1 /* 2 * lib/bitmap.c 3 * Helper functions for bitmap.h. 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 #include <linux/export.h> 9 #include <linux/thread_info.h> 10 #include <linux/ctype.h> 11 #include <linux/errno.h> 12 #include <linux/bitmap.h> 13 #include <linux/bitops.h> 14 #include <linux/bug.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/uaccess.h> 19 20 #include <asm/page.h> 21 22 /* 23 * bitmaps provide an array of bits, implemented using an an 24 * array of unsigned longs. The number of valid bits in a 25 * given bitmap does _not_ need to be an exact multiple of 26 * BITS_PER_LONG. 27 * 28 * The possible unused bits in the last, partially used word 29 * of a bitmap are 'don't care'. The implementation makes 30 * no particular effort to keep them zero. It ensures that 31 * their value will not affect the results of any operation. 32 * The bitmap operations that return Boolean (bitmap_empty, 33 * for example) or scalar (bitmap_weight, for example) results 34 * carefully filter out these unused bits from impacting their 35 * results. 36 * 37 * These operations actually hold to a slightly stronger rule: 38 * if you don't input any bitmaps to these ops that have some 39 * unused bits set, then they won't output any set unused bits 40 * in output bitmaps. 41 * 42 * The byte ordering of bitmaps is more natural on little 43 * endian architectures. See the big-endian headers 44 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 45 * for the best explanations of this ordering. 46 */ 47 __bitmap_equal(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)48 int __bitmap_equal(const unsigned long *bitmap1, 49 const unsigned long *bitmap2, unsigned int bits) 50 { 51 unsigned int k, lim = bits/BITS_PER_LONG; 52 for (k = 0; k < lim; ++k) 53 if (bitmap1[k] != bitmap2[k]) 54 return 0; 55 56 if (bits % BITS_PER_LONG) 57 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 58 return 0; 59 60 return 1; 61 } 62 EXPORT_SYMBOL(__bitmap_equal); 63 __bitmap_complement(unsigned long * dst,const unsigned long * src,unsigned int bits)64 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 65 { 66 unsigned int k, lim = bits/BITS_PER_LONG; 67 for (k = 0; k < lim; ++k) 68 dst[k] = ~src[k]; 69 70 if (bits % BITS_PER_LONG) 71 dst[k] = ~src[k]; 72 } 73 EXPORT_SYMBOL(__bitmap_complement); 74 75 /** 76 * __bitmap_shift_right - logical right shift of the bits in a bitmap 77 * @dst : destination bitmap 78 * @src : source bitmap 79 * @shift : shift by this many bits 80 * @nbits : bitmap size, in bits 81 * 82 * Shifting right (dividing) means moving bits in the MS -> LS bit 83 * direction. Zeros are fed into the vacated MS positions and the 84 * LS bits shifted off the bottom are lost. 85 */ __bitmap_shift_right(unsigned long * dst,const unsigned long * src,unsigned shift,unsigned nbits)86 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 87 unsigned shift, unsigned nbits) 88 { 89 unsigned k, lim = BITS_TO_LONGS(nbits); 90 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 91 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 92 for (k = 0; off + k < lim; ++k) { 93 unsigned long upper, lower; 94 95 /* 96 * If shift is not word aligned, take lower rem bits of 97 * word above and make them the top rem bits of result. 98 */ 99 if (!rem || off + k + 1 >= lim) 100 upper = 0; 101 else { 102 upper = src[off + k + 1]; 103 if (off + k + 1 == lim - 1) 104 upper &= mask; 105 upper <<= (BITS_PER_LONG - rem); 106 } 107 lower = src[off + k]; 108 if (off + k == lim - 1) 109 lower &= mask; 110 lower >>= rem; 111 dst[k] = lower | upper; 112 } 113 if (off) 114 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 115 } 116 EXPORT_SYMBOL(__bitmap_shift_right); 117 118 119 /** 120 * __bitmap_shift_left - logical left shift of the bits in a bitmap 121 * @dst : destination bitmap 122 * @src : source bitmap 123 * @shift : shift by this many bits 124 * @nbits : bitmap size, in bits 125 * 126 * Shifting left (multiplying) means moving bits in the LS -> MS 127 * direction. Zeros are fed into the vacated LS bit positions 128 * and those MS bits shifted off the top are lost. 129 */ 130 __bitmap_shift_left(unsigned long * dst,const unsigned long * src,unsigned int shift,unsigned int nbits)131 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 132 unsigned int shift, unsigned int nbits) 133 { 134 int k; 135 unsigned int lim = BITS_TO_LONGS(nbits); 136 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 137 for (k = lim - off - 1; k >= 0; --k) { 138 unsigned long upper, lower; 139 140 /* 141 * If shift is not word aligned, take upper rem bits of 142 * word below and make them the bottom rem bits of result. 