclusive use 522 * @handle: input handle that wants to own the device 523 * 524 * When a device is grabbed by an input handle all events generated by 525 * the device are delivered only to this handle. Also events injected 526 * by other input handles are ignored while device is grabbed. 527 */ input_grab_device(struct input_handle * handle)528 int input_grab_device(struct input_handle *handle) 529 { 530 struct input_dev *dev = handle->dev; 531 int retval; 532 533 retval = mutex_lock_interruptible(&dev->mutex); 534 if (retval) 535 return retval; 536 537 if (dev->grab) { 538 retval = -EBUSY; 539 goto out; 540 } 541 542 rcu_assign_pointer(dev->grab, handle); 543 544 out: 545 mutex_unlock(&dev->mutex); 546 return retval; 547 } 548 EXPORT_SYMBOL(input_grab_device); 549 __input_release_device(struct input_handle * handle)550 static void __input_release_device(struct input_handle *handle) 551 { 552 struct input_dev *dev = handle->dev; 553 struct input_handle *grabber; 554 555 grabber = rcu_dereference_protected(dev->grab, 556 lockdep_is_held(&dev->mutex)); 557 if (grabber == handle) { 558 rcu_assign_pointer(dev->grab, NULL); 559 /* Make sure input_pass_event() notices that grab is gone */ 560 synchronize_rcu(); 561 562 list_for_each_entry(handle, &dev->h_list, d_node) 563 if (handle->open && handle->handler->start) 564 handle->handler->start(handle); 565 } 566 } 567 568 /** 569 * input_release_device - release previously grabbed device 570 * @handle: input handle that owns the device 571 * 572 * Releases previously grabbed device so that other input handles can 573 * start receiving input events. Upon release all handlers attached 574 * to the device have their start() method called so they have a change 575 * to synchronize device state with the rest of the system. 576 */ input_release_device(struct input_handle * handle)577 void input_release_device(struct input_handle *handle) 578 { 579 struct input_dev *dev = handle->dev; 580 581 mutex_lock(&dev->mutex); 582 __input_release_device(handle); 583 mutex_unlock(&dev->mutex); 584 } 585 EXPORT_SYMBOL(input_release_device); 586 587 /** 588 * input_open_device - open input device 589 * @handle: handle through which device is being accessed 590 * 591 * This function should be called by input handlers when they 592 * want to start receive events from given input device. 593 */ input_open_device(struct input_handle * handle)594 int input_open_device(struct input_handle *handle) 595 { 596 struct input_dev *dev = handle->dev; 597 int retval; 598 599 retval = mutex_lock_interruptible(&dev->mutex); 600 if (retval) 601 return retval; 602 603 if (dev->going_away) { 604 retval = -ENODEV; 605 goto out; 606 } 607 608 handle->open++; 609 610 if (!dev->users++ && dev->open) 611 retval = dev->open(dev); 612 613 if (retval) { 614 dev->users--; 615 if (!--handle->open) { 616 /* 617 * Make sure we are not delivering any more events 618 * through this handle 619 */ 620 synchronize_rcu(); 621 } 622 } 623 624 out: 625 mutex_unlock(&dev->mutex); 626 return retval; 627 } 628 EXPORT_SYMBOL(input_open_device); 629 input_flush_device(struct input_handle * handle,struct file * file)630 int input_flush_device(struct input_handle *handle, struct file *file) 631 { 632 struct input_dev *dev = handle->dev; 633 int retval; 634 635 retval = mutex_lock_interruptible(&dev->mutex); 636 if (retval) 637 return retval; 638 639 if (dev->flush) 640 retval = dev->flush(dev, file); 641 642 mutex_unlock(&dev->mutex); 643 return retval; 644 } 645 EXPORT_SYMBOL(input_flush_device); 646 647 /** 648 * input_close_device - close input device 649 * @handle: handle through which device is being accessed 650 * 651 * This function should be called by input handlers when they 652 * want to stop receive events from given input device. 653 */ input_close_device(struct input_handle * handle)654 void input_close_device(struct input_handle *handle) 655 { 656 struct input_dev *dev = handle->dev; 657 658 mutex_lock(&dev->mutex); 659 660 __input_release_device(handle); 661 662 if (!--dev->users && dev->close) 663 dev->close(dev); 664 665 if (!--handle->open) { 666 /* 667 * synchronize_rcu() makes sure that input_pass_event() 668 * completed and that no more input events are delivered 669 * through this handle 670 */ 671 synchronize_rcu(); 672 } 673 674 mutex_unlock(&dev->mutex); 675 } 676 EXPORT_SYMBOL(input_close_device); 677 678 /* 679 * Simulate keyup events for all keys that are marked as pressed. 680 * The function must be called with dev->event_lock held. 681 */ input_dev_release_keys(struct input_dev * dev)682 static void input_dev_release_keys(struct input_dev *dev) 683 { 684 bool need_sync = false; 685 int code; 686 687 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) { 688 for_each_set_bit(code, dev->key, KEY_CNT) { 689 input_pass_event(dev, EV_KEY, code, 0); 690 need_sync = true; 691 } 692 693 if (need_sync) 694 input_pass_event(dev, EV_SYN, SYN_REPORT, 1); 695 696 memset(dev->key, 0, sizeof(dev->key)); 697 } 698 } 699 700 /* 701 * Prepare device for unregistering 702 */ input_disconnect_device(struct input_dev * dev)703 static void input_disconnect_device(struct input_dev *dev) 704 { 705 struct input_handle *handle; 706 707 /* 708 * Mark device as going away. Note that we take dev->mutex here 709 * not to protect access to dev->going_away but rather to ensure 710 * that there are no threads in the middle of input_open_device() 711 */ 712 mutex_lock(&dev->mutex); 713 dev->going_away = true; 714 mutex_unlock(&dev->mutex); 715 716 spin_lock_irq(&dev->event_lock); 717 718 /* 719 * Simulate keyup events for all pressed keys so that handlers 720 * are not left with "stuck" keys. The driver may continue 721 * generate events even after we done here but they will not 722 * reach any handlers. 723 */ 724 input_dev_release_keys(dev); 725 726 list_for_each_entry(handle, &dev->h_list, d_node) 727 handle->open = 0; 728 729 spin_unlock_irq(&dev->event_lock); 730 } 731 732 /** 733 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry 734 * @ke: keymap entry containing scancode to be converted. 735 * @scancode: pointer to the location where converted scancode should 736 * be stored. 737 * 738 * This function is used to convert scancode stored in &struct keymap_entry 739 * into scalar form understood by legacy keymap handling methods. These 740 * methods expect scancodes to be represented as 'unsigned int'. 