• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2009-2015 Freescale Semiconductor, Inc. and others
3  *
4  * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
5  * Jason ported to M54418TWR and MVFA5 (VF610).
6  * Authors: Stefan Agner <stefan.agner@toradex.com>
7  *          Bill Pringlemeir <bpringlemeir@nbsps.com>
8  *          Shaohui Xie <b21989@freescale.com>
9  *          Jason Jin <Jason.jin@freescale.com>
10  *
11  * Based on original driver mpc5121_nfc.c.
12  *
13  * This is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * Limitations:
19  * - Untested on MPC5125 and M54418.
20  * - DMA and pipelining not used.
21  * - 2K pages or less.
22  * - HW ECC: Only 2K page with 64+ OOB.
23  * - HW ECC: Only 24 and 32-bit error correction implemented.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/bitops.h>
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/io.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/rawnand.h>
35 #include <linux/mtd/partitions.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38 #include <linux/slab.h>
39 
40 #define	DRV_NAME		"vf610_nfc"
41 
42 /* Register Offsets */
43 #define NFC_FLASH_CMD1			0x3F00
44 #define NFC_FLASH_CMD2			0x3F04
45 #define NFC_COL_ADDR			0x3F08
46 #define NFC_ROW_ADDR			0x3F0c
47 #define NFC_ROW_ADDR_INC		0x3F14
48 #define NFC_FLASH_STATUS1		0x3F18
49 #define NFC_FLASH_STATUS2		0x3F1c
50 #define NFC_CACHE_SWAP			0x3F28
51 #define NFC_SECTOR_SIZE			0x3F2c
52 #define NFC_FLASH_CONFIG		0x3F30
53 #define NFC_IRQ_STATUS			0x3F38
54 
55 /* Addresses for NFC MAIN RAM BUFFER areas */
56 #define NFC_MAIN_AREA(n)		((n) *  0x1000)
57 
58 #define PAGE_2K				0x0800
59 #define OOB_64				0x0040
60 #define OOB_MAX				0x0100
61 
62 /*
63  * NFC_CMD2[CODE] values. See section:
64  *  - 31.4.7 Flash Command Code Description, Vybrid manual
65  *  - 23.8.6 Flash Command Sequencer, MPC5125 manual
66  *
67  * Briefly these are bitmasks of controller cycles.
68  */
69 #define READ_PAGE_CMD_CODE		0x7EE0
70 #define READ_ONFI_PARAM_CMD_CODE	0x4860
71 #define PROGRAM_PAGE_CMD_CODE		0x7FC0
72 #define ERASE_CMD_CODE			0x4EC0
73 #define READ_ID_CMD_CODE		0x4804
74 #define RESET_CMD_CODE			0x4040
75 #define STATUS_READ_CMD_CODE		0x4068
76 
77 /* NFC ECC mode define */
78 #define ECC_BYPASS			0
79 #define ECC_45_BYTE			6
80 #define ECC_60_BYTE			7
81 
82 /*** Register Mask and bit definitions */
83 
84 /* NFC_FLASH_CMD1 Field */
85 #define CMD_BYTE2_MASK				0xFF000000
86 #define CMD_BYTE2_SHIFT				24
87 
88 /* NFC_FLASH_CM2 Field */
89 #define CMD_BYTE1_MASK				0xFF000000
90 #define CMD_BYTE1_SHIFT				24
91 #define CMD_CODE_MASK				0x00FFFF00
92 #define CMD_CODE_SHIFT				8
93 #define BUFNO_MASK				0x00000006
94 #define BUFNO_SHIFT				1
95 #define START_BIT				BIT(0)
96 
97 /* NFC_COL_ADDR Field */
98 #define COL_ADDR_MASK				0x0000FFFF
99 #define COL_ADDR_SHIFT				0
100 
101 /* NFC_ROW_ADDR Field */
102 #define ROW_ADDR_MASK				0x00FFFFFF
103 #define ROW_ADDR_SHIFT				0
104 #define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
105 #define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
106 #define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
107 #define ROW_ADDR_CHIP_SEL_SHIFT			24
108 
109 /* NFC_FLASH_STATUS2 Field */
110 #define STATUS_BYTE1_MASK			0x000000FF
111 
112 /* NFC_FLASH_CONFIG Field */
113 #define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