143 */ 144 if (rem && k > 0) 145 lower = src[k - 1] >> (BITS_PER_LONG - rem); 146 else 147 lower = 0; 148 upper = src[k] << rem; 149 dst[k + off] = lower | upper; 150 } 151 if (off) 152 memset(dst, 0, off*sizeof(unsigned long)); 153 } 154 EXPORT_SYMBOL(__bitmap_shift_left); 155 __bitmap_and(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)156 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 157 const unsigned long *bitmap2, unsigned int bits) 158 { 159 unsigned int k; 160 unsigned int lim = bits/BITS_PER_LONG; 161 unsigned long result = 0; 162 163 for (k = 0; k < lim; k++) 164 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 165 if (bits % BITS_PER_LONG) 166 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 167 BITMAP_LAST_WORD_MASK(bits)); 168 return result != 0; 169 } 170 EXPORT_SYMBOL(__bitmap_and); 171 __bitmap_or(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)172 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 173 const unsigned long *bitmap2, unsigned int bits) 174 { 175 unsigned int k; 176 unsigned int nr = BITS_TO_LONGS(bits); 177 178 for (k = 0; k < nr; k++) 179 dst[k] = bitmap1[k] | bitmap2[k]; 180 } 181 EXPORT_SYMBOL(__bitmap_or); 182 __bitmap_xor(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)183 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 184 const unsigned long *bitmap2, unsigned int bits) 185 { 186 unsigned int k; 187 unsigned int nr = BITS_TO_LONGS(bits); 188 189 for (k = 0; k < nr; k++) 190 dst[k] = bitmap1[k] ^ bitmap2[k]; 191 } 192 EXPORT_SYMBOL(__bitmap_xor); 193 __bitmap_andnot(unsigned long * dst,const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)194 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 195 const unsigned long *bitmap2, unsigned int bits) 196 { 197 unsigned int k; 198 unsigned int lim = bits/BITS_PER_LONG; 199 unsigned long result = 0; 200 201 for (k = 0; k < lim; k++) 202 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 203 if (bits % BITS_PER_LONG) 204 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 205 BITMAP_LAST_WORD_MASK(bits)); 206 return result != 0; 207 } 208 EXPORT_SYMBOL(__bitmap_andnot); 209 __bitmap_intersects(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)210 int __bitmap_intersects(const unsigned long *bitmap1, 211 const unsigned long *bitmap2, unsigned int bits) 212 { 213 unsigned int k, lim = bits/BITS_PER_LONG; 214 for (k = 0; k < lim; ++k) 215 if (bitmap1[k] & bitmap2[k]) 216 return 1; 217 218 if (bits % BITS_PER_LONG) 219 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 220 return 1; 221 return 0; 222 } 223 EXPORT_SYMBOL(__bitmap_intersects); 224 __bitmap_subset(const unsigned long * bitmap1,const unsigned long * bitmap2,unsigned int bits)225 int __bitmap_subset(const unsigned long *bitmap1, 226 const unsigned long *bitmap2, unsigned int bits) 227 { 228 unsigned int k, lim = bits/BITS_PER_LONG; 229 for (k = 0; k < lim; ++k) 230 if (bitmap1[k] & ~bitmap2[k]) 231 return 0; 232 233 if (bits % BITS_PER_LONG) 234 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 235 return 0; 236 return 1; 237 } 238 EXPORT_SYMBOL(__bitmap_subset); 239 __bitmap_weight(const unsigned long * bitmap,unsigned int bits)240 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 241 { 242 unsigned int k, lim = bits/BITS_PER_LONG; 243 int w = 0; 244 245 for (k = 0; k < lim; k++) 246 w += hweight_long(bitmap[k]); 247 248 if (bits % BITS_PER_LONG) 249 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); 250 251 return w; 252 } 253 EXPORT_SYMBOL(__bitmap_weight); 254 __bitmap_set(unsigned long * map,unsigned int start,int len)255 void __bitmap_set(unsigned long *map, unsigned int start, int len) 256 { 257 unsigned long *p = map + BIT_WORD(start); 258 const unsigned int size = start + len; 259 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 260 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 261 262 while (len - bits_to_set >= 0) { 263 *p |= mask_to_set; 264 len -= bits_to_set; 265 bits_to_set = BITS_PER_LONG; 266 mask_to_set = ~0UL; 267 p++; 268 } 269 if (len) { 270 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 271 *p |= mask_to_set; 272 } 273 } 274 EXPORT_SYMBOL(__bitmap_set); 275 __bitmap_clear(unsigned long * map,unsigned int start,int len)276 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 277 { 278 unsigned long *p = map + BIT_WORD(start); 279 const unsigned int size = start + len; 280 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 281 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 282 283 while (len - bits_to_clear >= 0) { 284 *p &= ~mask_to_clear; 285 len -= bits_to_clear; 286 bits_to_clear = BITS_PER_LONG; 287 mask_to_clear = ~0UL; 288 p++; 289 } 290 if (len) { 291 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 292 *p &= ~mask_to_clear; 293 } 294 } 295 EXPORT_SYMBOL(__bitmap_clear); 296 297 /** 298 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 299 * @map: The address to base the search on 300 * @size: The bitmap size in bits 301 * @start: The bitnumber to start searching at 302 * @nr: The number of zeroed bits we're looking for 303 * @align_mask: Alignment mask for zero area 304 * @align_offset: Alignment offset for zero area. 305 * 306 * The @align_mask should be one less than a power of 2; the effect is that 307 * the bit offset of all zero areas this function finds plus @align_offset 308 * is multiple of that power of 2. 309 */ bitmap_find_next_zero_area_off(unsigned long * map,unsigned long size,unsigned long start,unsigned int nr,unsigned long align_mask,unsigned long align_offset)310 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 311 unsigned long size, 312 unsigned long start, 313 unsigned int nr, 314 unsigned long align_mask, 315 unsigned long align_offset) 316 { 317 unsigned long index, end, i; 318 again: 319 index = find_next_zero_bit(map, size, start); 320 321 /* Align allocation */ 322 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 323 324 end = index + nr; 325 if (end > size) 326 return end; 327 i = find_next_bit(map, end, index); 328 if (i < end) { 329 start = i + 1; 330 goto again; 331 } 332 return index; 333 } 334 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 335 336 /* 337 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers, 338 * second version by Paul Jackson, third by Joe Korty. 339 */ 340 341 #define CHUNKSZ 32 342 #define nbits_to_hold_value(val) fls(val) 343 #define BASEDEC 10 /* fancier cpuset lists input in decimal */ 344 345 /** 346 * __bitmap_parse - convert an ASCII hex string into a bitmap. 347 * @buf: pointer to buffer containing string. 348 * @buflen: buffer size in bytes. If string is smaller than this 349 * then it must be terminated with a \0. 350 * @is_user: location of buffer, 0 indicates kernel space 351 * @maskp: pointer to bitmap array that will contain result. 352 * @nmaskbits: size of bitmap, in bits. 353 * 354 * Commas group hex digits into chunks. Each chunk defines exactly 32 355 * bits of the resultant bitmask. No chunk may specify a value larger 356 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value 357 * then leading 0-bits are prepended. %-EINVAL is returned for illegal 358 * characters and for grouping errors such as "1,,5", ",44", "," and "". 359 * Leading and trailing whitespace accepted, but not embedded whitespace. 360 */ __bitmap_parse(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)361 int __bitmap_parse(const char *buf, unsigned int buflen, 362 int is_user, unsigned long *maskp, 363 int nmaskbits) 364 { 365 int c, old_c, totaldigits, ndigits, nchunks, nbits; 366 u32 chunk; 367 const char __user __force *ubuf = (const char __user __force *)buf; 368 369 bitmap_zero(maskp, nmaskbits); 370 371 nchunks = nbits = totaldigits = c = 0; 372 do { 373 chunk = 0; 374 ndigits = totaldigits; 375 376 /* Get the next chunk of the bitmap */ 377 while (buflen) { 378 old_c = c; 379 if (is_user) { 380 if (__get_user(c, ubuf++)) 381 return -EFAULT; 382 } 383 else 384 c = *buf++; 385 buflen--; 386 if (isspace(c)) 387 continue; 388 389 /* 390 * If the last character was a space and the current 391 * character isn't '\0', we've got embedded whitespace. 392 * This is a no-no, so throw an error. 393 */ 394 if (totaldigits && c && isspace(old_c)) 395 return -EINVAL; 396 397 /* A '\0' or a ',' signal the end of the chunk */ 398 if (c == '\0' || c == ',') 399 break; 400 401 if (!isxdigit(c)) 402 return -EINVAL; 403 404 /* 405 * Make sure there are at least 4 free bits in 'chunk'. 406 * If not, this hexdigit will overflow 'chunk', so 407 * throw an error. 408 */ 409 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) 410 return -EOVERFLOW; 411 412 chunk = (chunk << 4) | hex_to_bin(c); 413 totaldigits++; 414 } 415 if (ndigits == totaldigits) 416 return -EINVAL; 417 if (nchunks == 0 && chunk == 0) 418 continue; 419 420 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); 421 *maskp |= chunk; 422 nchunks++; 423 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; 424 if (nbits > nmaskbits) 425 return -EOVERFLOW; 426 } while (buflen && c == ','); 427 428 return 0; 429 } 430 EXPORT_SYMBOL(__bitmap_parse); 431 432 /** 433 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap 434 * 435 * @ubuf: pointer to user buffer containing string. 