• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * lib/bitmap.c
3   * Helper functions for bitmap.h.
4   *
5   * This source code is licensed under the GNU General Public License,
6   * Version 2.  See the file COPYING for more details.
7   */
8  #include <linux/export.h>
9  #include <linux/thread_info.h>
10  #include <linux/ctype.h>
11  #include <linux/errno.h>
12  #include <linux/bitmap.h>
13  #include <linux/bitops.h>
14  #include <linux/bug.h>
15  #include <linux/kernel.h>
16  #include <linux/slab.h>
17  #include <linux/string.h>
18  #include <linux/uaccess.h>
19  
20  #include <asm/page.h>
21  
22  /*
23   * bitmaps provide an array of bits, implemented using an an
24   * array of unsigned longs.  The number of valid bits in a
25   * given bitmap does _not_ need to be an exact multiple of
26   * BITS_PER_LONG.
27   *
28   * The possible unused bits in the last, partially used word
29   * of a bitmap are 'don't care'.  The implementation makes
30   * no particular effort to keep them zero.  It ensures that
31   * their value will not affect the results of any operation.
32   * The bitmap operations that return Boolean (bitmap_empty,
33   * for example) or scalar (bitmap_weight, for example) results
34   * carefully filter out these unused bits from impacting their
35   * results.
36   *
37   * These operations actually hold to a slightly stronger rule:
38   * if you don't input any bitmaps to these ops that have some
39   * unused bits set, then they won't output any set unused bits
40   * in output bitmaps.
41   *
42   * The byte ordering of bitmaps is more natural on little
43   * endian architectures.  See the big-endian headers
44   * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
45   * for the best explanations of this ordering.
46   */
47  
__bitmap_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)48  int __bitmap_equal(const unsigned long *bitmap1,
49  		const unsigned long *bitmap2, unsigned int bits)
50  {
51  	unsigned int k, lim = bits/BITS_PER_LONG;
52  	for (k = 0; k < lim; ++k)
53  		if (bitmap1[k] != bitmap2[k])
54  			return 0;
55  
56  	if (bits % BITS_PER_LONG)
57  		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
58  			return 0;
59  
60  	return 1;
61  }
62  EXPORT_SYMBOL(__bitmap_equal);
63  
__bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int bits)64  void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
65  {
66  	unsigned int k, lim = bits/BITS_PER_LONG;
67  	for (k = 0; k < lim; ++k)
68  		dst[k] = ~src[k];
69  
70  	if (bits % BITS_PER_LONG)
71  		dst[k] = ~src[k];
72  }
73  EXPORT_SYMBOL(__bitmap_complement);
74  
75  /**
76   * __bitmap_shift_right - logical right shift of the bits in a bitmap
77   *   @dst : destination bitmap
78   *   @src : source bitmap
79   *   @shift : shift by this many bits
80   *   @nbits : bitmap size, in bits
81   *
82   * Shifting right (dividing) means moving bits in the MS -> LS bit
83   * direction.  Zeros are fed into the vacated MS positions and the
84   * LS bits shifted off the bottom are lost.
85   */
__bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned shift,unsigned nbits)86  void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
87  			unsigned shift, unsigned nbits)
88  {
89  	unsigned k, lim = BITS_TO_LONGS(nbits);
90  	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
91  	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
92  	for (k = 0; off + k < lim; ++k) {
93  		unsigned long upper, lower;
94  
95  		/*
96  		 * If shift is not word aligned, take lower rem bits of
97  		 * word above and make them the top rem bits of result.
98  		 */
99  		if (!rem || off + k + 1 >= lim)
100  			upper = 0;
101  		else {
102  			upper = src[off + k + 1];
103  			if (off + k + 1 == lim - 1)
104  				upper &= mask;
105  			upper <<= (BITS_PER_LONG - rem);
106  		}
107  		lower = src[off + k];
108  		if (off + k == lim - 1)
109  			lower &= mask;
110  		lower >>= rem;
111  		dst[k] = lower | upper;
112  	}
113  	if (off)
114  		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
115  }
116  EXPORT_SYMBOL(__bitmap_shift_right);
117  
118  
119  /**
120   * __bitmap_shift_left - logical left shift of the bits in a bitmap
121   *   @dst : destination bitmap
122   *   @src : source bitmap
123   *   @shift : shift by this many bits
124   *   @nbits : bitmap size, in bits
125   *
126   * Shifting left (multiplying) means moving bits in the LS -> MS
127   * direction.  Zeros are fed into the vacated LS bit positions
128   * and those MS bits shifted off the top are lost.
129   */
130  
__bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)131  void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
132  			unsigned int shift, unsigned int nbits)
133  {
134  	int k;
135  	unsigned int lim = BITS_TO_LONGS(nbits);
136  	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
137  	for (k = lim - off - 1; k >= 0; --k) {
138  		unsigned long upper, lower;
139  
140  		/*
141  		 * If shift is not word aligned, take upper rem bits of
142  		 * word below and make them the bottom rem bits of result.