114 #define CONFIG_ECC_SRAM_ADDR_SHIFT		22
115 #define CONFIG_ECC_SRAM_REQ_BIT			BIT(21)
116 #define CONFIG_DMA_REQ_BIT			BIT(20)
117 #define CONFIG_ECC_MODE_MASK			0x000E0000
118 #define CONFIG_ECC_MODE_SHIFT			17
119 #define CONFIG_FAST_FLASH_BIT			BIT(16)
120 #define CONFIG_16BIT				BIT(7)
121 #define CONFIG_BOOT_MODE_BIT			BIT(6)
122 #define CONFIG_ADDR_AUTO_INCR_BIT		BIT(5)
123 #define CONFIG_BUFNO_AUTO_INCR_BIT		BIT(4)
124 #define CONFIG_PAGE_CNT_MASK			0xF
125 #define CONFIG_PAGE_CNT_SHIFT			0
126 
127 /* NFC_IRQ_STATUS Field */
128 #define IDLE_IRQ_BIT				BIT(29)
129 #define IDLE_EN_BIT				BIT(20)
130 #define CMD_DONE_CLEAR_BIT			BIT(18)
131 #define IDLE_CLEAR_BIT				BIT(17)
132 
133 /*
134  * ECC status - seems to consume 8 bytes (double word). The documented
135  * status byte is located in the lowest byte of the second word (which is
136  * the 4th or 7th byte depending on endianness).
137  * Calculate an offset to store the ECC status at the end of the buffer.
138  */
139 #define ECC_SRAM_ADDR		(PAGE_2K + OOB_MAX - 8)
140 
141 #define ECC_STATUS		0x4
142 #define ECC_STATUS_MASK		0x80
143 #define ECC_STATUS_ERR_COUNT	0x3F
144 
145 enum vf610_nfc_alt_buf {
146 	ALT_BUF_DATA = 0,
147 	ALT_BUF_ID = 1,
148 	ALT_BUF_STAT = 2,
149 	ALT_BUF_ONFI = 3,
150 };
151 
152 enum vf610_nfc_variant {
153 	NFC_VFC610 = 1,
154 };
155 
156 struct vf610_nfc {
157 	struct nand_chip chip;
158 	struct device *dev;
159 	void __iomem *regs;
160 	struct completion cmd_done;
161 	uint buf_offset;
162 	int write_sz;
163 	/* Status and ID are in alternate locations. */
164 	enum vf610_nfc_alt_buf alt_buf;
165 	enum vf610_nfc_variant variant;
166 	struct clk *clk;
167 	bool use_hw_ecc;
168 	u32 ecc_mode;
169 };
170 
mtd_to_nfc(struct mtd_info * mtd)171 static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd)
172 {
173 	return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip);
174 }
175 
vf610_nfc_read(struct vf610_nfc * nfc,uint reg)176 static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg)
177 {
178 	return readl(nfc->regs + reg);
179 }
180 
vf610_nfc_write(struct vf610_nfc * nfc,uint reg,u32 val)181 static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val)
182 {
183 	writel(val, nfc->regs + reg);
184 }
185 
vf610_nfc_set(struct vf610_nfc * nfc,uint reg,u32 bits)186 static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits)
187 {
188 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits);
189 }
190 
vf610_nfc_clear(struct vf610_nfc * nfc,uint reg,u32 bits)191 static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits)
192 {
193 	vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits);
194 }
195 
vf610_nfc_set_field(struct vf610_nfc * nfc,u32 reg,u32 mask,u32 shift,u32 val)196 static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg,
197 				       u32 mask, u32 shift, u32 val)
198 {
199 	vf610_nfc_write(nfc, reg,
200 			(vf610_nfc_read(nfc, reg) & (~mask)) | val << shift);
201 }
202 
vf610_nfc_memcpy(void * dst,const void __iomem * src,size_t n)203 static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src,
204 				    size_t n)
205 {
206 	/*
207 	 * Use this accessor for the internal SRAM buffers. On the ARM
208 	 * Freescale Vybrid SoC it's known that the driver can treat
209 	 * the SRAM buffer as if it's memory. Other platform might need
210 	 * to treat the buffers differently.
