• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/nmi.h>
52 
53 #include "workqueue_internal.h"
54 
55 enum {
56 	/*
57 	 * worker_pool flags
58 	 *
59 	 * A bound pool is either associated or disassociated with its CPU.
60 	 * While associated (!DISASSOCIATED), all workers are bound to the
61 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 	 * is in effect.
63 	 *
64 	 * While DISASSOCIATED, the cpu may be offline and all workers have
65 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
66 	 * be executing on any CPU.  The pool behaves as an unbound one.
67 	 *
68 	 * Note that DISASSOCIATED should be flipped only while holding
69 	 * attach_mutex to avoid changing binding state while
70 	 * worker_attach_to_pool() is in progress.
71 	 */
72 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
73 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
74 
75 	/* worker flags */
76 	WORKER_DIE		= 1 << 1,	/* die die die */
77 	WORKER_IDLE		= 1 << 2,	/* is idle */
78 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
79 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
80 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
81 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
82 
83 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
84 				  WORKER_UNBOUND | WORKER_REBOUND,
85 
86 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
87 
88 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
89 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
90 
91 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
92 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
93 
94 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
95 						/* call for help after 10ms
96 						   (min two ticks) */
97 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
98 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
99 
100 	/*
101 	 * Rescue workers are used only on emergencies and shared by
102 	 * all cpus.  Give MIN_NICE.
103 	 */
104 	RESCUER_NICE_LEVEL	= MIN_NICE,
105 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
106 
107 	WQ_NAME_LEN		= 24,
108 };
109 
110 /*
111  * Structure fields follow one of the following exclusion rules.
112  *
113  * I: Modifiable by initialization/destruction paths and read-only for
114  *    everyone else.
115  *
116  * P: Preemption protected.  Disabling preemption is enough and should
117  *    only be modified and accessed from the local cpu.
118  *
119  * L: pool->lock protected.  Access with pool->lock held.
120  *
121  * X: During normal operation, modification requires pool->lock and should
122  *    be done only from local cpu.  Either disabling preemption on local
123  *    cpu or grabbing pool->lock is enough for read access.  If
124  *    POOL_DISASSOCIATED is set, it's identical to L.
125  *
126  * A: pool->attach_mutex protected.
127  *
128  * PL: wq_pool_mutex protected.
129  *
130  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
131  *
132  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
133  *
134  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
135  *      sched-RCU for reads.
136  *
137  * WQ: wq->mutex protected.
138  *
139  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
140  *
141  * MD: wq_mayday_lock protected.
142  */
143 
144 /* struct worker is defined in workqueue_internal.h */
145 
146 struct worker_pool {
147 	spinlock_t		lock;		/* the pool lock */
148 	int			cpu;		/* I: the associated cpu */
149 	int			node;		/* I: the associated node ID */
150 	int			id;		/* I: pool ID */
151 	unsigned int		flags;		/* X: flags */
152 
153 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
154 
155 	struct list_head	worklist;	/* L: list of pending works */
156 	int			nr_workers;	/* L: total number of workers */
157 
158 	/* nr_idle includes the ones off idle_list for rebinding */
159 	int			nr_idle;	/* L: currently idle ones */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	/* see manage_workers() for details on the two manager mutexes */
170 	struct worker		*manager;	/* L: purely informational */
171 	struct mutex		attach_mutex;	/* attach/detach exclusion */
172 	struct list_head	workers;	/* A: attached workers */
173 	struct completion	*detach_completion; /* all workers detached */
174 
175 	struct ida		worker_ida;	/* worker IDs for task name */
176 
177 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
178 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
179 	int			refcnt;		/* PL: refcnt for unbound pools */
180 
181 	/*
182 	 * The current concurrency level.  As it's likely to be accessed
183 	 * from other CPUs during try_to_wake_up(), put it in a separate
184 	 * cacheline.
185 	 */
186 	atomic_t		nr_running ____cacheline_aligned_in_smp;
187 
188 	/*
189 	 * Destruction of pool is sched-RCU protected to allow dereferences
190 	 * from get_work_pool().
191 	 */
192 	struct rcu_head		rcu;
193 } ____cacheline_aligned_in_smp;
194 
195 /*
196  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
197  * of work_struct->data are used for flags and the remaining high bits
198  * point to the pwq; thus, pwqs need to be aligned at two's power of the
199  * number of flag bits.
200  */
201 struct pool_workqueue {
202 	struct worker_pool	*pool;		/* I: the associated pool */
203 	struct workqueue_struct *wq;		/* I: the owning workqueue */
204 	int			work_color;	/* L: current color */
205 	int			flush_color;	/* L: flushing color */
206 	int			refcnt;		/* L: reference count */
207 	int			nr_in_flight[WORK_NR_COLORS];
208 						/* L: nr of in_flight works */
209 	int			nr_active;	/* L: nr of active works */
210 	int			max_active;	/* L: max active works */
211 	struct list_head	delayed_works;	/* L: delayed works */
212 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
213 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
214 
215 	/*
216 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
217 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
218 	 * itself is also sched-RCU protected so that the first pwq can be
219 	 * determined without grabbing wq->mutex.
220 	 */
221 	struct work_struct	unbound_release_work;
222 	struct rcu_head		rcu;
223 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
224 
225 /*
226  * Structure used to wait for workqueue flush.
227  */
228 struct wq_flusher {
229 	struct list_head	list;		/* WQ: list of flushers */
230 	int			flush_color;	/* WQ: flush color waiting for */
231 	struct completion	done;		/* flush completion */
232 };
233 
234 struct wq_device;
235 
236 /*
237  * The externally visible workqueue.  It relays the issued work items to
238  * the appropriate worker_pool through its pool_workqueues.
239  */
240 struct workqueue_struct {
241 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
242 	struct list_head	list;		/* PR: list of all workqueues */
243 
244 	struct mutex		mutex;		/* protects this wq */
245 	int			work_color;	/* WQ: current work color */
246 	int			flush_color;	/* WQ: current flush color */
247 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
248 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
249 	struct list_head	flusher_queue;	/* WQ: flush waiters */
250 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
251 
252 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
253 	struct worker		*rescuer;	/* I: rescue worker */
254 
255 	int			nr_drainers;	/* WQ: drain in progress */
256 	int			saved_max_active; /* WQ: saved pwq max_active */
257 
258 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
259 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
260 
261 #ifdef CONFIG_SYSFS
262 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
263 #endif
264 #ifdef CONFIG_LOCKDEP
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is sched-RCU protected to allow
271 	 * walking the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
303 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
304 
305 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
306 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
307 
308 /* PL: allowable cpus for unbound wqs and work items */
309 static cpumask_var_t wq_unbound_cpumask;
310 
311 /* CPU where unbound work was last round robin scheduled from this CPU */
312 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
313 
314 /*
315  * Local execution of unbound work items is no longer guaranteed.  The
316  * following always forces round-robin CPU selection on unbound work items
317  * to uncover usages which depend on it.
318  */
319 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
320 static bool wq_debug_force_rr_cpu = true;
321 #else
322 static bool wq_debug_force_rr_cpu = false;
323 #endif
324 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
325 
326 /* the per-cpu worker pools */
327 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
328 
329 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
330 
331 /* PL: hash of all unbound pools keyed by pool->attrs */
332 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
333 
334 /* I: attributes used when instantiating standard unbound pools on demand */
335 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
336 
337 /* I: attributes used when instantiating ordered pools on demand */
338 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
339 
340 struct workqueue_struct *system_wq __read_mostly;
341 EXPORT_SYMBOL(system_wq);
342 struct workqueue_struct *system_highpri_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_highpri_wq);
344 struct workqueue_struct *system_long_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_long_wq);
346 struct workqueue_struct *system_unbound_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_unbound_wq);
348 struct workqueue_struct *system_freezable_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_wq);
350 struct workqueue_struct *system_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
352 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
354 
355 static int worker_thread(void *__worker);
356 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
357 
358 #define CREATE_TRACE_POINTS
359 #include <trace/events/workqueue.h>
360 
361 #define assert_rcu_or_pool_mutex()					\
362 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
363 			 !lockdep_is_held(&wq_pool_mutex),		\
364 			 "sched RCU or wq_pool_mutex should be held")
365 
366 #define assert_rcu_or_wq_mutex(wq)					\
367 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
368 			 !lockdep_is_held(&wq->mutex),			\
369 			 "sched RCU or wq->mutex should be held")
370 
371 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
372 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
373 			 !lockdep_is_held(&wq->mutex) &&		\
374 			 !lockdep_is_held(&wq_pool_mutex),		\
375 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
376 
377 #define for_each_cpu_worker_pool(pool, cpu)				\
378 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
379 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
380 	     (pool)++)
381 
382 /**
383  * for_each_pool - iterate through all worker_pools in the system
384  * @pool: iteration cursor
385  * @pi: integer used for iteration
386  *
387  * This must be called either with wq_pool_mutex held or sched RCU read
388  * locked.  If the pool needs to be used beyond the locking in effect, the
389  * caller is responsible for guaranteeing that the pool stays online.
390  *
391  * The if/else clause exists only for the lockdep assertion and can be
392  * ignored.
393  */
394 #define for_each_pool(pool, pi)						\
395 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
396 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
397 		else
398 
399 /**
400  * for_each_pool_worker - iterate through all workers of a worker_pool
401  * @worker: iteration cursor
402  * @pool: worker_pool to iterate workers of
403  *
404  * This must be called with @pool->attach_mutex.
405  *
406  * The if/else clause exists only for the lockdep assertion and can be
407  * ignored.
408  */
409 #define for_each_pool_worker(worker, pool)				\
410 	list_for_each_entry((worker), &(pool)->workers, node)		\
411 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
412 		else
413 
414 /**
415  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
416  * @pwq: iteration cursor
417  * @wq: the target workqueue
418  *
419  * This must be called either with wq->mutex held or sched RCU read locked.
420  * If the pwq needs to be used beyond the locking in effect, the caller is
421  * responsible for guaranteeing that the pwq stays online.
422  *
423  * The if/else clause exists only for the lockdep assertion and can be
424  * ignored.
425  */
426 #define for_each_pwq(pwq, wq)						\
427 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
428 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
429 		else
430 
431 #ifdef CONFIG_DEBUG_OBJECTS_WORK
432 
433 static struct debug_obj_descr work_debug_descr;
434 
work_debug_hint(void * addr)435 static void *work_debug_hint(void *addr)
436 {
437 	return ((struct work_struct *) addr)->func;
438 }
439 
work_is_static_object(void * addr)440 static bool work_is_static_object(void *addr)
441 {
442 	struct work_struct *work = addr;
443 
444 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
445 }
446 
447 /*
448  * fixup_init is called when:
449  * - an active object is initialized
450  */
work_fixup_init(void * addr,enum debug_obj_state state)451 static bool work_fixup_init(void *addr, enum debug_obj_state state)
452 {
453 	struct work_struct *work = addr;
454 
455 	switch (state) {
456 	case ODEBUG_STATE_ACTIVE:
457 		cancel_work_sync(work);
458 		debug_object_init(work, &work_debug_descr);
459 		return true;
460 	default:
461 		return false;
462 	}
463 }
464 
465 /*
466  * fixup_free is called when:
467  * - an active object is freed
468  */
work_fixup_free(void * addr,enum debug_obj_state state)469 static bool work_fixup_free(void *addr, enum debug_obj_state state)
470 {
471 	struct work_struct *work = addr;
472 
473 	switch (state) {
474 	case ODEBUG_STATE_ACTIVE:
475 		cancel_work_sync(work);
476 		debug_object_free(work, &work_debug_descr);
477 		return true;
478 	default:
479 		return false;
480 	}
481 }
482 
483 static struct debug_obj_descr work_debug_descr = {
484 	.name		= "work_struct",
485 	.debug_hint	= work_debug_hint,
486 	.is_static_object = work_is_static_object,
487 	.fixup_init	= work_fixup_init,
488 	.fixup_free	= work_fixup_free,
489 };
490 
debug_work_activate(struct work_struct * work)491 static inline void debug_work_activate(struct work_struct *work)
492 {
493 	debug_object_activate(work, &work_debug_descr);
494 }
495 
debug_work_deactivate(struct work_struct * work)496 static inline void debug_work_deactivate(struct work_struct *work)
497 {
498 	debug_object_deactivate(work, &work_debug_descr);
499 }
500 
__init_work(struct work_struct * work,int onstack)501 void __init_work(struct work_struct *work, int onstack)
502 {
503 	if (onstack)
504 		debug_object_init_on_stack(work, &work_debug_descr);
505 	else
506 		debug_object_init(work, &work_debug_descr);
507 }
508 EXPORT_SYMBOL_GPL(__init_work);
509 
destroy_work_on_stack(struct work_struct * work)510 void destroy_work_on_stack(struct work_struct *work)
511 {
512 	debug_object_free(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
515 
destroy_delayed_work_on_stack(struct delayed_work * work)516 void destroy_delayed_work_on_stack(struct delayed_work *work)
517 {
518 	destroy_timer_on_stack(&work->timer);
519 	debug_object_free(&work->work, &work_debug_descr);
520 }
521 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
522 
523 #else
debug_work_activate(struct work_struct * work)524 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)525 static inline void debug_work_deactivate(struct work_struct *work) { }
526 #endif
527 
528 /**
529  * worker_pool_assign_id - allocate ID and assing it to @pool
530  * @pool: the pool pointer of interest
531  *
532  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
533  * successfully, -errno on failure.
534  */
worker_pool_assign_id(struct worker_pool * pool)535 static int worker_pool_assign_id(struct worker_pool *pool)
536 {
537 	int ret;
538 
539 	lockdep_assert_held(&wq_pool_mutex);
540 
541 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
542 			GFP_KERNEL);
543 	if (ret >= 0) {
544 		pool->id = ret;
545 		return 0;
546 	}
547 	return ret;
548 }
549 
550 /**
551  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
552  * @wq: the target workqueue
553  * @node: the node ID
554  *
555  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
556  * read locked.
557  * If the pwq needs to be used beyond the locking in effect, the caller is
558  * responsible for guaranteeing that the pwq stays online.
559  *
560  * Return: The unbound pool_workqueue for @node.
561  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)562 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
563 						  int node)
564 {
565 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
566 
567 	/*
568 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
569 	 * delayed item is pending.  The plan is to keep CPU -> NODE
570 	 * mapping valid and stable across CPU on/offlines.  Once that
571 	 * happens, this workaround can be removed.
572 	 */
573 	if (unlikely(node == NUMA_NO_NODE))
574 		return wq->dfl_pwq;
575 
576 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
577 }
578 
work_color_to_flags(int color)579 static unsigned int work_color_to_flags(int color)
580 {
581 	return color << WORK_STRUCT_COLOR_SHIFT;
582 }
583 
get_work_color(struct work_struct * work)584 static int get_work_color(struct work_struct *work)
585 {
586 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
587 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
588 }
589 
work_next_color(int color)590 static int work_next_color(int color)
591 {
592 	return (color + 1) % WORK_NR_COLORS;
593 }
594 
595 /*
596  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
597  * contain the pointer to the queued pwq.  Once execution starts, the flag
598  * is cleared and the high bits contain OFFQ flags and pool ID.
599  *
600  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
601  * and clear_work_data() can be used to set the pwq, pool or clear
602  * work->data.  These functions should only be called while the work is
603  * owned - ie. while the PENDING bit is set.
604  *
605  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
606  * corresponding to a work.  Pool is available once the work has been
607  * queued anywhere after initialization until it is sync canceled.  pwq is
608  * available only while the work item is queued.
609  *
610  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
611  * canceled.  While being canceled, a work item may have its PENDING set
612  * but stay off timer and worklist for arbitrarily long and nobody should
613  * try to steal the PENDING bit.
614  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)615 static inline void set_work_data(struct work_struct *work, unsigned long data,
616 				 unsigned long flags)
617 {
618 	WARN_ON_ONCE(!work_pending(work));
619 	atomic_long_set(&work->data, data | flags | work_static(work));
620 }
621 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)622 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
623 			 unsigned long extra_flags)
624 {
625 	set_work_data(work, (unsigned long)pwq,
626 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
627 }
628 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)629 static void set_work_pool_and_keep_pending(struct work_struct *work,
630 					   int pool_id)
631 {
632 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
633 		      WORK_STRUCT_PENDING);
634 }
635 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)636 static void set_work_pool_and_clear_pending(struct work_struct *work,
637 					    int pool_id)
638 {
639 	/*
640 	 * The following wmb is paired with the implied mb in
641 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
642 	 * here are visible to and precede any updates by the next PENDING
643 	 * owner.
644 	 */
645 	smp_wmb();
646 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
647 	/*
648 	 * The following mb guarantees that previous clear of a PENDING bit
649 	 * will not be reordered with any speculative LOADS or STORES from
650 	 * work->current_func, which is executed afterwards.  This possible
651 	 * reordering can lead to a missed execution on attempt to qeueue
652 	 * the same @work.  E.g. consider this case:
653 	 *
654 	 *   CPU#0                         CPU#1
655 	 *   ----------------------------  --------------------------------
656 	 *
657 	 * 1  STORE event_indicated
658 	 * 2  queue_work_on() {
659 	 * 3    test_and_set_bit(PENDING)
660 	 * 4 }                             set_..._and_clear_pending() {
661 	 * 5                                 set_work_data() # clear bit
662 	 * 6                                 smp_mb()
663 	 * 7                               work->current_func() {
664 	 * 8				      LOAD event_indicated
665 	 *				   }
666 	 *
667 	 * Without an explicit full barrier speculative LOAD on line 8 can
668 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
669 	 * CPU#0 observes the PENDING bit is still set and new execution of
670 	 * a @work is not queued in a hope, that CPU#1 will eventually
671 	 * finish the queued @work.  Meanwhile CPU#1 does not see
672 	 * event_indicated is set, because speculative LOAD was executed
673 	 * before actual STORE.
674 	 */
675 	smp_mb();
676 }
677 
clear_work_data(struct work_struct * work)678 static void clear_work_data(struct work_struct *work)
679 {
680 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
681 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
682 }
683 
get_work_pwq(struct work_struct * work)684 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
685 {
686 	unsigned long data = atomic_long_read(&work->data);
687 
688 	if (data & WORK_STRUCT_PWQ)
689 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
690 	else
691 		return NULL;
692 }
693 
694 /**
695  * get_work_pool - return the worker_pool a given work was associated with
696  * @work: the work item of interest
697  *
698  * Pools are created and destroyed under wq_pool_mutex, and allows read
699  * access under sched-RCU read lock.  As such, this function should be
700  * called under wq_pool_mutex or with preemption disabled.
701  *
702  * All fields of the returned pool are accessible as long as the above
703  * mentioned locking is in effect.  If the returned pool needs to be used
704  * beyond the critical section, the caller is responsible for ensuring the
705  * returned pool is and stays online.
706  *
707  * Return: The worker_pool @work was last associated with.  %NULL if none.
708  */
get_work_pool(struct work_struct * work)709 static struct worker_pool *get_work_pool(struct work_struct *work)
710 {
711 	unsigned long data = atomic_long_read(&work->data);
712 	int pool_id;
713 
714 	assert_rcu_or_pool_mutex();
715 
716 	if (data & WORK_STRUCT_PWQ)
717 		return ((struct pool_workqueue *)
718 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
719 
720 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
721 	if (pool_id == WORK_OFFQ_POOL_NONE)
722 		return NULL;
723 
724 	return idr_find(&worker_pool_idr, pool_id);
725 }
726 
727 /**
728  * get_work_pool_id - return the worker pool ID a given work is associated with
729  * @work: the work item of interest
730  *
731  * Return: The worker_pool ID @work was last associated with.
732  * %WORK_OFFQ_POOL_NONE if none.
733  */
get_work_pool_id(struct work_struct * work)734 static int get_work_pool_id(struct work_struct *work)
735 {
736 	unsigned long data = atomic_long_read(&work->data);
737 
738 	if (data & WORK_STRUCT_PWQ)
739 		return ((struct pool_workqueue *)
740 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
741 
742 	return data >> WORK_OFFQ_POOL_SHIFT;
743 }
744 
mark_work_canceling(struct work_struct * work)745 static void mark_work_canceling(struct work_struct *work)
746 {
747 	unsigned long pool_id = get_work_pool_id(work);
748 
749 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
750 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
751 }
752 
work_is_canceling(struct work_struct * work)753 static bool work_is_canceling(struct work_struct *work)
754 {
755 	unsigned long data = atomic_long_read(&work->data);
756 
757 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
758 }
759 
760 /*
761  * Policy functions.  These define the policies on how the global worker
762  * pools are managed.  Unless noted otherwise, these functions assume that
763  * they're being called with pool->lock held.
764  */
765 
__need_more_worker(struct worker_pool * pool)766 static bool __need_more_worker(struct worker_pool *pool)
767 {
768 	return !atomic_read(&pool->nr_running);
769 }
770 
771 /*
772  * Need to wake up a worker?  Called from anything but currently
773  * running workers.
774  *
775  * Note that, because unbound workers never contribute to nr_running, this
776  * function will always return %true for unbound pools as long as the
777  * worklist isn't empty.
778  */
need_more_worker(struct worker_pool * pool)779 static bool need_more_worker(struct worker_pool *pool)
780 {
781 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
782 }
783 
784 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)785 static bool may_start_working(struct worker_pool *pool)
786 {
787 	return pool->nr_idle;
788 }
789 
790 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)791 static bool keep_working(struct worker_pool *pool)
792 {
793 	return !list_empty(&pool->worklist) &&
794 		atomic_read(&pool->nr_running) <= 1;
795 }
796 
797 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)798 static bool need_to_create_worker(struct worker_pool *pool)
799 {
800 	return need_more_worker(pool) && !may_start_working(pool);
801 }
802 
803 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)804 static bool too_many_workers(struct worker_pool *pool)
805 {
806 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
807 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
808 	int nr_busy = pool->nr_workers - nr_idle;
809 
810 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
811 }
812 
813 /*
814  * Wake up functions.
815  */
816 
817 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)818 static struct worker *first_idle_worker(struct worker_pool *pool)
819 {
820 	if (unlikely(list_empty(&pool->idle_list)))
821 		return NULL;
822 
823 	return list_first_entry(&pool->idle_list, struct worker, entry);
824 }
825 
826 /**
827  * wake_up_worker - wake up an idle worker
828  * @pool: worker pool to wake worker from
829  *
830  * Wake up the first idle worker of @pool.
831  *
832  * CONTEXT:
833  * spin_lock_irq(pool->lock).
834  */
wake_up_worker(struct worker_pool * pool)835 static void wake_up_worker(struct worker_pool *pool)
836 {
837 	struct worker *worker = first_idle_worker(pool);
838 
839 	if (likely(worker))
840 		wake_up_process(worker->task);
841 }
842 
843 /**
844  * wq_worker_waking_up - a worker is waking up
845  * @task: task waking up
846  * @cpu: CPU @task is waking up to
847  *
848  * This function is called during try_to_wake_up() when a worker is
849  * being awoken.