143  		 */
144  		if (rem && k > 0)
145  			lower = src[k - 1] >> (BITS_PER_LONG - rem);
146  		else
147  			lower = 0;
148  		upper = src[k] << rem;
149  		dst[k + off] = lower | upper;
150  	}
151  	if (off)
152  		memset(dst, 0, off*sizeof(unsigned long));
153  }
154  EXPORT_SYMBOL(__bitmap_shift_left);
155  
__bitmap_and(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)156  int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
157  				const unsigned long *bitmap2, unsigned int bits)
158  {
159  	unsigned int k;
160  	unsigned int lim = bits/BITS_PER_LONG;
161  	unsigned long result = 0;
162  
163  	for (k = 0; k < lim; k++)
164  		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
165  	if (bits % BITS_PER_LONG)
166  		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
167  			   BITMAP_LAST_WORD_MASK(bits));
168  	return result != 0;
169  }
170  EXPORT_SYMBOL(__bitmap_and);
171  
__bitmap_or(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)172  void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
173  				const unsigned long *bitmap2, unsigned int bits)
174  {
175  	unsigned int k;
176  	unsigned int nr = BITS_TO_LONGS(bits);
177  
178  	for (k = 0; k < nr; k++)
179  		dst[k] = bitmap1[k] | bitmap2[k];
180  }
181  EXPORT_SYMBOL(__bitmap_or);
182  
__bitmap_xor(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)183  void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
184  				const unsigned long *bitmap2, unsigned int bits)
185  {
186  	unsigned int k;
187  	unsigned int nr = BITS_TO_LONGS(bits);
188  
189  	for (k = 0; k < nr; k++)
190  		dst[k] = bitmap1[k] ^ bitmap2[k];
191  }
192  EXPORT_SYMBOL(__bitmap_xor);
193  
__bitmap_andnot(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)194  int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
195  				const unsigned long *bitmap2, unsigned int bits)
196  {
197  	unsigned int k;
198  	unsigned int lim = bits/BITS_PER_LONG;
199  	unsigned long result = 0;
200  
201  	for (k = 0; k < lim; k++)
202  		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
203  	if (bits % BITS_PER_LONG)
204  		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
205  			   BITMAP_LAST_WORD_MASK(bits));
206  	return result != 0;
207  }
208  EXPORT_SYMBOL(__bitmap_andnot);
209  
__bitmap_intersects(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)210  int __bitmap_intersects(const unsigned long *bitmap1,
211  			const unsigned long *bitmap2, unsigned int bits)
212  {
213  	unsigned int k, lim = bits/BITS_PER_LONG;
214  	for (k = 0; k < lim; ++k)
215  		if (bitmap1[k] & bitmap2[k])
216  			return 1;
217  
218  	if (bits % BITS_PER_LONG)
219  		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
220  			return 1;
221  	return 0;
222  }
223  EXPORT_SYMBOL(__bitmap_intersects);
224  
__bitmap_subset(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)225  int __bitmap_subset(const unsigned long *bitmap1,
226  		    const unsigned long *bitmap2, unsigned int bits)
227  {
228  	unsigned int k, lim = bits/BITS_PER_LONG;
229  	for (k = 0; k < lim; ++k)
230  		if (bitmap1[k] & ~bitmap2[k])
231  			return 0;
232  
233  	if (bits % BITS_PER_LONG)
234  		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
235  			return 0;
236  	return 1;
237  }
238  EXPORT_SYMBOL(__bitmap_subset);
239  
__bitmap_weight(const unsigned long * bitmap,unsigned int bits)240  int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
241  {
242  	unsigned int k, lim = bits/BITS_PER_LONG;
243  	int w = 0;
244  
245  	for (k = 0; k < lim; k++)
246  		w += hweight_long(bitmap[k]);
247  
248  	if (bits % BITS_PER_LONG)
249  		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
250  
251  	return w;
252  }
253  EXPORT_SYMBOL(__bitmap_weight);
254  
__bitmap_set(unsigned long * map,unsigned int start,int len)255  void __bitmap_set(unsigned long *map, unsigned int start, int len)
256  {
257  	unsigned long *p = map + BIT_WORD(start);
258  	const unsigned int size = start + len;
259  	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
260  	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
261  
262  	while (len - bits_to_set >= 0) {
263  		*p |= mask_to_set;
264  		len -= bits_to_set;
265  		bits_to_set = BITS_PER_LONG;
266  		mask_to_set = ~0UL;
267  		p++;
268  	}
269  	if (len) {
270  		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
271  		*p |= mask_to_set;
272  	}
273  }
274  EXPORT_SYMBOL(__bitmap_set);
275  
__bitmap_clear(unsigned long * map,unsigned int start,int len)276  void __bitmap_clear(unsigned long *map, unsigned int start, int len)
277  {
278  	unsigned long *p = map + BIT_WORD(start);
279  	const unsigned int size = start + len;
280  	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
281  	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
282  
283  	while (len - bits_to_clear >= 0) {
284  		*p &= ~mask_to_clear;
285  		len -= bits_to_clear;
286  		bits_to_clear = BITS_PER_LONG;
287  		mask_to_clear = ~0UL;
288  		p++;
289  	}
290  	if (len) {
291  		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
292  		*p &= ~mask_to_clear;
293  	}
294  }
295  EXPORT_SYMBOL(__bitmap_clear);
296  
297  /**
298   * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
299   * @map: The address to base the search on
300   * @size: The bitmap size in bits
301   * @start: The bitnumber to start searching at
302   * @nr: The number of zeroed bits we're looking for
303   * @align_mask: Alignment mask for zero area
304   * @align_offset: Alignment offset for zero area.
305   *
306   * The @align_mask should be one less than a power of 2; the effect is that
307   * the bit offset of all zero areas this function finds plus @align_offset
308   * is multiple of that power of 2.
309   */
bitmap_find_next_zero_area_off(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask,unsigned long align_offset)310  unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
311  					     unsigned long size,
312  					     unsigned long start,
313  					     unsigned int nr,
314  					     unsigned long align_mask,
315  					     unsigned long align_offset)
316  {
317  	unsigned long index, end, i;
318  again:
319  	index = find_next_zero_bit(map, size, start);
320  
321  	/* Align allocation */
322  	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
323  
324  	end = index + nr;
325  	if (end > size)
326  		return end;
327  	i = find_next_bit(map, end, index);
328  	if (i < end) {
329  		start = i + 1;
330  		goto again;
331  	}
332  	return index;
333  }
334  EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
335  
336  /*
337   * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
338   * second version by Paul Jackson, third by Joe Korty.