211 	 *
212 	 * For the time being, use memcpy
213 	 */
214 	memcpy(dst, src, n);
215 }
216 
217 /* Clear flags for upcoming command */
vf610_nfc_clear_status(struct vf610_nfc * nfc)218 static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc)
219 {
220 	u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS);
221 
222 	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
223 	vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp);
224 }
225 
vf610_nfc_done(struct vf610_nfc * nfc)226 static void vf610_nfc_done(struct vf610_nfc *nfc)
227 {
228 	unsigned long timeout = msecs_to_jiffies(100);
229 
230 	/*
231 	 * Barrier is needed after this write. This write need
232 	 * to be done before reading the next register the first
233 	 * time.
234 	 * vf610_nfc_set implicates such a barrier by using writel
235 	 * to write to the register.
236 	 */
237 	vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
238 	vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT);
239 
240 	if (!wait_for_completion_timeout(&nfc->cmd_done, timeout))
241 		dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n");
242 
243 	vf610_nfc_clear_status(nfc);
244 }
245 
vf610_nfc_get_id(struct vf610_nfc * nfc,int col)246 static u8 vf610_nfc_get_id(struct vf610_nfc *nfc, int col)
247 {
248 	u32 flash_id;
249 
250 	if (col < 4) {
251 		flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS1);
252 		flash_id >>= (3 - col) * 8;
253 	} else {
254 		flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS2);
255 		flash_id >>= 24;
256 	}
257 
258 	return flash_id & 0xff;
259 }
260 
vf610_nfc_get_status(struct vf610_nfc * nfc)261 static u8 vf610_nfc_get_status(struct vf610_nfc *nfc)
262 {
263 	return vf610_nfc_read(nfc, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
264 }
265 
vf610_nfc_send_command(struct vf610_nfc * nfc,u32 cmd_byte1,u32 cmd_code)266 static void vf610_nfc_send_command(struct vf610_nfc *nfc, u32 cmd_byte1,
267 				   u32 cmd_code)
268 {
269 	u32 tmp;
270 
271 	vf610_nfc_clear_status(nfc);
272 
273 	tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD2);
274 	tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
275 	tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
276 	tmp |= cmd_code << CMD_CODE_SHIFT;
277 	vf610_nfc_write(nfc, NFC_FLASH_CMD2, tmp);
278 }
279 
vf610_nfc_send_commands(struct vf610_nfc * nfc,u32 cmd_byte1,u32 cmd_byte2,u32 cmd_code)280 static void vf610_nfc_send_commands(struct vf610_nfc *nfc, u32 cmd_byte1,
281 				    u32 cmd_byte2, u32 cmd_code)
282 {
283 	u32 tmp;
284 
285 	vf610_nfc_send_command(nfc, cmd_byte1, cmd_code);
286 
287 	tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD1);
288 	tmp &= ~CMD_BYTE2_MASK;
289 	tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
290 	vf610_nfc_write(nfc, NFC_FLASH_CMD1, tmp);
291 }
292 
vf610_nfc_irq(int irq,void * data)293 static irqreturn_t vf610_nfc_irq(int irq, void *data)
294 {
295 	struct mtd_info *mtd = data;
296 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
297 
298 	vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT);
299 	complete(&nfc->cmd_done);
300 
301 	return IRQ_HANDLED;
302 }
303 
vf610_nfc_addr_cycle(struct vf610_nfc * nfc,int column,int page)304 static void vf610_nfc_addr_cycle(struct vf610_nfc *nfc, int column, int page)
305 {
306 	if (column != -1) {
307 		if (nfc->chip.options & NAND_BUSWIDTH_16)
308 			column = column / 2;
309 		vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK,
310 				    COL_ADDR_SHIFT, column);
311 	}
312 	if (page != -1)
313 		vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK,
314 				    ROW_ADDR_SHIFT, page);
315 }
316 
vf610_nfc_ecc_mode(struct vf610_nfc * nfc,int ecc_mode)317 static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode)
318 {
319 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
320 			    CONFIG_ECC_MODE_MASK,
321 			    CONFIG_ECC_MODE_SHIFT, ecc_mode);
322 }
323 
vf610_nfc_transfer_size(struct vf610_nfc * nfc,int size)324 static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size)
325 {
326 	vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size);
327 }
328 
vf610_nfc_command(struct mtd_info * mtd,unsigned command,int column,int page)329 static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
330 			      int column, int page)
331 {
332 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
333 	int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
334 
335 	nfc->buf_offset = max(column, 0);
336 	nfc->alt_buf = ALT_BUF_DATA;
337 
338 	switch (command) {
339 	case NAND_CMD_SEQIN:
340 		/* Use valid column/page from preread... */
341 		vf610_nfc_addr_cycle(nfc, column, page);
342 		nfc->buf_offset = 0;
343 
344 		/*
345 		 * SEQIN => data => PAGEPROG sequence is done by the controller
346 		 * hence we do not need to issue the command here...