850  *
851  * CONTEXT:
852  * spin_lock_irq(rq->lock)
853  */
wq_worker_waking_up(struct task_struct * task,int cpu)854 void wq_worker_waking_up(struct task_struct *task, int cpu)
855 {
856 	struct worker *worker = kthread_data(task);
857 
858 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
859 		WARN_ON_ONCE(worker->pool->cpu != cpu);
860 		atomic_inc(&worker->pool->nr_running);
861 	}
862 }
863 
864 /**
865  * wq_worker_sleeping - a worker is going to sleep
866  * @task: task going to sleep
867  *
868  * This function is called during schedule() when a busy worker is
869  * going to sleep.  Worker on the same cpu can be woken up by
870  * returning pointer to its task.
871  *
872  * CONTEXT:
873  * spin_lock_irq(rq->lock)
874  *
875  * Return:
876  * Worker task on @cpu to wake up, %NULL if none.
877  */
wq_worker_sleeping(struct task_struct * task)878 struct task_struct *wq_worker_sleeping(struct task_struct *task)
879 {
880 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
881 	struct worker_pool *pool;
882 
883 	/*
884 	 * Rescuers, which may not have all the fields set up like normal
885 	 * workers, also reach here, let's not access anything before
886 	 * checking NOT_RUNNING.
887 	 */
888 	if (worker->flags & WORKER_NOT_RUNNING)
889 		return NULL;
890 
891 	pool = worker->pool;
892 
893 	/* this can only happen on the local cpu */
894 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
895 		return NULL;
896 
897 	/*
898 	 * The counterpart of the following dec_and_test, implied mb,
899 	 * worklist not empty test sequence is in insert_work().
900 	 * Please read comment there.
901 	 *
902 	 * NOT_RUNNING is clear.  This means that we're bound to and
903 	 * running on the local cpu w/ rq lock held and preemption
904 	 * disabled, which in turn means that none else could be
905 	 * manipulating idle_list, so dereferencing idle_list without pool
906 	 * lock is safe.
907 	 */
908 	if (atomic_dec_and_test(&pool->nr_running) &&
909 	    !list_empty(&pool->worklist))
910 		to_wakeup = first_idle_worker(pool);
911 	return to_wakeup ? to_wakeup->task : NULL;
912 }
913 
914 /**
915  * wq_worker_last_func - retrieve worker's last work function
916  *
917  * Determine the last function a worker executed. This is called from
918  * the scheduler to get a worker's last known identity.
919  *
920  * CONTEXT:
921  * spin_lock_irq(rq->lock)
922  *
923  * Return:
924  * The last work function %current executed as a worker, NULL if it
925  * hasn't executed any work yet.
926  */
wq_worker_last_func(struct task_struct * task)927 work_func_t wq_worker_last_func(struct task_struct *task)
928 {
929 	struct worker *worker = kthread_data(task);
930 
931 	return worker->last_func;
932 }
933 
934 /**
935  * worker_set_flags - set worker flags and adjust nr_running accordingly
936  * @worker: self
937  * @flags: flags to set
938  *
939  * Set @flags in @worker->flags and adjust nr_running accordingly.
940  *
941  * CONTEXT:
942  * spin_lock_irq(pool->lock)
943  */
worker_set_flags(struct worker * worker,unsigned int flags)944 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
945 {
946 	struct worker_pool *pool = worker->pool;
947 
948 	WARN_ON_ONCE(worker->task != current);
949 
950 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
951 	if ((flags & WORKER_NOT_RUNNING) &&
952 	    !(worker->flags & WORKER_NOT_RUNNING)) {
953 		atomic_dec(&pool->nr_running);
954 	}
955 
956 	worker->flags |= flags;
957 }
958 
959 /**
960  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
961  * @worker: self
962  * @flags: flags to clear
963  *
964  * Clear @flags in @worker->flags and adjust nr_running accordingly.
965  *
966  * CONTEXT:
967  * spin_lock_irq(pool->lock)
968  */
worker_clr_flags(struct worker * worker,unsigned int flags)969 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
970 {
971 	struct worker_pool *pool = worker->pool;
972 	unsigned int oflags = worker->flags;
973 
974 	WARN_ON_ONCE(worker->task != current);
975 
976 	worker->flags &= ~flags;
977 
978 	/*
979 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
980 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
981 	 * of multiple flags, not a single flag.
982 	 */
983 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
984 		if (!(worker->flags & WORKER_NOT_RUNNING))
985 			atomic_inc(&pool->nr_running);
986 }
987 
988 /**
989  * find_worker_executing_work - find worker which is executing a work
990  * @pool: pool of interest
991  * @work: work to find worker for
992  *
993  * Find a worker which is executing @work on @pool by searching
994  * @pool->busy_hash which is keyed by the address of @work.  For a worker
995  * to match, its current execution should match the address of @work and
996  * its work function.  This is to avoid unwanted dependency between
997  * unrelated work executions through a work item being recycled while still
998  * being executed.
999  *
1000  * This is a bit tricky.  A work item may be freed once its execution
1001  * starts and nothing prevents the freed area from being recycled for
1002  * another work item.  If the same work item address ends up being reused
1003  * before the original execution finishes, workqueue will identify the
1004  * recycled work item as currently executing and make it wait until the
1005  * current execution finishes, introducing an unwanted dependency.
1006  *
1007  * This function checks the work item address and work function to avoid
1008  * false positives.  Note that this isn't complete as one may construct a
1009  * work function which can introduce dependency onto itself through a
1010  * recycled work item.  Well, if somebody wants to shoot oneself in the
1011  * foot that badly, there's only so much we can do, and if such deadlock
1012  * actually occurs, it should be easy to locate the culprit work function.
1013  *
1014  * CONTEXT:
1015  * spin_lock_irq(pool->lock).
1016  *
1017  * Return:
1018  * Pointer to worker which is executing @work if found, %NULL
1019  * otherwise.
1020  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1021 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1022 						 struct work_struct *work)
1023 {
1024 	struct worker *worker;
1025 
1026 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1027 			       (unsigned long)work)
1028 		if (worker->current_work == work &&
1029 		    worker->current_func == work->func)
1030 			return worker;
1031 
1032 	return NULL;
1033 }
1034 
1035 /**
1036  * move_linked_works - move linked works to a list
1037  * @work: start of series of works to be scheduled
1038  * @head: target list to append @work to
1039  * @nextp: out parameter for nested worklist walking
1040  *
1041  * Schedule linked works starting from @work to @head.  Work series to
1042  * be scheduled starts at @work and includes any consecutive work with
1043  * WORK_STRUCT_LINKED set in its predecessor.
1044  *
1045  * If @nextp is not NULL, it's updated to point to the next work of
1046  * the last scheduled work.  This allows move_linked_works() to be
1047  * nested inside outer list_for_each_entry_safe().
1048  *
1049  * CONTEXT:
1050  * spin_lock_irq(pool->lock).
1051  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1052 static void move_linked_works(struct work_struct *work, struct list_head *head,
1053 			      struct work_struct **nextp)
1054 {
1055 	struct work_struct *n;
1056 
1057 	/*
1058 	 * Linked worklist will always end before the end of the list,
1059 	 * use NULL for list head.
1060 	 */
1061 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1062 		list_move_tail(&work->entry, head);
1063 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1064 			break;
1065 	}
1066 
1067 	/*
1068 	 * If we're already inside safe list traversal and have moved
1069 	 * multiple works to the scheduled queue, the next position
1070 	 * needs to be updated.
1071 	 */
1072 	if (nextp)
1073 		*nextp = n;
1074 }
1075 
1076 /**
1077  * get_pwq - get an extra reference on the specified pool_workqueue
1078  * @pwq: pool_workqueue to get
1079  *
1080  * Obtain an extra reference on @pwq.  The caller should guarantee that
1081  * @pwq has positive refcnt and be holding the matching pool->lock.
1082  */
get_pwq(struct pool_workqueue * pwq)1083 static void get_pwq(struct pool_workqueue *pwq)
1084 {
1085 	lockdep_assert_held(&pwq->pool->lock);
1086 	WARN_ON_ONCE(pwq->refcnt <= 0);
1087 	pwq->refcnt++;
1088 }
1089 
1090 /**
1091  * put_pwq - put a pool_workqueue reference
1092  * @pwq: pool_workqueue to put
1093  *
1094  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1095  * destruction.  The caller should be holding the matching pool->lock.
1096  */
put_pwq(struct pool_workqueue * pwq)1097 static void put_pwq(struct pool_workqueue *pwq)
1098 {
1099 	lockdep_assert_held(&pwq->pool->lock);
1100 	if (likely(--pwq->refcnt))
1101 		return;
1102 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1103 		return;
1104 	/*
1105 	 * @pwq can't be released under pool->lock, bounce to
1106 	 * pwq_unbound_release_workfn().  This never recurses on the same
1107 	 * pool->lock as this path is taken only for unbound workqueues and
1108 	 * the release work item is scheduled on a per-cpu workqueue.  To
1109 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1110 	 * subclass of 1 in get_unbound_pool().
1111 	 */
1112 	schedule_work(&pwq->unbound_release_work);
1113 }
1114 
1115 /**
1116  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1117  * @pwq: pool_workqueue to put (can be %NULL)
1118  *
1119  * put_pwq() with locking.  This function also allows %NULL @pwq.
1120  */
put_pwq_unlocked(struct pool_workqueue * pwq)1121 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1122 {
1123 	if (pwq) {
1124 		/*
1125 		 * As both pwqs and pools are sched-RCU protected, the
1126 		 * following lock operations are safe.
1127 		 */
1128 		spin_lock_irq(&pwq->pool->lock);
1129 		put_pwq(pwq);
1130 		spin_unlock_irq(&pwq->pool->lock);
1131 	}
1132 }
1133 
pwq_activate_delayed_work(struct work_struct * work)1134 static void pwq_activate_delayed_work(struct work_struct *work)
1135 {
1136 	struct pool_workqueue *pwq = get_work_pwq(work);
1137 
1138 	trace_workqueue_activate_work(work);
1139 	if (list_empty(&pwq->pool->worklist))
1140 		pwq->pool->watchdog_ts = jiffies;
1141 	move_linked_works(work, &pwq->pool->worklist, NULL);
1142 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1143 	pwq->nr_active++;
1144 }
1145 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1146 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1147 {
1148 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1149 						    struct work_struct, entry);
1150 
1151 	pwq_activate_delayed_work(work);
1152 }
1153 
1154 /**
1155  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1156  * @pwq: pwq of interest
1157  * @color: color of work which left the queue
1158  *
1159  * A work either has completed or is removed from pending queue,
1160  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1161  *
1162  * CONTEXT:
1163  * spin_lock_irq(pool->lock).
1164  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1165 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1166 {
1167 	/* uncolored work items don't participate in flushing or nr_active */
1168 	if (color == WORK_NO_COLOR)
1169 		goto out_put;
1170 
1171 	pwq->nr_in_flight[color]--;
1172 
1173 	pwq->nr_active--;
1174 	if (!list_empty(&pwq->delayed_works)) {
1175 		/* one down, submit a delayed one */
1176 		if (pwq->nr_active < pwq->max_active)
1177 			pwq_activate_first_delayed(pwq);
1178 	}
1179 
1180 	/* is flush in progress and are we at the flushing tip? */
1181 	if (likely(pwq->flush_color != color))
1182 		goto out_put;
1183 
1184 	/* are there still in-flight works? */
1185 	if (pwq->nr_in_flight[color])
1186 		goto out_put;
1187 
1188 	/* this pwq is done, clear flush_color */
1189 	pwq->flush_color = -1;
1190 
1191 	/*
1192 	 * If this was the last pwq, wake up the first flusher.  It
1193 	 * will handle the rest.
1194 	 */
1195 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1196 		complete(&pwq->wq->first_flusher->done);
1197 out_put:
1198 	put_pwq(pwq);
1199 }
1200 
1201 /**
1202  * try_to_grab_pending - steal work item from worklist and disable irq
1203  * @work: work item to steal
1204  * @is_dwork: @work is a delayed_work
1205  * @flags: place to store irq state
1206  *
1207  * Try to grab PENDING bit of @work.  This function can handle @work in any
1208  * stable state - idle, on timer or on worklist.
1209  *
1210  * Return:
1211  *  1		if @work was pending and we successfully stole PENDING
1212  *  0		if @work was idle and we claimed PENDING
1213  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1214  *  -ENOENT	if someone else is canceling @work, this state may persist
1215  *		for arbitrarily long
1216  *
1217  * Note:
1218  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1219  * interrupted while holding PENDING and @work off queue, irq must be
1220  * disabled on entry.  This, combined with delayed_work->timer being
1221  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1222  *
1223  * On successful return, >= 0, irq is disabled and the caller is
1224  * responsible for releasing it using local_irq_restore(*@flags).
1225  *
1226  * This function is safe to call from any context including IRQ handler.
1227  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1228 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1229 			       unsigned long *flags)
1230 {
1231 	struct worker_pool *pool;
1232 	struct pool_workqueue *pwq;
1233 
1234 	local_irq_save(*flags);
1235 
1236 	/* try to steal the timer if it exists */
1237 	if (is_dwork) {
1238 		struct delayed_work *dwork = to_delayed_work(work);
1239 
1240 		/*
1241 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1242 		 * guaranteed that the timer is not queued anywhere and not
1243 		 * running on the local CPU.
1244 		 */
1245 		if (likely(del_timer(&dwork->timer)))
1246 			return 1;
1247 	}
1248 
1249 	/* try to claim PENDING the normal way */
1250 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1251 		return 0;
1252 
1253 	/*
1254 	 * The queueing is in progress, or it is already queued. Try to
1255 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1256 	 */
1257 	pool = get_work_pool(work);
1258 	if (!pool)
1259 		goto fail;
1260 
1261 	spin_lock(&pool->lock);
1262 	/*
1263 	 * work->data is guaranteed to point to pwq only while the work
1264 	 * item is queued on pwq->wq, and both updating work->data to point
1265 	 * to pwq on queueing and to pool on dequeueing are done under
1266 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1267 	 * points to pwq which is associated with a locked pool, the work
1268 	 * item is currently queued on that pool.
1269 	 */
1270 	pwq = get_work_pwq(work);
1271 	if (pwq && pwq->pool == pool) {
1272 		debug_work_deactivate(work);
1273 
1274 		/*
1275 		 * A delayed work item cannot be grabbed directly because
1276 		 * it might have linked NO_COLOR work items which, if left
1277 		 * on the delayed_list, will confuse pwq->nr_active
1278 		 * management later on and cause stall.  Make sure the work
1279 		 * item is activated before grabbing.
1280 		 */
1281 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1282 			pwq_activate_delayed_work(work);
1283 
1284 		list_del_init(&work->entry);
1285 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1286 
1287 		/* work->data points to pwq iff queued, point to pool */
1288 		set_work_pool_and_keep_pending(work, pool->id);
1289 
1290 		spin_unlock(&pool->lock);
1291 		return 1;
1292 	}
1293 	spin_unlock(&pool->lock);
1294 fail:
1295 	local_irq_restore(*flags);
1296 	if (work_is_canceling(work))
1297 		return -ENOENT;
1298 	cpu_relax();
1299 	return -EAGAIN;
1300 }
1301 
1302 /**
1303  * insert_work - insert a work into a pool
1304  * @pwq: pwq @work belongs to
1305  * @work: work to insert
1306  * @head: insertion point
1307  * @extra_flags: extra WORK_STRUCT_* flags to set
1308  *
1309  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1310  * work_struct flags.
1311  *
1312  * CONTEXT:
1313  * spin_lock_irq(pool->lock).
1314  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1315 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1316 			struct list_head *head, unsigned int extra_flags)
1317 {
1318 	struct worker_pool *pool = pwq->pool;
1319 
1320 	/* we own @work, set data and link */
1321 	set_work_pwq(work, pwq, extra_flags);
1322 	list_add_tail(&work->entry, head);
1323 	get_pwq(pwq);
1324 
1325 	/*
1326 	 * Ensure either wq_worker_sleeping() sees the above
1327 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1328 	 * around lazily while there are works to be processed.
1329 	 */
1330 	smp_mb();
1331 
1332 	if (__need_more_worker(pool))
1333 		wake_up_worker(pool);
1334 }
1335 
1336 /*
1337  * Test whether @work is being queued from another work executing on the
1338  * same workqueue.
1339  */
is_chained_work(struct workqueue_struct * wq)1340 static bool is_chained_work(struct workqueue_struct *wq)
1341 {
1342 	struct worker *worker;
1343 
1344 	worker = current_wq_worker();
1345 	/*
1346 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1347 	 * I'm @worker, it's safe to dereference it without locking.
1348 	 */
1349 	return worker && worker->current_pwq->wq == wq;
1350 }
1351 
1352 /*
1353  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1354  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1355  * avoid perturbing sensitive tasks.
1356  */
wq_select_unbound_cpu(int cpu)1357 static int wq_select_unbound_cpu(int cpu)
1358 {
1359 	static bool printed_dbg_warning;
1360 	int new_cpu;
1361 
1362 	if (likely(!wq_debug_force_rr_cpu)) {
1363 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1364 			return cpu;
1365 	} else if (!printed_dbg_warning) {
1366 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1367 		printed_dbg_warning = true;
1368 	}
1369 
1370 	if (cpumask_empty(wq_unbound_cpumask))
1371 		return cpu;
1372 
1373 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1374 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1375 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1376 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1377 		if (unlikely(new_cpu >= nr_cpu_ids))
1378 			return cpu;
1379 	}
1380 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1381 
1382 	return new_cpu;
1383 }
1384 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1385 static void __queue_work(int cpu, struct workqueue_struct *wq,
1386 			 struct work_struct *work)
1387 {
1388 	struct pool_workqueue *pwq;
1389 	struct worker_pool *last_pool;
1390 	struct list_head *worklist;
1391 	unsigned int work_flags;
1392 	unsigned int req_cpu = cpu;
1393 
1394 	/*
1395 	 * While a work item is PENDING && off queue, a task trying to
1396 	 * steal the PENDING will busy-loop waiting for it to either get
1397 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1398 	 * happen with IRQ disabled.
1399 	 */
1400 	WARN_ON_ONCE(!irqs_disabled());
1401 
1402 	debug_work_activate(work);
1403 
1404 	/* if draining, only works from the same workqueue are allowed */
1405 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1406 	    WARN_ON_ONCE(!is_chained_work(wq)))
1407 		return;
1408 retry:
1409 	/* pwq which will be used unless @work is executing elsewhere */
1410 	if (wq->flags & WQ_UNBOUND) {
1411 		if (req_cpu == WORK_CPU_UNBOUND)
1412 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1413 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1414 	} else {
1415 		if (req_cpu == WORK_CPU_UNBOUND)
1416 			cpu = raw_smp_processor_id();
1417 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1418 	}
1419 
1420 	/*
1421 	 * If @work was previously on a different pool, it might still be
1422 	 * running there, in which case the work needs to be queued on that
1423 	 * pool to guarantee non-reentrancy.
1424 	 */
1425 	last_pool = get_work_pool(work);
1426 	if (last_pool && last_pool != pwq->pool) {
1427 		struct worker *worker;
1428 
1429 		spin_lock(&last_pool->lock);
1430 
1431 		worker = find_worker_executing_work(last_pool, work);
1432 
1433 		if (worker && worker->current_pwq->wq == wq) {
1434 			pwq = worker->current_pwq;
1435 		} else {
1436 			/* meh... not running there, queue here */
1437 			spin_unlock(&last_pool->lock);
1438 			spin_lock(&pwq->pool->lock);
1439 		}
1440 	} else {
1441 		spin_lock(&pwq->pool->lock);
1442 	}
1443 
1444 	/*
1445 	 * pwq is determined and locked.  For unbound pools, we could have
1446 	 * raced with pwq release and it could already be dead.  If its
1447 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1448 	 * without another pwq replacing it in the numa_pwq_tbl or while
1449 	 * work items are executing on it, so the retrying is guaranteed to
1450 	 * make forward-progress.
1451 	 */
1452 	if (unlikely(!pwq->refcnt)) {
1453 		if (wq->flags & WQ_UNBOUND) {
1454 			spin_unlock(&pwq->pool->lock);
1455 			cpu_relax();
1456 			goto retry;
1457 		}
1458 		/* oops */
1459 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1460 			  wq->name, cpu);
1461 	}
1462 
1463 	/* pwq determined, queue */
1464 	trace_workqueue_queue_work(req_cpu, pwq, work);
1465 
1466 	if (WARN_ON(!list_empty(&work->entry))) {
1467 		spin_unlock(&pwq->pool->lock);
1468 		return;
1469 	}
1470 
1471 	pwq->nr_in_flight[pwq->work_color]++;
1472 	work_flags = work_color_to_flags(pwq->work_color);
1473 
1474 	if (likely(pwq->nr_active < pwq->max_active)) {
1475 		trace_workqueue_activate_work(work);
1476 		pwq->nr_active++;
1477 		worklist = &pwq->pool->worklist;
1478 		if (list_empty(worklist))
1479 			pwq->pool->watchdog_ts = jiffies;
1480 	} else {
1481 		work_flags |= WORK_STRUCT_DELAYED;
1482 		worklist = &pwq->delayed_works;
1483 	}
1484 
1485 	insert_work(pwq, work, worklist, work_flags);
1486 
1487 	spin_unlock(&pwq->pool->lock);
1488 }
1489 
1490 /**
1491  * queue_work_on - queue work on specific cpu
1492  * @cpu: CPU number to execute work on
1493  * @wq: workqueue to use
1494  * @work: work to queue
1495  *
1496  * We queue the work to a specific CPU, the caller must ensure it
1497  * can't go away.
1498  *
1499  * Return: %false if @work was already on a queue, %true otherwise.
1500  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1501 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1502 		   struct work_struct *work)
1503 {
1504 	bool ret = false;
1505 	unsigned long flags;
1506 
1507 	local_irq_save(flags);
1508 
1509 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1510 		__queue_work(cpu, wq, work);
1511 		ret = true;
1512 	}
1513 
1514 	local_irq_restore(flags);
1515 	return ret;
1516 }
1517 EXPORT_SYMBOL(queue_work_on);
1518 
delayed_work_timer_fn(unsigned long __data)1519 void delayed_work_timer_fn(unsigned long __data)
1520 {
1521 	struct delayed_work *dwork = (struct delayed_work *)__data;
1522 
1523 	/* should have been called from irqsafe timer with irq already off */
1524 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1525 }
1526 EXPORT_SYMBOL(delayed_work_timer_fn);
1527 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1528 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1529 				struct delayed_work *dwork, unsigned long delay)
1530 {
1531 	struct timer_list *timer = &dwork->timer;
1532 	struct work_struct *work = &dwork->work;
1533 
1534 	WARN_ON_ONCE(!wq);
1535 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1536 		     timer->data != (unsigned long)dwork);
1537 	WARN_ON_ONCE(timer_pending(timer));
1538 	WARN_ON_ONCE(!list_empty(&work->entry));
1539 
1540 	/*
1541 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1542 	 * both optimization and correctness.  The earliest @timer can
1543 	 * expire is on the closest next tick and delayed_work users depend
1544 	 * on that there's no such delay when @delay is 0.