339   */
340  
341  #define CHUNKSZ				32
342  #define nbits_to_hold_value(val)	fls(val)
343  #define BASEDEC 10		/* fancier cpuset lists input in decimal */
344  
345  /**
346   * __bitmap_parse - convert an ASCII hex string into a bitmap.
347   * @buf: pointer to buffer containing string.
348   * @buflen: buffer size in bytes.  If string is smaller than this
349   *    then it must be terminated with a \0.
350   * @is_user: location of buffer, 0 indicates kernel space
351   * @maskp: pointer to bitmap array that will contain result.
352   * @nmaskbits: size of bitmap, in bits.
353   *
354   * Commas group hex digits into chunks.  Each chunk defines exactly 32
355   * bits of the resultant bitmask.  No chunk may specify a value larger
356   * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
357   * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
358   * characters and for grouping errors such as "1,,5", ",44", "," and "".
359   * Leading and trailing whitespace accepted, but not embedded whitespace.
360   */
__bitmap_parse(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)361  int __bitmap_parse(const char *buf, unsigned int buflen,
362  		int is_user, unsigned long *maskp,
363  		int nmaskbits)
364  {
365  	int c, old_c, totaldigits, ndigits, nchunks, nbits;
366  	u32 chunk;
367  	const char __user __force *ubuf = (const char __user __force *)buf;
368  
369  	bitmap_zero(maskp, nmaskbits);
370  
371  	nchunks = nbits = totaldigits = c = 0;
372  	do {
373  		chunk = 0;
374  		ndigits = totaldigits;
375  
376  		/* Get the next chunk of the bitmap */
377  		while (buflen) {
378  			old_c = c;
379  			if (is_user) {
380  				if (__get_user(c, ubuf++))
381  					return -EFAULT;
382  			}
383  			else
384  				c = *buf++;
385  			buflen--;
386  			if (isspace(c))
387  				continue;
388  
389  			/*
390  			 * If the last character was a space and the current
391  			 * character isn't '\0', we've got embedded whitespace.
392  			 * This is a no-no, so throw an error.
393  			 */
394  			if (totaldigits && c && isspace(old_c))
395  				return -EINVAL;
396  
397  			/* A '\0' or a ',' signal the end of the chunk */
398  			if (c == '\0' || c == ',')
399  				break;
400  
401  			if (!isxdigit(c))
402  				return -EINVAL;
403  
404  			/*
405  			 * Make sure there are at least 4 free bits in 'chunk'.
406  			 * If not, this hexdigit will overflow 'chunk', so
407  			 * throw an error.
408  			 */
409  			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
410  				return -EOVERFLOW;
411  
412  			chunk = (chunk << 4) | hex_to_bin(c);
413  			totaldigits++;
414  		}
415  		if (ndigits == totaldigits)
416  			return -EINVAL;
417  		if (nchunks == 0 && chunk == 0)
418  			continue;
419  
420  		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
421  		*maskp |= chunk;
422  		nchunks++;
423  		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
424  		if (nbits > nmaskbits)
425  			return -EOVERFLOW;
426  	} while (buflen && c == ',');
427  
428  	return 0;
429  }
430  EXPORT_SYMBOL(__bitmap_parse);
431  
432  /**
433   * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
434   *
435   * @ubuf: pointer to user buffer containing string.
436   * @ulen: buffer size in bytes.  If string is smaller than this
437   *    then it must be terminated with a \0.
438   * @maskp: pointer to bitmap array that will contain result.
439   * @nmaskbits: size of bitmap, in bits.
440   *
441   * Wrapper for __bitmap_parse(), providing it with user buffer.
442   *
443   * We cannot have this as an inline function in bitmap.h because it needs
444   * linux/uaccess.h to get the access_ok() declaration and this causes
445   * cyclic dependencies.
446   */
bitmap_parse_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)447  int bitmap_parse_user(const char __user *ubuf,
448  			unsigned int ulen, unsigned long *maskp,
449  			int nmaskbits)
450  {
451  	if (!access_ok(VERIFY_READ, ubuf, ulen))
452  		return -EFAULT;
453  	return __bitmap_parse((const char __force *)ubuf,
454  				ulen, 1, maskp, nmaskbits);
455  
456  }
457  EXPORT_SYMBOL(bitmap_parse_user);
458  
459  /**
460   * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
461   * @list: indicates whether the bitmap must be list
462   * @buf: page aligned buffer into which string is placed
463   * @maskp: pointer to bitmap to convert
464   * @nmaskbits: size of bitmap, in bits
465   *
466   * Output format is a comma-separated list of decimal numbers and
467   * ranges if list is specified or hex digits grouped into comma-separated
468   * sets of 8 digits/set. Returns the number of characters written to buf.
469   *
470   * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
471   * sufficient storage remains at @buf to accommodate the
472   * bitmap_print_to_pagebuf() output.
473   */
bitmap_print_to_pagebuf(bool list,char * buf,const unsigned long * maskp,int nmaskbits)474  int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
475  			    int nmaskbits)
476  {
477  	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
478  	int n = 0;
479  
480  	if (len > 1)
481  		n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
482  			   scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
483  	return n;
484  }
485  EXPORT_SYMBOL(bitmap_print_to_pagebuf);
486  
487  /**
488   * __bitmap_parselist - convert list format ASCII string to bitmap
489   * @buf: read nul-terminated user string from this buffer
490   * @buflen: buffer size in bytes.  If string is smaller than this
491   *    then it must be terminated with a \0.