347 		 */
348 		return;
349 	case NAND_CMD_PAGEPROG:
350 		trfr_sz += nfc->write_sz;
351 		vf610_nfc_transfer_size(nfc, trfr_sz);
352 		vf610_nfc_send_commands(nfc, NAND_CMD_SEQIN,
353 					command, PROGRAM_PAGE_CMD_CODE);
354 		if (nfc->use_hw_ecc)
355 			vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
356 		else
357 			vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
358 		break;
359 
360 	case NAND_CMD_RESET:
361 		vf610_nfc_transfer_size(nfc, 0);
362 		vf610_nfc_send_command(nfc, command, RESET_CMD_CODE);
363 		break;
364 
365 	case NAND_CMD_READOOB:
366 		trfr_sz += mtd->oobsize;
367 		column = mtd->writesize;
368 		vf610_nfc_transfer_size(nfc, trfr_sz);
369 		vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
370 					NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
371 		vf610_nfc_addr_cycle(nfc, column, page);
372 		vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
373 		break;
374 
375 	case NAND_CMD_READ0:
376 		trfr_sz += mtd->writesize + mtd->oobsize;
377 		vf610_nfc_transfer_size(nfc, trfr_sz);
378 		vf610_nfc_send_commands(nfc, NAND_CMD_READ0,
379 					NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
380 		vf610_nfc_addr_cycle(nfc, column, page);
381 		vf610_nfc_ecc_mode(nfc, nfc->ecc_mode);
382 		break;
383 
384 	case NAND_CMD_PARAM:
385 		nfc->alt_buf = ALT_BUF_ONFI;
386 		trfr_sz = 3 * sizeof(struct nand_onfi_params);
387 		vf610_nfc_transfer_size(nfc, trfr_sz);
388 		vf610_nfc_send_command(nfc, command, READ_ONFI_PARAM_CMD_CODE);
389 		vf610_nfc_addr_cycle(nfc, -1, column);
390 		vf610_nfc_ecc_mode(nfc, ECC_BYPASS);
391 		break;
392 
393 	case NAND_CMD_ERASE1:
394 		vf610_nfc_transfer_size(nfc, 0);
395 		vf610_nfc_send_commands(nfc, command,
396 					NAND_CMD_ERASE2, ERASE_CMD_CODE);
397 		vf610_nfc_addr_cycle(nfc, column, page);
398 		break;
399 
400 	case NAND_CMD_READID:
401 		nfc->alt_buf = ALT_BUF_ID;
402 		nfc->buf_offset = 0;
403 		vf610_nfc_transfer_size(nfc, 0);
404 		vf610_nfc_send_command(nfc, command, READ_ID_CMD_CODE);
405 		vf610_nfc_addr_cycle(nfc, -1, column);
406 		break;
407 
408 	case NAND_CMD_STATUS:
409 		nfc->alt_buf = ALT_BUF_STAT;
410 		vf610_nfc_transfer_size(nfc, 0);
411 		vf610_nfc_send_command(nfc, command, STATUS_READ_CMD_CODE);
412 		break;
413 	default:
414 		return;
415 	}
416 
417 	vf610_nfc_done(nfc);
418 
419 	nfc->use_hw_ecc = false;
420 	nfc->write_sz = 0;
421 }
422 
vf610_nfc_read_buf(struct mtd_info * mtd,u_char * buf,int len)423 static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
424 {
425 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
426 	uint c = nfc->buf_offset;
427 
428 	/* Alternate buffers are only supported through read_byte */
429 	WARN_ON(nfc->alt_buf);
430 
431 	vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
432 
433 	nfc->buf_offset += len;
434 }
435 
vf610_nfc_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)436 static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
437 				int len)
438 {
439 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
440 	uint c = nfc->buf_offset;
441 	uint l;
442 
443 	l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
444 	vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
445 
446 	nfc->write_sz += l;
447 	nfc->buf_offset += l;
448 }
449 