436 * @ulen: buffer size in bytes. If string is smaller than this 437 * then it must be terminated with a \0. 438 * @maskp: pointer to bitmap array that will contain result. 439 * @nmaskbits: size of bitmap, in bits. 440 * 441 * Wrapper for __bitmap_parse(), providing it with user buffer. 442 * 443 * We cannot have this as an inline function in bitmap.h because it needs 444 * linux/uaccess.h to get the access_ok() declaration and this causes 445 * cyclic dependencies. 446 */ bitmap_parse_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)447 int bitmap_parse_user(const char __user *ubuf, 448 unsigned int ulen, unsigned long *maskp, 449 int nmaskbits) 450 { 451 if (!access_ok(VERIFY_READ, ubuf, ulen)) 452 return -EFAULT; 453 return __bitmap_parse((const char __force *)ubuf, 454 ulen, 1, maskp, nmaskbits); 455 456 } 457 EXPORT_SYMBOL(bitmap_parse_user); 458 459 /** 460 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string 461 * @list: indicates whether the bitmap must be list 462 * @buf: page aligned buffer into which string is placed 463 * @maskp: pointer to bitmap to convert 464 * @nmaskbits: size of bitmap, in bits 465 * 466 * Output format is a comma-separated list of decimal numbers and 467 * ranges if list is specified or hex digits grouped into comma-separated 468 * sets of 8 digits/set. Returns the number of characters written to buf. 469 * 470 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that 471 * sufficient storage remains at @buf to accommodate the 472 * bitmap_print_to_pagebuf() output. 473 */ bitmap_print_to_pagebuf(bool list,char * buf,const unsigned long * maskp,int nmaskbits)474 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp, 475 int nmaskbits) 476 { 477 ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf; 478 int n = 0; 479 480 if (len > 1) 481 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) : 482 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp); 483 return n; 484 } 485 EXPORT_SYMBOL(bitmap_print_to_pagebuf); 486 487 /** 488 * __bitmap_parselist - convert list format ASCII string to bitmap 489 * @buf: read nul-terminated user string from this buffer 490 * @buflen: buffer size in bytes. If string is smaller than this 491 * then it must be terminated with a \0. 492 * @is_user: location of buffer, 0 indicates kernel space 493 * @maskp: write resulting mask here 494 * @nmaskbits: number of bits in mask to be written 495 * 496 * Input format is a comma-separated list of decimal numbers and 497 * ranges. Consecutively set bits are shown as two hyphen-separated 498 * decimal numbers, the smallest and largest bit numbers set in 499 * the range. 500 * Optionally each range can be postfixed to denote that only parts of it 501 * should be set. The range will divided to groups of specific size. 502 * From each group will be used only defined amount of bits. 503 * Syntax: range:used_size/group_size 504 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769 505 * 506 * Returns: 0 on success, -errno on invalid input strings. Error values: 507 * 508 * - ``-EINVAL``: second number in range smaller than first 509 * - ``-EINVAL``: invalid character in string 510 * - ``-ERANGE``: bit number specified too large for mask 511 */ __bitmap_parselist(const char * buf,unsigned int buflen,int is_user,unsigned long * maskp,int nmaskbits)512 static int __bitmap_parselist(const char *buf, unsigned int buflen, 513 int is_user, unsigned long *maskp, 514 int nmaskbits) 515 { 516 unsigned int a, b, old_a, old_b; 517 unsigned int group_size, used_size, off; 518 int c, old_c, totaldigits, ndigits; 519 const char __user __force *ubuf = (const char __user __force *)buf; 520 int at_start, in_range, in_partial_range; 521 522 totaldigits = c = 0; 523 old_a = old_b = 0; 524 group_size = used_size = 0; 525 bitmap_zero(maskp, nmaskbits); 526 do { 527 at_start = 1; 528 in_range = 0; 529 in_partial_range = 0; 530 a = b = 0; 531 ndigits = totaldigits; 532 533 /* Get the next cpu# or a range of cpu#'s */ 534 while (buflen) { 535 old_c = c; 536 if (is_user) { 537 if (__get_user(c, ubuf++)) 538 return -EFAULT; 539 } else 540 c = *buf++; 541 buflen--; 542 if (isspace(c)) 543 continue; 544 545 /* A '\0' or a ',' signal