1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23
24 #include <linux/sched/mm.h>
25 #include <linux/sched/topology.h>
26
27 #include <linux/latencytop.h>
28 #include <linux/cpumask.h>
29 #include <linux/cpuidle.h>
30 #include <linux/slab.h>
31 #include <linux/profile.h>
32 #include <linux/interrupt.h>
33 #include <linux/mempolicy.h>
34 #include <linux/migrate.h>
35 #include <linux/task_work.h>
36
37 #include <trace/events/sched.h>
38
39 #include "sched.h"
40 #include "tune.h"
41 #include "walt.h"
42
43 /*
44 * Targeted preemption latency for CPU-bound tasks:
45 *
46 * NOTE: this latency value is not the same as the concept of
47 * 'timeslice length' - timeslices in CFS are of variable length
48 * and have no persistent notion like in traditional, time-slice
49 * based scheduling concepts.
50 *
51 * (to see the precise effective timeslice length of your workload,
52 * run vmstat and monitor the context-switches (cs) field)
53 *
54 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
55 */
56 unsigned int sysctl_sched_latency = 6000000ULL;
57 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
58
59 /*
60 * Enable/disable honoring sync flag in energy-aware wakeups.
61 */
62 unsigned int sysctl_sched_sync_hint_enable = 1;
63 /*
64 * Enable/disable using cstate knowledge in idle sibling selection
65 */
66 unsigned int sysctl_sched_cstate_aware = 1;
67
68 /*
69 * The initial- and re-scaling of tunables is configurable
70 *
71 * Options are:
72 *
73 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
74 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
75 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
76 *
77 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
78 */
79 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
80
81 /*
82 * Minimal preemption granularity for CPU-bound tasks:
83 *
84 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
85 */
86 unsigned int sysctl_sched_min_granularity = 750000ULL;
87 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
88
89 /*
90 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
91 */
92 static unsigned int sched_nr_latency = 8;
93
94 /*
95 * After fork, child runs first. If set to 0 (default) then
96 * parent will (try to) run first.
97 */
98 unsigned int sysctl_sched_child_runs_first __read_mostly;
99
100 /*
101 * SCHED_OTHER wake-up granularity.
102 *
103 * This option delays the preemption effects of decoupled workloads
104 * and reduces their over-scheduling. Synchronous workloads will still
105 * have immediate wakeup/sleep latencies.
106 *
107 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
108 */
109 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
110 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
111
112 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
113
114 #ifdef CONFIG_SCHED_WALT
115 unsigned int sysctl_sched_use_walt_cpu_util = 1;
116 unsigned int sysctl_sched_use_walt_task_util = 1;
117 __read_mostly unsigned int sysctl_sched_walt_cpu_high_irqload =
118 (10 * NSEC_PER_MSEC);
119 #endif
120
121 #ifdef CONFIG_SMP
122 /*
123 * For asym packing, by default the lower numbered cpu has higher priority.
124 */
arch_asym_cpu_priority(int cpu)125 int __weak arch_asym_cpu_priority(int cpu)
126 {
127 return -cpu;
128 }
129 #endif
130
131 #ifdef CONFIG_CFS_BANDWIDTH
132 /*
133 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
134 * each time a cfs_rq requests quota.
135 *
136 * Note: in the case that the slice exceeds the runtime remaining (either due
137 * to consumption or the quota being specified to be smaller than the slice)
138 * we will always only issue the remaining available time.
139 *
140 * (default: 5 msec, units: microseconds)
141 */
142 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
143 #endif
144
145 /*
146 * The margin used when comparing utilization with CPU capacity:
147 * util * margin < capacity * 1024
148 *
149 * (default: ~20%)
150 */
151 unsigned int capacity_margin = 1280;
152
update_load_add(struct load_weight * lw,unsigned long inc)153 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
154 {
155 lw->weight += inc;
156 lw->inv_weight = 0;
157 }
158
update_load_sub(struct load_weight * lw,unsigned long dec)159 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
160 {
161 lw->weight -= dec;
162 lw->inv_weight = 0;
163 }
164
update_load_set(struct load_weight * lw,unsigned long w)165 static inline void update_load_set(struct load_weight *lw, unsigned long w)
166 {
167 lw->weight = w;
168 lw->inv_weight = 0;
169 }
170
171 /*
172 * Increase the granularity value when there are more CPUs,
173 * because with more CPUs the 'effective latency' as visible
174 * to users decreases. But the relationship is not linear,
175 * so pick a second-best guess by going with the log2 of the
176 * number of CPUs.
177 *
178 * This idea comes from the SD scheduler of Con Kolivas:
179 */
get_update_sysctl_factor(void)180 static unsigned int get_update_sysctl_factor(void)
181 {
182 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
183 unsigned int factor;
184
185 switch (sysctl_sched_tunable_scaling) {
186 case SCHED_TUNABLESCALING_NONE:
187 factor = 1;
188 break;
189 case SCHED_TUNABLESCALING_LINEAR:
190 factor = cpus;
191 break;
192 case SCHED_TUNABLESCALING_LOG:
193 default:
194 factor = 1 + ilog2(cpus);
195 break;
196 }
197
198 return factor;
199 }
200
update_sysctl(void)201 static void update_sysctl(void)
202 {
203 unsigned int factor = get_update_sysctl_factor();
204
205 #define SET_SYSCTL(name) \
206 (sysctl_##name = (factor) * normalized_sysctl_##name)
207 SET_SYSCTL(sched_min_granularity);
208 SET_SYSCTL(sched_latency);
209 SET_SYSCTL(sched_wakeup_granularity);
210 #undef SET_SYSCTL
211 }
212
sched_init_granularity(void)213 void sched_init_granularity(void)
214 {
215 update_sysctl();
216 }
217
218 #define WMULT_CONST (~0U)
219 #define WMULT_SHIFT 32
220
__update_inv_weight(struct load_weight * lw)221 static void __update_inv_weight(struct load_weight *lw)
222 {
223 unsigned long w;
224
225 if (likely(lw->inv_weight))
226 return;
227
228 w = scale_load_down(lw->weight);
229
230 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
231 lw->inv_weight = 1;
232 else if (unlikely(!w))
233 lw->inv_weight = WMULT_CONST;
234 else
235 lw->inv_weight = WMULT_CONST / w;
236 }
237
238 /*
239 * delta_exec * weight / lw.weight
240 * OR
241 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
242 *
243 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
244 * we're guaranteed shift stays positive because inv_weight is guaranteed to
245 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
246 *
247 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
248 * weight/lw.weight <= 1, and therefore our shift will also be positive.
249 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)250 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
251 {
252 u64 fact = scale_load_down(weight);
253 int shift = WMULT_SHIFT;
254
255 __update_inv_weight(lw);
256
257 if (unlikely(fact >> 32)) {
258 while (fact >> 32) {
259 fact >>= 1;
260 shift--;
261 }
262 }
263
264 /* hint to use a 32x32->64 mul */
265 fact = (u64)(u32)fact * lw->inv_weight;
266
267 while (fact >> 32) {
268 fact >>= 1;
269 shift--;
270 }
271
272 return mul_u64_u32_shr(delta_exec, fact, shift);
273 }
274
275
276 const struct sched_class fair_sched_class;
277
278 /**************************************************************
279 * CFS operations on generic schedulable entities:
280 */
281
282 #ifdef CONFIG_FAIR_GROUP_SCHED
283
284 /* cpu runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)285 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
286 {
287 return cfs_rq->rq;
288 }
289
290 /* An entity is a task if it doesn't "own" a runqueue */
291 #define entity_is_task(se) (!se->my_q)
292
task_of(struct sched_entity * se)293 static inline struct task_struct *task_of(struct sched_entity *se)
294 {
295 SCHED_WARN_ON(!entity_is_task(se));
296 return container_of(se, struct task_struct, se);
297 }
298
299 /* Walk up scheduling entities hierarchy */
300 #define for_each_sched_entity(se) \
301 for (; se; se = se->parent)
302
task_cfs_rq(struct task_struct * p)303 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
304 {
305 return p->se.cfs_rq;
306 }
307
308 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)309 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
310 {
311 return se->cfs_rq;
312 }
313
314 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)315 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
316 {
317 return grp->my_q;
318 }
319
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)320 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
321 {
322 if (!cfs_rq->on_list) {
323 struct rq *rq = rq_of(cfs_rq);
324 int cpu = cpu_of(rq);
325 /*
326 * Ensure we either appear before our parent (if already
327 * enqueued) or force our parent to appear after us when it is
328 * enqueued. The fact that we always enqueue bottom-up
329 * reduces this to two cases and a special case for the root
330 * cfs_rq. Furthermore, it also means that we will always reset
331 * tmp_alone_branch either when the branch is connected
332 * to a tree or when we reach the beg of the tree
333 */
334 if (cfs_rq->tg->parent &&
335 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
336 /*
337 * If parent is already on the list, we add the child
338 * just before. Thanks to circular linked property of
339 * the list, this means to put the child at the tail
340 * of the list that starts by parent.
341 */
342 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
343 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
344 /*
345 * The branch is now connected to its tree so we can
346 * reset tmp_alone_branch to the beginning of the
347 * list.
348 */
349 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
350 } else if (!cfs_rq->tg->parent) {
351 /*
352 * cfs rq without parent should be put
353 * at the tail of the list.
354 */
355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
356 &rq->leaf_cfs_rq_list);
357 /*
358 * We have reach the beg of a tree so we can reset
359 * tmp_alone_branch to the beginning of the list.
360 */
361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
362 } else {
363 /*
364 * The parent has not already been added so we want to
365 * make sure that it will be put after us.
366 * tmp_alone_branch points to the beg of the branch
367 * where we will add parent.
368 */
369 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
370 rq->tmp_alone_branch);
371 /*
372 * update tmp_alone_branch to points to the new beg
373 * of the branch
374 */
375 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
376 }
377
378 cfs_rq->on_list = 1;
379 }
380 }
381
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)382 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
383 {
384 if (cfs_rq->on_list) {
385 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
386 cfs_rq->on_list = 0;
387 }
388 }
389
390 /* Iterate through all leaf cfs_rq's on a runqueue: */
391 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
392 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
393
394 /* Do the two (enqueued) entities belong to the same group ? */
395 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)396 is_same_group(struct sched_entity *se, struct sched_entity *pse)
397 {
398 if (se->cfs_rq == pse->cfs_rq)
399 return se->cfs_rq;
400
401 return NULL;
402 }
403
parent_entity(struct sched_entity * se)404 static inline struct sched_entity *parent_entity(struct sched_entity *se)
405 {
406 return se->parent;
407 }
408
409 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)410 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
411 {
412 int se_depth, pse_depth;
413
414 /*
415 * preemption test can be made between sibling entities who are in the
416 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
417 * both tasks until we find their ancestors who are siblings of common
418 * parent.
419 */
420
421 /* First walk up until both entities are at same depth */
422 se_depth = (*se)->depth;
423 pse_depth = (*pse)->depth;
424
425 while (se_depth > pse_depth) {
426 se_depth--;
427 *se = parent_entity(*se);
428 }
429
430 while (pse_depth > se_depth) {
431 pse_depth--;
432 *pse = parent_entity(*pse);
433 }
434
435 while (!is_same_group(*se, *pse)) {
436 *se = parent_entity(*se);
437 *pse = parent_entity(*pse);
438 }
439 }
440
441 #else /* !CONFIG_FAIR_GROUP_SCHED */
442
task_of(struct sched_entity * se)443 static inline struct task_struct *task_of(struct sched_entity *se)
444 {
445 return container_of(se, struct task_struct, se);
446 }
447
rq_of(struct cfs_rq * cfs_rq)448 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
449 {
450 return container_of(cfs_rq, struct rq, cfs);
451 }
452
453 #define entity_is_task(se) 1
454
455 #define for_each_sched_entity(se) \
456 for (; se; se = NULL)
457
task_cfs_rq(struct task_struct * p)458 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
459 {
460 return &task_rq(p)->cfs;
461 }
462
cfs_rq_of(struct sched_entity * se)463 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
464 {
465 struct task_struct *p = task_of(se);
466 struct rq *rq = task_rq(p);
467
468 return &rq->cfs;
469 }
470
471 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)472 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
473 {
474 return NULL;
475 }
476
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)477 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
478 {
479 }
480
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484
485 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
486 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
487
parent_entity(struct sched_entity * se)488 static inline struct sched_entity *parent_entity(struct sched_entity *se)
489 {
490 return NULL;
491 }
492
493 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)494 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
495 {
496 }
497
498 #endif /* CONFIG_FAIR_GROUP_SCHED */
499
500 static __always_inline
501 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
502
503 /**************************************************************
504 * Scheduling class tree data structure manipulation methods:
505 */
506
max_vruntime(u64 max_vruntime,u64 vruntime)507 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
508 {
509 s64 delta = (s64)(vruntime - max_vruntime);
510 if (delta > 0)
511 max_vruntime = vruntime;
512
513 return max_vruntime;
514 }
515
min_vruntime(u64 min_vruntime,u64 vruntime)516 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
517 {
518 s64 delta = (s64)(vruntime - min_vruntime);
519 if (delta < 0)
520 min_vruntime = vruntime;
521
522 return min_vruntime;
523 }
524
entity_before(struct sched_entity * a,struct sched_entity * b)525 static inline int entity_before(struct sched_entity *a,
526 struct sched_entity *b)
527 {
528 return (s64)(a->vruntime - b->vruntime) < 0;
529 }
530
update_min_vruntime(struct cfs_rq * cfs_rq)531 static void update_min_vruntime(struct cfs_rq *cfs_rq)
532 {
533 struct sched_entity *curr = cfs_rq->curr;
534 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
535
536 u64 vruntime = cfs_rq->min_vruntime;
537
538 if (curr) {
539 if (curr->on_rq)
540 vruntime = curr->vruntime;
541 else
542 curr = NULL;
543 }
544
545 if (leftmost) { /* non-empty tree */
546 struct sched_entity *se;
547 se = rb_entry(leftmost, struct sched_entity, run_node);
548
549 if (!curr)
550 vruntime = se->vruntime;
551 else
552 vruntime = min_vruntime(vruntime, se->vruntime);
553 }
554
555 /* ensure we never gain time by being placed backwards. */
556 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
557 #ifndef CONFIG_64BIT
558 smp_wmb();
559 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
560 #endif
561 }
562
563 /*
564 * Enqueue an entity into the rb-tree:
565 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)566 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
567 {
568 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
569 struct rb_node *parent = NULL;
570 struct sched_entity *entry;
571 bool leftmost = true;
572
573 /*
574 * Find the right place in the rbtree:
575 */
576 while (*link) {
577 parent = *link;
578 entry = rb_entry(parent, struct sched_entity, run_node);
579 /*
580 * We dont care about collisions. Nodes with
581 * the same key stay together.
582 */
583 if (entity_before(se, entry)) {
584 link = &parent->rb_left;
585 } else {
586 link = &parent->rb_right;
587 leftmost = false;
588 }
589 }
590
591 rb_link_node(&se->run_node, parent, link);
592 rb_insert_color_cached(&se->run_node,
593 &cfs_rq->tasks_timeline, leftmost);
594 }
595
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)596 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
597 {
598 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
599 }
600
__pick_first_entity(struct cfs_rq * cfs_rq)601 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
602 {
603 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
604
605 if (!left)
606 return NULL;
607
608 return rb_entry(left, struct sched_entity, run_node);
609 }
610
__pick_next_entity(struct sched_entity * se)611 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
612 {
613 struct rb_node *next = rb_next(&se->run_node);
614
615 if (!next)
616 return NULL;
617
618 return rb_entry(next, struct sched_entity, run_node);
619 }
620
621 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)622 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
623 {
624 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
625
626 if (!last)
627 return NULL;
628
629 return rb_entry(last, struct sched_entity, run_node);
630 }
631
632 /**************************************************************
633 * Scheduling class statistics methods:
634 */
635
sched_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)636 int sched_proc_update_handler(struct ctl_table *table, int write,
637 void __user *buffer, size_t *lenp,
638 loff_t *ppos)
639 {
640 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
641 unsigned int factor = get_update_sysctl_factor();
642
643 if (ret || !write)
644 return ret;
645
646 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
647 sysctl_sched_min_granularity);
648
649 #define WRT_SYSCTL(name) \
650 (normalized_sysctl_##name = sysctl_##name / (factor))
651 WRT_SYSCTL(sched_min_granularity);
652 WRT_SYSCTL(sched_latency);
653 WRT_SYSCTL(sched_wakeup_granularity);
654 #undef WRT_SYSCTL
655
656 return 0;
657 }
658 #endif
659
660 /*
661 * delta /= w
662 */
calc_delta_fair(u64 delta,struct sched_entity * se)663 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
664 {
665 if (unlikely(se->load.weight != NICE_0_LOAD))
666 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
667
668 return delta;
669 }
670
671 /*
672 * The idea is to set a period in which each task runs once.
673 *
674 * When there are too many tasks (sched_nr_latency) we have to stretch
675 * this period because otherwise the slices get too small.
676 *
677 * p = (nr <= nl) ? l : l*nr/nl
678 */
__sched_period(unsigned long nr_running)679 static u64 __sched_period(unsigned long nr_running)
680 {
681 if (unlikely(nr_running > sched_nr_latency))
682 return nr_running * sysctl_sched_min_granularity;
683 else
684 return sysctl_sched_latency;
685 }
686
687 /*
688 * We calculate the wall-time slice from the period by taking a part
689 * proportional to the weight.
690 *
691 * s = p*P[w/rw]
692 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)693 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
696
697 for_each_sched_entity(se) {
698 struct load_weight *load;
699 struct load_weight lw;
700
701 cfs_rq = cfs_rq_of(se);
702 load = &cfs_rq->load;
703
704 if (unlikely(!se->on_rq)) {
705 lw = cfs_rq->load;
706
707 update_load_add(&lw, se->load.weight);
708 load = &lw;
709 }
710 slice = __calc_delta(slice, se->load.weight, load);
711 }
712 return slice;
713 }
714
715 /*
716 * We calculate the vruntime slice of a to-be-inserted task.
717 *
718 * vs = s/w
719 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)720 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
721 {
722 return calc_delta_fair(sched_slice(cfs_rq, se), se);
723 }
724
725 #ifdef CONFIG_SMP
726
727 #include "sched-pelt.h"
728
729 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
730 static unsigned long task_h_load(struct task_struct *p);
731 static unsigned long capacity_of(int cpu);
732
733 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)734 void init_entity_runnable_average(struct sched_entity *se)
735 {
736 struct sched_avg *sa = &se->avg;
737
738 memset(sa, 0, sizeof(*sa));
739 /*
740 * util_avg is initialized in post_init_entity_util_avg.
741 * util_est should start from zero.
742 * sched_avg's period_contrib should be strictly less then 1024, so
743 * we give it 1023 to make sure it is almost a period (1024us), and
744 * will definitely be update (after enqueue).
745 */
746 sa->period_contrib = 1023;
747 /*
748 * Tasks are intialized with full load to be seen as heavy tasks until
749 * they get a chance to stabilize to their real load level.
750 * Group entities are intialized with zero load to reflect the fact that
751 * nothing has been attached to the task group yet.
752 */
753 if (entity_is_task(se))
754 sa->load_avg = scale_load_down(se->load.weight);
755 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
756 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
757 }
758
759 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
760 static void attach_entity_cfs_rq(struct sched_entity *se);
761
762 /*
763 * With new tasks being created, their initial util_avgs are extrapolated
764 * based on the cfs_rq's current util_avg:
765 *
766 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
767 *
768 * However, in many cases, the above util_avg does not give a desired
769 * value. Moreover, the sum of the util_avgs may be divergent, such
770 * as when the series is a harmonic series.
771 *
772 * To solve this problem, we also cap the util_avg of successive tasks to
773 * only 1/2 of the left utilization budget:
774 *
775 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
776 *
777 * where n denotes the nth task and cpu_scale the CPU capacity.
778 *
779 * For example, for a CPU with 1024 of capacity, a simplest series from
780 * the beginning would be like:
781 *
782 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
783 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
784 *
785 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
786 * if util_avg > util_avg_cap.
787 */
post_init_entity_util_avg(struct sched_entity * se)788 void post_init_entity_util_avg(struct sched_entity *se)
789 {
790 struct cfs_rq *cfs_rq = cfs_rq_of(se);
791 struct sched_avg *sa = &se->avg;
792 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
793 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
794
795 if (cap > 0) {
796 if (cfs_rq->avg.util_avg != 0) {
797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
798 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
799
800 if (sa->util_avg > cap)
801 sa->util_avg = cap;
802 } else {
803 sa->util_avg = cap;
804 }
805 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
806 }
807
808 if (entity_is_task(se)) {
809 struct task_struct *p = task_of(se);
810 if (p->sched_class != &fair_sched_class) {
811 /*
812 * For !fair tasks do:
813 *
814 update_cfs_rq_load_avg(now, cfs_rq);
815 attach_entity_load_avg(cfs_rq, se);
816 switched_from_fair(rq, p);
817 *
818 * such that the next switched_to_fair() has the
819 * expected state.
820 */
821 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
822 return;
823 }
824 }
825
826 attach_entity_cfs_rq(se);
827 }
828
829 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)830 void init_entity_runnable_average(struct sched_entity *se)
831 {
832 }
post_init_entity_util_avg(struct sched_entity * se)833 void post_init_entity_util_avg(struct sched_entity *se)
834 {
835 }
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
837 {
838 }
839 #endif /* CONFIG_SMP */
840
841 /*
842 * Update the current task's runtime statistics.
843 */
update_curr(struct cfs_rq * cfs_rq)844 static void update_curr(struct cfs_rq *cfs_rq)
845 {
846 struct sched_entity *curr = cfs_rq->curr;
847 u64 now = rq_clock_task(rq_of(cfs_rq));
848 u64 delta_exec;
849
850 if (unlikely(!curr))
851 return;
852
853 delta_exec = now - curr->exec_start;
854 if (unlikely((s64)delta_exec <= 0))
855 return;
856
857 curr->exec_start = now;
858
859 schedstat_set(curr->statistics.exec_max,
860 max(delta_exec, curr->statistics.exec_max));
861
862 curr->sum_exec_runtime += delta_exec;
863 schedstat_add(cfs_rq->exec_clock, delta_exec);
864
865 curr->vruntime += calc_delta_fair(delta_exec, curr);
866 update_min_vruntime(cfs_rq);
867
868 if (entity_is_task(curr)) {
869 struct task_struct *curtask = task_of(curr);
870
871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
872 cpuacct_charge(curtask, delta_exec);
873 account_group_exec_runtime(curtask, delta_exec);
874 }
875
876 account_cfs_rq_runtime(cfs_rq, delta_exec);
877 }
878
update_curr_fair(struct rq * rq)879 static void update_curr_fair(struct rq *rq)
880 {
881 update_curr(cfs_rq_of(&rq->curr->se));
882 }
883
884 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
886 {
887 u64 wait_start, prev_wait_start;
888
889 if (!schedstat_enabled())
890 return;
891
892 wait_start = rq_clock(rq_of(cfs_rq));
893 prev_wait_start = schedstat_val(se->statistics.wait_start);
894
895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
896 likely(wait_start > prev_wait_start))
897 wait_start -= prev_wait_start;
898
899 schedstat_set(se->statistics.wait_start, wait_start);
900 }
901
902 static inline void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
904 {
905 struct task_struct *p;
906 u64 delta;
907
908 if (!schedstat_enabled())
909 return;
910
911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
912
913 if (entity_is_task(se)) {
914 p = task_of(se);
915 if (task_on_rq_migrating(p)) {
916 /*
917 * Preserve migrating task's wait time so wait_start
918 * time stamp can be adjusted to accumulate wait time
919 * prior to migration.
920 */
921 schedstat_set(se->statistics.wait_start, delta);
922 return;
923 }
924 trace_sched_stat_wait(p, delta);
925 }
926
927 schedstat_set(se->statistics.wait_max,
928 max(schedstat_val(se->statistics.wait_max), delta));
929 schedstat_inc(se->statistics.wait_count);
930 schedstat_add(se->statistics.wait_sum, delta);
931 schedstat_set(se->statistics.wait_start, 0);
932 }
933
934 static inline void
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
936 {
937 struct task_struct *tsk = NULL;
938 u64 sleep_start, block_start;
939
940 if (!schedstat_enabled())
941 return;
942
943 sleep_start = schedstat_val(se->statistics.sleep_start);
944 block_start = schedstat_val(se->statistics.block_start);
945
946 if (entity_is_task(se))
947 tsk = task_of(se);
948
949 if (sleep_start) {
950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
951
952 if ((s64)delta < 0)
953 delta = 0;
954
955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
956 schedstat_set(se->statistics.sleep_max, delta);
957
958 schedstat_set(se->statistics.sleep_start, 0);
959 schedstat_add(se->statistics.sum_sleep_runtime, delta);
960
961 if (tsk) {
962 account_scheduler_latency(tsk, delta >> 10, 1);
963 trace_sched_stat_sleep(tsk, delta);
964 }
965 }
966 if (block_start) {
967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
968
969 if ((s64)delta < 0)
970 delta = 0;
971
972 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
973 schedstat_set(se->statistics.block_max, delta);
974
975 schedstat_set(se->statistics.block_start, 0);
976 schedstat_add(se->statistics.sum_sleep_runtime, delta);
977
978 if (tsk) {
979 if (tsk->in_iowait) {
980 schedstat_add(se->statistics.iowait_sum, delta);
981 schedstat_inc(se->statistics.iowait_count);
982 trace_sched_stat_iowait(tsk, delta);
983 }
984
985 trace_sched_stat_blocked(tsk, delta);
986 trace_sched_blocked_reason(tsk);
987
988 /*
989 * Blocking time is in units of nanosecs, so shift by
990 * 20 to get a milliseconds-range estimation of the
991 * amount of time that the task spent sleeping:
992 */
993 if (unlikely(prof_on == SLEEP_PROFILING)) {
994 profile_hits(SLEEP_PROFILING,
995 (void *)get_wchan(tsk),
996 delta >> 20);
997 }
998 account_scheduler_latency(tsk, delta >> 10, 0);
999 }
1000 }
1001 }
1002
1003 /*
1004 * Task is being enqueued - update stats:
1005 */
1006 static inline void
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1007 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1008 {
1009 if (!schedstat_enabled())
1010 return;
1011
1012 /*
1013 * Are we enqueueing a waiting task? (for current tasks
1014 * a dequeue/enqueue event is a NOP)
1015 */
1016 if (se != cfs_rq->curr)
1017 update_stats_wait_start(cfs_rq, se);
1018
1019 if (flags & ENQUEUE_WAKEUP)
1020 update_stats_enqueue_sleeper(cfs_rq, se);
1021 }
1022
1023 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1024 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1025 {
1026
1027 if (!schedstat_enabled())
1028 return;
1029
1030 /*
1031 * Mark the end of the wait period if dequeueing a
1032 * waiting task:
1033 */
1034 if (se != cfs_rq->curr)
1035 update_stats_wait_end(cfs_rq, se);
1036
1037 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1038 struct task_struct *tsk = task_of(se);
1039
1040 if (tsk->state & TASK_INTERRUPTIBLE)
1041 schedstat_set(se->statistics.sleep_start,
1042 rq_clock(rq_of(cfs_rq)));
1043 if (tsk->state & TASK_UNINTERRUPTIBLE)
1044 schedstat_set(se->statistics.block_start,
1045 rq_clock(rq_of(cfs_rq)));
1046 }
1047 }
1048
1049 /*
1050 * We are picking a new current task - update its stats:
1051 */
1052 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1053 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1054 {
1055 /*
1056 * We are starting a new run period:
1057 */
1058 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1059 }
1060
1061 /**************************************************
1062 * Scheduling class queueing methods:
1063 */
1064
1065 #ifdef CONFIG_NUMA_BALANCING
1066 /*
1067 * Approximate time to scan a full NUMA task in ms. The task scan period is
1068 * calculated based on the tasks virtual memory size and
1069 * numa_balancing_scan_size.
1070 */
1071 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1072 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1073
1074 /* Portion of address space to scan in MB */
1075 unsigned int sysctl_numa_balancing_scan_size = 256;
1076
1077 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1078 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1079
1080 struct numa_group {
1081 atomic_t refcount;
1082
1083 spinlock_t lock; /* nr_tasks, tasks */
1084 int nr_tasks;
1085 pid_t gid;
1086 int active_nodes;
1087
1088 struct rcu_head rcu;
1089 unsigned long total_faults;
1090 unsigned long max_faults_cpu;
1091 /*
1092 * Faults_cpu is used to decide whether memory should move
1093 * towards the CPU. As a consequence, these stats are weighted
1094 * more by CPU use than by memory faults.
1095 */
1096 unsigned long *faults_cpu;
1097 unsigned long faults[0];
1098 };
1099
1100 static inline unsigned long group_faults_priv(struct numa_group *ng);
1101 static inline unsigned long group_faults_shared(struct numa_group *ng);
1102
task_nr_scan_windows(struct task_struct * p)1103 static unsigned int task_nr_scan_windows(struct task_struct *p)
1104 {
1105 unsigned long rss = 0;
1106 unsigned long nr_scan_pages;
1107
1108 /*
1109 * Calculations based on RSS as non-present and empty pages are skipped
1110 * by the PTE scanner and NUMA hinting faults should be trapped based
1111 * on resident pages
1112 */
1113 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1114 rss = get_mm_rss(p->mm);
1115 if (!rss)
1116 rss = nr_scan_pages;
1117
1118 rss = round_up(rss, nr_scan_pages);
1119 return rss / nr_scan_pages;
1120 }
1121
1122 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1123 #define MAX_SCAN_WINDOW 2560
1124
task_scan_min(struct task_struct * p)1125 static unsigned int task_scan_min(struct task_struct *p)
1126 {
1127 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1128 unsigned int scan, floor;
1129 unsigned int windows = 1;
1130
1131 if (scan_size < MAX_SCAN_WINDOW)
1132 windows = MAX_SCAN_WINDOW / scan_size;
1133 floor = 1000 / windows;
1134
1135 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1136 return max_t(unsigned int, floor, scan);
1137 }
1138
task_scan_start(struct task_struct * p)1139 static unsigned int task_scan_start(struct task_struct *p)
1140 {
1141 unsigned long smin = task_scan_min(p);
1142 unsigned long period = smin;
1143
1144 /* Scale the maximum scan period with the amount of shared memory. */
1145 if (p->numa_group) {
1146 struct numa_group *ng = p->numa_group;
1147 unsigned long shared = group_faults_shared(ng);
1148 unsigned long private = group_faults_priv(ng);
1149
1150 period *= atomic_read(&ng->refcount);
1151 period *= shared + 1;
1152 period /= private + shared + 1;
1153 }
1154
1155 return max(smin, period);
1156 }
1157
task_scan_max(struct task_struct * p)1158 static unsigned int task_scan_max(struct task_struct *p)
1159 {
1160 unsigned long smin = task_scan_min(p);
1161 unsigned long smax;
1162
1163 /* Watch for min being lower than max due to floor calculations */
1164 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1165
1166 /* Scale the maximum scan period with the amount of shared memory. */
1167 if (p->numa_group) {
1168 struct numa_group *ng = p->numa_group;
1169 unsigned long shared = group_faults_shared(ng);
1170 unsigned long private = group_faults_priv(ng);
1171 unsigned long period = smax;
1172
1173 period *= atomic_read(&ng->refcount);
1174 period *= shared + 1;
1175 period /= private + shared + 1;
1176
1177 smax = max(smax, period);
1178 }
1179
1180 return max(smin, smax);
1181 }
1182
account_numa_enqueue(struct rq * rq,struct task_struct * p)1183 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1184 {
1185 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1186 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1187 }
1188
account_numa_dequeue(struct rq * rq,struct task_struct * p)1189 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1190 {
1191 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1192 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1193 }
1194
1195 /* Shared or private faults. */
1196 #define NR_NUMA_HINT_FAULT_TYPES 2
1197
1198 /* Memory and CPU locality */
1199 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1200
1201 /* Averaged statistics, and temporary buffers. */
1202 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1203
task_numa_group_id(struct task_struct * p)1204 pid_t task_numa_group_id(struct task_struct *p)
1205 {
1206 return p->numa_group ? p->numa_group->gid : 0;
1207 }
1208
1209 /*
1210 * The averaged statistics, shared & private, memory & cpu,
1211 * occupy the first half of the array. The second half of the
1212 * array is for current counters, which are averaged into the
1213 * first set by task_numa_placement.
1214 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1215 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1216 {
1217 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1218 }
1219
task_faults(struct task_struct * p,int nid)1220 static inline unsigned long task_faults(struct task_struct *p, int nid)
1221 {
1222 if (!p->numa_faults)
1223 return 0;
1224
1225 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1226 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1227 }
1228
group_faults(struct task_struct * p,int nid)1229 static inline unsigned long group_faults(struct task_struct *p, int nid)
1230 {
1231 if (!p->numa_group)
1232 return 0;
1233
1234 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1235 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1236 }
1237
group_faults_cpu(struct numa_group * group,int nid)1238 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1239 {
1240 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1241 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1242 }
1243
group_faults_priv(struct numa_group * ng)1244 static inline unsigned long group_faults_priv(struct numa_group *ng)
1245 {
1246 unsigned long faults = 0;
1247 int node;
1248
1249 for_each_online_node(node) {
1250 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1251 }
1252
1253 return faults;
1254 }
1255
group_faults_shared(struct numa_group * ng)1256 static inline unsigned long group_faults_shared(struct numa_group *ng)
1257 {
1258 unsigned long faults = 0;
1259 int node;
1260
1261 for_each_online_node(node) {
1262 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1263 }
1264
1265 return faults;
1266 }
1267
1268 /*
1269 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1270 * considered part of a numa group's pseudo-interleaving set. Migrations
1271 * between these nodes are slowed down, to allow things to settle down.
1272 */
1273 #define ACTIVE_NODE_FRACTION 3
1274
numa_is_active_node(int nid,struct numa_group * ng)1275 static bool numa_is_active_node(int nid, struct numa_group *ng)
1276 {
1277 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1278 }
1279
1280 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1281 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1282 int maxdist, bool task)
1283 {
1284 unsigned long score = 0;
1285 int node;
1286
1287 /*
1288 * All nodes are directly connected, and the same distance
1289 * from each other. No need for fancy placement algorithms.
1290 */
1291 if (sched_numa_topology_type == NUMA_DIRECT)
1292 return 0;
1293
1294 /*
1295 * This code is called for each node, introducing N^2 complexity,
1296 * which should be ok given the number of nodes rarely exceeds 8.
1297 */
1298 for_each_online_node(node) {
1299 unsigned long faults;
1300 int dist = node_distance(nid, node);
1301
1302 /*
1303 * The furthest away nodes in the system are not interesting
1304 * for placement; nid was already counted.
1305 */
1306 if (dist == sched_max_numa_distance || node == nid)
1307 continue;
1308
1309 /*
1310 * On systems with a backplane NUMA topology, compare groups
1311 * of nodes, and move tasks towards the group with the most
1312 * memory accesses. When comparing two nodes at distance
1313 * "hoplimit", only nodes closer by than "hoplimit" are part
1314 * of each group. Skip other nodes.
1315 */
1316 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1317 dist > maxdist)
1318 continue;
1319
1320 /* Add up the faults from nearby nodes. */
1321 if (task)
1322 faults = task_faults(p, node);
1323 else
1324 faults = group_faults(p, node);
1325
1326 /*
1327 * On systems with a glueless mesh NUMA topology, there are
1328 * no fixed "groups of nodes". Instead, nodes that are not
1329 * directly connected bounce traffic through intermediate
1330 * nodes; a numa_group can occupy any set of nodes.
1331 * The further away a node is, the less the faults count.
1332 * This seems to result in good task placement.
1333 */
1334 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1335 faults *= (sched_max_numa_distance - dist);
1336 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1337 }
1338
1339 score += faults;
1340 }
1341
1342 return score;
1343 }
1344
1345 /*
1346 * These return the fraction of accesses done by a particular task, or
1347 * task group, on a particular numa node. The group weight is given a
1348 * larger multiplier, in order to group tasks together that are almost
1349 * evenly spread out between numa nodes.
1350 */
task_weight(struct task_struct * p,int nid,int dist)1351 static inline unsigned long task_weight(struct task_struct *p, int nid,
1352 int dist)
1353 {
1354 unsigned long faults, total_faults;
1355
1356 if (!p->numa_faults)
1357 return 0;
1358
1359 total_faults = p->total_numa_faults;
1360
1361 if (!total_faults)
1362 return 0;
1363
1364 faults = task_faults(p, nid);
1365 faults += score_nearby_nodes(p, nid, dist, true);
1366
1367 return 1000 * faults / total_faults;
1368 }
1369
group_weight(struct task_struct * p,int nid,int dist)1370 static inline unsigned long group_weight(struct task_struct *p, int nid,
1371 int dist)
1372 {
1373 unsigned long faults, total_faults;
1374
1375 if (!p->numa_group)
1376 return 0;
1377
1378 total_faults = p->numa_group->total_faults;
1379
1380 if (!total_faults)
1381 return 0;
1382
1383 faults = group_faults(p, nid);
1384 faults += score_nearby_nodes(p, nid, dist, false);
1385
1386 return 1000 * faults / total_faults;
1387 }
1388
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1389 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1390 int src_nid, int dst_cpu)
1391 {
1392 struct numa_group *ng = p->numa_group;
1393 int dst_nid = cpu_to_node(dst_cpu);
1394 int last_cpupid, this_cpupid;
1395
1396 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1397
1398 /*
1399 * Multi-stage node selection is used in conjunction with a periodic
1400 * migration fault to build a temporal task<->page relation. By using
1401 * a two-stage filter we remove short/unlikely relations.
1402 *
1403 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1404 * a task's usage of a particular page (n_p) per total usage of this
1405 * page (n_t) (in a given time-span) to a probability.
1406 *
1407 * Our periodic faults will sample this probability and getting the
1408 * same result twice in a row, given these samples are fully
1409 * independent, is then given by P(n)^2, provided our sample period
1410 * is sufficiently short compared to the usage pattern.
1411 *
1412 * This quadric squishes small probabilities, making it less likely we
1413 * act on an unlikely task<->page relation.
1414 */
1415 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1416 if (!cpupid_pid_unset(last_cpupid) &&
1417 cpupid_to_nid(last_cpupid) != dst_nid)
1418 return false;
1419
1420 /* Always allow migrate on private faults */
1421 if (cpupid_match_pid(p, last_cpupid))
1422 return true;
1423
1424 /* A shared fault, but p->numa_group has not been set up yet. */
1425 if (!ng)
1426 return true;
1427
1428 /*
1429 * Destination node is much more heavily used than the source
1430 * node? Allow migration.
1431 */
1432 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1433 ACTIVE_NODE_FRACTION)
1434 return true;
1435
1436 /*
1437 * Distribute memory according to CPU & memory use on each node,
1438 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1439 *
1440 * faults_cpu(dst) 3 faults_cpu(src)
1441 * --------------- * - > ---------------
1442 * faults_mem(dst) 4 faults_mem(src)
1443 */
1444 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1445 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1446 }
1447
1448 static unsigned long weighted_cpuload(struct rq *rq);
1449 static unsigned long source_load(int cpu, int type);
1450 static unsigned long target_load(int cpu, int type);
1451
1452 /* Cached statistics for all CPUs within a node */
1453 struct numa_stats {
1454 unsigned long nr_running;
1455 unsigned long load;
1456
1457 /* Total compute capacity of CPUs on a node */
1458 unsigned long compute_capacity;
1459
1460 /* Approximate capacity in terms of runnable tasks on a node */
1461 unsigned long task_capacity;
1462 int has_free_capacity;
1463 };
1464
1465 /*
1466 * XXX borrowed from update_sg_lb_stats
1467 */
update_numa_stats(struct numa_stats * ns,int nid)1468 static void update_numa_stats(struct numa_stats *ns, int nid)
1469 {
1470 int smt, cpu, cpus = 0;
1471 unsigned long capacity;
1472
1473 memset(ns, 0, sizeof(*ns));
1474 for_each_cpu(cpu, cpumask_of_node(nid)) {
1475 struct rq *rq = cpu_rq(cpu);
1476
1477 ns->nr_running += rq->nr_running;
1478 ns->load += weighted_cpuload(rq);
1479 ns->compute_capacity += capacity_of(cpu);
1480
1481 cpus++;
1482 }
1483
1484 /*
1485 * If we raced with hotplug and there are no CPUs left in our mask
1486 * the @ns structure is NULL'ed and task_numa_compare() will
1487 * not find this node attractive.
1488 *
1489 * We'll either bail at !has_free_capacity, or we'll detect a huge
1490 * imbalance and bail there.
1491 */
1492 if (!cpus)
1493 return;
1494
1495 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1496 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1497 capacity = cpus / smt; /* cores */
1498
1499 ns->task_capacity = min_t(unsigned, capacity,
1500 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1501 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1502 }
1503
1504 struct task_numa_env {
1505 struct task_struct *p;
1506
1507 int src_cpu, src_nid;
1508 int dst_cpu, dst_nid;
1509
1510 struct numa_stats src_stats, dst_stats;
1511
1512 int imbalance_pct;
1513 int dist;
1514
1515 struct task_struct *best_task;
1516 long best_imp;
1517 int best_cpu;
1518 };
1519
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1520 static void task_numa_assign(struct task_numa_env *env,
1521 struct task_struct *p, long imp)
1522 {
1523 if (env->best_task)
1524 put_task_struct(env->best_task);
1525 if (p)
1526 get_task_struct(p);
1527
1528 env->best_task = p;
1529 env->best_imp = imp;
1530 env->best_cpu = env->dst_cpu;
1531 }
1532
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1533 static bool load_too_imbalanced(long src_load, long dst_load,
1534 struct task_numa_env *env)
1535 {
1536 long imb, old_imb;
1537 long orig_src_load, orig_dst_load;
1538 long src_capacity, dst_capacity;
1539
1540 /*
1541 * The load is corrected for the CPU capacity available on each node.
1542 *
1543 * src_load dst_load
1544 * ------------ vs ---------
1545 * src_capacity dst_capacity
1546 */
1547 src_capacity = env->src_stats.compute_capacity;
1548 dst_capacity = env->dst_stats.compute_capacity;
1549
1550 /* We care about the slope of the imbalance, not the direction. */
1551 if (dst_load < src_load)
1552 swap(dst_load, src_load);
1553
1554 /* Is the difference below the threshold? */
1555 imb = dst_load * src_capacity * 100 -
1556 src_load * dst_capacity * env->imbalance_pct;
1557 if (imb <= 0)
1558 return false;
1559
1560 /*
1561 * The imbalance is above the allowed threshold.
1562 * Compare it with the old imbalance.
1563 */
1564 orig_src_load = env->src_stats.load;
1565 orig_dst_load = env->dst_stats.load;
1566
1567 if (orig_dst_load < orig_src_load)
1568 swap(orig_dst_load, orig_src_load);
1569
1570 old_imb = orig_dst_load * src_capacity * 100 -
1571 orig_src_load * dst_capacity * env->imbalance_pct;
1572
1573 /* Would this change make things worse? */
1574 return (imb > old_imb);
1575 }
1576
1577 /*
1578 * This checks if the overall compute and NUMA accesses of the system would
1579 * be improved if the source tasks was migrated to the target dst_cpu taking
1580 * into account that it might be best if task running on the dst_cpu should
1581 * be exchanged with the source task
1582 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp)1583 static void task_numa_compare(struct task_numa_env *env,
1584 long taskimp, long groupimp)
1585 {
1586 struct rq *src_rq = cpu_rq(env->src_cpu);
1587 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1588 struct task_struct *cur;
1589 long src_load, dst_load;
1590 long load;
1591 long imp = env->p->numa_group ? groupimp : taskimp;
1592 long moveimp = imp;
1593 int dist = env->dist;
1594
1595 rcu_read_lock();
1596 cur = task_rcu_dereference(&dst_rq->curr);
1597 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1598 cur = NULL;
1599
1600 /*
1601 * Because we have preemption enabled we can get migrated around and
1602 * end try selecting ourselves (current == env->p) as a swap candidate.
1603 */
1604 if (cur == env->p)
1605 goto unlock;
1606
1607 /*
1608 * "imp" is the fault differential for the source task between the
1609 * source and destination node. Calculate the total differential for
1610 * the source task and potential destination task. The more negative
1611 * the value is, the more rmeote accesses that would be expected to
1612 * be incurred if the tasks were swapped.
1613 */
1614 if (cur) {
1615 /* Skip this swap candidate if cannot move to the source cpu */
1616 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1617 goto unlock;
1618
1619 /*
1620 * If dst and source tasks are in the same NUMA group, or not
1621 * in any group then look only at task weights.
1622 */
1623 if (cur->numa_group == env->p->numa_group) {
1624 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1625 task_weight(cur, env->dst_nid, dist);
1626 /*
1627 * Add some hysteresis to prevent swapping the
1628 * tasks within a group over tiny differences.
1629 */
1630 if (cur->numa_group)
1631 imp -= imp/16;
1632 } else {
1633 /*
1634 * Compare the group weights. If a task is all by
1635 * itself (not part of a group), use the task weight
1636 * instead.
1637 */
1638 if (cur->numa_group)
1639 imp += group_weight(cur, env->src_nid, dist) -
1640 group_weight(cur, env->dst_nid, dist);
1641 else
1642 imp += task_weight(cur, env->src_nid, dist) -
1643 task_weight(cur, env->dst_nid, dist);
1644 }
1645 }
1646
1647 if (imp <= env->best_imp && moveimp <= env->best_imp)
1648 goto unlock;
1649
1650 if (!cur) {
1651 /* Is there capacity at our destination? */
1652 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1653 !env->dst_stats.has_free_capacity)
1654 goto unlock;
1655
1656 goto balance;
1657 }
1658
1659 /* Balance doesn't matter much if we're running a task per cpu */
1660 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1661 dst_rq->nr_running == 1)
1662 goto assign;
1663
1664 /*
1665 * In the overloaded case, try and keep the load balanced.
1666 */
1667 balance:
1668 load = task_h_load(env->p);
1669 dst_load = env->dst_stats.load + load;
1670 src_load = env->src_stats.load - load;
1671
1672 if (moveimp > imp && moveimp > env->best_imp) {
1673 /*
1674 * If the improvement from just moving env->p direction is
1675 * better than swapping tasks around, check if a move is
1676 * possible. Store a slightly smaller score than moveimp,
1677 * so an actually idle CPU will win.
1678 */
1679 if (!load_too_imbalanced(src_load, dst_load, env)) {
1680 imp = moveimp - 1;
1681 cur = NULL;
1682 goto assign;
1683 }
1684 }
1685
1686 if (imp <= env->best_imp)
1687 goto unlock;
1688
1689 if (cur) {
1690 load = task_h_load(cur);
1691 dst_load -= load;
1692 src_load += load;
1693 }
1694
1695 if (load_too_imbalanced(src_load, dst_load, env))
1696 goto unlock;
1697
1698 /*
1699 * One idle CPU per node is evaluated for a task numa move.
1700 * Call select_idle_sibling to maybe find a better one.
1701 */
1702 if (!cur) {
1703 /*
1704 * select_idle_siblings() uses an per-cpu cpumask that
1705 * can be used from IRQ context.