1545 	 */
1546 	if (!delay) {
1547 		__queue_work(cpu, wq, &dwork->work);
1548 		return;
1549 	}
1550 
1551 	dwork->wq = wq;
1552 	dwork->cpu = cpu;
1553 	timer->expires = jiffies + delay;
1554 
1555 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1556 		add_timer_on(timer, cpu);
1557 	else
1558 		add_timer(timer);
1559 }
1560 
1561 /**
1562  * queue_delayed_work_on - queue work on specific CPU after delay
1563  * @cpu: CPU number to execute work on
1564  * @wq: workqueue to use
1565  * @dwork: work to queue
1566  * @delay: number of jiffies to wait before queueing
1567  *
1568  * Return: %false if @work was already on a queue, %true otherwise.  If
1569  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1570  * execution.
1571  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1572 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1573 			   struct delayed_work *dwork, unsigned long delay)
1574 {
1575 	struct work_struct *work = &dwork->work;
1576 	bool ret = false;
1577 	unsigned long flags;
1578 
1579 	/* read the comment in __queue_work() */
1580 	local_irq_save(flags);
1581 
1582 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1583 		__queue_delayed_work(cpu, wq, dwork, delay);
1584 		ret = true;
1585 	}
1586 
1587 	local_irq_restore(flags);
1588 	return ret;
1589 }
1590 EXPORT_SYMBOL(queue_delayed_work_on);
1591 
1592 /**
1593  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1594  * @cpu: CPU number to execute work on
1595  * @wq: workqueue to use
1596  * @dwork: work to queue
1597  * @delay: number of jiffies to wait before queueing
1598  *
1599  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1600  * modify @dwork's timer so that it expires after @delay.  If @delay is
1601  * zero, @work is guaranteed to be scheduled immediately regardless of its
1602  * current state.
1603  *
1604  * Return: %false if @dwork was idle and queued, %true if @dwork was
1605  * pending and its timer was modified.
1606  *
1607  * This function is safe to call from any context including IRQ handler.
1608  * See try_to_grab_pending() for details.
1609  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1610 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1611 			 struct delayed_work *dwork, unsigned long delay)
1612 {
1613 	unsigned long flags;
1614 	int ret;
1615 
1616 	do {
1617 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1618 	} while (unlikely(ret == -EAGAIN));
1619 
1620 	if (likely(ret >= 0)) {
1621 		__queue_delayed_work(cpu, wq, dwork, delay);
1622 		local_irq_restore(flags);
1623 	}
1624 
1625 	/* -ENOENT from try_to_grab_pending() becomes %true */
1626 	return ret;
1627 }
1628 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1629 
1630 /**
1631  * worker_enter_idle - enter idle state
1632  * @worker: worker which is entering idle state
1633  *
1634  * @worker is entering idle state.  Update stats and idle timer if
1635  * necessary.
1636  *
1637  * LOCKING:
1638  * spin_lock_irq(pool->lock).
1639  */
worker_enter_idle(struct worker * worker)1640 static void worker_enter_idle(struct worker *worker)
1641 {
1642 	struct worker_pool *pool = worker->pool;
1643 
1644 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1645 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1646 			 (worker->hentry.next || worker->hentry.pprev)))
1647 		return;
1648 
1649 	/* can't use worker_set_flags(), also called from create_worker() */
1650 	worker->flags |= WORKER_IDLE;
1651 	pool->nr_idle++;
1652 	worker->last_active = jiffies;
1653 
1654 	/* idle_list is LIFO */
1655 	list_add(&worker->entry, &pool->idle_list);
1656 
1657 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1658 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1659 
1660 	/*
1661 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1662 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1663 	 * nr_running, the warning may trigger spuriously.  Check iff
1664 	 * unbind is not in progress.
1665 	 */
1666 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1667 		     pool->nr_workers == pool->nr_idle &&
1668 		     atomic_read(&pool->nr_running));
1669 }
1670 
1671 /**
1672  * worker_leave_idle - leave idle state
1673  * @worker: worker which is leaving idle state
1674  *
1675  * @worker is leaving idle state.  Update stats.
1676  *
1677  * LOCKING:
1678  * spin_lock_irq(pool->lock).
1679  */
worker_leave_idle(struct worker * worker)1680 static void worker_leave_idle(struct worker *worker)
1681 {
1682 	struct worker_pool *pool = worker->pool;
1683 
1684 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1685 		return;
1686 	worker_clr_flags(worker, WORKER_IDLE);
1687 	pool->nr_idle--;
1688 	list_del_init(&worker->entry);
1689 }
1690 
alloc_worker(int node)1691 static struct worker *alloc_worker(int node)
1692 {
1693 	struct worker *worker;
1694 
1695 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1696 	if (worker) {
1697 		INIT_LIST_HEAD(&worker->entry);
1698 		INIT_LIST_HEAD(&worker->scheduled);
1699 		INIT_LIST_HEAD(&worker->node);
1700 		/* on creation a worker is in !idle && prep state */
1701 		worker->flags = WORKER_PREP;
1702 	}
1703 	return worker;
1704 }
1705 
1706 /**
1707  * worker_attach_to_pool() - attach a worker to a pool
1708  * @worker: worker to be attached
1709  * @pool: the target pool
1710  *
1711  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1712  * cpu-binding of @worker are kept coordinated with the pool across
1713  * cpu-[un]hotplugs.
1714  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1715 static void worker_attach_to_pool(struct worker *worker,
1716 				   struct worker_pool *pool)
1717 {
1718 	mutex_lock(&pool->attach_mutex);
1719 
1720 	/*
1721 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1722 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1723 	 */
1724 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1725 
1726 	/*
1727 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1728 	 * stable across this function.  See the comments above the
1729 	 * flag definition for details.
1730 	 */
1731 	if (pool->flags & POOL_DISASSOCIATED)
1732 		worker->flags |= WORKER_UNBOUND;
1733 
1734 	list_add_tail(&worker->node, &pool->workers);
1735 
1736 	mutex_unlock(&pool->attach_mutex);
1737 }
1738 
1739 /**
1740  * worker_detach_from_pool() - detach a worker from its pool
1741  * @worker: worker which is attached to its pool
1742  * @pool: the pool @worker is attached to
1743  *
1744  * Undo the attaching which had been done in worker_attach_to_pool().  The
1745  * caller worker shouldn't access to the pool after detached except it has
1746  * other reference to the pool.
1747  */
worker_detach_from_pool(struct worker * worker,struct worker_pool * pool)1748 static void worker_detach_from_pool(struct worker *worker,
1749 				    struct worker_pool *pool)
1750 {
1751 	struct completion *detach_completion = NULL;
1752 
1753 	mutex_lock(&pool->attach_mutex);
1754 	list_del(&worker->node);
1755 	if (list_empty(&pool->workers))
1756 		detach_completion = pool->detach_completion;
1757 	mutex_unlock(&pool->attach_mutex);
1758 
1759 	/* clear leftover flags without pool->lock after it is detached */
1760 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1761 
1762 	if (detach_completion)
1763 		complete(detach_completion);
1764 }
1765 
1766 /**
1767  * create_worker - create a new workqueue worker
1768  * @pool: pool the new worker will belong to
1769  *
1770  * Create and start a new worker which is attached to @pool.
1771  *
1772  * CONTEXT:
1773  * Might sleep.  Does GFP_KERNEL allocations.
1774  *
1775  * Return:
1776  * Pointer to the newly created worker.
1777  */
create_worker(struct worker_pool * pool)1778 static struct worker *create_worker(struct worker_pool *pool)
1779 {
1780 	struct worker *worker = NULL;
1781 	int id = -1;
1782 	char id_buf[16];
1783 
1784 	/* ID is needed to determine kthread name */
1785 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1786 	if (id < 0)
1787 		goto fail;
1788 
1789 	worker = alloc_worker(pool->node);
1790 	if (!worker)
1791 		goto fail;
1792 
1793 	worker->pool = pool;
1794 	worker->id = id;
1795 
1796 	if (pool->cpu >= 0)
1797 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1798 			 pool->attrs->nice < 0  ? "H" : "");
1799 	else
1800 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1801 
1802 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1803 					      "kworker/%s", id_buf);
1804 	if (IS_ERR(worker->task))
1805 		goto fail;
1806 
1807 	set_user_nice(worker->task, pool->attrs->nice);
1808 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1809 
1810 	/* successful, attach the worker to the pool */
1811 	worker_attach_to_pool(worker, pool);
1812 
1813 	/* start the newly created worker */
1814 	spin_lock_irq(&pool->lock);
1815 	worker->pool->nr_workers++;
1816 	worker_enter_idle(worker);
1817 	wake_up_process(worker->task);
1818 	spin_unlock_irq(&pool->lock);
1819 
1820 	return worker;
1821 
1822 fail:
1823 	if (id >= 0)
1824 		ida_simple_remove(&pool->worker_ida, id);
1825 	kfree(worker);
1826 	return NULL;
1827 }
1828 
1829 /**
1830  * destroy_worker - destroy a workqueue worker
1831  * @worker: worker to be destroyed
1832  *
1833  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1834  * be idle.
1835  *
1836  * CONTEXT:
1837  * spin_lock_irq(pool->lock).
1838  */
destroy_worker(struct worker * worker)1839 static void destroy_worker(struct worker *worker)
1840 {
1841 	struct worker_pool *pool = worker->pool;
1842 
1843 	lockdep_assert_held(&pool->lock);
1844 
1845 	/* sanity check frenzy */
1846 	if (WARN_ON(worker->current_work) ||
1847 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1848 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1849 		return;
1850 
1851 	pool->nr_workers--;
1852 	pool->nr_idle--;
1853 
1854 	list_del_init(&worker->entry);
1855 	worker->flags |= WORKER_DIE;
1856 	wake_up_process(worker->task);
1857 }
1858 
idle_worker_timeout(unsigned long __pool)1859 static void idle_worker_timeout(unsigned long __pool)
1860 {
1861 	struct worker_pool *pool = (void *)__pool;
1862 
1863 	spin_lock_irq(&pool->lock);
1864 
1865 	while (too_many_workers(pool)) {
1866 		struct worker *worker;
1867 		unsigned long expires;
1868 
1869 		/* idle_list is kept in LIFO order, check the last one */
1870 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1871 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1872 
1873 		if (time_before(jiffies, expires)) {
1874 			mod_timer(&pool->idle_timer, expires);
1875 			break;
1876 		}
1877 
1878 		destroy_worker(worker);
1879 	}
1880 
1881 	spin_unlock_irq(&pool->lock);
1882 }
1883 
send_mayday(struct work_struct * work)1884 static void send_mayday(struct work_struct *work)
1885 {
1886 	struct pool_workqueue *pwq = get_work_pwq(work);
1887 	struct workqueue_struct *wq = pwq->wq;
1888 
1889 	lockdep_assert_held(&wq_mayday_lock);
1890 
1891 	if (!wq->rescuer)
1892 		return;
1893 
1894 	/* mayday mayday mayday */
1895 	if (list_empty(&pwq->mayday_node)) {
1896 		/*
1897 		 * If @pwq is for an unbound wq, its base ref may be put at
1898 		 * any time due to an attribute change.  Pin @pwq until the
1899 		 * rescuer is done with it.
1900 		 */
1901 		get_pwq(pwq);
1902 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1903 		wake_up_process(wq->rescuer->task);
1904 	}
1905 }
1906 
pool_mayday_timeout(unsigned long __pool)1907 static void pool_mayday_timeout(unsigned long __pool)
1908 {
1909 	struct worker_pool *pool = (void *)__pool;
1910 	struct work_struct *work;
1911 
1912 	spin_lock_irq(&pool->lock);
1913 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1914 
1915 	if (need_to_create_worker(pool)) {
1916 		/*
1917 		 * We've been trying to create a new worker but
1918 		 * haven't been successful.  We might be hitting an
1919 		 * allocation deadlock.  Send distress signals to
1920 		 * rescuers.
1921 		 */
1922 		list_for_each_entry(work, &pool->worklist, entry)
1923 			send_mayday(work);
1924 	}
1925 
1926 	spin_unlock(&wq_mayday_lock);
1927 	spin_unlock_irq(&pool->lock);
1928 
1929 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1930 }
1931 
1932 /**
1933  * maybe_create_worker - create a new worker if necessary
1934  * @pool: pool to create a new worker for
1935  *
1936  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1937  * have at least one idle worker on return from this function.  If
1938  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1939  * sent to all rescuers with works scheduled on @pool to resolve
1940  * possible allocation deadlock.
1941  *
1942  * On return, need_to_create_worker() is guaranteed to be %false and
1943  * may_start_working() %true.
1944  *
1945  * LOCKING:
1946  * spin_lock_irq(pool->lock) which may be released and regrabbed
1947  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1948  * manager.
1949  */
maybe_create_worker(struct worker_pool * pool)1950 static void maybe_create_worker(struct worker_pool *pool)
1951 __releases(&pool->lock)
1952 __acquires(&pool->lock)
1953 {
1954 restart:
1955 	spin_unlock_irq(&pool->lock);
1956 
1957 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1958 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1959 
1960 	while (true) {
1961 		if (create_worker(pool) || !need_to_create_worker(pool))
1962 			break;
1963 
1964 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1965 
1966 		if (!need_to_create_worker(pool))
1967 			break;
1968 	}
1969 
1970 	del_timer_sync(&pool->mayday_timer);
1971 	spin_lock_irq(&pool->lock);
1972 	/*
1973 	 * This is necessary even after a new worker was just successfully
1974 	 * created as @pool->lock was dropped and the new worker might have
1975 	 * already become busy.
1976 	 */
1977 	if (need_to_create_worker(pool))
1978 		goto restart;
1979 }
1980 
1981 /**
1982  * manage_workers - manage worker pool
1983  * @worker: self
1984  *
1985  * Assume the manager role and manage the worker pool @worker belongs
1986  * to.  At any given time, there can be only zero or one manager per
1987  * pool.  The exclusion is handled automatically by this function.
1988  *
1989  * The caller can safely start processing works on false return.  On
1990  * true return, it's guaranteed that need_to_create_worker() is false
1991  * and may_start_working() is true.
1992  *
1993  * CONTEXT:
1994  * spin_lock_irq(pool->lock) which may be released and regrabbed
1995  * multiple times.  Does GFP_KERNEL allocations.
1996  *
1997  * Return:
1998  * %false if the pool doesn't need management and the caller can safely
1999  * start processing works, %true if management function was performed and
2000  * the conditions that the caller verified before calling the function may
2001  * no longer be true.
2002  */
manage_workers(struct worker * worker)2003 static bool manage_workers(struct worker *worker)
2004 {
2005 	struct worker_pool *pool = worker->pool;
2006 
2007 	if (pool->flags & POOL_MANAGER_ACTIVE)
2008 		return false;
2009 
2010 	pool->flags |= POOL_MANAGER_ACTIVE;
2011 	pool->manager = worker;
2012 
2013 	maybe_create_worker(pool);
2014 
2015 	pool->manager = NULL;
2016 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2017 	wake_up(&wq_manager_wait);
2018 	return true;
2019 }
2020 
2021 /**
2022  * process_one_work - process single work
2023  * @worker: self
2024  * @work: work to process
2025  *
2026  * Process @work.  This function contains all the logics necessary to
2027  * process a single work including synchronization against and
2028  * interaction with other workers on the same cpu, queueing and
2029  * flushing.  As long as context requirement is met, any worker can
2030  * call this function to process a work.
2031  *
2032  * CONTEXT:
2033  * spin_lock_irq(pool->lock) which is released and regrabbed.
2034  */
process_one_work(struct worker * worker,struct work_struct * work)2035 static void process_one_work(struct worker *worker, struct work_struct *work)
2036 __releases(&pool->lock)
2037 __acquires(&pool->lock)
2038 {
2039 	struct pool_workqueue *pwq = get_work_pwq(work);
2040 	struct worker_pool *pool = worker->pool;
2041 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2042 	int work_color;
2043 	struct worker *collision;
2044 #ifdef CONFIG_LOCKDEP
2045 	/*
2046 	 * It is permissible to free the struct work_struct from
2047 	 * inside the function that is called from it, this we need to
2048 	 * take into account for lockdep too.  To avoid bogus "held
2049 	 * lock freed" warnings as well as problems when looking into
2050 	 * work->lockdep_map, make a copy and use that here.
2051 	 */
2052 	struct lockdep_map lockdep_map;
2053 
2054 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2055 #endif
2056 	/* ensure we're on the correct CPU */
2057 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2058 		     raw_smp_processor_id() != pool->cpu);
2059 
2060 	/*
2061 	 * A single work shouldn't be executed concurrently by
2062 	 * multiple workers on a single cpu.  Check whether anyone is
2063 	 * already processing the work.  If so, defer the work to the
2064 	 * currently executing one.
2065 	 */
2066 	collision = find_worker_executing_work(pool, work);
2067 	if (unlikely(collision)) {
2068 		move_linked_works(work, &collision->scheduled, NULL);
2069 		return;
2070 	}
2071 
2072 	/* claim and dequeue */
2073 	debug_work_deactivate(work);
2074 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2075 	worker->current_work = work;
2076 	worker->current_func = work->func;
2077 	worker->current_pwq = pwq;
2078 	work_color = get_work_color(work);
2079 
2080 	list_del_init(&work->entry);
2081 
2082 	/*
2083 	 * CPU intensive works don't participate in concurrency management.
2084 	 * They're the scheduler's responsibility.  This takes @worker out
2085 	 * of concurrency management and the next code block will chain
2086 	 * execution of the pending work items.
2087 	 */
2088 	if (unlikely(cpu_intensive))
2089 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2090 
2091 	/*
2092 	 * Wake up another worker if necessary.  The condition is always
2093 	 * false for normal per-cpu workers since nr_running would always
2094 	 * be >= 1 at this point.  This is used to chain execution of the
2095 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2096 	 * UNBOUND and CPU_INTENSIVE ones.
2097 	 */
2098 	if (need_more_worker(pool))
2099 		wake_up_worker(pool);
2100 
2101 	/*
2102 	 * Record the last pool and clear PENDING which should be the last
2103 	 * update to @work.  Also, do this inside @pool->lock so that
2104 	 * PENDING and queued state changes happen together while IRQ is
2105 	 * disabled.
2106 	 */
2107 	set_work_pool_and_clear_pending(work, pool->id);
2108 
2109 	spin_unlock_irq(&pool->lock);
2110 
2111 	lock_map_acquire(&pwq->wq->lockdep_map);
2112 	lock_map_acquire(&lockdep_map);
2113 	/*
2114 	 * Strictly speaking we should mark the invariant state without holding
2115 	 * any locks, that is, before these two lock_map_acquire()'s.
2116 	 *
2117 	 * However, that would result in:
2118 	 *
2119 	 *   A(W1)
2120 	 *   WFC(C)
2121 	 *		A(W1)
2122 	 *		C(C)
2123 	 *
2124 	 * Which would create W1->C->W1 dependencies, even though there is no
2125 	 * actual deadlock possible. There are two solutions, using a
2126 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2127 	 * hit the lockdep limitation on recursive locks, or simply discard
2128 	 * these locks.
2129 	 *
2130 	 * AFAICT there is no possible deadlock scenario between the
2131 	 * flush_work() and complete() primitives (except for single-threaded
2132 	 * workqueues), so hiding them isn't a problem.
2133 	 */
2134 	lockdep_invariant_state(true);
2135 	trace_workqueue_execute_start(work);
2136 	worker->current_func(work);
2137 	/*
2138 	 * While we must be careful to not use "work" after this, the trace
2139 	 * point will only record its address.
2140 	 */
2141 	trace_workqueue_execute_end(work);
2142 	lock_map_release(&lockdep_map);
2143 	lock_map_release(&pwq->wq->lockdep_map);
2144 
2145 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2146 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2147 		       "     last function: %pf\n",
2148 		       current->comm, preempt_count(), task_pid_nr(current),
2149 		       worker->current_func);
2150 		debug_show_held_locks(current);
2151 		dump_stack();
2152 	}
2153 
2154 	/*
2155 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2156 	 * kernels, where a requeueing work item waiting for something to
2157 	 * happen could deadlock with stop_machine as such work item could
2158 	 * indefinitely requeue itself while all other CPUs are trapped in
2159 	 * stop_machine. At the same time, report a quiescent RCU state so
2160 	 * the same condition doesn't freeze RCU.
2161 	 */
2162 	cond_resched_rcu_qs();
2163 
2164 	spin_lock_irq(&pool->lock);
2165 
2166 	/* clear cpu intensive status */
2167 	if (unlikely(cpu_intensive))
2168 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2169 
2170 	/* tag the worker for identification in schedule() */
2171 	worker->last_func = worker->current_func;
2172 
2173 	/* we're done with it, release */
2174 	hash_del(&worker->hentry);
2175 	worker->current_work = NULL;
2176 	worker->current_func = NULL;
2177 	worker->current_pwq = NULL;
2178 	worker->desc_valid = false;
2179 	pwq_dec_nr_in_flight(pwq, work_color);
2180 }
2181 
2182 /**
2183  * process_scheduled_works - process scheduled works
2184  * @worker: self
2185  *
2186  * Process all scheduled works.  Please note that the scheduled list
2187  * may change while processing a work, so this function repeatedly
2188  * fetches a work from the top and executes it.
2189  *
2190  * CONTEXT:
2191  * spin_lock_irq(pool->lock) which may be released and regrabbed
2192  * multiple times.
2193  */
process_scheduled_works(struct worker * worker)2194 static void process_scheduled_works(struct worker *worker)
2195 {
2196 	while (!list_empty(&worker->scheduled)) {
2197 		struct work_struct *work = list_first_entry(&worker->scheduled,
2198 						struct work_struct, entry);
2199 		process_one_work(worker, work);
2200 	}
2201 }
2202 
2203 /**
2204  * worker_thread - the worker thread function
2205  * @__worker: self
2206  *
2207  * The worker thread function.  All workers belong to a worker_pool -
2208  * either a per-cpu one or dynamic unbound one.  These workers process all
2209  * work items regardless of their specific target workqueue.  The only
2210  * exception is work items which belong to workqueues with a rescuer which
2211  * will be explained in rescuer_thread().