492   * @is_user: location of buffer, 0 indicates kernel space
493   * @maskp: write resulting mask here
494   * @nmaskbits: number of bits in mask to be written
495   *
496   * Input format is a comma-separated list of decimal numbers and
497   * ranges.  Consecutively set bits are shown as two hyphen-separated
498   * decimal numbers, the smallest and largest bit numbers set in
499   * the range.
500   * Optionally each range can be postfixed to denote that only parts of it
501   * should be set. The range will divided to groups of specific size.
502   * From each group will be used only defined amount of bits.
503   * Syntax: range:used_size/group_size
504   * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
505   *
506   * Returns: 0 on success, -errno on invalid input strings. Error values:
507   *
508   *   - ``-EINVAL``: second number in range smaller than first
509   *   - ``-EINVAL``: invalid character in string
510   *   - ``-ERANGE``: bit number specified too large for mask
511   */
__bitmap_parselist(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)512  static int __bitmap_parselist(const char *buf, unsigned int buflen,
513  		int is_user, unsigned long *maskp,
514  		int nmaskbits)
515  {
516  	unsigned int a, b, old_a, old_b;
517  	unsigned int group_size, used_size, off;
518  	int c, old_c, totaldigits, ndigits;
519  	const char __user __force *ubuf = (const char __user __force *)buf;
520  	int at_start, in_range, in_partial_range;
521  
522  	totaldigits = c = 0;
523  	old_a = old_b = 0;
524  	group_size = used_size = 0;
525  	bitmap_zero(maskp, nmaskbits);
526  	do {
527  		at_start = 1;
528  		in_range = 0;
529  		in_partial_range = 0;
530  		a = b = 0;
531  		ndigits = totaldigits;
532  
533  		/* Get the next cpu# or a range of cpu#'s */
534  		while (buflen) {
535  			old_c = c;
536  			if (is_user) {
537  				if (__get_user(c, ubuf++))
538  					return -EFAULT;
539  			} else
540  				c = *buf++;
541  			buflen--;
542  			if (isspace(c))
543  				continue;
544  
545  			/* A '\0' or a ',' signal the end of a cpu# or range */
546  			if (c == '\0' || c == ',')
547  				break;
548  			/*
549  			* whitespaces between digits are not allowed,
550  			* but it's ok if whitespaces are on head or tail.
551  			* when old_c is whilespace,
552  			* if totaldigits == ndigits, whitespace is on head.
553  			* if whitespace is on tail, it should not run here.
554  			* as c was ',' or '\0',
555  			* the last code line has broken the current loop.
556  			*/
557  			if ((totaldigits != ndigits) && isspace(old_c))
558  				return -EINVAL;
559  
560  			if (c == '/') {
561  				used_size = a;
562  				at_start = 1;
563  				in_range = 0;
564  				a = b = 0;
565  				continue;
566  			}
567  
568  			if (c == ':') {
569  				old_a = a;
570  				old_b = b;
571  				at_start = 1;
572  				in_range = 0;
573  				in_partial_range = 1;
574  				a = b = 0;
575  				continue;
576  			}
577  
578  			if (c == '-') {
579  				if (at_start || in_range)
580  					return -EINVAL;
581  				b = 0;
582  				in_range = 1;
583  				at_start = 1;
584  				continue;
585  			}
586  
587  			if (!isdigit(c))
588  				return -EINVAL;
589  
590  			b = b * 10 + (c - '0');
591  			if (!in_range)
592  				a = b;
593  			at_start = 0;
594  			totaldigits++;
595  		}
596  		if (ndigits == totaldigits)
597  			continue;
598  		if (in_partial_range) {
599  			group_size = a;
600  			a = old_a;
601  			b = old_b;
602  			old_a = old_b = 0;
603  		} else {
604  			used_size = group_size = b - a + 1;
605  		}
606  		/* if no digit is after '-', it's wrong*/
607  		if (at_start && in_range)
608  			return -EINVAL;
609  		if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
610  			return -EINVAL;
611  		if (b >= nmaskbits)
612  			return -ERANGE;
613  		while (a <= b) {
614  			off = min(b - a + 1, used_size);
615  			bitmap_set(maskp, a, off);
616  			a += group_size;
617  		}
618  	} while (buflen && c == ',');
619  	return 0;
620  }
621  
bitmap_parselist(const char * bp,unsigned long * maskp,int nmaskbits)622  int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
623  {
624  	char *nl  = strchrnul(bp, '\n');
625  	int len = nl - bp;
626  
627  	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
628  }
629  EXPORT_SYMBOL(bitmap_parselist);
630  
631  
632  /**
633   * bitmap_parselist_user()
634   *
635   * @ubuf: pointer to user buffer containing string.
636   * @ulen: buffer size in bytes.  If string is smaller than this
637   *    then it must be terminated with a \0.
638   * @maskp: pointer to bitmap array that will contain result.
639   * @nmaskbits: size of bitmap, in bits.
640   *
641   * Wrapper for bitmap_parselist(), providing it with user buffer.
642   *
643   * We cannot have this as an inline function in bitmap.h because it needs
644   * linux/uaccess.h to get the access_ok() declaration and this causes
645   * cyclic dependencies.
646   */
bitmap_parselist_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)647  int bitmap_parselist_user(const char __user *ubuf,
648  			unsigned int ulen, unsigned long *maskp,
649  			int nmaskbits)
650  {
651  	if (!access_ok(VERIFY_READ, ubuf, ulen))
652  		return -EFAULT;
653  	return __bitmap_parselist((const char __force *)ubuf,
654  					ulen, 1, maskp, nmaskbits);
655  }
656  EXPORT_SYMBOL(bitmap_parselist_user);
657  
658  
659  /**
660   * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
661   *	@buf: pointer to a bitmap
662   *	@pos: a bit position in @buf (0 <= @pos < @nbits)
663   *	@nbits: number of valid bit positions in @buf
664   *
665   * Map the bit at position @pos in @buf (of length @nbits) to the
666   * ordinal of which set bit it is.  If it is not set or if @pos
667   * is not a valid bit position, map to -1.