the end of a cpu# or range */ 546 if (c == '\0' || c == ',') 547 break; 548 /* 549 * whitespaces between digits are not allowed, 550 * but it's ok if whitespaces are on head or tail. 551 * when old_c is whilespace, 552 * if totaldigits == ndigits, whitespace is on head. 553 * if whitespace is on tail, it should not run here. 554 * as c was ',' or '\0', 555 * the last code line has broken the current loop. 556 */ 557 if ((totaldigits != ndigits) && isspace(old_c)) 558 return -EINVAL; 559 560 if (c == '/') { 561 used_size = a; 562 at_start = 1; 563 in_range = 0; 564 a = b = 0; 565 continue; 566 } 567 568 if (c == ':') { 569 old_a = a; 570 old_b = b; 571 at_start = 1; 572 in_range = 0; 573 in_partial_range = 1; 574 a = b = 0; 575 continue; 576 } 577 578 if (c == '-') { 579 if (at_start || in_range) 580 return -EINVAL; 581 b = 0; 582 in_range = 1; 583 at_start = 1; 584 continue; 585 } 586 587 if (!isdigit(c)) 588 return -EINVAL; 589 590 b = b * 10 + (c - '0'); 591 if (!in_range) 592 a = b; 593 at_start = 0; 594 totaldigits++; 595 } 596 if (ndigits == totaldigits) 597 continue; 598 if (in_partial_range) { 599 group_size = a; 600 a = old_a; 601 b = old_b; 602 old_a = old_b = 0; 603 } else { 604 used_size = group_size = b - a + 1; 605 } 606 /* if no digit is after '-', it's wrong*/ 607 if (at_start && in_range) 608 return -EINVAL; 609 if (!(a <= b) || group_size == 0 || !(used_size <= group_size)) 610 return -EINVAL; 611 if (b >= nmaskbits) 612 return -ERANGE; 613 while (a <= b) { 614 off = min(b - a + 1, used_size); 615 bitmap_set(maskp, a, off); 616 a += group_size; 617 } 618 } while (buflen && c == ','); 619 return 0; 620 } 621 bitmap_parselist(const char * bp,unsigned long * maskp,int nmaskbits)622 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) 623 { 624 char *nl = strchrnul(bp, '\n'); 625 int len = nl - bp; 626 627 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits); 628 } 629 EXPORT_SYMBOL(bitmap_parselist); 630 631 632 /** 633 * bitmap_parselist_user() 634 * 635 * @ubuf: pointer to user buffer containing string. 636 * @ulen: buffer size in bytes. If string is smaller than this 637 * then it must be terminated with a \0. 638 * @maskp: pointer to bitmap array that will contain result. 639 * @nmaskbits: size of bitmap, in bits. 640 * 641 * Wrapper for bitmap_parselist(), providing it with user buffer. 642 * 643 * We cannot have this as an inline function in bitmap.h because it needs 644 * linux/uaccess.h to get the access_ok() declaration and this causes 645 * cyclic dependencies. 646 */ bitmap_parselist_user(const char __user * ubuf,unsigned int ulen,unsigned long * maskp,int nmaskbits)647 int bitmap_parselist_user(const char __user *ubuf, 648 unsigned int ulen, unsigned long *maskp, 649 int nmaskbits) 650 { 651 if (!access_ok(VERIFY_READ, ubuf, ulen)) 652 return -EFAULT; 653 return __bitmap_parselist((const char __force *)ubuf, 654 ulen, 1, maskp, nmaskbits); 655 } 656 EXPORT_SYMBOL(bitmap_parselist_user); 657 658 659 /** 660 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 661 * @buf: pointer to a bitmap 662 * @pos: a bit position in @buf (0 <= @pos < @nbits) 663 * @nbits: number of valid bit positions in @buf 664 * 665 * Map the bit at position @pos in @buf (of length @nbits) to the 666 * ordinal of which set bit it is. If it is not set or if @pos 667 * is not a valid bit position, map to -1. 668 * 669 * If for example, just bits 4 through 7 are set in @buf, then @pos 670 * values 4 through 7 will get mapped to 0 through 3, respectively, 671 * and other @pos values will get mapped to -1. When @pos value 7 672 * gets mapped to (returns) @ord value 3 in this example, that means 673 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 674 * 675 * The bit positions 0 through @bits are valid positions in @buf. 676 */ bitmap_pos_to_ord(const unsigned long * buf,unsigned int pos,unsigned int nbits)677 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 678 { 679 if (pos >= nbits || !test_bit(pos, buf)) 680 return -1; 681 682 return __bitmap_weight(buf, pos); 683 } 684 685 /** 686 * bitmap_ord_to_pos - find position of n-th set bit in bitmap 687 * @buf: pointer to bitmap 688 * @ord: ordinal bit position (n-th set bit, n >= 0) 689 * @nbits: number of valid bit positions in @buf 690 * 691 * Map the ordinal offset of bit @ord in @buf to its position in @buf. 692 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord 693 * >= weight(buf), returns @nbits. 