2212  *
2213  * Return: 0
2214  */
worker_thread(void * __worker)2215 static int worker_thread(void *__worker)
2216 {
2217 	struct worker *worker = __worker;
2218 	struct worker_pool *pool = worker->pool;
2219 
2220 	/* tell the scheduler that this is a workqueue worker */
2221 	worker->task->flags |= PF_WQ_WORKER;
2222 woke_up:
2223 	spin_lock_irq(&pool->lock);
2224 
2225 	/* am I supposed to die? */
2226 	if (unlikely(worker->flags & WORKER_DIE)) {
2227 		spin_unlock_irq(&pool->lock);
2228 		WARN_ON_ONCE(!list_empty(&worker->entry));
2229 		worker->task->flags &= ~PF_WQ_WORKER;
2230 
2231 		set_task_comm(worker->task, "kworker/dying");
2232 		ida_simple_remove(&pool->worker_ida, worker->id);
2233 		worker_detach_from_pool(worker, pool);
2234 		kfree(worker);
2235 		return 0;
2236 	}
2237 
2238 	worker_leave_idle(worker);
2239 recheck:
2240 	/* no more worker necessary? */
2241 	if (!need_more_worker(pool))
2242 		goto sleep;
2243 
2244 	/* do we need to manage? */
2245 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2246 		goto recheck;
2247 
2248 	/*
2249 	 * ->scheduled list can only be filled while a worker is
2250 	 * preparing to process a work or actually processing it.
2251 	 * Make sure nobody diddled with it while I was sleeping.
2252 	 */
2253 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2254 
2255 	/*
2256 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2257 	 * worker or that someone else has already assumed the manager
2258 	 * role.  This is where @worker starts participating in concurrency
2259 	 * management if applicable and concurrency management is restored
2260 	 * after being rebound.  See rebind_workers() for details.
2261 	 */
2262 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2263 
2264 	do {
2265 		struct work_struct *work =
2266 			list_first_entry(&pool->worklist,
2267 					 struct work_struct, entry);
2268 
2269 		pool->watchdog_ts = jiffies;
2270 
2271 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2272 			/* optimization path, not strictly necessary */
2273 			process_one_work(worker, work);
2274 			if (unlikely(!list_empty(&worker->scheduled)))
2275 				process_scheduled_works(worker);
2276 		} else {
2277 			move_linked_works(work, &worker->scheduled, NULL);
2278 			process_scheduled_works(worker);
2279 		}
2280 	} while (keep_working(pool));
2281 
2282 	worker_set_flags(worker, WORKER_PREP);
2283 sleep:
2284 	/*
2285 	 * pool->lock is held and there's no work to process and no need to
2286 	 * manage, sleep.  Workers are woken up only while holding
2287 	 * pool->lock or from local cpu, so setting the current state
2288 	 * before releasing pool->lock is enough to prevent losing any
2289 	 * event.
2290 	 */
2291 	worker_enter_idle(worker);
2292 	__set_current_state(TASK_IDLE);
2293 	spin_unlock_irq(&pool->lock);
2294 	schedule();
2295 	goto woke_up;
2296 }
2297 
2298 /**
2299  * rescuer_thread - the rescuer thread function
2300  * @__rescuer: self
2301  *
2302  * Workqueue rescuer thread function.  There's one rescuer for each
2303  * workqueue which has WQ_MEM_RECLAIM set.
2304  *
2305  * Regular work processing on a pool may block trying to create a new
2306  * worker which uses GFP_KERNEL allocation which has slight chance of
2307  * developing into deadlock if some works currently on the same queue
2308  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2309  * the problem rescuer solves.
2310  *
2311  * When such condition is possible, the pool summons rescuers of all
2312  * workqueues which have works queued on the pool and let them process
2313  * those works so that forward progress can be guaranteed.
2314  *
2315  * This should happen rarely.
2316  *
2317  * Return: 0
2318  */
rescuer_thread(void * __rescuer)2319 static int rescuer_thread(void *__rescuer)
2320 {
2321 	struct worker *rescuer = __rescuer;
2322 	struct workqueue_struct *wq = rescuer->rescue_wq;
2323 	struct list_head *scheduled = &rescuer->scheduled;
2324 	bool should_stop;
2325 
2326 	set_user_nice(current, RESCUER_NICE_LEVEL);
2327 
2328 	/*
2329 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2330 	 * doesn't participate in concurrency management.
2331 	 */
2332 	rescuer->task->flags |= PF_WQ_WORKER;
2333 repeat:
2334 	set_current_state(TASK_IDLE);
2335 
2336 	/*
2337 	 * By the time the rescuer is requested to stop, the workqueue
2338 	 * shouldn't have any work pending, but @wq->maydays may still have
2339 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2340 	 * all the work items before the rescuer got to them.  Go through
2341 	 * @wq->maydays processing before acting on should_stop so that the
2342 	 * list is always empty on exit.
2343 	 */
2344 	should_stop = kthread_should_stop();
2345 
2346 	/* see whether any pwq is asking for help */
2347 	spin_lock_irq(&wq_mayday_lock);
2348 
2349 	while (!list_empty(&wq->maydays)) {
2350 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2351 					struct pool_workqueue, mayday_node);
2352 		struct worker_pool *pool = pwq->pool;
2353 		struct work_struct *work, *n;
2354 		bool first = true;
2355 
2356 		__set_current_state(TASK_RUNNING);
2357 		list_del_init(&pwq->mayday_node);
2358 
2359 		spin_unlock_irq(&wq_mayday_lock);
2360 
2361 		worker_attach_to_pool(rescuer, pool);
2362 
2363 		spin_lock_irq(&pool->lock);
2364 		rescuer->pool = pool;
2365 
2366 		/*
2367 		 * Slurp in all works issued via this workqueue and
2368 		 * process'em.
2369 		 */
2370 		WARN_ON_ONCE(!list_empty(scheduled));
2371 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2372 			if (get_work_pwq(work) == pwq) {
2373 				if (first)
2374 					pool->watchdog_ts = jiffies;
2375 				move_linked_works(work, scheduled, &n);
2376 			}
2377 			first = false;
2378 		}
2379 
2380 		if (!list_empty(scheduled)) {
2381 			process_scheduled_works(rescuer);
2382 
2383 			/*
2384 			 * The above execution of rescued work items could
2385 			 * have created more to rescue through
2386 			 * pwq_activate_first_delayed() or chained
2387 			 * queueing.  Let's put @pwq back on mayday list so
2388 			 * that such back-to-back work items, which may be
2389 			 * being used to relieve memory pressure, don't
2390 			 * incur MAYDAY_INTERVAL delay inbetween.
2391 			 */
2392 			if (need_to_create_worker(pool)) {
2393 				spin_lock(&wq_mayday_lock);
2394 				/*
2395 				 * Queue iff we aren't racing destruction
2396 				 * and somebody else hasn't queued it already.
2397 				 */
2398 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2399 					get_pwq(pwq);
2400 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2401 				}
2402 				spin_unlock(&wq_mayday_lock);
2403 			}
2404 		}
2405 
2406 		/*
2407 		 * Put the reference grabbed by send_mayday().  @pool won't
2408 		 * go away while we're still attached to it.
2409 		 */
2410 		put_pwq(pwq);
2411 
2412 		/*
2413 		 * Leave this pool.  If need_more_worker() is %true, notify a
2414 		 * regular worker; otherwise, we end up with 0 concurrency
2415 		 * and stalling the execution.
2416 		 */
2417 		if (need_more_worker(pool))
2418 			wake_up_worker(pool);
2419 
2420 		rescuer->pool = NULL;
2421 		spin_unlock_irq(&pool->lock);
2422 
2423 		worker_detach_from_pool(rescuer, pool);
2424 
2425 		spin_lock_irq(&wq_mayday_lock);
2426 	}
2427 
2428 	spin_unlock_irq(&wq_mayday_lock);
2429 
2430 	if (should_stop) {
2431 		__set_current_state(TASK_RUNNING);
2432 		rescuer->task->flags &= ~PF_WQ_WORKER;
2433 		return 0;
2434 	}
2435 
2436 	/* rescuers should never participate in concurrency management */
2437 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2438 	schedule();
2439 	goto repeat;
2440 }
2441 
2442 /**
2443  * check_flush_dependency - check for flush dependency sanity
2444  * @target_wq: workqueue being flushed
2445  * @target_work: work item being flushed (NULL for workqueue flushes)
2446  *
2447  * %current is trying to flush the whole @target_wq or @target_work on it.
2448  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2449  * reclaiming memory or running on a workqueue which doesn't have
2450  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2451  * a deadlock.
2452  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2453 static void check_flush_dependency(struct workqueue_struct *target_wq,
2454 				   struct work_struct *target_work)
2455 {
2456 	work_func_t target_func = target_work ? target_work->func : NULL;
2457 	struct worker *worker;
2458 
2459 	if (target_wq->flags & WQ_MEM_RECLAIM)
2460 		return;
2461 
2462 	worker = current_wq_worker();
2463 
2464 	WARN_ONCE(current->flags & PF_MEMALLOC,
2465 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2466 		  current->pid, current->comm, target_wq->name, target_func);
2467 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2468 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2469 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2470 		  worker->current_pwq->wq->name, worker->current_func,
2471 		  target_wq->name, target_func);
2472 }
2473 
2474 struct wq_barrier {
2475 	struct work_struct	work;
2476 	struct completion	done;
2477 	struct task_struct	*task;	/* purely informational */
2478 };
2479 
wq_barrier_func(struct work_struct * work)2480 static void wq_barrier_func(struct work_struct *work)
2481 {
2482 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2483 	complete(&barr->done);
2484 }
2485 
2486 /**
2487  * insert_wq_barrier - insert a barrier work
2488  * @pwq: pwq to insert barrier into
2489  * @barr: wq_barrier to insert
2490  * @target: target work to attach @barr to
2491  * @worker: worker currently executing @target, NULL if @target is not executing
2492  *
2493  * @barr is linked to @target such that @barr is completed only after
2494  * @target finishes execution.  Please note that the ordering
2495  * guarantee is observed only with respect to @target and on the local
2496  * cpu.
2497  *
2498  * Currently, a queued barrier can't be canceled.  This is because
2499  * try_to_grab_pending() can't determine whether the work to be
2500  * grabbed is at the head of the queue and thus can't clear LINKED
2501  * flag of the previous work while there must be a valid next work
2502  * after a work with LINKED flag set.
2503  *
2504  * Note that when @worker is non-NULL, @target may be modified
2505  * underneath us, so we can't reliably determine pwq from @target.
2506  *
2507  * CONTEXT:
2508  * spin_lock_irq(pool->lock).
2509  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2510 static void insert_wq_barrier(struct pool_workqueue *pwq,
2511 			      struct wq_barrier *barr,
2512 			      struct work_struct *target, struct worker *worker)
2513 {
2514 	struct list_head *head;
2515 	unsigned int linked = 0;
2516 
2517 	/*
2518 	 * debugobject calls are safe here even with pool->lock locked
2519 	 * as we know for sure that this will not trigger any of the
2520 	 * checks and call back into the fixup functions where we
2521 	 * might deadlock.
2522 	 */
2523 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2524 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2525 
2526 	/*
2527 	 * Explicitly init the crosslock for wq_barrier::done, make its lock
2528 	 * key a subkey of the corresponding work. As a result we won't
2529 	 * build a dependency between wq_barrier::done and unrelated work.
2530 	 */
2531 	lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
2532 				   "(complete)wq_barr::done",
2533 				   target->lockdep_map.key, 1);
2534 	__init_completion(&barr->done);
2535 	barr->task = current;
2536 
2537 	/*
2538 	 * If @target is currently being executed, schedule the
2539 	 * barrier to the worker; otherwise, put it after @target.
2540 	 */
2541 	if (worker)
2542 		head = worker->scheduled.next;
2543 	else {
2544 		unsigned long *bits = work_data_bits(target);
2545 
2546 		head = target->entry.next;
2547 		/* there can already be other linked works, inherit and set */
2548 		linked = *bits & WORK_STRUCT_LINKED;
2549 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2550 	}
2551 
2552 	debug_work_activate(&barr->work);
2553 	insert_work(pwq, &barr->work, head,
2554 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2555 }
2556 
2557 /**
2558  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2559  * @wq: workqueue being flushed
2560  * @flush_color: new flush color, < 0 for no-op
2561  * @work_color: new work color, < 0 for no-op
2562  *
2563  * Prepare pwqs for workqueue flushing.
2564  *
2565  * If @flush_color is non-negative, flush_color on all pwqs should be
2566  * -1.  If no pwq has in-flight commands at the specified color, all
2567  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2568  * has in flight commands, its pwq->flush_color is set to
2569  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2570  * wakeup logic is armed and %true is returned.
2571  *
2572  * The caller should have initialized @wq->first_flusher prior to
2573  * calling this function with non-negative @flush_color.  If
2574  * @flush_color is negative, no flush color update is done and %false
2575  * is returned.
2576  *
2577  * If @work_color is non-negative, all pwqs should have the same
2578  * work_color which is previous to @work_color and all will be
2579  * advanced to @work_color.
2580  *
2581  * CONTEXT:
2582  * mutex_lock(wq->mutex).
2583  *
2584  * Return:
2585  * %true if @flush_color >= 0 and there's something to flush.  %false
2586  * otherwise.
2587  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2588 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2589 				      int flush_color, int work_color)
2590 {
2591 	bool wait = false;
2592 	struct pool_workqueue *pwq;
2593 
2594 	if (flush_color >= 0) {
2595 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2596 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2597 	}
2598 
2599 	for_each_pwq(pwq, wq) {
2600 		struct worker_pool *pool = pwq->pool;
2601 
2602 		spin_lock_irq(&pool->lock);
2603 
2604 		if (flush_color >= 0) {
2605 			WARN_ON_ONCE(pwq->flush_color != -1);
2606 
2607 			if (pwq->nr_in_flight[flush_color]) {
2608 				pwq->flush_color = flush_color;
2609 				atomic_inc(&wq->nr_pwqs_to_flush);
2610 				wait = true;
2611 			}
2612 		}
2613 
2614 		if (work_color >= 0) {
2615 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2616 			pwq->work_color = work_color;
2617 		}
2618 
2619 		spin_unlock_irq(&pool->lock);
2620 	}
2621 
2622 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2623 		complete(&wq->first_flusher->done);
2624 
2625 	return wait;
2626 }
2627 
2628 /**
2629  * flush_workqueue - ensure that any scheduled work has run to completion.
2630  * @wq: workqueue to flush
2631  *
2632  * This function sleeps until all work items which were queued on entry
2633  * have finished execution, but it is not livelocked by new incoming ones.
2634  */
flush_workqueue(struct workqueue_struct * wq)2635 void flush_workqueue(struct workqueue_struct *wq)
2636 {
2637 	struct wq_flusher this_flusher = {
2638 		.list = LIST_HEAD_INIT(this_flusher.list),
2639 		.flush_color = -1,
2640 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2641 	};
2642 	int next_color;
2643 
2644 	if (WARN_ON(!wq_online))
2645 		return;
2646 
2647 	lock_map_acquire(&wq->lockdep_map);
2648 	lock_map_release(&wq->lockdep_map);
2649 
2650 	mutex_lock(&wq->mutex);
2651 
2652 	/*
2653 	 * Start-to-wait phase
2654 	 */
2655 	next_color = work_next_color(wq->work_color);
2656 
2657 	if (next_color != wq->flush_color) {
2658 		/*
2659 		 * Color space is not full.  The current work_color
2660 		 * becomes our flush_color and work_color is advanced
2661 		 * by one.
2662 		 */
2663 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2664 		this_flusher.flush_color = wq->work_color;
2665 		wq->work_color = next_color;
2666 
2667 		if (!wq->first_flusher) {
2668 			/* no flush in progress, become the first flusher */
2669 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2670 
2671 			wq->first_flusher = &this_flusher;
2672 
2673 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2674 						       wq->work_color)) {
2675 				/* nothing to flush, done */
2676 				wq->flush_color = next_color;
2677 				wq->first_flusher = NULL;
2678 				goto out_unlock;
2679 			}
2680 		} else {
2681 			/* wait in queue */
2682 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2683 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2684 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2685 		}
2686 	} else {
2687 		/*
2688 		 * Oops, color space is full, wait on overflow queue.
2689 		 * The next flush completion will assign us
2690 		 * flush_color and transfer to flusher_queue.
2691 		 */
2692 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2693 	}
2694 
2695 	check_flush_dependency(wq, NULL);
2696 
2697 	mutex_unlock(&wq->mutex);
2698 
2699 	wait_for_completion(&this_flusher.done);
2700 
2701 	/*
2702 	 * Wake-up-and-cascade phase
2703 	 *
2704 	 * First flushers are responsible for cascading flushes and
2705 	 * handling overflow.  Non-first flushers can simply return.
2706 	 */
2707 	if (wq->first_flusher != &this_flusher)
2708 		return;
2709 
2710 	mutex_lock(&wq->mutex);
2711 
2712 	/* we might have raced, check again with mutex held */
2713 	if (wq->first_flusher != &this_flusher)
2714 		goto out_unlock;
2715 
2716 	wq->first_flusher = NULL;
2717 
2718 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2719 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2720 
2721 	while (true) {
2722 		struct wq_flusher *next, *tmp;
2723 
2724 		/* complete all the flushers sharing the current flush color */
2725 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2726 			if (next->flush_color != wq->flush_color)
2727 				break;
2728 			list_del_init(&next->list);
2729 			complete(&next->done);
2730 		}
2731 
2732 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2733 			     wq->flush_color != work_next_color(wq->work_color));
2734 
2735 		/* this flush_color is finished, advance by one */
2736 		wq->flush_color = work_next_color(wq->flush_color);
2737 
2738 		/* one color has been freed, handle overflow queue */
2739 		if (!list_empty(&wq->flusher_overflow)) {
2740 			/*
2741 			 * Assign the same color to all overflowed
2742 			 * flushers, advance work_color and append to
2743 			 * flusher_queue.  This is the start-to-wait
2744 			 * phase for these overflowed flushers.
2745 			 */
2746 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2747 				tmp->flush_color = wq->work_color;
2748 
2749 			wq->work_color = work_next_color(wq->work_color);
2750 
2751 			list_splice_tail_init(&wq->flusher_overflow,
2752 					      &wq->flusher_queue);
2753 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2754 		}
2755 
2756 		if (list_empty(&wq->flusher_queue)) {
2757 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2758 			break;
2759 		}
2760 
2761 		/*
2762 		 * Need to flush more colors.  Make the next flusher
2763 		 * the new first flusher and arm pwqs.
2764 		 */
2765 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2766 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2767 
2768 		list_del_init(&next->list);
2769 		wq->first_flusher = next;
2770 
2771 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2772 			break;
2773 
2774 		/*
2775 		 * Meh... this color is already done, clear first
2776 		 * flusher and repeat cascading.
2777 		 */
2778 		wq->first_flusher = NULL;
2779 	}
2780 
2781 out_unlock:
2782 	mutex_unlock(&wq->mutex);
2783 }
2784 EXPORT_SYMBOL(flush_workqueue);
2785 
2786 /**
2787  * drain_workqueue - drain a workqueue
2788  * @wq: workqueue to drain
2789  *
2790  * Wait until the workqueue becomes empty.  While draining is in progress,
2791  * only chain queueing is allowed.  IOW, only currently pending or running
2792  * work items on @wq can queue further work items on it.  @wq is flushed
2793  * repeatedly until it becomes empty.  The number of flushing is determined
2794  * by the depth of chaining and should be relatively short.  Whine if it
2795  * takes too long.
2796  */
drain_workqueue(struct workqueue_struct * wq)2797 void drain_workqueue(struct workqueue_struct *wq)
2798 {
2799 	unsigned int flush_cnt = 0;
2800 	struct pool_workqueue *pwq;
2801 
2802 	/*
2803 	 * __queue_work() needs to test whether there are drainers, is much
2804 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2805 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2806 	 */
2807 	mutex_lock(&wq->mutex);
2808 	if (!wq->nr_drainers++)
2809 		wq->flags |= __WQ_DRAINING;
2810 	mutex_unlock(&wq->mutex);
2811 reflush:
2812 	flush_workqueue(wq);
2813 
2814 	mutex_lock(&wq->mutex);
2815 
2816 	for_each_pwq(pwq, wq) {
2817 		bool drained;
2818 
2819 		spin_lock_irq(&pwq->pool->lock);
2820 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2821 		spin_unlock_irq(&pwq->pool->lock);
2822 
2823 		if (drained)
2824 			continue;
2825 
2826 		if (++flush_cnt == 10 ||
2827 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2828 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2829 				wq->name, flush_cnt);
2830 
2831 		mutex_unlock(&wq->mutex);
2832 		goto reflush;
2833 	}
2834 
2835 	if (!--wq->nr_drainers)
2836 		wq->flags &= ~__WQ_DRAINING;
2837 	mutex_unlock(&wq->mutex);
2838 }
2839 EXPORT_SYMBOL_GPL(drain_workqueue);
2840 
start_flush_work(struct work_struct * work,struct wq_barrier * barr)2841 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2842 {
2843 	struct worker *worker = NULL;
2844 	struct worker_pool *pool;
2845 	struct pool_workqueue *pwq;
2846 
2847 	might_sleep();
2848 
2849 	local_irq_disable();
2850 	pool = get_work_pool(work);
2851 	if (!pool) {
2852 		local_irq_enable();
2853 		return false;
2854 	}
2855 
2856 	spin_lock(&pool->lock);
2857 	/* see the comment in try_to_grab_pending() with the same code */
2858 	pwq = get_work_pwq(work);
2859 	if (pwq) {
2860 		if (unlikely(pwq->pool != pool))
2861 			goto already_gone;
2862 	} else {
2863 		worker = find_worker_executing_work(pool, work);
2864 		if (!worker)
2865 			goto already_gone;
2866 		pwq = worker->current_pwq;
2867 	}
2868 
2869 	check_flush_dependency(pwq->wq, work);
2870 
2871 	insert_wq_barrier(pwq, barr, work, worker);
2872 	spin_unlock_irq(&pool->lock);
2873 
2874 	/*
2875 	 * Force a lock recursion deadlock when using flush_work() inside a
2876 	 * single-threaded or rescuer equipped workqueue.
2877 	 *
2878 	 * For single threaded workqueues the deadlock happens when the work
2879 	 * is after the work issuing the flush_work(). For rescuer equipped
2880 	 * workqueues the deadlock happens when the rescuer stalls, blocking
2881 	 * forward progress.