vf610_nfc_read_byte(struct mtd_info * mtd)450 static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
451 {
452 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
453 	u8 tmp;
454 	uint c = nfc->buf_offset;
455 
456 	switch (nfc->alt_buf) {
457 	case ALT_BUF_ID:
458 		tmp = vf610_nfc_get_id(nfc, c);
459 		break;
460 	case ALT_BUF_STAT:
461 		tmp = vf610_nfc_get_status(nfc);
462 		break;
463 #ifdef __LITTLE_ENDIAN
464 	case ALT_BUF_ONFI:
465 		/* Reverse byte since the controller uses big endianness */
466 		c = nfc->buf_offset ^ 0x3;
467 		/* fall-through */
468 #endif
469 	default:
470 		tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
471 		break;
472 	}
473 	nfc->buf_offset++;
474 	return tmp;
475 }
476 
vf610_nfc_read_word(struct mtd_info * mtd)477 static u16 vf610_nfc_read_word(struct mtd_info *mtd)
478 {
479 	u16 tmp;
480 
481 	vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
482 	return tmp;
483 }
484 
485 /* If not provided, upper layers apply a fixed delay. */
vf610_nfc_dev_ready(struct mtd_info * mtd)486 static int vf610_nfc_dev_ready(struct mtd_info *mtd)
487 {
488 	/* NFC handles R/B internally; always ready.  */
489 	return 1;
490 }
491 
492 /*
493  * This function supports Vybrid only (MPC5125 would have full RB and four CS)
494  */
vf610_nfc_select_chip(struct mtd_info * mtd,int chip)495 static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
496 {
497 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
498 	u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR);
499 
500 	/* Vybrid only (MPC5125 would have full RB and four CS) */
501 	if (nfc->variant != NFC_VFC610)
502 		return;
503 
504 	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
505 
506 	if (chip >= 0) {
507 		tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
508 		tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT;
509 	}
510 
511 	vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp);
512 }
513 
514 /* Count the number of 0's in buff up to max_bits */
count_written_bits(uint8_t * buff,int size,int max_bits)515 static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
516 {
517 	uint32_t *buff32 = (uint32_t *)buff;
518 	int k, written_bits = 0;
519 
520 	for (k = 0; k < (size / 4); k++) {
521 		written_bits += hweight32(~buff32[k]);
522 		if (unlikely(written_bits > max_bits))
523 			break;
524 	}
525 
526 	return written_bits;
527 }
528 
vf610_nfc_correct_data(struct mtd_info * mtd,uint8_t * dat,uint8_t * oob,int page)529 static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
530 					 uint8_t *oob, int page)
531 {
532 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
533 	u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
534 	u8 ecc_status;
535 	u8 ecc_count;
536 	int flips_threshold = nfc->chip.ecc.strength / 2;
537 
538 	ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff;
539 	ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
540 
541 	if (!(ecc_status & ECC_STATUS_MASK))
542 		return ecc_count;
543 
544 	/* Read OOB without ECC unit enabled */
545 	vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
546 	vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
547 
548 	/*
549 	 * On an erased page, bit count (including OOB) should be zero or
550 	 * at least less then half of the ECC strength.