741 */ input_scancode_to_scalar(const struct input_keymap_entry * ke,unsigned int * scancode)742 int input_scancode_to_scalar(const struct input_keymap_entry *ke, 743 unsigned int *scancode) 744 { 745 switch (ke->len) { 746 case 1: 747 *scancode = *((u8 *)ke->scancode); 748 break; 749 750 case 2: 751 *scancode = *((u16 *)ke->scancode); 752 break; 753 754 case 4: 755 *scancode = *((u32 *)ke->scancode); 756 break; 757 758 default: 759 return -EINVAL; 760 } 761 762 return 0; 763 } 764 EXPORT_SYMBOL(input_scancode_to_scalar); 765 766 /* 767 * Those routines handle the default case where no [gs]etkeycode() is 768 * defined. In this case, an array indexed by the scancode is used. 769 */ 770 input_fetch_keycode(struct input_dev * dev,unsigned int index)771 static unsigned int input_fetch_keycode(struct input_dev *dev, 772 unsigned int index) 773 { 774 switch (dev->keycodesize) { 775 case 1: 776 return ((u8 *)dev->keycode)[index]; 777 778 case 2: 779 return ((u16 *)dev->keycode)[index]; 780 781 default: 782 return ((u32 *)dev->keycode)[index]; 783 } 784 } 785 input_default_getkeycode(struct input_dev * dev,struct input_keymap_entry * ke)786 static int input_default_getkeycode(struct input_dev *dev, 787 struct input_keymap_entry *ke) 788 { 789 unsigned int index; 790 int error; 791 792 if (!dev->keycodesize) 793 return -EINVAL; 794 795 if (ke->flags & INPUT_KEYMAP_BY_INDEX) 796 index = ke->index; 797 else { 798 error = input_scancode_to_scalar(ke, &index); 799 if (error) 800 return error; 801 } 802 803 if (index >= dev->keycodemax) 804 return -EINVAL; 805 806 ke->keycode = input_fetch_keycode(dev, index); 807 ke->index = index; 808 ke->len = sizeof(index); 809 memcpy(ke->scancode, &index, sizeof(index)); 810 811 return 0; 812 } 813 input_default_setkeycode(struct input_dev * dev,const struct input_keymap_entry * ke,unsigned int * old_keycode)814 static int input_default_setkeycode(struct input_dev *dev, 815 const struct input_keymap_entry *ke, 816 unsigned int *old_keycode) 817 { 818 unsigned int index; 819 int error; 820 int i; 821 822 if (!dev->keycodesize) 823 return -EINVAL; 824 825 if (ke->flags & INPUT_KEYMAP_BY_INDEX) { 826 index = ke->index; 827 } else { 828 error = input_scancode_to_scalar(ke, &index); 829 if (error) 830 return error; 831 } 832 833 if (index >= dev->keycodemax) 834 return -EINVAL; 835 836 if (dev->keycodesize < sizeof(ke->keycode) && 837 (ke->keycode >> (dev->keycodesize * 8))) 838 return -EINVAL; 839 840 switch (dev->keycodesize) { 841 case 1: { 842 u8 *k = (u8 *)dev->keycode; 843 *old_keycode = k[index]; 844 k[index] = ke->keycode; 845 break; 846 } 847 case 2: { 848 u16 *k = (u16 *)dev->keycode; 849 *old_keycode = k[index]; 850 k[index] = ke->keycode; 851 break; 852 } 853 default: { 854 u32 *k = (u32 *)dev->keycode; 855 *old_keycode = k[index]; 856 k[index] = ke->keycode; 857 break; 858 } 859 } 860 861 if (*old_keycode <= KEY_MAX) { 862 __clear_bit(*old_keycode, dev->keybit); 863 for (i = 0; i < dev->keycodemax; i++) { 864 if (input_fetch_keycode(dev, i) == *old_keycode) { 865 __set_bit(*old_keycode, dev->keybit); 866 /* Setting the bit twice is useless, so break */ 867 break; 868 } 869 } 870 } 871 872 __set_bit(ke->keycode, dev->keybit); 873 return 0; 874 } 875 876 /** 877 * input_get_keycode - retrieve keycode currently mapped to a given scancode 878 * @dev: input device which keymap is being queried 879 * @ke: keymap entry 880 * 881 * This function should be called by anyone interested in retrieving current 882 * keymap. Presently evdev handlers use it. 883 */ input_get_keycode(struct input_dev * dev,struct input_keymap_entry * ke)884 int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke) 885 { 886 unsigned long flags; 887 int retval; 888 889 spin_lock_irqsave(&dev->event_lock, flags); 890 retval = dev->getkeycode(dev, ke); 891 spin_unlock_irqrestore(&dev->event_lock, flags); 892 893 return retval; 894 } 895 EXPORT_SYMBOL(input_get_keycode); 896 897 /** 898 * input_set_keycode - attribute a keycode to a given scancode 899 * @dev: input device which keymap is being updated 900 * @ke: new keymap entry 901 * 902 * This function should be called by anyone needing to update current 903 * keymap. Presently keyboard and evdev handlers use it. 904 */ input_set_keycode(struct input_dev * dev,const struct input_keymap_entry * ke)905 int input_set_keycode(struct input_dev *dev, 906 const struct input_keymap_entry *ke) 907 { 908 unsigned long flags; 909 unsigned int old_keycode; 910 int retval; 911 912 if (ke->keycode > KEY_MAX) 913 return -EINVAL; 914 915 spin_lock_irqsave(&dev->event_lock, flags); 916 917 retval = dev->setkeycode(dev, ke, &old_keycode); 918 if (retval) 919 goto out; 920 921 /* Make sure KEY_RESERVED did not get enabled. */ 922 __clear_bit(KEY_RESERVED, dev->keybit); 923 924 /* 925 * Simulate keyup event if keycode is not present 926 * in the keymap anymore 927 */ 928 if (old_keycode > KEY_MAX) { 929 dev_warn(dev->dev.parent ?: &dev->dev, 930 "%s: got too big old keycode %#x\n", 931 __func__, old_keycode); 932 } else if (test_bit(EV_KEY, dev->evbit) && 933 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) && 934 __test_and_clear_bit(old_keycode, dev->key)) { 935 struct input_value vals[] = { 936 { EV_KEY, old_keycode, 0 }, 937 input_value_sync 938 }; 939 940 input_pass_values(dev, vals, ARRAY_SIZE(vals)); 941 } 942 943 out: 944 spin_unlock_irqrestore(&dev->event_lock, flags); 945 946 return retval; 947 } 948 EXPORT_SYMBOL(input_set_keycode); 949 input_match_device_id(const struct input_dev * dev,const struct input_device_id * id)950 bool input_match_device_id(const struct input_dev *dev, 951 const struct input_device_id *id) 952 { 953 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) 954 if (id->bustype != dev->id.bustype) 955 return false; 956 957 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) 958 if (id->vendor != dev->id.vendor) 959 return false; 960 961 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) 962 if (id->product != dev->id.product) 963 return false; 964 965 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) 966 if (id->version != dev->id.version) 967 return false; 968 969 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) || 970 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) || 971 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) || 972 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) || 973 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) || 974 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) || 975 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) || 976 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) || 977 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) || 978 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) { 979 return false; 980 } 981 982 return true; 983 } 984 EXPORT_SYMBOL(input_match_device_id); 985 input_match_device(struct input_handler * handler,struct input_dev * dev)986 static const struct input_device_id *input_match_device(struct input_handler *handler, 987 struct input_dev *dev) 988 { 989 const struct input_device_id *id; 990 991 for (id = handler->id_table; id->flags || id->driver_info; id++) { 992 if (input_match_device_id(dev, id) && 993 (!handler->match || handler->match(handler, dev))) { 994 return id; 995 } 996 } 997 998 return NULL; 999 } 1000 input_attach_handler(struct input_dev * dev,struct input_handler * handler)1001 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) 1002 { 1003 const struct input_device_id *id; 1004 int error; 1005 1006 id = input_match_device(handler, dev); 1007 if (!id) 1008 return -ENODEV; 1009 1010 error = handler->connect(handler, dev, id); 1011 if (error && error != -ENODEV) 1012 pr_err("failed to attach handler %s to device %s, error: %d\n", 1013 handler->name, kobject_name(&dev->dev.kobj), error); 1014 1015 return error; 1016 } 1017 1018 #ifdef CONFIG_COMPAT 1019 input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1020 static int input_bits_to_string(char *buf, int buf_size, 1021 unsigned long bits, bool skip_empty) 1022 { 1023 int len = 0; 1024 1025 if (in_compat_syscall()) { 1026 u32 dword = bits >> 32; 1027 if (dword || !skip_empty) 1028 len += snprintf(buf, buf_size, "%x ", dword); 1029 1030 dword = bits & 0xffffffffUL; 1031 if (dword || !skip_empty || len) 1032 len += snprintf(buf + len, max(buf_size - len, 0), 1033 "%x", dword); 1034 } else { 1035 if (bits || !skip_empty) 1036 len += snprintf(buf, buf_size, "%lx", bits); 1037 } 1038 1039 return len; 1040 } 1041 1042 #else /* !CONFIG_COMPAT */ 1043 input_bits_to_string(char * buf,int buf_size,unsigned long bits,bool skip_empty)1044 static int input_bits_to_string(char *buf, int buf_size, 1045 unsigned long bits, bool skip_empty) 1046 { 1047 return bits || !skip_empty ? 