1706 */
1707 local_irq_disable();
1708 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1709 env->dst_cpu);
1710 local_irq_enable();
1711 }
1712
1713 assign:
1714 task_numa_assign(env, cur, imp);
1715 unlock:
1716 rcu_read_unlock();
1717 }
1718
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1719 static void task_numa_find_cpu(struct task_numa_env *env,
1720 long taskimp, long groupimp)
1721 {
1722 int cpu;
1723
1724 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1725 /* Skip this CPU if the source task cannot migrate */
1726 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1727 continue;
1728
1729 env->dst_cpu = cpu;
1730 task_numa_compare(env, taskimp, groupimp);
1731 }
1732 }
1733
1734 /* Only move tasks to a NUMA node less busy than the current node. */
numa_has_capacity(struct task_numa_env * env)1735 static bool numa_has_capacity(struct task_numa_env *env)
1736 {
1737 struct numa_stats *src = &env->src_stats;
1738 struct numa_stats *dst = &env->dst_stats;
1739
1740 if (src->has_free_capacity && !dst->has_free_capacity)
1741 return false;
1742
1743 /*
1744 * Only consider a task move if the source has a higher load
1745 * than the destination, corrected for CPU capacity on each node.
1746 *
1747 * src->load dst->load
1748 * --------------------- vs ---------------------
1749 * src->compute_capacity dst->compute_capacity
1750 */
1751 if (src->load * dst->compute_capacity * env->imbalance_pct >
1752
1753 dst->load * src->compute_capacity * 100)
1754 return true;
1755
1756 return false;
1757 }
1758
task_numa_migrate(struct task_struct * p)1759 static int task_numa_migrate(struct task_struct *p)
1760 {
1761 struct task_numa_env env = {
1762 .p = p,
1763
1764 .src_cpu = task_cpu(p),
1765 .src_nid = task_node(p),
1766
1767 .imbalance_pct = 112,
1768
1769 .best_task = NULL,
1770 .best_imp = 0,
1771 .best_cpu = -1,
1772 };
1773 struct sched_domain *sd;
1774 unsigned long taskweight, groupweight;
1775 int nid, ret, dist;
1776 long taskimp, groupimp;
1777
1778 /*
1779 * Pick the lowest SD_NUMA domain, as that would have the smallest
1780 * imbalance and would be the first to start moving tasks about.
1781 *
1782 * And we want to avoid any moving of tasks about, as that would create
1783 * random movement of tasks -- counter the numa conditions we're trying
1784 * to satisfy here.
1785 */
1786 rcu_read_lock();
1787 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1788 if (sd)
1789 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1790 rcu_read_unlock();
1791
1792 /*
1793 * Cpusets can break the scheduler domain tree into smaller
1794 * balance domains, some of which do not cross NUMA boundaries.
1795 * Tasks that are "trapped" in such domains cannot be migrated
1796 * elsewhere, so there is no point in (re)trying.
1797 */
1798 if (unlikely(!sd)) {
1799 p->numa_preferred_nid = task_node(p);
1800 return -EINVAL;
1801 }
1802
1803 env.dst_nid = p->numa_preferred_nid;
1804 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1805 taskweight = task_weight(p, env.src_nid, dist);
1806 groupweight = group_weight(p, env.src_nid, dist);
1807 update_numa_stats(&env.src_stats, env.src_nid);
1808 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1809 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1810 update_numa_stats(&env.dst_stats, env.dst_nid);
1811
1812 /* Try to find a spot on the preferred nid. */
1813 if (numa_has_capacity(&env))
1814 task_numa_find_cpu(&env, taskimp, groupimp);
1815
1816 /*
1817 * Look at other nodes in these cases:
1818 * - there is no space available on the preferred_nid
1819 * - the task is part of a numa_group that is interleaved across
1820 * multiple NUMA nodes; in order to better consolidate the group,
1821 * we need to check other locations.
1822 */
1823 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1824 for_each_online_node(nid) {
1825 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1826 continue;
1827
1828 dist = node_distance(env.src_nid, env.dst_nid);
1829 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1830 dist != env.dist) {
1831 taskweight = task_weight(p, env.src_nid, dist);
1832 groupweight = group_weight(p, env.src_nid, dist);
1833 }
1834
1835 /* Only consider nodes where both task and groups benefit */
1836 taskimp = task_weight(p, nid, dist) - taskweight;
1837 groupimp = group_weight(p, nid, dist) - groupweight;
1838 if (taskimp < 0 && groupimp < 0)
1839 continue;
1840
1841 env.dist = dist;
1842 env.dst_nid = nid;
1843 update_numa_stats(&env.dst_stats, env.dst_nid);
1844 if (numa_has_capacity(&env))
1845 task_numa_find_cpu(&env, taskimp, groupimp);
1846 }
1847 }
1848
1849 /*
1850 * If the task is part of a workload that spans multiple NUMA nodes,
1851 * and is migrating into one of the workload's active nodes, remember
1852 * this node as the task's preferred numa node, so the workload can
1853 * settle down.
1854 * A task that migrated to a second choice node will be better off
1855 * trying for a better one later. Do not set the preferred node here.
1856 */
1857 if (p->numa_group) {
1858 struct numa_group *ng = p->numa_group;
1859
1860 if (env.best_cpu == -1)
1861 nid = env.src_nid;
1862 else
1863 nid = env.dst_nid;
1864
1865 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1866 sched_setnuma(p, env.dst_nid);
1867 }
1868
1869 /* No better CPU than the current one was found. */
1870 if (env.best_cpu == -1)
1871 return -EAGAIN;
1872
1873 /*
1874 * Reset the scan period if the task is being rescheduled on an
1875 * alternative node to recheck if the tasks is now properly placed.
1876 */
1877 p->numa_scan_period = task_scan_start(p);
1878
1879 if (env.best_task == NULL) {
1880 ret = migrate_task_to(p, env.best_cpu);
1881 if (ret != 0)
1882 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1883 return ret;
1884 }
1885
1886 ret = migrate_swap(p, env.best_task);
1887 if (ret != 0)
1888 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1889 put_task_struct(env.best_task);
1890 return ret;
1891 }
1892
1893 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)1894 static void numa_migrate_preferred(struct task_struct *p)
1895 {
1896 unsigned long interval = HZ;
1897
1898 /* This task has no NUMA fault statistics yet */
1899 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1900 return;
1901
1902 /* Periodically retry migrating the task to the preferred node */
1903 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1904 p->numa_migrate_retry = jiffies + interval;
1905
1906 /* Success if task is already running on preferred CPU */
1907 if (task_node(p) == p->numa_preferred_nid)
1908 return;
1909
1910 /* Otherwise, try migrate to a CPU on the preferred node */
1911 task_numa_migrate(p);
1912 }
1913
1914 /*
1915 * Find out how many nodes on the workload is actively running on. Do this by
1916 * tracking the nodes from which NUMA hinting faults are triggered. This can
1917 * be different from the set of nodes where the workload's memory is currently
1918 * located.
1919 */
numa_group_count_active_nodes(struct numa_group * numa_group)1920 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1921 {
1922 unsigned long faults, max_faults = 0;
1923 int nid, active_nodes = 0;
1924
1925 for_each_online_node(nid) {
1926 faults = group_faults_cpu(numa_group, nid);
1927 if (faults > max_faults)
1928 max_faults = faults;
1929 }
1930
1931 for_each_online_node(nid) {
1932 faults = group_faults_cpu(numa_group, nid);
1933 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1934 active_nodes++;
1935 }
1936
1937 numa_group->max_faults_cpu = max_faults;
1938 numa_group->active_nodes = active_nodes;
1939 }
1940
1941 /*
1942 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1943 * increments. The more local the fault statistics are, the higher the scan
1944 * period will be for the next scan window. If local/(local+remote) ratio is
1945 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1946 * the scan period will decrease. Aim for 70% local accesses.
1947 */
1948 #define NUMA_PERIOD_SLOTS 10
1949 #define NUMA_PERIOD_THRESHOLD 7
1950
1951 /*
1952 * Increase the scan period (slow down scanning) if the majority of
1953 * our memory is already on our local node, or if the majority of
1954 * the page accesses are shared with other processes.
1955 * Otherwise, decrease the scan period.
1956 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)1957 static void update_task_scan_period(struct task_struct *p,
1958 unsigned long shared, unsigned long private)
1959 {
1960 unsigned int period_slot;
1961 int lr_ratio, ps_ratio;
1962 int diff;
1963
1964 unsigned long remote = p->numa_faults_locality[0];
1965 unsigned long local = p->numa_faults_locality[1];
1966
1967 /*
1968 * If there were no record hinting faults then either the task is
1969 * completely idle or all activity is areas that are not of interest
1970 * to automatic numa balancing. Related to that, if there were failed
1971 * migration then it implies we are migrating too quickly or the local
1972 * node is overloaded. In either case, scan slower
1973 */
1974 if (local + shared == 0 || p->numa_faults_locality[2]) {
1975 p->numa_scan_period = min(p->numa_scan_period_max,
1976 p->numa_scan_period << 1);
1977
1978 p->mm->numa_next_scan = jiffies +
1979 msecs_to_jiffies(p->numa_scan_period);
1980
1981 return;
1982 }
1983
1984 /*
1985 * Prepare to scale scan period relative to the current period.
1986 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1987 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1988 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1989 */
1990 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1991 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1992 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1993
1994 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1995 /*
1996 * Most memory accesses are local. There is no need to
1997 * do fast NUMA scanning, since memory is already local.
1998 */
1999 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2000 if (!slot)
2001 slot = 1;
2002 diff = slot * period_slot;
2003 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2004 /*
2005 * Most memory accesses are shared with other tasks.
2006 * There is no point in continuing fast NUMA scanning,
2007 * since other tasks may just move the memory elsewhere.
2008 */
2009 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2010 if (!slot)
2011 slot = 1;
2012 diff = slot * period_slot;
2013 } else {
2014 /*
2015 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2016 * yet they are not on the local NUMA node. Speed up
2017 * NUMA scanning to get the memory moved over.
2018 */
2019 int ratio = max(lr_ratio, ps_ratio);
2020 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2021 }
2022
2023 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2024 task_scan_min(p), task_scan_max(p));
2025 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2026 }
2027
2028 /*
2029 * Get the fraction of time the task has been running since the last
2030 * NUMA placement cycle. The scheduler keeps similar statistics, but
2031 * decays those on a 32ms period, which is orders of magnitude off
2032 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2033 * stats only if the task is so new there are no NUMA statistics yet.
2034 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2035 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2036 {
2037 u64 runtime, delta, now;
2038 /* Use the start of this time slice to avoid calculations. */
2039 now = p->se.exec_start;
2040 runtime = p->se.sum_exec_runtime;
2041
2042 if (p->last_task_numa_placement) {
2043 delta = runtime - p->last_sum_exec_runtime;
2044 *period = now - p->last_task_numa_placement;
2045
2046 /* Avoid time going backwards, prevent potential divide error: */
2047 if (unlikely((s64)*period < 0))
2048 *period = 0;
2049 } else {
2050 delta = p->se.avg.load_sum / p->se.load.weight;
2051 *period = LOAD_AVG_MAX;
2052 }
2053
2054 p->last_sum_exec_runtime = runtime;
2055 p->last_task_numa_placement = now;
2056
2057 return delta;
2058 }
2059
2060 /*
2061 * Determine the preferred nid for a task in a numa_group. This needs to
2062 * be done in a way that produces consistent results with group_weight,
2063 * otherwise workloads might not converge.
2064 */
preferred_group_nid(struct task_struct * p,int nid)2065 static int preferred_group_nid(struct task_struct *p, int nid)
2066 {
2067 nodemask_t nodes;
2068 int dist;
2069
2070 /* Direct connections between all NUMA nodes. */
2071 if (sched_numa_topology_type == NUMA_DIRECT)
2072 return nid;
2073
2074 /*
2075 * On a system with glueless mesh NUMA topology, group_weight
2076 * scores nodes according to the number of NUMA hinting faults on
2077 * both the node itself, and on nearby nodes.
2078 */
2079 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2080 unsigned long score, max_score = 0;
2081 int node, max_node = nid;
2082
2083 dist = sched_max_numa_distance;
2084
2085 for_each_online_node(node) {
2086 score = group_weight(p, node, dist);
2087 if (score > max_score) {
2088 max_score = score;
2089 max_node = node;
2090 }
2091 }
2092 return max_node;
2093 }
2094
2095 /*
2096 * Finding the preferred nid in a system with NUMA backplane
2097 * interconnect topology is more involved. The goal is to locate
2098 * tasks from numa_groups near each other in the system, and
2099 * untangle workloads from different sides of the system. This requires
2100 * searching down the hierarchy of node groups, recursively searching
2101 * inside the highest scoring group of nodes. The nodemask tricks
2102 * keep the complexity of the search down.
2103 */
2104 nodes = node_online_map;
2105 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2106 unsigned long max_faults = 0;
2107 nodemask_t max_group = NODE_MASK_NONE;
2108 int a, b;
2109
2110 /* Are there nodes at this distance from each other? */
2111 if (!find_numa_distance(dist))
2112 continue;
2113
2114 for_each_node_mask(a, nodes) {
2115 unsigned long faults = 0;
2116 nodemask_t this_group;
2117 nodes_clear(this_group);
2118
2119 /* Sum group's NUMA faults; includes a==b case. */
2120 for_each_node_mask(b, nodes) {
2121 if (node_distance(a, b) < dist) {
2122 faults += group_faults(p, b);
2123 node_set(b, this_group);
2124 node_clear(b, nodes);
2125 }
2126 }
2127
2128 /* Remember the top group. */
2129 if (faults > max_faults) {
2130 max_faults = faults;
2131 max_group = this_group;
2132 /*
2133 * subtle: at the smallest distance there is
2134 * just one node left in each "group", the
2135 * winner is the preferred nid.
2136 */
2137 nid = a;
2138 }
2139 }
2140 /* Next round, evaluate the nodes within max_group. */
2141 if (!max_faults)
2142 break;
2143 nodes = max_group;
2144 }
2145 return nid;
2146 }
2147
task_numa_placement(struct task_struct * p)2148 static void task_numa_placement(struct task_struct *p)
2149 {
2150 int seq, nid, max_nid = -1, max_group_nid = -1;
2151 unsigned long max_faults = 0, max_group_faults = 0;
2152 unsigned long fault_types[2] = { 0, 0 };
2153 unsigned long total_faults;
2154 u64 runtime, period;
2155 spinlock_t *group_lock = NULL;
2156
2157 /*
2158 * The p->mm->numa_scan_seq field gets updated without
2159 * exclusive access. Use READ_ONCE() here to ensure
2160 * that the field is read in a single access:
2161 */
2162 seq = READ_ONCE(p->mm->numa_scan_seq);
2163 if (p->numa_scan_seq == seq)
2164 return;
2165 p->numa_scan_seq = seq;
2166 p->numa_scan_period_max = task_scan_max(p);
2167
2168 total_faults = p->numa_faults_locality[0] +
2169 p->numa_faults_locality[1];
2170 runtime = numa_get_avg_runtime(p, &period);
2171
2172 /* If the task is part of a group prevent parallel updates to group stats */
2173 if (p->numa_group) {
2174 group_lock = &p->numa_group->lock;
2175 spin_lock_irq(group_lock);
2176 }
2177
2178 /* Find the node with the highest number of faults */
2179 for_each_online_node(nid) {
2180 /* Keep track of the offsets in numa_faults array */
2181 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2182 unsigned long faults = 0, group_faults = 0;
2183 int priv;
2184
2185 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2186 long diff, f_diff, f_weight;
2187
2188 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2189 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2190 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2191 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2192
2193 /* Decay existing window, copy faults since last scan */
2194 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2195 fault_types[priv] += p->numa_faults[membuf_idx];
2196 p->numa_faults[membuf_idx] = 0;
2197
2198 /*
2199 * Normalize the faults_from, so all tasks in a group
2200 * count according to CPU use, instead of by the raw
2201 * number of faults. Tasks with little runtime have
2202 * little over-all impact on throughput, and thus their
2203 * faults are less important.
2204 */
2205 f_weight = div64_u64(runtime << 16, period + 1);
2206 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2207 (total_faults + 1);
2208 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2209 p->numa_faults[cpubuf_idx] = 0;
2210
2211 p->numa_faults[mem_idx] += diff;
2212 p->numa_faults[cpu_idx] += f_diff;
2213 faults += p->numa_faults[mem_idx];
2214 p->total_numa_faults += diff;
2215 if (p->numa_group) {
2216 /*
2217 * safe because we can only change our own group
2218 *
2219 * mem_idx represents the offset for a given
2220 * nid and priv in a specific region because it
2221 * is at the beginning of the numa_faults array.
2222 */
2223 p->numa_group->faults[mem_idx] += diff;
2224 p->numa_group->faults_cpu[mem_idx] += f_diff;
2225 p->numa_group->total_faults += diff;
2226 group_faults += p->numa_group->faults[mem_idx];
2227 }
2228 }
2229
2230 if (faults > max_faults) {
2231 max_faults = faults;
2232 max_nid = nid;
2233 }
2234
2235 if (group_faults > max_group_faults) {
2236 max_group_faults = group_faults;
2237 max_group_nid = nid;
2238 }
2239 }
2240
2241 update_task_scan_period(p, fault_types[0], fault_types[1]);
2242
2243 if (p->numa_group) {
2244 numa_group_count_active_nodes(p->numa_group);
2245 spin_unlock_irq(group_lock);
2246 max_nid = preferred_group_nid(p, max_group_nid);
2247 }
2248
2249 if (max_faults) {
2250 /* Set the new preferred node */
2251 if (max_nid != p->numa_preferred_nid)
2252 sched_setnuma(p, max_nid);
2253
2254 if (task_node(p) != p->numa_preferred_nid)
2255 numa_migrate_preferred(p);
2256 }
2257 }
2258
get_numa_group(struct numa_group * grp)2259 static inline int get_numa_group(struct numa_group *grp)
2260 {
2261 return atomic_inc_not_zero(&grp->refcount);
2262 }
2263
put_numa_group(struct numa_group * grp)2264 static inline void put_numa_group(struct numa_group *grp)
2265 {
2266 if (atomic_dec_and_test(&grp->refcount))
2267 kfree_rcu(grp, rcu);
2268 }
2269
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2270 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2271 int *priv)
2272 {
2273 struct numa_group *grp, *my_grp;
2274 struct task_struct *tsk;
2275 bool join = false;
2276 int cpu = cpupid_to_cpu(cpupid);
2277 int i;
2278
2279 if (unlikely(!p->numa_group)) {
2280 unsigned int size = sizeof(struct numa_group) +
2281 4*nr_node_ids*sizeof(unsigned long);
2282
2283 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2284 if (!grp)
2285 return;
2286
2287 atomic_set(&grp->refcount, 1);
2288 grp->active_nodes = 1;
2289 grp->max_faults_cpu = 0;
2290 spin_lock_init(&grp->lock);
2291 grp->gid = p->pid;
2292 /* Second half of the array tracks nids where faults happen */
2293 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2294 nr_node_ids;
2295
2296 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2297 grp->faults[i] = p->numa_faults[i];
2298
2299 grp->total_faults = p->total_numa_faults;
2300
2301 grp->nr_tasks++;
2302 rcu_assign_pointer(p->numa_group, grp);
2303 }
2304
2305 rcu_read_lock();
2306 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2307
2308 if (!cpupid_match_pid(tsk, cpupid))
2309 goto no_join;
2310
2311 grp = rcu_dereference(tsk->numa_group);
2312 if (!grp)
2313 goto no_join;
2314
2315 my_grp = p->numa_group;
2316 if (grp == my_grp)
2317 goto no_join;
2318
2319 /*
2320 * Only join the other group if its bigger; if we're the bigger group,
2321 * the other task will join us.
2322 */
2323 if (my_grp->nr_tasks > grp->nr_tasks)
2324 goto no_join;
2325
2326 /*
2327 * Tie-break on the grp address.
2328 */
2329 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2330 goto no_join;
2331
2332 /* Always join threads in the same process. */
2333 if (tsk->mm == current->mm)
2334 join = true;
2335
2336 /* Simple filter to avoid false positives due to PID collisions */
2337 if (flags & TNF_SHARED)
2338 join = true;
2339
2340 /* Update priv based on whether false sharing was detected */
2341 *priv = !join;
2342
2343 if (join && !get_numa_group(grp))
2344 goto no_join;
2345
2346 rcu_read_unlock();
2347
2348 if (!join)
2349 return;
2350
2351 BUG_ON(irqs_disabled());
2352 double_lock_irq(&my_grp->lock, &grp->lock);
2353
2354 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2355 my_grp->faults[i] -= p->numa_faults[i];
2356 grp->faults[i] += p->numa_faults[i];
2357 }
2358 my_grp->total_faults -= p->total_numa_faults;
2359 grp->total_faults += p->total_numa_faults;
2360
2361 my_grp->nr_tasks--;
2362 grp->nr_tasks++;
2363
2364 spin_unlock(&my_grp->lock);
2365 spin_unlock_irq(&grp->lock);
2366
2367 rcu_assign_pointer(p->numa_group, grp);
2368
2369 put_numa_group(my_grp);
2370 return;
2371
2372 no_join:
2373 rcu_read_unlock();
2374 return;
2375 }
2376
2377 /*
2378 * Get rid of NUMA staticstics associated with a task (either current or dead).
2379 * If @final is set, the task is dead and has reached refcount zero, so we can
2380 * safely free all relevant data structures. Otherwise, there might be
2381 * concurrent reads from places like load balancing and procfs, and we should
2382 * reset the data back to default state without freeing ->numa_faults.
2383 */
task_numa_free(struct task_struct * p,bool final)2384 void task_numa_free(struct task_struct *p, bool final)
2385 {
2386 struct numa_group *grp = p->numa_group;
2387 unsigned long *numa_faults = p->numa_faults;
2388 unsigned long flags;
2389 int i;
2390
2391 if (!numa_faults)
2392 return;
2393
2394 if (grp) {
2395 spin_lock_irqsave(&grp->lock, flags);
2396 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2397 grp->faults[i] -= p->numa_faults[i];
2398 grp->total_faults -= p->total_numa_faults;
2399
2400 grp->nr_tasks--;
2401 spin_unlock_irqrestore(&grp->lock, flags);
2402 RCU_INIT_POINTER(p->numa_group, NULL);
2403 put_numa_group(grp);
2404 }
2405
2406 if (final) {
2407 p->numa_faults = NULL;
2408 kfree(numa_faults);
2409 } else {
2410 p->total_numa_faults = 0;
2411 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2412 numa_faults[i] = 0;
2413 }
2414 }
2415
2416 /*
2417 * Got a PROT_NONE fault for a page on @node.
2418 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2419 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2420 {
2421 struct task_struct *p = current;
2422 bool migrated = flags & TNF_MIGRATED;
2423 int cpu_node = task_node(current);
2424 int local = !!(flags & TNF_FAULT_LOCAL);
2425 struct numa_group *ng;
2426 int priv;
2427
2428 if (!static_branch_likely(&sched_numa_balancing))
2429 return;
2430
2431 /* for example, ksmd faulting in a user's mm */
2432 if (!p->mm)
2433 return;
2434
2435 /* Allocate buffer to track faults on a per-node basis */
2436 if (unlikely(!p->numa_faults)) {
2437 int size = sizeof(*p->numa_faults) *
2438 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2439
2440 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2441 if (!p->numa_faults)
2442 return;
2443
2444 p->total_numa_faults = 0;
2445 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2446 }
2447
2448 /*
2449 * First accesses are treated as private, otherwise consider accesses
2450 * to be private if the accessing pid has not changed
2451 */
2452 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2453 priv = 1;
2454 } else {
2455 priv = cpupid_match_pid(p, last_cpupid);
2456 if (!priv && !(flags & TNF_NO_GROUP))
2457 task_numa_group(p, last_cpupid, flags, &priv);
2458 }
2459
2460 /*
2461 * If a workload spans multiple NUMA nodes, a shared fault that
2462 * occurs wholly within the set of nodes that the workload is
2463 * actively using should be counted as local. This allows the
2464 * scan rate to slow down when a workload has settled down.
2465 */
2466 ng = p->numa_group;
2467 if (!priv && !local && ng && ng->active_nodes > 1 &&
2468 numa_is_active_node(cpu_node, ng) &&
2469 numa_is_active_node(mem_node, ng))
2470 local = 1;
2471
2472 task_numa_placement(p);
2473
2474 /*
2475 * Retry task to preferred node migration periodically, in case it
2476 * case it previously failed, or the scheduler moved us.
2477 */
2478 if (time_after(jiffies, p->numa_migrate_retry))
2479 numa_migrate_preferred(p);
2480
2481 if (migrated)
2482 p->numa_pages_migrated += pages;
2483 if (flags & TNF_MIGRATE_FAIL)
2484 p->numa_faults_locality[2] += pages;
2485
2486 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2487 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2488 p->numa_faults_locality[local] += pages;
2489 }
2490
reset_ptenuma_scan(struct task_struct * p)2491 static void reset_ptenuma_scan(struct task_struct *p)
2492 {
2493 /*
2494 * We only did a read acquisition of the mmap sem, so
2495 * p->mm->numa_scan_seq is written to without exclusive access
2496 * and the update is not guaranteed to be atomic. That's not
2497 * much of an issue though, since this is just used for
2498 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2499 * expensive, to avoid any form of compiler optimizations:
2500 */
2501 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2502 p->mm->numa_scan_offset = 0;
2503 }
2504
2505 /*
2506 * The expensive part of numa migration is done from task_work context.
2507 * Triggered from task_tick_numa().
2508 */
task_numa_work(struct callback_head * work)2509 void task_numa_work(struct callback_head *work)
2510 {
2511 unsigned long migrate, next_scan, now = jiffies;
2512 struct task_struct *p = current;
2513 struct mm_struct *mm = p->mm;
2514 u64 runtime = p->se.sum_exec_runtime;
2515 struct vm_area_struct *vma;
2516 unsigned long start, end;
2517 unsigned long nr_pte_updates = 0;
2518 long pages, virtpages;
2519
2520 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2521
2522 work->next = work; /* protect against double add */
2523 /*
2524 * Who cares about NUMA placement when they're dying.
2525 *
2526 * NOTE: make sure not to dereference p->mm before this check,
2527 * exit_task_work() happens _after_ exit_mm() so we could be called
2528 * without p->mm even though we still had it when we enqueued this
2529 * work.
2530 */
2531 if (p->flags & PF_EXITING)
2532 return;
2533
2534 if (!mm->numa_next_scan) {
2535 mm->numa_next_scan = now +
2536 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2537 }
2538
2539 /*
2540 * Enforce maximal scan/migration frequency..
2541 */
2542 migrate = mm->numa_next_scan;
2543 if (time_before(now, migrate))
2544 return;
2545
2546 if (p->numa_scan_period == 0) {
2547 p->numa_scan_period_max = task_scan_max(p);
2548 p->numa_scan_period = task_scan_start(p);
2549 }
2550
2551 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2552 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2553 return;
2554
2555 /*
2556 * Delay this task enough that another task of this mm will likely win
2557 * the next time around.
2558 */
2559 p->node_stamp += 2 * TICK_NSEC;
2560
2561 start = mm->numa_scan_offset;
2562 pages = sysctl_numa_balancing_scan_size;
2563 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2564 virtpages = pages * 8; /* Scan up to this much virtual space */
2565 if (!pages)
2566 return;
2567
2568
2569 if (!down_read_trylock(&mm->mmap_sem))
2570 return;
2571 vma = find_vma(mm, start);
2572 if (!vma) {
2573 reset_ptenuma_scan(p);
2574 start = 0;
2575 vma = mm->mmap;
2576 }
2577 for (; vma; vma = vma->vm_next) {
2578 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2579 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2580 continue;
2581 }
2582
2583 /*
2584 * Shared library pages mapped by multiple processes are not
2585 * migrated as it is expected they are cache replicated. Avoid
2586 * hinting faults in read-only file-backed mappings or the vdso
2587 * as migrating the pages will be of marginal benefit.
2588 */
2589 if (!vma->vm_mm ||
2590 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2591 continue;
2592
2593 /*
2594 * Skip inaccessible VMAs to avoid any confusion between
2595 * PROT_NONE and NUMA hinting ptes
2596 */
2597 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2598 continue;
2599
2600 do {
2601 start = max(start, vma->vm_start);
2602 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2603 end = min(end, vma->vm_end);
2604 nr_pte_updates = change_prot_numa(vma, start, end);
2605
2606 /*
2607 * Try to scan sysctl_numa_balancing_size worth of
2608 * hpages that have at least one present PTE that
2609 * is not already pte-numa. If the VMA contains
2610 * areas that are unused or already full of prot_numa
2611 * PTEs, scan up to virtpages, to skip through those
2612 * areas faster.
2613 */
2614 if (nr_pte_updates)
2615 pages -= (end - start) >> PAGE_SHIFT;
2616 virtpages -= (end - start) >> PAGE_SHIFT;
2617
2618 start = end;
2619 if (pages <= 0 || virtpages <= 0)
2620 goto out;
2621
2622 cond_resched();
2623 } while (end != vma->vm_end);
2624 }
2625
2626 out:
2627 /*
2628 * It is possible to reach the end of the VMA list but the last few
2629 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2630 * would find the !migratable VMA on the next scan but not reset the
2631 * scanner to the start so check it now.
2632 */
2633 if (vma)
2634 mm->numa_scan_offset = start;
2635 else
2636 reset_ptenuma_scan(p);
2637 up_read(&mm->mmap_sem);
2638
2639 /*
2640 * Make sure tasks use at least 32x as much time to run other code
2641 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2642 * Usually update_task_scan_period slows down scanning enough; on an
2643 * overloaded system we need to limit overhead on a per task basis.
2644 */
2645 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2646 u64 diff = p->se.sum_exec_runtime - runtime;
2647 p->node_stamp += 32 * diff;
2648 }
2649 }
2650
2651 /*
2652 * Drive the periodic memory faults..
2653 */
task_tick_numa(struct rq * rq,struct task_struct * curr)2654 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2655 {
2656 struct callback_head *work = &curr->numa_work;
2657 u64 period, now;
2658
2659 /*
2660 * We don't care about NUMA placement if we don't have memory.
2661 */
2662 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2663 return;
2664
2665 /*
2666 * Using runtime rather than walltime has the dual advantage that
2667 * we (mostly) drive the selection from busy threads and that the
2668 * task needs to have done some actual work before we bother with
2669 * NUMA placement.
2670 */
2671 now = curr->se.sum_exec_runtime;
2672 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2673
2674 if (now > curr->node_stamp + period) {
2675 if (!curr->node_stamp)
2676 curr->numa_scan_period = task_scan_start(curr);
2677 curr->node_stamp += period;
2678
2679 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2680 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2681 task_work_add(curr, work, true);
2682 }
2683 }
2684 }
2685
2686 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)2687 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2688 {
2689 }
2690
account_numa_enqueue(struct rq * rq,struct task_struct * p)2691 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2692 {
2693 }
2694
account_numa_dequeue(struct rq * rq,struct task_struct * p)2695 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2696 {
2697 }
2698
2699 #endif /* CONFIG_NUMA_BALANCING */
2700
2701 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)2702 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2703 {
2704 update_load_add(&cfs_rq->load, se->load.weight);
2705 if (!parent_entity(se))
2706 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2707 #ifdef CONFIG_SMP
2708 if (entity_is_task(se)) {
2709 struct rq *rq = rq_of(cfs_rq);
2710
2711 account_numa_enqueue(rq, task_of(se));
2712 list_add(&se->group_node, &rq->cfs_tasks);
2713 }
2714 #endif
2715 cfs_rq->nr_running++;
2716 }
2717
2718 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)2719 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2720 {
2721 update_load_sub(&cfs_rq->load, se->load.weight);
2722 if (!parent_entity(se))
2723 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2724 #ifdef CONFIG_SMP
2725 if (entity_is_task(se)) {
2726 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2727 list_del_init(&se->group_node);
2728 }
2729 #endif
2730 cfs_rq->nr_running--;
2731 }
2732
2733 #ifdef CONFIG_FAIR_GROUP_SCHED
2734 # ifdef CONFIG_SMP
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)2735 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2736 {
2737 long tg_weight, load, shares;
2738
2739 /*
2740 * This really should be: cfs_rq->avg.load_avg, but instead we use
2741 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2742 * the shares for small weight interactive tasks.
2743 */
2744 load = scale_load_down(cfs_rq->load.weight);
2745
2746 tg_weight = atomic_long_read(&tg->load_avg);
2747
2748 /* Ensure tg_weight >= load */
2749 tg_weight -= cfs_rq->tg_load_avg_contrib;
2750 tg_weight += load;
2751
2752 shares = (tg->shares * load);
2753 if (tg_weight)
2754 shares /= tg_weight;
2755
2756 /*
2757 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2758 * of a group with small tg->shares value. It is a floor value which is
2759 * assigned as a minimum load.weight to the sched_entity representing
2760 * the group on a CPU.
2761 *
2762 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2763 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2764 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2765 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2766 * instead of 0.
2767 */
2768 if (shares < MIN_SHARES)
2769 shares = MIN_SHARES;
2770 if (shares > tg->shares)
2771 shares = tg->shares;
2772
2773 return shares;
2774 }
2775 # else /* CONFIG_SMP */
calc_cfs_shares(struct cfs_rq * cfs_rq,struct task_group * tg)2776 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2777 {
2778 return tg->shares;
2779 }
2780 # endif /* CONFIG_SMP */
2781
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)2782 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2783 unsigned long weight)
2784 {
2785 if (se->on_rq) {
2786 /* commit outstanding execution time */
2787 if (cfs_rq->curr == se)
2788 update_curr(cfs_rq);
2789 account_entity_dequeue(cfs_rq, se);
2790 }
2791
2792 update_load_set(&se->load, weight);
2793
2794 if (se->on_rq)
2795 account_entity_enqueue(cfs_rq, se);
2796 }
2797
2798 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2799
update_cfs_shares(struct sched_entity * se)2800 static void update_cfs_shares(struct sched_entity *se)
2801 {
2802 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2803 struct task_group *tg;
2804 long shares;
2805
2806 if (!cfs_rq)
2807 return;
2808
2809 if (throttled_hierarchy(cfs_rq))
2810 return;
2811
2812 tg = cfs_rq->tg;
2813
2814 #ifndef CONFIG_SMP
2815 if (likely(se->load.weight == tg->shares))
2816 return;
2817 #endif
2818 shares = calc_cfs_shares(cfs_rq, tg);
2819
2820 reweight_entity(cfs_rq_of(se), se, shares);
2821 }
2822
2823 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_shares(struct sched_entity * se)2824 static inline void update_cfs_shares(struct sched_entity *se)
2825 {
2826 }
2827 #endif /* CONFIG_FAIR_GROUP_SCHED */
2828
cfs_rq_util_change(struct cfs_rq * cfs_rq)2829 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2830 {
2831 struct rq *rq = rq_of(cfs_rq);
2832
2833 if (&rq->cfs == cfs_rq) {
2834 /*
2835 * There are a few boundary cases this might miss but it should
2836 * get called often enough that that should (hopefully) not be
2837 * a real problem -- added to that it only calls on the local
2838 * CPU, so if we enqueue remotely we'll miss an update, but
2839 * the next tick/schedule should update.
2840 *
2841 * It will not get called when we go idle, because the idle
2842 * thread is a different class (!fair), nor will the utilization
2843 * number include things like RT tasks.
2844 *
2845 * As is, the util number is not freq-invariant (we'd have to
2846 * implement arch_scale_freq_capacity() for that).
2847 *
2848 * See cpu_util().
2849 */
2850 cpufreq_update_util(rq, 0);
2851 }
2852 }
2853
2854 #ifdef CONFIG_SMP
2855 /*
2856 * Approximate:
2857 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2858 */
decay_load(u64 val,u64 n)2859 static u64 decay_load(u64 val, u64 n)
2860 {
2861 unsigned int local_n;
2862
2863 if (unlikely(n > LOAD_AVG_PERIOD * 63))
2864 return 0;
2865
2866 /* after bounds checking we can collapse to 32-bit */
2867 local_n = n;
2868
2869 /*
2870 * As y^PERIOD = 1/2, we can combine
2871 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2872 * With a look-up table which covers y^n (n<PERIOD)
2873 *
2874 * To achieve constant time decay_load.
2875 */
2876 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2877 val >>= local_n / LOAD_AVG_PERIOD;
2878 local_n %= LOAD_AVG_PERIOD;
2879 }
2880
2881 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2882 return val;
2883 }
2884
__accumulate_pelt_segments(u64 periods,u32 d1,u32 d3)2885 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2886 {
2887 u32 c1, c2, c3 = d3; /* y^0 == 1 */
2888
2889 /*
2890 * c1 = d1 y^p
2891 */
2892 c1 = decay_load((u64)d1, periods);
2893
2894 /*
2895 * p-1
2896 * c2 = 1024 \Sum y^n
2897 * n=1
2898 *
2899 * inf inf
2900 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2901 * n=0 n=p
2902 */
2903 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2904
2905 return c1 + c2 + c3;
2906 }
2907
2908 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2909
2910 /*
2911 * Accumulate the three separate parts of the sum; d1 the remainder
2912 * of the last (incomplete) period, d2 the span of full periods and d3
2913 * the remainder of the (incomplete) current period.
2914 *
2915 * d1 d2 d3
2916 * ^ ^ ^
2917 * | | |
2918 * |<->|<----------------->|<--->|
2919 * ... |---x---|------| ... |------|-----x (now)
2920 *
2921 * p-1
2922 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2923 * n=1
2924 *
2925 * = u y^p + (Step 1)
2926 *
2927 * p-1
2928 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
2929 * n=1
2930 */
2931 static __always_inline u32
accumulate_sum(u64 delta,int cpu,struct sched_avg * sa,unsigned long weight,int running,struct cfs_rq * cfs_rq)2932 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2933 unsigned long weight, int running, struct cfs_rq *cfs_rq)
2934 {
2935 unsigned long scale_freq, scale_cpu;
2936 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2937 u64 periods;
2938
2939 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2940 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2941
2942 delta += sa->period_contrib;
2943 periods = delta / 1024; /* A period is 1024us (~1ms) */
2944
2945 /*
2946 * Step 1: decay old *_sum if we crossed period boundaries.
2947 */
2948 if (periods) {
2949 sa->load_sum = decay_load(sa->load_sum, periods);
2950 if (cfs_rq) {
2951 cfs_rq->runnable_load_sum =
2952 decay_load(cfs_rq->runnable_load_sum, periods);
2953 }
2954 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
2955
2956 /*
2957 * Step 2
2958 */
2959 delta %= 1024;
2960 contrib = __accumulate_pelt_segments(periods,
2961 1024 - sa->period_contrib, delta);
2962 }
2963 sa->period_contrib = delta;
2964
2965 contrib = cap_scale(contrib, scale_freq);
2966 if (weight) {
2967 sa->load_sum += weight * contrib;
2968 if (cfs_rq)
2969 cfs_rq->runnable_load_sum += weight * contrib;
2970 }
2971 if (running)
2972 sa->util_sum += contrib * scale_cpu;
2973
2974 return periods;
2975 }
2976
2977 /*
2978 * We can represent the historical contribution to runnable average as the
2979 * coefficients of a geometric series. To do this we sub-divide our runnable
2980 * history into segments of approximately 1ms (1024us); label the segment that
2981 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2982 *
2983 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2984 * p0 p1 p2
2985 * (now) (~1ms ago) (~2ms ago)
2986 *
2987 * Let u_i denote the fraction of p_i that the entity was runnable.
2988 *
2989 * We then designate the fractions u_i as our co-efficients, yielding the
2990 * following representation of historical load:
2991 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2992 *
2993 * We choose y based on the with of a reasonably scheduling period, fixing:
2994 * y^32 = 0.5
2995 *
2996 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2997 * approximately half as much as the contribution to load within the last ms
2998 * (u_0).
2999 *
3000 * When a period "rolls over" and we have new u_0`, multiplying the previous
3001 * sum again by y is sufficient to update:
3002 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
3003 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
3004 */
3005 static __always_inline int
___update_load_avg(u64 now,int cpu,struct sched_avg * sa,unsigned long weight,int running,struct cfs_rq * cfs_rq,struct rt_rq * rt_rq)3006 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
3007 unsigned long weight, int running, struct cfs_rq *cfs_rq,
3008 struct rt_rq *rt_rq)
3009 {
3010 u64 delta;
3011
3012 delta = now - sa->last_update_time;
3013 /*
3014 * This should only happen when time goes backwards, which it
3015 * unfortunately does during sched clock init when we swap over to TSC.
3016 */
3017 if ((s64)delta < 0) {
3018 sa->last_update_time = now;
3019 return 0;
3020 }
3021
3022 /*
3023 * Use 1024ns as the unit of measurement since it's a reasonable
3024 * approximation of 1us and fast to compute.
3025 */
3026 delta >>= 10;
3027 if (!delta)
3028 return 0;
3029
3030 sa->last_update_time += delta << 10;
3031
3032 /*
3033 * running is a subset of runnable (weight) so running can't be set if
3034 * runnable is clear. But there are some corner cases where the current
3035 * se has been already dequeued but cfs_rq->curr still points to it.
3036 * This means that weight will be 0 but not running for a sched_entity
3037 * but also for a cfs_rq if the latter becomes idle. As an example,
3038 * this happens during idle_balance() which calls
3039 * update_blocked_averages()
3040 */
3041 if (!weight)
3042 running = 0;
3043
3044 /*
3045 * Now we know we crossed measurement unit boundaries. The *_avg
3046 * accrues by two steps:
3047 *
3048 * Step 1: accumulate *_sum since last_update_time. If we haven't
3049 * crossed period boundaries, finish.
3050 */
3051 if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
3052 return 0;
3053
3054 /*
3055 * Step 2: update *_avg.
3056 */
3057 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3058 if (cfs_rq) {
3059 cfs_rq->runnable_load_avg =
3060 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX - 1024 + sa->period_contrib);
3061 }
3062 sa->util_avg = sa->util_sum / (LOAD_AVG_MAX - 1024 + sa->period_contrib);
3063
3064 if (cfs_rq)
3065 trace_sched_load_cfs_rq(cfs_rq);
3066 else {
3067 if (likely(!rt_rq))
3068 trace_sched_load_se(container_of(sa, struct sched_entity, avg));
3069 else
3070 trace_sched_load_rt_rq(cpu, rt_rq);
3071 }
3072
3073 return 1;
3074 }
3075
3076 /*
3077 * When a task is dequeued, its estimated utilization should not be update if
3078 * its util_avg has not been updated at least once.
3079 * This flag is used to synchronize util_avg updates with util_est updates.
3080 * We map this information into the LSB bit of the utilization saved at
3081 * dequeue time (i.e. util_est.dequeued).
3082 */
3083 #define UTIL_AVG_UNCHANGED 0x1
3084
cfs_se_util_change(struct sched_avg * avg)3085 static inline void cfs_se_util_change(struct sched_avg *avg)
3086 {
3087 unsigned int enqueued;
3088
3089 if (!sched_feat(UTIL_EST))
3090 return;
3091
3092 /* Avoid store if the flag has been already set */
3093 enqueued = avg->util_est.enqueued;
3094 if (!(enqueued & UTIL_AVG_UNCHANGED))
3095 return;
3096
3097 /* Reset flag to report util_avg has been updated */
3098 enqueued &= ~UTIL_AVG_UNCHANGED;
3099 WRITE_ONCE(avg->util_est.enqueued, enqueued);
3100 }
3101
3102 static int
__update_load_avg_blocked_se(u64 now,int cpu,struct sched_entity * se)3103 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
3104 {
3105 return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL, NULL);
3106 }
3107
3108 static int
__update_load_avg_se(u64 now,int cpu,struct cfs_rq * cfs_rq,struct sched_entity * se)3109 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
3110 {
3111 if (___update_load_avg(now, cpu, &se->avg,
3112 se->on_rq * scale_load_down(se->load.weight),
3113 cfs_rq->curr == se, NULL, NULL)) {
3114 cfs_se_util_change(&se->avg);
3115
3116 #ifdef UTIL_EST_DEBUG
3117 /*
3118 * Trace utilization only for actual tasks.
3119 *
3120 * These trace events are mostly useful to get easier to
3121 * read plots for the estimated utilization, where we can
3122 * compare it with the actual grow/decrease of the original
3123 * PELT signal.
3124 * Let's keep them disabled by default in "production kernels".
3125 */
3126 if (entity_is_task(se)) {
3127 struct task_struct *tsk = task_of(se);
3128
3129 trace_sched_util_est_task(tsk, &se->avg);
3130
3131 /* Trace utilization only for top level CFS RQ */
3132 cfs_rq = &(task_rq(tsk)->cfs);
3133 trace_sched_util_est_cpu(cpu, cfs_rq);
3134 }
3135 #endif /* UTIL_EST_DEBUG */
3136
3137 return 1;
3138 }
3139
3140 return 0;
3141 }
3142
3143 static int
__update_load_avg_cfs_rq(u64 now,int cpu,struct cfs_rq * cfs_rq)3144 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
3145 {
3146 return ___update_load_avg(now, cpu, &cfs_rq->avg,
3147 scale_load_down(cfs_rq->load.weight),
3148 cfs_rq->curr != NULL, cfs_rq, NULL);
3149 }
3150
3151 /*
3152 * Signed add and clamp on underflow.
3153 *
3154 * Explicitly do a load-store to ensure the intermediate value never hits
3155 * memory. This allows lockless observations without ever seeing the negative
3156 * values.
3157 */
3158 #define add_positive(_ptr, _val) do { \
3159 typeof(_ptr) ptr = (_ptr); \
3160 typeof(_val) val = (_val); \
3161 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3162 \
3163 res = var + val; \
3164 \
3165 if (val < 0 && res > var) \
3166 res = 0; \
3167 \
3168 WRITE_ONCE(*ptr, res); \
3169 } while (0)
3170
3171 #ifdef CONFIG_FAIR_GROUP_SCHED
3172 /**
3173 * update_tg_load_avg - update the tg's load avg
3174 * @cfs_rq: the cfs_rq whose avg changed
3175 * @force: update regardless of how small the difference
3176 *
3177 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3178 * However, because tg->load_avg is a global value there are performance
3179 * considerations.
3180 *
3181 * In order to avoid having to look at the other cfs_rq's, we use a
3182 * differential update where we store the last value we propagated. This in
3183 * turn allows skipping updates if the differential is 'small'.
3184 *
3185 * Updating tg's load_avg is necessary before update_cfs_share().
3186 */
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)3187 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3188 {
3189 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3190
3191 /*
3192 * No need to update load_avg for root_task_group as it is not used.
3193 */
3194 if (cfs_rq->tg == &root_task_group)
3195 return;
3196
3197 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3198 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3199 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3200 }
3201
3202 trace_sched_load_tg(cfs_rq);
3203 }
3204
3205 /*
3206 * Called within set_task_rq() right before setting a task's cpu. The
3207 * caller only guarantees p->pi_lock is held; no other assumptions,
3208 * including the state of rq->lock, should be made.
3209 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3210 void set_task_rq_fair(struct sched_entity *se,
3211 struct cfs_rq *prev, struct cfs_rq *next)
3212 {
3213 u64 p_last_update_time;
3214 u64 n_last_update_time;
3215
3216 if (!sched_feat(ATTACH_AGE_LOAD))
3217 return;
3218
3219 /*
3220 * We are supposed to update the task to "current" time, then its up to
3221 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3222 * getting what current time is, so simply throw away the out-of-date
3223 * time. This will result in the wakee task is less decayed, but giving
3224 * the wakee more load sounds not bad.