668   *
669   * If for example, just bits 4 through 7 are set in @buf, then @pos
670   * values 4 through 7 will get mapped to 0 through 3, respectively,
671   * and other @pos values will get mapped to -1.  When @pos value 7
672   * gets mapped to (returns) @ord value 3 in this example, that means
673   * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
674   *
675   * The bit positions 0 through @bits are valid positions in @buf.
676   */
bitmap_pos_to_ord(const unsigned long * buf,unsigned int pos,unsigned int nbits)677  static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
678  {
679  	if (pos >= nbits || !test_bit(pos, buf))
680  		return -1;
681  
682  	return __bitmap_weight(buf, pos);
683  }
684  
685  /**
686   * bitmap_ord_to_pos - find position of n-th set bit in bitmap
687   *	@buf: pointer to bitmap
688   *	@ord: ordinal bit position (n-th set bit, n >= 0)
689   *	@nbits: number of valid bit positions in @buf
690   *
691   * Map the ordinal offset of bit @ord in @buf to its position in @buf.
692   * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
693   * >= weight(buf), returns @nbits.
694   *
695   * If for example, just bits 4 through 7 are set in @buf, then @ord
696   * values 0 through 3 will get mapped to 4 through 7, respectively,
697   * and all other @ord values returns @nbits.  When @ord value 3
698   * gets mapped to (returns) @pos value 7 in this example, that means
699   * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
700   *
701   * The bit positions 0 through @nbits-1 are valid positions in @buf.
702   */
bitmap_ord_to_pos(const unsigned long * buf,unsigned int ord,unsigned int nbits)703  unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
704  {
705  	unsigned int pos;
706  
707  	for (pos = find_first_bit(buf, nbits);
708  	     pos < nbits && ord;
709  	     pos = find_next_bit(buf, nbits, pos + 1))
710  		ord--;
711  
712  	return pos;
713  }
714  
715  /**
716   * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
717   *	@dst: remapped result
718   *	@src: subset to be remapped
719   *	@old: defines domain of map
720   *	@new: defines range of map
721   *	@nbits: number of bits in each of these bitmaps
722   *
723   * Let @old and @new define a mapping of bit positions, such that
724   * whatever position is held by the n-th set bit in @old is mapped
725   * to the n-th set bit in @new.  In the more general case, allowing
726   * for the possibility that the weight 'w' of @new is less than the
727   * weight of @old, map the position of the n-th set bit in @old to
728   * the position of the m-th set bit in @new, where m == n % w.
729   *
730   * If either of the @old and @new bitmaps are empty, or if @src and
731   * @dst point to the same location, then this routine copies @src
732   * to @dst.
733   *
734   * The positions of unset bits in @old are mapped to themselves
735   * (the identify map).
736   *
737   * Apply the above specified mapping to @src, placing the result in
738   * @dst, clearing any bits previously set in @dst.
739   *
740   * For example, lets say that @old has bits 4 through 7 set, and
741   * @new has bits 12 through 15 set.  This defines the mapping of bit
742   * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
743   * bit positions unchanged.  So if say @src comes into this routine
744   * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
745   * 13 and 15 set.
746   */
bitmap_remap(unsigned long * dst,const unsigned long * src,const unsigned long * old,const unsigned long * new,unsigned int nbits)747  void bitmap_remap(unsigned long *dst, const unsigned long *src,
748  		const unsigned long *old, const unsigned long *new,
749  		unsigned int nbits)
750  {
751  	unsigned int oldbit, w;
752  
753  	if (dst == src)		/* following doesn't handle inplace remaps */
754  		return;
755  	bitmap_zero(dst, nbits);
756  
757  	w = bitmap_weight(new, nbits);
758  	for_each_set_bit(oldbit, src, nbits) {
759  		int n = bitmap_pos_to_ord(old, oldbit, nbits);
760  
761  		if (n < 0 || w == 0)
762  			set_bit(oldbit, dst);	/* identity map */
763  		else
764  			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
765  	}
766  }
767  EXPORT_SYMBOL(bitmap_remap);
768  
769  /**
770   * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
771   *	@oldbit: bit position to be mapped
772   *	@old: defines domain of map
773   *	@new: defines range of map
774   *	@bits: number of bits in each of these bitmaps
775   *
776   * Let @old and @new define a mapping of bit positions, such that
777   * whatever position is held by the n-th set bit in @old is mapped
778   * to the n-th set bit in @new.  In the more general case, allowing
779   * for the possibility that the weight 'w' of @new is less than the
780   * weight of @old, map the position of the n-th set bit in @old to
781   * the position of the m-th set bit in @new, where m == n % w.
782   *
783   * The positions of unset bits in @old are mapped to themselves
784   * (the identify map).
785   *
786   * Apply the above specified mapping to bit position @oldbit, returning
787   * the new bit position.
788   *
789   * For example, lets say that @old has bits 4 through 7 set, and
790   * @new has bits 12 through 15 set.  This defines the mapping of bit
791   * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
792   * bit positions unchanged.  So if say @oldbit is 5, then this routine
793   * returns 13.