1048 snprintf(buf, buf_size, "%lx", bits) : 0; 1049 } 1050 1051 #endif 1052 1053 #ifdef CONFIG_PROC_FS 1054 1055 static struct proc_dir_entry *proc_bus_input_dir; 1056 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait); 1057 static int input_devices_state; 1058 input_wakeup_procfs_readers(void)1059 static inline void input_wakeup_procfs_readers(void) 1060 { 1061 input_devices_state++; 1062 wake_up(&input_devices_poll_wait); 1063 } 1064 input_proc_devices_poll(struct file * file,poll_table * wait)1065 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait) 1066 { 1067 poll_wait(file, &input_devices_poll_wait, wait); 1068 if (file->f_version != input_devices_state) { 1069 file->f_version = input_devices_state; 1070 return POLLIN | POLLRDNORM; 1071 } 1072 1073 return 0; 1074 } 1075 1076 union input_seq_state { 1077 struct { 1078 unsigned short pos; 1079 bool mutex_acquired; 1080 }; 1081 void *p; 1082 }; 1083 input_devices_seq_start(struct seq_file * seq,loff_t * pos)1084 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos) 1085 { 1086 union input_seq_state *state = (union input_seq_state *)&seq->private; 1087 int error; 1088 1089 /* We need to fit into seq->private pointer */ 1090 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1091 1092 error = mutex_lock_interruptible(&input_mutex); 1093 if (error) { 1094 state->mutex_acquired = false; 1095 return ERR_PTR(error); 1096 } 1097 1098 state->mutex_acquired = true; 1099 1100 return seq_list_start(&input_dev_list, *pos); 1101 } 1102 input_devices_seq_next(struct seq_file * seq,void * v,loff_t * pos)1103 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1104 { 1105 return seq_list_next(v, &input_dev_list, pos); 1106 } 1107 input_seq_stop(struct seq_file * seq,void * v)1108 static void input_seq_stop(struct seq_file *seq, void *v) 1109 { 1110 union input_seq_state *state = (union input_seq_state *)&seq->private; 1111 1112 if (state->mutex_acquired) 1113 mutex_unlock(&input_mutex); 1114 } 1115 input_seq_print_bitmap(struct seq_file * seq,const char * name,unsigned long * bitmap,int max)1116 static void input_seq_print_bitmap(struct seq_file *seq, const char *name, 1117 unsigned long *bitmap, int max) 1118 { 1119 int i; 1120 bool skip_empty = true; 1121 char buf[18]; 1122 1123 seq_printf(seq, "B: %s=", name); 1124 1125 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1126 if (input_bits_to_string(buf, sizeof(buf), 1127 bitmap[i], skip_empty)) { 1128 skip_empty = false; 1129 seq_printf(seq, "%s%s", buf, i > 0 ? " " : ""); 1130 } 1131 } 1132 1133 /* 1134 * If no output was produced print a single 0. 1135 */ 1136 if (skip_empty) 1137 seq_putc(seq, '0'); 1138 1139 seq_putc(seq, '\n'); 1140 } 1141 input_devices_seq_show(struct seq_file * seq,void * v)1142 static int input_devices_seq_show(struct seq_file *seq, void *v) 1143 { 1144 struct input_dev *dev = container_of(v, struct input_dev, node); 1145 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 1146 struct input_handle *handle; 1147 1148 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n", 1149 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version); 1150 1151 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : ""); 1152 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : ""); 1153 seq_printf(seq, "S: Sysfs=%s\n", path ? path : ""); 1154 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : ""); 1155 seq_puts(seq, "H: Handlers="); 1156 1157 list_for_each_entry(handle, &dev->h_list, d_node) 1158 seq_printf(seq, "%s ", handle->name); 1159 seq_putc(seq, '\n'); 1160 1161 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX); 1162 1163 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX); 1164 if (test_bit(EV_KEY, dev->evbit)) 1165 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX); 1166 if (test_bit(EV_REL, dev->evbit)) 1167 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX); 1168 if (test_bit(EV_ABS, dev->evbit)) 1169 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX); 1170 if (test_bit(EV_MSC, dev->evbit)) 1171 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX); 1172 if (test_bit(EV_LED, dev->evbit)) 1173 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX); 1174 if (test_bit(EV_SND, dev->evbit)) 1175 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX); 1176 if (test_bit(EV_FF, dev->evbit)) 1177 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX); 1178 if (test_bit(EV_SW, dev->evbit)) 1179 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX); 1180 1181 seq_putc(seq, '\n'); 1182 1183 kfree(path); 1184 return 0; 1185 } 1186 1187 static const struct seq_operations input_devices_seq_ops = { 1188 .start = input_devices_seq_start, 1189 .next = input_devices_seq_next, 1190 .stop = input_seq_stop, 1191 .show = input_devices_seq_show, 1192 }; 1193 input_proc_devices_open(struct inode * inode,struct file * file)1194 static int input_proc_devices_open(struct inode *inode, struct file *file) 1195 { 1196 return seq_open(file, &input_devices_seq_ops); 1197 } 1198 1199 static const struct file_operations input_devices_fileops = { 1200 .owner = THIS_MODULE, 1201 .open = input_proc_devices_open, 1202 .poll = input_proc_devices_poll, 1203 .read = seq_read, 1204 .llseek = seq_lseek, 1205 .release = seq_release, 1206 }; 1207 input_handlers_seq_start(struct seq_file * seq,loff_t * pos)1208 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos) 1209 { 1210 union input_seq_state *state = (union input_seq_state *)&seq->private; 1211 int error; 1212 1213 /* We need to fit into seq->private pointer */ 1214 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private)); 1215 1216 error = mutex_lock_interruptible(&input_mutex); 1217 if (error) { 1218 state->mutex_acquired = false; 1219 return ERR_PTR(error); 1220 } 1221 1222 state->mutex_acquired = true; 1223 state->pos = *pos; 1224 1225 return seq_list_start(&input_handler_list, *pos); 1226 } 1227 input_handlers_seq_next(struct seq_file * seq,void * v,loff_t * pos)1228 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1229 { 1230 union input_seq_state *state = (union input_seq_state *)&seq->private; 1231 1232 state->pos = *pos + 1; 1233 return seq_list_next(v, &input_handler_list, pos); 1234 } 1235 input_handlers_seq_show(struct seq_file * seq,void * v)1236 static int input_handlers_seq_show(struct seq_file *seq, void *v) 1237 { 1238 struct input_handler *handler = container_of(v, struct input_handler, node); 1239 union input_seq_state *state = (union input_seq_state *)&seq->private; 1240 1241 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name); 1242 if (handler->filter) 1243 seq_puts(seq, " (filter)"); 1244 if (handler->legacy_minors) 1245 seq_printf(seq, " Minor=%d", handler->minor); 1246 seq_putc(seq, '\n'); 1247 1248 return 0; 1249 } 1250 1251 static const struct seq_operations input_handlers_seq_ops = { 1252 .start = input_handlers_seq_start, 1253 .next = input_handlers_seq_next, 1254 .stop = input_seq_stop, 1255 .show = input_handlers_seq_show, 1256 }; 1257 input_proc_handlers_open(struct inode * inode,struct file * file)1258 static int input_proc_handlers_open(struct inode *inode, struct file *file) 1259 { 1260 return seq_open(file, &input_handlers_seq_ops); 1261 } 1262 1263 static const struct file_operations input_handlers_fileops = { 1264 .owner = THIS_MODULE, 1265 .open = input_proc_handlers_open, 1266 .read = seq_read, 1267 .llseek = seq_lseek, 1268 .release = seq_release, 1269 }; 1270 input_proc_init(void)1271 static int __init input_proc_init(void) 1272 { 1273 struct proc_dir_entry *entry; 1274 1275 proc_bus_input_dir = proc_mkdir("bus/input", NULL); 1276 if (!proc_bus_input_dir) 1277 return -ENOMEM; 1278 1279 entry = proc_create("devices", 0, proc_bus_input_dir, 1280 &input_devices_fileops); 1281 if (!entry) 1282 goto fail1; 1283 1284 entry = proc_create("handlers", 0, proc_bus_input_dir, 1285 &input_handlers_fileops); 1286 if (!entry) 1287 goto fail2; 1288 1289 return 0; 1290 1291 fail2: remove_proc_entry("devices", proc_bus_input_dir); 1292 fail1: remove_proc_entry("bus/input", NULL); 1293 return -ENOMEM; 1294 } 1295 input_proc_exit(void)1296 static void input_proc_exit(void) 1297 { 1298 remove_proc_entry("devices", proc_bus_input_dir); 1299 remove_proc_entry("handlers", proc_bus_input_dir); 1300 remove_proc_entry("bus/input", NULL); 1301 } 1302 1303 #else /* !CONFIG_PROC_FS */ input_wakeup_procfs_readers(void)1304 static inline void input_wakeup_procfs_readers(void) { } input_proc_init(void)1305 static inline int input_proc_init(void) { return 0; } input_proc_exit(void)1306 static inline void input_proc_exit(void) { } 1307 #endif 1308 1309 #define INPUT_DEV_STRING_ATTR_SHOW(name) \ 1310 static ssize_t input_dev_show_##name(struct device *dev, \ 1311 struct device_attribute *attr, \ 1312 char *buf) \ 1313 { \ 1314 struct input_dev *input_dev = to_input_dev(dev); \ 1315 \ 1316 return scnprintf(buf, PAGE_SIZE, "%s\n", \ 1317 input_dev->name ? input_dev->name : ""); \ 1318 } \ 1319 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL) 1320 1321 INPUT_DEV_STRING_ATTR_SHOW(name); 1322 INPUT_DEV_STRING_ATTR_SHOW(phys); 1323 INPUT_DEV_STRING_ATTR_SHOW(uniq); 1324 input_print_modalias_bits(char * buf,int size,char name,unsigned long * bm,unsigned int min_bit,unsigned int max_bit)1325 static int input_print_modalias_bits(char *buf, int size, 1326 char name, unsigned long *bm, 1327 unsigned int min_bit, unsigned int max_bit) 1328 { 1329 int len = 0, i; 1330 1331 len += snprintf(buf, max(size, 0), "%c", name); 1332 for (i = min_bit; i < max_bit; i++) 1333 if (bm[BIT_WORD(i)] & BIT_MASK(i)) 1334 len += snprintf(buf + len, max(size - len, 0), "%X,", i); 1335 return len; 1336 } 1337 input_print_modalias(char * buf,int size,struct input_dev * id,int add_cr)1338 static int input_print_modalias(char *buf, int size, struct input_dev *id, 1339 int add_cr) 1340 { 1341 int len; 1342 1343 len = snprintf(buf, max(size, 0), 1344 "input:b%04Xv%04Xp%04Xe%04X-", 1345 id->id.bustype, id->id.vendor, 1346 id->id.product, id->id.version); 1347 1348 len += input_print_modalias_bits(buf + len, size - len, 1349 'e', id->evbit, 0, EV_MAX); 1350 len += input_print_modalias_bits(buf + len, size - len, 1351 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX); 1352 len += input_print_modalias_bits(buf + len, size - len, 1353 'r', id->relbit, 0, REL_MAX); 1354 len += input_print_modalias_bits(buf + len, size - len, 1355 'a', id->absbit, 0, ABS_MAX); 1356 len += input_print_modalias_bits(buf + len, size - len, 1357 'm', id->mscbit, 0, MSC_MAX); 1358 len += input_print_modalias_bits(buf + len, size - len, 1359 'l', id->ledbit, 0, LED_MAX); 1360 len += input_print_modalias_bits(buf + len, size - len, 1361 's', id->sndbit, 0, SND_MAX); 1362 len += input_print_modalias_bits(buf + len, size - len, 1363 'f', id->ffbit, 0, FF_MAX); 1364 len += input_print_modalias_bits(buf + len, size - len, 1365 'w', id->swbit, 0, SW_MAX); 1366 1367 if (add_cr) 1368 len += snprintf(buf + len, max(size - len, 0), "\n"); 1369 1370 return len; 1371 } 1372 input_dev_show_modalias(struct device * dev,struct device_attribute * attr,char * buf)1373 static ssize_t input_dev_show_modalias(struct device *dev, 1374 struct device_attribute *attr, 1375 char *buf) 1376 { 1377 struct input_dev *id = to_input_dev(dev); 1378 ssize_t len; 1379 1380 len = input_print_modalias(buf, PAGE_SIZE, id, 1); 1381 1382 return min_t(int, len, PAGE_SIZE); 1383 } 1384 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL); 1385 1386 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1387 int max, int add_cr); 1388 input_dev_show_properties(struct device * dev,struct device_attribute * attr,char * buf)1389 static ssize_t input_dev_show_properties(struct device *dev, 1390 struct device_attribute *attr, 1391 char *buf) 1392 { 1393 struct input_dev *input_dev = to_input_dev(dev); 1394 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit, 1395 INPUT_PROP_MAX, true); 1396 return min_t(int, len, PAGE_SIZE); 1397 } 1398 static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL); 1399 1400 static struct attribute *input_dev_attrs[] = { 1401 &dev_attr_name.attr, 1402 &dev_attr_phys.attr, 1403 &dev_attr_uniq.attr, 1404 &dev_attr_modalias.attr, 1405 &dev_attr_properties.attr, 1406 NULL 1407 }; 1408 1409 static const struct attribute_group input_dev_attr_group = { 1410 .attrs = input_dev_attrs, 1411 }; 1412 1413 #define INPUT_DEV_ID_ATTR(name) \ 1414 static ssize_t input_dev_show_id_##name(struct device *dev, \ 1415 struct device_attribute *attr, \ 1416 char *buf) \ 1417 { \ 1418 struct input_dev *input_dev = to_input_dev(dev); \ 1419 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \ 1420 } \ 1421 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL) 1422 1423 INPUT_DEV_ID_ATTR(bustype); 1424 INPUT_DEV_ID_ATTR(vendor); 1425 INPUT_DEV_ID_ATTR(product); 1426 INPUT_DEV_ID_ATTR(version); 1427 1428 static struct attribute *input_dev_id_attrs[] = { 1429 &dev_attr_bustype.attr, 1430 &dev_attr_vendor.attr, 1431 &dev_attr_product.attr, 1432 &dev_attr_version.attr, 1433 NULL 1434 }; 1435 1436 static const struct attribute_group input_dev_id_attr_group = { 1437 .name = "id", 1438 .attrs = input_dev_id_attrs, 1439 }; 1440 input_print_bitmap(char * buf,int buf_size,unsigned long * bitmap,int max,int add_cr)1441 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap, 1442 int max, int add_cr) 1443 { 1444 int i; 1445 int len = 0; 1446 bool skip_empty = true; 1447 1448 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) { 1449 len += input_bits_to_string(buf + len, max(buf_size - len, 0), 1450 bitmap[i], skip_empty); 1451 if (len) { 1452 skip_empty = false; 1453 if (i > 0) 1454 len += snprintf(buf + len, max(buf_size - len, 0), " "); 1455 } 1456 } 1457 1458 /* 1459 * If no output was produced print a single 0. 1460 */ 1461 if (len == 0) 1462 len = snprintf(buf, buf_size, "%d", 0); 1463 1464 if (add_cr) 1465 len += snprintf(buf + len, max(buf_size - len, 0), "\n"); 1466 1467 return len; 1468 } 1469 1470 #define INPUT_DEV_CAP_ATTR(ev, bm) \ 1471 static ssize_t input_dev_show_cap_##bm(struct device *dev, \ 1472 struct device_attribute *attr, \ 1473 char *buf) \ 1474 { \ 1475 struct input_dev *input_dev = to_input_dev(dev); \ 1476 int len = input_print_bitmap(buf, PAGE_SIZE, \ 1477 input_dev->bm##bit, ev##_MAX, \ 1478 true); \ 1479 return min_t(int, len, PAGE_SIZE); \ 1480 } \ 1481 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL) 1482 1483 INPUT_DEV_CAP_ATTR(EV, ev); 1484 INPUT_DEV_CAP_ATTR(KEY, key); 1485 INPUT_DEV_CAP_ATTR(REL, rel); 1486 INPUT_DEV_CAP_ATTR(ABS, abs); 1487 INPUT_DEV_CAP_ATTR(MSC, msc); 1488 INPUT_DEV_CAP_ATTR(LED, led); 1489 INPUT_DEV_CAP_ATTR(SND, snd); 1490 INPUT_DEV_CAP_ATTR(FF, ff); 1491 INPUT_DEV_CAP_ATTR(SW, sw); 1492 1493 static struct attribute *input_dev_caps_attrs[] = { 1494 &dev_attr_ev.attr, 1495 &dev_attr_key.attr, 1496 &dev_attr_rel.attr, 1497 &dev_attr_abs.attr, 1498 &dev_attr_msc.attr, 1499 &dev_attr_led.attr, 1500 &dev_attr_snd.attr, 1501 &dev_attr_ff.attr, 1502 &dev_attr_sw.attr, 1503 NULL 1504 }; 1505 1506 static const struct attribute_group input_dev_caps_attr_group = { 1507 .name = "capabilities", 1508 .attrs = input_dev_caps_attrs, 1509 }; 1510 1511 static const struct attribute_group *input_dev_attr_groups[] = { 1512 &input_dev_attr_group, 1513 &input_dev_id_attr_group, 1514 &input_dev_caps_attr_group, 1515 NULL 1516 }; 1517 input_dev_release(struct device * device)1518 static void input_dev_release(struct device *device) 1519 { 1520 struct input_dev *dev = to_input_dev(device); 1521 1522 input_ff_destroy(dev); 1523 input_mt_destroy_slots(dev); 1524 kfree(dev->absinfo); 1525 kfree(dev->vals); 1526 kfree(dev); 1527 1528 module_put(THIS_MODULE); 1529 } 1530 1531 /* 1532 * Input uevent interface - loading event handlers based on 1533 * device bitfields. 