3225 */
3226 if (!(se->avg.last_update_time && prev))
3227 return;
3228
3229 #ifndef CONFIG_64BIT
3230 {
3231 u64 p_last_update_time_copy;
3232 u64 n_last_update_time_copy;
3233
3234 do {
3235 p_last_update_time_copy = prev->load_last_update_time_copy;
3236 n_last_update_time_copy = next->load_last_update_time_copy;
3237
3238 smp_rmb();
3239
3240 p_last_update_time = prev->avg.last_update_time;
3241 n_last_update_time = next->avg.last_update_time;
3242
3243 } while (p_last_update_time != p_last_update_time_copy ||
3244 n_last_update_time != n_last_update_time_copy);
3245 }
3246 #else
3247 p_last_update_time = prev->avg.last_update_time;
3248 n_last_update_time = next->avg.last_update_time;
3249 #endif
3250 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3251 se->avg.last_update_time = n_last_update_time;
3252 }
3253
3254 /* Take into account change of utilization of a child task group */
3255 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se)3256 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3257 {
3258 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3259 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3260
3261 /* Nothing to update */
3262 if (!delta)
3263 return;
3264
3265 /* Set new sched_entity's utilization */
3266 se->avg.util_avg = gcfs_rq->avg.util_avg;
3267 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3268
3269 /* Update parent cfs_rq utilization */
3270 add_positive(&cfs_rq->avg.util_avg, delta);
3271 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3272 }
3273
3274 /* Take into account change of load of a child task group */
3275 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se)3276 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3277 {
3278 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3279 long delta, load = gcfs_rq->avg.load_avg;
3280
3281 /*
3282 * If the load of group cfs_rq is null, the load of the
3283 * sched_entity will also be null so we can skip the formula
3284 */
3285 if (load) {
3286 long tg_load;
3287
3288 /* Get tg's load and ensure tg_load > 0 */
3289 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3290
3291 /* Ensure tg_load >= load and updated with current load*/
3292 tg_load -= gcfs_rq->tg_load_avg_contrib;
3293 tg_load += load;
3294
3295 /*
3296 * We need to compute a correction term in the case that the
3297 * task group is consuming more CPU than a task of equal
3298 * weight. A task with a weight equals to tg->shares will have
3299 * a load less or equal to scale_load_down(tg->shares).
3300 * Similarly, the sched_entities that represent the task group
3301 * at parent level, can't have a load higher than
3302 * scale_load_down(tg->shares). And the Sum of sched_entities'
3303 * load must be <= scale_load_down(tg->shares).
3304 */
3305 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3306 /* scale gcfs_rq's load into tg's shares*/
3307 load *= scale_load_down(gcfs_rq->tg->shares);
3308 load /= tg_load;
3309 }
3310 }
3311
3312 delta = load - se->avg.load_avg;
3313
3314 /* Nothing to update */
3315 if (!delta)
3316 return;
3317
3318 /* Set new sched_entity's load */
3319 se->avg.load_avg = load;
3320 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3321
3322 /* Update parent cfs_rq load */
3323 add_positive(&cfs_rq->avg.load_avg, delta);
3324 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3325
3326 /*
3327 * If the sched_entity is already enqueued, we also have to update the
3328 * runnable load avg.
3329 */
3330 if (se->on_rq) {
3331 /* Update parent cfs_rq runnable_load_avg */
3332 add_positive(&cfs_rq->runnable_load_avg, delta);
3333 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3334 }
3335 }
3336
set_tg_cfs_propagate(struct cfs_rq * cfs_rq)3337 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3338 {
3339 cfs_rq->propagate_avg = 1;
3340 }
3341
test_and_clear_tg_cfs_propagate(struct sched_entity * se)3342 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3343 {
3344 struct cfs_rq *cfs_rq = group_cfs_rq(se);
3345
3346 if (!cfs_rq->propagate_avg)
3347 return 0;
3348
3349 cfs_rq->propagate_avg = 0;
3350 return 1;
3351 }
3352
3353 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3354 static inline int propagate_entity_load_avg(struct sched_entity *se)
3355 {
3356 struct cfs_rq *cfs_rq;
3357
3358 if (entity_is_task(se))
3359 return 0;
3360
3361 if (!test_and_clear_tg_cfs_propagate(se))
3362 return 0;
3363
3364 cfs_rq = cfs_rq_of(se);
3365
3366 set_tg_cfs_propagate(cfs_rq);
3367
3368 update_tg_cfs_util(cfs_rq, se);
3369 update_tg_cfs_load(cfs_rq, se);
3370
3371 trace_sched_load_cfs_rq(cfs_rq);
3372 trace_sched_load_se(se);
3373
3374 return 1;
3375 }
3376
3377 /*
3378 * Check if we need to update the load and the utilization of a blocked
3379 * group_entity:
3380 */
skip_blocked_update(struct sched_entity * se)3381 static inline bool skip_blocked_update(struct sched_entity *se)
3382 {
3383 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3384
3385 /*
3386 * If sched_entity still have not zero load or utilization, we have to
3387 * decay it:
3388 */
3389 if (se->avg.load_avg || se->avg.util_avg)
3390 return false;
3391
3392 /*
3393 * If there is a pending propagation, we have to update the load and
3394 * the utilization of the sched_entity:
3395 */
3396 if (gcfs_rq->propagate_avg)
3397 return false;
3398
3399 /*
3400 * Otherwise, the load and the utilization of the sched_entity is
3401 * already zero and there is no pending propagation, so it will be a
3402 * waste of time to try to decay it:
3403 */
3404 return true;
3405 }
3406
3407 #else /* CONFIG_FAIR_GROUP_SCHED */
3408
update_tg_load_avg(struct cfs_rq * cfs_rq,int force)3409 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3410
propagate_entity_load_avg(struct sched_entity * se)3411 static inline int propagate_entity_load_avg(struct sched_entity *se)
3412 {
3413 return 0;
3414 }
3415
set_tg_cfs_propagate(struct cfs_rq * cfs_rq)3416 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3417
3418 #endif /* CONFIG_FAIR_GROUP_SCHED */
3419
3420 /*
3421 * Unsigned subtract and clamp on underflow.
3422 *
3423 * Explicitly do a load-store to ensure the intermediate value never hits
3424 * memory. This allows lockless observations without ever seeing the negative
3425 * values.
3426 */
3427 #define sub_positive(_ptr, _val) do { \
3428 typeof(_ptr) ptr = (_ptr); \
3429 typeof(*ptr) val = (_val); \
3430 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3431 res = var - val; \
3432 if (res > var) \
3433 res = 0; \
3434 WRITE_ONCE(*ptr, res); \
3435 } while (0)
3436
3437 /**
3438 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3439 * @now: current time, as per cfs_rq_clock_task()
3440 * @cfs_rq: cfs_rq to update
3441 *
3442 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3443 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3444 * post_init_entity_util_avg().
3445 *
3446 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3447 *
3448 * Returns true if the load decayed or we removed load.
3449 *
3450 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3451 * call update_tg_load_avg() when this function returns true.
3452 */
3453 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3454 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3455 {
3456 struct sched_avg *sa = &cfs_rq->avg;
3457 int decayed, removed_load = 0, removed_util = 0;
3458
3459 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3460 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3461 sub_positive(&sa->load_avg, r);
3462 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3463 removed_load = 1;
3464 set_tg_cfs_propagate(cfs_rq);
3465 }
3466
3467 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3468 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3469 sub_positive(&sa->util_avg, r);
3470 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3471 removed_util = 1;
3472 set_tg_cfs_propagate(cfs_rq);
3473 }
3474
3475 decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3476
3477 #ifndef CONFIG_64BIT
3478 smp_wmb();
3479 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3480 #endif
3481
3482 if (decayed || removed_util)
3483 cfs_rq_util_change(cfs_rq);
3484
3485 return decayed || removed_load;
3486 }
3487
update_rt_rq_load_avg(u64 now,int cpu,struct rt_rq * rt_rq,int running)3488 int update_rt_rq_load_avg(u64 now, int cpu, struct rt_rq *rt_rq, int running)
3489 {
3490 int ret;
3491
3492 ret = ___update_load_avg(now, cpu, &rt_rq->avg, running, running, NULL, rt_rq);
3493
3494 return ret;
3495 }
3496
3497 /*
3498 * Optional action to be done while updating the load average
3499 */
3500 #define UPDATE_TG 0x1
3501 #define SKIP_AGE_LOAD 0x2
3502
3503 /* Update task and its cfs_rq load average */
update_load_avg(struct sched_entity * se,int flags)3504 static inline void update_load_avg(struct sched_entity *se, int flags)
3505 {
3506 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3507 u64 now = cfs_rq_clock_task(cfs_rq);
3508 struct rq *rq = rq_of(cfs_rq);
3509 int cpu = cpu_of(rq);
3510 int decayed;
3511
3512 /*
3513 * Track task load average for carrying it to new CPU after migrated, and
3514 * track group sched_entity load average for task_h_load calc in migration
3515 */
3516 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3517 __update_load_avg_se(now, cpu, cfs_rq, se);
3518
3519 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3520 decayed |= propagate_entity_load_avg(se);
3521
3522 if (decayed && (flags & UPDATE_TG))
3523 update_tg_load_avg(cfs_rq, 0);
3524 }
3525
3526 /**
3527 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3528 * @cfs_rq: cfs_rq to attach to
3529 * @se: sched_entity to attach
3530 *
3531 * Must call update_cfs_rq_load_avg() before this, since we rely on
3532 * cfs_rq->avg.last_update_time being current.
3533 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3534 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3535 {
3536 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3537 cfs_rq->avg.load_avg += se->avg.load_avg;
3538 cfs_rq->avg.load_sum += se->avg.load_sum;
3539 cfs_rq->avg.util_avg += se->avg.util_avg;
3540 cfs_rq->avg.util_sum += se->avg.util_sum;
3541 set_tg_cfs_propagate(cfs_rq);
3542
3543 cfs_rq_util_change(cfs_rq);
3544
3545 trace_sched_load_cfs_rq(cfs_rq);
3546 }
3547
3548 /**
3549 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3550 * @cfs_rq: cfs_rq to detach from
3551 * @se: sched_entity to detach
3552 *
3553 * Must call update_cfs_rq_load_avg() before this, since we rely on
3554 * cfs_rq->avg.last_update_time being current.
3555 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3556 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3557 {
3558
3559 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3560 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3561 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3562 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3563 set_tg_cfs_propagate(cfs_rq);
3564
3565 cfs_rq_util_change(cfs_rq);
3566
3567 trace_sched_load_cfs_rq(cfs_rq);
3568 }
3569
3570 /* Add the load generated by se into cfs_rq's load average */
3571 static inline void
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3572 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3573 {
3574 struct sched_avg *sa = &se->avg;
3575
3576 cfs_rq->runnable_load_avg += sa->load_avg;
3577 cfs_rq->runnable_load_sum += sa->load_sum;
3578
3579 if (!sa->last_update_time) {
3580 attach_entity_load_avg(cfs_rq, se);
3581 update_tg_load_avg(cfs_rq, 0);
3582 }
3583 }
3584
3585 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3586 static inline void
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3587 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3588 {
3589 cfs_rq->runnable_load_avg =
3590 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3591 cfs_rq->runnable_load_sum =
3592 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3593 }
3594
3595 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3596 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3597 {
3598 u64 last_update_time_copy;
3599 u64 last_update_time;
3600
3601 do {
3602 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3603 smp_rmb();
3604 last_update_time = cfs_rq->avg.last_update_time;
3605 } while (last_update_time != last_update_time_copy);
3606
3607 return last_update_time;
3608 }
3609 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3610 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3611 {
3612 return cfs_rq->avg.last_update_time;
3613 }
3614 #endif
3615
3616 /*
3617 * Synchronize entity load avg of dequeued entity without locking
3618 * the previous rq.
3619 */
sync_entity_load_avg(struct sched_entity * se)3620 void sync_entity_load_avg(struct sched_entity *se)
3621 {
3622 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3623 u64 last_update_time;
3624
3625 last_update_time = cfs_rq_last_update_time(cfs_rq);
3626 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3627 }
3628
3629 /*
3630 * Task first catches up with cfs_rq, and then subtract
3631 * itself from the cfs_rq (task must be off the queue now).
3632 */
remove_entity_load_avg(struct sched_entity * se)3633 void remove_entity_load_avg(struct sched_entity *se)
3634 {
3635 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3636
3637 /*
3638 * tasks cannot exit without having gone through wake_up_new_task() ->
3639 * post_init_entity_util_avg() which will have added things to the
3640 * cfs_rq, so we can remove unconditionally.
3641 *
3642 * Similarly for groups, they will have passed through
3643 * post_init_entity_util_avg() before unregister_sched_fair_group()
3644 * calls this.
3645 */
3646
3647 sync_entity_load_avg(se);
3648 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3649 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3650 }
3651
cfs_rq_runnable_load_avg(struct cfs_rq * cfs_rq)3652 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3653 {
3654 return cfs_rq->runnable_load_avg;
3655 }
3656
cfs_rq_load_avg(struct cfs_rq * cfs_rq)3657 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3658 {
3659 return cfs_rq->avg.load_avg;
3660 }
3661
3662 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3663
3664 static inline int task_fits_capacity(struct task_struct *p, long capacity);
3665
update_misfit_status(struct task_struct * p,struct rq * rq)3666 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3667 {
3668 if (!static_branch_unlikely(&sched_asym_cpucapacity))
3669 return;
3670
3671 if (!p) {
3672 rq->misfit_task_load = 0;
3673 return;
3674 }
3675
3676 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3677 rq->misfit_task_load = 0;
3678 return;
3679 }
3680
3681 rq->misfit_task_load = task_h_load(p);
3682 }
3683
task_util(struct task_struct * p)3684 static inline unsigned long task_util(struct task_struct *p)
3685 {
3686 #ifdef CONFIG_SCHED_WALT
3687 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
3688 return (p->ravg.demand /
3689 (walt_ravg_window >> SCHED_CAPACITY_SHIFT));
3690 #endif
3691 return READ_ONCE(p->se.avg.util_avg);
3692 }
3693
_task_util_est(struct task_struct * p)3694 static inline unsigned long _task_util_est(struct task_struct *p)
3695 {
3696 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3697
3698 return max(ue.ewma, ue.enqueued);
3699 }
3700
task_util_est(struct task_struct * p)3701 static inline unsigned long task_util_est(struct task_struct *p)
3702 {
3703 #ifdef CONFIG_SCHED_WALT
3704 if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
3705 return (p->ravg.demand /
3706 (walt_ravg_window >> SCHED_CAPACITY_SHIFT));
3707 #endif
3708 return max(task_util(p), _task_util_est(p));
3709 }
3710
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3711 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3712 struct task_struct *p)
3713 {
3714 unsigned int enqueued;
3715
3716 if (!sched_feat(UTIL_EST))
3717 return;
3718
3719 /* Update root cfs_rq's estimated utilization */
3720 enqueued = cfs_rq->avg.util_est.enqueued;
3721 enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3722 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3723
3724 trace_sched_util_est_task(p, &p->se.avg);
3725 trace_sched_util_est_cpu(cpu_of(rq_of(cfs_rq)), cfs_rq);
3726 }
3727
3728 /*
3729 * Check if a (signed) value is within a specified (unsigned) margin,
3730 * based on the observation that:
3731 *
3732 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3733 *
3734 * NOTE: this only works when value + maring < INT_MAX.
3735 */
within_margin(int value,int margin)3736 static inline bool within_margin(int value, int margin)
3737 {
3738 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3739 }
3740
3741 static void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)3742 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3743 {
3744 long last_ewma_diff;
3745 struct util_est ue;
3746
3747 if (!sched_feat(UTIL_EST))
3748 return;
3749
3750 /*
3751 * Update root cfs_rq's estimated utilization
3752 *
3753 * If *p is the last task then the root cfs_rq's estimated utilization
3754 * of a CPU is 0 by definition.
3755 */
3756 ue.enqueued = 0;
3757 if (cfs_rq->nr_running) {
3758 ue.enqueued = cfs_rq->avg.util_est.enqueued;
3759 ue.enqueued -= min_t(unsigned int, ue.enqueued,
3760 (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3761 }
3762 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3763
3764 trace_sched_util_est_cpu(cpu_of(rq_of(cfs_rq)), cfs_rq);
3765
3766 /*
3767 * Skip update of task's estimated utilization when the task has not
3768 * yet completed an activation, e.g. being migrated.
3769 */
3770 if (!task_sleep)
3771 return;
3772
3773 /*
3774 * If the PELT values haven't changed since enqueue time,
3775 * skip the util_est update.
3776 */
3777 ue = p->se.avg.util_est;
3778 if (ue.enqueued & UTIL_AVG_UNCHANGED)
3779 return;
3780
3781 /*
3782 * Skip update of task's estimated utilization when its EWMA is
3783 * already ~1% close to its last activation value.
3784 */
3785 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3786 last_ewma_diff = ue.enqueued - ue.ewma;
3787 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3788 return;
3789
3790 /*
3791 * Update Task's estimated utilization
3792 *
3793 * When *p completes an activation we can consolidate another sample
3794 * of the task size. This is done by storing the current PELT value
3795 * as ue.enqueued and by using this value to update the Exponential
3796 * Weighted Moving Average (EWMA):
3797 *
3798 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
3799 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
3800 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
3801 * = w * ( last_ewma_diff ) + ewma(t-1)
3802 * = w * (last_ewma_diff + ewma(t-1) / w)
3803 *
3804 * Where 'w' is the weight of new samples, which is configured to be
3805 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3806 */
3807 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3808 ue.ewma += last_ewma_diff;
3809 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3810 WRITE_ONCE(p->se.avg.util_est, ue);
3811
3812 trace_sched_util_est_task(p, &p->se.avg);
3813 }
3814
3815 #else /* CONFIG_SMP */
3816
3817 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3818 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3819 {
3820 return 0;
3821 }
3822
update_rt_rq_load_avg(u64 now,int cpu,struct rt_rq * rt_rq,int running)3823 int update_rt_rq_load_avg(u64 now, int cpu, struct rt_rq *rt_rq, int running)
3824 {
3825 return 0;
3826 }
3827
3828 #define UPDATE_TG 0x0
3829 #define SKIP_AGE_LOAD 0x0
3830
update_load_avg(struct sched_entity * se,int not_used1)3831 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3832 {
3833 cfs_rq_util_change(cfs_rq_of(se));
3834 }
3835
3836 static inline void
enqueue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3837 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3838 static inline void
dequeue_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3839 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
remove_entity_load_avg(struct sched_entity * se)3840 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3841
3842 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3843 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3844 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3845 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3846
idle_balance(struct rq * rq,struct rq_flags * rf)3847 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3848 {
3849 return 0;
3850 }
3851
update_misfit_status(struct task_struct * p,struct rq * rq)3852 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3853
3854 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3855 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3856
3857 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)3858 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3859 bool task_sleep) {}
3860
3861 #endif /* CONFIG_SMP */
3862
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)3863 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3864 {
3865 #ifdef CONFIG_SCHED_DEBUG
3866 s64 d = se->vruntime - cfs_rq->min_vruntime;
3867
3868 if (d < 0)
3869 d = -d;
3870
3871 if (d > 3*sysctl_sched_latency)
3872 schedstat_inc(cfs_rq->nr_spread_over);
3873 #endif
3874 }
3875
3876 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)3877 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3878 {
3879 u64 vruntime = cfs_rq->min_vruntime;
3880
3881 /*
3882 * The 'current' period is already promised to the current tasks,
3883 * however the extra weight of the new task will slow them down a
3884 * little, place the new task so that it fits in the slot that
3885 * stays open at the end.
3886 */
3887 if (initial && sched_feat(START_DEBIT))
3888 vruntime += sched_vslice(cfs_rq, se);
3889
3890 /* sleeps up to a single latency don't count. */
3891 if (!initial) {
3892 unsigned long thresh = sysctl_sched_latency;
3893
3894 /*
3895 * Halve their sleep time's effect, to allow
3896 * for a gentler effect of sleepers:
3897 */
3898 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3899 thresh >>= 1;
3900
3901 vruntime -= thresh;
3902 }
3903
3904 /* ensure we never gain time by being placed backwards. */
3905 se->vruntime = max_vruntime(se->vruntime, vruntime);
3906 }
3907
3908 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3909
check_schedstat_required(void)3910 static inline void check_schedstat_required(void)
3911 {
3912 #ifdef CONFIG_SCHEDSTATS
3913 if (schedstat_enabled())
3914 return;
3915
3916 /* Force schedstat enabled if a dependent tracepoint is active */
3917 if (trace_sched_stat_wait_enabled() ||
3918 trace_sched_stat_sleep_enabled() ||
3919 trace_sched_stat_iowait_enabled() ||
3920 trace_sched_stat_blocked_enabled() ||
3921 trace_sched_stat_runtime_enabled()) {
3922 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3923 "stat_blocked and stat_runtime require the "
3924 "kernel parameter schedstats=enable or "
3925 "kernel.sched_schedstats=1\n");
3926 }
3927 #endif
3928 }
3929
3930
3931 /*
3932 * MIGRATION
3933 *
3934 * dequeue
3935 * update_curr()
3936 * update_min_vruntime()
3937 * vruntime -= min_vruntime
3938 *
3939 * enqueue
3940 * update_curr()
3941 * update_min_vruntime()
3942 * vruntime += min_vruntime
3943 *
3944 * this way the vruntime transition between RQs is done when both
3945 * min_vruntime are up-to-date.
3946 *
3947 * WAKEUP (remote)
3948 *
3949 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3950 * vruntime -= min_vruntime
3951 *
3952 * enqueue
3953 * update_curr()
3954 * update_min_vruntime()
3955 * vruntime += min_vruntime
3956 *
3957 * this way we don't have the most up-to-date min_vruntime on the originating
3958 * CPU and an up-to-date min_vruntime on the destination CPU.
3959 */
3960
3961 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3962 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3963 {
3964 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3965 bool curr = cfs_rq->curr == se;
3966
3967 /*
3968 * If we're the current task, we must renormalise before calling
3969 * update_curr().
3970 */
3971 if (renorm && curr)
3972 se->vruntime += cfs_rq->min_vruntime;
3973
3974 update_curr(cfs_rq);
3975
3976 /*
3977 * Otherwise, renormalise after, such that we're placed at the current
3978 * moment in time, instead of some random moment in the past. Being
3979 * placed in the past could significantly boost this task to the
3980 * fairness detriment of existing tasks.
3981 */
3982 if (renorm && !curr)
3983 se->vruntime += cfs_rq->min_vruntime;
3984
3985 /*
3986 * When enqueuing a sched_entity, we must:
3987 * - Update loads to have both entity and cfs_rq synced with now.
3988 * - Add its load to cfs_rq->runnable_avg
3989 * - For group_entity, update its weight to reflect the new share of
3990 * its group cfs_rq
3991 * - Add its new weight to cfs_rq->load.weight
3992 */
3993 update_load_avg(se, UPDATE_TG);
3994 enqueue_entity_load_avg(cfs_rq, se);
3995 update_cfs_shares(se);
3996 account_entity_enqueue(cfs_rq, se);
3997
3998 if (flags & ENQUEUE_WAKEUP)
3999 place_entity(cfs_rq, se, 0);
4000
4001 check_schedstat_required();
4002 update_stats_enqueue(cfs_rq, se, flags);
4003 check_spread(cfs_rq, se);
4004 if (!curr)
4005 __enqueue_entity(cfs_rq, se);
4006 se->on_rq = 1;
4007
4008 if (cfs_rq->nr_running == 1) {
4009 list_add_leaf_cfs_rq(cfs_rq);
4010 check_enqueue_throttle(cfs_rq);
4011 }
4012 }
4013
__clear_buddies_last(struct sched_entity * se)4014 static void __clear_buddies_last(struct sched_entity *se)
4015 {
4016 for_each_sched_entity(se) {
4017 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4018 if (cfs_rq->last != se)
4019 break;
4020
4021 cfs_rq->last = NULL;
4022 }
4023 }
4024
__clear_buddies_next(struct sched_entity * se)4025 static void __clear_buddies_next(struct sched_entity *se)
4026 {
4027 for_each_sched_entity(se) {
4028 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4029 if (cfs_rq->next != se)
4030 break;
4031
4032 cfs_rq->next = NULL;
4033 }
4034 }
4035
__clear_buddies_skip(struct sched_entity * se)4036 static void __clear_buddies_skip(struct sched_entity *se)
4037 {
4038 for_each_sched_entity(se) {
4039 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4040 if (cfs_rq->skip != se)
4041 break;
4042
4043 cfs_rq->skip = NULL;
4044 }
4045 }
4046
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4047 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4048 {
4049 if (cfs_rq->last == se)
4050 __clear_buddies_last(se);
4051
4052 if (cfs_rq->next == se)
4053 __clear_buddies_next(se);
4054
4055 if (cfs_rq->skip == se)
4056 __clear_buddies_skip(se);
4057 }
4058
4059 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4060
4061 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4062 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4063 {
4064 /*
4065 * Update run-time statistics of the 'current'.
4066 */
4067 update_curr(cfs_rq);
4068
4069 /*
4070 * When dequeuing a sched_entity, we must:
4071 * - Update loads to have both entity and cfs_rq synced with now.
4072 * - Substract its load from the cfs_rq->runnable_avg.
4073 * - Substract its previous weight from cfs_rq->load.weight.
4074 * - For group entity, update its weight to reflect the new share
4075 * of its group cfs_rq.
4076 */
4077 update_load_avg(se, UPDATE_TG);
4078 dequeue_entity_load_avg(cfs_rq, se);
4079
4080 update_stats_dequeue(cfs_rq, se, flags);
4081
4082 clear_buddies(cfs_rq, se);
4083
4084 if (se != cfs_rq->curr)
4085 __dequeue_entity(cfs_rq, se);
4086 se->on_rq = 0;
4087 account_entity_dequeue(cfs_rq, se);
4088
4089 /*
4090 * Normalize after update_curr(); which will also have moved
4091 * min_vruntime if @se is the one holding it back. But before doing
4092 * update_min_vruntime() again, which will discount @se's position and
4093 * can move min_vruntime forward still more.
4094 */
4095 if (!(flags & DEQUEUE_SLEEP))
4096 se->vruntime -= cfs_rq->min_vruntime;
4097
4098 /* return excess runtime on last dequeue */
4099 return_cfs_rq_runtime(cfs_rq);
4100
4101 update_cfs_shares(se);
4102
4103 /*
4104 * Now advance min_vruntime if @se was the entity holding it back,
4105 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4106 * put back on, and if we advance min_vruntime, we'll be placed back
4107 * further than we started -- ie. we'll be penalized.
4108 */
4109 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4110 update_min_vruntime(cfs_rq);
4111 }
4112
4113 /*
4114 * Preempt the current task with a newly woken task if needed:
4115 */
4116 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4117 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4118 {
4119 unsigned long ideal_runtime, delta_exec;
4120 struct sched_entity *se;
4121 s64 delta;
4122
4123 ideal_runtime = sched_slice(cfs_rq, curr);
4124 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4125 if (delta_exec > ideal_runtime) {
4126 resched_curr(rq_of(cfs_rq));
4127 /*
4128 * The current task ran long enough, ensure it doesn't get
4129 * re-elected due to buddy favours.
4130 */
4131 clear_buddies(cfs_rq, curr);
4132 return;
4133 }
4134
4135 /*
4136 * Ensure that a task that missed wakeup preemption by a
4137 * narrow margin doesn't have to wait for a full slice.
4138 * This also mitigates buddy induced latencies under load.
4139 */
4140 if (delta_exec < sysctl_sched_min_granularity)
4141 return;
4142
4143 se = __pick_first_entity(cfs_rq);
4144 delta = curr->vruntime - se->vruntime;
4145
4146 if (delta < 0)
4147 return;
4148
4149 if (delta > ideal_runtime)
4150 resched_curr(rq_of(cfs_rq));
4151 }
4152
4153 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4154 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4155 {
4156 /* 'current' is not kept within the tree. */
4157 if (se->on_rq) {
4158 /*
4159 * Any task has to be enqueued before it get to execute on
4160 * a CPU. So account for the time it spent waiting on the
4161 * runqueue.
4162 */
4163 update_stats_wait_end(cfs_rq, se);
4164 __dequeue_entity(cfs_rq, se);
4165 update_load_avg(se, UPDATE_TG);
4166 }
4167
4168 update_stats_curr_start(cfs_rq, se);
4169 cfs_rq->curr = se;
4170
4171 /*
4172 * Track our maximum slice length, if the CPU's load is at
4173 * least twice that of our own weight (i.e. dont track it
4174 * when there are only lesser-weight tasks around):
4175 */
4176 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4177 schedstat_set(se->statistics.slice_max,
4178 max((u64)schedstat_val(se->statistics.slice_max),
4179 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4180 }
4181
4182 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4183 }
4184
4185 static int
4186 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4187
4188 /*
4189 * Pick the next process, keeping these things in mind, in this order:
4190 * 1) keep things fair between processes/task groups
4191 * 2) pick the "next" process, since someone really wants that to run
4192 * 3) pick the "last" process, for cache locality
4193 * 4) do not run the "skip" process, if something else is available
4194 */
4195 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4196 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4197 {
4198 struct sched_entity *left = __pick_first_entity(cfs_rq);
4199 struct sched_entity *se;
4200
4201 /*
4202 * If curr is set we have to see if its left of the leftmost entity
4203 * still in the tree, provided there was anything in the tree at all.
4204 */
4205 if (!left || (curr && entity_before(curr, left)))
4206 left = curr;
4207
4208 se = left; /* ideally we run the leftmost entity */
4209
4210 /*
4211 * Avoid running the skip buddy, if running something else can
4212 * be done without getting too unfair.
4213 */
4214 if (cfs_rq->skip == se) {
4215 struct sched_entity *second;
4216
4217 if (se == curr) {
4218 second = __pick_first_entity(cfs_rq);
4219 } else {
4220 second = __pick_next_entity(se);
4221 if (!second || (curr && entity_before(curr, second)))
4222 second = curr;
4223 }
4224
4225 if (second && wakeup_preempt_entity(second, left) < 1)
4226 se = second;
4227 }
4228
4229 /*
4230 * Prefer last buddy, try to return the CPU to a preempted task.
4231 */
4232 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4233 se = cfs_rq->last;
4234
4235 /*
4236 * Someone really wants this to run. If it's not unfair, run it.
4237 */
4238 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4239 se = cfs_rq->next;
4240
4241 clear_buddies(cfs_rq, se);
4242
4243 return se;
4244 }
4245
4246 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4247
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4248 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4249 {
4250 /*
4251 * If still on the runqueue then deactivate_task()
4252 * was not called and update_curr() has to be done:
4253 */
4254 if (prev->on_rq)
4255 update_curr(cfs_rq);
4256
4257 /* throttle cfs_rqs exceeding runtime */
4258 check_cfs_rq_runtime(cfs_rq);
4259
4260 check_spread(cfs_rq, prev);
4261
4262 if (prev->on_rq) {
4263 update_stats_wait_start(cfs_rq, prev);
4264 /* Put 'current' back into the tree. */
4265 __enqueue_entity(cfs_rq, prev);
4266 /* in !on_rq case, update occurred at dequeue */
4267 update_load_avg(prev, 0);
4268 }
4269 cfs_rq->curr = NULL;
4270 }
4271
4272 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4273 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4274 {
4275 /*
4276 * Update run-time statistics of the 'current'.
4277 */
4278 update_curr(cfs_rq);
4279
4280 /*
4281 * Ensure that runnable average is periodically updated.
4282 */
4283 update_load_avg(curr, UPDATE_TG);
4284 update_cfs_shares(curr);
4285
4286 #ifdef CONFIG_SCHED_HRTICK
4287 /*
4288 * queued ticks are scheduled to match the slice, so don't bother
4289 * validating it and just reschedule.
4290 */
4291 if (queued) {
4292 resched_curr(rq_of(cfs_rq));
4293 return;
4294 }
4295 /*
4296 * don't let the period tick interfere with the hrtick preemption
4297 */
4298 if (!sched_feat(DOUBLE_TICK) &&
4299 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4300 return;
4301 #endif
4302
4303 if (cfs_rq->nr_running > 1)
4304 check_preempt_tick(cfs_rq, curr);
4305 }
4306
4307
4308 /**************************************************
4309 * CFS bandwidth control machinery
4310 */
4311
4312 #ifdef CONFIG_CFS_BANDWIDTH
4313
4314 #ifdef HAVE_JUMP_LABEL
4315 static struct static_key __cfs_bandwidth_used;
4316
cfs_bandwidth_used(void)4317 static inline bool cfs_bandwidth_used(void)
4318 {
4319 return static_key_false(&__cfs_bandwidth_used);
4320 }
4321
cfs_bandwidth_usage_inc(void)4322 void cfs_bandwidth_usage_inc(void)
4323 {
4324 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4325 }
4326
cfs_bandwidth_usage_dec(void)4327 void cfs_bandwidth_usage_dec(void)
4328 {
4329 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4330 }
4331 #else /* HAVE_JUMP_LABEL */
cfs_bandwidth_used(void)4332 static bool cfs_bandwidth_used(void)
4333 {
4334 return true;
4335 }
4336
cfs_bandwidth_usage_inc(void)4337 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)4338 void cfs_bandwidth_usage_dec(void) {}
4339 #endif /* HAVE_JUMP_LABEL */
4340
4341 /*
4342 * default period for cfs group bandwidth.
4343 * default: 0.1s, units: nanoseconds
4344 */
default_cfs_period(void)4345 static inline u64 default_cfs_period(void)
4346 {
4347 return 100000000ULL;
4348 }
4349
sched_cfs_bandwidth_slice(void)4350 static inline u64 sched_cfs_bandwidth_slice(void)
4351 {
4352 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4353 }
4354
4355 /*
4356 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4357 * directly instead of rq->clock to avoid adding additional synchronization
4358 * around rq->lock.
4359 *
4360 * requires cfs_b->lock
4361 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4362 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4363 {
4364 if (cfs_b->quota != RUNTIME_INF)
4365 cfs_b->runtime = cfs_b->quota;
4366 }
4367
tg_cfs_bandwidth(struct task_group * tg)4368 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4369 {
4370 return &tg->cfs_bandwidth;
4371 }
4372
4373 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)4374 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4375 {
4376 if (unlikely(cfs_rq->throttle_count))
4377 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4378
4379 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4380 }
4381
4382 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4383 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4384 {
4385 struct task_group *tg = cfs_rq->tg;
4386 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4387 u64 amount = 0, min_amount;
4388
4389 /* note: this is a positive sum as runtime_remaining <= 0 */
4390 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4391
4392 raw_spin_lock(&cfs_b->lock);
4393 if (cfs_b->quota == RUNTIME_INF)
4394 amount = min_amount;
4395 else {
4396 start_cfs_bandwidth(cfs_b);
4397
4398 if (cfs_b->runtime > 0) {
4399 amount = min(cfs_b->runtime, min_amount);
4400 cfs_b->runtime -= amount;
4401 cfs_b->idle = 0;
4402 }
4403 }
4404 raw_spin_unlock(&cfs_b->lock);
4405
4406 cfs_rq->runtime_remaining += amount;
4407
4408 return cfs_rq->runtime_remaining > 0;
4409 }
4410
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4411 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4412 {
4413 /* dock delta_exec before expiring quota (as it could span periods) */
4414 cfs_rq->runtime_remaining -= delta_exec;
4415
4416 if (likely(cfs_rq->runtime_remaining > 0))
4417 return;
4418
4419 if (cfs_rq->throttled)
4420 return;
4421 /*
4422 * if we're unable to extend our runtime we resched so that the active
4423 * hierarchy can be throttled
4424 */
4425 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4426 resched_curr(rq_of(cfs_rq));
4427 }
4428
4429 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4430 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4431 {
4432 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4433 return;
4434
4435 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4436 }
4437
cfs_rq_throttled(struct cfs_rq * cfs_rq)4438 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4439 {
4440 return cfs_bandwidth_used() && cfs_rq->throttled;
4441 }
4442
4443 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4444 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4445 {
4446 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4447 }
4448
4449 /*
4450 * Ensure that neither of the group entities corresponding to src_cpu or
4451 * dest_cpu are members of a throttled hierarchy when performing group
4452 * load-balance operations.
4453 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4454 static inline int throttled_lb_pair(struct task_group *tg,
4455 int src_cpu, int dest_cpu)
4456 {
4457 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4458
4459 src_cfs_rq = tg->cfs_rq[src_cpu];
4460 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4461
4462 return throttled_hierarchy(src_cfs_rq) ||
4463 throttled_hierarchy(dest_cfs_rq);
4464 }
4465
4466 /* updated child weight may affect parent so we have to do this bottom up */
tg_unthrottle_up(struct task_group * tg,void * data)4467 static int tg_unthrottle_up(struct task_group *tg, void *data)
4468 {
4469 struct rq *rq = data;
4470 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4471
4472 cfs_rq->throttle_count--;
4473 if (!cfs_rq->throttle_count) {
4474 /* adjust cfs_rq_clock_task() */
4475 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4476 cfs_rq->throttled_clock_task;
4477 }
4478
4479 return 0;
4480 }
4481
tg_throttle_down(struct task_group * tg,void * data)4482 static int tg_throttle_down(struct task_group *tg, void *data)
4483 {
4484 struct rq *rq = data;
4485 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4486
4487 /* group is entering throttled state, stop time */
4488 if (!cfs_rq->throttle_count)
4489 cfs_rq->throttled_clock_task = rq_clock_task(rq);
4490 cfs_rq->throttle_count++;
4491
4492 return 0;
4493 }
4494
throttle_cfs_rq(struct cfs_rq * cfs_rq)4495 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4496 {
4497 struct rq *rq = rq_of(cfs_rq);
4498 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4499 struct sched_entity *se;
4500 long task_delta, dequeue = 1;
4501 bool empty;
4502
4503 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4504
4505 /* freeze hierarchy runnable averages while throttled */
4506 rcu_read_lock();
4507 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4508 rcu_read_unlock();
4509
4510 task_delta = cfs_rq->h_nr_running;
4511 for_each_sched_entity(se) {
4512 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4513 /* throttled entity or throttle-on-deactivate */
4514 if (!se->on_rq)
4515 break;
4516
4517 if (dequeue)
4518 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4519 qcfs_rq->h_nr_running -= task_delta;
4520
4521 if (qcfs_rq->load.weight)
4522 dequeue = 0;
4523 }
4524
4525 if (!se)
4526 sub_nr_running(rq, task_delta);
4527
4528 cfs_rq->throttled = 1;
4529 cfs_rq->throttled_clock = rq_clock(rq);
4530 raw_spin_lock(&cfs_b->lock);
4531 empty = list_empty(&cfs_b->throttled_cfs_rq);
4532
4533 /*
4534 * Add to the _head_ of the list, so that an already-started
4535 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4536 * not running add to the tail so that later runqueues don't get starved.
4537 */
4538 if (cfs_b->distribute_running)
4539 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4540 else
4541 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4542
4543 /*
4544 * If we're the first throttled task, make sure the bandwidth
4545 * timer is running.
4546 */
4547 if (empty)
4548 start_cfs_bandwidth(cfs_b);
4549
4550 raw_spin_unlock(&cfs_b->lock);
4551 }
4552
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)4553 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4554 {
4555 struct rq *rq = rq_of(cfs_rq);
4556 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4557 struct sched_entity *se;
4558 int enqueue = 1;
4559 long task_delta;
4560
4561 se = cfs_rq->tg->se[cpu_of(rq)];
4562
4563 cfs_rq->throttled = 0;
4564
4565 update_rq_clock(rq);
4566
4567 raw_spin_lock(&cfs_b->lock);
4568 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4569 list_del_rcu(&cfs_rq->throttled_list);
4570 raw_spin_unlock(&cfs_b->lock);
4571
4572 /* update hierarchical throttle state */
4573 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4574
4575 if (!cfs_rq->load.weight)
4576 return;
4577
4578 task_delta = cfs_rq->h_nr_running;
4579 for_each_sched_entity(se) {
4580 if (se->on_rq)
4581 enqueue = 0;
4582
4583 cfs_rq = cfs_rq_of(se);
4584 if (enqueue)
4585 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4586 cfs_rq->h_nr_running += task_delta;
4587
4588 if (cfs_rq_throttled(cfs_rq))
4589 break;
4590 }
4591
4592 if (!se)
4593 add_nr_running(rq, task_delta);
4594
4595 /* determine whether we need to wake up potentially idle cpu */
4596 if (rq->curr == rq->idle && rq->cfs.nr_running)
4597 resched_curr(rq);
4598 }
4599
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b,u64 remaining)4600 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, u64 remaining)
4601 {
4602 struct cfs_rq *cfs_rq;
4603 u64 runtime;
4604 u64 starting_runtime = remaining;
4605
4606 rcu_read_lock();
4607 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4608 throttled_list) {
4609 struct rq *rq = rq_of(cfs_rq);
4610 struct rq_flags rf;
4611
4612 rq_lock(rq, &rf);
4613 if (!cfs_rq_throttled(cfs_rq))
4614 goto next;
4615
4616 /* By the above check, this should never be true */
4617 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
4618
4619 runtime = -cfs_rq->runtime_remaining + 1;
4620 if (runtime > remaining)
4621 runtime = remaining;
4622 remaining -= runtime;
4623
4624 cfs_rq->runtime_remaining += runtime;
4625
4626 /* we check whether we're throttled above */
4627 if (cfs_rq->runtime_remaining > 0)
4628 unthrottle_cfs_rq(cfs_rq);
4629
4630 next:
4631 rq_unlock(rq, &rf);
4632
4633 if (!remaining)
4634 break;
4635 }
4636 rcu_read_unlock();
4637
4638 return starting_runtime - remaining;
4639 }
4640
4641 /*
4642 * Responsible for refilling a task_group's bandwidth and unthrottling its
4643 * cfs_rqs as appropriate. If there has been no activity within the last
4644 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4645 * used to track this state.
4646 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun)4647 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4648 {
4649 u64 runtime;
4650 int throttled;
4651
4652 /* no need to continue the timer with no bandwidth constraint */
4653 if (cfs_b->quota == RUNTIME_INF)
4654 goto out_deactivate;
4655
4656 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4657 cfs_b->nr_periods += overrun;
4658
4659 /*
4660 * idle depends on !throttled (for the case of a large deficit), and if
4661 * we're going inactive then everything else can be deferred
4662 */
4663 if (cfs_b->idle && !throttled)
4664 goto out_deactivate;
4665
4666 __refill_cfs_bandwidth_runtime(cfs_b);
4667
4668 if (!throttled) {
4669 /* mark as potentially idle for the upcoming period */
4670 cfs_b->idle = 1;
4671 return 0;
4672 }
4673
4674 /* account preceding periods in which throttling occurred */
4675 cfs_b->nr_throttled += overrun;
4676
4677 /*
4678 * This check is repeated as we are holding onto the new bandwidth while
4679 * we unthrottle. This can potentially race with an unthrottled group
4680 * trying to acquire new bandwidth from the global pool. This can result
4681 * in us over-using our runtime if it is all used during this loop, but
4682 * only by limited amounts in that extreme case.
4683 */
4684 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4685 runtime = cfs_b->runtime;
4686 cfs_b->distribute_running = 1;
4687 raw_spin_unlock(&cfs_b->lock);
4688 /* we can't nest cfs_b->lock while distributing bandwidth */
4689 runtime = distribute_cfs_runtime(cfs_b, runtime);
4690 raw_spin_lock(&cfs_b->lock);
4691
4692 cfs_b->distribute_running = 0;
4693 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4694
4695 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4696 }
4697
4698 /*
4699 * While we are ensured activity in the period following an
4700 * unthrottle, this also covers the case in which the new bandwidth is
4701 * insufficient to cover the existing bandwidth deficit. (Forcing the
4702 * timer to remain active while there are any throttled entities.)
4703 */
4704 cfs_b->idle = 0;
4705
4706 return 0;
4707
4708 out_deactivate:
4709 return 1;
4710 }
4711
4712 /* a cfs_rq won't donate quota below this amount */
4713 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4714 /* minimum remaining period time to redistribute slack quota */
4715 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4716 /* how long we wait to gather additional slack before distributing */
4717 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4718
4719 /*
4720 * Are we near the end of the current quota period?
4721 *
4722 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4723 * hrtimer base being cleared by hrtimer_start. In the case of
4724 * migrate_hrtimers, base is never cleared, so we are fine.
4725 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)4726 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4727 {
4728 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4729 u64 remaining;
4730
4731 /* if the call-back is running a quota refresh is already occurring */
4732 if (hrtimer_callback_running(refresh_timer))
4733 return 1;
4734
4735 /* is a quota refresh about to occur? */
4736 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4737 if (remaining < min_expire)
4738 return 1;
4739
4740 return 0;
4741 }
4742
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)4743 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4744 {
4745 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4746
4747 /* if there's a quota refresh soon don't bother with slack */
4748 if (runtime_refresh_within(cfs_b, min_left))
4749 return;
4750
4751 hrtimer_start(&cfs_b->slack_timer,
4752 ns_to_ktime(cfs_bandwidth_slack_period),
4753 HRTIMER_MODE_REL);
4754 }
4755
4756 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4757 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4758 {
4759 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4760 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4761
4762 if (slack_runtime <= 0)
4763 return;
4764
4765 raw_spin_lock(&cfs_b->lock);
4766 if (cfs_b->quota != RUNTIME_INF) {
4767 cfs_b->runtime += slack_runtime;
4768
4769 /* we are under rq->lock, defer unthrottling using a timer */
4770 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4771 !list_empty(&cfs_b->throttled_cfs_rq))
4772 start_cfs_slack_bandwidth(cfs_b);
4773 }
4774 raw_spin_unlock(&cfs_b->lock);
4775
4776 /* even if it's not valid for return we don't want to try again */
4777 cfs_rq->runtime_remaining -= slack_runtime;
4778 }
4779
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)4780 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4781 {
4782 if (!cfs_bandwidth_used())
4783 return;
4784
4785 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4786 return;
4787
4788 __return_cfs_rq_runtime(cfs_rq);
4789 }
4790
4791 /*
4792 * This is done with a timer (instead of inline with bandwidth return) since
4793 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4794 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)4795 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4796 {
4797 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4798
4799 /* confirm we're still not at a refresh boundary */
4800 raw_spin_lock(&cfs_b->lock);
4801 if (cfs_b->distribute_running) {
4802 raw_spin_unlock(&cfs_b->lock);
4803 return;
4804 }
4805
4806 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4807 raw_spin_unlock(&cfs_b->lock);
4808 return;
4809 }
4810
4811 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4812 runtime = cfs_b->runtime;
4813
4814 if (runtime)
4815 cfs_b->distribute_running = 1;
4816
4817 raw_spin_unlock(&cfs_b->lock);
4818
4819 if (!runtime)
4820 return;
4821
4822 runtime = distribute_cfs_runtime(cfs_b, runtime);
4823
4824 raw_spin_lock(&cfs_b->lock);
4825 cfs_b->runtime -= min(runtime, cfs_b->runtime);
4826 cfs_b->distribute_running = 0;
4827 raw_spin_unlock(&cfs_b->lock);
4828 }
4829
4830 /*
4831 * When a group wakes up we want to make sure that its quota is not already
4832 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4833 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4834 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)4835 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4836 {
4837 if (!cfs_bandwidth_used())
4838 return;
4839
4840 /* an active group must be handled by the update_curr()->put() path */
4841 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4842 return;
4843
4844 /* ensure the group is not already throttled */
4845 if (cfs_rq_throttled(cfs_rq))
4846 return;
4847
4848 /* update runtime allocation */
4849 account_cfs_rq_runtime(cfs_rq, 0);
4850 if (cfs_rq->runtime_remaining <= 0)
4851 throttle_cfs_rq(cfs_rq);
4852 }
4853
sync_throttle(struct task_group * tg,int cpu)4854 static void sync_throttle(struct task_group *tg, int cpu)
4855 {
4856 struct cfs_rq *pcfs_rq, *cfs_rq;
4857
4858 if (!cfs_bandwidth_used())
4859 return;
4860
4861 if (!tg->parent)
4862 return;
4863
4864 cfs_rq = tg->cfs_rq[cpu];
4865 pcfs_rq = tg->parent->cfs_rq[cpu];
4866
4867 cfs_rq->throttle_count = pcfs_rq->throttle_count;
4868 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4869 }
4870
4871 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)4872 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4873 {
4874 if (!cfs_bandwidth_used())
4875 return false;
4876
4877 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4878 return false;
4879
4880 /*
4881 * it's possible for a throttled entity to be forced into a running
4882 * state (e.g. set_curr_task), in this case we're finished.