2882 	 */
2883 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2884 		lock_map_acquire(&pwq->wq->lockdep_map);
2885 		lock_map_release(&pwq->wq->lockdep_map);
2886 	}
2887 
2888 	return true;
2889 already_gone:
2890 	spin_unlock_irq(&pool->lock);
2891 	return false;
2892 }
2893 
2894 /**
2895  * flush_work - wait for a work to finish executing the last queueing instance
2896  * @work: the work to flush
2897  *
2898  * Wait until @work has finished execution.  @work is guaranteed to be idle
2899  * on return if it hasn't been requeued since flush started.
2900  *
2901  * Return:
2902  * %true if flush_work() waited for the work to finish execution,
2903  * %false if it was already idle.
2904  */
flush_work(struct work_struct * work)2905 bool flush_work(struct work_struct *work)
2906 {
2907 	struct wq_barrier barr;
2908 
2909 	if (WARN_ON(!wq_online))
2910 		return false;
2911 
2912 	lock_map_acquire(&work->lockdep_map);
2913 	lock_map_release(&work->lockdep_map);
2914 
2915 	if (start_flush_work(work, &barr)) {
2916 		wait_for_completion(&barr.done);
2917 		destroy_work_on_stack(&barr.work);
2918 		return true;
2919 	} else {
2920 		return false;
2921 	}
2922 }
2923 EXPORT_SYMBOL_GPL(flush_work);
2924 
2925 struct cwt_wait {
2926 	wait_queue_entry_t		wait;
2927 	struct work_struct	*work;
2928 };
2929 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2930 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2931 {
2932 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2933 
2934 	if (cwait->work != key)
2935 		return 0;
2936 	return autoremove_wake_function(wait, mode, sync, key);
2937 }
2938 
__cancel_work_timer(struct work_struct * work,bool is_dwork)2939 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2940 {
2941 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2942 	unsigned long flags;
2943 	int ret;
2944 
2945 	do {
2946 		ret = try_to_grab_pending(work, is_dwork, &flags);
2947 		/*
2948 		 * If someone else is already canceling, wait for it to
2949 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2950 		 * because we may get scheduled between @work's completion
2951 		 * and the other canceling task resuming and clearing
2952 		 * CANCELING - flush_work() will return false immediately
2953 		 * as @work is no longer busy, try_to_grab_pending() will
2954 		 * return -ENOENT as @work is still being canceled and the
2955 		 * other canceling task won't be able to clear CANCELING as
2956 		 * we're hogging the CPU.
2957 		 *
2958 		 * Let's wait for completion using a waitqueue.  As this
2959 		 * may lead to the thundering herd problem, use a custom
2960 		 * wake function which matches @work along with exclusive
2961 		 * wait and wakeup.
2962 		 */
2963 		if (unlikely(ret == -ENOENT)) {
2964 			struct cwt_wait cwait;
2965 
2966 			init_wait(&cwait.wait);
2967 			cwait.wait.func = cwt_wakefn;
2968 			cwait.work = work;
2969 
2970 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2971 						  TASK_UNINTERRUPTIBLE);
2972 			if (work_is_canceling(work))
2973 				schedule();
2974 			finish_wait(&cancel_waitq, &cwait.wait);
2975 		}
2976 	} while (unlikely(ret < 0));
2977 
2978 	/* tell other tasks trying to grab @work to back off */
2979 	mark_work_canceling(work);
2980 	local_irq_restore(flags);
2981 
2982 	/*
2983 	 * This allows canceling during early boot.  We know that @work
2984 	 * isn't executing.
2985 	 */
2986 	if (wq_online)
2987 		flush_work(work);
2988 
2989 	clear_work_data(work);
2990 
2991 	/*
2992 	 * Paired with prepare_to_wait() above so that either
2993 	 * waitqueue_active() is visible here or !work_is_canceling() is
2994 	 * visible there.
2995 	 */
2996 	smp_mb();
2997 	if (waitqueue_active(&cancel_waitq))
2998 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2999 
3000 	return ret;
3001 }
3002 
3003 /**
3004  * cancel_work_sync - cancel a work and wait for it to finish
3005  * @work: the work to cancel
3006  *
3007  * Cancel @work and wait for its execution to finish.  This function
3008  * can be used even if the work re-queues itself or migrates to
3009  * another workqueue.  On return from this function, @work is
3010  * guaranteed to be not pending or executing on any CPU.
3011  *
3012  * cancel_work_sync(&delayed_work->work) must not be used for
3013  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3014  *
3015  * The caller must ensure that the workqueue on which @work was last
3016  * queued can't be destroyed before this function returns.
3017  *
3018  * Return:
3019  * %true if @work was pending, %false otherwise.
3020  */
cancel_work_sync(struct work_struct * work)3021 bool cancel_work_sync(struct work_struct *work)
3022 {
3023 	return __cancel_work_timer(work, false);
3024 }
3025 EXPORT_SYMBOL_GPL(cancel_work_sync);
3026 
3027 /**
3028  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3029  * @dwork: the delayed work to flush
3030  *
3031  * Delayed timer is cancelled and the pending work is queued for
3032  * immediate execution.  Like flush_work(), this function only
3033  * considers the last queueing instance of @dwork.
3034  *
3035  * Return:
3036  * %true if flush_work() waited for the work to finish execution,
3037  * %false if it was already idle.
3038  */
flush_delayed_work(struct delayed_work * dwork)3039 bool flush_delayed_work(struct delayed_work *dwork)
3040 {
3041 	local_irq_disable();
3042 	if (del_timer_sync(&dwork->timer))
3043 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3044 	local_irq_enable();
3045 	return flush_work(&dwork->work);
3046 }
3047 EXPORT_SYMBOL(flush_delayed_work);
3048 
__cancel_work(struct work_struct * work,bool is_dwork)3049 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3050 {
3051 	unsigned long flags;
3052 	int ret;
3053 
3054 	do {
3055 		ret = try_to_grab_pending(work, is_dwork, &flags);
3056 	} while (unlikely(ret == -EAGAIN));
3057 
3058 	if (unlikely(ret < 0))
3059 		return false;
3060 
3061 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3062 	local_irq_restore(flags);
3063 	return ret;
3064 }
3065 
3066 /*
3067  * See cancel_delayed_work()
3068  */
cancel_work(struct work_struct * work)3069 bool cancel_work(struct work_struct *work)
3070 {
3071 	return __cancel_work(work, false);
3072 }
3073 
3074 /**
3075  * cancel_delayed_work - cancel a delayed work
3076  * @dwork: delayed_work to cancel
3077  *
3078  * Kill off a pending delayed_work.
3079  *
3080  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3081  * pending.
3082  *
3083  * Note:
3084  * The work callback function may still be running on return, unless
3085  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3086  * use cancel_delayed_work_sync() to wait on it.
3087  *
3088  * This function is safe to call from any context including IRQ handler.
3089  */
cancel_delayed_work(struct delayed_work * dwork)3090 bool cancel_delayed_work(struct delayed_work *dwork)
3091 {
3092 	return __cancel_work(&dwork->work, true);
3093 }
3094 EXPORT_SYMBOL(cancel_delayed_work);
3095 
3096 /**
3097  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3098  * @dwork: the delayed work cancel
3099  *
3100  * This is cancel_work_sync() for delayed works.
3101  *
3102  * Return:
3103  * %true if @dwork was pending, %false otherwise.
3104  */
cancel_delayed_work_sync(struct delayed_work * dwork)3105 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3106 {
3107 	return __cancel_work_timer(&dwork->work, true);
3108 }
3109 EXPORT_SYMBOL(cancel_delayed_work_sync);
3110 
3111 /**
3112  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3113  * @func: the function to call
3114  *
3115  * schedule_on_each_cpu() executes @func on each online CPU using the
3116  * system workqueue and blocks until all CPUs have completed.
3117  * schedule_on_each_cpu() is very slow.
3118  *
3119  * Return:
3120  * 0 on success, -errno on failure.
3121  */
schedule_on_each_cpu(work_func_t func)3122 int schedule_on_each_cpu(work_func_t func)
3123 {
3124 	int cpu;
3125 	struct work_struct __percpu *works;
3126 
3127 	works = alloc_percpu(struct work_struct);
3128 	if (!works)
3129 		return -ENOMEM;
3130 
3131 	get_online_cpus();
3132 
3133 	for_each_online_cpu(cpu) {
3134 		struct work_struct *work = per_cpu_ptr(works, cpu);
3135 
3136 		INIT_WORK(work, func);
3137 		schedule_work_on(cpu, work);
3138 	}
3139 
3140 	for_each_online_cpu(cpu)
3141 		flush_work(per_cpu_ptr(works, cpu));
3142 
3143 	put_online_cpus();
3144 	free_percpu(works);
3145 	return 0;
3146 }
3147 
3148 /**
3149  * execute_in_process_context - reliably execute the routine with user context
3150  * @fn:		the function to execute
3151  * @ew:		guaranteed storage for the execute work structure (must
3152  *		be available when the work executes)
3153  *
3154  * Executes the function immediately if process context is available,
3155  * otherwise schedules the function for delayed execution.
3156  *
3157  * Return:	0 - function was executed
3158  *		1 - function was scheduled for execution
3159  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3160 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3161 {
3162 	if (!in_interrupt()) {
3163 		fn(&ew->work);
3164 		return 0;
3165 	}
3166 
3167 	INIT_WORK(&ew->work, fn);
3168 	schedule_work(&ew->work);
3169 
3170 	return 1;
3171 }
3172 EXPORT_SYMBOL_GPL(execute_in_process_context);
3173 
3174 /**
3175  * free_workqueue_attrs - free a workqueue_attrs
3176  * @attrs: workqueue_attrs to free
3177  *
3178  * Undo alloc_workqueue_attrs().
3179  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3180 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3181 {
3182 	if (attrs) {
3183 		free_cpumask_var(attrs->cpumask);
3184 		kfree(attrs);
3185 	}
3186 }
3187 
3188 /**
3189  * alloc_workqueue_attrs - allocate a workqueue_attrs
3190  * @gfp_mask: allocation mask to use
3191  *
3192  * Allocate a new workqueue_attrs, initialize with default settings and
3193  * return it.
3194  *
3195  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3196  */
alloc_workqueue_attrs(gfp_t gfp_mask)3197 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3198 {
3199 	struct workqueue_attrs *attrs;
3200 
3201 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3202 	if (!attrs)
3203 		goto fail;
3204 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3205 		goto fail;
3206 
3207 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3208 	return attrs;
3209 fail:
3210 	free_workqueue_attrs(attrs);
3211 	return NULL;
3212 }
3213 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3214 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3215 				 const struct workqueue_attrs *from)
3216 {
3217 	to->nice = from->nice;
3218 	cpumask_copy(to->cpumask, from->cpumask);
3219 	/*
3220 	 * Unlike hash and equality test, this function doesn't ignore
3221 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3222 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3223 	 */
3224 	to->no_numa = from->no_numa;
3225 }
3226 
3227 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3228 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3229 {
3230 	u32 hash = 0;
3231 
3232 	hash = jhash_1word(attrs->nice, hash);
3233 	hash = jhash(cpumask_bits(attrs->cpumask),
3234 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3235 	return hash;
3236 }
3237 
3238 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3239 static bool wqattrs_equal(const struct workqueue_attrs *a,
3240 			  const struct workqueue_attrs *b)
3241 {
3242 	if (a->nice != b->nice)
3243 		return false;
3244 	if (!cpumask_equal(a->cpumask, b->cpumask))
3245 		return false;
3246 	return true;
3247 }
3248 
3249 /**
3250  * init_worker_pool - initialize a newly zalloc'd worker_pool
3251  * @pool: worker_pool to initialize
3252  *
3253  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3254  *
3255  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3256  * inside @pool proper are initialized and put_unbound_pool() can be called
3257  * on @pool safely to release it.
3258  */
init_worker_pool(struct worker_pool * pool)3259 static int init_worker_pool(struct worker_pool *pool)
3260 {
3261 	spin_lock_init(&pool->lock);
3262 	pool->id = -1;
3263 	pool->cpu = -1;
3264 	pool->node = NUMA_NO_NODE;
3265 	pool->flags |= POOL_DISASSOCIATED;
3266 	pool->watchdog_ts = jiffies;
3267 	INIT_LIST_HEAD(&pool->worklist);
3268 	INIT_LIST_HEAD(&pool->idle_list);
3269 	hash_init(pool->busy_hash);
3270 
3271 	setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3272 			       (unsigned long)pool);
3273 
3274 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3275 		    (unsigned long)pool);
3276 
3277 	mutex_init(&pool->attach_mutex);
3278 	INIT_LIST_HEAD(&pool->workers);
3279 
3280 	ida_init(&pool->worker_ida);
3281 	INIT_HLIST_NODE(&pool->hash_node);
3282 	pool->refcnt = 1;
3283 
3284 	/* shouldn't fail above this point */
3285 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3286 	if (!pool->attrs)
3287 		return -ENOMEM;
3288 	return 0;
3289 }
3290 
rcu_free_wq(struct rcu_head * rcu)3291 static void rcu_free_wq(struct rcu_head *rcu)
3292 {
3293 	struct workqueue_struct *wq =
3294 		container_of(rcu, struct workqueue_struct, rcu);
3295 
3296 	if (!(wq->flags & WQ_UNBOUND))
3297 		free_percpu(wq->cpu_pwqs);
3298 	else
3299 		free_workqueue_attrs(wq->unbound_attrs);
3300 
3301 	kfree(wq->rescuer);
3302 	kfree(wq);
3303 }
3304 
rcu_free_pool(struct rcu_head * rcu)3305 static void rcu_free_pool(struct rcu_head *rcu)
3306 {
3307 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3308 
3309 	ida_destroy(&pool->worker_ida);
3310 	free_workqueue_attrs(pool->attrs);
3311 	kfree(pool);
3312 }
3313 
3314 /**
3315  * put_unbound_pool - put a worker_pool
3316  * @pool: worker_pool to put
3317  *
3318  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3319  * safe manner.  get_unbound_pool() calls this function on its failure path
3320  * and this function should be able to release pools which went through,
3321  * successfully or not, init_worker_pool().
3322  *
3323  * Should be called with wq_pool_mutex held.
3324  */
put_unbound_pool(struct worker_pool * pool)3325 static void put_unbound_pool(struct worker_pool *pool)
3326 {
3327 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3328 	struct worker *worker;
3329 
3330 	lockdep_assert_held(&wq_pool_mutex);
3331 
3332 	if (--pool->refcnt)
3333 		return;
3334 
3335 	/* sanity checks */
3336 	if (WARN_ON(!(pool->cpu < 0)) ||
3337 	    WARN_ON(!list_empty(&pool->worklist)))
3338 		return;
3339 
3340 	/* release id and unhash */
3341 	if (pool->id >= 0)
3342 		idr_remove(&worker_pool_idr, pool->id);
3343 	hash_del(&pool->hash_node);
3344 
3345 	/*
3346 	 * Become the manager and destroy all workers.  This prevents
3347 	 * @pool's workers from blocking on attach_mutex.  We're the last
3348 	 * manager and @pool gets freed with the flag set.
3349 	 */
3350 	spin_lock_irq(&pool->lock);
3351 	wait_event_lock_irq(wq_manager_wait,
3352 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3353 	pool->flags |= POOL_MANAGER_ACTIVE;
3354 
3355 	while ((worker = first_idle_worker(pool)))
3356 		destroy_worker(worker);
3357 	WARN_ON(pool->nr_workers || pool->nr_idle);
3358 	spin_unlock_irq(&pool->lock);
3359 
3360 	mutex_lock(&pool->attach_mutex);
3361 	if (!list_empty(&pool->workers))
3362 		pool->detach_completion = &detach_completion;
3363 	mutex_unlock(&pool->attach_mutex);
3364 
3365 	if (pool->detach_completion)
3366 		wait_for_completion(pool->detach_completion);
3367 
3368 	/* shut down the timers */
3369 	del_timer_sync(&pool->idle_timer);
3370 	del_timer_sync(&pool->mayday_timer);
3371 
3372 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3373 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3374 }
3375 
3376 /**
3377  * get_unbound_pool - get a worker_pool with the specified attributes
3378  * @attrs: the attributes of the worker_pool to get
3379  *
3380  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3381  * reference count and return it.  If there already is a matching
3382  * worker_pool, it will be used; otherwise, this function attempts to
3383  * create a new one.
3384  *
3385  * Should be called with wq_pool_mutex held.
3386  *
3387  * Return: On success, a worker_pool with the same attributes as @attrs.
3388  * On failure, %NULL.
3389  */
get_unbound_pool(const struct workqueue_attrs * attrs)3390 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3391 {
3392 	u32 hash = wqattrs_hash(attrs);
3393 	struct worker_pool *pool;
3394 	int node;
3395 	int target_node = NUMA_NO_NODE;
3396 
3397 	lockdep_assert_held(&wq_pool_mutex);
3398 
3399 	/* do we already have a matching pool? */
3400 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3401 		if (wqattrs_equal(pool->attrs, attrs)) {
3402 			pool->refcnt++;
3403 			return pool;
3404 		}
3405 	}
3406 
3407 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3408 	if (wq_numa_enabled) {
3409 		for_each_node(node) {
3410 			if (cpumask_subset(attrs->cpumask,
3411 					   wq_numa_possible_cpumask[node])) {
3412 				target_node = node;
3413 				break;
3414 			}
3415 		}
3416 	}
3417 
3418 	/* nope, create a new one */
3419 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3420 	if (!pool || init_worker_pool(pool) < 0)
3421 		goto fail;
3422 
3423 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3424 	copy_workqueue_attrs(pool->attrs, attrs);
3425 	pool->node = target_node;
3426 
3427 	/*
3428 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3429 	 * 'struct workqueue_attrs' comments for detail.
3430 	 */
3431 	pool->attrs->no_numa = false;
3432 
3433 	if (worker_pool_assign_id(pool) < 0)
3434 		goto fail;
3435 
3436 	/* create and start the initial worker */
3437 	if (wq_online && !create_worker(pool))
3438 		goto fail;
3439 
3440 	/* install */
3441 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3442 
3443 	return pool;
3444 fail:
3445 	if (pool)
3446 		put_unbound_pool(pool);
3447 	return NULL;
3448 }
3449 
rcu_free_pwq(struct rcu_head * rcu)3450 static void rcu_free_pwq(struct rcu_head *rcu)
3451 {
3452 	kmem_cache_free(pwq_cache,
3453 			container_of(rcu, struct pool_workqueue, rcu));
3454 }
3455 
3456 /*
3457  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3458  * and needs to be destroyed.
3459  */
pwq_unbound_release_workfn(struct work_struct * work)3460 static void pwq_unbound_release_workfn(struct work_struct *work)
3461 {
3462 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3463 						  unbound_release_work);
3464 	struct workqueue_struct *wq = pwq->wq;
3465 	struct worker_pool *pool = pwq->pool;
3466 	bool is_last;
3467 
3468 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3469 		return;
3470 
3471 	mutex_lock(&wq->mutex);
3472 	list_del_rcu(&pwq->pwqs_node);
3473 	is_last = list_empty(&wq->pwqs);
3474 	mutex_unlock(&wq->mutex);
3475 
3476 	mutex_lock(&wq_pool_mutex);
3477 	put_unbound_pool(pool);
3478 	mutex_unlock(&wq_pool_mutex);
3479 
3480 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3481 
3482 	/*
3483 	 * If we're the last pwq going away, @wq is already dead and no one
3484 	 * is gonna access it anymore.  Schedule RCU free.
3485 	 */
3486 	if (is_last)
3487 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3488 }
3489 
3490 /**
3491  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3492  * @pwq: target pool_workqueue
3493  *
3494  * If @pwq isn't freezing, set @pwq->max_active to the associated
3495  * workqueue's saved_max_active and activate delayed work items
3496  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3497  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3498 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3499 {
3500 	struct workqueue_struct *wq = pwq->wq;
3501 	bool freezable = wq->flags & WQ_FREEZABLE;
3502 	unsigned long flags;
3503 
3504 	/* for @wq->saved_max_active */
3505 	lockdep_assert_held(&wq->mutex);
3506 
3507 	/* fast exit for non-freezable wqs */
3508 	if (!freezable && pwq->max_active == wq->saved_max_active)
3509 		return;
3510 
3511 	/* this function can be called during early boot w/ irq disabled */
3512 	spin_lock_irqsave(&pwq->pool->lock, flags);
3513 
3514 	/*
3515 	 * During [un]freezing, the caller is responsible for ensuring that
3516 	 * this function is called at least once after @workqueue_freezing
3517 	 * is updated and visible.
3518 	 */
3519 	if (!freezable || !workqueue_freezing) {
3520 		pwq->max_active = wq->saved_max_active;
3521 
3522 		while (!list_empty(&pwq->delayed_works) &&
3523 		       pwq->nr_active < pwq->max_active)
3524 			pwq_activate_first_delayed(pwq);
3525 
3526 		/*
3527 		 * Need to kick a worker after thawed or an unbound wq's
3528 		 * max_active is bumped.  It's a slow path.  Do it always.
3529 		 */
3530 		wake_up_worker(pwq->pool);
3531 	} else {
3532 		pwq->max_active = 0;
3533 	}
3534 
3535 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3536 }
3537 
3538 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3539 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3540 		     struct worker_pool *pool)
3541 {
3542 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3543 
3544 	memset(pwq, 0, sizeof(*pwq));
3545 
3546 	pwq->pool = pool;
3547 	pwq->wq = wq;
3548 	pwq->flush_color = -1;
3549 	pwq->refcnt = 1;
3550 	INIT_LIST_HEAD(&pwq->delayed_works);
3551 	INIT_LIST_HEAD(&pwq->pwqs_node);
3552 	INIT_LIST_HEAD(&pwq->mayday_node);
3553 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3554 }
3555 
3556 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3557 static void link_pwq(struct pool_workqueue *pwq)
3558 {
3559 	struct workqueue_struct *wq = pwq->wq;
3560 
3561 	lockdep_assert_held(&wq->mutex);
3562 
3563 	/* may be called multiple times, ignore if already linked */
3564 	if (!list_empty(&pwq->pwqs_node))
3565 		return;
3566 
3567 	/* set the matching work_color */
3568 	pwq->work_color = wq->work_color;
3569 
3570 	/* sync max_active to the current setting */
3571 	pwq_adjust_max_active(pwq);
3572 
3573 	/* link in @pwq */
3574 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3575 }
3576 
3577 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3578 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3579 					const struct workqueue_attrs *attrs)
3580 {
3581 	struct worker_pool *pool;
3582 	struct pool_workqueue *pwq;
3583 
3584 	lockdep_assert_held(&wq_pool_mutex);
3585 
3586 	pool = get_unbound_pool(attrs);
3587 	if (!pool)
3588 		return NULL;
3589 
3590 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3591 	if (!pwq) {
3592 		put_unbound_pool(pool);
3593 		return NULL;
3594 	}
3595 
3596 	init_pwq(pwq, wq, pool);
3597 	return pwq;
3598 }
3599 
3600 /**
3601  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3602  * @attrs: the wq_attrs of the default pwq of the target workqueue
3603  * @node: the target NUMA node
3604  * @cpu_going_down: if >= 0, the CPU to consider as offline
3605  * @cpumask: outarg, the resulting cpumask
3606  *
3607  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3608  * @cpu_going_down is >= 0, that cpu is considered offline during
3609  * calculation.  The result is stored in @cpumask.