1534 */ input_add_uevent_bm_var(struct kobj_uevent_env * env,const char * name,unsigned long * bitmap,int max)1535 static int input_add_uevent_bm_var(struct kobj_uevent_env *env, 1536 const char *name, unsigned long *bitmap, int max) 1537 { 1538 int len; 1539 1540 if (add_uevent_var(env, "%s", name)) 1541 return -ENOMEM; 1542 1543 len = input_print_bitmap(&env->buf[env->buflen - 1], 1544 sizeof(env->buf) - env->buflen, 1545 bitmap, max, false); 1546 if (len >= (sizeof(env->buf) - env->buflen)) 1547 return -ENOMEM; 1548 1549 env->buflen += len; 1550 return 0; 1551 } 1552 input_add_uevent_modalias_var(struct kobj_uevent_env * env,struct input_dev * dev)1553 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env, 1554 struct input_dev *dev) 1555 { 1556 int len; 1557 1558 if (add_uevent_var(env, "MODALIAS=")) 1559 return -ENOMEM; 1560 1561 len = input_print_modalias(&env->buf[env->buflen - 1], 1562 sizeof(env->buf) - env->buflen, 1563 dev, 0); 1564 if (len >= (sizeof(env->buf) - env->buflen)) 1565 return -ENOMEM; 1566 1567 env->buflen += len; 1568 return 0; 1569 } 1570 1571 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \ 1572 do { \ 1573 int err = add_uevent_var(env, fmt, val); \ 1574 if (err) \ 1575 return err; \ 1576 } while (0) 1577 1578 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \ 1579 do { \ 1580 int err = input_add_uevent_bm_var(env, name, bm, max); \ 1581 if (err) \ 1582 return err; \ 1583 } while (0) 1584 1585 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \ 1586 do { \ 1587 int err = input_add_uevent_modalias_var(env, dev); \ 1588 if (err) \ 1589 return err; \ 1590 } while (0) 1591 input_dev_uevent(struct device * device,struct kobj_uevent_env * env)1592 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env) 1593 { 1594 struct input_dev *dev = to_input_dev(device); 1595 1596 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x", 1597 dev->id.bustype, dev->id.vendor, 1598 dev->id.product, dev->id.version); 1599 if (dev->name) 1600 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name); 1601 if (dev->phys) 1602 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys); 1603 if (dev->uniq) 1604 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq); 1605 1606 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX); 1607 1608 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX); 1609 if (test_bit(EV_KEY, dev->evbit)) 1610 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX); 1611 if (test_bit(EV_REL, dev->evbit)) 1612 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX); 1613 if (test_bit(EV_ABS, dev->evbit)) 1614 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX); 1615 if (test_bit(EV_MSC, dev->evbit)) 1616 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX); 1617 if (test_bit(EV_LED, dev->evbit)) 1618 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX); 1619 if (test_bit(EV_SND, dev->evbit)) 1620 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX); 1621 if (test_bit(EV_FF, dev->evbit)) 1622 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX); 1623 if (test_bit(EV_SW, dev->evbit)) 1624 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX); 1625 1626 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev); 1627 1628 return 0; 1629 } 1630 1631 #define INPUT_DO_TOGGLE(dev, type, bits, on) \ 1632 do { \ 1633 int i; \ 1634 bool active; \ 1635 \ 1636 if (!test_bit(EV_##type, dev->evbit)) \ 1637 break; \ 1638 \ 1639 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \ 1640 active = test_bit(i, dev->bits); \ 1641 if (!active && !on) \ 1642 continue; \ 1643 \ 1644 dev->event(dev, EV_##type, i, on ? active : 0); \ 1645 } \ 1646 } while (0) 1647 input_dev_toggle(struct input_dev * dev,bool activate)1648 static void input_dev_toggle(struct input_dev *dev, bool activate) 1649 { 1650 if (!dev->event) 1651 return; 1652 1653 INPUT_DO_TOGGLE(dev, LED, led, activate); 1654 INPUT_DO_TOGGLE(dev, SND, snd, activate); 1655 1656 if (activate && test_bit(EV_REP, dev->evbit)) { 1657 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]); 1658 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]); 1659 } 1660 } 1661 1662 /** 1663 * input_reset_device() - reset/restore the state of input device 1664 * @dev: input device whose state needs to be reset 1665 * 1666 * This function tries to reset the state of an opened input device and 1667 * bring internal state and state if the hardware in sync with each other. 1668 * We mark all keys as released, restore LED state, repeat rate, etc. 1669 */ input_reset_device(struct input_dev * dev)1670 void input_reset_device(struct input_dev *dev) 1671 { 1672 unsigned long flags; 1673 1674 mutex_lock(&dev->mutex); 1675 spin_lock_irqsave(&dev->event_lock, flags); 1676 1677 input_dev_toggle(dev, true); 1678 input_dev_release_keys(dev); 1679 1680 spin_unlock_irqrestore(&dev->event_lock, flags); 1681 mutex_unlock(&dev->mutex); 1682 } 1683 EXPORT_SYMBOL(input_reset_device); 1684 1685 #ifdef CONFIG_PM_SLEEP input_dev_suspend(struct device * dev)1686 static int input_dev_suspend(struct device *dev) 1687 { 1688 struct input_dev *input_dev = to_input_dev(dev); 1689 1690 spin_lock_irq(&input_dev->event_lock); 1691 1692 /* 1693 * Keys that are pressed now are unlikely to be 1694 * still pressed when we resume. 1695 */ 1696 input_dev_release_keys(input_dev); 1697 1698 /* Turn off LEDs and sounds, if any are active. */ 1699 input_dev_toggle(input_dev, false); 1700 1701 spin_unlock_irq(&input_dev->event_lock); 1702 1703 return 0; 1704 } 1705 input_dev_resume(struct device * dev)1706 static int input_dev_resume(struct device *dev) 1707 { 1708 struct input_dev *input_dev = to_input_dev(dev); 1709 1710 spin_lock_irq(&input_dev->event_lock); 1711 1712 /* Restore state of LEDs and sounds, if any were active. */ 1713 input_dev_toggle(input_dev, true); 1714 1715 spin_unlock_irq(&input_dev->event_lock); 1716 1717 return 0; 1718 } 1719 input_dev_freeze(struct device * dev)1720 static int input_dev_freeze(struct device *dev) 1721 { 1722 struct input_dev *input_dev = to_input_dev(dev); 1723 1724 spin_lock_irq(&input_dev->event_lock); 1725 1726 /* 1727 * Keys that are pressed now are unlikely to be 1728 * still pressed when we resume. 