4883 */
4884 if (cfs_rq_throttled(cfs_rq))
4885 return true;
4886
4887 throttle_cfs_rq(cfs_rq);
4888 return true;
4889 }
4890
sched_cfs_slack_timer(struct hrtimer * timer)4891 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4892 {
4893 struct cfs_bandwidth *cfs_b =
4894 container_of(timer, struct cfs_bandwidth, slack_timer);
4895
4896 do_sched_cfs_slack_timer(cfs_b);
4897
4898 return HRTIMER_NORESTART;
4899 }
4900
4901 extern const u64 max_cfs_quota_period;
4902
sched_cfs_period_timer(struct hrtimer * timer)4903 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4904 {
4905 struct cfs_bandwidth *cfs_b =
4906 container_of(timer, struct cfs_bandwidth, period_timer);
4907 int overrun;
4908 int idle = 0;
4909 int count = 0;
4910
4911 raw_spin_lock(&cfs_b->lock);
4912 for (;;) {
4913 overrun = hrtimer_forward_now(timer, cfs_b->period);
4914 if (!overrun)
4915 break;
4916
4917 if (++count > 3) {
4918 u64 new, old = ktime_to_ns(cfs_b->period);
4919
4920 /*
4921 * Grow period by a factor of 2 to avoid losing precision.
4922 * Precision loss in the quota/period ratio can cause __cfs_schedulable
4923 * to fail.
4924 */
4925 new = old * 2;
4926 if (new < max_cfs_quota_period) {
4927 cfs_b->period = ns_to_ktime(new);
4928 cfs_b->quota *= 2;
4929
4930 pr_warn_ratelimited(
4931 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4932 smp_processor_id(),
4933 div_u64(new, NSEC_PER_USEC),
4934 div_u64(cfs_b->quota, NSEC_PER_USEC));
4935 } else {
4936 pr_warn_ratelimited(
4937 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
4938 smp_processor_id(),
4939 div_u64(old, NSEC_PER_USEC),
4940 div_u64(cfs_b->quota, NSEC_PER_USEC));
4941 }
4942
4943 /* reset count so we don't come right back in here */
4944 count = 0;
4945 }
4946
4947 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4948 }
4949 if (idle)
4950 cfs_b->period_active = 0;
4951 raw_spin_unlock(&cfs_b->lock);
4952
4953 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4954 }
4955
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4956 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4957 {
4958 raw_spin_lock_init(&cfs_b->lock);
4959 cfs_b->runtime = 0;
4960 cfs_b->quota = RUNTIME_INF;
4961 cfs_b->period = ns_to_ktime(default_cfs_period());
4962
4963 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4964 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4965 cfs_b->period_timer.function = sched_cfs_period_timer;
4966 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4967 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4968 cfs_b->distribute_running = 0;
4969 }
4970
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)4971 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4972 {
4973 cfs_rq->runtime_enabled = 0;
4974 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4975 }
4976
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4977 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4978 {
4979 lockdep_assert_held(&cfs_b->lock);
4980
4981 if (!cfs_b->period_active) {
4982 cfs_b->period_active = 1;
4983 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4984 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4985 }
4986 }
4987
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)4988 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4989 {
4990 /* init_cfs_bandwidth() was not called */
4991 if (!cfs_b->throttled_cfs_rq.next)
4992 return;
4993
4994 hrtimer_cancel(&cfs_b->period_timer);
4995 hrtimer_cancel(&cfs_b->slack_timer);
4996 }
4997
4998 /*
4999 * Both these cpu hotplug callbacks race against unregister_fair_sched_group()
5000 *
5001 * The race is harmless, since modifying bandwidth settings of unhooked group
5002 * bits doesn't do much.
5003 */
5004
5005 /* cpu online calback */
update_runtime_enabled(struct rq * rq)5006 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5007 {
5008 struct task_group *tg;
5009
5010 lockdep_assert_held(&rq->lock);
5011
5012 rcu_read_lock();
5013 list_for_each_entry_rcu(tg, &task_groups, list) {
5014 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5015 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5016
5017 raw_spin_lock(&cfs_b->lock);
5018 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5019 raw_spin_unlock(&cfs_b->lock);
5020 }
5021 rcu_read_unlock();
5022 }
5023
5024 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5025 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5026 {
5027 struct task_group *tg;
5028
5029 lockdep_assert_held(&rq->lock);
5030
5031 rcu_read_lock();
5032 list_for_each_entry_rcu(tg, &task_groups, list) {
5033 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5034
5035 if (!cfs_rq->runtime_enabled)
5036 continue;
5037
5038 /*
5039 * clock_task is not advancing so we just need to make sure
5040 * there's some valid quota amount
5041 */
5042 cfs_rq->runtime_remaining = 1;
5043 /*
5044 * Offline rq is schedulable till cpu is completely disabled
5045 * in take_cpu_down(), so we prevent new cfs throttling here.
5046 */
5047 cfs_rq->runtime_enabled = 0;
5048
5049 if (cfs_rq_throttled(cfs_rq))
5050 unthrottle_cfs_rq(cfs_rq);
5051 }
5052 rcu_read_unlock();
5053 }
5054
5055 #else /* CONFIG_CFS_BANDWIDTH */
cfs_rq_clock_task(struct cfs_rq * cfs_rq)5056 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
5057 {
5058 return rq_clock_task(rq_of(cfs_rq));
5059 }
5060
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5061 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5062 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5063 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5064 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5065 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5066
cfs_rq_throttled(struct cfs_rq * cfs_rq)5067 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5068 {
5069 return 0;
5070 }
5071
throttled_hierarchy(struct cfs_rq * cfs_rq)5072 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5073 {
5074 return 0;
5075 }
5076
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5077 static inline int throttled_lb_pair(struct task_group *tg,
5078 int src_cpu, int dest_cpu)
5079 {
5080 return 0;
5081 }
5082
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5083 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5084
5085 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5086 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5087 #endif
5088
tg_cfs_bandwidth(struct task_group * tg)5089 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5090 {
5091 return NULL;
5092 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5093 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5094 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5095 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5096
5097 #endif /* CONFIG_CFS_BANDWIDTH */
5098
5099 /**************************************************
5100 * CFS operations on tasks:
5101 */
5102
5103 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5104 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5105 {
5106 struct sched_entity *se = &p->se;
5107 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5108
5109 SCHED_WARN_ON(task_rq(p) != rq);
5110
5111 if (rq->cfs.h_nr_running > 1) {
5112 u64 slice = sched_slice(cfs_rq, se);
5113 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5114 s64 delta = slice - ran;
5115
5116 if (delta < 0) {
5117 if (rq->curr == p)
5118 resched_curr(rq);
5119 return;
5120 }
5121 hrtick_start(rq, delta);
5122 }
5123 }
5124
5125 /*
5126 * called from enqueue/dequeue and updates the hrtick when the
5127 * current task is from our class and nr_running is low enough
5128 * to matter.
5129 */
hrtick_update(struct rq * rq)5130 static void hrtick_update(struct rq *rq)
5131 {
5132 struct task_struct *curr = rq->curr;
5133
5134 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5135 return;
5136
5137 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5138 hrtick_start_fair(rq, curr);
5139 }
5140 #else /* !CONFIG_SCHED_HRTICK */
5141 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5142 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5143 {
5144 }
5145
hrtick_update(struct rq * rq)5146 static inline void hrtick_update(struct rq *rq)
5147 {
5148 }
5149 #endif
5150
5151 #ifdef CONFIG_SMP
5152 static bool cpu_overutilized(int cpu);
5153
sd_overutilized(struct sched_domain * sd)5154 static bool sd_overutilized(struct sched_domain *sd)
5155 {
5156 return sd->shared->overutilized;
5157 }
5158
set_sd_overutilized(struct sched_domain * sd)5159 static void set_sd_overutilized(struct sched_domain *sd)
5160 {
5161 trace_sched_overutilized(sd, sd->shared->overutilized, true);
5162 sd->shared->overutilized = true;
5163 }
5164
clear_sd_overutilized(struct sched_domain * sd)5165 static void clear_sd_overutilized(struct sched_domain *sd)
5166 {
5167 trace_sched_overutilized(sd, sd->shared->overutilized, false);
5168 sd->shared->overutilized = false;
5169 }
5170
update_overutilized_status(struct rq * rq)5171 static inline void update_overutilized_status(struct rq *rq)
5172 {
5173 struct sched_domain *sd;
5174
5175 rcu_read_lock();
5176 sd = rcu_dereference(rq->sd);
5177 if (sd && !sd_overutilized(sd) &&
5178 cpu_overutilized(rq->cpu))
5179 set_sd_overutilized(sd);
5180 rcu_read_unlock();
5181 }
5182
5183 unsigned long boosted_cpu_util(int cpu);
5184 #else
5185
5186 #define update_overutilized_status(rq) do {} while (0)
5187 #define boosted_cpu_util(cpu) cpu_util_freq(cpu)
5188
5189 #endif /* CONFIG_SMP */
5190
5191 /*
5192 * The enqueue_task method is called before nr_running is
5193 * increased. Here we update the fair scheduling stats and
5194 * then put the task into the rbtree:
5195 */
5196 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5197 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5198 {
5199 struct cfs_rq *cfs_rq;
5200 struct sched_entity *se = &p->se;
5201 int task_new = !(flags & ENQUEUE_WAKEUP);
5202
5203 /*
5204 * The code below (indirectly) updates schedutil which looks at
5205 * the cfs_rq utilization to select a frequency.
5206 * Let's add the task's estimated utilization to the cfs_rq's
5207 * estimated utilization, before we update schedutil.
5208 */
5209 util_est_enqueue(&rq->cfs, p);
5210
5211 /*
5212 * The code below (indirectly) updates schedutil which looks at
5213 * the cfs_rq utilization to select a frequency.
5214 * Let's update schedtune here to ensure the boost value of the
5215 * current task is accounted for in the selection of the OPP.
5216 *
5217 * We do it also in the case where we enqueue a throttled task;
5218 * we could argue that a throttled task should not boost a CPU,
5219 * however:
5220 * a) properly implementing CPU boosting considering throttled
5221 * tasks will increase a lot the complexity of the solution
5222 * b) it's not easy to quantify the benefits introduced by
5223 * such a more complex solution.
5224 * Thus, for the time being we go for the simple solution and boost
5225 * also for throttled RQs.
5226 */
5227 schedtune_enqueue_task(p, cpu_of(rq));
5228
5229 /*
5230 * If in_iowait is set, the code below may not trigger any cpufreq
5231 * utilization updates, so do it here explicitly with the IOWAIT flag
5232 * passed.
5233 */
5234 if (p->in_iowait)
5235 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5236
5237 for_each_sched_entity(se) {
5238 if (se->on_rq)
5239 break;
5240 cfs_rq = cfs_rq_of(se);
5241 enqueue_entity(cfs_rq, se, flags);
5242
5243 /*
5244 * end evaluation on encountering a throttled cfs_rq
5245 *
5246 * note: in the case of encountering a throttled cfs_rq we will
5247 * post the final h_nr_running increment below.
5248 */
5249 if (cfs_rq_throttled(cfs_rq))
5250 break;
5251 cfs_rq->h_nr_running++;
5252 walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
5253
5254 flags = ENQUEUE_WAKEUP;
5255 }
5256
5257 for_each_sched_entity(se) {
5258 cfs_rq = cfs_rq_of(se);
5259 cfs_rq->h_nr_running++;
5260 walt_inc_cfs_cumulative_runnable_avg(cfs_rq, p);
5261
5262 if (cfs_rq_throttled(cfs_rq))
5263 break;
5264
5265 update_load_avg(se, UPDATE_TG);
5266 update_cfs_shares(se);
5267 }
5268
5269 if (!se) {
5270 add_nr_running(rq, 1);
5271 if (!task_new)
5272 update_overutilized_status(rq);
5273 walt_inc_cumulative_runnable_avg(rq, p);
5274 }
5275
5276 hrtick_update(rq);
5277 }
5278
5279 static void set_next_buddy(struct sched_entity *se);
5280
5281 /*
5282 * The dequeue_task method is called before nr_running is
5283 * decreased. We remove the task from the rbtree and
5284 * update the fair scheduling stats:
5285 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5286 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5287 {
5288 struct cfs_rq *cfs_rq;
5289 struct sched_entity *se = &p->se;
5290 int task_sleep = flags & DEQUEUE_SLEEP;
5291
5292 /*
5293 * The code below (indirectly) updates schedutil which looks at
5294 * the cfs_rq utilization to select a frequency.
5295 * Let's update schedtune here to ensure the boost value of the
5296 * current task is not more accounted for in the selection of the OPP.
5297 */
5298 schedtune_dequeue_task(p, cpu_of(rq));
5299
5300 for_each_sched_entity(se) {
5301 cfs_rq = cfs_rq_of(se);
5302 dequeue_entity(cfs_rq, se, flags);
5303
5304 /*
5305 * end evaluation on encountering a throttled cfs_rq
5306 *
5307 * note: in the case of encountering a throttled cfs_rq we will
5308 * post the final h_nr_running decrement below.
5309 */
5310 if (cfs_rq_throttled(cfs_rq))
5311 break;
5312 cfs_rq->h_nr_running--;
5313 walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
5314
5315 /* Don't dequeue parent if it has other entities besides us */
5316 if (cfs_rq->load.weight) {
5317 /* Avoid re-evaluating load for this entity: */
5318 se = parent_entity(se);
5319 /*
5320 * Bias pick_next to pick a task from this cfs_rq, as
5321 * p is sleeping when it is within its sched_slice.
5322 */
5323 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5324 set_next_buddy(se);
5325 break;
5326 }
5327 flags |= DEQUEUE_SLEEP;
5328 }
5329
5330 for_each_sched_entity(se) {
5331 cfs_rq = cfs_rq_of(se);
5332 cfs_rq->h_nr_running--;
5333 walt_dec_cfs_cumulative_runnable_avg(cfs_rq, p);
5334
5335 if (cfs_rq_throttled(cfs_rq))
5336 break;
5337
5338 update_load_avg(se, UPDATE_TG);
5339 update_cfs_shares(se);
5340 }
5341
5342 if (!se) {
5343 sub_nr_running(rq, 1);
5344 walt_dec_cumulative_runnable_avg(rq, p);
5345 }
5346
5347 util_est_dequeue(&rq->cfs, p, task_sleep);
5348 hrtick_update(rq);
5349 }
5350
5351 #ifdef CONFIG_SMP
5352
5353 /* Working cpumask for: load_balance, load_balance_newidle. */
5354 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5355 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5356
5357 #ifdef CONFIG_NO_HZ_COMMON
5358 /*
5359 * per rq 'load' arrray crap; XXX kill this.
5360 */
5361
5362 /*
5363 * The exact cpuload calculated at every tick would be:
5364 *
5365 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5366 *
5367 * If a cpu misses updates for n ticks (as it was idle) and update gets
5368 * called on the n+1-th tick when cpu may be busy, then we have:
5369 *
5370 * load_n = (1 - 1/2^i)^n * load_0
5371 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
5372 *
5373 * decay_load_missed() below does efficient calculation of
5374 *
5375 * load' = (1 - 1/2^i)^n * load
5376 *
5377 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5378 * This allows us to precompute the above in said factors, thereby allowing the
5379 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5380 * fixed_power_int())
5381 *
5382 * The calculation is approximated on a 128 point scale.
5383 */
5384 #define DEGRADE_SHIFT 7
5385
5386 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5387 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5388 { 0, 0, 0, 0, 0, 0, 0, 0 },
5389 { 64, 32, 8, 0, 0, 0, 0, 0 },
5390 { 96, 72, 40, 12, 1, 0, 0, 0 },
5391 { 112, 98, 75, 43, 15, 1, 0, 0 },
5392 { 120, 112, 98, 76, 45, 16, 2, 0 }
5393 };
5394
5395 /*
5396 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5397 * would be when CPU is idle and so we just decay the old load without
5398 * adding any new load.
5399 */
5400 static unsigned long
decay_load_missed(unsigned long load,unsigned long missed_updates,int idx)5401 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5402 {
5403 int j = 0;
5404
5405 if (!missed_updates)
5406 return load;
5407
5408 if (missed_updates >= degrade_zero_ticks[idx])
5409 return 0;
5410
5411 if (idx == 1)
5412 return load >> missed_updates;
5413
5414 while (missed_updates) {
5415 if (missed_updates % 2)
5416 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5417
5418 missed_updates >>= 1;
5419 j++;
5420 }
5421 return load;
5422 }
5423 #endif /* CONFIG_NO_HZ_COMMON */
5424
5425 /**
5426 * __cpu_load_update - update the rq->cpu_load[] statistics
5427 * @this_rq: The rq to update statistics for
5428 * @this_load: The current load
5429 * @pending_updates: The number of missed updates
5430 *
5431 * Update rq->cpu_load[] statistics. This function is usually called every
5432 * scheduler tick (TICK_NSEC).
5433 *
5434 * This function computes a decaying average:
5435 *
5436 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5437 *
5438 * Because of NOHZ it might not get called on every tick which gives need for
5439 * the @pending_updates argument.
5440 *
5441 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5442 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5443 * = A * (A * load[i]_n-2 + B) + B
5444 * = A * (A * (A * load[i]_n-3 + B) + B) + B
5445 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5446 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5447 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5448 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5449 *
5450 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5451 * any change in load would have resulted in the tick being turned back on.
5452 *
5453 * For regular NOHZ, this reduces to:
5454 *
5455 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
5456 *
5457 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5458 * term.
5459 */
cpu_load_update(struct rq * this_rq,unsigned long this_load,unsigned long pending_updates)5460 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5461 unsigned long pending_updates)
5462 {
5463 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5464 int i, scale;
5465
5466 this_rq->nr_load_updates++;
5467
5468 /* Update our load: */
5469 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5470 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5471 unsigned long old_load, new_load;
5472
5473 /* scale is effectively 1 << i now, and >> i divides by scale */
5474
5475 old_load = this_rq->cpu_load[i];
5476 #ifdef CONFIG_NO_HZ_COMMON
5477 old_load = decay_load_missed(old_load, pending_updates - 1, i);
5478 if (tickless_load) {
5479 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5480 /*
5481 * old_load can never be a negative value because a
5482 * decayed tickless_load cannot be greater than the
5483 * original tickless_load.
5484 */
5485 old_load += tickless_load;
5486 }
5487 #endif
5488 new_load = this_load;
5489 /*
5490 * Round up the averaging division if load is increasing. This
5491 * prevents us from getting stuck on 9 if the load is 10, for
5492 * example.
5493 */
5494 if (new_load > old_load)
5495 new_load += scale - 1;
5496
5497 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5498 }
5499
5500 sched_avg_update(this_rq);
5501 }
5502
5503 /* Used instead of source_load when we know the type == 0 */
weighted_cpuload(struct rq * rq)5504 static unsigned long weighted_cpuload(struct rq *rq)
5505 {
5506 return cfs_rq_runnable_load_avg(&rq->cfs);
5507 }
5508
5509 #ifdef CONFIG_NO_HZ_COMMON
5510 /*
5511 * There is no sane way to deal with nohz on smp when using jiffies because the
5512 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5513 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5514 *
5515 * Therefore we need to avoid the delta approach from the regular tick when
5516 * possible since that would seriously skew the load calculation. This is why we
5517 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5518 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5519 * loop exit, nohz_idle_balance, nohz full exit...)
5520 *
5521 * This means we might still be one tick off for nohz periods.
5522 */
5523
cpu_load_update_nohz(struct rq * this_rq,unsigned long curr_jiffies,unsigned long load)5524 static void cpu_load_update_nohz(struct rq *this_rq,
5525 unsigned long curr_jiffies,
5526 unsigned long load)
5527 {
5528 unsigned long pending_updates;
5529
5530 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5531 if (pending_updates) {
5532 this_rq->last_load_update_tick = curr_jiffies;
5533 /*
5534 * In the regular NOHZ case, we were idle, this means load 0.
5535 * In the NOHZ_FULL case, we were non-idle, we should consider
5536 * its weighted load.
5537 */
5538 cpu_load_update(this_rq, load, pending_updates);
5539 }
5540 }
5541
5542 /*
5543 * Called from nohz_idle_balance() to update the load ratings before doing the
5544 * idle balance.
5545 */
cpu_load_update_idle(struct rq * this_rq)5546 static void cpu_load_update_idle(struct rq *this_rq)
5547 {
5548 /*
5549 * bail if there's load or we're actually up-to-date.
5550 */
5551 if (weighted_cpuload(this_rq))
5552 return;
5553
5554 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5555 }
5556
5557 /*
5558 * Record CPU load on nohz entry so we know the tickless load to account
5559 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5560 * than other cpu_load[idx] but it should be fine as cpu_load readers
5561 * shouldn't rely into synchronized cpu_load[*] updates.
5562 */
cpu_load_update_nohz_start(void)5563 void cpu_load_update_nohz_start(void)
5564 {
5565 struct rq *this_rq = this_rq();
5566
5567 /*
5568 * This is all lockless but should be fine. If weighted_cpuload changes
5569 * concurrently we'll exit nohz. And cpu_load write can race with
5570 * cpu_load_update_idle() but both updater would be writing the same.
5571 */
5572 this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5573 }
5574
5575 /*
5576 * Account the tickless load in the end of a nohz frame.
5577 */
cpu_load_update_nohz_stop(void)5578 void cpu_load_update_nohz_stop(void)
5579 {
5580 unsigned long curr_jiffies = READ_ONCE(jiffies);
5581 struct rq *this_rq = this_rq();
5582 unsigned long load;
5583 struct rq_flags rf;
5584
5585 if (curr_jiffies == this_rq->last_load_update_tick)
5586 return;
5587
5588 load = weighted_cpuload(this_rq);
5589 rq_lock(this_rq, &rf);
5590 update_rq_clock(this_rq);
5591 cpu_load_update_nohz(this_rq, curr_jiffies, load);
5592 rq_unlock(this_rq, &rf);
5593 }
5594 #else /* !CONFIG_NO_HZ_COMMON */
cpu_load_update_nohz(struct rq * this_rq,unsigned long curr_jiffies,unsigned long load)5595 static inline void cpu_load_update_nohz(struct rq *this_rq,
5596 unsigned long curr_jiffies,
5597 unsigned long load) { }
5598 #endif /* CONFIG_NO_HZ_COMMON */
5599
cpu_load_update_periodic(struct rq * this_rq,unsigned long load)5600 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5601 {
5602 #ifdef CONFIG_NO_HZ_COMMON
5603 /* See the mess around cpu_load_update_nohz(). */
5604 this_rq->last_load_update_tick = READ_ONCE(jiffies);
5605 #endif
5606 cpu_load_update(this_rq, load, 1);
5607 }
5608
5609 /*
5610 * Called from scheduler_tick()
5611 */
cpu_load_update_active(struct rq * this_rq)5612 void cpu_load_update_active(struct rq *this_rq)
5613 {
5614 unsigned long load = weighted_cpuload(this_rq);
5615
5616 if (tick_nohz_tick_stopped())
5617 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5618 else
5619 cpu_load_update_periodic(this_rq, load);
5620 }
5621
5622 /*
5623 * Return a low guess at the load of a migration-source cpu weighted
5624 * according to the scheduling class and "nice" value.
5625 *
5626 * We want to under-estimate the load of migration sources, to
5627 * balance conservatively.
5628 */
source_load(int cpu,int type)5629 static unsigned long source_load(int cpu, int type)
5630 {
5631 struct rq *rq = cpu_rq(cpu);
5632 unsigned long total = weighted_cpuload(rq);
5633
5634 if (type == 0 || !sched_feat(LB_BIAS))
5635 return total;
5636
5637 return min(rq->cpu_load[type-1], total);
5638 }
5639
5640 /*
5641 * Return a high guess at the load of a migration-target cpu weighted
5642 * according to the scheduling class and "nice" value.
5643 */
target_load(int cpu,int type)5644 static unsigned long target_load(int cpu, int type)
5645 {
5646 struct rq *rq = cpu_rq(cpu);
5647 unsigned long total = weighted_cpuload(rq);
5648
5649 if (type == 0 || !sched_feat(LB_BIAS))
5650 return total;
5651
5652 return max(rq->cpu_load[type-1], total);
5653 }
5654
cpu_avg_load_per_task(int cpu)5655 static unsigned long cpu_avg_load_per_task(int cpu)
5656 {
5657 struct rq *rq = cpu_rq(cpu);
5658 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5659 unsigned long load_avg = weighted_cpuload(rq);
5660
5661 if (nr_running)
5662 return load_avg / nr_running;
5663
5664 return 0;
5665 }
5666
record_wakee(struct task_struct * p)5667 static void record_wakee(struct task_struct *p)
5668 {
5669 /*
5670 * Only decay a single time; tasks that have less then 1 wakeup per
5671 * jiffy will not have built up many flips.
5672 */
5673 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5674 current->wakee_flips >>= 1;
5675 current->wakee_flip_decay_ts = jiffies;
5676 }
5677
5678 if (current->last_wakee != p) {
5679 current->last_wakee = p;
5680 current->wakee_flips++;
5681 }
5682 }
5683
5684 /*
5685 * Returns the current capacity of cpu after applying both
5686 * cpu and freq scaling.
5687 */
capacity_curr_of(int cpu)5688 unsigned long capacity_curr_of(int cpu)
5689 {
5690 unsigned long max_cap = cpu_rq(cpu)->cpu_capacity_orig;
5691 unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
5692
5693 return cap_scale(max_cap, scale_freq);
5694 }
5695
energy_aware(void)5696 inline bool energy_aware(void)
5697 {
5698 return sched_feat(ENERGY_AWARE);
5699 }
5700
5701 /*
5702 * __cpu_norm_util() returns the cpu util relative to a specific capacity,
5703 * i.e. it's busy ratio, in the range [0..SCHED_CAPACITY_SCALE] which is useful
5704 * for energy calculations. Using the scale-invariant util returned by
5705 * cpu_util() and approximating scale-invariant util by:
5706 *
5707 * util ~ (curr_freq/max_freq)*1024 * capacity_orig/1024 * running_time/time
5708 *
5709 * the normalized util can be found using the specific capacity.
5710 *
5711 * capacity = capacity_orig * curr_freq/max_freq
5712 *
5713 * norm_util = running_time/time ~ util/capacity
5714 */
__cpu_norm_util(unsigned long util,unsigned long capacity)5715 static unsigned long __cpu_norm_util(unsigned long util, unsigned long capacity)
5716 {
5717 if (util >= capacity)
5718 return SCHED_CAPACITY_SCALE;
5719
5720 return (util << SCHED_CAPACITY_SHIFT)/capacity;
5721 }
5722
5723 /*
5724 * CPU candidates.
5725 *
5726 * These are labels to reference CPU candidates for an energy_diff.
5727 * Currently we support only two possible candidates: the task's previous CPU
5728 * and another candiate CPU.
5729 * More advanced/aggressive EAS selection policies can consider more
5730 * candidates.
5731 */
5732 #define EAS_CPU_PRV 0
5733 #define EAS_CPU_NXT 1
5734 #define EAS_CPU_BKP 2
5735
5736 /*
5737 * energy_diff - supports the computation of the estimated energy impact in
5738 * moving a "task"'s "util_delta" between different CPU candidates.
5739 */
5740 /*
5741 * NOTE: When using or examining WALT task signals, all wakeup
5742 * latency is included as busy time for task util.
5743 *
5744 * This is relevant here because:
5745 * When debugging is enabled, it can take as much as 1ms to
5746 * write the output to the trace buffer for each eenv
5747 * scenario. For periodic tasks where the sleep time is of
5748 * a similar order, the WALT task util can be inflated.
5749 *
5750 * Further, and even without debugging enabled,
5751 * task wakeup latency changes depending upon the EAS
5752 * wakeup algorithm selected - FIND_BEST_TARGET only does
5753 * energy calculations for up to 2 candidate CPUs. When
5754 * NO_FIND_BEST_TARGET is configured, we can potentially
5755 * do an energy calculation across all CPUS in the system.
5756 *
5757 * The impact to WALT task util on a Juno board
5758 * running a periodic task which only sleeps for 200usec
5759 * between 1ms activations has been measured.
5760 * (i.e. the wakeup latency induced by energy calculation
5761 * and debug output is double the desired sleep time and
5762 * almost equivalent to the runtime which is more-or-less
5763 * the worst case possible for this test)
5764 *
5765 * In this scenario, a task which has a PELT util of around
5766 * 220 is inflated under WALT to have util around 400.
5767 *
5768 * This is simply a property of the way WALT includes
5769 * wakeup latency in busy time while PELT does not.
5770 *
5771 * Hence - be careful when enabling DEBUG_EENV_DECISIONS
5772 * expecially if WALT is the task signal.
5773 */
5774 /*#define DEBUG_EENV_DECISIONS*/
5775
5776 #ifdef DEBUG_EENV_DECISIONS
5777 /* max of 8 levels of sched groups traversed */
5778 #define EAS_EENV_DEBUG_LEVELS 16
5779
5780 struct _eenv_debug {
5781 unsigned long cap;
5782 unsigned long norm_util;
5783 unsigned long cap_energy;
5784 unsigned long idle_energy;
5785 unsigned long this_energy;
5786 unsigned long this_busy_energy;
5787 unsigned long this_idle_energy;
5788 cpumask_t group_cpumask;
5789 unsigned long cpu_util[1];
5790 };
5791 #endif
5792
5793 struct eenv_cpu {
5794 /* CPU ID, must be in cpus_mask */
5795 int cpu_id;
5796
5797 /*
5798 * Index (into sched_group_energy::cap_states) of the OPP the
5799 * CPU needs to run at if the task is placed on it.
5800 * This includes the both active and blocked load, due to
5801 * other tasks on this CPU, as well as the task's own
5802 * utilization.
5803 */
5804 int cap_idx;
5805 int cap;
5806
5807 /* Estimated system energy */
5808 unsigned long energy;
5809
5810 /* Estimated energy variation wrt EAS_CPU_PRV */
5811 long nrg_delta;
5812
5813 #ifdef DEBUG_EENV_DECISIONS
5814 struct _eenv_debug *debug;
5815 int debug_idx;
5816 #endif /* DEBUG_EENV_DECISIONS */
5817 };
5818
5819 struct energy_env {
5820 /* Utilization to move */
5821 struct task_struct *p;
5822 unsigned long util_delta;
5823 unsigned long util_delta_boosted;
5824
5825 /* Mask of CPUs candidates to evaluate */
5826 cpumask_t cpus_mask;
5827
5828 /* CPU candidates to evaluate */
5829 struct eenv_cpu *cpu;
5830 int eenv_cpu_count;
5831
5832 #ifdef DEBUG_EENV_DECISIONS
5833 /* pointer to the memory block reserved
5834 * for debug on this CPU - there will be
5835 * sizeof(struct _eenv_debug) *
5836 * (EAS_CPU_CNT * EAS_EENV_DEBUG_LEVELS)
5837 * bytes allocated here.
5838 */
5839 struct _eenv_debug *debug;
5840 #endif
5841 /*
5842 * Index (into energy_env::cpu) of the morst energy efficient CPU for
5843 * the specified energy_env::task
5844 */
5845 int next_idx;
5846 int max_cpu_count;
5847
5848 /* Support data */
5849 struct sched_group *sg_top;
5850 struct sched_group *sg_cap;
5851 struct sched_group *sg;
5852 };
5853
5854 /**
5855 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
5856 * @cpu: the CPU to get the utilization of
5857 *
5858 * The unit of the return value must be the one of capacity so we can compare
5859 * the utilization with the capacity of the CPU that is available for CFS task
5860 * (ie cpu_capacity).
5861 *
5862 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5863 * recent utilization of currently non-runnable tasks on a CPU. It represents
5864 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5865 * capacity_orig is the cpu_capacity available at the highest frequency,
5866 * i.e. arch_scale_cpu_capacity().
5867 * The utilization of a CPU converges towards a sum equal to or less than the
5868 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5869 * the running time on this CPU scaled by capacity_curr.
5870 *
5871 * The estimated utilization of a CPU is defined to be the maximum between its
5872 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
5873 * currently RUNNABLE on that CPU.
5874 * This allows to properly represent the expected utilization of a CPU which
5875 * has just got a big task running since a long sleep period. At the same time
5876 * however it preserves the benefits of the "blocked utilization" in
5877 * describing the potential for other tasks waking up on the same CPU.
5878 *
5879 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5880 * higher than capacity_orig because of unfortunate rounding in
5881 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5882 * the average stabilizes with the new running time. We need to check that the
5883 * utilization stays within the range of [0..capacity_orig] and cap it if
5884 * necessary. Without utilization capping, a group could be seen as overloaded
5885 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5886 * available capacity. We allow utilization to overshoot capacity_curr (but not
5887 * capacity_orig) as it useful for predicting the capacity required after task
5888 * migrations (scheduler-driven DVFS).
5889 *
5890 * Return: the (estimated) utilization for the specified CPU
5891 */
cpu_util(int cpu)5892 static inline unsigned long cpu_util(int cpu)
5893 {
5894 struct cfs_rq *cfs_rq;
5895 unsigned int util;
5896
5897 #ifdef CONFIG_SCHED_WALT
5898 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
5899 u64 walt_cpu_util = cpu_rq(cpu)->cumulative_runnable_avg;
5900
5901 walt_cpu_util <<= SCHED_CAPACITY_SHIFT;
5902 do_div(walt_cpu_util, walt_ravg_window);
5903
5904 return min_t(unsigned long, walt_cpu_util,
5905 capacity_orig_of(cpu));
5906 }
5907 #endif
5908
5909 cfs_rq = &cpu_rq(cpu)->cfs;
5910 util = READ_ONCE(cfs_rq->avg.util_avg);
5911
5912 if (sched_feat(UTIL_EST))
5913 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
5914
5915 return min_t(unsigned long, util, capacity_orig_of(cpu));
5916 }
5917
cpu_util_rt(int cpu)5918 static inline unsigned long cpu_util_rt(int cpu)
5919 {
5920 struct rt_rq *rt_rq = &(cpu_rq(cpu)->rt);
5921
5922 return rt_rq->avg.util_avg;
5923 }
5924
cpu_util_freq(int cpu)5925 static inline unsigned long cpu_util_freq(int cpu)
5926 {
5927 #ifdef CONFIG_SCHED_WALT
5928 u64 walt_cpu_util;
5929
5930 if (unlikely(walt_disabled || !sysctl_sched_use_walt_cpu_util)) {
5931 return min(cpu_util(cpu) + cpu_util_rt(cpu),
5932 capacity_orig_of(cpu));
5933 }
5934
5935 walt_cpu_util = cpu_rq(cpu)->prev_runnable_sum;
5936 walt_cpu_util <<= SCHED_CAPACITY_SHIFT;
5937 do_div(walt_cpu_util, walt_ravg_window);
5938
5939 return min_t(unsigned long, walt_cpu_util, capacity_orig_of(cpu));
5940 #else
5941 return min(cpu_util(cpu) + cpu_util_rt(cpu), capacity_orig_of(cpu));
5942 #endif
5943 }
5944
5945 /*
5946 * cpu_util_without: compute cpu utilization without any contributions from *p
5947 * @cpu: the CPU which utilization is requested
5948 * @p: the task which utilization should be discounted
5949 *
5950 * The utilization of a CPU is defined by the utilization of tasks currently
5951 * enqueued on that CPU as well as tasks which are currently sleeping after an
5952 * execution on that CPU.
5953 *
5954 * This method returns the utilization of the specified CPU by discounting the
5955 * utilization of the specified task, whenever the task is currently
5956 * contributing to the CPU utilization.
5957 */
cpu_util_without(int cpu,struct task_struct * p)5958 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
5959 {
5960 struct cfs_rq *cfs_rq;
5961 unsigned int util;
5962
5963 #ifdef CONFIG_SCHED_WALT
5964 /*
5965 * WALT does not decay idle tasks in the same manner
5966 * as PELT, so it makes little sense to subtract task
5967 * utilization from cpu utilization. Instead just use
5968 * cpu_util for this case.
5969 */
5970 if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util))
5971 return cpu_util(cpu);
5972 #endif
5973
5974 /* Task has no contribution or is new */
5975 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5976 return cpu_util(cpu);
5977
5978 cfs_rq = &cpu_rq(cpu)->cfs;
5979 util = READ_ONCE(cfs_rq->avg.util_avg);
5980
5981 /* Discount task's util from CPU's util */
5982 util -= min_t(unsigned int, util, task_util(p));
5983
5984 /*
5985 * Covered cases:
5986 *
5987 * a) if *p is the only task sleeping on this CPU, then:
5988 * cpu_util (== task_util) > util_est (== 0)
5989 * and thus we return:
5990 * cpu_util_without = (cpu_util - task_util) = 0
5991 *
5992 * b) if other tasks are SLEEPING on this CPU, which is now exiting
5993 * IDLE, then:
5994 * cpu_util >= task_util
5995 * cpu_util > util_est (== 0)
5996 * and thus we discount *p's blocked utilization to return:
5997 * cpu_util_without = (cpu_util - task_util) >= 0
5998 *
5999 * c) if other tasks are RUNNABLE on that CPU and
6000 * util_est > cpu_util
6001 * then we use util_est since it returns a more restrictive
6002 * estimation of the spare capacity on that CPU, by just
6003 * considering the expected utilization of tasks already
6004 * runnable on that CPU.
6005 *
6006 * Cases a) and b) are covered by the above code, while case c) is
6007 * covered by the following code when estimated utilization is
6008 * enabled.
6009 */
6010 if (sched_feat(UTIL_EST)) {
6011 unsigned int estimated =
6012 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6013
6014 /*
6015 * Despite the following checks we still have a small window
6016 * for a possible race, when an execl's select_task_rq_fair()
6017 * races with LB's detach_task():
6018 *
6019 * detach_task()
6020 * p->on_rq = TASK_ON_RQ_MIGRATING;
6021 * ---------------------------------- A
6022 * deactivate_task() \
6023 * dequeue_task() + RaceTime
6024 * util_est_dequeue() /
6025 * ---------------------------------- B
6026 *
6027 * The additional check on "current == p" it's required to
6028 * properly fix the execl regression and it helps in further
6029 * reducing the chances for the above race.
6030 */
6031 if (unlikely(task_on_rq_queued(p) || current == p)) {
6032 estimated -= min_t(unsigned int, estimated,
6033 (_task_util_est(p) | UTIL_AVG_UNCHANGED));
6034 }
6035 util = max(util, estimated);
6036 }
6037
6038 /*
6039 * Utilization (estimated) can exceed the CPU capacity, thus let's
6040 * clamp to the maximum CPU capacity to ensure consistency with
6041 * the cpu_util call.
6042 */
6043 return min_t(unsigned long, util, capacity_orig_of(cpu));
6044 }
6045
group_max_util(struct energy_env * eenv,int cpu_idx)6046 static unsigned long group_max_util(struct energy_env *eenv, int cpu_idx)
6047 {
6048 unsigned long max_util = 0;
6049 unsigned long util;
6050 int cpu;
6051
6052 for_each_cpu(cpu, sched_group_span(eenv->sg_cap)) {
6053 util = cpu_util_without(cpu, eenv->p);
6054
6055 /*
6056 * If we are looking at the target CPU specified by the eenv,
6057 * then we should add the (estimated) utilization of the task
6058 * assuming we will wake it up on that CPU.
6059 */
6060 if (unlikely(cpu == eenv->cpu[cpu_idx].cpu_id))
6061 util += eenv->util_delta_boosted;
6062
6063 max_util = max(max_util, util);
6064 }
6065
6066 return max_util;
6067 }
6068
6069 /*
6070 * group_norm_util() returns the approximated group util relative to it's
6071 * current capacity (busy ratio) in the range [0..SCHED_CAPACITY_SCALE] for use
6072 * in energy calculations. Since task executions may or may not overlap in time
6073 * in the group the true normalized util is between max(cpu_norm_util(i)) and
6074 * sum(cpu_norm_util(i)) when iterating over all cpus in the group, i. The
6075 * latter is used as the estimate as it leads to a more pessimistic energy
6076 * estimate (more busy).
6077 */
6078 static unsigned
group_norm_util(struct energy_env * eenv,int cpu_idx)6079 long group_norm_util(struct energy_env *eenv, int cpu_idx)
6080 {
6081 unsigned long capacity = eenv->cpu[cpu_idx].cap;
6082 unsigned long util, util_sum = 0;
6083 int cpu;
6084
6085 for_each_cpu(cpu, sched_group_span(eenv->sg)) {
6086 util = cpu_util_without(cpu, eenv->p);
6087
6088 /*
6089 * If we are looking at the target CPU specified by the eenv,
6090 * then we should add the (estimated) utilization of the task
6091 * assuming we will wake it up on that CPU.
6092 */
6093 if (unlikely(cpu == eenv->cpu[cpu_idx].cpu_id))
6094 util += eenv->util_delta;
6095
6096 util_sum += __cpu_norm_util(util, capacity);
6097 }
6098
6099 if (util_sum > SCHED_CAPACITY_SCALE)
6100 return SCHED_CAPACITY_SCALE;
6101 return util_sum;
6102 }
6103
find_new_capacity(struct energy_env * eenv,int cpu_idx)6104 static int find_new_capacity(struct energy_env *eenv, int cpu_idx)
6105 {
6106 const struct sched_group_energy *sge = eenv->sg_cap->sge;
6107 unsigned long util = group_max_util(eenv, cpu_idx);
6108 int idx, cap_idx;
6109
6110 cap_idx = sge->nr_cap_states - 1;
6111
6112 for (idx = 0; idx < sge->nr_cap_states; idx++) {
6113 if (sge->cap_states[idx].cap >= util) {
6114 cap_idx = idx;
6115 break;
6116 }
6117 }
6118 /* Keep track of SG's capacity */
6119 eenv->cpu[cpu_idx].cap = sge->cap_states[cap_idx].cap;
6120 eenv->cpu[cpu_idx].cap_idx = cap_idx;
6121
6122 return cap_idx;
6123 }
6124
group_idle_state(struct energy_env * eenv,int cpu_idx)6125 static int group_idle_state(struct energy_env *eenv, int cpu_idx)
6126 {
6127 struct sched_group *sg = eenv->sg;
6128 int src_in_grp, dst_in_grp;
6129 int i, state = INT_MAX;
6130 int max_idle_state_idx;
6131 long grp_util = 0;
6132 int new_state;
6133
6134 /* Find the shallowest idle state in the sched group. */
6135 for_each_cpu(i, sched_group_span(sg))
6136 state = min(state, idle_get_state_idx(cpu_rq(i)));
6137
6138 /* Take non-cpuidle idling into account (active idle/arch_cpu_idle()) */
6139 state++;
6140 /*
6141 * Try to estimate if a deeper idle state is
6142 * achievable when we move the task.
6143 */
6144 for_each_cpu(i, sched_group_span(sg))
6145 grp_util += cpu_util(i);
6146
6147 src_in_grp = cpumask_test_cpu(eenv->cpu[EAS_CPU_PRV].cpu_id,
6148 sched_group_span(sg));
6149 dst_in_grp = cpumask_test_cpu(eenv->cpu[cpu_idx].cpu_id,
6150 sched_group_span(sg));
6151 if (src_in_grp == dst_in_grp) {
6152 /*
6153 * both CPUs under consideration are in the same group or not in
6154 * either group, migration should leave idle state the same.
6155 */
6156 return state;
6157 }
6158 /*
6159 * add or remove util as appropriate to indicate what group util
6160 * will be (worst case - no concurrent execution) after moving the task
6161 */
6162 grp_util += src_in_grp ? -eenv->util_delta : eenv->util_delta;
6163
6164 if (grp_util >
6165 ((long)sg->sgc->max_capacity * (int)sg->group_weight)) {
6166 /*
6167 * After moving, the group will be fully occupied
6168 * so assume it will not be idle at all.
6169 */
6170 return 0;
6171 }
6172
6173 /*
6174 * after moving, this group is at most partly
6175 * occupied, so it should have some idle time.
6176 */
6177 max_idle_state_idx = sg->sge->nr_idle_states - 2;
6178 new_state = grp_util * max_idle_state_idx;
6179 if (grp_util <= 0) {
6180 /* group will have no util, use lowest state */
6181 new_state = max_idle_state_idx + 1;
6182 } else {
6183 /*
6184 * for partially idle, linearly map util to idle
6185 * states, excluding the lowest one. This does not
6186 * correspond to the state we expect to enter in
6187 * reality, but an indication of what might happen.
6188 */
6189 new_state = min_t(int, max_idle_state_idx,
6190 new_state / sg->sgc->max_capacity);
6191 new_state = max_idle_state_idx - new_state;
6192 }
6193 return new_state;
6194 }
6195
6196 #ifdef DEBUG_EENV_DECISIONS
6197 static struct _eenv_debug *eenv_debug_entry_ptr(struct _eenv_debug *base, int idx);
6198
store_energy_calc_debug_info(struct energy_env * eenv,int cpu_idx,int cap_idx,int idle_idx)6199 static void store_energy_calc_debug_info(struct energy_env *eenv, int cpu_idx, int cap_idx, int idle_idx)
6200 {
6201 int debug_idx = eenv->cpu[cpu_idx].debug_idx;
6202 unsigned long sg_util, busy_energy, idle_energy;
6203 const struct sched_group_energy *sge;
6204 struct _eenv_debug *dbg;
6205 int cpu;
6206
6207 if (debug_idx < EAS_EENV_DEBUG_LEVELS) {
6208 sge = eenv->sg->sge;
6209 sg_util = group_norm_util(eenv, cpu_idx);
6210 busy_energy = sge->cap_states[cap_idx].power;
6211 busy_energy *= sg_util;
6212 idle_energy = SCHED_CAPACITY_SCALE - sg_util;
6213 idle_energy *= sge->idle_states[idle_idx].power;
6214 /* should we use sg_cap or sg? */
6215 dbg = eenv_debug_entry_ptr(eenv->cpu[cpu_idx].debug, debug_idx);
6216 dbg->cap = sge->cap_states[cap_idx].cap;
6217 dbg->norm_util = sg_util;
6218 dbg->cap_energy = sge->cap_states[cap_idx].power;
6219 dbg->idle_energy = sge->idle_states[idle_idx].power;
6220 dbg->this_energy = busy_energy + idle_energy;
6221 dbg->this_busy_energy = busy_energy;
6222 dbg->this_idle_energy = idle_energy;
6223
6224 cpumask_copy(&dbg->group_cpumask,
6225 sched_group_span(eenv->sg));
6226
6227 for_each_cpu(cpu, &dbg->group_cpumask)
6228 dbg->cpu_util[cpu] = cpu_util(cpu);
6229
6230 eenv->cpu[cpu_idx].debug_idx = debug_idx+1;
6231 }
6232 }
6233 #else
6234 #define store_energy_calc_debug_info(a,b,c,d) {}
6235 #endif /* DEBUG_EENV_DECISIONS */
6236
6237 /*
6238 * calc_sg_energy: compute energy for the eenv's SG (i.e. eenv->sg).
6239 *
6240 * This works in iterations to compute the SG's energy for each CPU
6241 * candidate defined by the energy_env's cpu array.