3610  *
3611  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3612  * enabled and @node has online CPUs requested by @attrs, the returned
3613  * cpumask is the intersection of the possible CPUs of @node and
3614  * @attrs->cpumask.
3615  *
3616  * The caller is responsible for ensuring that the cpumask of @node stays
3617  * stable.
3618  *
3619  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3620  * %false if equal.
3621  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3622 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3623 				 int cpu_going_down, cpumask_t *cpumask)
3624 {
3625 	if (!wq_numa_enabled || attrs->no_numa)
3626 		goto use_dfl;
3627 
3628 	/* does @node have any online CPUs @attrs wants? */
3629 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3630 	if (cpu_going_down >= 0)
3631 		cpumask_clear_cpu(cpu_going_down, cpumask);
3632 
3633 	if (cpumask_empty(cpumask))
3634 		goto use_dfl;
3635 
3636 	/* yeap, return possible CPUs in @node that @attrs wants */
3637 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3638 
3639 	if (cpumask_empty(cpumask)) {
3640 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3641 				"possible intersect\n");
3642 		return false;
3643 	}
3644 
3645 	return !cpumask_equal(cpumask, attrs->cpumask);
3646 
3647 use_dfl:
3648 	cpumask_copy(cpumask, attrs->cpumask);
3649 	return false;
3650 }
3651 
3652 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3653 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3654 						   int node,
3655 						   struct pool_workqueue *pwq)
3656 {
3657 	struct pool_workqueue *old_pwq;
3658 
3659 	lockdep_assert_held(&wq_pool_mutex);
3660 	lockdep_assert_held(&wq->mutex);
3661 
3662 	/* link_pwq() can handle duplicate calls */
3663 	link_pwq(pwq);
3664 
3665 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3666 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3667 	return old_pwq;
3668 }
3669 
3670 /* context to store the prepared attrs & pwqs before applying */
3671 struct apply_wqattrs_ctx {
3672 	struct workqueue_struct	*wq;		/* target workqueue */
3673 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3674 	struct list_head	list;		/* queued for batching commit */
3675 	struct pool_workqueue	*dfl_pwq;
3676 	struct pool_workqueue	*pwq_tbl[];
3677 };
3678 
3679 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3680 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3681 {
3682 	if (ctx) {
3683 		int node;
3684 
3685 		for_each_node(node)
3686 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3687 		put_pwq_unlocked(ctx->dfl_pwq);
3688 
3689 		free_workqueue_attrs(ctx->attrs);
3690 
3691 		kfree(ctx);
3692 	}
3693 }
3694 
3695 /* allocate the attrs and pwqs for later installation */
3696 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3697 apply_wqattrs_prepare(struct workqueue_struct *wq,
3698 		      const struct workqueue_attrs *attrs)
3699 {
3700 	struct apply_wqattrs_ctx *ctx;
3701 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3702 	int node;
3703 
3704 	lockdep_assert_held(&wq_pool_mutex);
3705 
3706 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3707 		      GFP_KERNEL);
3708 
3709 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3710 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3711 	if (!ctx || !new_attrs || !tmp_attrs)
3712 		goto out_free;
3713 
3714 	/*
3715 	 * Calculate the attrs of the default pwq.
3716 	 * If the user configured cpumask doesn't overlap with the
3717 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3718 	 */
3719 	copy_workqueue_attrs(new_attrs, attrs);
3720 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3721 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3722 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3723 
3724 	/*
3725 	 * We may create multiple pwqs with differing cpumasks.  Make a
3726 	 * copy of @new_attrs which will be modified and used to obtain
3727 	 * pools.
3728 	 */
3729 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3730 
3731 	/*
3732 	 * If something goes wrong during CPU up/down, we'll fall back to
3733 	 * the default pwq covering whole @attrs->cpumask.  Always create
3734 	 * it even if we don't use it immediately.
3735 	 */
3736 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3737 	if (!ctx->dfl_pwq)
3738 		goto out_free;
3739 
3740 	for_each_node(node) {
3741 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3742 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3743 			if (!ctx->pwq_tbl[node])
3744 				goto out_free;
3745 		} else {
3746 			ctx->dfl_pwq->refcnt++;
3747 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3748 		}
3749 	}
3750 
3751 	/* save the user configured attrs and sanitize it. */
3752 	copy_workqueue_attrs(new_attrs, attrs);
3753 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3754 	ctx->attrs = new_attrs;
3755 
3756 	ctx->wq = wq;
3757 	free_workqueue_attrs(tmp_attrs);
3758 	return ctx;
3759 
3760 out_free:
3761 	free_workqueue_attrs(tmp_attrs);
3762 	free_workqueue_attrs(new_attrs);
3763 	apply_wqattrs_cleanup(ctx);
3764 	return NULL;
3765 }
3766 
3767 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3768 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3769 {
3770 	int node;
3771 
3772 	/* all pwqs have been created successfully, let's install'em */
3773 	mutex_lock(&ctx->wq->mutex);
3774 
3775 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3776 
3777 	/* save the previous pwq and install the new one */
3778 	for_each_node(node)
3779 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3780 							  ctx->pwq_tbl[node]);
3781 
3782 	/* @dfl_pwq might not have been used, ensure it's linked */
3783 	link_pwq(ctx->dfl_pwq);
3784 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3785 
3786 	mutex_unlock(&ctx->wq->mutex);
3787 }
3788 
apply_wqattrs_lock(void)3789 static void apply_wqattrs_lock(void)
3790 {
3791 	/* CPUs should stay stable across pwq creations and installations */
3792 	get_online_cpus();
3793 	mutex_lock(&wq_pool_mutex);
3794 }
3795 
apply_wqattrs_unlock(void)3796 static void apply_wqattrs_unlock(void)
3797 {
3798 	mutex_unlock(&wq_pool_mutex);
3799 	put_online_cpus();
3800 }
3801 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3802 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3803 					const struct workqueue_attrs *attrs)
3804 {
3805 	struct apply_wqattrs_ctx *ctx;
3806 
3807 	/* only unbound workqueues can change attributes */
3808 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3809 		return -EINVAL;
3810 
3811 	/* creating multiple pwqs breaks ordering guarantee */
3812 	if (!list_empty(&wq->pwqs)) {
3813 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3814 			return -EINVAL;
3815 
3816 		wq->flags &= ~__WQ_ORDERED;
3817 	}
3818 
3819 	ctx = apply_wqattrs_prepare(wq, attrs);
3820 	if (!ctx)
3821 		return -ENOMEM;
3822 
3823 	/* the ctx has been prepared successfully, let's commit it */
3824 	apply_wqattrs_commit(ctx);
3825 	apply_wqattrs_cleanup(ctx);
3826 
3827 	return 0;
3828 }
3829 
3830 /**
3831  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3832  * @wq: the target workqueue
3833  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3834  *
3835  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3836  * machines, this function maps a separate pwq to each NUMA node with
3837  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3838  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3839  * items finish.  Note that a work item which repeatedly requeues itself
3840  * back-to-back will stay on its current pwq.
3841  *
3842  * Performs GFP_KERNEL allocations.
3843  *
3844  * Return: 0 on success and -errno on failure.
3845  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3846 int apply_workqueue_attrs(struct workqueue_struct *wq,
3847 			  const struct workqueue_attrs *attrs)
3848 {
3849 	int ret;
3850 
3851 	apply_wqattrs_lock();
3852 	ret = apply_workqueue_attrs_locked(wq, attrs);
3853 	apply_wqattrs_unlock();
3854 
3855 	return ret;
3856 }
3857 
3858 /**
3859  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3860  * @wq: the target workqueue
3861  * @cpu: the CPU coming up or going down
3862  * @online: whether @cpu is coming up or going down
3863  *
3864  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3865  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3866  * @wq accordingly.
3867  *
3868  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3869  * falls back to @wq->dfl_pwq which may not be optimal but is always
3870  * correct.
3871  *
3872  * Note that when the last allowed CPU of a NUMA node goes offline for a
3873  * workqueue with a cpumask spanning multiple nodes, the workers which were
3874  * already executing the work items for the workqueue will lose their CPU
3875  * affinity and may execute on any CPU.  This is similar to how per-cpu
3876  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3877  * affinity, it's the user's responsibility to flush the work item from
3878  * CPU_DOWN_PREPARE.
3879  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)3880 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3881 				   bool online)
3882 {
3883 	int node = cpu_to_node(cpu);
3884 	int cpu_off = online ? -1 : cpu;
3885 	struct pool_workqueue *old_pwq = NULL, *pwq;
3886 	struct workqueue_attrs *target_attrs;
3887 	cpumask_t *cpumask;
3888 
3889 	lockdep_assert_held(&wq_pool_mutex);
3890 
3891 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3892 	    wq->unbound_attrs->no_numa)
3893 		return;
3894 
3895 	/*
3896 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3897 	 * Let's use a preallocated one.  The following buf is protected by
3898 	 * CPU hotplug exclusion.
3899 	 */
3900 	target_attrs = wq_update_unbound_numa_attrs_buf;
3901 	cpumask = target_attrs->cpumask;
3902 
3903 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3904 	pwq = unbound_pwq_by_node(wq, node);
3905 
3906 	/*
3907 	 * Let's determine what needs to be done.  If the target cpumask is
3908 	 * different from the default pwq's, we need to compare it to @pwq's
3909 	 * and create a new one if they don't match.  If the target cpumask
3910 	 * equals the default pwq's, the default pwq should be used.
3911 	 */
3912 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3913 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3914 			return;
3915 	} else {
3916 		goto use_dfl_pwq;
3917 	}
3918 
3919 	/* create a new pwq */
3920 	pwq = alloc_unbound_pwq(wq, target_attrs);
3921 	if (!pwq) {
3922 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3923 			wq->name);
3924 		goto use_dfl_pwq;
3925 	}
3926 
3927 	/* Install the new pwq. */
3928 	mutex_lock(&wq->mutex);
3929 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3930 	goto out_unlock;
3931 
3932 use_dfl_pwq:
3933 	mutex_lock(&wq->mutex);
3934 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3935 	get_pwq(wq->dfl_pwq);
3936 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3937 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3938 out_unlock:
3939 	mutex_unlock(&wq->mutex);
3940 	put_pwq_unlocked(old_pwq);
3941 }
3942 
alloc_and_link_pwqs(struct workqueue_struct * wq)3943 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3944 {
3945 	bool highpri = wq->flags & WQ_HIGHPRI;
3946 	int cpu, ret;
3947 
3948 	if (!(wq->flags & WQ_UNBOUND)) {
3949 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3950 		if (!wq->cpu_pwqs)
3951 			return -ENOMEM;
3952 
3953 		for_each_possible_cpu(cpu) {
3954 			struct pool_workqueue *pwq =
3955 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3956 			struct worker_pool *cpu_pools =
3957 				per_cpu(cpu_worker_pools, cpu);
3958 
3959 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3960 
3961 			mutex_lock(&wq->mutex);
3962 			link_pwq(pwq);
3963 			mutex_unlock(&wq->mutex);
3964 		}
3965 		return 0;
3966 	} else if (wq->flags & __WQ_ORDERED) {
3967 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3968 		/* there should only be single pwq for ordering guarantee */
3969 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3970 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3971 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3972 		return ret;
3973 	} else {
3974 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3975 	}
3976 }
3977 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)3978 static int wq_clamp_max_active(int max_active, unsigned int flags,
3979 			       const char *name)
3980 {
3981 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3982 
3983 	if (max_active < 1 || max_active > lim)
3984 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3985 			max_active, name, 1, lim);
3986 
3987 	return clamp_val(max_active, 1, lim);
3988 }
3989 
__alloc_workqueue_key(const char * fmt,unsigned int flags,int max_active,struct lock_class_key * key,const char * lock_name,...)3990 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3991 					       unsigned int flags,
3992 					       int max_active,
3993 					       struct lock_class_key *key,
3994 					       const char *lock_name, ...)
3995 {
3996 	size_t tbl_size = 0;
3997 	va_list args;
3998 	struct workqueue_struct *wq;
3999 	struct pool_workqueue *pwq;
4000 
4001 	/*
4002 	 * Unbound && max_active == 1 used to imply ordered, which is no
4003 	 * longer the case on NUMA machines due to per-node pools.  While
4004 	 * alloc_ordered_workqueue() is the right way to create an ordered
4005 	 * workqueue, keep the previous behavior to avoid subtle breakages
4006 	 * on NUMA.
4007 	 */
4008 	if ((flags & WQ_UNBOUND) && max_active == 1)
4009 		flags |= __WQ_ORDERED;
4010 
4011 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4012 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4013 		flags |= WQ_UNBOUND;
4014 
4015 	/* allocate wq and format name */
4016 	if (flags & WQ_UNBOUND)
4017 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4018 
4019 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4020 	if (!wq)
4021 		return NULL;
4022 
4023 	if (flags & WQ_UNBOUND) {
4024 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4025 		if (!wq->unbound_attrs)
4026 			goto err_free_wq;
4027 	}
4028 
4029 	va_start(args, lock_name);
4030 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4031 	va_end(args);
4032 
4033 	max_active = max_active ?: WQ_DFL_ACTIVE;
4034 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4035 
4036 	/* init wq */
4037 	wq->flags = flags;
4038 	wq->saved_max_active = max_active;
4039 	mutex_init(&wq->mutex);
4040 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4041 	INIT_LIST_HEAD(&wq->pwqs);
4042 	INIT_LIST_HEAD(&wq->flusher_queue);
4043 	INIT_LIST_HEAD(&wq->flusher_overflow);
4044 	INIT_LIST_HEAD(&wq->maydays);
4045 
4046 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4047 	INIT_LIST_HEAD(&wq->list);
4048 
4049 	if (alloc_and_link_pwqs(wq) < 0)
4050 		goto err_free_wq;
4051 
4052 	/*
4053 	 * Workqueues which may be used during memory reclaim should
4054 	 * have a rescuer to guarantee forward progress.
4055 	 */
4056 	if (flags & WQ_MEM_RECLAIM) {
4057 		struct worker *rescuer;
4058 
4059 		rescuer = alloc_worker(NUMA_NO_NODE);
4060 		if (!rescuer)
4061 			goto err_destroy;
4062 
4063 		rescuer->rescue_wq = wq;
4064 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4065 					       wq->name);
4066 		if (IS_ERR(rescuer->task)) {
4067 			kfree(rescuer);
4068 			goto err_destroy;
4069 		}
4070 
4071 		wq->rescuer = rescuer;
4072 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
4073 		wake_up_process(rescuer->task);
4074 	}
4075 
4076 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4077 		goto err_destroy;
4078 
4079 	/*
4080 	 * wq_pool_mutex protects global freeze state and workqueues list.
4081 	 * Grab it, adjust max_active and add the new @wq to workqueues
4082 	 * list.
4083 	 */
4084 	mutex_lock(&wq_pool_mutex);
4085 
4086 	mutex_lock(&wq->mutex);
4087 	for_each_pwq(pwq, wq)
4088 		pwq_adjust_max_active(pwq);
4089 	mutex_unlock(&wq->mutex);
4090 
4091 	list_add_tail_rcu(&wq->list, &workqueues);
4092 
4093 	mutex_unlock(&wq_pool_mutex);
4094 
4095 	return wq;
4096 
4097 err_free_wq:
4098 	free_workqueue_attrs(wq->unbound_attrs);
4099 	kfree(wq);
4100 	return NULL;
4101 err_destroy:
4102 	destroy_workqueue(wq);
4103 	return NULL;
4104 }
4105 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4106 
4107 /**
4108  * destroy_workqueue - safely terminate a workqueue
4109  * @wq: target workqueue
4110  *
4111  * Safely destroy a workqueue. All work currently pending will be done first.
4112  */
destroy_workqueue(struct workqueue_struct * wq)4113 void destroy_workqueue(struct workqueue_struct *wq)
4114 {
4115 	struct pool_workqueue *pwq;
4116 	int node;
4117 
4118 	/*
4119 	 * Remove it from sysfs first so that sanity check failure doesn't
4120 	 * lead to sysfs name conflicts.
4121 	 */
4122 	workqueue_sysfs_unregister(wq);
4123 
4124 	/* drain it before proceeding with destruction */
4125 	drain_workqueue(wq);
4126 
4127 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4128 	if (wq->rescuer) {
4129 		struct worker *rescuer = wq->rescuer;
4130 
4131 		/* this prevents new queueing */
4132 		spin_lock_irq(&wq_mayday_lock);
4133 		wq->rescuer = NULL;
4134 		spin_unlock_irq(&wq_mayday_lock);
4135 
4136 		/* rescuer will empty maydays list before exiting */
4137 		kthread_stop(rescuer->task);
4138 		kfree(rescuer);
4139 	}
4140 
4141 	/* sanity checks */
4142 	mutex_lock(&wq->mutex);
4143 	for_each_pwq(pwq, wq) {
4144 		int i;
4145 
4146 		for (i = 0; i < WORK_NR_COLORS; i++) {
4147 			if (WARN_ON(pwq->nr_in_flight[i])) {
4148 				mutex_unlock(&wq->mutex);
4149 				show_workqueue_state();
4150 				return;
4151 			}
4152 		}
4153 
4154 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4155 		    WARN_ON(pwq->nr_active) ||
4156 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4157 			mutex_unlock(&wq->mutex);
4158 			show_workqueue_state();
4159 			return;
4160 		}
4161 	}
4162 	mutex_unlock(&wq->mutex);
4163 
4164 	/*
4165 	 * wq list is used to freeze wq, remove from list after
4166 	 * flushing is complete in case freeze races us.
4167 	 */
4168 	mutex_lock(&wq_pool_mutex);
4169 	list_del_rcu(&wq->list);
4170 	mutex_unlock(&wq_pool_mutex);
4171 
4172 	if (!(wq->flags & WQ_UNBOUND)) {
4173 		/*
4174 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4175 		 * schedule RCU free.
4176 		 */
4177 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4178 	} else {
4179 		/*
4180 		 * We're the sole accessor of @wq at this point.  Directly
4181 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4182 		 * @wq will be freed when the last pwq is released.
4183 		 */
4184 		for_each_node(node) {
4185 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4186 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4187 			put_pwq_unlocked(pwq);
4188 		}
4189 
4190 		/*
4191 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4192 		 * put.  Don't access it afterwards.
4193 		 */
4194 		pwq = wq->dfl_pwq;
4195 		wq->dfl_pwq = NULL;
4196 		put_pwq_unlocked(pwq);
4197 	}
4198 }
4199 EXPORT_SYMBOL_GPL(destroy_workqueue);
4200 
4201 /**
4202  * workqueue_set_max_active - adjust max_active of a workqueue
4203  * @wq: target workqueue
4204  * @max_active: new max_active value.
4205  *
4206  * Set max_active of @wq to @max_active.
4207  *
4208  * CONTEXT:
4209  * Don't call from IRQ context.
4210  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4211 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4212 {
4213 	struct pool_workqueue *pwq;
4214 
4215 	/* disallow meddling with max_active for ordered workqueues */
4216 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4217 		return;
4218 
4219 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4220 
4221 	mutex_lock(&wq->mutex);
4222 
4223 	wq->flags &= ~__WQ_ORDERED;
4224 	wq->saved_max_active = max_active;
4225 
4226 	for_each_pwq(pwq, wq)
4227 		pwq_adjust_max_active(pwq);
4228 
4229 	mutex_unlock(&wq->mutex);
4230 }
4231 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4232 
4233 /**
4234  * current_work - retrieve %current task's work struct
4235  *
4236  * Determine if %current task is a workqueue worker and what it's working on.
4237  * Useful to find out the context that the %current task is running in.
4238  *
4239  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4240  */
current_work(void)4241 struct work_struct *current_work(void)
4242 {
4243 	struct worker *worker = current_wq_worker();
4244 
4245 	return worker ? worker->current_work : NULL;
4246 }
4247 EXPORT_SYMBOL(current_work);
4248 
4249 /**
4250  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4251  *
4252  * Determine whether %current is a workqueue rescuer.  Can be used from
4253  * work functions to determine whether it's being run off the rescuer task.
4254  *
4255  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4256  */
current_is_workqueue_rescuer(void)4257 bool current_is_workqueue_rescuer(void)
4258 {
4259 	struct worker *worker = current_wq_worker();
4260 
4261 	return worker && worker->rescue_wq;
4262 }
4263 
4264 /**
4265  * workqueue_congested - test whether a workqueue is congested
4266  * @cpu: CPU in question
4267  * @wq: target workqueue
4268  *
4269  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4270  * no synchronization around this function and the test result is
4271  * unreliable and only useful as advisory hints or for debugging.
4272  *
4273  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4274  * Note that both per-cpu and unbound workqueues may be associated with
4275  * multiple pool_workqueues which have separate congested states.  A
4276  * workqueue being congested on one CPU doesn't mean the workqueue is also
4277  * contested on other CPUs / NUMA nodes.
4278  *
4279  * Return:
4280  * %true if congested, %false otherwise.
4281  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4282 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4283 {
4284 	struct pool_workqueue *pwq;
4285 	bool ret;
4286 
4287 	rcu_read_lock_sched();
4288 
4289 	if (cpu == WORK_CPU_UNBOUND)
4290 		cpu = smp_processor_id();
4291 
4292 	if (!(wq->flags & WQ_UNBOUND))
4293 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4294 	else
4295 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4296 
4297 	ret = !list_empty(&pwq->delayed_works);
4298 	rcu_read_unlock_sched();
4299 
4300 	return ret;
4301 }
4302 EXPORT_SYMBOL_GPL(workqueue_congested);
4303 
4304 /**
4305  * work_busy - test whether a work is currently pending or running
4306  * @work: the work to be tested
4307  *
4308  * Test whether @work is currently pending or running.  There is no
4309  * synchronization around this function and the test result is
4310  * unreliable and only useful as advisory hints or for debugging.
4311  *
4312  * Return:
4313  * OR'd bitmask of WORK_BUSY_* bits.