1729 */ 1730 input_dev_release_keys(input_dev); 1731 1732 spin_unlock_irq(&input_dev->event_lock); 1733 1734 return 0; 1735 } 1736 input_dev_poweroff(struct device * dev)1737 static int input_dev_poweroff(struct device *dev) 1738 { 1739 struct input_dev *input_dev = to_input_dev(dev); 1740 1741 spin_lock_irq(&input_dev->event_lock); 1742 1743 /* Turn off LEDs and sounds, if any are active. */ 1744 input_dev_toggle(input_dev, false); 1745 1746 spin_unlock_irq(&input_dev->event_lock); 1747 1748 return 0; 1749 } 1750 1751 static const struct dev_pm_ops input_dev_pm_ops = { 1752 .suspend = input_dev_suspend, 1753 .resume = input_dev_resume, 1754 .freeze = input_dev_freeze, 1755 .poweroff = input_dev_poweroff, 1756 .restore = input_dev_resume, 1757 }; 1758 #endif /* CONFIG_PM */ 1759 1760 static const struct device_type input_dev_type = { 1761 .groups = input_dev_attr_groups, 1762 .release = input_dev_release, 1763 .uevent = input_dev_uevent, 1764 #ifdef CONFIG_PM_SLEEP 1765 .pm = &input_dev_pm_ops, 1766 #endif 1767 }; 1768 input_devnode(struct device * dev,umode_t * mode)1769 static char *input_devnode(struct device *dev, umode_t *mode) 1770 { 1771 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev)); 1772 } 1773 1774 struct class input_class = { 1775 .name = "input", 1776 .devnode = input_devnode, 1777 }; 1778 EXPORT_SYMBOL_GPL(input_class); 1779 1780 /** 1781 * input_allocate_device - allocate memory for new input device 1782 * 1783 * Returns prepared struct input_dev or %NULL. 1784 * 1785 * NOTE: Use input_free_device() to free devices that have not been 1786 * registered; input_unregister_device() should be used for already 1787 * registered devices. 1788 */ input_allocate_device(void)1789 struct input_dev *input_allocate_device(void) 1790 { 1791 static atomic_t input_no = ATOMIC_INIT(-1); 1792 struct input_dev *dev; 1793 1794 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1795 if (dev) { 1796 dev->dev.type = &input_dev_type; 1797 dev->dev.class = &input_class; 1798 device_initialize(&dev->dev); 1799 mutex_init(&dev->mutex); 1800 spin_lock_init(&dev->event_lock); 1801 init_timer(&dev->timer); 1802 INIT_LIST_HEAD(&dev->h_list); 1803 INIT_LIST_HEAD(&dev->node); 1804 1805 dev_set_name(&dev->dev, "input%lu", 1806 (unsigned long)atomic_inc_return(&input_no)); 1807 1808 __module_get(THIS_MODULE); 1809 } 1810 1811 return dev; 1812 } 1813 EXPORT_SYMBOL(input_allocate_device); 1814 1815 struct input_devres { 1816 struct input_dev *input; 1817 }; 1818 devm_input_device_match(struct device * dev,void * res,void * data)1819 static int devm_input_device_match(struct device *dev, void *res, void *data) 1820 { 1821 struct input_devres *devres = res; 1822 1823 return devres->input == data; 1824 } 1825 devm_input_device_release(struct device * dev,void * res)1826 static void devm_input_device_release(struct device *dev, void *res) 1827 { 1828 struct input_devres *devres = res; 1829 struct input_dev *input = devres->input; 1830 1831 dev_dbg(dev, "%s: dropping reference to %s\n", 1832 __func__, dev_name(&input->dev)); 1833 input_put_device(input); 1834 } 1835 1836 /** 1837 * devm_input_allocate_device - allocate managed input device 1838 * @dev: device owning the input device being created 1839 * 1840 * Returns prepared struct input_dev or %NULL. 1841 * 1842 * Managed input devices do not need to be explicitly unregistered or 1843 * freed as it will be done automatically when owner device unbinds from 1844 * its driver (or binding fails). Once managed input device is allocated, 1845 * it is ready to be set up and registered in the same fashion as regular 1846 * input device. There are no special devm_input_device_[un]register() 1847 * variants, regular ones work with both managed and unmanaged devices, 1848 * should you need them. In most cases however, managed input device need 1849 * not be explicitly unregistered or freed. 1850 * 1851 * NOTE: the owner device is set up as parent of input device and users 1852 * should not override it. 1853 */ devm_input_allocate_device(struct device * dev)1854 struct input_dev *devm_input_allocate_device(struct device *dev) 1855 { 1856 struct input_dev *input; 1857 struct input_devres *devres; 1858 1859 devres = devres_alloc(devm_input_device_release, 1860 sizeof(*devres), GFP_KERNEL); 1861 if (!devres) 1862 return NULL; 1863 1864 input = input_allocate_device(); 1865 if (!input) { 1866 devres_free(devres); 1867 return NULL; 1868 } 1869 1870 input->dev.parent = dev; 1871 input->devres_managed = true; 1872 1873 devres->input = input; 1874 devres_add(dev, devres); 1875 1876 return input; 1877 } 1878 EXPORT_SYMBOL(devm_input_allocate_device); 1879 1880 /** 1881 * input_free_device - free memory occupied by input_dev structure 1882 * @dev: input device to free 1883 * 1884 * This function should only be used if input_register_device() 1885 * was not called yet or if it failed. Once device was registered 1886 * use input_unregister_device() and memory will be freed once last 1887 * reference to the device is dropped. 1888 * 1889 * Device should be allocated by input_allocate_device(). 1890 * 1891 * NOTE: If there are references to the input device then memory 1892 * will not be freed until last reference is dropped. 1893 */ input_free_device(struct input_dev * dev)1894 void input_free_device(struct input_dev *dev) 1895 { 1896 if (dev) { 1897 if (dev->devres_managed) 1898 WARN_ON(devres_destroy(dev->dev.parent, 1899 devm_input_device_release, 1900 devm_input_device_match, 1901 dev)); 1902 input_put_device(dev); 1903 } 1904 } 1905 EXPORT_SYMBOL(input_free_device); 1906 1907 /** 1908 * input_set_capability - mark device as capable of a certain event 1909 * @dev: device that is capable of emitting or accepting event 1910 * @type: type of the event (EV_KEY, EV_REL, etc...) 1911 * @code: event code 1912 * 1913 * In addition to setting up corresponding bit in appropriate capability 1914 * bitmap the function also adjusts dev->evbit. 1915 */ input_set_capability(struct input_dev * dev,unsigned int type,unsigned int code)1916 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code) 1917 { 1918 switch (type) { 1919 case EV_KEY: 1920 __set_bit(code, dev->keybit); 1921 break; 1922 1923 case EV_REL: 1924 __set_bit(code, dev->relbit); 1925 break; 1926 1927 case EV_ABS: 1928 input_alloc_absinfo(dev); 1929 if (!dev->absinfo) 1930 return; 1931 1932 __set_bit(code, dev->absbit); 1933 break; 1934 1935 case EV_MSC: 1936 __set_bit(code, dev->mscbit); 1937 break; 1938 1939 case EV_SW: 1940 __set_bit(code, dev->swbit); 1941 break; 1942 1943 case EV_LED: 1944 __set_bit(code, dev->ledbit); 1945 break; 1946 1947 case EV_SND: 1948 __set_bit(code, dev->sndbit); 1949 break; 1950 1951 case EV_FF: 1952 __set_bit(code, dev->ffbit); 1953 break; 1954 1955 case EV_PWR: 1956 /* do nothing */ 1957 break; 1958 1959 default: 1960 pr_err("input_set_capability: unknown type %u (code %u)\n", 1961 type, code); 1962 dump_stack(); 1963 return; 1964 } 1965 1966 __set_bit(type, dev->evbit); 1967 } 1968 EXPORT_SYMBOL(input_set_capability); 1969 input_estimate_events_per_packet(struct input_dev * dev)1970 static unsigned int input_estimate_events_per_packet(struct input_dev *dev) 1971 { 1972 int mt_slots; 1973 int i; 1974 unsigned int events; 1975 1976 if (dev->mt) { 1977 mt_slots = dev->mt->num_slots; 1978 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) { 1979 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum - 1980 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1, 1981 mt_slots = clamp(mt_slots, 2, 32); 1982 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) { 1983 mt_slots = 2; 1984 } else { 1985 mt_slots = 0; 1986 } 1987 1988 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */ 1989 1990 if (test_bit(EV_ABS, dev->evbit)) 1991 for_each_set_bit(i, dev->absbit, ABS_CNT) 1992 events += input_is_mt_axis(i) ? mt_slots : 1; 1993 1994 if (test_bit(EV_REL, dev->evbit)) 1995 events += bitmap_weight(dev->relbit, REL_CNT); 1996 1997 /* Make room for KEY and MSC events */ 1998 events += 7; 1999 2000 return events; 2001 } 2002 2003 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \ 2004 do { \ 2005 if (!test_bit(EV_##type, dev->evbit)) \ 2006 memset(dev->bits##bit, 0, \ 2007 sizeof(dev->bits##bit)); \ 2008 } while (0) 2009 input_cleanse_bitmasks(struct input_dev * dev)2010 static void input_cleanse_bitmasks(struct input_dev *dev) 2011 { 2012 INPUT_CLEANSE_BITMASK(dev, KEY, key); 2013 INPUT_CLEANSE_BITMASK(dev, REL, rel); 2014 INPUT_CLEANSE_BITMASK(dev, ABS, abs); 2015 INPUT_CLEANSE_BITMASK(dev, MSC, msc); 2016 INPUT_CLEANSE_BITMASK(dev, LED, led); 2017 INPUT_CLEANSE_BITMASK(dev, SND, snd); 2018 INPUT_CLEANSE_BITMASK(dev, FF, ff); 2019 INPUT_CLEANSE_BITMASK(dev, SW, sw); 2020 } 2021 __input_unregister_device(struct input_dev * dev)2022 static void __input_unregister_device(struct input_dev *dev) 2023 { 2024 struct input_handle *handle, *next; 2025 2026 input_disconnect_device(dev); 2027 2028 mutex_lock(&input_mutex); 2029 2030 list_for_each_entry_safe(handle, next, &dev->h_list, d_node) 2031 handle->handler->disconnect(handle); 2032 WARN_ON(!list_empty(&dev->h_list)); 2033 2034 del_timer_sync(&dev->timer); 2035 list_del_init(&dev->node); 2036 2037 input_wakeup_procfs_readers(); 2038 2039 mutex_unlock(&input_mutex); 2040 2041 device_del(&dev->dev); 2042 } 2043 devm_input_device_unregister(struct device * dev,void * res)2044 static void devm_input_device_unregister(struct device *dev, void *res) 2045 { 2046 struct input_devres *devres = res; 2047 struct input_dev *input = devres->input; 2048 2049 dev_dbg(dev, "%s: unregistering device %s\n", 2050 __func__, dev_name(&input->dev)); 2051 __input_unregister_device(input); 2052 } 2053 2054 /** 2055 * input_enable_softrepeat - enable software autorepeat 2056 * @dev: input device 2057 * @delay: repeat delay 2058 * @period: repeat period 2059 * 2060 * Enable software autorepeat on the input device. 2061 */ input_enable_softrepeat(struct input_dev * dev,int delay,int period)2062 void input_enable_softrepeat(struct input_dev *dev, int delay, int period) 2063 { 2064 dev->timer.data = (unsigned long) dev; 2065 dev->timer.function = input_repeat_key; 2066 dev->rep[REP_DELAY] = delay; 2067 dev->rep[REP_PERIOD] = period; 2068 } 2069 EXPORT_SYMBOL(input_enable_softrepeat); 2070 2071 /** 2072 * input_register_device - register device with input core 2073 * @dev: device to be registered 2074 * 2075 * This function registers device with input core. The device must be 2076 * allocated with input_allocate_device() and all it's capabilities 2077 * set up before registering. 2078 * If function fails the device must be freed with input_free_device(). 2079 * Once device has been successfully registered it can be unregistered 2080 * with input_unregister_device(); input_free_device() should not be 2081 * called in this case. 2082 * 2083 * Note that this function is also used to register managed input devices 2084 * (ones allocated with devm_input_allocate_device()). Such managed input 2085 * devices need not be explicitly unregistered or freed, their tear down 2086 * is controlled by the devres infrastructure. It is also worth noting 2087 * that tear down of managed input devices is internally a 2-step process: 2088 * registered managed input device is first unregistered, but stays in 2089 * memory and can still handle input_event() calls (although events will 2090 * not be delivered anywhere). The freeing of managed input device will 2091 * happen later, when devres stack is unwound to the point where device 2092 * allocation was made. 2093 */ input_register_device(struct input_dev * dev)2094 int input_register_device(struct input_dev *dev) 2095 { 2096 struct input_devres *devres = NULL; 2097 struct input_handler *handler; 2098 unsigned int packet_size; 2099 const char *path; 2100 int error; 2101 2102 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) { 2103 dev_err(&dev->dev, 2104 "Absolute device without dev->absinfo, refusing to register\n"); 2105 return -EINVAL; 2106 } 2107 2108 if (dev->devres_managed) { 2109 devres = devres_alloc(devm_input_device_unregister, 2110 sizeof(*devres), GFP_KERNEL); 2111 if (!devres) 2112 return -ENOMEM; 2113 2114 devres->input = dev; 2115 } 2116 2117 /* Every input device generates EV_SYN/SYN_REPORT events. */ 2118 __set_bit(EV_SYN, dev->evbit); 2119 2120 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ 2121 __clear_bit(KEY_RESERVED, dev->keybit); 2122 2123 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ 2124 input_cleanse_bitmasks(dev); 2125 2126 packet_size = input_estimate_events_per_packet(dev); 2127 if (dev->hint_events_per_packet < packet_size) 2128 dev->hint_events_per_packet = packet_size; 2129 2130 dev->max_vals = dev->hint_events_per_packet + 2; 2131 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL); 2132 if (!dev->vals) { 2133 error = -ENOMEM; 2134 goto err_devres_free; 2135 } 2136 2137 /* 2138 * If delay and period are pre-set by the driver, then autorepeating 2139 * is handled by the driver itself and we don't do it in input.c. 2140 */ 2141 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) 2142 input_enable_softrepeat(dev, 250, 33); 2143 2144 if (!dev->getkeycode) 2145 dev->getkeycode = input_default_getkeycode; 2146 2147 if (!dev->setkeycode) 2148 dev->setkeycode = input_default_setkeycode; 2149 2150 error = device_add(&dev->dev); 2151 if (error) 2152 goto err_free_vals; 2153 2154 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); 2155 pr_info("%s as %s\n", 2156 dev->name ? dev->name : "Unspecified device", 2157 path ? path : "N/A"); 2158 kfree(path); 2159 2160 error = mutex_lock_interruptible(&input_mutex); 2161 if (error) 2162 goto err_device_del; 2163 2164 list_add_tail(&dev->node, &input_dev_list); 2165 2166 list_for_each_entry(handler, &input_handler_list, node) 2167 input_attach_handler(dev, handler); 2168 2169 input_wakeup_procfs_readers(); 2170 2171 mutex_unlock(&input_mutex); 2172 2173 if (dev->devres_managed) { 2174 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n", 2175 __func__, dev_name(&dev->dev)); 2176 devres_add(dev->dev.parent, devres); 2177 } 2178 return 0; 2179 2180 err_device_del: 2181 device_del(&dev->dev); 2182 err_free_vals: 2183 kfree(dev->vals); 2184 dev->vals = NULL; 2185 err_devres_free: 2186 devres_free(devres); 2187 return error; 2188 } 2189 EXPORT_SYMBOL(input_register_device); 2190 2191 /** 2192 * input_unregister_device - unregister previously registered device 2193 * @dev: device to be unregistered 2194 * 2195 * This function unregisters an input device. Once device is unregistered 2196 * the caller should not try to access it as it may get freed at any moment. 2197 */ input_unregister_device(struct input_dev * dev)2198 void input_unregister_device(struct input_dev *dev) 2199 { 2200 if (dev->devres_managed) { 2201 WARN_ON(devres_destroy(dev->dev.parent, 2202 devm_input_device_unregister, 2203 devm_input_device_match, 2204 dev)); 2205 __input_unregister_device(dev); 2206 /* 2207 * We do not do input_put_device() here because it will be done 2208 * when 2nd devres fires up. 2209 */ 2210 } else { 2211 __input_unregister_device(dev); 2212 input_put_device(dev); 2213 } 2214 } 2215 EXPORT_SYMBOL(input_unregister_device); 2216 2217 /** 2218 * input_register_handler - register a new input handler 2219 * @handler: handler to be registered 2220 * 2221 * This function registers a new input handler (interface) for input 2222 * devices in the system and attaches it to all input devices that 2223 * are compatible with the handler. 