551 	 */
552 	return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob,
553 					   mtd->oobsize, NULL, 0,
554 					   flips_threshold);
555 }
556 
vf610_nfc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)557 static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
558 				uint8_t *buf, int oob_required, int page)
559 {
560 	int eccsize = chip->ecc.size;
561 	int stat;
562 
563 	vf610_nfc_read_buf(mtd, buf, eccsize);
564 	if (oob_required)
565 		vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
566 
567 	stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
568 
569 	if (stat < 0) {
570 		mtd->ecc_stats.failed++;
571 		return 0;
572 	} else {
573 		mtd->ecc_stats.corrected += stat;
574 		return stat;
575 	}
576 }
577 
vf610_nfc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)578 static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
579 				const uint8_t *buf, int oob_required, int page)
580 {
581 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
582 
583 	vf610_nfc_write_buf(mtd, buf, mtd->writesize);
584 	if (oob_required)
585 		vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
586 
587 	/* Always write whole page including OOB due to HW ECC */
588 	nfc->use_hw_ecc = true;
589 	nfc->write_sz = mtd->writesize + mtd->oobsize;
590 
591 	return 0;
592 }
593 
594 static const struct of_device_id vf610_nfc_dt_ids[] = {
595 	{ .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 },
596 	{ /* sentinel */ }
597 };
598 MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids);
599 
vf610_nfc_preinit_controller(struct vf610_nfc * nfc)600 static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc)
601 {
602 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
603 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
604 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
605 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
606 	vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
607 	vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
608 
609 	/* Disable virtual pages, only one elementary transfer unit */
610 	vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
611 			    CONFIG_PAGE_CNT_SHIFT, 1);
612 }
613 
vf610_nfc_init_controller(struct vf610_nfc * nfc)614 static void vf610_nfc_init_controller(struct vf610_nfc *nfc)
615 {
616 	if (nfc->chip.options & NAND_BUSWIDTH_16)
617 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
618 	else
619 		vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT);
620 
621 	if (nfc->chip.ecc.mode == NAND_ECC_HW) {
622 		/* Set ECC status offset in SRAM */
623 		vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG,
624 				    CONFIG_ECC_SRAM_ADDR_MASK,
625 				    CONFIG_ECC_SRAM_ADDR_SHIFT,
626 				    ECC_SRAM_ADDR >> 3);
627 
628 		/* Enable ECC status in SRAM */
629 		vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
630 	}
631 }
632 
vf610_nfc_probe(struct platform_device * pdev)633 static int vf610_nfc_probe(struct platform_device *pdev)
634 {
635 	struct vf610_nfc *nfc;
636 	struct resource *res;
637 	struct mtd_info *mtd;
638 	struct nand_chip *chip;
639 	struct device_node *child;
640 	const struct of_device_id *of_id;
641 	int err;
642 	int irq;
643 
644 	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
645 	if (!nfc)
646 		return -ENOMEM;
647 
648 	nfc->dev = &pdev->dev;
649 	chip = &nfc->chip;
650 	mtd = nand_to_mtd(chip);
651 
652 	mtd->owner = THIS_MODULE;
653 	mtd->dev.parent = nfc->dev;
654 	mtd->name = DRV_NAME;
655 
656 	irq = platform_get_irq(pdev, 0);
657 	if (irq <= 0)
658 		return -EINVAL;
659 
660 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
661 	nfc->regs = devm_ioremap_resource(nfc->dev, res);
662 	if (IS_ERR(nfc->regs))
663 		return PTR_ERR(nfc->regs);
664 
665 	nfc->clk = devm_clk_get(&pdev->dev, NULL);
666 	if (IS_ERR(nfc->clk))
667 		return PTR_ERR(nfc->clk);
668 
669 	err = clk_prepare_enable(nfc->clk);
670 	if (err) {
671 		dev_err(nfc->dev, "Unable to enable clock!\n");
672 		return err;
673 	}
674 
675 	of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev);
676 	nfc->variant = (enum vf610_nfc_variant)of_id->data;
677 
678 	for_each_available_child_of_node(nfc->dev->of_node, child) {
679 		if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) {
680 
681 			if (nand_get_flash_node(chip)) {
682 				dev_err(nfc->dev,
683 					"Only one NAND chip supported!\n");
684 				err = -EINVAL;
685 				goto error;
686 			}
687 
688 			nand_set_flash_node(chip, child);