794   */
bitmap_bitremap(int oldbit,const unsigned long * old,const unsigned long * new,int bits)795  int bitmap_bitremap(int oldbit, const unsigned long *old,
796  				const unsigned long *new, int bits)
797  {
798  	int w = bitmap_weight(new, bits);
799  	int n = bitmap_pos_to_ord(old, oldbit, bits);
800  	if (n < 0 || w == 0)
801  		return oldbit;
802  	else
803  		return bitmap_ord_to_pos(new, n % w, bits);
804  }
805  EXPORT_SYMBOL(bitmap_bitremap);
806  
807  /**
808   * bitmap_onto - translate one bitmap relative to another
809   *	@dst: resulting translated bitmap
810   * 	@orig: original untranslated bitmap
811   * 	@relmap: bitmap relative to which translated
812   *	@bits: number of bits in each of these bitmaps
813   *
814   * Set the n-th bit of @dst iff there exists some m such that the
815   * n-th bit of @relmap is set, the m-th bit of @orig is set, and
816   * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
817   * (If you understood the previous sentence the first time your
818   * read it, you're overqualified for your current job.)
819   *
820   * In other words, @orig is mapped onto (surjectively) @dst,
821   * using the map { <n, m> | the n-th bit of @relmap is the
822   * m-th set bit of @relmap }.
823   *
824   * Any set bits in @orig above bit number W, where W is the
825   * weight of (number of set bits in) @relmap are mapped nowhere.
826   * In particular, if for all bits m set in @orig, m >= W, then
827   * @dst will end up empty.  In situations where the possibility
828   * of such an empty result is not desired, one way to avoid it is
829   * to use the bitmap_fold() operator, below, to first fold the
830   * @orig bitmap over itself so that all its set bits x are in the
831   * range 0 <= x < W.  The bitmap_fold() operator does this by
832   * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
833   *
834   * Example [1] for bitmap_onto():
835   *  Let's say @relmap has bits 30-39 set, and @orig has bits
836   *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
837   *  @dst will have bits 31, 33, 35, 37 and 39 set.
838   *
839   *  When bit 0 is set in @orig, it means turn on the bit in
840   *  @dst corresponding to whatever is the first bit (if any)
841   *  that is turned on in @relmap.  Since bit 0 was off in the
842   *  above example, we leave off that bit (bit 30) in @dst.
843   *
844   *  When bit 1 is set in @orig (as in the above example), it
845   *  means turn on the bit in @dst corresponding to whatever
846   *  is the second bit that is turned on in @relmap.  The second
847   *  bit in @relmap that was turned on in the above example was
848   *  bit 31, so we turned on bit 31 in @dst.
849   *
850   *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
851   *  because they were the 4th, 6th, 8th and 10th set bits
852   *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
853   *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
854   *
855   *  When bit 11 is set in @orig, it means turn on the bit in
856   *  @dst corresponding to whatever is the twelfth bit that is
857   *  turned on in @relmap.  In the above example, there were
858   *  only ten bits turned on in @relmap (30..39), so that bit
859   *  11 was set in @orig had no affect on @dst.
860   *
861   * Example [2] for bitmap_fold() + bitmap_onto():
862   *  Let's say @relmap has these ten bits set::
863   *
864   *		40 41 42 43 45 48 53 61 74 95
865   *
866   *  (for the curious, that's 40 plus the first ten terms of the
867   *  Fibonacci sequence.)
868   *
869   *  Further lets say we use the following code, invoking
870   *  bitmap_fold() then bitmap_onto, as suggested above to
871   *  avoid the possibility of an empty @dst result::
872   *
873   *	unsigned long *tmp;	// a temporary bitmap's bits
874   *
875   *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
876   *	bitmap_onto(dst, tmp, relmap, bits);
877   *
878   *  Then this table shows what various values of @dst would be, for
879   *  various @orig's.  I list the zero-based positions of each set bit.
880   *  The tmp column shows the intermediate result, as computed by
881   *  using bitmap_fold() to fold the @orig bitmap modulo ten
882   *  (the weight of @relmap):
883   *
884   *      =============== ============== =================
885   *      @orig           tmp            @dst
886   *      0                0             40
887   *      1                1             41
888   *      9                9             95
889   *      10               0             40 [#f1]_
890   *      1 3 5 7          1 3 5 7       41 43 48 61
891   *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
892   *      0 9 18 27        0 9 8 7       40 61 74 95
893   *      0 10 20 30       0             40
894   *      0 11 22 33       0 1 2 3       40 41 42 43
895   *      0 12 24 36       0 2 4 6       40 42 45 53
896   *      78 102 211       1 2 8         41 42 74 [#f1]_
897   *      =============== ============== =================
898   *
899   * .. [#f1]
900   *
901   *     For these marked lines, if we hadn't first done bitmap_fold()
902   *     into tmp, then the @dst result would have been empty.
903   *
904   * If either of @orig or @relmap is empty (no set bits), then @dst
905   * will be returned empty.
906   *
907   * If (as explained above) the only set bits in @orig are in positions
908   * m where m >= W, (where W is the weight of @relmap) then @dst will
909   * once again be returned empty.
910   *
911   * All bits in @dst not set by the above rule are cleared.
912   */
bitmap_onto(unsigned long * dst,const unsigned long * orig,const unsigned long * relmap,unsigned int bits)913  void bitmap_onto(unsigned long *dst, const unsigned long *orig,
914  			const unsigned long *relmap, unsigned int bits)
915  {
916  	unsigned int n, m;	/* same meaning as in above comment */
917  
918  	if (dst == orig)	/* following doesn't handle inplace mappings */
919  		return;
920  	bitmap_zero(dst, bits);
921  
922  	/*
923  	 * The following code is a more efficient, but less
924  	 * obvious, equivalent to the loop:
925  	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
926  	 *		n = bitmap_ord_to_pos(orig, m, bits);
927  	 *		if (test_bit(m, orig))
928  	 *			set_bit(n, dst);
929  	 *	}
930  	 */
931  
932  	m = 0;
933  	for_each_set_bit(n, relmap, bits) {
934  		/* m == bitmap_pos_to_ord(relmap, n, bits) */
935  		if (test_bit(m, orig))
936  			set_bit(n, dst);
937  		m++;
938  	}
939  }
940  EXPORT_SYMBOL(bitmap_onto);
941  
942  /**
943   * bitmap_fold - fold larger bitmap into smaller, modulo specified size
944   *	@dst: resulting smaller bitmap
945   *	@orig: original larger bitmap
946   *	@sz: specified size
947   *	@nbits: number of bits in each of these bitmaps
948   *
949   * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
950   * Clear all other bits in @dst.  See further the comment and
951   * Example [2] for bitmap_onto() for why and how to use this.