2224 */ input_register_handler(struct input_handler * handler)2225 int input_register_handler(struct input_handler *handler) 2226 { 2227 struct input_dev *dev; 2228 int error; 2229 2230 error = mutex_lock_interruptible(&input_mutex); 2231 if (error) 2232 return error; 2233 2234 INIT_LIST_HEAD(&handler->h_list); 2235 2236 list_add_tail(&handler->node, &input_handler_list); 2237 2238 list_for_each_entry(dev, &input_dev_list, node) 2239 input_attach_handler(dev, handler); 2240 2241 input_wakeup_procfs_readers(); 2242 2243 mutex_unlock(&input_mutex); 2244 return 0; 2245 } 2246 EXPORT_SYMBOL(input_register_handler); 2247 2248 /** 2249 * input_unregister_handler - unregisters an input handler 2250 * @handler: handler to be unregistered 2251 * 2252 * This function disconnects a handler from its input devices and 2253 * removes it from lists of known handlers. 2254 */ input_unregister_handler(struct input_handler * handler)2255 void input_unregister_handler(struct input_handler *handler) 2256 { 2257 struct input_handle *handle, *next; 2258 2259 mutex_lock(&input_mutex); 2260 2261 list_for_each_entry_safe(handle, next, &handler->h_list, h_node) 2262 handler->disconnect(handle); 2263 WARN_ON(!list_empty(&handler->h_list)); 2264 2265 list_del_init(&handler->node); 2266 2267 input_wakeup_procfs_readers(); 2268 2269 mutex_unlock(&input_mutex); 2270 } 2271 EXPORT_SYMBOL(input_unregister_handler); 2272 2273 /** 2274 * input_handler_for_each_handle - handle iterator 2275 * @handler: input handler to iterate 2276 * @data: data for the callback 2277 * @fn: function to be called for each handle 2278 * 2279 * Iterate over @bus's list of devices, and call @fn for each, passing 2280 * it @data and stop when @fn returns a non-zero value. The function is 2281 * using RCU to traverse the list and therefore may be using in atomic 2282 * contexts. The @fn callback is invoked from RCU critical section and 2283 * thus must not sleep. 2284 */ input_handler_for_each_handle(struct input_handler * handler,void * data,int (* fn)(struct input_handle *,void *))2285 int input_handler_for_each_handle(struct input_handler *handler, void *data, 2286 int (*fn)(struct input_handle *, void *)) 2287 { 2288 struct input_handle *handle; 2289 int retval = 0; 2290 2291 rcu_read_lock(); 2292 2293 list_for_each_entry_rcu(handle, &handler->h_list, h_node) { 2294 retval = fn(handle, data); 2295 if (retval) 2296 break; 2297 } 2298 2299 rcu_read_unlock(); 2300 2301 return retval; 2302 } 2303 EXPORT_SYMBOL(input_handler_for_each_handle); 2304 2305 /** 2306 * input_register_handle - register a new input handle 2307 * @handle: handle to register 2308 * 2309 * This function puts a new input handle onto device's 2310 * and handler's lists so that events can flow through 2311 * it once it is opened using input_open_device(). 2312 * 2313 * This function is supposed to be called from handler's 2314 * connect() method. 2315 */ input_register_handle(struct input_handle * handle)2316 int input_register_handle(struct input_handle *handle) 2317 { 2318 struct input_handler *handler = handle->handler; 2319 struct input_dev *dev = handle->dev; 2320 int error; 2321 2322 /* 2323 * We take dev->mutex here to prevent race with 2324 * input_release_device(). 2325 */ 2326 error = mutex_lock_interruptible(&dev->mutex); 2327 if (error) 2328 return error; 2329 2330 /* 2331 * Filters go to the head of the list, normal handlers 2332 * to the tail. 2333 */ 2334 if (handler->filter) 2335 list_add_rcu(&handle->d_node, &dev->h_list); 2336 else 2337 list_add_tail_rcu(&handle->d_node, &dev->h_list); 2338 2339 mutex_unlock(&dev->mutex); 2340 2341 /* 2342 * Since we are supposed to be called from ->connect() 2343 * which is mutually exclusive with ->disconnect() 2344 * we can't be racing with input_unregister_handle() 2345 * and so separate lock is not needed here. 2346 */ 2347 list_add_tail_rcu(&handle->h_node, &handler->h_list); 2348 2349 if (handler->start) 2350 handler->start(handle); 2351 2352 return 0; 2353 } 2354 EXPORT_SYMBOL(input_register_handle); 2355 2356 /** 2357 * input_unregister_handle - unregister an input handle 2358 * @handle: handle to unregister 2359 * 2360 * This function removes input handle from device's 2361 * and handler's lists. 2362 * 2363 * This function is supposed to be called from handler's 2364 * disconnect() method. 2365 */ input_unregister_handle(struct input_handle * handle)2366 void input_unregister_handle(struct input_handle *handle) 2367 { 2368 struct input_dev *dev = handle->dev; 2369 2370 list_del_rcu(&handle->h_node); 2371 2372 /* 2373 * Take dev->mutex to prevent race with input_release_device(). 2374 */ 2375 mutex_lock(&dev->mutex); 2376 list_del_rcu(&handle->d_node); 2377 mutex_unlock(&dev->mutex); 2378 2379 synchronize_rcu(); 2380 } 2381 EXPORT_SYMBOL(input_unregister_handle); 2382 2383 /** 2384 * input_get_new_minor - allocates a new input minor number 2385 * @legacy_base: beginning or the legacy range to be searched 2386 * @legacy_num: size of legacy range 2387 * @allow_dynamic: whether we can also take ID from the dynamic range 2388 * 2389 * This function allocates a new device minor for from input major namespace. 2390 * Caller can request legacy minor by specifying @legacy_base and @legacy_num 2391 * parameters and whether ID can be allocated from dynamic range if there are 2392 * no free IDs in legacy range. 2393 */ input_get_new_minor(int legacy_base,unsigned int legacy_num,bool allow_dynamic)2394 int input_get_new_minor(int legacy_base, unsigned int legacy_num, 2395 bool allow_dynamic) 2396 { 2397 /* 2398 * This function should be called from input handler's ->connect() 2399 * methods, which are serialized with input_mutex, so no additional 2400 * locking is needed here. 2401 */ 2402 if (legacy_base >= 0) { 2403 int minor = ida_simple_get(&input_ida, 2404 legacy_base, 2405 legacy_base + legacy_num, 2406 GFP_KERNEL); 2407 if (minor >= 0 || !allow_dynamic) 2408 return minor; 2409 } 2410 2411 return ida_simple_get(&input_ida, 2412 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES, 2413 GFP_KERNEL); 2414 } 2415 EXPORT_SYMBOL(input_get_new_minor); 2416 2417 /** 2418 * input_free_minor - release previously allocated minor 2419 * @minor: minor to be released 2420 * 2421 * This function releases previously allocated input minor so that it can be 2422 * reused later. 2423 */ input_free_minor(unsigned int minor)2424 void input_free_minor(unsigned int minor) 2425 { 2426 ida_simple_remove(&input_ida, minor); 2427 } 2428 EXPORT_SYMBOL(input_free_minor); 2429 input_init(void)2430 static int __init input_init(void) 2431 { 2432 int err; 2433 2434 err = class_register(&input_class); 2435 if (err) { 2436 pr_err("unable to register input_dev class\n"); 2437 return err; 2438 } 2439 2440 err = input_proc_init(); 2441 if (err) 2442 goto fail1; 2443 2444 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2445 INPUT_MAX_CHAR_DEVICES, "input"); 2446 if (err) { 2447 pr_err("unable to register char major %d", INPUT_MAJOR); 2448 goto fail2; 2449 } 2450 2451 return 0; 2452 2453 fail2: input_proc_exit(); 2454 fail1: class_unregister(&input_class); 2455 return err; 2456 } 2457 input_exit(void)2458 static void __exit input_exit(void) 2459 { 2460 input_proc_exit(); 2461 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0), 2462 INPUT_MAX_CHAR_DEVICES); 2463 class_unregister(&input_class); 2464 } 2465 2466 subsys_initcall(input_init); 2467 module_exit(input_exit); 2468