689 		}
690 	}
691 
692 	if (!nand_get_flash_node(chip)) {
693 		dev_err(nfc->dev, "NAND chip sub-node missing!\n");
694 		err = -ENODEV;
695 		goto err_clk;
696 	}
697 
698 	chip->dev_ready = vf610_nfc_dev_ready;
699 	chip->cmdfunc = vf610_nfc_command;
700 	chip->read_byte = vf610_nfc_read_byte;
701 	chip->read_word = vf610_nfc_read_word;
702 	chip->read_buf = vf610_nfc_read_buf;
703 	chip->write_buf = vf610_nfc_write_buf;
704 	chip->select_chip = vf610_nfc_select_chip;
705 	chip->onfi_set_features = nand_onfi_get_set_features_notsupp;
706 	chip->onfi_get_features = nand_onfi_get_set_features_notsupp;
707 
708 	chip->options |= NAND_NO_SUBPAGE_WRITE;
709 
710 	init_completion(&nfc->cmd_done);
711 
712 	err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd);
713 	if (err) {
714 		dev_err(nfc->dev, "Error requesting IRQ!\n");
715 		goto error;
716 	}
717 
718 	vf610_nfc_preinit_controller(nfc);
719 
720 	/* first scan to find the device and get the page size */
721 	err = nand_scan_ident(mtd, 1, NULL);
722 	if (err)
723 		goto error;
724 
725 	vf610_nfc_init_controller(nfc);
726 
727 	/* Bad block options. */
728 	if (chip->bbt_options & NAND_BBT_USE_FLASH)
729 		chip->bbt_options |= NAND_BBT_NO_OOB;
730 
731 	/* Single buffer only, max 256 OOB minus ECC status */
732 	if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
733 		dev_err(nfc->dev, "Unsupported flash page size\n");
734 		err = -ENXIO;
735 		goto error;
736 	}
737 
738 	if (chip->ecc.mode == NAND_ECC_HW) {
739 		if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
740 			dev_err(nfc->dev, "Unsupported flash with hwecc\n");
741 			err = -ENXIO;
742 			goto error;
743 		}
744 
745 		if (chip->ecc.size != mtd->writesize) {
746 			dev_err(nfc->dev, "Step size needs to be page size\n");
747 			err = -ENXIO;
748 			goto error;
749 		}
750 
751 		/* Only 64 byte ECC layouts known */
752 		if (mtd->oobsize > 64)
753 			mtd->oobsize = 64;
754 
755 		/* Use default large page ECC layout defined in NAND core */
756 		mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
757 		if (chip->ecc.strength == 32) {
758 			nfc->ecc_mode = ECC_60_BYTE;
759 			chip->ecc.bytes = 60;
760 		} else if (chip->ecc.strength == 24) {
761 			nfc->ecc_mode = ECC_45_BYTE;
762 			chip->ecc.bytes = 45;
763 		} else {
764 			dev_err(nfc->dev, "Unsupported ECC strength\n");
765 			err = -ENXIO;
766 			goto error;
767 		}
768 
769 		chip->ecc.read_page = vf610_nfc_read_page;
770 		chip->ecc.write_page = vf610_nfc_write_page;
771 
772 		chip->ecc.size = PAGE_2K;
773 	}
774 
775 	/* second phase scan */
776 	err = nand_scan_tail(mtd);
777 	if (err)
778 		goto error;
779 
780 	platform_set_drvdata(pdev, mtd);
781 
782 	/* Register device in MTD */
783 	return mtd_device_register(mtd, NULL, 0);
784 
785 error:
786 	of_node_put(nand_get_flash_node(chip));
787 err_clk:
788 	clk_disable_unprepare(nfc->clk);
789 	return err;
790 }
791 
vf610_nfc_remove(struct platform_device * pdev)792 static int vf610_nfc_remove(struct platform_device *pdev)
793 {
794 	struct mtd_info *mtd = platform_get_drvdata(pdev);
795 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
796 
797 	nand_release(mtd);
798 	clk_disable_unprepare(nfc->clk);
799 	return 0;
800 }
801 
802 #ifdef CONFIG_PM_SLEEP
vf610_nfc_suspend(struct device * dev)803 static int vf610_nfc_suspend(struct device *dev)
804 {
805 	struct mtd_info *mtd = dev_get_drvdata(dev);
806 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
807 
808 	clk_disable_unprepare(nfc->clk);
809 	return 0;
810 }
811 
vf610_nfc_resume(struct device * dev)812 static int vf610_nfc_resume(struct device *dev)
813 {
814 	int err;
815 
816 	struct mtd_info *mtd = dev_get_drvdata(dev);
817 	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
818 
819 	err = clk_prepare_enable(nfc->clk);
820 	if (err)
821 		return err;
822 
823 	vf610_nfc_preinit_controller(nfc);
824 	vf610_nfc_init_controller(nfc);
825 	return 0;
826 }
827 #endif
828 
829 static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume);
830 
831 static struct platform_driver vf610_nfc_driver = {
832 	.driver		= {
833 		.name	= DRV_NAME,
834 		.of_match_table = vf610_nfc_dt_ids,
835 		.pm	= &vf610_nfc_pm_ops,
836 	},
837 	.probe		= vf610_nfc_probe,
838 	.remove		= vf610_nfc_remove,
839 };
840 
841 module_platform_driver(vf610_nfc_driver);
842 
843 MODULE_AUTHOR("Stefan Agner <stefan.agner@toradex.com>");
844 MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver");
845 MODULE_LICENSE("GPL");
846