6242 */
calc_sg_energy(struct energy_env * eenv)6243 static void calc_sg_energy(struct energy_env *eenv)
6244 {
6245 struct sched_group *sg = eenv->sg;
6246 unsigned long busy_energy, idle_energy;
6247 unsigned int busy_power, idle_power;
6248 unsigned long total_energy = 0;
6249 unsigned long sg_util;
6250 int cap_idx, idle_idx;
6251 int cpu_idx;
6252
6253 for (cpu_idx = EAS_CPU_PRV; cpu_idx < eenv->max_cpu_count; ++cpu_idx) {
6254 if (eenv->cpu[cpu_idx].cpu_id == -1)
6255 continue;
6256
6257 /* Compute ACTIVE energy */
6258 cap_idx = find_new_capacity(eenv, cpu_idx);
6259 busy_power = sg->sge->cap_states[cap_idx].power;
6260 sg_util = group_norm_util(eenv, cpu_idx);
6261 busy_energy = sg_util * busy_power;
6262
6263 /* Compute IDLE energy */
6264 idle_idx = group_idle_state(eenv, cpu_idx);
6265 idle_power = sg->sge->idle_states[idle_idx].power;
6266 idle_energy = SCHED_CAPACITY_SCALE - sg_util;
6267 idle_energy *= idle_power;
6268
6269 total_energy = busy_energy + idle_energy;
6270 eenv->cpu[cpu_idx].energy += total_energy;
6271
6272 store_energy_calc_debug_info(eenv, cpu_idx, cap_idx, idle_idx);
6273 }
6274 }
6275
6276 /*
6277 * compute_energy() computes the absolute variation in energy consumption by
6278 * moving eenv.util_delta from EAS_CPU_PRV to EAS_CPU_NXT.
6279 *
6280 * NOTE: compute_energy() may fail when racing with sched_domain updates, in
6281 * which case we abort by returning -EINVAL.
6282 */
compute_energy(struct energy_env * eenv)6283 static int compute_energy(struct energy_env *eenv)
6284 {
6285 struct sched_domain *sd;
6286 int cpu;
6287 struct cpumask visit_cpus;
6288 struct sched_group *sg;
6289 int cpu_count;
6290
6291 WARN_ON(!eenv->sg_top->sge);
6292
6293 cpumask_copy(&visit_cpus, sched_group_span(eenv->sg_top));
6294 /* If a cpu is hotplugged in while we are in this function, it does
6295 * not appear in the existing visit_cpus mask which came from the
6296 * sched_group pointer of the sched_domain pointed at by sd_ea for
6297 * either the prev or next cpu and was dereferenced in
6298 * select_energy_cpu_idx.
6299 * Since we will dereference sd_scs later as we iterate through the
6300 * CPUs we expect to visit, new CPUs can be present which are not in
6301 * the visit_cpus mask. Guard this with cpu_count.
6302 */
6303 cpu_count = cpumask_weight(&visit_cpus);
6304 while (!cpumask_empty(&visit_cpus)) {
6305 struct sched_group *sg_shared_cap = NULL;
6306
6307 cpu = cpumask_first(&visit_cpus);
6308
6309 /*
6310 * Is the group utilization affected by cpus outside this
6311 * sched_group?
6312 * This sd may have groups with cpus which were not present
6313 * when we took visit_cpus.
6314 */
6315 sd = rcu_dereference(per_cpu(sd_scs, cpu));
6316 if (sd && sd->parent)
6317 sg_shared_cap = sd->parent->groups;
6318
6319 for_each_domain(cpu, sd) {
6320 sg = sd->groups;
6321
6322 /* Has this sched_domain already been visited? */
6323 if (sd->child && group_first_cpu(sg) != cpu)
6324 break;
6325
6326 do {
6327 eenv->sg_cap = sg;
6328 if (sg_shared_cap && sg_shared_cap->group_weight >= sg->group_weight)
6329 eenv->sg_cap = sg_shared_cap;
6330
6331 /*
6332 * Compute the energy for all the candidate
6333 * CPUs in the current visited SG.
6334 */
6335 eenv->sg = sg;
6336 calc_sg_energy(eenv);
6337
6338 /* remove CPUs we have just visited */
6339 if (!sd->child) {
6340 /*
6341 * cpu_count here is the number of
6342 * cpus we expect to visit in this
6343 * calculation. If we race against
6344 * hotplug, we can have extra cpus
6345 * added to the groups we are
6346 * iterating which do not appear in
6347 * the visit_cpus mask. In that case
6348 * we are not able to calculate energy
6349 * without restarting so we will bail
6350 * out and use prev_cpu this time.
6351 */
6352 if (!cpu_count)
6353 return -EINVAL;
6354 cpumask_xor(&visit_cpus, &visit_cpus, sched_group_span(sg));
6355 cpu_count--;
6356 }
6357
6358 if (cpumask_equal(sched_group_span(sg), sched_group_span(eenv->sg_top)) &&
6359 sd->child)
6360 goto next_cpu;
6361
6362 } while (sg = sg->next, sg != sd->groups);
6363 }
6364 next_cpu:
6365 cpumask_clear_cpu(cpu, &visit_cpus);
6366 continue;
6367 }
6368
6369 return 0;
6370 }
6371
cpu_in_sg(struct sched_group * sg,int cpu)6372 static inline bool cpu_in_sg(struct sched_group *sg, int cpu)
6373 {
6374 return cpu != -1 && cpumask_test_cpu(cpu, sched_group_span(sg));
6375 }
6376
6377 #ifdef DEBUG_EENV_DECISIONS
dump_eenv_debug(struct energy_env * eenv)6378 static void dump_eenv_debug(struct energy_env *eenv)
6379 {
6380 int cpu_idx, grp_idx;
6381 char cpu_utils[(NR_CPUS*12)+10]="cpu_util: ";
6382 char cpulist[64];
6383
6384 trace_printk("eenv scenario: task=%p %s task_util=%lu prev_cpu=%d",
6385 eenv->p, eenv->p->comm, eenv->util_delta, eenv->cpu[EAS_CPU_PRV].cpu_id);
6386
6387 for (cpu_idx=EAS_CPU_PRV; cpu_idx < eenv->max_cpu_count; cpu_idx++) {
6388 if (eenv->cpu[cpu_idx].cpu_id == -1)
6389 continue;
6390 trace_printk("---Scenario %d: Place task on cpu %d energy=%lu (%d debug logs at %p)",
6391 cpu_idx+1, eenv->cpu[cpu_idx].cpu_id,
6392 eenv->cpu[cpu_idx].energy >> SCHED_CAPACITY_SHIFT,
6393 eenv->cpu[cpu_idx].debug_idx,
6394 eenv->cpu[cpu_idx].debug);
6395 for (grp_idx = 0; grp_idx < eenv->cpu[cpu_idx].debug_idx; grp_idx++) {
6396 struct _eenv_debug *debug;
6397 int cpu, written=0;
6398
6399 debug = eenv_debug_entry_ptr(eenv->cpu[cpu_idx].debug, grp_idx);
6400 cpu = scnprintf(cpulist, sizeof(cpulist), "%*pbl", cpumask_pr_args(&debug->group_cpumask));
6401
6402 cpu_utils[0] = 0;
6403 /* print out the relevant cpu_util */
6404 for_each_cpu(cpu, &(debug->group_cpumask)) {
6405 char tmp[64];
6406 if (written > sizeof(cpu_utils)-10) {
6407 cpu_utils[written]=0;
6408 break;
6409 }
6410 written += snprintf(tmp, sizeof(tmp), "cpu%d(%lu) ", cpu, debug->cpu_util[cpu]);
6411 strcat(cpu_utils, tmp);
6412 }
6413 /* trace the data */
6414 trace_printk(" | %s : cap=%lu nutil=%lu, cap_nrg=%lu, idle_nrg=%lu energy=%lu busy_energy=%lu idle_energy=%lu %s",
6415 cpulist, debug->cap, debug->norm_util,
6416 debug->cap_energy, debug->idle_energy,
6417 debug->this_energy >> SCHED_CAPACITY_SHIFT,
6418 debug->this_busy_energy >> SCHED_CAPACITY_SHIFT,
6419 debug->this_idle_energy >> SCHED_CAPACITY_SHIFT,
6420 cpu_utils);
6421
6422 }
6423 trace_printk("---");
6424 }
6425 trace_printk("----- done");
6426 return;
6427 }
6428 #else
6429 #define dump_eenv_debug(a) {}
6430 #endif /* DEBUG_EENV_DECISIONS */
6431 /*
6432 * select_energy_cpu_idx(): estimate the energy impact of changing the
6433 * utilization distribution.
6434 *
6435 * The eenv parameter specifies the changes: utilization amount and a
6436 * collection of possible CPU candidates. The number of candidates
6437 * depends upon the selection algorithm used.
6438 *
6439 * If find_best_target was used to select candidate CPUs, there will
6440 * be at most 3 including prev_cpu. If not, we used a brute force
6441 * selection which will provide the union of:
6442 * * CPUs belonging to the highest sd which is not overutilized
6443 * * CPUs the task is allowed to run on
6444 * * online CPUs
6445 *
6446 * This function returns the index of a CPU candidate specified by the
6447 * energy_env which corresponds to the most energy efficient CPU.
6448 * Thus, 0 (EAS_CPU_PRV) means that non of the CPU candidate is more energy
6449 * efficient than running on prev_cpu. This is also the value returned in case
6450 * of abort due to error conditions during the computations. The only
6451 * exception to this if we fail to access the energy model via sd_ea, where
6452 * we return -1 with the intent of asking the system to use a different
6453 * wakeup placement algorithm.
6454 *
6455 * A value greater than zero means that the most energy efficient CPU is the
6456 * one represented by eenv->cpu[eenv->next_idx].cpu_id.
6457 */
select_energy_cpu_idx(struct energy_env * eenv)6458 static inline int select_energy_cpu_idx(struct energy_env *eenv)
6459 {
6460 int last_cpu_idx = eenv->max_cpu_count - 1;
6461 struct sched_domain *sd;
6462 struct sched_group *sg;
6463 int sd_cpu = -1;
6464 int cpu_idx;
6465 int margin;
6466
6467 sd_cpu = eenv->cpu[EAS_CPU_PRV].cpu_id;
6468 sd = rcu_dereference(per_cpu(sd_ea, sd_cpu));
6469 if (!sd)
6470 return -1;
6471
6472 cpumask_clear(&eenv->cpus_mask);
6473 for (cpu_idx = EAS_CPU_PRV; cpu_idx < eenv->max_cpu_count; ++cpu_idx) {
6474 int cpu = eenv->cpu[cpu_idx].cpu_id;
6475
6476 if (cpu < 0)
6477 continue;
6478 cpumask_set_cpu(cpu, &eenv->cpus_mask);
6479 }
6480
6481 sg = sd->groups;
6482 do {
6483 /* Skip SGs which do not contains a candidate CPU */
6484 if (!cpumask_intersects(&eenv->cpus_mask, sched_group_span(sg)))
6485 continue;
6486
6487 eenv->sg_top = sg;
6488 if (compute_energy(eenv) == -EINVAL)
6489 return EAS_CPU_PRV;
6490 } while (sg = sg->next, sg != sd->groups);
6491 /* remember - eenv energy values are unscaled */
6492
6493 /*
6494 * Compute the dead-zone margin used to prevent too many task
6495 * migrations with negligible energy savings.
6496 * An energy saving is considered meaningful if it reduces the energy
6497 * consumption of EAS_CPU_PRV CPU candidate by at least ~1.56%
6498 */
6499 margin = eenv->cpu[EAS_CPU_PRV].energy >> 6;
6500
6501 /*
6502 * By default the EAS_CPU_PRV CPU is considered the most energy
6503 * efficient, with a 0 energy variation.
6504 */
6505 eenv->next_idx = EAS_CPU_PRV;
6506 eenv->cpu[EAS_CPU_PRV].nrg_delta = 0;
6507
6508 dump_eenv_debug(eenv);
6509
6510 /*
6511 * Compare the other CPU candidates to find a CPU which can be
6512 * more energy efficient then EAS_CPU_PRV
6513 */
6514 if (sched_feat(FBT_STRICT_ORDER))
6515 last_cpu_idx = EAS_CPU_BKP;
6516
6517 for(cpu_idx = EAS_CPU_NXT; cpu_idx <= last_cpu_idx; cpu_idx++) {
6518 if (eenv->cpu[cpu_idx].cpu_id < 0)
6519 continue;
6520 eenv->cpu[cpu_idx].nrg_delta =
6521 eenv->cpu[cpu_idx].energy -
6522 eenv->cpu[EAS_CPU_PRV].energy;
6523
6524 /* filter energy variations within the dead-zone margin */
6525 if (abs(eenv->cpu[cpu_idx].nrg_delta) < margin)
6526 eenv->cpu[cpu_idx].nrg_delta = 0;
6527 /* update the schedule candidate with min(nrg_delta) */
6528 if (eenv->cpu[cpu_idx].nrg_delta <
6529 eenv->cpu[eenv->next_idx].nrg_delta) {
6530 eenv->next_idx = cpu_idx;
6531 /* break out if we want to stop on first saving candidate */
6532 if (sched_feat(FBT_STRICT_ORDER))
6533 break;
6534 }
6535 }
6536
6537 return eenv->next_idx;
6538 }
6539
6540 /*
6541 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6542 *
6543 * A waker of many should wake a different task than the one last awakened
6544 * at a frequency roughly N times higher than one of its wakees.
6545 *
6546 * In order to determine whether we should let the load spread vs consolidating
6547 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6548 * partner, and a factor of lls_size higher frequency in the other.
6549 *
6550 * With both conditions met, we can be relatively sure that the relationship is
6551 * non-monogamous, with partner count exceeding socket size.
6552 *
6553 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6554 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6555 * socket size.
6556 */
wake_wide(struct task_struct * p,int sibling_count_hint)6557 static int wake_wide(struct task_struct *p, int sibling_count_hint)
6558 {
6559 unsigned int master = current->wakee_flips;
6560 unsigned int slave = p->wakee_flips;
6561 int llc_size = this_cpu_read(sd_llc_size);
6562
6563 if (sibling_count_hint >= llc_size)
6564 return 1;
6565
6566 if (master < slave)
6567 swap(master, slave);
6568 if (slave < llc_size || master < slave * llc_size)
6569 return 0;
6570 return 1;
6571 }
6572
6573 /*
6574 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6575 * soonest. For the purpose of speed we only consider the waking and previous
6576 * CPU.
6577 *
6578 * wake_affine_idle() - only considers 'now', it check if the waking CPU is (or
6579 * will be) idle.
6580 *
6581 * wake_affine_weight() - considers the weight to reflect the average
6582 * scheduling latency of the CPUs. This seems to work
6583 * for the overloaded case.
6584 */
6585
6586 static bool
wake_affine_idle(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6587 wake_affine_idle(struct sched_domain *sd, struct task_struct *p,
6588 int this_cpu, int prev_cpu, int sync)
6589 {
6590 if (idle_cpu(this_cpu))
6591 return true;
6592
6593 if (sync && cpu_rq(this_cpu)->nr_running == 1)
6594 return true;
6595
6596 return false;
6597 }
6598
6599 static bool
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6600 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6601 int this_cpu, int prev_cpu, int sync)
6602 {
6603 s64 this_eff_load, prev_eff_load;
6604 unsigned long task_load;
6605
6606 this_eff_load = target_load(this_cpu, sd->wake_idx);
6607 prev_eff_load = source_load(prev_cpu, sd->wake_idx);
6608
6609 if (sync) {
6610 unsigned long current_load = task_h_load(current);
6611
6612 if (current_load > this_eff_load)
6613 return true;
6614
6615 this_eff_load -= current_load;
6616 }
6617
6618 task_load = task_h_load(p);
6619
6620 this_eff_load += task_load;
6621 if (sched_feat(WA_BIAS))
6622 this_eff_load *= 100;
6623 this_eff_load *= capacity_of(prev_cpu);
6624
6625 prev_eff_load -= task_load;
6626 if (sched_feat(WA_BIAS))
6627 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6628 prev_eff_load *= capacity_of(this_cpu);
6629
6630 return this_eff_load <= prev_eff_load;
6631 }
6632
wake_affine(struct sched_domain * sd,struct task_struct * p,int prev_cpu,int sync)6633 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6634 int prev_cpu, int sync)
6635 {
6636 int this_cpu = smp_processor_id();
6637 bool affine = false;
6638
6639 if (sched_feat(WA_IDLE) && !affine)
6640 affine = wake_affine_idle(sd, p, this_cpu, prev_cpu, sync);
6641
6642 if (sched_feat(WA_WEIGHT) && !affine)
6643 affine = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6644
6645 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
6646 if (affine) {
6647 schedstat_inc(sd->ttwu_move_affine);
6648 schedstat_inc(p->se.statistics.nr_wakeups_affine);
6649 }
6650
6651 return affine;
6652 }
6653
6654 #ifdef CONFIG_SCHED_TUNE
6655 struct reciprocal_value schedtune_spc_rdiv;
6656
6657 static long
schedtune_margin(unsigned long signal,long boost)6658 schedtune_margin(unsigned long signal, long boost)
6659 {
6660 long long margin = 0;
6661
6662 /*
6663 * Signal proportional compensation (SPC)
6664 *
6665 * The Boost (B) value is used to compute a Margin (M) which is
6666 * proportional to the complement of the original Signal (S):
6667 * M = B * (SCHED_CAPACITY_SCALE - S)
6668 * The obtained M could be used by the caller to "boost" S.
6669 */
6670 if (boost >= 0) {
6671 margin = SCHED_CAPACITY_SCALE - signal;
6672 margin *= boost;
6673 } else
6674 margin = -signal * boost;
6675
6676 margin = reciprocal_divide(margin, schedtune_spc_rdiv);
6677
6678 if (boost < 0)
6679 margin *= -1;
6680 return margin;
6681 }
6682
6683 static inline int
schedtune_cpu_margin(unsigned long util,int cpu)6684 schedtune_cpu_margin(unsigned long util, int cpu)
6685 {
6686 int boost = schedtune_cpu_boost(cpu);
6687
6688 if (boost == 0)
6689 return 0;
6690
6691 return schedtune_margin(util, boost);
6692 }
6693
6694 static inline long
schedtune_task_margin(struct task_struct * task)6695 schedtune_task_margin(struct task_struct *task)
6696 {
6697 int boost = schedtune_task_boost(task);
6698 unsigned long util;
6699 long margin;
6700
6701 if (boost == 0)
6702 return 0;
6703
6704 util = task_util_est(task);
6705 margin = schedtune_margin(util, boost);
6706
6707 return margin;
6708 }
6709
6710 #else /* CONFIG_SCHED_TUNE */
6711
6712 static inline int
schedtune_cpu_margin(unsigned long util,int cpu)6713 schedtune_cpu_margin(unsigned long util, int cpu)
6714 {
6715 return 0;
6716 }
6717
6718 static inline int
schedtune_task_margin(struct task_struct * task)6719 schedtune_task_margin(struct task_struct *task)
6720 {
6721 return 0;
6722 }
6723
6724 #endif /* CONFIG_SCHED_TUNE */
6725
6726 unsigned long
boosted_cpu_util(int cpu)6727 boosted_cpu_util(int cpu)
6728 {
6729 unsigned long util = cpu_util_freq(cpu);
6730 long margin = schedtune_cpu_margin(util, cpu);
6731
6732 trace_sched_boost_cpu(cpu, util, margin);
6733
6734 return util + margin;
6735 }
6736
6737 static inline unsigned long
boosted_task_util(struct task_struct * task)6738 boosted_task_util(struct task_struct *task)
6739 {
6740 unsigned long util = task_util_est(task);
6741 long margin = schedtune_task_margin(task);
6742
6743 trace_sched_boost_task(task, util, margin);
6744
6745 return util + margin;
6746 }
6747
6748 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
6749
capacity_spare_without(int cpu,struct task_struct * p)6750 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6751 {
6752 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6753 }
6754
6755 /*
6756 * find_idlest_group finds and returns the least busy CPU group within the
6757 * domain.
6758 *
6759 * Assumes p is allowed on at least one CPU in sd.
6760 */
6761 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu,int sd_flag)6762 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
6763 int this_cpu, int sd_flag)
6764 {
6765 struct sched_group *idlest = NULL, *group = sd->groups;
6766 struct sched_group *most_spare_sg = NULL;
6767 unsigned long min_runnable_load = ULONG_MAX;
6768 unsigned long this_runnable_load = ULONG_MAX;
6769 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
6770 unsigned long most_spare = 0, this_spare = 0;
6771 int load_idx = sd->forkexec_idx;
6772 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
6773 unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
6774 (sd->imbalance_pct-100) / 100;
6775
6776 if (sd_flag & SD_BALANCE_WAKE)
6777 load_idx = sd->wake_idx;
6778
6779 do {
6780 unsigned long load, avg_load, runnable_load;
6781 unsigned long spare_cap, max_spare_cap;
6782 int local_group;
6783 int i;
6784
6785 /* Skip over this group if it has no CPUs allowed */
6786 if (!cpumask_intersects(sched_group_span(group),
6787 &p->cpus_allowed))
6788 continue;
6789
6790 local_group = cpumask_test_cpu(this_cpu,
6791 sched_group_span(group));
6792
6793 /*
6794 * Tally up the load of all CPUs in the group and find
6795 * the group containing the CPU with most spare capacity.
6796 */
6797 avg_load = 0;
6798 runnable_load = 0;
6799 max_spare_cap = 0;
6800
6801 for_each_cpu(i, sched_group_span(group)) {
6802 /* Bias balancing toward cpus of our domain */
6803 if (local_group)
6804 load = source_load(i, load_idx);
6805 else
6806 load = target_load(i, load_idx);
6807
6808 runnable_load += load;
6809
6810 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
6811
6812 spare_cap = capacity_spare_without(i, p);
6813
6814 if (spare_cap > max_spare_cap)
6815 max_spare_cap = spare_cap;
6816 }
6817
6818 /* Adjust by relative CPU capacity of the group */
6819 avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
6820 group->sgc->capacity;
6821 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
6822 group->sgc->capacity;
6823
6824 if (local_group) {
6825 this_runnable_load = runnable_load;
6826 this_avg_load = avg_load;
6827 this_spare = max_spare_cap;
6828 } else {
6829 if (min_runnable_load > (runnable_load + imbalance)) {
6830 /*
6831 * The runnable load is significantly smaller
6832 * so we can pick this new cpu
6833 */
6834 min_runnable_load = runnable_load;
6835 min_avg_load = avg_load;
6836 idlest = group;
6837 } else if ((runnable_load < (min_runnable_load + imbalance)) &&
6838 (100*min_avg_load > imbalance_scale*avg_load)) {
6839 /*
6840 * The runnable loads are close so take the
6841 * blocked load into account through avg_load.
6842 */
6843 min_avg_load = avg_load;
6844 idlest = group;
6845 }
6846
6847 if (most_spare < max_spare_cap) {
6848 most_spare = max_spare_cap;
6849 most_spare_sg = group;
6850 }
6851 }
6852 } while (group = group->next, group != sd->groups);
6853
6854 /*
6855 * The cross-over point between using spare capacity or least load
6856 * is too conservative for high utilization tasks on partially
6857 * utilized systems if we require spare_capacity > task_util(p),
6858 * so we allow for some task stuffing by using
6859 * spare_capacity > task_util(p)/2.
6860 *
6861 * Spare capacity can't be used for fork because the utilization has
6862 * not been set yet, we must first select a rq to compute the initial
6863 * utilization.
6864 */
6865 if (sd_flag & SD_BALANCE_FORK)
6866 goto skip_spare;
6867
6868 if (this_spare > task_util(p) / 2 &&
6869 imbalance_scale*this_spare > 100*most_spare)
6870 return NULL;
6871
6872 if (most_spare > task_util(p) / 2)
6873 return most_spare_sg;
6874
6875 skip_spare:
6876 if (!idlest)
6877 return NULL;
6878
6879 if (min_runnable_load > (this_runnable_load + imbalance))
6880 return NULL;
6881
6882 if ((this_runnable_load < (min_runnable_load + imbalance)) &&
6883 (100*this_avg_load < imbalance_scale*min_avg_load))
6884 return NULL;
6885
6886 return idlest;
6887 }
6888
6889 /*
6890 * find_idlest_group_cpu - find the idlest cpu among the cpus in group.
6891 */
6892 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6893 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6894 {
6895 unsigned long load, min_load = ULONG_MAX;
6896 unsigned int min_exit_latency = UINT_MAX;
6897 u64 latest_idle_timestamp = 0;
6898 int least_loaded_cpu = this_cpu;
6899 int shallowest_idle_cpu = -1;
6900 int i;
6901
6902 /* Check if we have any choice: */
6903 if (group->group_weight == 1)
6904 return cpumask_first(sched_group_span(group));
6905
6906 /* Traverse only the allowed CPUs */
6907 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
6908 if (idle_cpu(i)) {
6909 struct rq *rq = cpu_rq(i);
6910 struct cpuidle_state *idle = idle_get_state(rq);
6911 if (idle && idle->exit_latency < min_exit_latency) {
6912 /*
6913 * We give priority to a CPU whose idle state
6914 * has the smallest exit latency irrespective
6915 * of any idle timestamp.
6916 */
6917 min_exit_latency = idle->exit_latency;
6918 latest_idle_timestamp = rq->idle_stamp;
6919 shallowest_idle_cpu = i;
6920 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6921 rq->idle_stamp > latest_idle_timestamp) {
6922 /*
6923 * If equal or no active idle state, then
6924 * the most recently idled CPU might have
6925 * a warmer cache.
6926 */
6927 latest_idle_timestamp = rq->idle_stamp;
6928 shallowest_idle_cpu = i;
6929 }
6930 } else if (shallowest_idle_cpu == -1) {
6931 load = weighted_cpuload(cpu_rq(i));
6932 if (load < min_load || (load == min_load && i == this_cpu)) {
6933 min_load = load;
6934 least_loaded_cpu = i;
6935 }
6936 }
6937 }
6938
6939 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6940 }
6941
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6942 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6943 int cpu, int prev_cpu, int sd_flag)
6944 {
6945 int new_cpu = cpu;
6946
6947 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
6948 return prev_cpu;
6949
6950 while (sd) {
6951 struct sched_group *group;
6952 struct sched_domain *tmp;
6953 int weight;
6954
6955 if (!(sd->flags & sd_flag)) {
6956 sd = sd->child;
6957 continue;
6958 }
6959
6960 group = find_idlest_group(sd, p, cpu, sd_flag);
6961 if (!group) {
6962 sd = sd->child;
6963 continue;
6964 }
6965
6966 new_cpu = find_idlest_group_cpu(group, p, cpu);
6967 if (new_cpu == cpu) {
6968 /* Now try balancing at a lower domain level of cpu */
6969 sd = sd->child;
6970 continue;
6971 }
6972
6973 /* Now try balancing at a lower domain level of new_cpu */
6974 cpu = new_cpu;
6975 weight = sd->span_weight;
6976 sd = NULL;
6977 for_each_domain(cpu, tmp) {
6978 if (weight <= tmp->span_weight)
6979 break;
6980 if (tmp->flags & sd_flag)
6981 sd = tmp;
6982 }
6983 /* while loop will break here if sd == NULL */
6984 }
6985
6986 return new_cpu;
6987 }
6988
6989 #ifdef CONFIG_SCHED_SMT
6990 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6991 EXPORT_SYMBOL_GPL(sched_smt_present);
6992
set_idle_cores(int cpu,int val)6993 static inline void set_idle_cores(int cpu, int val)
6994 {
6995 struct sched_domain_shared *sds;
6996
6997 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6998 if (sds)
6999 WRITE_ONCE(sds->has_idle_cores, val);
7000 }
7001
test_idle_cores(int cpu,bool def)7002 static inline bool test_idle_cores(int cpu, bool def)
7003 {
7004 struct sched_domain_shared *sds;
7005
7006 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7007 if (sds)
7008 return READ_ONCE(sds->has_idle_cores);
7009
7010 return def;
7011 }
7012
7013 /*
7014 * Scans the local SMT mask to see if the entire core is idle, and records this
7015 * information in sd_llc_shared->has_idle_cores.
7016 *
7017 * Since SMT siblings share all cache levels, inspecting this limited remote
7018 * state should be fairly cheap.
7019 */
__update_idle_core(struct rq * rq)7020 void __update_idle_core(struct rq *rq)
7021 {
7022 int core = cpu_of(rq);
7023 int cpu;
7024
7025 rcu_read_lock();
7026 if (test_idle_cores(core, true))
7027 goto unlock;
7028
7029 for_each_cpu(cpu, cpu_smt_mask(core)) {
7030 if (cpu == core)
7031 continue;
7032
7033 if (!idle_cpu(cpu))
7034 goto unlock;
7035 }
7036
7037 set_idle_cores(core, 1);
7038 unlock:
7039 rcu_read_unlock();
7040 }
7041
7042 /*
7043 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7044 * there are no idle cores left in the system; tracked through
7045 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7046 */
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)7047 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
7048 {
7049 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
7050 int core, cpu;
7051
7052 if (!static_branch_likely(&sched_smt_present))
7053 return -1;
7054
7055 if (!test_idle_cores(target, false))
7056 return -1;
7057
7058 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
7059
7060 for_each_cpu_wrap(core, cpus, target) {
7061 bool idle = true;
7062
7063 for_each_cpu(cpu, cpu_smt_mask(core)) {
7064 cpumask_clear_cpu(cpu, cpus);
7065 if (!idle_cpu(cpu))
7066 idle = false;
7067 }
7068
7069 if (idle)
7070 return core;
7071 }
7072
7073 /*
7074 * Failed to find an idle core; stop looking for one.
7075 */
7076 set_idle_cores(target, 0);
7077
7078 return -1;
7079 }
7080
7081 /*
7082 * Scan the local SMT mask for idle CPUs.
7083 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7084 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7085 {
7086 int cpu;
7087
7088 if (!static_branch_likely(&sched_smt_present))
7089 return -1;
7090
7091 for_each_cpu(cpu, cpu_smt_mask(target)) {
7092 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
7093 continue;
7094 if (idle_cpu(cpu))
7095 return cpu;
7096 }
7097
7098 return -1;
7099 }
7100
7101 #else /* CONFIG_SCHED_SMT */
7102
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)7103 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
7104 {
7105 return -1;
7106 }
7107
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7108 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7109 {
7110 return -1;
7111 }
7112
7113 #endif /* CONFIG_SCHED_SMT */
7114
7115 /*
7116 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7117 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7118 * average idle time for this rq (as found in rq->avg_idle).
7119 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,int target)7120 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
7121 {
7122 struct sched_domain *this_sd;
7123 u64 avg_cost, avg_idle;
7124 u64 time, cost;
7125 s64 delta;
7126 int cpu, nr = INT_MAX;
7127
7128 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
7129 if (!this_sd)
7130 return -1;
7131
7132 /*
7133 * Due to large variance we need a large fuzz factor; hackbench in
7134 * particularly is sensitive here.
7135 */
7136 avg_idle = this_rq()->avg_idle / 512;
7137 avg_cost = this_sd->avg_scan_cost + 1;
7138
7139 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
7140 return -1;
7141
7142 if (sched_feat(SIS_PROP)) {
7143 u64 span_avg = sd->span_weight * avg_idle;
7144 if (span_avg > 4*avg_cost)
7145 nr = div_u64(span_avg, avg_cost);
7146 else
7147 nr = 4;
7148 }
7149
7150 time = local_clock();
7151
7152 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
7153 if (!--nr)
7154 return -1;
7155 if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
7156 continue;
7157 if (idle_cpu(cpu))
7158 break;
7159 }
7160
7161 time = local_clock() - time;
7162 cost = this_sd->avg_scan_cost;
7163 delta = (s64)(time - cost) / 8;
7164 this_sd->avg_scan_cost += delta;
7165
7166 return cpu;
7167 }
7168
7169 /*
7170 * Try and locate an idle core/thread in the LLC cache domain.
7171 */
__select_idle_sibling(struct task_struct * p,int prev,int target)7172 static inline int __select_idle_sibling(struct task_struct *p, int prev, int target)
7173 {
7174 struct sched_domain *sd;
7175 int i;
7176
7177 if (idle_cpu(target))
7178 return target;
7179
7180 /*
7181 * If the previous cpu is cache affine and idle, don't be stupid.
7182 */
7183 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
7184 return prev;
7185
7186 sd = rcu_dereference(per_cpu(sd_llc, target));
7187 if (!sd)
7188 return target;
7189
7190 i = select_idle_core(p, sd, target);
7191 if ((unsigned)i < nr_cpumask_bits)
7192 return i;
7193
7194 i = select_idle_cpu(p, sd, target);
7195 if ((unsigned)i < nr_cpumask_bits)
7196 return i;
7197
7198 i = select_idle_smt(p, sd, target);
7199 if ((unsigned)i < nr_cpumask_bits)
7200 return i;
7201
7202 return target;
7203 }
7204
select_idle_sibling_cstate_aware(struct task_struct * p,int prev,int target)7205 static inline int select_idle_sibling_cstate_aware(struct task_struct *p, int prev, int target)
7206 {
7207 struct sched_domain *sd;
7208 struct sched_group *sg;
7209 int best_idle_cpu = -1;
7210 int best_idle_cstate = -1;
7211 int best_idle_capacity = INT_MAX;
7212 int i;
7213
7214 /*
7215 * Iterate the domains and find an elegible idle cpu.
7216 */
7217 sd = rcu_dereference(per_cpu(sd_llc, target));
7218 for_each_lower_domain(sd) {
7219 sg = sd->groups;
7220 do {
7221 if (!cpumask_intersects(
7222 sched_group_span(sg), &p->cpus_allowed))
7223 goto next;
7224
7225 for_each_cpu_and(i, &p->cpus_allowed, sched_group_span(sg)) {
7226 int idle_idx;
7227 unsigned long new_usage;
7228 unsigned long capacity_orig;
7229
7230 if (!idle_cpu(i))
7231 goto next;
7232
7233 /* figure out if the task can fit here at all */
7234 new_usage = boosted_task_util(p);
7235 capacity_orig = capacity_orig_of(i);
7236
7237 if (new_usage > capacity_orig)
7238 goto next;
7239
7240 /* if the task fits without changing OPP and we
7241 * intended to use this CPU, just proceed
7242 */
7243 if (i == target && new_usage <= capacity_curr_of(target)) {
7244 return target;
7245 }
7246
7247 /* otherwise select CPU with shallowest idle state
7248 * to reduce wakeup latency.
7249 */
7250 idle_idx = idle_get_state_idx(cpu_rq(i));
7251
7252 if (idle_idx < best_idle_cstate &&
7253 capacity_orig <= best_idle_capacity) {
7254 best_idle_cpu = i;
7255 best_idle_cstate = idle_idx;
7256 best_idle_capacity = capacity_orig;
7257 }
7258 }
7259 next:
7260 sg = sg->next;
7261 } while (sg != sd->groups);
7262 }
7263
7264 if (best_idle_cpu >= 0)
7265 target = best_idle_cpu;
7266
7267 return target;
7268 }
7269
select_idle_sibling(struct task_struct * p,int prev,int target)7270 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7271 {
7272 if (!sysctl_sched_cstate_aware)
7273 return __select_idle_sibling(p, prev, target);
7274
7275 return select_idle_sibling_cstate_aware(p, prev, target);
7276 }
7277
task_fits_capacity(struct task_struct * p,long capacity)7278 static inline int task_fits_capacity(struct task_struct *p, long capacity)
7279 {
7280 return capacity * 1024 > boosted_task_util(p) * capacity_margin;
7281 }
7282
start_cpu(bool boosted)7283 static int start_cpu(bool boosted)
7284 {
7285 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
7286
7287 return boosted ? rd->max_cap_orig_cpu : rd->min_cap_orig_cpu;
7288 }
7289
find_best_target(struct task_struct * p,int * backup_cpu,bool boosted,bool prefer_idle)7290 static inline int find_best_target(struct task_struct *p, int *backup_cpu,
7291 bool boosted, bool prefer_idle)
7292 {
7293 unsigned long min_util = boosted_task_util(p);
7294 unsigned long target_capacity = ULONG_MAX;
7295 unsigned long min_wake_util = ULONG_MAX;
7296 unsigned long target_max_spare_cap = 0;
7297 unsigned long target_util = ULONG_MAX;
7298 unsigned long best_active_util = ULONG_MAX;
7299 int best_idle_cstate = INT_MAX;
7300 struct sched_domain *sd;
7301 struct sched_group *sg;
7302 int best_active_cpu = -1;
7303 int best_idle_cpu = -1;
7304 int target_cpu = -1;
7305 int cpu, i;
7306
7307 *backup_cpu = -1;
7308
7309 /*
7310 * In most cases, target_capacity tracks capacity_orig of the most
7311 * energy efficient CPU candidate, thus requiring to minimise
7312 * target_capacity. For these cases target_capacity is already
7313 * initialized to ULONG_MAX.
7314 * However, for prefer_idle and boosted tasks we look for a high
7315 * performance CPU, thus requiring to maximise target_capacity. In this
7316 * case we initialise target_capacity to 0.
7317 */
7318 if (prefer_idle && boosted)
7319 target_capacity = 0;
7320
7321 /* Find start CPU based on boost value */
7322 cpu = start_cpu(boosted);
7323 if (cpu < 0)
7324 return -1;
7325
7326 /* Find SD for the start CPU */
7327 sd = rcu_dereference(per_cpu(sd_ea, cpu));
7328 if (!sd)
7329 return -1;
7330
7331 /* Scan CPUs in all SDs */
7332 sg = sd->groups;
7333 do {
7334 for_each_cpu_and(i, &p->cpus_allowed, sched_group_span(sg)) {
7335 unsigned long capacity_curr = capacity_curr_of(i);
7336 unsigned long capacity_orig = capacity_orig_of(i);
7337 unsigned long wake_util, new_util;
7338 long spare_cap;
7339 int idle_idx = INT_MAX;
7340
7341 if (!cpu_online(i))
7342 continue;
7343
7344 if (walt_cpu_high_irqload(i))
7345 continue;
7346
7347 /*
7348 * p's blocked utilization is still accounted for on prev_cpu
7349 * so prev_cpu will receive a negative bias due to the double
7350 * accounting. However, the blocked utilization may be zero.
7351 */
7352 wake_util = cpu_util_without(i, p);
7353 new_util = wake_util + task_util_est(p);
7354
7355 /*
7356 * Ensure minimum capacity to grant the required boost.
7357 * The target CPU can be already at a capacity level higher
7358 * than the one required to boost the task.
7359 */
7360 new_util = max(min_util, new_util);
7361 if (new_util > capacity_orig)
7362 continue;
7363
7364 /*
7365 * Pre-compute the maximum possible capacity we expect
7366 * to have available on this CPU once the task is
7367 * enqueued here.
7368 */
7369 spare_cap = capacity_orig - new_util;
7370
7371 if (idle_cpu(i))
7372 idle_idx = idle_get_state_idx(cpu_rq(i));
7373
7374
7375 /*
7376 * Case A) Latency sensitive tasks
7377 *
7378 * Unconditionally favoring tasks that prefer idle CPU to
7379 * improve latency.
7380 *
7381 * Looking for:
7382 * - an idle CPU, whatever its idle_state is, since
7383 * the first CPUs we explore are more likely to be
7384 * reserved for latency sensitive tasks.
7385 * - a non idle CPU where the task fits in its current
7386 * capacity and has the maximum spare capacity.
7387 * - a non idle CPU with lower contention from other
7388 * tasks and running at the lowest possible OPP.
7389 *
7390 * The last two goals tries to favor a non idle CPU
7391 * where the task can run as if it is "almost alone".
7392 * A maximum spare capacity CPU is favoured since
7393 * the task already fits into that CPU's capacity
7394 * without waiting for an OPP chance.
7395 *
7396 * The following code path is the only one in the CPUs
7397 * exploration loop which is always used by
7398 * prefer_idle tasks. It exits the loop with wither a
7399 * best_active_cpu or a target_cpu which should
7400 * represent an optimal choice for latency sensitive
7401 * tasks.
7402 */
7403 if (prefer_idle) {
7404
7405 /*
7406 * Case A.1: IDLE CPU
7407 * Return the best IDLE CPU we find:
7408 * - for boosted tasks: the CPU with the highest
7409 * performance (i.e. biggest capacity_orig)
7410 * - for !boosted tasks: the most energy
7411 * efficient CPU (i.e. smallest capacity_orig)
7412 */
7413 if (idle_cpu(i)) {
7414 if (boosted &&
7415 capacity_orig < target_capacity)
7416 continue;
7417 if (!boosted &&
7418 capacity_orig > target_capacity)
7419 continue;
7420 if (capacity_orig == target_capacity &&
7421 sysctl_sched_cstate_aware &&
7422 best_idle_cstate <= idle_idx)
7423 continue;
7424
7425 target_capacity = capacity_orig;
7426 best_idle_cstate = idle_idx;
7427 best_idle_cpu = i;
7428 continue;
7429 }
7430 if (best_idle_cpu != -1)
7431 continue;
7432
7433 /*
7434 * Case A.2: Target ACTIVE CPU
7435 * Favor CPUs with max spare capacity.
7436 */
7437 if (capacity_curr > new_util &&
7438 spare_cap > target_max_spare_cap) {
7439 target_max_spare_cap = spare_cap;
7440 target_cpu = i;
7441 continue;
7442 }
7443 if (target_cpu != -1)
7444 continue;
7445
7446
7447 /*
7448 * Case A.3: Backup ACTIVE CPU
7449 * Favor CPUs with:
7450 * - lower utilization due to other tasks
7451 * - lower utilization with the task in
7452 */
7453 if (wake_util > min_wake_util)
7454 continue;
7455 if (new_util > best_active_util)
7456 continue;
7457 min_wake_util = wake_util;
7458 best_active_util = new_util;
7459 best_active_cpu = i;
7460 continue;
7461 }
7462
7463 /*
7464 * Enforce EAS mode
7465 *
7466 * For non latency sensitive tasks, skip CPUs that
7467 * will be overutilized by moving the task there.
7468 *
7469 * The goal here is to remain in EAS mode as long as
7470 * possible at least for !prefer_idle tasks.
7471 */
7472 if ((new_util * capacity_margin) >
7473 (capacity_orig * SCHED_CAPACITY_SCALE))
7474 continue;
7475
7476 /*
7477 * Favor CPUs with smaller capacity for non latency
7478 * sensitive tasks.
7479 */
7480 if (capacity_orig > target_capacity)
7481 continue;
7482
7483 /*
7484 * Case B) Non latency sensitive tasks on IDLE CPUs.
7485 *
7486 * Find an optimal backup IDLE CPU for non latency
7487 * sensitive tasks.
7488 *
7489 * Looking for:
7490 * - minimizing the capacity_orig,
7491 * i.e. preferring LITTLE CPUs
7492 * - favoring shallowest idle states
7493 * i.e. avoid to wakeup deep-idle CPUs
7494 *
7495 * The following code path is used by non latency
7496 * sensitive tasks if IDLE CPUs are available. If at
7497 * least one of such CPUs are available it sets the
7498 * best_idle_cpu to the most suitable idle CPU to be
7499 * selected.
7500 *
7501 * If idle CPUs are available, favour these CPUs to
7502 * improve performances by spreading tasks.
7503 * Indeed, the energy_diff() computed by the caller
7504 * will take care to ensure the minimization of energy
7505 * consumptions without affecting performance.
7506 */
7507 if (idle_cpu(i)) {
7508 /*
7509 * Skip CPUs in deeper idle state, but only
7510 * if they are also less energy efficient.
7511 * IOW, prefer a deep IDLE LITTLE CPU vs a
7512 * shallow idle big CPU.
7513 */
7514 if (capacity_orig == target_capacity &&
7515 sysctl_sched_cstate_aware &&
7516 best_idle_cstate <= idle_idx)
7517 continue;
7518
7519 target_capacity = capacity_orig;
7520 best_idle_cstate = idle_idx;
7521 best_idle_cpu = i;
7522 continue;
7523 }
7524
7525 /*
7526 * Case C) Non latency sensitive tasks on ACTIVE CPUs.
7527 *
7528 * Pack tasks in the most energy efficient capacities.
7529 *
7530 * This task packing strategy prefers more energy
7531 * efficient CPUs (i.e. pack on smaller maximum
7532 * capacity CPUs) while also trying to spread tasks to
7533 * run them all at the lower OPP.
7534 *
7535 * This assumes for example that it's more energy
7536 * efficient to run two tasks on two CPUs at a lower
7537 * OPP than packing both on a single CPU but running
7538 * that CPU at an higher OPP.
7539 *
7540 * Thus, this case keep track of the CPU with the
7541 * smallest maximum capacity and highest spare maximum
7542 * capacity.
7543 */
7544
7545 /* Favor CPUs with maximum spare capacity */
7546 if (capacity_orig == target_capacity &&
7547 spare_cap < target_max_spare_cap)
7548 continue;
7549
7550 target_max_spare_cap = spare_cap;
7551 target_capacity = capacity_orig;
7552 target_util = new_util;
7553 target_cpu = i;
7554 }
7555
7556 } while (sg = sg->next, sg != sd->groups);
7557
7558 /*
7559 * For non latency sensitive tasks, cases B and C in the previous loop,
7560 * we pick the best IDLE CPU only if we was not able to find a target
7561 * ACTIVE CPU.
7562 *
7563 * Policies priorities:
7564 *
7565 * - prefer_idle tasks:
7566 *
7567 * a) IDLE CPU available: best_idle_cpu
7568 * b) ACTIVE CPU where task fits and has the bigger maximum spare
7569 * capacity (i.e. target_cpu)
7570 * c) ACTIVE CPU with less contention due to other tasks
7571 * (i.e. best_active_cpu)
7572 *
7573 * - NON prefer_idle tasks:
7574 *
7575 * a) ACTIVE CPU: target_cpu
7576 * b) IDLE CPU: best_idle_cpu
7577 */
7578
7579 if (prefer_idle && (best_idle_cpu != -1)) {
7580 trace_sched_find_best_target(p, prefer_idle, min_util, cpu,
7581 best_idle_cpu, best_active_cpu,
7582 best_idle_cpu);
7583
7584 return best_idle_cpu;
7585 }
7586
7587 if (target_cpu == -1)
7588 target_cpu = prefer_idle
7589 ? best_active_cpu
7590 : best_idle_cpu;
7591 else
7592 *backup_cpu = prefer_idle
7593 ? best_active_cpu
7594 : best_idle_cpu;
7595
7596 trace_sched_find_best_target(p, prefer_idle, min_util, cpu,
7597 best_idle_cpu, best_active_cpu,
7598 target_cpu);
7599
7600 /* it is possible for target and backup
7601 * to select same CPU - if so, drop backup
7602 */
7603 if (*backup_cpu == target_cpu)
7604 *backup_cpu = -1;
7605
7606 return target_cpu;
7607 }
7608
7609 /*
7610 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
7611 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
7612 *
7613 * In that case WAKE_AFFINE doesn't make sense and we'll let
7614 * BALANCE_WAKE sort things out.
7615 */
wake_cap(struct task_struct * p,int cpu,int prev_cpu)7616 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
7617 {
7618 long min_cap, max_cap;
7619
7620 if (!static_branch_unlikely(&sched_asym_cpucapacity))
7621 return 0;
7622
7623 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
7624 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity.val;
7625
7626 /* Minimum capacity is close to max, no need to abort wake_affine */
7627 if (max_cap - min_cap < max_cap >> 3)
7628 return 0;
7629
7630 /* Bring task utilization in sync with prev_cpu */
7631 sync_entity_load_avg(&p->se);
7632
7633 return !task_fits_capacity(p, min_cap);
7634 }
7635
cpu_overutilized(int cpu)7636 static bool cpu_overutilized(int cpu)
7637 {
7638 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
7639 }
7640
7641 DEFINE_PER_CPU(struct energy_env, eenv_cache);
7642
7643 /* kernels often have NR_CPUS defined to be much
7644 * larger than exist in practise on booted systems.