952   */
bitmap_fold(unsigned long * dst,const unsigned long * orig,unsigned int sz,unsigned int nbits)953  void bitmap_fold(unsigned long *dst, const unsigned long *orig,
954  			unsigned int sz, unsigned int nbits)
955  {
956  	unsigned int oldbit;
957  
958  	if (dst == orig)	/* following doesn't handle inplace mappings */
959  		return;
960  	bitmap_zero(dst, nbits);
961  
962  	for_each_set_bit(oldbit, orig, nbits)
963  		set_bit(oldbit % sz, dst);
964  }
965  EXPORT_SYMBOL(bitmap_fold);
966  
967  /*
968   * Common code for bitmap_*_region() routines.
969   *	bitmap: array of unsigned longs corresponding to the bitmap
970   *	pos: the beginning of the region
971   *	order: region size (log base 2 of number of bits)
972   *	reg_op: operation(s) to perform on that region of bitmap
973   *
974   * Can set, verify and/or release a region of bits in a bitmap,
975   * depending on which combination of REG_OP_* flag bits is set.
976   *
977   * A region of a bitmap is a sequence of bits in the bitmap, of
978   * some size '1 << order' (a power of two), aligned to that same
979   * '1 << order' power of two.
980   *
981   * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
982   * Returns 0 in all other cases and reg_ops.
983   */
984  
985  enum {
986  	REG_OP_ISFREE,		/* true if region is all zero bits */
987  	REG_OP_ALLOC,		/* set all bits in region */
988  	REG_OP_RELEASE,		/* clear all bits in region */
989  };
990  
__reg_op(unsigned long * bitmap,unsigned int pos,int order,int reg_op)991  static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
992  {
993  	int nbits_reg;		/* number of bits in region */
994  	int index;		/* index first long of region in bitmap */
995  	int offset;		/* bit offset region in bitmap[index] */
996  	int nlongs_reg;		/* num longs spanned by region in bitmap */
997  	int nbitsinlong;	/* num bits of region in each spanned long */
998  	unsigned long mask;	/* bitmask for one long of region */
999  	int i;			/* scans bitmap by longs */
1000  	int ret = 0;		/* return value */
1001  
1002  	/*
1003  	 * Either nlongs_reg == 1 (for small orders that fit in one long)
1004  	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1005  	 */
1006  	nbits_reg = 1 << order;
1007  	index = pos / BITS_PER_LONG;
1008  	offset = pos - (index * BITS_PER_LONG);
1009  	nlongs_reg = BITS_TO_LONGS(nbits_reg);
1010  	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1011  
1012  	/*
1013  	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1014  	 * overflows if nbitsinlong == BITS_PER_LONG.
1015  	 */
1016  	mask = (1UL << (nbitsinlong - 1));
1017  	mask += mask - 1;
1018  	mask <<= offset;
1019  
1020  	switch (reg_op) {
1021  	case REG_OP_ISFREE:
1022  		for (i = 0; i < nlongs_reg; i++) {
1023  			if (bitmap[index + i] & mask)
1024  				goto done;
1025  		}
1026  		ret = 1;	/* all bits in region free (zero) */
1027  		break;
1028  
1029  	case REG_OP_ALLOC:
1030  		for (i = 0; i < nlongs_reg; i++)
1031  			bitmap[index + i] |= mask;
1032  		break;
1033  
1034  	case REG_OP_RELEASE:
1035  		for (i = 0; i < nlongs_reg; i++)
1036  			bitmap[index + i] &= ~mask;
1037  		break;
1038  	}
1039  done:
1040  	return ret;
1041  }
1042  
1043  /**
1044   * bitmap_find_free_region - find a contiguous aligned mem region
1045   *	@bitmap: array of unsigned longs corresponding to the bitmap
1046   *	@bits: number of bits in the bitmap
1047   *	@order: region size (log base 2 of number of bits) to find
1048   *
1049   * Find a region of free (zero) bits in a @bitmap of @bits bits and
1050   * allocate them (set them to one).  Only consider regions of length
1051   * a power (@order) of two, aligned to that power of two, which
1052   * makes the search algorithm much faster.
1053   *
1054   * Return the bit offset in bitmap of the allocated region,
1055   * or -errno on failure.
1056   */
bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)1057  int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1058  {
1059  	unsigned int pos, end;		/* scans bitmap by regions of size order */
1060  
1061  	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1062  		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1063  			continue;
1064  		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1065  		return pos;
1066  	}
1067  	return -ENOMEM;
1068  }
1069  EXPORT_SYMBOL(bitmap_find_free_region);
1070  
1071  /**
1072   * bitmap_release_region - release allocated bitmap region
1073   *	@bitmap: array of unsigned longs corresponding to the bitmap
1074   *	@pos: beginning of bit region to release
1075   *	@order: region size (log base 2 of number of bits) to release
1076   *
1077   * This is the complement to __bitmap_find_free_region() and releases
1078   * the found region (by clearing it in the bitmap).