4314  */
work_busy(struct work_struct * work)4315 unsigned int work_busy(struct work_struct *work)
4316 {
4317 	struct worker_pool *pool;
4318 	unsigned long flags;
4319 	unsigned int ret = 0;
4320 
4321 	if (work_pending(work))
4322 		ret |= WORK_BUSY_PENDING;
4323 
4324 	local_irq_save(flags);
4325 	pool = get_work_pool(work);
4326 	if (pool) {
4327 		spin_lock(&pool->lock);
4328 		if (find_worker_executing_work(pool, work))
4329 			ret |= WORK_BUSY_RUNNING;
4330 		spin_unlock(&pool->lock);
4331 	}
4332 	local_irq_restore(flags);
4333 
4334 	return ret;
4335 }
4336 EXPORT_SYMBOL_GPL(work_busy);
4337 
4338 /**
4339  * set_worker_desc - set description for the current work item
4340  * @fmt: printf-style format string
4341  * @...: arguments for the format string
4342  *
4343  * This function can be called by a running work function to describe what
4344  * the work item is about.  If the worker task gets dumped, this
4345  * information will be printed out together to help debugging.  The
4346  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4347  */
set_worker_desc(const char * fmt,...)4348 void set_worker_desc(const char *fmt, ...)
4349 {
4350 	struct worker *worker = current_wq_worker();
4351 	va_list args;
4352 
4353 	if (worker) {
4354 		va_start(args, fmt);
4355 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4356 		va_end(args);
4357 		worker->desc_valid = true;
4358 	}
4359 }
4360 
4361 /**
4362  * print_worker_info - print out worker information and description
4363  * @log_lvl: the log level to use when printing
4364  * @task: target task
4365  *
4366  * If @task is a worker and currently executing a work item, print out the
4367  * name of the workqueue being serviced and worker description set with
4368  * set_worker_desc() by the currently executing work item.
4369  *
4370  * This function can be safely called on any task as long as the
4371  * task_struct itself is accessible.  While safe, this function isn't
4372  * synchronized and may print out mixups or garbages of limited length.
4373  */
print_worker_info(const char * log_lvl,struct task_struct * task)4374 void print_worker_info(const char *log_lvl, struct task_struct *task)
4375 {
4376 	work_func_t *fn = NULL;
4377 	char name[WQ_NAME_LEN] = { };
4378 	char desc[WORKER_DESC_LEN] = { };
4379 	struct pool_workqueue *pwq = NULL;
4380 	struct workqueue_struct *wq = NULL;
4381 	bool desc_valid = false;
4382 	struct worker *worker;
4383 
4384 	if (!(task->flags & PF_WQ_WORKER))
4385 		return;
4386 
4387 	/*
4388 	 * This function is called without any synchronization and @task
4389 	 * could be in any state.  Be careful with dereferences.
4390 	 */
4391 	worker = kthread_probe_data(task);
4392 
4393 	/*
4394 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4395 	 * the original last '\0' in case the original contains garbage.
4396 	 */
4397 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4398 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4399 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4400 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4401 
4402 	/* copy worker description */
4403 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4404 	if (desc_valid)
4405 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4406 
4407 	if (fn || name[0] || desc[0]) {
4408 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4409 		if (desc[0])
4410 			pr_cont(" (%s)", desc);
4411 		pr_cont("\n");
4412 	}
4413 }
4414 
pr_cont_pool_info(struct worker_pool * pool)4415 static void pr_cont_pool_info(struct worker_pool *pool)
4416 {
4417 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4418 	if (pool->node != NUMA_NO_NODE)
4419 		pr_cont(" node=%d", pool->node);
4420 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4421 }
4422 
pr_cont_work(bool comma,struct work_struct * work)4423 static void pr_cont_work(bool comma, struct work_struct *work)
4424 {
4425 	if (work->func == wq_barrier_func) {
4426 		struct wq_barrier *barr;
4427 
4428 		barr = container_of(work, struct wq_barrier, work);
4429 
4430 		pr_cont("%s BAR(%d)", comma ? "," : "",
4431 			task_pid_nr(barr->task));
4432 	} else {
4433 		pr_cont("%s %pf", comma ? "," : "", work->func);
4434 	}
4435 }
4436 
show_pwq(struct pool_workqueue * pwq)4437 static void show_pwq(struct pool_workqueue *pwq)
4438 {
4439 	struct worker_pool *pool = pwq->pool;
4440 	struct work_struct *work;
4441 	struct worker *worker;
4442 	bool has_in_flight = false, has_pending = false;
4443 	int bkt;
4444 
4445 	pr_info("  pwq %d:", pool->id);
4446 	pr_cont_pool_info(pool);
4447 
4448 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4449 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4450 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4451 
4452 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4453 		if (worker->current_pwq == pwq) {
4454 			has_in_flight = true;
4455 			break;
4456 		}
4457 	}
4458 	if (has_in_flight) {
4459 		bool comma = false;
4460 
4461 		pr_info("    in-flight:");
4462 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4463 			if (worker->current_pwq != pwq)
4464 				continue;
4465 
4466 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4467 				task_pid_nr(worker->task),
4468 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4469 				worker->current_func);
4470 			list_for_each_entry(work, &worker->scheduled, entry)
4471 				pr_cont_work(false, work);
4472 			comma = true;
4473 		}
4474 		pr_cont("\n");
4475 	}
4476 
4477 	list_for_each_entry(work, &pool->worklist, entry) {
4478 		if (get_work_pwq(work) == pwq) {
4479 			has_pending = true;
4480 			break;
4481 		}
4482 	}
4483 	if (has_pending) {
4484 		bool comma = false;
4485 
4486 		pr_info("    pending:");
4487 		list_for_each_entry(work, &pool->worklist, entry) {
4488 			if (get_work_pwq(work) != pwq)
4489 				continue;
4490 
4491 			pr_cont_work(comma, work);
4492 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4493 		}
4494 		pr_cont("\n");
4495 	}
4496 
4497 	if (!list_empty(&pwq->delayed_works)) {
4498 		bool comma = false;
4499 
4500 		pr_info("    delayed:");
4501 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4502 			pr_cont_work(comma, work);
4503 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4504 		}
4505 		pr_cont("\n");
4506 	}
4507 }
4508 
4509 /**
4510  * show_workqueue_state - dump workqueue state
4511  *
4512  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4513  * all busy workqueues and pools.
4514  */
show_workqueue_state(void)4515 void show_workqueue_state(void)
4516 {
4517 	struct workqueue_struct *wq;
4518 	struct worker_pool *pool;
4519 	unsigned long flags;
4520 	int pi;
4521 
4522 	rcu_read_lock_sched();
4523 
4524 	pr_info("Showing busy workqueues and worker pools:\n");
4525 
4526 	list_for_each_entry_rcu(wq, &workqueues, list) {
4527 		struct pool_workqueue *pwq;
4528 		bool idle = true;
4529 
4530 		for_each_pwq(pwq, wq) {
4531 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4532 				idle = false;
4533 				break;
4534 			}
4535 		}
4536 		if (idle)
4537 			continue;
4538 
4539 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4540 
4541 		for_each_pwq(pwq, wq) {
4542 			spin_lock_irqsave(&pwq->pool->lock, flags);
4543 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4544 				show_pwq(pwq);
4545 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4546 			/*
4547 			 * We could be printing a lot from atomic context, e.g.
4548 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4549 			 * hard lockup.
4550 			 */
4551 			touch_nmi_watchdog();
4552 		}
4553 	}
4554 
4555 	for_each_pool(pool, pi) {
4556 		struct worker *worker;
4557 		bool first = true;
4558 
4559 		spin_lock_irqsave(&pool->lock, flags);
4560 		if (pool->nr_workers == pool->nr_idle)
4561 			goto next_pool;
4562 
4563 		pr_info("pool %d:", pool->id);
4564 		pr_cont_pool_info(pool);
4565 		pr_cont(" hung=%us workers=%d",
4566 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4567 			pool->nr_workers);
4568 		if (pool->manager)
4569 			pr_cont(" manager: %d",
4570 				task_pid_nr(pool->manager->task));
4571 		list_for_each_entry(worker, &pool->idle_list, entry) {
4572 			pr_cont(" %s%d", first ? "idle: " : "",
4573 				task_pid_nr(worker->task));
4574 			first = false;
4575 		}
4576 		pr_cont("\n");
4577 	next_pool:
4578 		spin_unlock_irqrestore(&pool->lock, flags);
4579 		/*
4580 		 * We could be printing a lot from atomic context, e.g.
4581 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4582 		 * hard lockup.
4583 		 */
4584 		touch_nmi_watchdog();
4585 	}
4586 
4587 	rcu_read_unlock_sched();
4588 }
4589 
4590 /*
4591  * CPU hotplug.
4592  *
4593  * There are two challenges in supporting CPU hotplug.  Firstly, there
4594  * are a lot of assumptions on strong associations among work, pwq and
4595  * pool which make migrating pending and scheduled works very
4596  * difficult to implement without impacting hot paths.  Secondly,
4597  * worker pools serve mix of short, long and very long running works making
4598  * blocked draining impractical.
4599  *
4600  * This is solved by allowing the pools to be disassociated from the CPU
4601  * running as an unbound one and allowing it to be reattached later if the
4602  * cpu comes back online.
4603  */
4604 
wq_unbind_fn(struct work_struct * work)4605 static void wq_unbind_fn(struct work_struct *work)
4606 {
4607 	int cpu = smp_processor_id();
4608 	struct worker_pool *pool;
4609 	struct worker *worker;
4610 
4611 	for_each_cpu_worker_pool(pool, cpu) {
4612 		mutex_lock(&pool->attach_mutex);
4613 		spin_lock_irq(&pool->lock);
4614 
4615 		/*
4616 		 * We've blocked all attach/detach operations. Make all workers
4617 		 * unbound and set DISASSOCIATED.  Before this, all workers
4618 		 * except for the ones which are still executing works from
4619 		 * before the last CPU down must be on the cpu.  After
4620 		 * this, they may become diasporas.
4621 		 */
4622 		for_each_pool_worker(worker, pool)
4623 			worker->flags |= WORKER_UNBOUND;
4624 
4625 		pool->flags |= POOL_DISASSOCIATED;
4626 
4627 		spin_unlock_irq(&pool->lock);
4628 		mutex_unlock(&pool->attach_mutex);
4629 
4630 		/*
4631 		 * Call schedule() so that we cross rq->lock and thus can
4632 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4633 		 * This is necessary as scheduler callbacks may be invoked
4634 		 * from other cpus.
4635 		 */
4636 		schedule();
4637 
4638 		/*
4639 		 * Sched callbacks are disabled now.  Zap nr_running.
4640 		 * After this, nr_running stays zero and need_more_worker()
4641 		 * and keep_working() are always true as long as the
4642 		 * worklist is not empty.  This pool now behaves as an
4643 		 * unbound (in terms of concurrency management) pool which
4644 		 * are served by workers tied to the pool.
4645 		 */
4646 		atomic_set(&pool->nr_running, 0);
4647 
4648 		/*
4649 		 * With concurrency management just turned off, a busy
4650 		 * worker blocking could lead to lengthy stalls.  Kick off
4651 		 * unbound chain execution of currently pending work items.
4652 		 */
4653 		spin_lock_irq(&pool->lock);
4654 		wake_up_worker(pool);
4655 		spin_unlock_irq(&pool->lock);
4656 	}
4657 }
4658 
4659 /**
4660  * rebind_workers - rebind all workers of a pool to the associated CPU
4661  * @pool: pool of interest
4662  *
4663  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4664  */
rebind_workers(struct worker_pool * pool)4665 static void rebind_workers(struct worker_pool *pool)
4666 {
4667 	struct worker *worker;
4668 
4669 	lockdep_assert_held(&pool->attach_mutex);
4670 
4671 	/*
4672 	 * Restore CPU affinity of all workers.  As all idle workers should
4673 	 * be on the run-queue of the associated CPU before any local
4674 	 * wake-ups for concurrency management happen, restore CPU affinity
4675 	 * of all workers first and then clear UNBOUND.  As we're called
4676 	 * from CPU_ONLINE, the following shouldn't fail.
4677 	 */
4678 	for_each_pool_worker(worker, pool)
4679 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4680 						  pool->attrs->cpumask) < 0);
4681 
4682 	spin_lock_irq(&pool->lock);
4683 
4684 	/*
4685 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4686 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4687 	 * being reworked and this can go away in time.
4688 	 */
4689 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4690 		spin_unlock_irq(&pool->lock);
4691 		return;
4692 	}
4693 
4694 	pool->flags &= ~POOL_DISASSOCIATED;
4695 
4696 	for_each_pool_worker(worker, pool) {
4697 		unsigned int worker_flags = worker->flags;
4698 
4699 		/*
4700 		 * A bound idle worker should actually be on the runqueue
4701 		 * of the associated CPU for local wake-ups targeting it to
4702 		 * work.  Kick all idle workers so that they migrate to the
4703 		 * associated CPU.  Doing this in the same loop as
4704 		 * replacing UNBOUND with REBOUND is safe as no worker will
4705 		 * be bound before @pool->lock is released.
4706 		 */
4707 		if (worker_flags & WORKER_IDLE)
4708 			wake_up_process(worker->task);
4709 
4710 		/*
4711 		 * We want to clear UNBOUND but can't directly call
4712 		 * worker_clr_flags() or adjust nr_running.  Atomically
4713 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4714 		 * @worker will clear REBOUND using worker_clr_flags() when
4715 		 * it initiates the next execution cycle thus restoring
4716 		 * concurrency management.  Note that when or whether
4717 		 * @worker clears REBOUND doesn't affect correctness.
4718 		 *
4719 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4720 		 * tested without holding any lock in
4721 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4722 		 * fail incorrectly leading to premature concurrency
4723 		 * management operations.
4724 		 */
4725 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4726 		worker_flags |= WORKER_REBOUND;
4727 		worker_flags &= ~WORKER_UNBOUND;
4728 		ACCESS_ONCE(worker->flags) = worker_flags;
4729 	}
4730 
4731 	spin_unlock_irq(&pool->lock);
4732 }
4733 
4734 /**
4735  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4736  * @pool: unbound pool of interest
4737  * @cpu: the CPU which is coming up
4738  *
4739  * An unbound pool may end up with a cpumask which doesn't have any online
4740  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4741  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4742  * online CPU before, cpus_allowed of all its workers should be restored.
4743  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)4744 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4745 {
4746 	static cpumask_t cpumask;
4747 	struct worker *worker;
4748 
4749 	lockdep_assert_held(&pool->attach_mutex);
4750 
4751 	/* is @cpu allowed for @pool? */
4752 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4753 		return;
4754 
4755 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4756 
4757 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4758 	for_each_pool_worker(worker, pool)
4759 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4760 }
4761 
workqueue_prepare_cpu(unsigned int cpu)4762 int workqueue_prepare_cpu(unsigned int cpu)
4763 {
4764 	struct worker_pool *pool;
4765 
4766 	for_each_cpu_worker_pool(pool, cpu) {
4767 		if (pool->nr_workers)
4768 			continue;
4769 		if (!create_worker(pool))
4770 			return -ENOMEM;
4771 	}
4772 	return 0;
4773 }
4774 
workqueue_online_cpu(unsigned int cpu)4775 int workqueue_online_cpu(unsigned int cpu)
4776 {
4777 	struct worker_pool *pool;
4778 	struct workqueue_struct *wq;
4779 	int pi;
4780 
4781 	mutex_lock(&wq_pool_mutex);
4782 
4783 	for_each_pool(pool, pi) {
4784 		mutex_lock(&pool->attach_mutex);
4785 
4786 		if (pool->cpu == cpu)
4787 			rebind_workers(pool);
4788 		else if (pool->cpu < 0)
4789 			restore_unbound_workers_cpumask(pool, cpu);
4790 
4791 		mutex_unlock(&pool->attach_mutex);
4792 	}
4793 
4794 	/* update NUMA affinity of unbound workqueues */
4795 	list_for_each_entry(wq, &workqueues, list)
4796 		wq_update_unbound_numa(wq, cpu, true);
4797 
4798 	mutex_unlock(&wq_pool_mutex);
4799 	return 0;
4800 }
4801 
workqueue_offline_cpu(unsigned int cpu)4802 int workqueue_offline_cpu(unsigned int cpu)
4803 {
4804 	struct work_struct unbind_work;
4805 	struct workqueue_struct *wq;
4806 
4807 	/* unbinding per-cpu workers should happen on the local CPU */
4808 	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4809 	queue_work_on(cpu, system_highpri_wq, &unbind_work);
4810 
4811 	/* update NUMA affinity of unbound workqueues */
4812 	mutex_lock(&wq_pool_mutex);
4813 	list_for_each_entry(wq, &workqueues, list)
4814 		wq_update_unbound_numa(wq, cpu, false);
4815 	mutex_unlock(&wq_pool_mutex);
4816 
4817 	/* wait for per-cpu unbinding to finish */
4818 	flush_work(&unbind_work);
4819 	destroy_work_on_stack(&unbind_work);
4820 	return 0;
4821 }
4822 
4823 #ifdef CONFIG_SMP
4824 
4825 struct work_for_cpu {
4826 	struct work_struct work;
4827 	long (*fn)(void *);
4828 	void *arg;
4829 	long ret;
4830 };
4831 
work_for_cpu_fn(struct work_struct * work)4832 static void work_for_cpu_fn(struct work_struct *work)
4833 {
4834 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4835 
4836 	wfc->ret = wfc->fn(wfc->arg);
4837 }
4838 
4839 /**
4840  * work_on_cpu - run a function in thread context on a particular cpu
4841  * @cpu: the cpu to run on
4842  * @fn: the function to run
4843  * @arg: the function arg
4844  *
4845  * It is up to the caller to ensure that the cpu doesn't go offline.
4846  * The caller must not hold any locks which would prevent @fn from completing.
4847  *
4848  * Return: The value @fn returns.
4849  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)4850 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4851 {
4852 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4853 
4854 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4855 	schedule_work_on(cpu, &wfc.work);
4856 	flush_work(&wfc.work);
4857 	destroy_work_on_stack(&wfc.work);
4858 	return wfc.ret;
4859 }
4860 EXPORT_SYMBOL_GPL(work_on_cpu);
4861 
4862 /**
4863  * work_on_cpu_safe - run a function in thread context on a particular cpu
4864  * @cpu: the cpu to run on
4865  * @fn:  the function to run
4866  * @arg: the function argument
4867  *
4868  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4869  * any locks which would prevent @fn from completing.
4870  *
4871  * Return: The value @fn returns.
4872  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)4873 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4874 {
4875 	long ret = -ENODEV;
4876 
4877 	get_online_cpus();
4878 	if (cpu_online(cpu))
4879 		ret = work_on_cpu(cpu, fn, arg);
4880 	put_online_cpus();
4881 	return ret;
4882 }
4883 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4884 #endif /* CONFIG_SMP */
4885 
4886 #ifdef CONFIG_FREEZER
4887 
4888 /**
4889  * freeze_workqueues_begin - begin freezing workqueues
4890  *
4891  * Start freezing workqueues.  After this function returns, all freezable
4892  * workqueues will queue new works to their delayed_works list instead of
4893  * pool->worklist.
4894  *
4895  * CONTEXT:
4896  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4897  */
freeze_workqueues_begin(void)4898 void freeze_workqueues_begin(void)
4899 {
4900 	struct workqueue_struct *wq;
4901 	struct pool_workqueue *pwq;
4902 
4903 	mutex_lock(&wq_pool_mutex);
4904 
4905 	WARN_ON_ONCE(workqueue_freezing);
4906 	workqueue_freezing = true;
4907 
4908 	list_for_each_entry(wq, &workqueues, list) {
4909 		mutex_lock(&wq->mutex);
4910 		for_each_pwq(pwq, wq)
4911 			pwq_adjust_max_active(pwq);
4912 		mutex_unlock(&wq->mutex);
4913 	}
4914 
4915 	mutex_unlock(&wq_pool_mutex);
4916 }
4917 
4918 /**
4919  * freeze_workqueues_busy - are freezable workqueues still busy?
4920  *
4921  * Check whether freezing is complete.  This function must be called
4922  * between freeze_workqueues_begin() and thaw_workqueues().
4923  *
4924  * CONTEXT:
4925  * Grabs and releases wq_pool_mutex.
4926  *
4927  * Return:
4928  * %true if some freezable workqueues are still busy.  %false if freezing
4929  * is complete.
4930  */
freeze_workqueues_busy(void)4931 bool freeze_workqueues_busy(void)
4932 {
4933 	bool busy = false;
4934 	struct workqueue_struct *wq;
4935 	struct pool_workqueue *pwq;
4936 
4937 	mutex_lock(&wq_pool_mutex);
4938 
4939 	WARN_ON_ONCE(!workqueue_freezing);
4940 
4941 	list_for_each_entry(wq, &workqueues, list) {
4942 		if (!(wq->flags & WQ_FREEZABLE))
4943 			continue;
4944 		/*
4945 		 * nr_active is monotonically decreasing.  It's safe
4946 		 * to peek without lock.
4947 		 */
4948 		rcu_read_lock_sched();
4949 		for_each_pwq(pwq, wq) {
4950 			WARN_ON_ONCE(pwq->nr_active < 0);
4951 			if (pwq->nr_active) {
4952 				busy = true;
4953 				rcu_read_unlock_sched();
4954 				goto out_unlock;
4955 			}
4956 		}
4957 		rcu_read_unlock_sched();
4958 	}
4959 out_unlock:
4960 	mutex_unlock(&wq_pool_mutex);
4961 	return busy;
4962 }
4963 
4964 /**
4965  * thaw_workqueues - thaw workqueues
4966  *
4967  * Thaw workqueues.  Normal queueing is restored and all collected
4968  * frozen works are transferred to their respective pool worklists.
4969  *
4970  * CONTEXT:
4971  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4972  */
thaw_workqueues(void)4973 void thaw_workqueues(void)
4974 {
4975 	struct workqueue_struct *wq;
4976 	struct pool_workqueue *pwq;
4977 
4978 	mutex_lock(&wq_pool_mutex);
4979 
4980 	if (!workqueue_freezing)
4981 		goto out_unlock;
4982 
4983 	workqueue_freezing = false;
4984 
4985 	/* restore max_active and repopulate worklist */
4986 	list_for_each_entry(wq, &workqueues, list) {
4987 		mutex_lock(&wq->mutex);
4988 		for_each_pwq(pwq, wq)
4989 			pwq_adjust_max_active(pwq);
4990 		mutex_unlock(&wq->mutex);
4991 	}
4992 
4993 out_unlock:
4994 	mutex_unlock(&wq_pool_mutex);
4995 }
4996 #endif /* CONFIG_FREEZER */
4997 
workqueue_apply_unbound_cpumask(void)4998 static int workqueue_apply_unbound_cpumask(void)
4999 {
5000 	LIST_HEAD(ctxs);
5001 	int ret = 0;
5002 	struct workqueue_struct *wq;
5003 	struct apply_wqattrs_ctx *ctx, *n;
5004 
5005 	lockdep_assert_held(&wq_pool_mutex);
5006 
5007 	list_for_each_entry(wq, &workqueues, list) {
5008 		if (!(wq->flags & WQ_UNBOUND))
5009 			continue;
5010 		/* creating multiple pwqs breaks ordering guarantee */
5011 		if (wq->flags & __WQ_ORDERED)
5012 			continue;
5013 
5014 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5015 		if (!ctx) {
5016 			ret = -ENOMEM;
5017 			break;
5018 		}
5019 
5020 		list_add_tail(&ctx->list, &ctxs);
5021 	}
5022 
5023 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5024 		if (!ret)
5025 			apply_wqattrs_commit(ctx);
5026 		apply_wqattrs_cleanup(ctx);
5027 	}
5028 
5029 	return ret;
5030 }
5031 
5032 /**
5033  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5034  *  @cpumask: the cpumask to set
5035  *
5036  *  The low-level workqueues cpumask is a global cpumask that limits
5037  *  the affinity of all unbound workqueues.  This function check the @cpumask
5038  *  and apply it to all unbound workqueues and updates all pwqs of them.