7645 * Allocate the cpu array for eenv calculations
7646 * at boot time to avoid massive overprovisioning.
7647 */
7648 #ifdef DEBUG_EENV_DECISIONS
eenv_debug_size_per_dbg_entry(void)7649 static inline int eenv_debug_size_per_dbg_entry(void)
7650 {
7651 return sizeof(struct _eenv_debug) + (sizeof(unsigned long) * num_possible_cpus());
7652 }
7653
eenv_debug_size_per_cpu_entry(void)7654 static inline int eenv_debug_size_per_cpu_entry(void)
7655 {
7656 /* each cpu struct has an array of _eenv_debug structs
7657 * which have an array of unsigned longs at the end -
7658 * the allocation should be extended so that there are
7659 * at least 'num_possible_cpus' entries in the array.
7660 */
7661 return EAS_EENV_DEBUG_LEVELS * eenv_debug_size_per_dbg_entry();
7662 }
7663 /* given a per-_eenv_cpu debug env ptr, get the ptr for a given index */
eenv_debug_entry_ptr(struct _eenv_debug * base,int idx)7664 static inline struct _eenv_debug *eenv_debug_entry_ptr(struct _eenv_debug *base, int idx)
7665 {
7666 char *ptr = (char *)base;
7667 ptr += (idx * eenv_debug_size_per_dbg_entry());
7668 return (struct _eenv_debug *)ptr;
7669 }
7670 /* given a pointer to the per-cpu global copy of _eenv_debug, get
7671 * a pointer to the specified _eenv_cpu debug env.
7672 */
eenv_debug_percpu_debug_env_ptr(struct _eenv_debug * base,int cpu_idx)7673 static inline struct _eenv_debug *eenv_debug_percpu_debug_env_ptr(struct _eenv_debug *base, int cpu_idx)
7674 {
7675 char *ptr = (char *)base;
7676 ptr += (cpu_idx * eenv_debug_size_per_cpu_entry());
7677 return (struct _eenv_debug *)ptr;
7678 }
7679
eenv_debug_size(void)7680 static inline int eenv_debug_size(void)
7681 {
7682 return num_possible_cpus() * eenv_debug_size_per_cpu_entry();
7683 }
7684 #endif
7685
alloc_eenv(void)7686 static inline void alloc_eenv(void)
7687 {
7688 int cpu;
7689 int cpu_count = num_possible_cpus();
7690
7691 for_each_possible_cpu(cpu) {
7692 struct energy_env *eenv = &per_cpu(eenv_cache, cpu);
7693 eenv->cpu = kmalloc(sizeof(struct eenv_cpu) * cpu_count, GFP_KERNEL);
7694 eenv->eenv_cpu_count = cpu_count;
7695 #ifdef DEBUG_EENV_DECISIONS
7696 eenv->debug = (struct _eenv_debug *)kmalloc(eenv_debug_size(), GFP_KERNEL);
7697 #endif
7698 }
7699 }
7700
reset_eenv(struct energy_env * eenv)7701 static inline void reset_eenv(struct energy_env *eenv)
7702 {
7703 int cpu_count;
7704 struct eenv_cpu *cpu;
7705 #ifdef DEBUG_EENV_DECISIONS
7706 struct _eenv_debug *debug;
7707 int cpu_idx;
7708 debug = eenv->debug;
7709 #endif
7710
7711 cpu_count = eenv->eenv_cpu_count;
7712 cpu = eenv->cpu;
7713 memset(eenv, 0, sizeof(struct energy_env));
7714 eenv->cpu = cpu;
7715 memset(eenv->cpu, 0, sizeof(struct eenv_cpu)*cpu_count);
7716 eenv->eenv_cpu_count = cpu_count;
7717
7718 #ifdef DEBUG_EENV_DECISIONS
7719 memset(debug, 0, eenv_debug_size());
7720 eenv->debug = debug;
7721 for(cpu_idx = 0; cpu_idx < eenv->eenv_cpu_count; cpu_idx++)
7722 eenv->cpu[cpu_idx].debug = eenv_debug_percpu_debug_env_ptr(debug, cpu_idx);
7723 #endif
7724 }
7725 /*
7726 * get_eenv - reset the eenv struct cached for this CPU
7727 *
7728 * When the eenv is returned, it is configured to do
7729 * energy calculations for the maximum number of CPUs
7730 * the task can be placed on. The prev_cpu entry is
7731 * filled in here. Callers are responsible for adding
7732 * other CPU candidates up to eenv->max_cpu_count.
7733 */
get_eenv(struct task_struct * p,int prev_cpu)7734 static inline struct energy_env *get_eenv(struct task_struct *p, int prev_cpu)
7735 {
7736 struct energy_env *eenv;
7737 cpumask_t cpumask_possible_cpus;
7738 int cpu = smp_processor_id();
7739 int i;
7740
7741 eenv = &(per_cpu(eenv_cache, cpu));
7742 reset_eenv(eenv);
7743
7744 /* populate eenv */
7745 eenv->p = p;
7746 /* use boosted task util for capacity selection
7747 * during energy calculation, but unboosted task
7748 * util for group utilization calculations
7749 */
7750 eenv->util_delta = task_util_est(p);
7751 eenv->util_delta_boosted = boosted_task_util(p);
7752
7753 cpumask_and(&cpumask_possible_cpus, &p->cpus_allowed, cpu_online_mask);
7754 eenv->max_cpu_count = cpumask_weight(&cpumask_possible_cpus);
7755
7756 for (i=0; i < eenv->max_cpu_count; i++)
7757 eenv->cpu[i].cpu_id = -1;
7758 eenv->cpu[EAS_CPU_PRV].cpu_id = prev_cpu;
7759 eenv->next_idx = EAS_CPU_PRV;
7760
7761 return eenv;
7762 }
7763
7764 /*
7765 * Needs to be called inside rcu_read_lock critical section.
7766 * sd is a pointer to the sched domain we wish to use for an
7767 * energy-aware placement option.
7768 */
find_energy_efficient_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sync)7769 static int find_energy_efficient_cpu(struct sched_domain *sd,
7770 struct task_struct *p,
7771 int cpu, int prev_cpu,
7772 int sync)
7773 {
7774 int use_fbt = sched_feat(FIND_BEST_TARGET);
7775 int cpu_iter, eas_cpu_idx = EAS_CPU_NXT;
7776 int target_cpu = -1;
7777 struct energy_env *eenv;
7778
7779 if (sysctl_sched_sync_hint_enable && sync) {
7780 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7781 return cpu;
7782 }
7783 }
7784
7785 /* prepopulate energy diff environment */
7786 eenv = get_eenv(p, prev_cpu);
7787 if (eenv->max_cpu_count < 2)
7788 return -1;
7789
7790 if(!use_fbt) {
7791 /*
7792 * using this function outside wakeup balance will not supply
7793 * an sd ptr. Instead, fetch the highest level with energy data.
7794 */
7795 if (!sd)
7796 sd = rcu_dereference(per_cpu(sd_ea, prev_cpu));
7797
7798 for_each_cpu_and(cpu_iter, &p->cpus_allowed, sched_domain_span(sd)) {
7799 unsigned long spare;
7800
7801 /* prev_cpu already in list */
7802 if (cpu_iter == prev_cpu)
7803 continue;
7804
7805 /*
7806 * Consider only CPUs where the task is expected to
7807 * fit without making the CPU overutilized.
7808 */
7809 spare = capacity_spare_without(cpu_iter, p);
7810 if (spare * 1024 < capacity_margin * task_util_est(p))
7811 continue;
7812
7813 /* Add CPU candidate */
7814 eenv->cpu[eas_cpu_idx++].cpu_id = cpu_iter;
7815 eenv->max_cpu_count = eas_cpu_idx;
7816
7817 /* stop adding CPUs if we have no space left */
7818 if (eas_cpu_idx >= eenv->eenv_cpu_count)
7819 break;
7820 }
7821 } else {
7822 int boosted = (schedtune_task_boost(p) > 0);
7823 int prefer_idle;
7824
7825 /*
7826 * give compiler a hint that if sched_features
7827 * cannot be changed, it is safe to optimise out
7828 * all if(prefer_idle) blocks.
7829 */
7830 prefer_idle = sched_feat(EAS_PREFER_IDLE) ?
7831 (schedtune_prefer_idle(p) > 0) : 0;
7832
7833 eenv->max_cpu_count = EAS_CPU_BKP + 1;
7834
7835 /* Find a cpu with sufficient capacity */
7836 target_cpu = find_best_target(p, &eenv->cpu[EAS_CPU_BKP].cpu_id,
7837 boosted, prefer_idle);
7838
7839 /* Immediately return a found idle CPU for a prefer_idle task */
7840 if (prefer_idle && target_cpu >= 0 && idle_cpu(target_cpu))
7841 return target_cpu;
7842
7843 /* Place target into NEXT slot */
7844 eenv->cpu[EAS_CPU_NXT].cpu_id = target_cpu;
7845
7846 /* take note if no backup was found */
7847 if (eenv->cpu[EAS_CPU_BKP].cpu_id < 0)
7848 eenv->max_cpu_count = EAS_CPU_BKP;
7849
7850 /* take note if no target was found */
7851 if (eenv->cpu[EAS_CPU_NXT].cpu_id < 0)
7852 eenv->max_cpu_count = EAS_CPU_NXT;
7853 }
7854
7855 if (eenv->max_cpu_count == EAS_CPU_NXT) {
7856 /*
7857 * we did not find any energy-awareness
7858 * candidates beyond prev_cpu, so we will
7859 * fall-back to the regular slow-path.
7860 */
7861 return -1;
7862 }
7863
7864 /* find most energy-efficient CPU */
7865 target_cpu = select_energy_cpu_idx(eenv) < 0 ? -1 :
7866 eenv->cpu[eenv->next_idx].cpu_id;
7867
7868 return target_cpu;
7869 }
7870
7871 static inline bool nohz_kick_needed(struct rq *rq, bool only_update);
7872 static void nohz_balancer_kick(bool only_update);
7873
7874 /*
7875 * wake_energy: Make the decision if we want to use an energy-aware
7876 * wakeup task placement or not. This is limited to situations where
7877 * we cannot use energy-awareness right now.
7878 *
7879 * Returns TRUE if we should attempt energy-aware wakeup, FALSE if not.
7880 *
7881 * Should only be called from select_task_rq_fair inside the RCU
7882 * read-side critical section.
7883 */
wake_energy(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)7884 static inline int wake_energy(struct task_struct *p, int prev_cpu,
7885 int sd_flag, int wake_flags)
7886 {
7887 struct sched_domain *sd = NULL;
7888 int sync = wake_flags & WF_SYNC;
7889
7890 sd = rcu_dereference_sched(cpu_rq(prev_cpu)->sd);
7891
7892 /*
7893 * Check all definite no-energy-awareness conditions
7894 */
7895 if (!sd)
7896 return false;
7897
7898 if (!energy_aware())
7899 return false;
7900
7901 if (sd_overutilized(sd))
7902 return false;
7903
7904 /*
7905 * we cannot do energy-aware wakeup placement sensibly
7906 * for tasks with 0 utilization, so let them be placed
7907 * according to the normal strategy.
7908 * However if fbt is in use we may still benefit from
7909 * the heuristics we use there in selecting candidate
7910 * CPUs.
7911 */
7912 if (unlikely(!sched_feat(FIND_BEST_TARGET) && !task_util_est(p)))
7913 return false;
7914
7915 if(!sched_feat(EAS_PREFER_IDLE)){
7916 /*
7917 * Force prefer-idle tasks into the slow path, this may not happen
7918 * if none of the sd flags matched.
7919 */
7920 if (schedtune_prefer_idle(p) > 0 && !sync)
7921 return false;
7922 }
7923 return true;
7924 }
7925
7926 /*
7927 * select_task_rq_fair: Select target runqueue for the waking task in domains
7928 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
7929 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7930 *
7931 * Balances load by selecting the idlest cpu in the idlest group, or under
7932 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
7933 *
7934 * Returns the target cpu number.
7935 *
7936 * preempt must be disabled.
7937 */
7938 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags,int sibling_count_hint)7939 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags,
7940 int sibling_count_hint)
7941 {
7942 struct sched_domain *tmp, *affine_sd = NULL;
7943 struct sched_domain *sd = NULL, *energy_sd = NULL;
7944 int cpu = smp_processor_id();
7945 int new_cpu = prev_cpu;
7946 int want_affine = 0;
7947 int want_energy = 0;
7948 int sync = wake_flags & WF_SYNC;
7949
7950 rcu_read_lock();
7951
7952 if (sd_flag & SD_BALANCE_WAKE) {
7953 record_wakee(p);
7954 want_energy = wake_energy(p, prev_cpu, sd_flag, wake_flags);
7955 want_affine = !want_energy &&
7956 !wake_wide(p, sibling_count_hint) &&
7957 !wake_cap(p, cpu, prev_cpu) &&
7958 cpumask_test_cpu(cpu, &p->cpus_allowed);
7959 }
7960
7961 for_each_domain(cpu, tmp) {
7962 if (!(tmp->flags & SD_LOAD_BALANCE))
7963 break;
7964
7965 /*
7966 * If both cpu and prev_cpu are part of this domain,
7967 * cpu is a valid SD_WAKE_AFFINE target.
7968 */
7969 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7970 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7971 affine_sd = tmp;
7972 break;
7973 }
7974
7975 /*
7976 * If we are able to try an energy-aware wakeup,
7977 * select the highest non-overutilized sched domain
7978 * which includes this cpu and prev_cpu
7979 *
7980 * maybe want to not test prev_cpu and only consider
7981 * the current one?
7982 */
7983 if (want_energy &&
7984 !sd_overutilized(tmp) &&
7985 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
7986 energy_sd = tmp;
7987
7988 if (tmp->flags & sd_flag)
7989 sd = tmp;
7990 else if (!(want_affine || want_energy))
7991 break;
7992 }
7993
7994 if (affine_sd) {
7995 sd = NULL; /* Prefer wake_affine over balance flags */
7996 if (cpu == prev_cpu)
7997 goto pick_cpu;
7998
7999 if (wake_affine(affine_sd, p, prev_cpu, sync))
8000 new_cpu = cpu;
8001 }
8002
8003 if (sd && !(sd_flag & SD_BALANCE_FORK)) {
8004 /*
8005 * We're going to need the task's util for capacity_spare_without
8006 * in find_idlest_group. Sync it up to prev_cpu's
8007 * last_update_time.
8008 */
8009 sync_entity_load_avg(&p->se);
8010 }
8011
8012 if (!sd) {
8013 pick_cpu:
8014 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
8015 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8016
8017 } else {
8018 if (energy_sd)
8019 new_cpu = find_energy_efficient_cpu(energy_sd, p, cpu, prev_cpu, sync);
8020
8021 /* if we did an energy-aware placement and had no choices available
8022 * then fall back to the default find_idlest_cpu choice
8023 */
8024 if (!energy_sd || (energy_sd && new_cpu == -1))
8025 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
8026 }
8027
8028 rcu_read_unlock();
8029
8030 #ifdef CONFIG_NO_HZ_COMMON
8031 if (nohz_kick_needed(cpu_rq(new_cpu), true))
8032 nohz_balancer_kick(true);
8033 #endif
8034
8035 return new_cpu;
8036 }
8037
8038 /*
8039 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
8040 * cfs_rq_of(p) references at time of call are still valid and identify the
8041 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8042 */
migrate_task_rq_fair(struct task_struct * p)8043 static void migrate_task_rq_fair(struct task_struct *p)
8044 {
8045 /*
8046 * As blocked tasks retain absolute vruntime the migration needs to
8047 * deal with this by subtracting the old and adding the new
8048 * min_vruntime -- the latter is done by enqueue_entity() when placing
8049 * the task on the new runqueue.
8050 */
8051 if (p->state == TASK_WAKING) {
8052 struct sched_entity *se = &p->se;
8053 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8054 u64 min_vruntime;
8055
8056 #ifndef CONFIG_64BIT
8057 u64 min_vruntime_copy;
8058
8059 do {
8060 min_vruntime_copy = cfs_rq->min_vruntime_copy;
8061 smp_rmb();
8062 min_vruntime = cfs_rq->min_vruntime;
8063 } while (min_vruntime != min_vruntime_copy);
8064 #else
8065 min_vruntime = cfs_rq->min_vruntime;
8066 #endif
8067
8068 se->vruntime -= min_vruntime;
8069 }
8070
8071 /*
8072 * We are supposed to update the task to "current" time, then its up to date
8073 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
8074 * what current time is, so simply throw away the out-of-date time. This
8075 * will result in the wakee task is less decayed, but giving the wakee more
8076 * load sounds not bad.
8077 */
8078 remove_entity_load_avg(&p->se);
8079
8080 /* Tell new CPU we are migrated */
8081 p->se.avg.last_update_time = 0;
8082
8083 /* We have migrated, no longer consider this task hot */
8084 p->se.exec_start = 0;
8085 }
8086
task_dead_fair(struct task_struct * p)8087 static void task_dead_fair(struct task_struct *p)
8088 {
8089 remove_entity_load_avg(&p->se);
8090 }
8091 #endif /* CONFIG_SMP */
8092
8093 static unsigned long
wakeup_gran(struct sched_entity * curr,struct sched_entity * se)8094 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
8095 {
8096 unsigned long gran = sysctl_sched_wakeup_granularity;
8097
8098 /*
8099 * Since its curr running now, convert the gran from real-time
8100 * to virtual-time in his units.
8101 *
8102 * By using 'se' instead of 'curr' we penalize light tasks, so
8103 * they get preempted easier. That is, if 'se' < 'curr' then
8104 * the resulting gran will be larger, therefore penalizing the
8105 * lighter, if otoh 'se' > 'curr' then the resulting gran will
8106 * be smaller, again penalizing the lighter task.
8107 *
8108 * This is especially important for buddies when the leftmost
8109 * task is higher priority than the buddy.
8110 */
8111 return calc_delta_fair(gran, se);
8112 }
8113
8114 /*
8115 * Should 'se' preempt 'curr'.
8116 *
8117 * |s1
8118 * |s2
8119 * |s3
8120 * g
8121 * |<--->|c
8122 *
8123 * w(c, s1) = -1
8124 * w(c, s2) = 0
8125 * w(c, s3) = 1
8126 *
8127 */
8128 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)8129 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
8130 {
8131 s64 gran, vdiff = curr->vruntime - se->vruntime;
8132
8133 if (vdiff <= 0)
8134 return -1;
8135
8136 gran = wakeup_gran(curr, se);
8137 if (vdiff > gran)
8138 return 1;
8139
8140 return 0;
8141 }
8142
set_last_buddy(struct sched_entity * se)8143 static void set_last_buddy(struct sched_entity *se)
8144 {
8145 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
8146 return;
8147
8148 for_each_sched_entity(se) {
8149 if (SCHED_WARN_ON(!se->on_rq))
8150 return;
8151 cfs_rq_of(se)->last = se;
8152 }
8153 }
8154
set_next_buddy(struct sched_entity * se)8155 static void set_next_buddy(struct sched_entity *se)
8156 {
8157 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
8158 return;
8159
8160 for_each_sched_entity(se) {
8161 if (SCHED_WARN_ON(!se->on_rq))
8162 return;
8163 cfs_rq_of(se)->next = se;
8164 }
8165 }
8166
set_skip_buddy(struct sched_entity * se)8167 static void set_skip_buddy(struct sched_entity *se)
8168 {
8169 for_each_sched_entity(se)
8170 cfs_rq_of(se)->skip = se;
8171 }
8172
8173 /*
8174 * Preempt the current task with a newly woken task if needed:
8175 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)8176 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
8177 {
8178 struct task_struct *curr = rq->curr;
8179 struct sched_entity *se = &curr->se, *pse = &p->se;
8180 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8181 int scale = cfs_rq->nr_running >= sched_nr_latency;
8182 int next_buddy_marked = 0;
8183
8184 if (unlikely(se == pse))
8185 return;
8186
8187 /*
8188 * This is possible from callers such as attach_tasks(), in which we
8189 * unconditionally check_prempt_curr() after an enqueue (which may have
8190 * lead to a throttle). This both saves work and prevents false
8191 * next-buddy nomination below.
8192 */
8193 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8194 return;
8195
8196 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
8197 set_next_buddy(pse);
8198 next_buddy_marked = 1;
8199 }
8200
8201 /*
8202 * We can come here with TIF_NEED_RESCHED already set from new task
8203 * wake up path.
8204 *
8205 * Note: this also catches the edge-case of curr being in a throttled
8206 * group (e.g. via set_curr_task), since update_curr() (in the
8207 * enqueue of curr) will have resulted in resched being set. This
8208 * prevents us from potentially nominating it as a false LAST_BUDDY
8209 * below.
8210 */
8211 if (test_tsk_need_resched(curr))
8212 return;
8213
8214 /* Idle tasks are by definition preempted by non-idle tasks. */
8215 if (unlikely(curr->policy == SCHED_IDLE) &&
8216 likely(p->policy != SCHED_IDLE))
8217 goto preempt;
8218
8219 /*
8220 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8221 * is driven by the tick):
8222 */
8223 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8224 return;
8225
8226 find_matching_se(&se, &pse);
8227 update_curr(cfs_rq_of(se));
8228 BUG_ON(!pse);
8229 if (wakeup_preempt_entity(se, pse) == 1) {
8230 /*
8231 * Bias pick_next to pick the sched entity that is
8232 * triggering this preemption.
8233 */
8234 if (!next_buddy_marked)
8235 set_next_buddy(pse);
8236 goto preempt;
8237 }
8238
8239 return;
8240
8241 preempt:
8242 resched_curr(rq);
8243 /*
8244 * Only set the backward buddy when the current task is still
8245 * on the rq. This can happen when a wakeup gets interleaved
8246 * with schedule on the ->pre_schedule() or idle_balance()
8247 * point, either of which can * drop the rq lock.
8248 *
8249 * Also, during early boot the idle thread is in the fair class,
8250 * for obvious reasons its a bad idea to schedule back to it.
8251 */
8252 if (unlikely(!se->on_rq || curr == rq->idle))
8253 return;
8254
8255 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
8256 set_last_buddy(se);
8257 }
8258
8259 static struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8260 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8261 {
8262 struct cfs_rq *cfs_rq = &rq->cfs;
8263 struct sched_entity *se;
8264 struct task_struct *p;
8265 int new_tasks;
8266
8267 again:
8268 if (!cfs_rq->nr_running)
8269 goto idle;
8270
8271 #ifdef CONFIG_FAIR_GROUP_SCHED
8272 if (prev->sched_class != &fair_sched_class)
8273 goto simple;
8274
8275 /*
8276 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8277 * likely that a next task is from the same cgroup as the current.
8278 *
8279 * Therefore attempt to avoid putting and setting the entire cgroup
8280 * hierarchy, only change the part that actually changes.
8281 */
8282
8283 do {
8284 struct sched_entity *curr = cfs_rq->curr;
8285
8286 /*
8287 * Since we got here without doing put_prev_entity() we also
8288 * have to consider cfs_rq->curr. If it is still a runnable
8289 * entity, update_curr() will update its vruntime, otherwise
8290 * forget we've ever seen it.
8291 */
8292 if (curr) {
8293 if (curr->on_rq)
8294 update_curr(cfs_rq);
8295 else
8296 curr = NULL;
8297
8298 /*
8299 * This call to check_cfs_rq_runtime() will do the
8300 * throttle and dequeue its entity in the parent(s).
8301 * Therefore the nr_running test will indeed
8302 * be correct.
8303 */
8304 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8305 cfs_rq = &rq->cfs;
8306
8307 if (!cfs_rq->nr_running)
8308 goto idle;
8309
8310 goto simple;
8311 }
8312 }
8313
8314 se = pick_next_entity(cfs_rq, curr);
8315 cfs_rq = group_cfs_rq(se);
8316 } while (cfs_rq);
8317
8318 p = task_of(se);
8319
8320 /*
8321 * Since we haven't yet done put_prev_entity and if the selected task
8322 * is a different task than we started out with, try and touch the
8323 * least amount of cfs_rqs.
8324 */
8325 if (prev != p) {
8326 struct sched_entity *pse = &prev->se;
8327
8328 while (!(cfs_rq = is_same_group(se, pse))) {
8329 int se_depth = se->depth;
8330 int pse_depth = pse->depth;
8331
8332 if (se_depth <= pse_depth) {
8333 put_prev_entity(cfs_rq_of(pse), pse);
8334 pse = parent_entity(pse);
8335 }
8336 if (se_depth >= pse_depth) {
8337 set_next_entity(cfs_rq_of(se), se);
8338 se = parent_entity(se);
8339 }
8340 }
8341
8342 put_prev_entity(cfs_rq, pse);
8343 set_next_entity(cfs_rq, se);
8344 }
8345
8346 if (hrtick_enabled(rq))
8347 hrtick_start_fair(rq, p);
8348
8349 update_misfit_status(p, rq);
8350
8351 return p;
8352 simple:
8353 #endif
8354
8355 put_prev_task(rq, prev);
8356
8357 do {
8358 se = pick_next_entity(cfs_rq, NULL);
8359 set_next_entity(cfs_rq, se);
8360 cfs_rq = group_cfs_rq(se);
8361 } while (cfs_rq);
8362
8363 p = task_of(se);
8364
8365 if (hrtick_enabled(rq))
8366 hrtick_start_fair(rq, p);
8367
8368 update_misfit_status(p, rq);
8369
8370 return p;
8371
8372 idle:
8373 update_misfit_status(NULL, rq);
8374 new_tasks = idle_balance(rq, rf);
8375
8376 /*
8377 * Because idle_balance() releases (and re-acquires) rq->lock, it is
8378 * possible for any higher priority task to appear. In that case we
8379 * must re-start the pick_next_entity() loop.
8380 */
8381 if (new_tasks < 0)
8382 return RETRY_TASK;
8383
8384 if (new_tasks > 0)
8385 goto again;
8386
8387 return NULL;
8388 }
8389
8390 /*
8391 * Account for a descheduled task:
8392 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)8393 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8394 {
8395 struct sched_entity *se = &prev->se;
8396 struct cfs_rq *cfs_rq;
8397
8398 for_each_sched_entity(se) {
8399 cfs_rq = cfs_rq_of(se);
8400 put_prev_entity(cfs_rq, se);
8401 }
8402 }
8403
8404 /*
8405 * sched_yield() is very simple
8406 *
8407 * The magic of dealing with the ->skip buddy is in pick_next_entity.
8408 */
yield_task_fair(struct rq * rq)8409 static void yield_task_fair(struct rq *rq)
8410 {
8411 struct task_struct *curr = rq->curr;
8412 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8413 struct sched_entity *se = &curr->se;
8414
8415 /*
8416 * Are we the only task in the tree?
8417 */
8418 if (unlikely(rq->nr_running == 1))
8419 return;
8420
8421 clear_buddies(cfs_rq, se);
8422
8423 if (curr->policy != SCHED_BATCH) {
8424 update_rq_clock(rq);
8425 /*
8426 * Update run-time statistics of the 'current'.
8427 */
8428 update_curr(cfs_rq);
8429 /*
8430 * Tell update_rq_clock() that we've just updated,
8431 * so we don't do microscopic update in schedule()
8432 * and double the fastpath cost.
8433 */
8434 rq_clock_skip_update(rq, true);
8435 }
8436
8437 set_skip_buddy(se);
8438 }
8439
yield_to_task_fair(struct rq * rq,struct task_struct * p,bool preempt)8440 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
8441 {
8442 struct sched_entity *se = &p->se;
8443
8444 /* throttled hierarchies are not runnable */
8445 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8446 return false;
8447
8448 /* Tell the scheduler that we'd really like pse to run next. */
8449 set_next_buddy(se);
8450
8451 yield_task_fair(rq);
8452
8453 return true;
8454 }
8455
8456 #ifdef CONFIG_SMP
8457 /**************************************************
8458 * Fair scheduling class load-balancing methods.
8459 *
8460 * BASICS
8461 *
8462 * The purpose of load-balancing is to achieve the same basic fairness the
8463 * per-cpu scheduler provides, namely provide a proportional amount of compute
8464 * time to each task. This is expressed in the following equation:
8465 *
8466 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
8467 *
8468 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
8469 * W_i,0 is defined as:
8470 *
8471 * W_i,0 = \Sum_j w_i,j (2)
8472 *
8473 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
8474 * is derived from the nice value as per sched_prio_to_weight[].
8475 *
8476 * The weight average is an exponential decay average of the instantaneous
8477 * weight:
8478 *
8479 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
8480 *
8481 * C_i is the compute capacity of cpu i, typically it is the
8482 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8483 * can also include other factors [XXX].
8484 *
8485 * To achieve this balance we define a measure of imbalance which follows
8486 * directly from (1):
8487 *
8488 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
8489 *
8490 * We them move tasks around to minimize the imbalance. In the continuous
8491 * function space it is obvious this converges, in the discrete case we get
8492 * a few fun cases generally called infeasible weight scenarios.
8493 *
8494 * [XXX expand on:
8495 * - infeasible weights;
8496 * - local vs global optima in the discrete case. ]
8497 *
8498 *
8499 * SCHED DOMAINS
8500 *
8501 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8502 * for all i,j solution, we create a tree of cpus that follows the hardware
8503 * topology where each level pairs two lower groups (or better). This results
8504 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
8505 * tree to only the first of the previous level and we decrease the frequency
8506 * of load-balance at each level inv. proportional to the number of cpus in
8507 * the groups.
8508 *
8509 * This yields:
8510 *
8511 * log_2 n 1 n
8512 * \Sum { --- * --- * 2^i } = O(n) (5)
8513 * i = 0 2^i 2^i
8514 * `- size of each group
8515 * | | `- number of cpus doing load-balance
8516 * | `- freq
8517 * `- sum over all levels
8518 *
8519 * Coupled with a limit on how many tasks we can migrate every balance pass,
8520 * this makes (5) the runtime complexity of the balancer.
8521 *
8522 * An important property here is that each CPU is still (indirectly) connected
8523 * to every other cpu in at most O(log n) steps:
8524 *
8525 * The adjacency matrix of the resulting graph is given by:
8526 *
8527 * log_2 n
8528 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
8529 * k = 0
8530 *
8531 * And you'll find that:
8532 *
8533 * A^(log_2 n)_i,j != 0 for all i,j (7)
8534 *
8535 * Showing there's indeed a path between every cpu in at most O(log n) steps.
8536 * The task movement gives a factor of O(m), giving a convergence complexity
8537 * of:
8538 *
8539 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
8540 *
8541 *
8542 * WORK CONSERVING
8543 *
8544 * In order to avoid CPUs going idle while there's still work to do, new idle
8545 * balancing is more aggressive and has the newly idle cpu iterate up the domain
8546 * tree itself instead of relying on other CPUs to bring it work.
8547 *
8548 * This adds some complexity to both (5) and (8) but it reduces the total idle
8549 * time.
8550 *
8551 * [XXX more?]
8552 *
8553 *
8554 * CGROUPS
8555 *
8556 * Cgroups make a horror show out of (2), instead of a simple sum we get:
8557 *
8558 * s_k,i
8559 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
8560 * S_k
8561 *
8562 * Where
8563 *
8564 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
8565 *
8566 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
8567 *
8568 * The big problem is S_k, its a global sum needed to compute a local (W_i)
8569 * property.
8570 *
8571 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8572 * rewrite all of this once again.]
8573 */
8574
8575 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8576
8577 enum fbq_type { regular, remote, all };
8578
8579 enum group_type {
8580 group_other = 0,
8581 group_misfit_task,
8582 group_imbalanced,
8583 group_overloaded,
8584 };
8585
8586 #define LBF_ALL_PINNED 0x01
8587 #define LBF_NEED_BREAK 0x02
8588 #define LBF_DST_PINNED 0x04
8589 #define LBF_SOME_PINNED 0x08
8590
8591 struct lb_env {
8592 struct sched_domain *sd;
8593
8594 struct rq *src_rq;
8595 int src_cpu;
8596
8597 int dst_cpu;
8598 struct rq *dst_rq;
8599
8600 struct cpumask *dst_grpmask;
8601 int new_dst_cpu;
8602 enum cpu_idle_type idle;
8603 long imbalance;
8604 unsigned int src_grp_nr_running;
8605 /* The set of CPUs under consideration for load-balancing */
8606 struct cpumask *cpus;
8607
8608 unsigned int flags;
8609
8610 unsigned int loop;
8611 unsigned int loop_break;
8612 unsigned int loop_max;
8613
8614 enum fbq_type fbq_type;
8615 enum group_type src_grp_type;
8616 struct list_head tasks;
8617 };
8618
8619 /*
8620 * Is this task likely cache-hot:
8621 */
task_hot(struct task_struct * p,struct lb_env * env)8622 static int task_hot(struct task_struct *p, struct lb_env *env)
8623 {
8624 s64 delta;
8625
8626 lockdep_assert_held(&env->src_rq->lock);
8627
8628 if (p->sched_class != &fair_sched_class)
8629 return 0;
8630
8631 if (unlikely(p->policy == SCHED_IDLE))
8632 return 0;
8633
8634 /*
8635 * Buddy candidates are cache hot:
8636 */
8637 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8638 (&p->se == cfs_rq_of(&p->se)->next ||
8639 &p->se == cfs_rq_of(&p->se)->last))
8640 return 1;
8641
8642 if (sysctl_sched_migration_cost == -1)
8643 return 1;
8644 if (sysctl_sched_migration_cost == 0)
8645 return 0;
8646
8647 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8648
8649 return delta < (s64)sysctl_sched_migration_cost;
8650 }
8651
8652 #ifdef CONFIG_NUMA_BALANCING
8653 /*
8654 * Returns 1, if task migration degrades locality
8655 * Returns 0, if task migration improves locality i.e migration preferred.
8656 * Returns -1, if task migration is not affected by locality.
8657 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8658 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8659 {
8660 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8661 unsigned long src_faults, dst_faults;
8662 int src_nid, dst_nid;
8663
8664 if (!static_branch_likely(&sched_numa_balancing))
8665 return -1;
8666
8667 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8668 return -1;
8669
8670 src_nid = cpu_to_node(env->src_cpu);
8671 dst_nid = cpu_to_node(env->dst_cpu);
8672
8673 if (src_nid == dst_nid)
8674 return -1;
8675
8676 /* Migrating away from the preferred node is always bad. */
8677 if (src_nid == p->numa_preferred_nid) {
8678 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8679 return 1;
8680 else
8681 return -1;
8682 }
8683
8684 /* Encourage migration to the preferred node. */
8685 if (dst_nid == p->numa_preferred_nid)
8686 return 0;
8687
8688 /* Leaving a core idle is often worse than degrading locality. */
8689 if (env->idle != CPU_NOT_IDLE)
8690 return -1;
8691
8692 if (numa_group) {
8693 src_faults = group_faults(p, src_nid);
8694 dst_faults = group_faults(p, dst_nid);
8695 } else {
8696 src_faults = task_faults(p, src_nid);
8697 dst_faults = task_faults(p, dst_nid);
8698 }
8699
8700 return dst_faults < src_faults;
8701 }
8702
8703 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8704 static inline int migrate_degrades_locality(struct task_struct *p,
8705 struct lb_env *env)
8706 {
8707 return -1;
8708 }
8709 #endif
8710
8711 /*
8712 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8713 */
8714 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8715 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8716 {
8717 int tsk_cache_hot;
8718
8719 lockdep_assert_held(&env->src_rq->lock);
8720
8721 /*
8722 * We do not migrate tasks that are:
8723 * 1) throttled_lb_pair, or
8724 * 2) cannot be migrated to this CPU due to cpus_allowed, or
8725 * 3) running (obviously), or
8726 * 4) are cache-hot on their current CPU.
8727 */
8728 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8729 return 0;
8730
8731 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
8732 int cpu;
8733
8734 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
8735
8736 env->flags |= LBF_SOME_PINNED;
8737
8738 /*
8739 * Remember if this task can be migrated to any other cpu in
8740 * our sched_group. We may want to revisit it if we couldn't
8741 * meet load balance goals by pulling other tasks on src_cpu.
8742 *
8743 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
8744 * already computed one in current iteration.
8745 */
8746 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
8747 return 0;
8748
8749 /* Prevent to re-select dst_cpu via env's cpus */
8750 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8751 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
8752 env->flags |= LBF_DST_PINNED;
8753 env->new_dst_cpu = cpu;
8754 break;
8755 }
8756 }
8757
8758 return 0;
8759 }
8760
8761 /* Record that we found atleast one task that could run on dst_cpu */
8762 env->flags &= ~LBF_ALL_PINNED;
8763
8764 if (task_running(env->src_rq, p)) {
8765 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
8766 return 0;
8767 }
8768
8769 /*
8770 * Aggressive migration if:
8771 * 1) destination numa is preferred
8772 * 2) task is cache cold, or
8773 * 3) too many balance attempts have failed.
8774 */
8775 tsk_cache_hot = migrate_degrades_locality(p, env);
8776 if (tsk_cache_hot == -1)
8777 tsk_cache_hot = task_hot(p, env);
8778
8779 if (tsk_cache_hot <= 0 ||
8780 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8781 if (tsk_cache_hot == 1) {
8782 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8783 schedstat_inc(p->se.statistics.nr_forced_migrations);
8784 }
8785 return 1;
8786 }
8787
8788 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
8789 return 0;
8790 }
8791
8792 /*
8793 * detach_task() -- detach the task for the migration specified in env
8794 */
detach_task(struct task_struct * p,struct lb_env * env,struct rq_flags * rf)8795 static void detach_task(struct task_struct *p, struct lb_env *env,
8796 struct rq_flags *rf)
8797 {
8798 lockdep_assert_held(&env->src_rq->lock);
8799
8800 p->on_rq = TASK_ON_RQ_MIGRATING;
8801 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8802 rq_unpin_lock(env->src_rq, rf);
8803 double_lock_balance(env->src_rq, env->dst_rq);
8804 set_task_cpu(p, env->dst_cpu);
8805 double_unlock_balance(env->src_rq, env->dst_rq);
8806 rq_repin_lock(env->src_rq, rf);
8807 }
8808
8809 /*
8810 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8811 * part of active balancing operations within "domain".
8812 *
8813 * Returns a task if successful and NULL otherwise.
8814 */
detach_one_task(struct lb_env * env,struct rq_flags * rf)8815 static struct task_struct *detach_one_task(struct lb_env *env,
8816 struct rq_flags *rf)
8817 {
8818 struct task_struct *p, *n;
8819
8820 lockdep_assert_held(&env->src_rq->lock);
8821
8822 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
8823 if (!can_migrate_task(p, env))
8824 continue;
8825
8826 detach_task(p, env, rf);
8827
8828 /*
8829 * Right now, this is only the second place where
8830 * lb_gained[env->idle] is updated (other is detach_tasks)
8831 * so we can safely collect stats here rather than
8832 * inside detach_tasks().
8833 */
8834 schedstat_inc(env->sd->lb_gained[env->idle]);
8835 return p;
8836 }
8837 return NULL;
8838 }
8839
8840 static const unsigned int sched_nr_migrate_break = 32;
8841
8842 /*
8843 * detach_tasks() -- tries to detach up to imbalance weighted load from
8844 * busiest_rq, as part of a balancing operation within domain "sd".
8845 *
8846 * Returns number of detached tasks if successful and 0 otherwise.
8847 */
detach_tasks(struct lb_env * env,struct rq_flags * rf)8848 static int detach_tasks(struct lb_env *env, struct rq_flags *rf)
8849 {
8850 struct list_head *tasks = &env->src_rq->cfs_tasks;
8851 struct task_struct *p;
8852 unsigned long load;
8853 int detached = 0;
8854
8855 lockdep_assert_held(&env->src_rq->lock);
8856
8857 if (env->imbalance <= 0)
8858 return 0;
8859
8860 while (!list_empty(tasks)) {
8861 /*
8862 * We don't want to steal all, otherwise we may be treated likewise,
8863 * which could at worst lead to a livelock crash.
8864 */
8865 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8866 break;
8867
8868 p = list_first_entry(tasks, struct task_struct, se.group_node);
8869
8870 env->loop++;
8871 /* We've more or less seen every task there is, call it quits */
8872 if (env->loop > env->loop_max)
8873 break;
8874
8875 /* take a breather every nr_migrate tasks */
8876 if (env->loop > env->loop_break) {
8877 env->loop_break += sched_nr_migrate_break;
8878 env->flags |= LBF_NEED_BREAK;
8879 break;
8880 }
8881
8882 if (!can_migrate_task(p, env))
8883 goto next;
8884
8885 load = task_h_load(p);
8886
8887 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
8888 goto next;
8889
8890 if ((load / 2) > env->imbalance)
8891 goto next;
8892
8893 detach_task(p, env, rf);
8894 list_add(&p->se.group_node, &env->tasks);
8895
8896 detached++;
8897 env->imbalance -= load;
8898
8899 #ifdef CONFIG_PREEMPT
8900 /*
8901 * NEWIDLE balancing is a source of latency, so preemptible
8902 * kernels will stop after the first task is detached to minimize
8903 * the critical section.
8904 */
8905 if (env->idle == CPU_NEWLY_IDLE)
8906 break;
8907 #endif
8908
8909 /*
8910 * We only want to steal up to the prescribed amount of
8911 * weighted load.
8912 */
8913 if (env->imbalance <= 0)
8914 break;
8915
8916 continue;
8917 next:
8918 list_move_tail(&p->se.group_node, tasks);
8919 }
8920
8921 /*
8922 * Right now, this is one of only two places we collect this stat
8923 * so we can safely collect detach_one_task() stats here rather
8924 * than inside detach_one_task().
8925 */
8926 schedstat_add(env->sd->lb_gained[env->idle], detached);
8927
8928 return detached;
8929 }
8930
8931 /*
8932 * attach_task() -- attach the task detached by detach_task() to its new rq.
8933 */
attach_task(struct rq * rq,struct task_struct * p)8934 static void attach_task(struct rq *rq, struct task_struct *p)
8935 {
8936 lockdep_assert_held(&rq->lock);
8937
8938 BUG_ON(task_rq(p) != rq);
8939 activate_task(rq, p, ENQUEUE_NOCLOCK);
8940 p->on_rq = TASK_ON_RQ_QUEUED;
8941 check_preempt_curr(rq, p, 0);
8942 }
8943
8944 /*
8945 * attach_one_task() -- attaches the task returned from detach_one_task() to
8946 * its new rq.
8947 */
attach_one_task(struct rq * rq,struct task_struct * p)8948 static void attach_one_task(struct rq *rq, struct task_struct *p)
8949 {
8950 struct rq_flags rf;
8951
8952 rq_lock(rq, &rf);
8953 update_rq_clock(rq);
8954 attach_task(rq, p);
8955 rq_unlock(rq, &rf);
8956 }
8957
8958 /*
8959 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8960 * new rq.
8961 */
attach_tasks(struct lb_env * env)8962 static void attach_tasks(struct lb_env *env)
8963 {
8964 struct list_head *tasks = &env->tasks;
8965 struct task_struct *p;
8966 struct rq_flags rf;
8967
8968 rq_lock(env->dst_rq, &rf);
8969 update_rq_clock(env->dst_rq);
8970
8971 while (!list_empty(tasks)) {
8972 p = list_first_entry(tasks, struct task_struct, se.group_node);
8973 list_del_init(&p->se.group_node);
8974
8975 attach_task(env->dst_rq, p);
8976 }
8977
8978 rq_unlock(env->dst_rq, &rf);
8979 }
8980
8981 #ifdef CONFIG_FAIR_GROUP_SCHED
8982
update_blocked_averages(int cpu)8983 static void update_blocked_averages(int cpu)
8984 {
8985 struct rq *rq = cpu_rq(cpu);
8986 struct cfs_rq *cfs_rq;
8987 struct rq_flags rf;
8988
8989 rq_lock_irqsave(rq, &rf);
8990 update_rq_clock(rq);
8991
8992 /*
8993 * Iterates the task_group tree in a bottom up fashion, see
8994 * list_add_leaf_cfs_rq() for details.
8995 */
8996 for_each_leaf_cfs_rq(rq, cfs_rq) {
8997 struct sched_entity *se;
8998
8999 /* throttled entities do not contribute to load */
9000 if (throttled_hierarchy(cfs_rq))
9001 continue;
9002
9003 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
9004 update_tg_load_avg(cfs_rq, 0);
9005
9006 /* Propagate pending load changes to the parent, if any: */
9007 se = cfs_rq->tg->se[cpu];
9008 if (se && !skip_blocked_update(se))
9009 update_load_avg(se, 0);
9010 }
9011 update_rt_rq_load_avg(rq_clock_task(rq), cpu, &rq->rt, 0);
9012 #ifdef CONFIG_NO_HZ_COMMON
9013 rq->last_blocked_load_update_tick = jiffies;
9014 #endif
9015 rq_unlock_irqrestore(rq, &rf);
9016 }
9017
9018 /*
9019 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9020 * This needs to be done in a top-down fashion because the load of a child
9021 * group is a fraction of its parents load.
9022 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9023 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9024 {
9025 struct rq *rq = rq_of(cfs_rq);
9026 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9027 unsigned long now = jiffies;
9028 unsigned long load;
9029
9030 if (cfs_rq->last_h_load_update == now)
9031 return;
9032
9033 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9034 for_each_sched_entity(se) {
9035 cfs_rq = cfs_rq_of(se);
9036 WRITE_ONCE(cfs_rq->h_load_next, se);
9037 if (cfs_rq->last_h_load_update == now)
9038 break;
9039 }
9040
9041 if (!se) {
9042 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9043 cfs_rq->last_h_load_update = now;
9044 }
9045
9046 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9047 load = cfs_rq->h_load;
9048 load = div64_ul(load * se->avg.load_avg,
9049 cfs_rq_load_avg(cfs_rq) + 1);
9050 cfs_rq = group_cfs_rq(se);
9051 cfs_rq->h_load = load;
9052 cfs_rq->last_h_load_update = now;
9053 }
9054 }
9055
task_h_load(struct task_struct * p)9056 static unsigned long task_h_load(struct task_struct *p)
9057 {
9058 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9059
9060 update_cfs_rq_h_load(cfs_rq);
9061 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9062 cfs_rq_load_avg(cfs_rq) + 1);
9063 }
9064 #else
update_blocked_averages(int cpu)9065 static inline void update_blocked_averages(int cpu)
9066 {
9067 struct rq *rq = cpu_rq(cpu);
9068 struct cfs_rq *cfs_rq = &rq->cfs;
9069 struct rq_flags rf;
9070
9071 rq_lock_irqsave(rq, &rf);
9072 update_rq_clock(rq);
9073 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
9074 update_rt_rq_load_avg(rq_clock_task(rq), cpu, &rq->rt, 0);
9075 #ifdef CONFIG_NO_HZ_COMMON
9076 rq->last_blocked_load_update_tick = jiffies;
9077 #endif
9078 rq_unlock_irqrestore(rq, &rf);
9079 }
9080
task_h_load(struct task_struct * p)9081 static unsigned long task_h_load(struct task_struct *p)
9082 {
9083 return p->se.avg.load_avg;
9084 }
9085 #endif
9086
9087 /********** Helpers for find_busiest_group ************************/
9088
9089 /*
9090 * sg_lb_stats - stats of a sched_group required for load_balancing
9091 */
9092 struct sg_lb_stats {
9093 unsigned long avg_load; /*Avg load across the CPUs of the group */
9094 unsigned long group_load; /* Total load over the CPUs of the group */
9095 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
9096 unsigned long load_per_task;
9097 unsigned long group_capacity;
9098 unsigned long group_util; /* Total utilization of the group */
9099 unsigned int sum_nr_running; /* Nr tasks running in the group */
9100 unsigned int idle_cpus;
9101 unsigned int group_weight;
9102 enum group_type group_type;
9103 int group_no_capacity;
9104 /* A cpu has a task too big for its capacity */
9105 unsigned long group_misfit_task_load;
9106 #ifdef CONFIG_NUMA_BALANCING
9107 unsigned int nr_numa_running;
9108 unsigned int nr_preferred_running;
9109 #endif
9110 };
9111
9112 /*
9113 * sd_lb_stats - Structure to store the statistics of a sched_domain
9114 * during load balancing.