694 * 695 * If for example, just bits 4 through 7 are set in @buf, then @ord 696 * values 0 through 3 will get mapped to 4 through 7, respectively, 697 * and all other @ord values returns @nbits. When @ord value 3 698 * gets mapped to (returns) @pos value 7 in this example, that means 699 * that the 3rd set bit (starting with 0th) is at position 7 in @buf. 700 * 701 * The bit positions 0 through @nbits-1 are valid positions in @buf. 702 */ bitmap_ord_to_pos(const unsigned long * buf,unsigned int ord,unsigned int nbits)703 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits) 704 { 705 unsigned int pos; 706 707 for (pos = find_first_bit(buf, nbits); 708 pos < nbits && ord; 709 pos = find_next_bit(buf, nbits, pos + 1)) 710 ord--; 711 712 return pos; 713 } 714 715 /** 716 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 717 * @dst: remapped result 718 * @src: subset to be remapped 719 * @old: defines domain of map 720 * @new: defines range of map 721 * @nbits: number of bits in each of these bitmaps 722 * 723 * Let @old and @new define a mapping of bit positions, such that 724 * whatever position is held by the n-th set bit in @old is mapped 725 * to the n-th set bit in @new. In the more general case, allowing 726 * for the possibility that the weight 'w' of @new is less than the 727 * weight of @old, map the position of the n-th set bit in @old to 728 * the position of the m-th set bit in @new, where m == n % w. 729 * 730 * If either of the @old and @new bitmaps are empty, or if @src and 731 * @dst point to the same location, then this routine copies @src 732 * to @dst. 733 * 734 * The positions of unset bits in @old are mapped to themselves 735 * (the identify map). 736 * 737 * Apply the above specified mapping to @src, placing the result in 738 * @dst, clearing any bits previously set in @dst. 739 * 740 * For example, lets say that @old has bits 4 through 7 set, and 741 * @new has bits 12 through 15 set. This defines the mapping of bit 742 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 743 * bit positions unchanged. So if say @src comes into this routine 744 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 745 * 13 and 15 set. 746 */ bitmap_remap(unsigned long * dst,const unsigned long * src,const unsigned long * old,const unsigned long * new,unsigned int nbits)747 void bitmap_remap(unsigned long *dst, const unsigned long *src, 748 const unsigned long *old, const unsigned long *new, 749 unsigned int nbits) 750 { 751 unsigned int oldbit, w; 752 753 if (dst == src) /* following doesn't handle inplace remaps */ 754 return; 755 bitmap_zero(dst, nbits); 756 757 w = bitmap_weight(new, nbits); 758 for_each_set_bit(oldbit, src, nbits) { 759 int n = bitmap_pos_to_ord(old, oldbit, nbits); 760 761 if (n < 0 || w == 0) 762 set_bit(oldbit, dst); /* identity map */ 763 else 764 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst); 765 } 766 } 767 EXPORT_SYMBOL(bitmap_remap); 768 769 /** 770 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 771 * @oldbit: bit position to be mapped 772 * @old: defines domain of map 773 * @new: defines range of map 774 * @bits: number of bits in each of these bitmaps 775 * 776 * Let @old and @new define a mapping of bit positions, such that 777 * whatever position is held by the n-th set bit in @old is mapped 778 * to the n-th set bit in @new. In the more general case, allowing 779 * for the possibility that the weight 'w' of @new is less than the 780 * weight of @old, map the position of the n-th set bit in @old to 781 * the position of the m-th set bit in @new, where m == n % w. 782 * 783 * The positions of unset bits in @old are mapped to themselves 784 * (the identify map). 785 * 786 * Apply the above specified mapping to bit position @oldbit, returning 787 * the new bit position. 788 * 789 * For example, lets say that @old has bits 4 through 7 set, and 790 * @new has bits 12 through 15 set. This defines the mapping of bit 791 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 792 * bit positions unchanged. So if say @oldbit is 5, then this routine 793 * returns 13. 