1079   *
1080   * No return value.
1081   */
bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)1082  void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1083  {
1084  	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
1085  }
1086  EXPORT_SYMBOL(bitmap_release_region);
1087  
1088  /**
1089   * bitmap_allocate_region - allocate bitmap region
1090   *	@bitmap: array of unsigned longs corresponding to the bitmap
1091   *	@pos: beginning of bit region to allocate
1092   *	@order: region size (log base 2 of number of bits) to allocate
1093   *
1094   * Allocate (set bits in) a specified region of a bitmap.
1095   *
1096   * Return 0 on success, or %-EBUSY if specified region wasn't
1097   * free (not all bits were zero).
1098   */
bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)1099  int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1100  {
1101  	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1102  		return -EBUSY;
1103  	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1104  }
1105  EXPORT_SYMBOL(bitmap_allocate_region);
1106  
1107  /**
1108   * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1109   *	@bitmap: array of unsigned longs, the destination bitmap, non NULL
1110   *	@nbits: number of bits in @bitmap
1111   *	@buf: array of u32 (in host byte order), the source bitmap, non NULL
1112   *	@nwords: number of u32 words in @buf
1113   *
1114   * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1115   * bits between nword and nbits in @bitmap (if any) are cleared. In
1116   * last word of @bitmap, the bits beyond nbits (if any) are kept
1117   * unchanged.
1118   *
1119   * Return the number of bits effectively copied.
1120   */
1121  unsigned int
bitmap_from_u32array(unsigned long * bitmap,unsigned int nbits,const u32 * buf,unsigned int nwords)1122  bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1123  		     const u32 *buf, unsigned int nwords)
1124  {
1125  	unsigned int dst_idx, src_idx;
1126  
1127  	for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1128  		unsigned long part = 0;
1129  
1130  		if (src_idx < nwords)
1131  			part = buf[src_idx++];
1132  
1133  #if BITS_PER_LONG == 64
1134  		if (src_idx < nwords)
1135  			part |= ((unsigned long) buf[src_idx++]) << 32;
1136  #endif
1137  
1138  		if (dst_idx < nbits/BITS_PER_LONG)
1139  			bitmap[dst_idx] = part;
1140  		else {
1141  			unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1142  
1143  			bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1144  				| (part & mask);
1145  		}
1146  	}
1147  
1148  	return min_t(unsigned int, nbits, 32*nwords);
1149  }
1150  EXPORT_SYMBOL(bitmap_from_u32array);
1151  
1152  /**
1153   * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1154   *	@buf: array of u32 (in host byte order), the dest bitmap, non NULL
1155   *	@nwords: number of u32 words in @buf
1156   *	@bitmap: array of unsigned longs, the source bitmap, non NULL
1157   *	@nbits: number of bits in @bitmap
1158   *
1159   * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1160   * bits after nbits in @buf (if any) are cleared.
1161   *
1162   * Return the number of bits effectively copied.
1163   */
1164  unsigned int
bitmap_to_u32array(u32 * buf,unsigned int nwords,const unsigned long * bitmap,unsigned int nbits)1165  bitmap_to_u32array(u32 *buf, unsigned int nwords,
1166  		   const unsigned long *bitmap, unsigned int nbits)
1167  {
1168  	unsigned int dst_idx = 0, src_idx = 0;
1169  
1170  	while (dst_idx < nwords) {
1171  		unsigned long part = 0;
1172  
1173  		if (src_idx < BITS_TO_LONGS(nbits)) {
1174  			part = bitmap[src_idx];
1175  			if (src_idx >= nbits/BITS_PER_LONG)
1176  				part &= BITMAP_LAST_WORD_MASK(nbits);
1177  			src_idx++;
1178  		}
1179  
1180  		buf[dst_idx++] = part & 0xffffffffUL;
1181  
1182  #if BITS_PER_LONG == 64
1183  		if (dst_idx < nwords) {
1184  			part >>= 32;
1185  			buf[dst_idx++] = part & 0xffffffffUL;
1186  		}
1187  #endif
1188  	}
1189  
1190  	return min_t(unsigned int, nbits, 32*nwords);
1191  }
1192  EXPORT_SYMBOL(bitmap_to_u32array);
1193  
1194  /**
1195   * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1196   * @dst:   destination buffer
1197   * @src:   bitmap to copy
1198   * @nbits: number of bits in the bitmap
1199   *
1200   * Require nbits % BITS_PER_LONG == 0.
1201   */
1202  #ifdef __BIG_ENDIAN
bitmap_copy_le(unsigned long * dst,const unsigned long * src,unsigned int nbits)1203  void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1204  {
1205  	unsigned int i;
1206  
1207  	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1208  		if (BITS_PER_LONG == 64)
1209  			dst[i] = cpu_to_le64(src[i]);
1210  		else
1211  			dst[i] = cpu_to_le32(src[i]);
1212  	}
1213  }
1214  EXPORT_SYMBOL(bitmap_copy_le);
1215  #endif
1216  
bitmap_alloc(unsigned int nbits,gfp_t flags)1217  unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1218  {
1219  	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1220  			     flags);
1221  }
1222  EXPORT_SYMBOL(bitmap_alloc);
1223  
bitmap_zalloc(unsigned int nbits,gfp_t flags)1224  unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1225  {
1226  	return bitmap_alloc(nbits, flags | __GFP_ZERO);
1227  }
1228  EXPORT_SYMBOL(bitmap_zalloc);
1229  
bitmap_free(const unsigned long * bitmap)1230  void bitmap_free(const unsigned long *bitmap)
1231  {
1232  	kfree(bitmap);
1233  }
1234  EXPORT_SYMBOL(bitmap_free);
1235