9115 */
9116 struct sd_lb_stats {
9117 struct sched_group *busiest; /* Busiest group in this sd */
9118 struct sched_group *local; /* Local group in this sd */
9119 unsigned long total_running;
9120 unsigned long total_load; /* Total load of all groups in sd */
9121 unsigned long total_capacity; /* Total capacity of all groups in sd */
9122 unsigned long total_util; /* Total util of all groups in sd */
9123 unsigned long avg_load; /* Average load across all groups in sd */
9124
9125 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
9126 struct sg_lb_stats local_stat; /* Statistics of the local group */
9127 };
9128
init_sd_lb_stats(struct sd_lb_stats * sds)9129 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9130 {
9131 /*
9132 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9133 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9134 * We must however clear busiest_stat::avg_load because
9135 * update_sd_pick_busiest() reads this before assignment.
9136 */
9137 *sds = (struct sd_lb_stats){
9138 .busiest = NULL,
9139 .local = NULL,
9140 .total_running = 0UL,
9141 .total_load = 0UL,
9142 .total_capacity = 0UL,
9143 .total_util = 0UL,
9144 .busiest_stat = {
9145 .avg_load = 0UL,
9146 .sum_nr_running = 0,
9147 .group_type = group_other,
9148 },
9149 };
9150 }
9151
9152 /**
9153 * get_sd_load_idx - Obtain the load index for a given sched domain.
9154 * @sd: The sched_domain whose load_idx is to be obtained.
9155 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
9156 *
9157 * Return: The load index.
9158 */
get_sd_load_idx(struct sched_domain * sd,enum cpu_idle_type idle)9159 static inline int get_sd_load_idx(struct sched_domain *sd,
9160 enum cpu_idle_type idle)
9161 {
9162 int load_idx;
9163
9164 switch (idle) {
9165 case CPU_NOT_IDLE:
9166 load_idx = sd->busy_idx;
9167 break;
9168
9169 case CPU_NEWLY_IDLE:
9170 load_idx = sd->newidle_idx;
9171 break;
9172 default:
9173 load_idx = sd->idle_idx;
9174 break;
9175 }
9176
9177 return load_idx;
9178 }
9179
scale_rt_capacity(int cpu)9180 static unsigned long scale_rt_capacity(int cpu)
9181 {
9182 struct rq *rq = cpu_rq(cpu);
9183 u64 total, used, age_stamp, avg;
9184 s64 delta;
9185
9186 /*
9187 * Since we're reading these variables without serialization make sure
9188 * we read them once before doing sanity checks on them.
9189 */
9190 age_stamp = READ_ONCE(rq->age_stamp);
9191 avg = READ_ONCE(rq->rt_avg);
9192 delta = __rq_clock_broken(rq) - age_stamp;
9193
9194 if (unlikely(delta < 0))
9195 delta = 0;
9196
9197 total = sched_avg_period() + delta;
9198
9199 used = div_u64(avg, total);
9200
9201 if (likely(used < SCHED_CAPACITY_SCALE))
9202 return SCHED_CAPACITY_SCALE - used;
9203
9204 return 1;
9205 }
9206
init_max_cpu_capacity(struct max_cpu_capacity * mcc)9207 void init_max_cpu_capacity(struct max_cpu_capacity *mcc)
9208 {
9209 raw_spin_lock_init(&mcc->lock);
9210 mcc->val = 0;
9211 mcc->cpu = -1;
9212 }
9213
update_cpu_capacity(struct sched_domain * sd,int cpu)9214 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9215 {
9216 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
9217 struct sched_group *sdg = sd->groups;
9218 struct max_cpu_capacity *mcc;
9219 unsigned long max_capacity;
9220 int max_cap_cpu;
9221 unsigned long flags;
9222
9223 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9224
9225 capacity *= arch_scale_max_freq_capacity(sd, cpu);
9226 capacity >>= SCHED_CAPACITY_SHIFT;
9227
9228 mcc = &cpu_rq(cpu)->rd->max_cpu_capacity;
9229
9230 raw_spin_lock_irqsave(&mcc->lock, flags);
9231 max_capacity = mcc->val;
9232 max_cap_cpu = mcc->cpu;
9233
9234 if ((max_capacity > capacity && max_cap_cpu == cpu) ||
9235 max_capacity < capacity) {
9236 mcc->val = capacity;
9237 mcc->cpu = cpu;
9238 #ifdef CONFIG_SCHED_DEBUG
9239 raw_spin_unlock_irqrestore(&mcc->lock, flags);
9240 pr_info("CPU%d: update max cpu_capacity %lu\n", cpu, capacity);
9241 goto skip_unlock;
9242 #endif
9243 }
9244 raw_spin_unlock_irqrestore(&mcc->lock, flags);
9245
9246 skip_unlock: __attribute__ ((unused));
9247 capacity *= scale_rt_capacity(cpu);
9248 capacity >>= SCHED_CAPACITY_SHIFT;
9249
9250 if (!capacity)
9251 capacity = 1;
9252
9253 cpu_rq(cpu)->cpu_capacity = capacity;
9254 sdg->sgc->capacity = capacity;
9255 sdg->sgc->min_capacity = capacity;
9256 sdg->sgc->max_capacity = capacity;
9257 }
9258
update_group_capacity(struct sched_domain * sd,int cpu)9259 void update_group_capacity(struct sched_domain *sd, int cpu)
9260 {
9261 struct sched_domain *child = sd->child;
9262 struct sched_group *group, *sdg = sd->groups;
9263 unsigned long capacity, min_capacity, max_capacity;
9264 unsigned long interval;
9265
9266 interval = msecs_to_jiffies(sd->balance_interval);
9267 interval = clamp(interval, 1UL, max_load_balance_interval);
9268 sdg->sgc->next_update = jiffies + interval;
9269
9270 if (!child) {
9271 update_cpu_capacity(sd, cpu);
9272 return;
9273 }
9274
9275 capacity = 0;
9276 min_capacity = ULONG_MAX;
9277 max_capacity = 0;
9278
9279 if (child->flags & SD_OVERLAP) {
9280 /*
9281 * SD_OVERLAP domains cannot assume that child groups
9282 * span the current group.
9283 */
9284
9285 for_each_cpu(cpu, sched_group_span(sdg)) {
9286 struct sched_group_capacity *sgc;
9287 struct rq *rq = cpu_rq(cpu);
9288
9289 /*
9290 * build_sched_domains() -> init_sched_groups_capacity()
9291 * gets here before we've attached the domains to the
9292 * runqueues.
9293 *
9294 * Use capacity_of(), which is set irrespective of domains
9295 * in update_cpu_capacity().
9296 *
9297 * This avoids capacity from being 0 and
9298 * causing divide-by-zero issues on boot.
9299 */
9300 if (unlikely(!rq->sd)) {
9301 capacity += capacity_of(cpu);
9302 } else {
9303 sgc = rq->sd->groups->sgc;
9304 capacity += sgc->capacity;
9305 }
9306
9307 min_capacity = min(capacity, min_capacity);
9308 max_capacity = max(capacity, max_capacity);
9309 }
9310 } else {
9311 /*
9312 * !SD_OVERLAP domains can assume that child groups
9313 * span the current group.
9314 */
9315
9316 group = child->groups;
9317 do {
9318 struct sched_group_capacity *sgc = group->sgc;
9319
9320 capacity += sgc->capacity;
9321 min_capacity = min(sgc->min_capacity, min_capacity);
9322 max_capacity = max(sgc->max_capacity, max_capacity);
9323 group = group->next;
9324 } while (group != child->groups);
9325 }
9326
9327 sdg->sgc->capacity = capacity;
9328 sdg->sgc->min_capacity = min_capacity;
9329 sdg->sgc->max_capacity = max_capacity;
9330 }
9331
9332 /*
9333 * Check whether the capacity of the rq has been noticeably reduced by side
9334 * activity. The imbalance_pct is used for the threshold.
9335 * Return true is the capacity is reduced
9336 */
9337 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)9338 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9339 {
9340 return ((rq->cpu_capacity * sd->imbalance_pct) <
9341 (rq->cpu_capacity_orig * 100));
9342 }
9343
9344 /*
9345 * Group imbalance indicates (and tries to solve) the problem where balancing
9346 * groups is inadequate due to ->cpus_allowed constraints.
9347 *
9348 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
9349 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
9350 * Something like:
9351 *
9352 * { 0 1 2 3 } { 4 5 6 7 }
9353 * * * * *
9354 *
9355 * If we were to balance group-wise we'd place two tasks in the first group and
9356 * two tasks in the second group. Clearly this is undesired as it will overload
9357 * cpu 3 and leave one of the cpus in the second group unused.
9358 *
9359 * The current solution to this issue is detecting the skew in the first group
9360 * by noticing the lower domain failed to reach balance and had difficulty
9361 * moving tasks due to affinity constraints.
9362 *
9363 * When this is so detected; this group becomes a candidate for busiest; see
9364 * update_sd_pick_busiest(). And calculate_imbalance() and
9365 * find_busiest_group() avoid some of the usual balance conditions to allow it
9366 * to create an effective group imbalance.
9367 *
9368 * This is a somewhat tricky proposition since the next run might not find the
9369 * group imbalance and decide the groups need to be balanced again. A most
9370 * subtle and fragile situation.
9371 */
9372
sg_imbalanced(struct sched_group * group)9373 static inline int sg_imbalanced(struct sched_group *group)
9374 {
9375 return group->sgc->imbalance;
9376 }
9377
9378 /*
9379 * group_has_capacity returns true if the group has spare capacity that could
9380 * be used by some tasks.
9381 * We consider that a group has spare capacity if the * number of task is
9382 * smaller than the number of CPUs or if the utilization is lower than the
9383 * available capacity for CFS tasks.
9384 * For the latter, we use a threshold to stabilize the state, to take into
9385 * account the variance of the tasks' load and to return true if the available
9386 * capacity in meaningful for the load balancer.
9387 * As an example, an available capacity of 1% can appear but it doesn't make
9388 * any benefit for the load balance.
9389 */
9390 static inline bool
group_has_capacity(struct lb_env * env,struct sg_lb_stats * sgs)9391 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
9392 {
9393 if (sgs->sum_nr_running < sgs->group_weight)
9394 return true;
9395
9396 if ((sgs->group_capacity * 100) >
9397 (sgs->group_util * env->sd->imbalance_pct))
9398 return true;
9399
9400 return false;
9401 }
9402
9403 /*
9404 * group_is_overloaded returns true if the group has more tasks than it can
9405 * handle.
9406 * group_is_overloaded is not equals to !group_has_capacity because a group
9407 * with the exact right number of tasks, has no more spare capacity but is not
9408 * overloaded so both group_has_capacity and group_is_overloaded return
9409 * false.
9410 */
9411 static inline bool
group_is_overloaded(struct lb_env * env,struct sg_lb_stats * sgs)9412 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
9413 {
9414 if (sgs->sum_nr_running <= sgs->group_weight)
9415 return false;
9416
9417 if ((sgs->group_capacity * 100) <
9418 (sgs->group_util * env->sd->imbalance_pct))
9419 return true;
9420
9421 return false;
9422 }
9423
9424 /*
9425 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
9426 * per-CPU capacity than sched_group ref.
9427 */
9428 static inline bool
group_smaller_min_cpu_capacity(struct sched_group * sg,struct sched_group * ref)9429 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9430 {
9431 return sg->sgc->min_capacity * capacity_margin <
9432 ref->sgc->min_capacity * 1024;
9433 }
9434
9435 /*
9436 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
9437 * per-CPU capacity_orig than sched_group ref.
9438 */
9439 static inline bool
group_smaller_max_cpu_capacity(struct sched_group * sg,struct sched_group * ref)9440 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9441 {
9442 return sg->sgc->max_capacity * capacity_margin <
9443 ref->sgc->max_capacity * 1024;
9444 }
9445
9446 /*
9447 * group_similar_cpu_capacity: Returns true if the minimum capacity of the
9448 * compared groups differ by less than 12.5%.
9449 */
9450 static inline bool
group_similar_cpu_capacity(struct sched_group * sg,struct sched_group * ref)9451 group_similar_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
9452 {
9453 long diff = sg->sgc->min_capacity - ref->sgc->min_capacity;
9454 long max = max(sg->sgc->min_capacity, ref->sgc->min_capacity);
9455
9456 return abs(diff) < max >> 3;
9457 }
9458
9459 static inline enum
group_classify(struct sched_group * group,struct sg_lb_stats * sgs)9460 group_type group_classify(struct sched_group *group,
9461 struct sg_lb_stats *sgs)
9462 {
9463 if (sgs->group_no_capacity)
9464 return group_overloaded;
9465
9466 if (sg_imbalanced(group))
9467 return group_imbalanced;
9468
9469 if (sgs->group_misfit_task_load)
9470 return group_misfit_task;
9471
9472 return group_other;
9473 }
9474
9475 /**
9476 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9477 * @env: The load balancing environment.
9478 * @group: sched_group whose statistics are to be updated.
9479 * @load_idx: Load index of sched_domain of this_cpu for load calc.
9480 * @local_group: Does group contain this_cpu.
9481 * @sgs: variable to hold the statistics for this group.
9482 * @overload: Indicate pullable load (e.g. >1 runnable task).
9483 * @overutilized: Indicate overutilization for any CPU.
9484 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,int load_idx,int local_group,struct sg_lb_stats * sgs,bool * overload,bool * overutilized,bool * misfit_task)9485 static inline void update_sg_lb_stats(struct lb_env *env,
9486 struct sched_group *group, int load_idx,
9487 int local_group, struct sg_lb_stats *sgs,
9488 bool *overload, bool *overutilized, bool *misfit_task)
9489 {
9490 unsigned long load;
9491 int i, nr_running;
9492
9493 memset(sgs, 0, sizeof(*sgs));
9494
9495 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9496 struct rq *rq = cpu_rq(i);
9497
9498 /* Bias balancing toward cpus of our domain */
9499 if (local_group)
9500 load = target_load(i, load_idx);
9501 else
9502 load = source_load(i, load_idx);
9503
9504 sgs->group_load += load;
9505 sgs->group_util += cpu_util(i);
9506 sgs->sum_nr_running += rq->cfs.h_nr_running;
9507
9508 nr_running = rq->nr_running;
9509 if (nr_running > 1)
9510 *overload = true;
9511
9512 #ifdef CONFIG_NUMA_BALANCING
9513 sgs->nr_numa_running += rq->nr_numa_running;
9514 sgs->nr_preferred_running += rq->nr_preferred_running;
9515 #endif
9516 sgs->sum_weighted_load += weighted_cpuload(rq);
9517 /*
9518 * No need to call idle_cpu() if nr_running is not 0
9519 */
9520 if (!nr_running && idle_cpu(i))
9521 sgs->idle_cpus++;
9522
9523 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9524 sgs->group_misfit_task_load < rq->misfit_task_load) {
9525 sgs->group_misfit_task_load = rq->misfit_task_load;
9526 *overload = 1;
9527 }
9528
9529
9530 if (cpu_overutilized(i)) {
9531 *overutilized = true;
9532
9533 if (rq->misfit_task_load)
9534 *misfit_task = true;
9535 }
9536 }
9537
9538 /* Adjust by relative CPU capacity of the group */
9539 sgs->group_capacity = group->sgc->capacity;
9540 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
9541
9542 if (sgs->sum_nr_running)
9543 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
9544
9545 sgs->group_weight = group->group_weight;
9546
9547 sgs->group_no_capacity = group_is_overloaded(env, sgs);
9548 sgs->group_type = group_classify(group, sgs);
9549 }
9550
9551 /**
9552 * update_sd_pick_busiest - return 1 on busiest group
9553 * @env: The load balancing environment.
9554 * @sds: sched_domain statistics
9555 * @sg: sched_group candidate to be checked for being the busiest
9556 * @sgs: sched_group statistics
9557 *
9558 * Determine if @sg is a busier group than the previously selected
9559 * busiest group.
9560 *
9561 * Return: %true if @sg is a busier group than the previously selected
9562 * busiest group. %false otherwise.
9563 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9564 static bool update_sd_pick_busiest(struct lb_env *env,
9565 struct sd_lb_stats *sds,
9566 struct sched_group *sg,
9567 struct sg_lb_stats *sgs)
9568 {
9569 struct sg_lb_stats *busiest = &sds->busiest_stat;
9570
9571 /*
9572 * Don't try to pull misfit tasks we can't help.
9573 * We can use max_capacity here as reduction in capacity on some
9574 * cpus in the group should either be possible to resolve
9575 * internally or be covered by avg_load imbalance (eventually).
9576 */
9577 if (sgs->group_type == group_misfit_task &&
9578 (!group_smaller_max_cpu_capacity(sg, sds->local) ||
9579 !group_has_capacity(env, &sds->local_stat)))
9580 return false;
9581
9582 if (sgs->group_type > busiest->group_type)
9583 return true;
9584
9585 if (sgs->group_type < busiest->group_type)
9586 return false;
9587
9588 if (sgs->avg_load <= busiest->avg_load)
9589 return false;
9590
9591 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
9592 goto asym_packing;
9593
9594 /*
9595 * Candidate sg has no more than one task per CPU and
9596 * has higher per-CPU capacity. Migrating tasks to less
9597 * capable CPUs may harm throughput. Maximize throughput,
9598 * power/energy consequences are not considered.
9599 */
9600 if (sgs->sum_nr_running <= sgs->group_weight &&
9601 group_smaller_min_cpu_capacity(sds->local, sg))
9602 return false;
9603
9604 /*
9605 * Candidate sg doesn't face any severe imbalance issues so
9606 * don't disturb unless the groups are of similar capacity
9607 * where balancing is more harmless.
9608 */
9609 if (sgs->group_type == group_other &&
9610 !group_similar_cpu_capacity(sds->local, sg))
9611 return false;
9612
9613 /*
9614 * If we have more than one misfit sg go with the biggest misfit.
9615 */
9616 if (sgs->group_type == group_misfit_task &&
9617 sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9618 return false;
9619
9620 asym_packing:
9621 /* This is the busiest node in its class. */
9622 if (!(env->sd->flags & SD_ASYM_PACKING))
9623 return true;
9624
9625 /* No ASYM_PACKING if target cpu is already busy */
9626 if (env->idle == CPU_NOT_IDLE)
9627 return true;
9628 /*
9629 * ASYM_PACKING needs to move all the work to the highest
9630 * prority CPUs in the group, therefore mark all groups
9631 * of lower priority than ourself as busy.
9632 */
9633 if (sgs->sum_nr_running &&
9634 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
9635 if (!sds->busiest)
9636 return true;
9637
9638 /* Prefer to move from lowest priority cpu's work */
9639 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
9640 sg->asym_prefer_cpu))
9641 return true;
9642 }
9643
9644 return false;
9645 }
9646
9647 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)9648 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9649 {
9650 if (sgs->sum_nr_running > sgs->nr_numa_running)
9651 return regular;
9652 if (sgs->sum_nr_running > sgs->nr_preferred_running)
9653 return remote;
9654 return all;
9655 }
9656
fbq_classify_rq(struct rq * rq)9657 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9658 {
9659 if (rq->nr_running > rq->nr_numa_running)
9660 return regular;
9661 if (rq->nr_running > rq->nr_preferred_running)
9662 return remote;
9663 return all;
9664 }
9665 #else
fbq_classify_group(struct sg_lb_stats * sgs)9666 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9667 {
9668 return all;
9669 }
9670
fbq_classify_rq(struct rq * rq)9671 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9672 {
9673 return regular;
9674 }
9675 #endif /* CONFIG_NUMA_BALANCING */
9676
9677 #ifdef CONFIG_NO_HZ_COMMON
9678 static struct {
9679 cpumask_var_t idle_cpus_mask;
9680 atomic_t nr_cpus;
9681 unsigned long next_balance; /* in jiffy units */
9682 unsigned long next_update; /* in jiffy units */
9683 } nohz ____cacheline_aligned;
9684 #endif
9685
9686 #define lb_sd_parent(sd) \
9687 (sd->parent && sd->parent->groups != sd->parent->groups->next)
9688
9689 /**
9690 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9691 * @env: The load balancing environment.
9692 * @sds: variable to hold the statistics for this sched_domain.
9693 */
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9694 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9695 {
9696 struct sched_domain *child = env->sd->child;
9697 struct sched_group *sg = env->sd->groups;
9698 struct sg_lb_stats *local = &sds->local_stat;
9699 struct sg_lb_stats tmp_sgs;
9700 int load_idx;
9701 bool overload = false, overutilized = false, misfit_task = false;
9702 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9703
9704 #ifdef CONFIG_NO_HZ_COMMON
9705 if (env->idle == CPU_NEWLY_IDLE) {
9706 int cpu;
9707
9708 /* Update the stats of NOHZ idle CPUs in the sd */
9709 for_each_cpu_and(cpu, sched_domain_span(env->sd),
9710 nohz.idle_cpus_mask) {
9711 struct rq *rq = cpu_rq(cpu);
9712
9713 /* ... Unless we've already done since the last tick */
9714 if (time_after(jiffies,
9715 rq->last_blocked_load_update_tick))
9716 update_blocked_averages(cpu);
9717 }
9718 }
9719 /*
9720 * If we've just updated all of the NOHZ idle CPUs, then we can push
9721 * back the next nohz.next_update, which will prevent an unnecessary
9722 * wakeup for the nohz stats kick
9723 */
9724 if (cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd)))
9725 nohz.next_update = jiffies + LOAD_AVG_PERIOD;
9726 #endif
9727
9728 load_idx = get_sd_load_idx(env->sd, env->idle);
9729
9730 do {
9731 struct sg_lb_stats *sgs = &tmp_sgs;
9732 int local_group;
9733
9734 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9735 if (local_group) {
9736 sds->local = sg;
9737 sgs = local;
9738
9739 if (env->idle != CPU_NEWLY_IDLE ||
9740 time_after_eq(jiffies, sg->sgc->next_update))
9741 update_group_capacity(env->sd, env->dst_cpu);
9742 }
9743
9744 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
9745 &overload, &overutilized,
9746 &misfit_task);
9747
9748 if (local_group)
9749 goto next_group;
9750
9751 /*
9752 * In case the child domain prefers tasks go to siblings
9753 * first, lower the sg capacity so that we'll try
9754 * and move all the excess tasks away. We lower the capacity
9755 * of a group only if the local group has the capacity to fit
9756 * these excess tasks. The extra check prevents the case where
9757 * you always pull from the heaviest group when it is already
9758 * under-utilized (possible with a large weight task outweighs
9759 * the tasks on the system).
9760 */
9761 if (prefer_sibling && sds->local &&
9762 group_has_capacity(env, local) &&
9763 (sgs->sum_nr_running > local->sum_nr_running + 1)) {
9764 sgs->group_no_capacity = 1;
9765 sgs->group_type = group_classify(sg, sgs);
9766 }
9767
9768 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9769 sds->busiest = sg;
9770 sds->busiest_stat = *sgs;
9771 }
9772
9773 next_group:
9774 /* Now, start updating sd_lb_stats */
9775 sds->total_running += sgs->sum_nr_running;
9776 sds->total_load += sgs->group_load;
9777 sds->total_capacity += sgs->group_capacity;
9778 sds->total_util += sgs->group_util;
9779
9780 sg = sg->next;
9781 } while (sg != env->sd->groups);
9782
9783 if (env->sd->flags & SD_NUMA)
9784 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9785
9786 env->src_grp_nr_running = sds->busiest_stat.sum_nr_running;
9787
9788 if (!lb_sd_parent(env->sd)) {
9789 /* update overload indicator if we are at root domain */
9790 if (READ_ONCE(env->dst_rq->rd->overload) != overload)
9791 WRITE_ONCE(env->dst_rq->rd->overload, overload);
9792 }
9793
9794 if (overutilized)
9795 set_sd_overutilized(env->sd);
9796 else
9797 clear_sd_overutilized(env->sd);
9798
9799 /*
9800 * If there is a misfit task in one cpu in this sched_domain
9801 * it is likely that the imbalance cannot be sorted out among
9802 * the cpu's in this sched_domain. In this case set the
9803 * overutilized flag at the parent sched_domain.
9804 */
9805 if (misfit_task) {
9806 struct sched_domain *sd = env->sd->parent;
9807
9808 /*
9809 * In case of a misfit task, load balance at the parent
9810 * sched domain level will make sense only if the the cpus
9811 * have a different capacity. If cpus at a domain level have
9812 * the same capacity, the misfit task cannot be well
9813 * accomodated in any of the cpus and there in no point in
9814 * trying a load balance at this level
9815 */
9816 while (sd) {
9817 if (sd->flags & SD_ASYM_CPUCAPACITY) {
9818 set_sd_overutilized(sd);
9819 break;
9820 }
9821 sd = sd->parent;
9822 }
9823 }
9824
9825 /*
9826 * If the domain util is greater that domain capacity, load balancing
9827 * needs to be done at the next sched domain level as well.
9828 */
9829 if (lb_sd_parent(env->sd) &&
9830 sds->total_capacity * 1024 < sds->total_util * capacity_margin)
9831 set_sd_overutilized(env->sd->parent);
9832 }
9833
9834 /**
9835 * check_asym_packing - Check to see if the group is packed into the
9836 * sched domain.
9837 *
9838 * This is primarily intended to used at the sibling level. Some
9839 * cores like POWER7 prefer to use lower numbered SMT threads. In the
9840 * case of POWER7, it can move to lower SMT modes only when higher
9841 * threads are idle. When in lower SMT modes, the threads will
9842 * perform better since they share less core resources. Hence when we
9843 * have idle threads, we want them to be the higher ones.
9844 *
9845 * This packing function is run on idle threads. It checks to see if
9846 * the busiest CPU in this domain (core in the P7 case) has a higher
9847 * CPU number than the packing function is being run on. Here we are
9848 * assuming lower CPU number will be equivalent to lower a SMT thread
9849 * number.
9850 *
9851 * Return: 1 when packing is required and a task should be moved to
9852 * this CPU. The amount of the imbalance is returned in env->imbalance.
9853 *
9854 * @env: The load balancing environment.
9855 * @sds: Statistics of the sched_domain which is to be packed
9856 */
check_asym_packing(struct lb_env * env,struct sd_lb_stats * sds)9857 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
9858 {
9859 int busiest_cpu;
9860
9861 if (!(env->sd->flags & SD_ASYM_PACKING))
9862 return 0;
9863
9864 if (env->idle == CPU_NOT_IDLE)
9865 return 0;
9866
9867 if (!sds->busiest)
9868 return 0;
9869
9870 busiest_cpu = sds->busiest->asym_prefer_cpu;
9871 if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
9872 return 0;
9873
9874 env->imbalance = DIV_ROUND_CLOSEST(
9875 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
9876 SCHED_CAPACITY_SCALE);
9877
9878 return 1;
9879 }
9880
9881 /**
9882 * fix_small_imbalance - Calculate the minor imbalance that exists
9883 * amongst the groups of a sched_domain, during
9884 * load balancing.
9885 * @env: The load balancing environment.
9886 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
9887 */
9888 static inline
fix_small_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9889 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9890 {
9891 unsigned long tmp, capa_now = 0, capa_move = 0;
9892 unsigned int imbn = 2;
9893 unsigned long scaled_busy_load_per_task;
9894 struct sg_lb_stats *local, *busiest;
9895
9896 local = &sds->local_stat;
9897 busiest = &sds->busiest_stat;
9898
9899 if (!local->sum_nr_running)
9900 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
9901 else if (busiest->load_per_task > local->load_per_task)
9902 imbn = 1;
9903
9904 scaled_busy_load_per_task =
9905 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
9906 busiest->group_capacity;
9907
9908 if (busiest->avg_load + scaled_busy_load_per_task >=
9909 local->avg_load + (scaled_busy_load_per_task * imbn)) {
9910 env->imbalance = busiest->load_per_task;
9911 return;
9912 }
9913
9914 /*
9915 * OK, we don't have enough imbalance to justify moving tasks,
9916 * however we may be able to increase total CPU capacity used by
9917 * moving them.
9918 */
9919
9920 capa_now += busiest->group_capacity *
9921 min(busiest->load_per_task, busiest->avg_load);
9922 capa_now += local->group_capacity *
9923 min(local->load_per_task, local->avg_load);
9924 capa_now /= SCHED_CAPACITY_SCALE;
9925
9926 /* Amount of load we'd subtract */
9927 if (busiest->avg_load > scaled_busy_load_per_task) {
9928 capa_move += busiest->group_capacity *
9929 min(busiest->load_per_task,
9930 busiest->avg_load - scaled_busy_load_per_task);
9931 }
9932
9933 /* Amount of load we'd add */
9934 if (busiest->avg_load * busiest->group_capacity <
9935 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
9936 tmp = (busiest->avg_load * busiest->group_capacity) /
9937 local->group_capacity;
9938 } else {
9939 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
9940 local->group_capacity;
9941 }
9942 capa_move += local->group_capacity *
9943 min(local->load_per_task, local->avg_load + tmp);
9944 capa_move /= SCHED_CAPACITY_SCALE;
9945
9946 /* Move if we gain throughput */
9947 if (capa_move > capa_now) {
9948 env->imbalance = busiest->load_per_task;
9949 return;
9950 }
9951
9952 /* We can't see throughput improvement with the load-based
9953 * method, but it is possible depending upon group size and
9954 * capacity range that there might still be an underutilized
9955 * cpu available in an asymmetric capacity system. Do one last
9956 * check just in case.
9957 */
9958 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9959 busiest->group_type == group_overloaded &&
9960 busiest->sum_nr_running > busiest->group_weight &&
9961 local->sum_nr_running < local->group_weight &&
9962 local->group_capacity < busiest->group_capacity)
9963 env->imbalance = busiest->load_per_task;
9964 }
9965
9966 /**
9967 * calculate_imbalance - Calculate the amount of imbalance present within the
9968 * groups of a given sched_domain during load balance.
9969 * @env: load balance environment
9970 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9971 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9972 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9973 {
9974 unsigned long max_pull, load_above_capacity = ~0UL;
9975 struct sg_lb_stats *local, *busiest;
9976
9977 local = &sds->local_stat;
9978 busiest = &sds->busiest_stat;
9979
9980 if (busiest->group_type == group_imbalanced) {
9981 /*
9982 * In the group_imb case we cannot rely on group-wide averages
9983 * to ensure cpu-load equilibrium, look at wider averages. XXX
9984 */
9985 busiest->load_per_task =
9986 min(busiest->load_per_task, sds->avg_load);
9987 }
9988
9989 /*
9990 * Avg load of busiest sg can be less and avg load of local sg can
9991 * be greater than avg load across all sgs of sd because avg load
9992 * factors in sg capacity and sgs with smaller group_type are
9993 * skipped when updating the busiest sg:
9994 */
9995 if (busiest->group_type != group_misfit_task &&
9996 (busiest->avg_load <= sds->avg_load ||
9997 local->avg_load >= sds->avg_load)) {
9998 env->imbalance = 0;
9999 return fix_small_imbalance(env, sds);
10000 }
10001
10002 /*
10003 * If there aren't any idle cpus, avoid creating some.
10004 */
10005 if (busiest->group_type == group_overloaded &&
10006 local->group_type == group_overloaded) {
10007 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
10008 if (load_above_capacity > busiest->group_capacity) {
10009 load_above_capacity -= busiest->group_capacity;
10010 load_above_capacity *= scale_load_down(NICE_0_LOAD);
10011 load_above_capacity /= busiest->group_capacity;
10012 } else
10013 load_above_capacity = ~0UL;
10014 }
10015
10016 /*
10017 * We're trying to get all the cpus to the average_load, so we don't
10018 * want to push ourselves above the average load, nor do we wish to
10019 * reduce the max loaded cpu below the average load. At the same time,
10020 * we also don't want to reduce the group load below the group
10021 * capacity. Thus we look for the minimum possible imbalance.
10022 */
10023 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
10024
10025 /* How much load to actually move to equalise the imbalance */
10026 env->imbalance = min(
10027 max_pull * busiest->group_capacity,
10028 (sds->avg_load - local->avg_load) * local->group_capacity
10029 ) / SCHED_CAPACITY_SCALE;
10030
10031 /* Boost imbalance to allow misfit task to be balanced.
10032 * Always do this if we are doing a NEWLY_IDLE balance
10033 * on the assumption that any tasks we have must not be
10034 * long-running (and hence we cannot rely upon load).
10035 * However if we are not idle, we should assume the tasks
10036 * we have are longer running and not override load-based
10037 * calculations above unless we are sure that the local
10038 * group is underutilized.
10039 */
10040 if (busiest->group_type == group_misfit_task &&
10041 (env->idle == CPU_NEWLY_IDLE ||
10042 local->sum_nr_running < local->group_weight)) {
10043 env->imbalance = max_t(long, env->imbalance,
10044 busiest->group_misfit_task_load);
10045 }
10046
10047 /*
10048 * if *imbalance is less than the average load per runnable task
10049 * there is no guarantee that any tasks will be moved so we'll have
10050 * a think about bumping its value to force at least one task to be
10051 * moved
10052 */
10053 if (env->imbalance < busiest->load_per_task)
10054 return fix_small_imbalance(env, sds);
10055 }
10056
10057 /******* find_busiest_group() helpers end here *********************/
10058
10059 /**
10060 * find_busiest_group - Returns the busiest group within the sched_domain
10061 * if there is an imbalance.
10062 *
10063 * Also calculates the amount of weighted load which should be moved
10064 * to restore balance.
10065 *
10066 * @env: The load balancing environment.
10067 *
10068 * Return: - The busiest group if imbalance exists.
10069 */
find_busiest_group(struct lb_env * env)10070 static struct sched_group *find_busiest_group(struct lb_env *env)
10071 {
10072 struct sg_lb_stats *local, *busiest;
10073 struct sd_lb_stats sds;
10074
10075 init_sd_lb_stats(&sds);
10076
10077 /*
10078 * Compute the various statistics relavent for load balancing at
10079 * this level.
10080 */
10081 update_sd_lb_stats(env, &sds);
10082
10083 if (energy_aware() && !sd_overutilized(env->sd))
10084 goto out_balanced;
10085
10086 local = &sds.local_stat;
10087 busiest = &sds.busiest_stat;
10088
10089 /* ASYM feature bypasses nice load balance check */
10090 if (check_asym_packing(env, &sds))
10091 return sds.busiest;
10092
10093 /* There is no busy sibling group to pull tasks from */
10094 if (!sds.busiest || busiest->sum_nr_running == 0)
10095 goto out_balanced;
10096
10097 /* XXX broken for overlapping NUMA groups */
10098 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
10099 / sds.total_capacity;
10100
10101 /*
10102 * If the busiest group is imbalanced the below checks don't
10103 * work because they assume all things are equal, which typically
10104 * isn't true due to cpus_allowed constraints and the like.
10105 */
10106 if (busiest->group_type == group_imbalanced)
10107 goto force_balance;
10108
10109 /*
10110 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
10111 * capacities from resulting in underutilization due to avg_load.
10112 */
10113 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
10114 busiest->group_no_capacity)
10115 goto force_balance;
10116
10117 /* Misfit tasks should be dealt with regardless of the avg load */
10118 if (busiest->group_type == group_misfit_task)
10119 goto force_balance;
10120
10121 /*
10122 * If the local group is busier than the selected busiest group
10123 * don't try and pull any tasks.
10124 */
10125 if (local->avg_load >= busiest->avg_load)
10126 goto out_balanced;
10127
10128 /*
10129 * Don't pull any tasks if this group is already above the domain
10130 * average load.
10131 */
10132 if (local->avg_load >= sds.avg_load)
10133 goto out_balanced;
10134
10135 if (env->idle == CPU_IDLE) {
10136 /*
10137 * This cpu is idle. If the busiest group is not overloaded
10138 * and there is no imbalance between this and busiest group
10139 * wrt idle cpus, it is balanced. The imbalance becomes
10140 * significant if the diff is greater than 1 otherwise we
10141 * might end up to just move the imbalance on another group
10142 */
10143 if ((busiest->group_type != group_overloaded) &&
10144 (local->idle_cpus <= (busiest->idle_cpus + 1)))
10145 goto out_balanced;
10146 } else {
10147 /*
10148 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
10149 * imbalance_pct to be conservative.
10150 */
10151 if (100 * busiest->avg_load <=
10152 env->sd->imbalance_pct * local->avg_load)
10153 goto out_balanced;
10154 }
10155
10156 force_balance:
10157 /* Looks like there is an imbalance. Compute it */
10158 env->src_grp_type = busiest->group_type;
10159 calculate_imbalance(env, &sds);
10160 return sds.busiest;
10161
10162 out_balanced:
10163 env->imbalance = 0;
10164 return NULL;
10165 }
10166
10167 /*
10168 * find_busiest_queue - find the busiest runqueue among the cpus in group.
10169 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)10170 static struct rq *find_busiest_queue(struct lb_env *env,
10171 struct sched_group *group)
10172 {
10173 struct rq *busiest = NULL, *rq;
10174 unsigned long busiest_load = 0, busiest_capacity = 1;
10175 int i;
10176
10177 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10178 unsigned long capacity, wl;
10179 enum fbq_type rt;
10180
10181 rq = cpu_rq(i);
10182 rt = fbq_classify_rq(rq);
10183
10184 /*
10185 * We classify groups/runqueues into three groups:
10186 * - regular: there are !numa tasks
10187 * - remote: there are numa tasks that run on the 'wrong' node
10188 * - all: there is no distinction
10189 *
10190 * In order to avoid migrating ideally placed numa tasks,
10191 * ignore those when there's better options.
10192 *
10193 * If we ignore the actual busiest queue to migrate another
10194 * task, the next balance pass can still reduce the busiest
10195 * queue by moving tasks around inside the node.
10196 *
10197 * If we cannot move enough load due to this classification
10198 * the next pass will adjust the group classification and
10199 * allow migration of more tasks.
10200 *
10201 * Both cases only affect the total convergence complexity.
10202 */
10203 if (rt > env->fbq_type)
10204 continue;
10205
10206 /*
10207 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
10208 * seek the "biggest" misfit task.
10209 */
10210 if (env->src_grp_type == group_misfit_task) {
10211 if (rq->misfit_task_load > busiest_load) {
10212 busiest_load = rq->misfit_task_load;
10213 busiest = rq;
10214 }
10215 continue;
10216 }
10217
10218 capacity = capacity_of(i);
10219
10220 /*
10221 * For ASYM_CPUCAPACITY domains, don't pick a cpu that could
10222 * eventually lead to active_balancing high->low capacity.
10223 * Higher per-cpu capacity is considered better than balancing
10224 * average load.
10225 */
10226 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
10227 capacity_of(env->dst_cpu) < capacity &&
10228 rq->nr_running == 1)
10229 continue;
10230
10231 wl = weighted_cpuload(rq);
10232
10233 /*
10234 * When comparing with imbalance, use weighted_cpuload()
10235 * which is not scaled with the cpu capacity.
10236 */
10237
10238 if (rq->nr_running == 1 && wl > env->imbalance &&
10239 !check_cpu_capacity(rq, env->sd))
10240 continue;
10241
10242 /*
10243 * For the load comparisons with the other cpu's, consider
10244 * the weighted_cpuload() scaled with the cpu capacity, so
10245 * that the load can be moved away from the cpu that is
10246 * potentially running at a lower capacity.
10247 *
10248 * Thus we're looking for max(wl_i / capacity_i), crosswise
10249 * multiplication to rid ourselves of the division works out
10250 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
10251 * our previous maximum.
10252 */
10253 if (wl * busiest_capacity > busiest_load * capacity) {
10254 busiest_load = wl;
10255 busiest_capacity = capacity;
10256 busiest = rq;
10257 }
10258 }
10259
10260 return busiest;
10261 }
10262
10263 /*
10264 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10265 * so long as it is large enough.
10266 */
10267 #define MAX_PINNED_INTERVAL 512
10268
need_active_balance(struct lb_env * env)10269 static int need_active_balance(struct lb_env *env)
10270 {
10271 struct sched_domain *sd = env->sd;
10272
10273 if (env->idle == CPU_NEWLY_IDLE) {
10274
10275 /*
10276 * ASYM_PACKING needs to force migrate tasks from busy but
10277 * lower priority CPUs in order to pack all tasks in the
10278 * highest priority CPUs.
10279 */
10280 if ((sd->flags & SD_ASYM_PACKING) &&
10281 sched_asym_prefer(env->dst_cpu, env->src_cpu))
10282 return 1;
10283 }
10284
10285 /*
10286 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10287 * It's worth migrating the task if the src_cpu's capacity is reduced
10288 * because of other sched_class or IRQs if more capacity stays
10289 * available on dst_cpu.
10290 */
10291 if ((env->idle != CPU_NOT_IDLE) &&
10292 (env->src_rq->cfs.h_nr_running == 1)) {
10293 if ((check_cpu_capacity(env->src_rq, sd)) &&
10294 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10295 return 1;
10296 }
10297
10298 if ((capacity_of(env->src_cpu) < capacity_of(env->dst_cpu)) &&
10299 ((capacity_orig_of(env->src_cpu) < capacity_orig_of(env->dst_cpu))) &&
10300 env->src_rq->cfs.h_nr_running == 1 &&
10301 cpu_overutilized(env->src_cpu) &&
10302 !cpu_overutilized(env->dst_cpu)) {
10303 return 1;
10304 }
10305
10306 if (env->src_grp_type == group_misfit_task)
10307 return 1;
10308
10309 if (env->src_grp_type == group_overloaded &&
10310 env->src_rq->misfit_task_load)
10311 return 1;
10312
10313 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
10314 }
10315
10316 static int active_load_balance_cpu_stop(void *data);
10317
should_we_balance(struct lb_env * env)10318 static int should_we_balance(struct lb_env *env)
10319 {
10320 struct sched_group *sg = env->sd->groups;
10321 int cpu, balance_cpu = -1;
10322
10323 /*
10324 * Ensure the balancing environment is consistent; can happen
10325 * when the softirq triggers 'during' hotplug.
10326 */
10327 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10328 return 0;
10329
10330 /*
10331 * In the newly idle case, we will allow all the cpu's
10332 * to do the newly idle load balance.
10333 */
10334 if (env->idle == CPU_NEWLY_IDLE)
10335 return 1;
10336
10337 /* Try to find first idle cpu */
10338 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10339 if (!idle_cpu(cpu))
10340 continue;
10341
10342 balance_cpu = cpu;
10343 break;
10344 }
10345
10346 if (balance_cpu == -1)
10347 balance_cpu = group_balance_cpu(sg);
10348
10349 /*
10350 * First idle cpu or the first cpu(busiest) in this sched group
10351 * is eligible for doing load balancing at this and above domains.
10352 */
10353 return balance_cpu == env->dst_cpu;
10354 }
10355
10356 /*
10357 * Check this_cpu to ensure it is balanced within domain. Attempt to move
10358 * tasks if there is an imbalance.
10359 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)10360 static int load_balance(int this_cpu, struct rq *this_rq,
10361 struct sched_domain *sd, enum cpu_idle_type idle,
10362 int *continue_balancing)
10363 {
10364 int ld_moved, cur_ld_moved, active_balance = 0;
10365 struct sched_domain *sd_parent = lb_sd_parent(sd) ? sd->parent : NULL;
10366 struct sched_group *group;
10367 struct rq *busiest;
10368 struct rq_flags rf;
10369 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10370
10371 struct lb_env env = {
10372 .sd = sd,
10373 .dst_cpu = this_cpu,
10374 .dst_rq = this_rq,
10375 .dst_grpmask = sched_group_span(sd->groups),
10376 .idle = idle,
10377 .loop_break = sched_nr_migrate_break,
10378 .cpus = cpus,
10379 .fbq_type = all,
10380 .tasks = LIST_HEAD_INIT(env.tasks),
10381 };
10382
10383 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10384
10385 schedstat_inc(sd->lb_count[idle]);
10386
10387 redo:
10388 if (!should_we_balance(&env)) {
10389 *continue_balancing = 0;
10390 goto out_balanced;
10391 }
10392
10393 group = find_busiest_group(&env);
10394 if (!group) {
10395 schedstat_inc(sd->lb_nobusyg[idle]);
10396 goto out_balanced;
10397 }
10398
10399 busiest = find_busiest_queue(&env, group);
10400 if (!busiest) {
10401 schedstat_inc(sd->lb_nobusyq[idle]);
10402 goto out_balanced;
10403 }
10404
10405 BUG_ON(busiest == env.dst_rq);
10406
10407 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10408
10409 env.src_cpu = busiest->cpu;
10410 env.src_rq = busiest;
10411
10412 ld_moved = 0;
10413 if (busiest->nr_running > 1) {
10414 /*
10415 * Attempt to move tasks. If find_busiest_group has found
10416 * an imbalance but busiest->nr_running <= 1, the group is
10417 * still unbalanced. ld_moved simply stays zero, so it is
10418 * correctly treated as an imbalance.
10419 */
10420 env.flags |= LBF_ALL_PINNED;
10421 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
10422
10423 more_balance:
10424 rq_lock_irqsave(busiest, &rf);
10425 update_rq_clock(busiest);
10426
10427 /*
10428 * cur_ld_moved - load moved in current iteration
10429 * ld_moved - cumulative load moved across iterations
10430 */
10431 cur_ld_moved = detach_tasks(&env, &rf);
10432
10433 /*
10434 * We've detached some tasks from busiest_rq. Every
10435 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10436 * unlock busiest->lock, and we are able to be sure
10437 * that nobody can manipulate the tasks in parallel.
10438 * See task_rq_lock() family for the details.
10439 */
10440
10441 rq_unlock(busiest, &rf);
10442
10443 if (cur_ld_moved) {
10444 attach_tasks(&env);
10445 ld_moved += cur_ld_moved;
10446 }
10447
10448 local_irq_restore(rf.flags);
10449
10450 if (env.flags & LBF_NEED_BREAK) {
10451 env.flags &= ~LBF_NEED_BREAK;
10452 goto more_balance;
10453 }
10454
10455 /*
10456 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10457 * us and move them to an alternate dst_cpu in our sched_group
10458 * where they can run. The upper limit on how many times we
10459 * iterate on same src_cpu is dependent on number of cpus in our
10460 * sched_group.
10461 *
10462 * This changes load balance semantics a bit on who can move
10463 * load to a given_cpu. In addition to the given_cpu itself
10464 * (or a ilb_cpu acting on its behalf where given_cpu is
10465 * nohz-idle), we now have balance_cpu in a position to move
10466 * load to given_cpu. In rare situations, this may cause
10467 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10468 * _independently_ and at _same_ time to move some load to
10469 * given_cpu) causing exceess load to be moved to given_cpu.
10470 * This however should not happen so much in practice and
10471 * moreover subsequent load balance cycles should correct the
10472 * excess load moved.