794 */ bitmap_bitremap(int oldbit,const unsigned long * old,const unsigned long * new,int bits)795 int bitmap_bitremap(int oldbit, const unsigned long *old, 796 const unsigned long *new, int bits) 797 { 798 int w = bitmap_weight(new, bits); 799 int n = bitmap_pos_to_ord(old, oldbit, bits); 800 if (n < 0 || w == 0) 801 return oldbit; 802 else 803 return bitmap_ord_to_pos(new, n % w, bits); 804 } 805 EXPORT_SYMBOL(bitmap_bitremap); 806 807 /** 808 * bitmap_onto - translate one bitmap relative to another 809 * @dst: resulting translated bitmap 810 * @orig: original untranslated bitmap 811 * @relmap: bitmap relative to which translated 812 * @bits: number of bits in each of these bitmaps 813 * 814 * Set the n-th bit of @dst iff there exists some m such that the 815 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 816 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 817 * (If you understood the previous sentence the first time your 818 * read it, you're overqualified for your current job.) 819 * 820 * In other words, @orig is mapped onto (surjectively) @dst, 821 * using the map { <n, m> | the n-th bit of @relmap is the 822 * m-th set bit of @relmap }. 823 * 824 * Any set bits in @orig above bit number W, where W is the 825 * weight of (number of set bits in) @relmap are mapped nowhere. 826 * In particular, if for all bits m set in @orig, m >= W, then 827 * @dst will end up empty. In situations where the possibility 828 * of such an empty result is not desired, one way to avoid it is 829 * to use the bitmap_fold() operator, below, to first fold the 830 * @orig bitmap over itself so that all its set bits x are in the 831 * range 0 <= x < W. The bitmap_fold() operator does this by 832 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 833 * 834 * Example [1] for bitmap_onto(): 835 * Let's say @relmap has bits 30-39 set, and @orig has bits 836 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 837 * @dst will have bits 31, 33, 35, 37 and 39 set. 838 * 839 * When bit 0 is set in @orig, it means turn on the bit in 840 * @dst corresponding to whatever is the first bit (if any) 841 * that is turned on in @relmap. Since bit 0 was off in the 842 * above example, we leave off that bit (bit 30) in @dst. 843 * 844 * When bit 1 is set in @orig (as in the above example), it 845 * means turn on the bit in @dst corresponding to whatever 846 * is the second bit that is turned on in @relmap. The second 847 * bit in @relmap that was turned on in the above example was 848 * bit 31, so we turned on bit 31 in @dst. 849 * 850 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 851 * because they were the 4th, 6th, 8th and 10th set bits 852 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 853 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 854 * 855 * When bit 11 is set in @orig, it means turn on the bit in 856 * @dst corresponding to whatever is the twelfth bit that is 857 * turned on in @relmap. In the above example, there were 858 * only ten bits turned on in @relmap (30..39), so that bit 859 * 11 was set in @orig had no affect on @dst. 860 * 861 * Example [2] for bitmap_fold() + bitmap_onto(): 862 * Let's say @relmap has these ten bits set:: 863 * 864 * 40 41 42 43 45 48 53 61 74 95 865 * 866 * (for the curious, that's 40 plus the first ten terms of the 867 * Fibonacci sequence.) 868 * 869 * Further lets say we use the following code, invoking 870 * bitmap_fold() then bitmap_onto, as suggested above to 871 * avoid the possibility of an empty @dst result:: 872 * 873 * unsigned long *tmp; // a temporary bitmap's bits 874 * 875 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 876 * bitmap_onto(dst, tmp, relmap, bits); 877 * 878 * Then this table shows what various values of @dst would be, for 879 * various @orig's. I list the zero-based positions of each set bit. 880 * The tmp column shows the intermediate result, as computed by 881 * using bitmap_fold() to fold the @orig bitmap modulo ten 882 * (the weight of @relmap): 883 * 884 * =============== ============== ================= 885 * @orig tmp @dst 886 * 0 0 40 887 * 1 1 41 888 * 9 9 95 889 * 10 0 40 [#f1]_ 890 * 1 3 5 7 1 3 5 7 41 43 48 61 891 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 892 * 0 9 18 27 0 9 8 7 40 61 74 95 893 * 0 10 20 30 0 40 894 * 0 11 22 33 0 1 2 3 40 41 42 43 895 * 0 12 24 36 0 2 4 6 40 42 45 53 896 * 78 102 211 1 2 8 41 42 74 [#f1]_ 897 * =============== ============== ================= 898 * 899 * .. [#f1] 900 * 901 * For these marked lines, if we hadn't first done bitmap_fold() 902 * into tmp, then the @dst result would have been empty. 903 * 904 * If either of @orig or @relmap is empty (no set bits), then @dst 905 * will be returned empty. 906 * 907 * If (as explained above) the only set bits in @orig are in positions 908 * m where m >= W, (where W is the weight of @relmap) then @dst will 909 * once again be returned empty. 910 * 911 * All bits in @dst not set by the above rule are cleared. 