5039  *
5040  *  Retun:	0	- Success
5041  *  		-EINVAL	- Invalid @cpumask
5042  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5043  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5044 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5045 {
5046 	int ret = -EINVAL;
5047 	cpumask_var_t saved_cpumask;
5048 
5049 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5050 		return -ENOMEM;
5051 
5052 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5053 	if (!cpumask_empty(cpumask)) {
5054 		apply_wqattrs_lock();
5055 
5056 		/* save the old wq_unbound_cpumask. */
5057 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5058 
5059 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5060 		cpumask_copy(wq_unbound_cpumask, cpumask);
5061 		ret = workqueue_apply_unbound_cpumask();
5062 
5063 		/* restore the wq_unbound_cpumask when failed. */
5064 		if (ret < 0)
5065 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5066 
5067 		apply_wqattrs_unlock();
5068 	}
5069 
5070 	free_cpumask_var(saved_cpumask);
5071 	return ret;
5072 }
5073 
5074 #ifdef CONFIG_SYSFS
5075 /*
5076  * Workqueues with WQ_SYSFS flag set is visible to userland via
5077  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5078  * following attributes.
5079  *
5080  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5081  *  max_active	RW int	: maximum number of in-flight work items
5082  *
5083  * Unbound workqueues have the following extra attributes.
5084  *
5085  *  id		RO int	: the associated pool ID
5086  *  nice	RW int	: nice value of the workers
5087  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5088  */
5089 struct wq_device {
5090 	struct workqueue_struct		*wq;
5091 	struct device			dev;
5092 };
5093 
dev_to_wq(struct device * dev)5094 static struct workqueue_struct *dev_to_wq(struct device *dev)
5095 {
5096 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5097 
5098 	return wq_dev->wq;
5099 }
5100 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5101 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5102 			    char *buf)
5103 {
5104 	struct workqueue_struct *wq = dev_to_wq(dev);
5105 
5106 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5107 }
5108 static DEVICE_ATTR_RO(per_cpu);
5109 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5110 static ssize_t max_active_show(struct device *dev,
5111 			       struct device_attribute *attr, char *buf)
5112 {
5113 	struct workqueue_struct *wq = dev_to_wq(dev);
5114 
5115 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5116 }
5117 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5118 static ssize_t max_active_store(struct device *dev,
5119 				struct device_attribute *attr, const char *buf,
5120 				size_t count)
5121 {
5122 	struct workqueue_struct *wq = dev_to_wq(dev);
5123 	int val;
5124 
5125 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5126 		return -EINVAL;
5127 
5128 	workqueue_set_max_active(wq, val);
5129 	return count;
5130 }
5131 static DEVICE_ATTR_RW(max_active);
5132 
5133 static struct attribute *wq_sysfs_attrs[] = {
5134 	&dev_attr_per_cpu.attr,
5135 	&dev_attr_max_active.attr,
5136 	NULL,
5137 };
5138 ATTRIBUTE_GROUPS(wq_sysfs);
5139 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5140 static ssize_t wq_pool_ids_show(struct device *dev,
5141 				struct device_attribute *attr, char *buf)
5142 {
5143 	struct workqueue_struct *wq = dev_to_wq(dev);
5144 	const char *delim = "";
5145 	int node, written = 0;
5146 
5147 	rcu_read_lock_sched();
5148 	for_each_node(node) {
5149 		written += scnprintf(buf + written, PAGE_SIZE - written,
5150 				     "%s%d:%d", delim, node,
5151 				     unbound_pwq_by_node(wq, node)->pool->id);
5152 		delim = " ";
5153 	}
5154 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5155 	rcu_read_unlock_sched();
5156 
5157 	return written;
5158 }
5159 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5160 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5161 			    char *buf)
5162 {
5163 	struct workqueue_struct *wq = dev_to_wq(dev);
5164 	int written;
5165 
5166 	mutex_lock(&wq->mutex);
5167 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5168 	mutex_unlock(&wq->mutex);
5169 
5170 	return written;
5171 }
5172 
5173 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5174 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5175 {
5176 	struct workqueue_attrs *attrs;
5177 
5178 	lockdep_assert_held(&wq_pool_mutex);
5179 
5180 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5181 	if (!attrs)
5182 		return NULL;
5183 
5184 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5185 	return attrs;
5186 }
5187 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5188 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5189 			     const char *buf, size_t count)
5190 {
5191 	struct workqueue_struct *wq = dev_to_wq(dev);
5192 	struct workqueue_attrs *attrs;
5193 	int ret = -ENOMEM;
5194 
5195 	apply_wqattrs_lock();
5196 
5197 	attrs = wq_sysfs_prep_attrs(wq);
5198 	if (!attrs)
5199 		goto out_unlock;
5200 
5201 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5202 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5203 		ret = apply_workqueue_attrs_locked(wq, attrs);
5204 	else
5205 		ret = -EINVAL;
5206 
5207 out_unlock:
5208 	apply_wqattrs_unlock();
5209 	free_workqueue_attrs(attrs);
5210 	return ret ?: count;
5211 }
5212 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5213 static ssize_t wq_cpumask_show(struct device *dev,
5214 			       struct device_attribute *attr, char *buf)
5215 {
5216 	struct workqueue_struct *wq = dev_to_wq(dev);
5217 	int written;
5218 
5219 	mutex_lock(&wq->mutex);
5220 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5221 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5222 	mutex_unlock(&wq->mutex);
5223 	return written;
5224 }
5225 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5226 static ssize_t wq_cpumask_store(struct device *dev,
5227 				struct device_attribute *attr,
5228 				const char *buf, size_t count)
5229 {
5230 	struct workqueue_struct *wq = dev_to_wq(dev);
5231 	struct workqueue_attrs *attrs;
5232 	int ret = -ENOMEM;
5233 
5234 	apply_wqattrs_lock();
5235 
5236 	attrs = wq_sysfs_prep_attrs(wq);
5237 	if (!attrs)
5238 		goto out_unlock;
5239 
5240 	ret = cpumask_parse(buf, attrs->cpumask);
5241 	if (!ret)
5242 		ret = apply_workqueue_attrs_locked(wq, attrs);
5243 
5244 out_unlock:
5245 	apply_wqattrs_unlock();
5246 	free_workqueue_attrs(attrs);
5247 	return ret ?: count;
5248 }
5249 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5250 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5251 			    char *buf)
5252 {
5253 	struct workqueue_struct *wq = dev_to_wq(dev);
5254 	int written;
5255 
5256 	mutex_lock(&wq->mutex);
5257 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5258 			    !wq->unbound_attrs->no_numa);
5259 	mutex_unlock(&wq->mutex);
5260 
5261 	return written;
5262 }
5263 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5264 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5265 			     const char *buf, size_t count)
5266 {
5267 	struct workqueue_struct *wq = dev_to_wq(dev);
5268 	struct workqueue_attrs *attrs;
5269 	int v, ret = -ENOMEM;
5270 
5271 	apply_wqattrs_lock();
5272 
5273 	attrs = wq_sysfs_prep_attrs(wq);
5274 	if (!attrs)
5275 		goto out_unlock;
5276 
5277 	ret = -EINVAL;
5278 	if (sscanf(buf, "%d", &v) == 1) {
5279 		attrs->no_numa = !v;
5280 		ret = apply_workqueue_attrs_locked(wq, attrs);
5281 	}
5282 
5283 out_unlock:
5284 	apply_wqattrs_unlock();
5285 	free_workqueue_attrs(attrs);
5286 	return ret ?: count;
5287 }
5288 
5289 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5290 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5291 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5292 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5293 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5294 	__ATTR_NULL,
5295 };
5296 
5297 static struct bus_type wq_subsys = {
5298 	.name				= "workqueue",
5299 	.dev_groups			= wq_sysfs_groups,
5300 };
5301 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5302 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5303 		struct device_attribute *attr, char *buf)
5304 {
5305 	int written;
5306 
5307 	mutex_lock(&wq_pool_mutex);
5308 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5309 			    cpumask_pr_args(wq_unbound_cpumask));
5310 	mutex_unlock(&wq_pool_mutex);
5311 
5312 	return written;
5313 }
5314 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5315 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5316 		struct device_attribute *attr, const char *buf, size_t count)
5317 {
5318 	cpumask_var_t cpumask;
5319 	int ret;
5320 
5321 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5322 		return -ENOMEM;
5323 
5324 	ret = cpumask_parse(buf, cpumask);
5325 	if (!ret)
5326 		ret = workqueue_set_unbound_cpumask(cpumask);
5327 
5328 	free_cpumask_var(cpumask);
5329 	return ret ? ret : count;
5330 }
5331 
5332 static struct device_attribute wq_sysfs_cpumask_attr =
5333 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5334 	       wq_unbound_cpumask_store);
5335 
wq_sysfs_init(void)5336 static int __init wq_sysfs_init(void)
5337 {
5338 	int err;
5339 
5340 	err = subsys_virtual_register(&wq_subsys, NULL);
5341 	if (err)
5342 		return err;
5343 
5344 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5345 }
5346 core_initcall(wq_sysfs_init);
5347 
wq_device_release(struct device * dev)5348 static void wq_device_release(struct device *dev)
5349 {
5350 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5351 
5352 	kfree(wq_dev);
5353 }
5354 
5355 /**
5356  * workqueue_sysfs_register - make a workqueue visible in sysfs
5357  * @wq: the workqueue to register
5358  *
5359  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5360  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5361  * which is the preferred method.
5362  *
5363  * Workqueue user should use this function directly iff it wants to apply
5364  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5365  * apply_workqueue_attrs() may race against userland updating the
5366  * attributes.
5367  *
5368  * Return: 0 on success, -errno on failure.
5369  */
workqueue_sysfs_register(struct workqueue_struct * wq)5370 int workqueue_sysfs_register(struct workqueue_struct *wq)
5371 {
5372 	struct wq_device *wq_dev;
5373 	int ret;
5374 
5375 	/*
5376 	 * Adjusting max_active or creating new pwqs by applying
5377 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5378 	 * workqueues.
5379 	 */
5380 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5381 		return -EINVAL;
5382 
5383 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5384 	if (!wq_dev)
5385 		return -ENOMEM;
5386 
5387 	wq_dev->wq = wq;
5388 	wq_dev->dev.bus = &wq_subsys;
5389 	wq_dev->dev.release = wq_device_release;
5390 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5391 
5392 	/*
5393 	 * unbound_attrs are created separately.  Suppress uevent until
5394 	 * everything is ready.
5395 	 */
5396 	dev_set_uevent_suppress(&wq_dev->dev, true);
5397 
5398 	ret = device_register(&wq_dev->dev);
5399 	if (ret) {
5400 		put_device(&wq_dev->dev);
5401 		wq->wq_dev = NULL;
5402 		return ret;
5403 	}
5404 
5405 	if (wq->flags & WQ_UNBOUND) {
5406 		struct device_attribute *attr;
5407 
5408 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5409 			ret = device_create_file(&wq_dev->dev, attr);
5410 			if (ret) {
5411 				device_unregister(&wq_dev->dev);
5412 				wq->wq_dev = NULL;
5413 				return ret;
5414 			}
5415 		}
5416 	}
5417 
5418 	dev_set_uevent_suppress(&wq_dev->dev, false);
5419 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5420 	return 0;
5421 }
5422 
5423 /**
5424  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5425  * @wq: the workqueue to unregister
5426  *
5427  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5428  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5429 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5430 {
5431 	struct wq_device *wq_dev = wq->wq_dev;
5432 
5433 	if (!wq->wq_dev)
5434 		return;
5435 
5436 	wq->wq_dev = NULL;
5437 	device_unregister(&wq_dev->dev);
5438 }
5439 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5440 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5441 #endif	/* CONFIG_SYSFS */
5442 
5443 /*
5444  * Workqueue watchdog.
5445  *
5446  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5447  * flush dependency, a concurrency managed work item which stays RUNNING
5448  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5449  * usual warning mechanisms don't trigger and internal workqueue state is
5450  * largely opaque.
5451  *
5452  * Workqueue watchdog monitors all worker pools periodically and dumps
5453  * state if some pools failed to make forward progress for a while where
5454  * forward progress is defined as the first item on ->worklist changing.
5455  *
5456  * This mechanism is controlled through the kernel parameter
5457  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5458  * corresponding sysfs parameter file.
5459  */
5460 #ifdef CONFIG_WQ_WATCHDOG
5461 
5462 static void wq_watchdog_timer_fn(unsigned long data);
5463 
5464 static unsigned long wq_watchdog_thresh = 30;
5465 static struct timer_list wq_watchdog_timer =
5466 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5467 
5468 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5469 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5470 
wq_watchdog_reset_touched(void)5471 static void wq_watchdog_reset_touched(void)
5472 {
5473 	int cpu;
5474 
5475 	wq_watchdog_touched = jiffies;
5476 	for_each_possible_cpu(cpu)
5477 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5478 }
5479 
wq_watchdog_timer_fn(unsigned long data)5480 static void wq_watchdog_timer_fn(unsigned long data)
5481 {
5482 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5483 	bool lockup_detected = false;
5484 	struct worker_pool *pool;
5485 	int pi;
5486 
5487 	if (!thresh)
5488 		return;
5489 
5490 	rcu_read_lock();
5491 
5492 	for_each_pool(pool, pi) {
5493 		unsigned long pool_ts, touched, ts;
5494 
5495 		if (list_empty(&pool->worklist))
5496 			continue;
5497 
5498 		/* get the latest of pool and touched timestamps */
5499 		pool_ts = READ_ONCE(pool->watchdog_ts);
5500 		touched = READ_ONCE(wq_watchdog_touched);
5501 
5502 		if (time_after(pool_ts, touched))
5503 			ts = pool_ts;
5504 		else
5505 			ts = touched;
5506 
5507 		if (pool->cpu >= 0) {
5508 			unsigned long cpu_touched =
5509 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5510 						  pool->cpu));
5511 			if (time_after(cpu_touched, ts))
5512 				ts = cpu_touched;
5513 		}
5514 
5515 		/* did we stall? */
5516 		if (time_after(jiffies, ts + thresh)) {
5517 			lockup_detected = true;
5518 			pr_emerg("BUG: workqueue lockup - pool");
5519 			pr_cont_pool_info(pool);
5520 			pr_cont(" stuck for %us!\n",
5521 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5522 		}
5523 	}
5524 
5525 	rcu_read_unlock();
5526 
5527 	if (lockup_detected)
5528 		show_workqueue_state();
5529 
5530 	wq_watchdog_reset_touched();
5531 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5532 }
5533 
wq_watchdog_touch(int cpu)5534 notrace void wq_watchdog_touch(int cpu)
5535 {
5536 	if (cpu >= 0)
5537 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5538 	else
5539 		wq_watchdog_touched = jiffies;
5540 }
5541 
wq_watchdog_set_thresh(unsigned long thresh)5542 static void wq_watchdog_set_thresh(unsigned long thresh)
5543 {
5544 	wq_watchdog_thresh = 0;
5545 	del_timer_sync(&wq_watchdog_timer);
5546 
5547 	if (thresh) {
5548 		wq_watchdog_thresh = thresh;
5549 		wq_watchdog_reset_touched();
5550 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5551 	}
5552 }
5553 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5554 static int wq_watchdog_param_set_thresh(const char *val,
5555 					const struct kernel_param *kp)
5556 {
5557 	unsigned long thresh;
5558 	int ret;
5559 
5560 	ret = kstrtoul(val, 0, &thresh);
5561 	if (ret)
5562 		return ret;
5563 
5564 	if (system_wq)
5565 		wq_watchdog_set_thresh(thresh);
5566 	else
5567 		wq_watchdog_thresh = thresh;
5568 
5569 	return 0;
5570 }
5571 
5572 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5573 	.set	= wq_watchdog_param_set_thresh,
5574 	.get	= param_get_ulong,
5575 };
5576 
5577 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5578 		0644);
5579 
wq_watchdog_init(void)5580 static void wq_watchdog_init(void)
5581 {
5582 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5583 }
5584 
5585 #else	/* CONFIG_WQ_WATCHDOG */
5586 
wq_watchdog_init(void)5587 static inline void wq_watchdog_init(void) { }
5588 
5589 #endif	/* CONFIG_WQ_WATCHDOG */
5590 
wq_numa_init(void)5591 static void __init wq_numa_init(void)
5592 {
5593 	cpumask_var_t *tbl;
5594 	int node, cpu;
5595 
5596 	if (num_possible_nodes() <= 1)
5597 		return;
5598 
5599 	if (wq_disable_numa) {
5600 		pr_info("workqueue: NUMA affinity support disabled\n");
5601 		return;
5602 	}
5603 
5604 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5605 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5606 
5607 	/*
5608 	 * We want masks of possible CPUs of each node which isn't readily
5609 	 * available.  Build one from cpu_to_node() which should have been
5610 	 * fully initialized by now.
5611 	 */
5612 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5613 	BUG_ON(!tbl);
5614 
5615 	for_each_node(node)
5616 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5617 				node_online(node) ? node : NUMA_NO_NODE));
5618 
5619 	for_each_possible_cpu(cpu) {
5620 		node = cpu_to_node(cpu);
5621 		if (WARN_ON(node == NUMA_NO_NODE)) {
5622 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5623 			/* happens iff arch is bonkers, let's just proceed */
5624 			return;
5625 		}
5626 		cpumask_set_cpu(cpu, tbl[node]);
5627 	}
5628 
5629 	wq_numa_possible_cpumask = tbl;
5630 	wq_numa_enabled = true;
5631 }
5632 
5633 /**
5634  * workqueue_init_early - early init for workqueue subsystem
5635  *
5636  * This is the first half of two-staged workqueue subsystem initialization
5637  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5638  * idr are up.  It sets up all the data structures and system workqueues
5639  * and allows early boot code to create workqueues and queue/cancel work
5640  * items.  Actual work item execution starts only after kthreads can be
5641  * created and scheduled right before early initcalls.
5642  */
workqueue_init_early(void)5643 int __init workqueue_init_early(void)
5644 {
5645 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5646 	int i, cpu;
5647 
5648 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5649 
5650 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5651 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5652 
5653 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5654 
5655 	/* initialize CPU pools */
5656 	for_each_possible_cpu(cpu) {
5657 		struct worker_pool *pool;
5658 
5659 		i = 0;
5660 		for_each_cpu_worker_pool(pool, cpu) {
5661 			BUG_ON(init_worker_pool(pool));
5662 			pool->cpu = cpu;
5663 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5664 			pool->attrs->nice = std_nice[i++];
5665 			pool->node = cpu_to_node(cpu);
5666 
5667 			/* alloc pool ID */
5668 			mutex_lock(&wq_pool_mutex);
5669 			BUG_ON(worker_pool_assign_id(pool));
5670 			mutex_unlock(&wq_pool_mutex);
5671 		}
5672 	}
5673 
5674 	/* create default unbound and ordered wq attrs */
5675 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5676 		struct workqueue_attrs *attrs;
5677 
5678 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5679 		attrs->nice = std_nice[i];
5680 		unbound_std_wq_attrs[i] = attrs;
5681 
5682 		/*
5683 		 * An ordered wq should have only one pwq as ordering is
5684 		 * guaranteed by max_active which is enforced by pwqs.
5685 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5686 		 */
5687 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5688 		attrs->nice = std_nice[i];
5689 		attrs->no_numa = true;
5690 		ordered_wq_attrs[i] = attrs;
5691 	}
5692 
5693 	system_wq = alloc_workqueue("events", 0, 0);
5694 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5695 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5696 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5697 					    WQ_UNBOUND_MAX_ACTIVE);
5698 	system_freezable_wq = alloc_workqueue("events_freezable",
5699 					      WQ_FREEZABLE, 0);
5700 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5701 					      WQ_POWER_EFFICIENT, 0);
5702 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5703 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5704 					      0);
5705 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5706 	       !system_unbound_wq || !system_freezable_wq ||
5707 	       !system_power_efficient_wq ||
5708 	       !system_freezable_power_efficient_wq);
5709 
5710 	return 0;
5711 }
5712 
5713 /**
5714  * workqueue_init - bring workqueue subsystem fully online
5715  *
5716  * This is the latter half of two-staged workqueue subsystem initialization
5717  * and invoked as soon as kthreads can be created and scheduled.
5718  * Workqueues have been created and work items queued on them, but there
5719  * are no kworkers executing the work items yet.  Populate the worker pools
5720  * with the initial workers and enable future kworker creations.
5721  */
workqueue_init(void)5722 int __init workqueue_init(void)
5723 {
5724 	struct workqueue_struct *wq;
5725 	struct worker_pool *pool;
5726 	int cpu, bkt;
5727 
5728 	/*
5729 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5730 	 * CPU to node mapping may not be available that early on some
5731 	 * archs such as power and arm64.  As per-cpu pools created
5732 	 * previously could be missing node hint and unbound pools NUMA
5733 	 * affinity, fix them up.
5734 	 */
5735 	wq_numa_init();
5736 
5737 	mutex_lock(&wq_pool_mutex);
5738 
5739 	for_each_possible_cpu(cpu) {
5740 		for_each_cpu_worker_pool(pool, cpu) {
5741 			pool->node = cpu_to_node(cpu);
5742 		}
5743 	}
5744 
5745 	list_for_each_entry(wq, &workqueues, list)
5746 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5747 
5748 	mutex_unlock(&wq_pool_mutex);
5749 
5750 	/* create the initial workers */
5751 	for_each_online_cpu(cpu) {
5752 		for_each_cpu_worker_pool(pool, cpu) {
5753 			pool->flags &= ~POOL_DISASSOCIATED;
5754 			BUG_ON(!create_worker(pool));
5755 		}
5756 	}
5757 
5758 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5759 		BUG_ON(!create_worker(pool));
5760 
5761 	wq_online = true;
5762 	wq_watchdog_init();
5763 
5764 	return 0;
5765 }
5766