10473 */
10474 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10475
10476 /* Prevent to re-select dst_cpu via env's cpus */
10477 cpumask_clear_cpu(env.dst_cpu, env.cpus);
10478
10479 env.dst_rq = cpu_rq(env.new_dst_cpu);
10480 env.dst_cpu = env.new_dst_cpu;
10481 env.flags &= ~LBF_DST_PINNED;
10482 env.loop = 0;
10483 env.loop_break = sched_nr_migrate_break;
10484
10485 /*
10486 * Go back to "more_balance" rather than "redo" since we
10487 * need to continue with same src_cpu.
10488 */
10489 goto more_balance;
10490 }
10491
10492 /*
10493 * We failed to reach balance because of affinity.
10494 */
10495 if (sd_parent) {
10496 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10497
10498 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10499 *group_imbalance = 1;
10500 }
10501
10502 /* All tasks on this runqueue were pinned by CPU affinity */
10503 if (unlikely(env.flags & LBF_ALL_PINNED)) {
10504 cpumask_clear_cpu(cpu_of(busiest), cpus);
10505 /*
10506 * Attempting to continue load balancing at the current
10507 * sched_domain level only makes sense if there are
10508 * active CPUs remaining as possible busiest CPUs to
10509 * pull load from which are not contained within the
10510 * destination group that is receiving any migrated
10511 * load.
10512 */
10513 if (!cpumask_subset(cpus, env.dst_grpmask)) {
10514 env.loop = 0;
10515 env.loop_break = sched_nr_migrate_break;
10516 goto redo;
10517 }
10518 goto out_all_pinned;
10519 }
10520 }
10521
10522 if (!ld_moved) {
10523 schedstat_inc(sd->lb_failed[idle]);
10524 /*
10525 * Increment the failure counter only on periodic balance.
10526 * We do not want newidle balance, which can be very
10527 * frequent, pollute the failure counter causing
10528 * excessive cache_hot migrations and active balances.
10529 */
10530 if (idle != CPU_NEWLY_IDLE)
10531 if (env.src_grp_nr_running > 1)
10532 sd->nr_balance_failed++;
10533
10534 if (need_active_balance(&env)) {
10535 unsigned long flags;
10536
10537 raw_spin_lock_irqsave(&busiest->lock, flags);
10538
10539 /* don't kick the active_load_balance_cpu_stop,
10540 * if the curr task on busiest cpu can't be
10541 * moved to this_cpu
10542 */
10543 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
10544 raw_spin_unlock_irqrestore(&busiest->lock,
10545 flags);
10546 env.flags |= LBF_ALL_PINNED;
10547 goto out_one_pinned;
10548 }
10549
10550 /*
10551 * ->active_balance synchronizes accesses to
10552 * ->active_balance_work. Once set, it's cleared
10553 * only after active load balance is finished.
10554 */
10555 if (!busiest->active_balance) {
10556 busiest->active_balance = 1;
10557 busiest->push_cpu = this_cpu;
10558 active_balance = 1;
10559 }
10560 raw_spin_unlock_irqrestore(&busiest->lock, flags);
10561
10562 if (active_balance) {
10563 stop_one_cpu_nowait(cpu_of(busiest),
10564 active_load_balance_cpu_stop, busiest,
10565 &busiest->active_balance_work);
10566 }
10567
10568 /* We've kicked active balancing, force task migration. */
10569 sd->nr_balance_failed = sd->cache_nice_tries+1;
10570 }
10571 } else
10572 sd->nr_balance_failed = 0;
10573
10574 if (likely(!active_balance)) {
10575 /* We were unbalanced, so reset the balancing interval */
10576 sd->balance_interval = sd->min_interval;
10577 } else {
10578 /*
10579 * If we've begun active balancing, start to back off. This
10580 * case may not be covered by the all_pinned logic if there
10581 * is only 1 task on the busy runqueue (because we don't call
10582 * detach_tasks).
10583 */
10584 if (sd->balance_interval < sd->max_interval)
10585 sd->balance_interval *= 2;
10586 }
10587
10588 goto out;
10589
10590 out_balanced:
10591 /*
10592 * We reach balance although we may have faced some affinity
10593 * constraints. Clear the imbalance flag only if other tasks got
10594 * a chance to move and fix the imbalance.
10595 */
10596 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10597 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10598
10599 if (*group_imbalance)
10600 *group_imbalance = 0;
10601 }
10602
10603 out_all_pinned:
10604 /*
10605 * We reach balance because all tasks are pinned at this level so
10606 * we can't migrate them. Let the imbalance flag set so parent level
10607 * can try to migrate them.
10608 */
10609 schedstat_inc(sd->lb_balanced[idle]);
10610
10611 sd->nr_balance_failed = 0;
10612
10613 out_one_pinned:
10614 ld_moved = 0;
10615
10616 /*
10617 * idle_balance() disregards balance intervals, so we could repeatedly
10618 * reach this code, which would lead to balance_interval skyrocketting
10619 * in a short amount of time. Skip the balance_interval increase logic
10620 * to avoid that.
10621 */
10622 if (env.idle == CPU_NEWLY_IDLE)
10623 goto out;
10624
10625 /* tune up the balancing interval */
10626 if (((env.flags & LBF_ALL_PINNED) &&
10627 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10628 (sd->balance_interval < sd->max_interval))
10629 sd->balance_interval *= 2;
10630 out:
10631 return ld_moved;
10632 }
10633
10634 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10635 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10636 {
10637 unsigned long interval = sd->balance_interval;
10638 unsigned int cpu;
10639
10640 if (cpu_busy)
10641 interval *= sd->busy_factor;
10642
10643 /* scale ms to jiffies */
10644 interval = msecs_to_jiffies(interval);
10645 interval = clamp(interval, 1UL, max_load_balance_interval);
10646
10647 /*
10648 * check if sched domain is marked as overutilized
10649 * we ought to only do this on systems which have SD_ASYMCAPACITY
10650 * but we want to do it for all sched domains in those systems
10651 * So for now, just check if overutilized as a proxy.
10652 */
10653 /*
10654 * If we are overutilized and we have a misfit task, then
10655 * we want to balance as soon as practically possible, so
10656 * we return an interval of zero.
10657 */
10658 if (energy_aware() && sd_overutilized(sd)) {
10659 /* we know the root is overutilized, let's check for a misfit task */
10660 for_each_cpu(cpu, sched_domain_span(sd)) {
10661 if (cpu_rq(cpu)->misfit_task_load)
10662 return 1;
10663 }
10664 }
10665 return interval;
10666 }
10667
10668 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10669 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10670 {
10671 unsigned long interval, next;
10672
10673 /* used by idle balance, so cpu_busy = 0 */
10674 interval = get_sd_balance_interval(sd, 0);
10675 next = sd->last_balance + interval;
10676
10677 if (time_after(*next_balance, next))
10678 *next_balance = next;
10679 }
10680
10681 /*
10682 * idle_balance is called by schedule() if this_cpu is about to become
10683 * idle. Attempts to pull tasks from other CPUs.
10684 */
idle_balance(struct rq * this_rq,struct rq_flags * rf)10685 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
10686 {
10687 unsigned long next_balance = jiffies + HZ;
10688 int this_cpu = this_rq->cpu;
10689 struct sched_domain *sd;
10690 int pulled_task = 0;
10691 u64 curr_cost = 0;
10692
10693 /*
10694 * We must set idle_stamp _before_ calling idle_balance(), such that we
10695 * measure the duration of idle_balance() as idle time.
10696 */
10697 this_rq->idle_stamp = rq_clock(this_rq);
10698
10699 /*
10700 * Do not pull tasks towards !active CPUs...
10701 */
10702 if (!cpu_active(this_cpu))
10703 return 0;
10704
10705 /*
10706 * This is OK, because current is on_cpu, which avoids it being picked
10707 * for load-balance and preemption/IRQs are still disabled avoiding
10708 * further scheduler activity on it and we're being very careful to
10709 * re-start the picking loop.
10710 */
10711 rq_unpin_lock(this_rq, rf);
10712
10713 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
10714 !READ_ONCE(this_rq->rd->overload)) {
10715 rcu_read_lock();
10716 sd = rcu_dereference_check_sched_domain(this_rq->sd);
10717 if (sd)
10718 update_next_balance(sd, &next_balance);
10719 rcu_read_unlock();
10720
10721 goto out;
10722 }
10723
10724 raw_spin_unlock(&this_rq->lock);
10725
10726 update_blocked_averages(this_cpu);
10727 rcu_read_lock();
10728 for_each_domain(this_cpu, sd) {
10729 int continue_balancing = 1;
10730 u64 t0, domain_cost;
10731
10732 if (!(sd->flags & SD_LOAD_BALANCE)) {
10733 if (time_after_eq(jiffies,
10734 sd->groups->sgc->next_update))
10735 update_group_capacity(sd, this_cpu);
10736 continue;
10737 }
10738
10739 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
10740 update_next_balance(sd, &next_balance);
10741 break;
10742 }
10743
10744 if (sd->flags & SD_BALANCE_NEWIDLE) {
10745 t0 = sched_clock_cpu(this_cpu);
10746
10747 pulled_task = load_balance(this_cpu, this_rq,
10748 sd, CPU_NEWLY_IDLE,
10749 &continue_balancing);
10750
10751 domain_cost = sched_clock_cpu(this_cpu) - t0;
10752 if (domain_cost > sd->max_newidle_lb_cost)
10753 sd->max_newidle_lb_cost = domain_cost;
10754
10755 curr_cost += domain_cost;
10756 }
10757
10758 update_next_balance(sd, &next_balance);
10759
10760 /*
10761 * Stop searching for tasks to pull if there are
10762 * now runnable tasks on this rq.
10763 */
10764 if (pulled_task || this_rq->nr_running > 0)
10765 break;
10766 }
10767 rcu_read_unlock();
10768
10769 raw_spin_lock(&this_rq->lock);
10770
10771 if (curr_cost > this_rq->max_idle_balance_cost)
10772 this_rq->max_idle_balance_cost = curr_cost;
10773
10774 /*
10775 * While browsing the domains, we released the rq lock, a task could
10776 * have been enqueued in the meantime. Since we're not going idle,
10777 * pretend we pulled a task.
10778 */
10779 if (this_rq->cfs.h_nr_running && !pulled_task)
10780 pulled_task = 1;
10781
10782 out:
10783 /* Move the next balance forward */
10784 if (time_after(this_rq->next_balance, next_balance))
10785 this_rq->next_balance = next_balance;
10786
10787 /* Is there a task of a high priority class? */
10788 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10789 pulled_task = -1;
10790
10791 if (pulled_task)
10792 this_rq->idle_stamp = 0;
10793
10794 rq_repin_lock(this_rq, rf);
10795
10796 return pulled_task;
10797 }
10798
10799 /*
10800 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
10801 * running tasks off the busiest CPU onto idle CPUs. It requires at
10802 * least 1 task to be running on each physical CPU where possible, and
10803 * avoids physical / logical imbalances.
10804 */
active_load_balance_cpu_stop(void * data)10805 static int active_load_balance_cpu_stop(void *data)
10806 {
10807 struct rq *busiest_rq = data;
10808 int busiest_cpu = cpu_of(busiest_rq);
10809 int target_cpu = busiest_rq->push_cpu;
10810 struct rq *target_rq = cpu_rq(target_cpu);
10811 struct sched_domain *sd;
10812 struct task_struct *p = NULL;
10813 struct rq_flags rf;
10814
10815 rq_lock_irq(busiest_rq, &rf);
10816 /*
10817 * Between queueing the stop-work and running it is a hole in which
10818 * CPUs can become inactive. We should not move tasks from or to
10819 * inactive CPUs.
10820 */
10821 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10822 goto out_unlock;
10823
10824 /* make sure the requested cpu hasn't gone down in the meantime */
10825 if (unlikely(busiest_cpu != smp_processor_id() ||
10826 !busiest_rq->active_balance))
10827 goto out_unlock;
10828
10829 /* Is there any task to move? */
10830 if (busiest_rq->nr_running <= 1)
10831 goto out_unlock;
10832
10833 /*
10834 * This condition is "impossible", if it occurs
10835 * we need to fix it. Originally reported by
10836 * Bjorn Helgaas on a 128-cpu setup.
10837 */
10838 BUG_ON(busiest_rq == target_rq);
10839
10840 /* Search for an sd spanning us and the target CPU. */
10841 rcu_read_lock();
10842 for_each_domain(target_cpu, sd) {
10843 if ((sd->flags & SD_LOAD_BALANCE) &&
10844 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10845 break;
10846 }
10847
10848 if (likely(sd)) {
10849 struct lb_env env = {
10850 .sd = sd,
10851 .dst_cpu = target_cpu,
10852 .dst_rq = target_rq,
10853 .src_cpu = busiest_rq->cpu,
10854 .src_rq = busiest_rq,
10855 .idle = CPU_IDLE,
10856 /*
10857 * can_migrate_task() doesn't need to compute new_dst_cpu
10858 * for active balancing. Since we have CPU_IDLE, but no
10859 * @dst_grpmask we need to make that test go away with lying
10860 * about DST_PINNED.
10861 */
10862 .flags = LBF_DST_PINNED,
10863 };
10864
10865 schedstat_inc(sd->alb_count);
10866 update_rq_clock(busiest_rq);
10867
10868 p = detach_one_task(&env, &rf);
10869 if (p) {
10870 schedstat_inc(sd->alb_pushed);
10871 /* Active balancing done, reset the failure counter. */
10872 sd->nr_balance_failed = 0;
10873 } else {
10874 schedstat_inc(sd->alb_failed);
10875 }
10876 }
10877 rcu_read_unlock();
10878 out_unlock:
10879 busiest_rq->active_balance = 0;
10880 rq_unlock(busiest_rq, &rf);
10881
10882 if (p)
10883 attach_one_task(target_rq, p);
10884
10885 local_irq_enable();
10886
10887 return 0;
10888 }
10889
on_null_domain(struct rq * rq)10890 static inline int on_null_domain(struct rq *rq)
10891 {
10892 return unlikely(!rcu_dereference_sched(rq->sd));
10893 }
10894
10895 #ifdef CONFIG_NO_HZ_COMMON
10896 /*
10897 * idle load balancing details
10898 * - When one of the busy CPUs notice that there may be an idle rebalancing
10899 * needed, they will kick the idle load balancer, which then does idle
10900 * load balancing for all the idle CPUs.
10901 */
10902
find_new_ilb(void)10903 static inline int find_new_ilb(void)
10904 {
10905 int ilb = cpumask_first(nohz.idle_cpus_mask);
10906
10907 if (ilb < nr_cpu_ids && idle_cpu(ilb))
10908 return ilb;
10909
10910 return nr_cpu_ids;
10911 }
10912
10913 /*
10914 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
10915 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
10916 * CPU (if there is one).
10917 */
nohz_balancer_kick(bool only_update)10918 static void nohz_balancer_kick(bool only_update)
10919 {
10920 int ilb_cpu;
10921
10922 nohz.next_balance++;
10923
10924 ilb_cpu = find_new_ilb();
10925
10926 if (ilb_cpu >= nr_cpu_ids)
10927 return;
10928
10929 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
10930 return;
10931
10932 if (only_update)
10933 set_bit(NOHZ_STATS_KICK, nohz_flags(ilb_cpu));
10934
10935 /*
10936 * Use smp_send_reschedule() instead of resched_cpu().
10937 * This way we generate a sched IPI on the target cpu which
10938 * is idle. And the softirq performing nohz idle load balance
10939 * will be run before returning from the IPI.
10940 */
10941 smp_send_reschedule(ilb_cpu);
10942 return;
10943 }
10944
nohz_balance_exit_idle(unsigned int cpu)10945 void nohz_balance_exit_idle(unsigned int cpu)
10946 {
10947 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
10948 /*
10949 * Completely isolated CPUs don't ever set, so we must test.
10950 */
10951 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
10952 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
10953 atomic_dec(&nohz.nr_cpus);
10954 }
10955 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
10956 }
10957 }
10958
set_cpu_sd_state_busy(void)10959 static inline void set_cpu_sd_state_busy(void)
10960 {
10961 struct sched_domain *sd;
10962 int cpu = smp_processor_id();
10963
10964 rcu_read_lock();
10965 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10966
10967 if (!sd || !sd->nohz_idle)
10968 goto unlock;
10969 sd->nohz_idle = 0;
10970
10971 atomic_inc(&sd->shared->nr_busy_cpus);
10972 unlock:
10973 rcu_read_unlock();
10974 }
10975
set_cpu_sd_state_idle(void)10976 void set_cpu_sd_state_idle(void)
10977 {
10978 struct sched_domain *sd;
10979 int cpu = smp_processor_id();
10980
10981 rcu_read_lock();
10982 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10983
10984 if (!sd || sd->nohz_idle)
10985 goto unlock;
10986 sd->nohz_idle = 1;
10987
10988 atomic_dec(&sd->shared->nr_busy_cpus);
10989 unlock:
10990 rcu_read_unlock();
10991 }
10992
10993 /*
10994 * This routine will record that the cpu is going idle with tick stopped.
10995 * This info will be used in performing idle load balancing in the future.
10996 */
nohz_balance_enter_idle(int cpu)10997 void nohz_balance_enter_idle(int cpu)
10998 {
10999 /*
11000 * If this cpu is going down, then nothing needs to be done.
11001 */
11002 if (!cpu_active(cpu))
11003 return;
11004
11005 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
11006 if (!is_housekeeping_cpu(cpu))
11007 return;
11008
11009 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
11010 return;
11011
11012 /*
11013 * If we're a completely isolated CPU, we don't play.
11014 */
11015 if (on_null_domain(cpu_rq(cpu)))
11016 return;
11017
11018 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11019 atomic_inc(&nohz.nr_cpus);
11020 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
11021 }
11022 #else
nohz_balancer_kick(bool only_update)11023 static inline void nohz_balancer_kick(bool only_update) {}
11024 #endif
11025
11026 static DEFINE_SPINLOCK(balancing);
11027
11028 /*
11029 * Scale the max load_balance interval with the number of CPUs in the system.
11030 * This trades load-balance latency on larger machines for less cross talk.
11031 */
update_max_interval(void)11032 void update_max_interval(void)
11033 {
11034 max_load_balance_interval = HZ*num_online_cpus()/10;
11035 }
11036
11037 /*
11038 * It checks each scheduling domain to see if it is due to be balanced,
11039 * and initiates a balancing operation if so.
11040 *
11041 * Balancing parameters are set up in init_sched_domains.
11042 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)11043 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
11044 {
11045 int continue_balancing = 1;
11046 int cpu = rq->cpu;
11047 unsigned long interval;
11048 struct sched_domain *sd;
11049 /* Earliest time when we have to do rebalance again */
11050 unsigned long next_balance = jiffies + 60*HZ;
11051 int update_next_balance = 0;
11052 int need_serialize, need_decay = 0;
11053 u64 max_cost = 0;
11054
11055 rcu_read_lock();
11056 for_each_domain(cpu, sd) {
11057 /*
11058 * Decay the newidle max times here because this is a regular
11059 * visit to all the domains. Decay ~1% per second.
11060 */
11061 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
11062 sd->max_newidle_lb_cost =
11063 (sd->max_newidle_lb_cost * 253) / 256;
11064 sd->next_decay_max_lb_cost = jiffies + HZ;
11065 need_decay = 1;
11066 }
11067 max_cost += sd->max_newidle_lb_cost;
11068
11069 if (energy_aware() && !sd_overutilized(sd))
11070 continue;
11071
11072 if (!(sd->flags & SD_LOAD_BALANCE)) {
11073 if (time_after_eq(jiffies,
11074 sd->groups->sgc->next_update))
11075 update_group_capacity(sd, cpu);
11076 continue;
11077 }
11078
11079 /*
11080 * Stop the load balance at this level. There is another
11081 * CPU in our sched group which is doing load balancing more
11082 * actively.
11083 */
11084 if (!continue_balancing) {
11085 if (need_decay)
11086 continue;
11087 break;
11088 }
11089
11090 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
11091
11092 need_serialize = sd->flags & SD_SERIALIZE;
11093 if (need_serialize) {
11094 if (!spin_trylock(&balancing))
11095 goto out;
11096 }
11097
11098 if (time_after_eq(jiffies, sd->last_balance + interval)) {
11099 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
11100 /*
11101 * The LBF_DST_PINNED logic could have changed
11102 * env->dst_cpu, so we can't know our idle
11103 * state even if we migrated tasks. Update it.
11104 */
11105 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
11106 }
11107 sd->last_balance = jiffies;
11108 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
11109 }
11110 if (need_serialize)
11111 spin_unlock(&balancing);
11112 out:
11113 if (time_after(next_balance, sd->last_balance + interval)) {
11114 next_balance = sd->last_balance + interval;
11115 update_next_balance = 1;
11116 }
11117 }
11118 if (need_decay) {
11119 /*
11120 * Ensure the rq-wide value also decays but keep it at a
11121 * reasonable floor to avoid funnies with rq->avg_idle.
11122 */
11123 rq->max_idle_balance_cost =
11124 max((u64)sysctl_sched_migration_cost, max_cost);
11125 }
11126 rcu_read_unlock();
11127
11128 /*
11129 * next_balance will be updated only when there is a need.
11130 * When the cpu is attached to null domain for ex, it will not be
11131 * updated.
11132 */
11133 if (likely(update_next_balance)) {
11134 rq->next_balance = next_balance;
11135
11136 #ifdef CONFIG_NO_HZ_COMMON
11137 /*
11138 * If this CPU has been elected to perform the nohz idle
11139 * balance. Other idle CPUs have already rebalanced with
11140 * nohz_idle_balance() and nohz.next_balance has been
11141 * updated accordingly. This CPU is now running the idle load
11142 * balance for itself and we need to update the
11143 * nohz.next_balance accordingly.
11144 */
11145 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
11146 nohz.next_balance = rq->next_balance;
11147 #endif
11148 }
11149 }
11150
11151 #ifdef CONFIG_NO_HZ_COMMON
11152 /*
11153 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11154 * rebalancing for all the cpus for whom scheduler ticks are stopped.
11155 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11156 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11157 {
11158 int this_cpu = this_rq->cpu;
11159 struct rq *rq;
11160 struct sched_domain *sd;
11161 int balance_cpu;
11162 /* Earliest time when we have to do rebalance again */
11163 unsigned long next_balance = jiffies + 60*HZ;
11164 int update_next_balance = 0;
11165
11166 if (idle != CPU_IDLE ||
11167 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
11168 goto end;
11169
11170 /*
11171 * This cpu is going to update the blocked load of idle CPUs either
11172 * before doing a rebalancing or just to keep metrics up to date. we
11173 * can safely update the next update timestamp
11174 */
11175 rcu_read_lock();
11176 sd = rcu_dereference(this_rq->sd);
11177 /*
11178 * Check whether there is a sched_domain available for this cpu.
11179 * The last other cpu can have been unplugged since the ILB has been
11180 * triggered and the sched_domain can now be null. The idle balance
11181 * sequence will quickly be aborted as there is no more idle CPUs
11182 */
11183 if (sd)
11184 nohz.next_update = jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD);
11185 rcu_read_unlock();
11186
11187 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
11188 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
11189 continue;
11190
11191 /*
11192 * If this cpu gets work to do, stop the load balancing
11193 * work being done for other cpus. Next load
11194 * balancing owner will pick it up.
11195 */
11196 if (need_resched())
11197 break;
11198
11199 rq = cpu_rq(balance_cpu);
11200
11201 /*
11202 * If time for next balance is due,
11203 * do the balance.
11204 */
11205 if (time_after_eq(jiffies, rq->next_balance)) {
11206 struct rq_flags rf;
11207
11208 rq_lock_irq(rq, &rf);
11209 update_rq_clock(rq);
11210 cpu_load_update_idle(rq);
11211 rq_unlock_irq(rq, &rf);
11212
11213 update_blocked_averages(balance_cpu);
11214 /*
11215 * This idle load balance softirq may have been
11216 * triggered only to update the blocked load and shares
11217 * of idle CPUs (which we have just done for
11218 * balance_cpu). In that case skip the actual balance.
11219 */
11220 if (!test_bit(NOHZ_STATS_KICK, nohz_flags(this_cpu)))
11221 rebalance_domains(rq, idle);
11222 }
11223
11224 if (time_after(next_balance, rq->next_balance)) {
11225 next_balance = rq->next_balance;
11226 update_next_balance = 1;
11227 }
11228 }
11229
11230 /*
11231 * next_balance will be updated only when there is a need.
11232 * When the CPU is attached to null domain for ex, it will not be
11233 * updated.
11234 */
11235 if (likely(update_next_balance))
11236 nohz.next_balance = next_balance;
11237 end:
11238 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
11239 }
11240
11241 /*
11242 * Current heuristic for kicking the idle load balancer in the presence
11243 * of an idle cpu in the system.
11244 * - This rq has more than one task.
11245 * - This rq has at least one CFS task and the capacity of the CPU is
11246 * significantly reduced because of RT tasks or IRQs.
11247 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
11248 * multiple busy cpu.
11249 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
11250 * domain span are idle.
11251 */
nohz_kick_needed(struct rq * rq,bool only_update)11252 static inline bool nohz_kick_needed(struct rq *rq, bool only_update)
11253 {
11254 unsigned long now = jiffies;
11255 struct sched_domain_shared *sds;
11256 struct sched_domain *sd;
11257 int nr_busy, i, cpu = rq->cpu;
11258 bool kick = false;
11259
11260 if (unlikely(rq->idle_balance) && !only_update)
11261 return false;
11262
11263 /*
11264 * We may be recently in ticked or tickless idle mode. At the first
11265 * busy tick after returning from idle, we will update the busy stats.
11266 */
11267 set_cpu_sd_state_busy();
11268 nohz_balance_exit_idle(cpu);
11269
11270 /*
11271 * None are in tickless mode and hence no need for NOHZ idle load
11272 * balancing.
11273 */
11274 if (likely(!atomic_read(&nohz.nr_cpus)))
11275 return false;
11276
11277 if (only_update) {
11278 if (time_before(now, nohz.next_update))
11279 return false;
11280 else
11281 return true;
11282 }
11283
11284 if (time_before(now, nohz.next_balance))
11285 return false;
11286
11287 if (rq->nr_running >= 2 &&
11288 (!energy_aware() || cpu_overutilized(cpu)))
11289 return true;
11290
11291 /* Do idle load balance if there have misfit task */
11292 if (energy_aware())
11293 return rq->misfit_task_load;
11294
11295 rcu_read_lock();
11296 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
11297 if (sds && !energy_aware()) {
11298 /*
11299 * XXX: write a coherent comment on why we do this.
11300 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
11301 */
11302 nr_busy = atomic_read(&sds->nr_busy_cpus);
11303 if (nr_busy > 1) {
11304 kick = true;
11305 goto unlock;
11306 }
11307
11308 }
11309
11310 sd = rcu_dereference(rq->sd);
11311 if (sd) {
11312 if ((rq->cfs.h_nr_running >= 1) &&
11313 check_cpu_capacity(rq, sd)) {
11314 kick = true;
11315 goto unlock;
11316 }
11317 }
11318
11319 sd = rcu_dereference(per_cpu(sd_asym, cpu));
11320 if (sd) {
11321 for_each_cpu(i, sched_domain_span(sd)) {
11322 if (i == cpu ||
11323 !cpumask_test_cpu(i, nohz.idle_cpus_mask))
11324 continue;
11325
11326 if (sched_asym_prefer(i, cpu)) {
11327 kick = true;
11328 goto unlock;
11329 }
11330 }
11331 }
11332 unlock:
11333 rcu_read_unlock();
11334 return kick;
11335 }
11336 #else
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11337 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
nohz_kick_needed(struct rq * rq,bool only_update)11338 static inline bool nohz_kick_needed(struct rq *rq, bool only_update) { return false; }
11339 #endif
11340
11341 /*
11342 * run_rebalance_domains is triggered when needed from the scheduler tick.
11343 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11344 */
run_rebalance_domains(struct softirq_action * h)11345 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11346 {
11347 struct rq *this_rq = this_rq();
11348 enum cpu_idle_type idle = this_rq->idle_balance ?
11349 CPU_IDLE : CPU_NOT_IDLE;
11350
11351 /*
11352 * If this cpu has a pending nohz_balance_kick, then do the
11353 * balancing on behalf of the other idle cpus whose ticks are
11354 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11355 * give the idle cpus a chance to load balance. Else we may
11356 * load balance only within the local sched_domain hierarchy
11357 * and abort nohz_idle_balance altogether if we pull some load.
11358 */
11359 nohz_idle_balance(this_rq, idle);
11360 update_blocked_averages(this_rq->cpu);
11361 #ifdef CONFIG_NO_HZ_COMMON
11362 if (!test_bit(NOHZ_STATS_KICK, nohz_flags(this_rq->cpu)))
11363 rebalance_domains(this_rq, idle);
11364 clear_bit(NOHZ_STATS_KICK, nohz_flags(this_rq->cpu));
11365 #else
11366 rebalance_domains(this_rq, idle);
11367 #endif
11368 }
11369
11370 /*
11371 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11372 */
trigger_load_balance(struct rq * rq)11373 void trigger_load_balance(struct rq *rq)
11374 {
11375 /* Don't need to rebalance while attached to NULL domain */
11376 if (unlikely(on_null_domain(rq)))
11377 return;
11378
11379 if (time_after_eq(jiffies, rq->next_balance))
11380 raise_softirq(SCHED_SOFTIRQ);
11381 #ifdef CONFIG_NO_HZ_COMMON
11382 if (nohz_kick_needed(rq, false))
11383 nohz_balancer_kick(false);
11384 #endif
11385 }
11386
rq_online_fair(struct rq * rq)11387 static void rq_online_fair(struct rq *rq)
11388 {
11389 update_sysctl();
11390
11391 update_runtime_enabled(rq);
11392 }
11393
rq_offline_fair(struct rq * rq)11394 static void rq_offline_fair(struct rq *rq)
11395 {
11396 update_sysctl();
11397
11398 /* Ensure any throttled groups are reachable by pick_next_task */
11399 unthrottle_offline_cfs_rqs(rq);
11400 }
11401
11402 #endif /* CONFIG_SMP */
11403
11404 /*
11405 * scheduler tick hitting a task of our scheduling class:
11406 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11407 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11408 {
11409 struct cfs_rq *cfs_rq;
11410 struct sched_entity *se = &curr->se;
11411
11412 for_each_sched_entity(se) {
11413 cfs_rq = cfs_rq_of(se);
11414 entity_tick(cfs_rq, se, queued);
11415 }
11416
11417 if (static_branch_unlikely(&sched_numa_balancing))
11418 task_tick_numa(rq, curr);
11419
11420 update_misfit_status(curr, rq);
11421
11422 update_overutilized_status(rq);
11423 }
11424
11425 /*
11426 * called on fork with the child task as argument from the parent's context
11427 * - child not yet on the tasklist
11428 * - preemption disabled
11429 */
task_fork_fair(struct task_struct * p)11430 static void task_fork_fair(struct task_struct *p)
11431 {
11432 struct cfs_rq *cfs_rq;
11433 struct sched_entity *se = &p->se, *curr;
11434 struct rq *rq = this_rq();
11435 struct rq_flags rf;
11436
11437 rq_lock(rq, &rf);
11438 update_rq_clock(rq);
11439
11440 cfs_rq = task_cfs_rq(current);
11441 curr = cfs_rq->curr;
11442 if (curr) {
11443 update_curr(cfs_rq);
11444 se->vruntime = curr->vruntime;
11445 }
11446 place_entity(cfs_rq, se, 1);
11447
11448 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11449 /*
11450 * Upon rescheduling, sched_class::put_prev_task() will place
11451 * 'current' within the tree based on its new key value.
11452 */
11453 swap(curr->vruntime, se->vruntime);
11454 resched_curr(rq);
11455 }
11456
11457 se->vruntime -= cfs_rq->min_vruntime;
11458 rq_unlock(rq, &rf);
11459 }
11460
11461 /*
11462 * Priority of the task has changed. Check to see if we preempt
11463 * the current task.
11464 */
11465 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)11466 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11467 {
11468 if (!task_on_rq_queued(p))
11469 return;
11470
11471 /*
11472 * Reschedule if we are currently running on this runqueue and
11473 * our priority decreased, or if we are not currently running on
11474 * this runqueue and our priority is higher than the current's
11475 */
11476 if (rq->curr == p) {
11477 if (p->prio > oldprio)
11478 resched_curr(rq);
11479 } else
11480 check_preempt_curr(rq, p, 0);
11481 }
11482
vruntime_normalized(struct task_struct * p)11483 static inline bool vruntime_normalized(struct task_struct *p)
11484 {
11485 struct sched_entity *se = &p->se;
11486
11487 /*
11488 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11489 * the dequeue_entity(.flags=0) will already have normalized the
11490 * vruntime.
11491 */
11492 if (p->on_rq)
11493 return true;
11494
11495 /*
11496 * When !on_rq, vruntime of the task has usually NOT been normalized.
11497 * But there are some cases where it has already been normalized:
11498 *
11499 * - A forked child which is waiting for being woken up by
11500 * wake_up_new_task().
11501 * - A task which has been woken up by try_to_wake_up() and
11502 * waiting for actually being woken up by sched_ttwu_pending().
11503 */
11504 if (!se->sum_exec_runtime ||
11505 (p->state == TASK_WAKING && p->sched_remote_wakeup))
11506 return true;
11507
11508 return false;
11509 }
11510
11511 #ifdef CONFIG_FAIR_GROUP_SCHED
11512 /*
11513 * Propagate the changes of the sched_entity across the tg tree to make it
11514 * visible to the root
11515 */
propagate_entity_cfs_rq(struct sched_entity * se)11516 static void propagate_entity_cfs_rq(struct sched_entity *se)
11517 {
11518 struct cfs_rq *cfs_rq;
11519
11520 /* Start to propagate at parent */
11521 se = se->parent;
11522
11523 for_each_sched_entity(se) {
11524 cfs_rq = cfs_rq_of(se);
11525
11526 if (cfs_rq_throttled(cfs_rq))
11527 break;
11528
11529 update_load_avg(se, UPDATE_TG);
11530 }
11531 }
11532 #else
propagate_entity_cfs_rq(struct sched_entity * se)11533 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11534 #endif
11535
detach_entity_cfs_rq(struct sched_entity * se)11536 static void detach_entity_cfs_rq(struct sched_entity *se)
11537 {
11538 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11539
11540 /* Catch up with the cfs_rq and remove our load when we leave */
11541 update_load_avg(se, 0);
11542 detach_entity_load_avg(cfs_rq, se);
11543 update_tg_load_avg(cfs_rq, false);
11544 propagate_entity_cfs_rq(se);
11545 }
11546
attach_entity_cfs_rq(struct sched_entity * se)11547 static void attach_entity_cfs_rq(struct sched_entity *se)
11548 {
11549 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11550
11551 #ifdef CONFIG_FAIR_GROUP_SCHED
11552 /*
11553 * Since the real-depth could have been changed (only FAIR
11554 * class maintain depth value), reset depth properly.
11555 */
11556 se->depth = se->parent ? se->parent->depth + 1 : 0;
11557 #endif
11558
11559 /* Synchronize entity with its cfs_rq */
11560 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11561 attach_entity_load_avg(cfs_rq, se);
11562 update_tg_load_avg(cfs_rq, false);
11563 propagate_entity_cfs_rq(se);
11564 }
11565
detach_task_cfs_rq(struct task_struct * p)11566 static void detach_task_cfs_rq(struct task_struct *p)
11567 {
11568 struct sched_entity *se = &p->se;
11569 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11570
11571 if (!vruntime_normalized(p)) {
11572 /*
11573 * Fix up our vruntime so that the current sleep doesn't
11574 * cause 'unlimited' sleep bonus.
11575 */
11576 place_entity(cfs_rq, se, 0);
11577 se->vruntime -= cfs_rq->min_vruntime;
11578 }
11579
11580 detach_entity_cfs_rq(se);
11581 }
11582
attach_task_cfs_rq(struct task_struct * p)11583 static void attach_task_cfs_rq(struct task_struct *p)
11584 {
11585 struct sched_entity *se = &p->se;
11586 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11587
11588 attach_entity_cfs_rq(se);
11589
11590 if (!vruntime_normalized(p))
11591 se->vruntime += cfs_rq->min_vruntime;
11592 }
11593
switched_from_fair(struct rq * rq,struct task_struct * p)11594 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11595 {
11596 detach_task_cfs_rq(p);
11597 }
11598
switched_to_fair(struct rq * rq,struct task_struct * p)11599 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11600 {
11601 attach_task_cfs_rq(p);
11602
11603 if (task_on_rq_queued(p)) {
11604 /*
11605 * We were most likely switched from sched_rt, so
11606 * kick off the schedule if running, otherwise just see
11607 * if we can still preempt the current task.
11608 */
11609 if (rq->curr == p)
11610 resched_curr(rq);
11611 else
11612 check_preempt_curr(rq, p, 0);
11613 }
11614 }
11615
11616 /* Account for a task changing its policy or group.
11617 *
11618 * This routine is mostly called to set cfs_rq->curr field when a task
11619 * migrates between groups/classes.
11620 */
set_curr_task_fair(struct rq * rq)11621 static void set_curr_task_fair(struct rq *rq)
11622 {
11623 struct sched_entity *se = &rq->curr->se;
11624
11625 for_each_sched_entity(se) {
11626 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11627
11628 set_next_entity(cfs_rq, se);
11629 /* ensure bandwidth has been allocated on our new cfs_rq */
11630 account_cfs_rq_runtime(cfs_rq, 0);
11631 }
11632 }
11633
init_cfs_rq(struct cfs_rq * cfs_rq)11634 void init_cfs_rq(struct cfs_rq *cfs_rq)
11635 {
11636 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11637 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11638 #ifndef CONFIG_64BIT
11639 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11640 #endif
11641 #ifdef CONFIG_SMP
11642 #ifdef CONFIG_FAIR_GROUP_SCHED
11643 cfs_rq->propagate_avg = 0;
11644 #endif
11645 atomic_long_set(&cfs_rq->removed_load_avg, 0);
11646 atomic_long_set(&cfs_rq->removed_util_avg, 0);
11647 #endif
11648 }
11649
11650 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)11651 static void task_set_group_fair(struct task_struct *p)
11652 {
11653 struct sched_entity *se = &p->se;
11654
11655 set_task_rq(p, task_cpu(p));
11656 se->depth = se->parent ? se->parent->depth + 1 : 0;
11657 }
11658
task_move_group_fair(struct task_struct * p)11659 static void task_move_group_fair(struct task_struct *p)
11660 {
11661 detach_task_cfs_rq(p);
11662 set_task_rq(p, task_cpu(p));
11663
11664 #ifdef CONFIG_SMP
11665 /* Tell se's cfs_rq has been changed -- migrated */
11666 p->se.avg.last_update_time = 0;
11667 #endif
11668 attach_task_cfs_rq(p);
11669 }
11670
task_change_group_fair(struct task_struct * p,int type)11671 static void task_change_group_fair(struct task_struct *p, int type)
11672 {
11673 switch (type) {
11674 case TASK_SET_GROUP:
11675 task_set_group_fair(p);
11676 break;
11677
11678 case TASK_MOVE_GROUP:
11679 task_move_group_fair(p);
11680 break;
11681 }
11682 }
11683
free_fair_sched_group(struct task_group * tg)11684 void free_fair_sched_group(struct task_group *tg)
11685 {
11686 int i;
11687
11688 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11689
11690 for_each_possible_cpu(i) {
11691 if (tg->cfs_rq)
11692 kfree(tg->cfs_rq[i]);
11693 if (tg->se)
11694 kfree(tg->se[i]);
11695 }
11696
11697 kfree(tg->cfs_rq);
11698 kfree(tg->se);
11699 }
11700
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11701 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11702 {
11703 struct sched_entity *se;
11704 struct cfs_rq *cfs_rq;
11705 int i;
11706
11707 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
11708 if (!tg->cfs_rq)
11709 goto err;
11710 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
11711 if (!tg->se)
11712 goto err;
11713
11714 tg->shares = NICE_0_LOAD;
11715
11716 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11717
11718 for_each_possible_cpu(i) {
11719 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11720 GFP_KERNEL, cpu_to_node(i));
11721 if (!cfs_rq)
11722 goto err;
11723
11724 se = kzalloc_node(sizeof(struct sched_entity),
11725 GFP_KERNEL, cpu_to_node(i));
11726 if (!se)
11727 goto err_free_rq;
11728
11729 init_cfs_rq(cfs_rq);
11730 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11731 init_entity_runnable_average(se);
11732 }
11733
11734 return 1;
11735
11736 err_free_rq:
11737 kfree(cfs_rq);
11738 err:
11739 return 0;
11740 }
11741
online_fair_sched_group(struct task_group * tg)11742 void online_fair_sched_group(struct task_group *tg)
11743 {
11744 struct sched_entity *se;
11745 struct rq_flags rf;
11746 struct rq *rq;
11747 int i;
11748
11749 for_each_possible_cpu(i) {
11750 rq = cpu_rq(i);
11751 se = tg->se[i];
11752 rq_lock_irq(rq, &rf);
11753 update_rq_clock(rq);
11754 attach_entity_cfs_rq(se);
11755 sync_throttle(tg, i);
11756 rq_unlock_irq(rq, &rf);
11757 }
11758 }
11759
unregister_fair_sched_group(struct task_group * tg)11760 void unregister_fair_sched_group(struct task_group *tg)
11761 {
11762 unsigned long flags;
11763 struct rq *rq;
11764 int cpu;
11765
11766 for_each_possible_cpu(cpu) {
11767 if (tg->se[cpu])
11768 remove_entity_load_avg(tg->se[cpu]);
11769
11770 /*
11771 * Only empty task groups can be destroyed; so we can speculatively
11772 * check on_list without danger of it being re-added.
11773 */
11774 if (!tg->cfs_rq[cpu]->on_list)
11775 continue;
11776
11777 rq = cpu_rq(cpu);
11778
11779 raw_spin_lock_irqsave(&rq->lock, flags);
11780 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11781 raw_spin_unlock_irqrestore(&rq->lock, flags);
11782 }
11783 }
11784
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)11785 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11786 struct sched_entity *se, int cpu,
11787 struct sched_entity *parent)
11788 {
11789 struct rq *rq = cpu_rq(cpu);
11790
11791 cfs_rq->tg = tg;
11792 cfs_rq->rq = rq;
11793 init_cfs_rq_runtime(cfs_rq);
11794
11795 tg->cfs_rq[cpu] = cfs_rq;
11796 tg->se[cpu] = se;
11797
11798 /* se could be NULL for root_task_group */
11799 if (!se)
11800 return;
11801
11802 if (!parent) {
11803 se->cfs_rq = &rq->cfs;
11804 se->depth = 0;
11805 } else {
11806 se->cfs_rq = parent->my_q;
11807 se->depth = parent->depth + 1;
11808 }
11809
11810 se->my_q = cfs_rq;
11811 /* guarantee group entities always have weight */
11812 update_load_set(&se->load, NICE_0_LOAD);
11813 se->parent = parent;
11814 }
11815
11816 static DEFINE_MUTEX(shares_mutex);
11817
sched_group_set_shares(struct task_group * tg,unsigned long shares)11818 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11819 {
11820 int i;
11821
11822 /*
11823 * We can't change the weight of the root cgroup.
11824 */
11825 if (!tg->se[0])
11826 return -EINVAL;
11827
11828 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11829
11830 mutex_lock(&shares_mutex);
11831 if (tg->shares == shares)
11832 goto done;
11833
11834 tg->shares = shares;
11835 for_each_possible_cpu(i) {
11836 struct rq *rq = cpu_rq(i);
11837 struct sched_entity *se = tg->se[i];
11838 struct rq_flags rf;
11839
11840 /* Propagate contribution to hierarchy */
11841 rq_lock_irqsave(rq, &rf);
11842 update_rq_clock(rq);
11843 for_each_sched_entity(se) {
11844 update_load_avg(se, UPDATE_TG);
11845 update_cfs_shares(se);
11846 }
11847 rq_unlock_irqrestore(rq, &rf);
11848 }
11849
11850 done:
11851 mutex_unlock(&shares_mutex);
11852 return 0;
11853 }
11854 #else /* CONFIG_FAIR_GROUP_SCHED */
11855
free_fair_sched_group(struct task_group * tg)11856 void free_fair_sched_group(struct task_group *tg) { }
11857
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11858 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11859 {
11860 return 1;
11861 }
11862
online_fair_sched_group(struct task_group * tg)11863 void online_fair_sched_group(struct task_group *tg) { }
11864
unregister_fair_sched_group(struct task_group * tg)11865 void unregister_fair_sched_group(struct task_group *tg) { }
11866
11867 #endif /* CONFIG_FAIR_GROUP_SCHED */
11868
11869
get_rr_interval_fair(struct rq * rq,struct task_struct * task)11870 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11871 {
11872 struct sched_entity *se = &task->se;
11873 unsigned int rr_interval = 0;
11874
11875 /*
11876 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11877 * idle runqueue:
11878 */
11879 if (rq->cfs.load.weight)
11880 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11881
11882 return rr_interval;
11883 }
11884
11885 /*
11886 * All the scheduling class methods:
11887 */
11888 const struct sched_class fair_sched_class = {
11889 .next = &idle_sched_class,
11890 .enqueue_task = enqueue_task_fair,
11891 .dequeue_task = dequeue_task_fair,
11892 .yield_task = yield_task_fair,
11893 .yield_to_task = yield_to_task_fair,
11894
11895 .check_preempt_curr = check_preempt_wakeup,
11896
11897 .pick_next_task = pick_next_task_fair,
11898 .put_prev_task = put_prev_task_fair,
11899
11900 #ifdef CONFIG_SMP
11901 .select_task_rq = select_task_rq_fair,
11902 .migrate_task_rq = migrate_task_rq_fair,
11903
11904 .rq_online = rq_online_fair,
11905 .rq_offline = rq_offline_fair,
11906
11907 .task_dead = task_dead_fair,
11908 .set_cpus_allowed = set_cpus_allowed_common,
11909 #endif
11910
11911 .set_curr_task = set_curr_task_fair,
11912 .task_tick = task_tick_fair,
11913 .task_fork = task_fork_fair,
11914
11915 .prio_changed = prio_changed_fair,
11916 .switched_from = switched_from_fair,
11917 .switched_to = switched_to_fair,
11918
11919 .get_rr_interval = get_rr_interval_fair,
11920
11921 .update_curr = update_curr_fair,
11922
11923 #ifdef CONFIG_FAIR_GROUP_SCHED
11924 .task_change_group = task_change_group_fair,
11925 #endif
11926 };
11927
11928 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)11929 void print_cfs_stats(struct seq_file *m, int cpu)
11930 {
11931 struct cfs_rq *cfs_rq;
11932
11933 rcu_read_lock();
11934 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
11935 print_cfs_rq(m, cpu, cfs_rq);
11936 rcu_read_unlock();
11937 }
11938
11939 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)11940 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11941 {
11942 int node;
11943 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11944
11945 for_each_online_node(node) {
11946 if (p->numa_faults) {
11947 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11948 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11949 }
11950 if (p->numa_group) {
11951 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
11952 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
11953 }
11954 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11955 }
11956 }
11957 #endif /* CONFIG_NUMA_BALANCING */
11958 #endif /* CONFIG_SCHED_DEBUG */
11959
init_sched_fair_class(void)11960 __init void init_sched_fair_class(void)
11961 {
11962 #ifdef CONFIG_SMP
11963 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11964
11965 #ifdef CONFIG_NO_HZ_COMMON
11966 nohz.next_balance = jiffies;
11967 nohz.next_update = jiffies;
11968 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11969 #endif
11970
11971 alloc_eenv();
11972 #endif /* SMP */
11973
11974 }
11975