912 */ bitmap_onto(unsigned long * dst,const unsigned long * orig,const unsigned long * relmap,unsigned int bits)913 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 914 const unsigned long *relmap, unsigned int bits) 915 { 916 unsigned int n, m; /* same meaning as in above comment */ 917 918 if (dst == orig) /* following doesn't handle inplace mappings */ 919 return; 920 bitmap_zero(dst, bits); 921 922 /* 923 * The following code is a more efficient, but less 924 * obvious, equivalent to the loop: 925 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 926 * n = bitmap_ord_to_pos(orig, m, bits); 927 * if (test_bit(m, orig)) 928 * set_bit(n, dst); 929 * } 930 */ 931 932 m = 0; 933 for_each_set_bit(n, relmap, bits) { 934 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 935 if (test_bit(m, orig)) 936 set_bit(n, dst); 937 m++; 938 } 939 } 940 EXPORT_SYMBOL(bitmap_onto); 941 942 /** 943 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 944 * @dst: resulting smaller bitmap 945 * @orig: original larger bitmap 946 * @sz: specified size 947 * @nbits: number of bits in each of these bitmaps 948 * 949 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 950 * Clear all other bits in @dst. See further the comment and 951 * Example [2] for bitmap_onto() for why and how to use this. 952 */ bitmap_fold(unsigned long * dst,const unsigned long * orig,unsigned int sz,unsigned int nbits)953 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 954 unsigned int sz, unsigned int nbits) 955 { 956 unsigned int oldbit; 957 958 if (dst == orig) /* following doesn't handle inplace mappings */ 959 return; 960 bitmap_zero(dst, nbits); 961 962 for_each_set_bit(oldbit, orig, nbits) 963 set_bit(oldbit % sz, dst); 964 } 965 EXPORT_SYMBOL(bitmap_fold); 966 967 /* 968 * Common code for bitmap_*_region() routines. 969 * bitmap: array of unsigned longs corresponding to the bitmap 970 * pos: the beginning of the region 971 * order: region size (log base 2 of number of bits) 972 * reg_op: operation(s) to perform on that region of bitmap 973 * 974 * Can set, verify and/or release a region of bits in a bitmap, 975 * depending on which combination of REG_OP_* flag bits is set. 976 * 977 * A region of a bitmap is a sequence of bits in the bitmap, of 978 * some size '1 << order' (a power of two), aligned to that same 979 * '1 << order' power of two. 980 * 981 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). 982 * Returns 0 in all other cases and reg_ops. 983 */ 984 985 enum { 986 REG_OP_ISFREE, /* true if region is all zero bits */ 987 REG_OP_ALLOC, /* set all bits in region */ 988 REG_OP_RELEASE, /* clear all bits in region */ 989 }; 990 __reg_op(unsigned long * bitmap,unsigned int pos,int order,int reg_op)991 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op) 992 { 993 int nbits_reg; /* number of bits in region */ 994 int index; /* index first long of region in bitmap */ 995 int offset; /* bit offset region in bitmap[index] */ 996 int nlongs_reg; /* num longs spanned by region in bitmap */ 997 int nbitsinlong; /* num bits of region in each spanned long */ 998 unsigned long mask; /* bitmask for one long of region */ 999 int i; /* scans bitmap by longs */ 1000 int ret = 0; /* return value */ 1001 1002 /* 1003 * Either nlongs_reg == 1 (for small orders that fit in one long) 1004 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) 1005 */ 1006 nbits_reg = 1 << order; 1007 index = pos / BITS_PER_LONG; 1008 offset = pos - (index * BITS_PER_LONG); 1009 nlongs_reg = BITS_TO_LONGS(nbits_reg); 1010 nbitsinlong = min(nbits_reg, BITS_PER_LONG); 1011 1012 /* 1013 * Can't do "mask = (1UL << nbitsinlong) - 1", as that 1014 * overflows if nbitsinlong == BITS_PER_LONG. 1015 */ 1016 mask = (1UL << (nbitsinlong - 1)); 1017 mask += mask - 1; 1018 mask <<= offset; 1019 1020 switch (reg_op) { 1021 case REG_OP_ISFREE: 1022 for (i = 0; i < nlongs_reg; i++) { 1023 if (bitmap[index + i] & mask) 1024 goto done; 1025 } 1026 ret = 1; /* all bits in region free (zero) */ 1027 break; 1028 1029 case REG_OP_ALLOC: 1030 for (i = 0; i < nlongs_reg; i++) 1031 bitmap[index + i] |= mask; 1032 break; 1033 1034 case REG_OP_RELEASE: 1035 for (i = 0; i < nlongs_reg; i++) 1036 bitmap[index + i] &= ~mask; 1037 break; 1038 } 1039 done: 1040 return ret; 1041 } 1042 1043 /** 1044 * bitmap_find_free_region - find a contiguous aligned mem region 1045 * @bitmap: array of unsigned longs corresponding to the bitmap 1046 * @bits: number of bits in the bitmap 1047 * @order: region size (log base 2 of number of bits) to find 1048 * 1049 * Find a region of free (zero) bits in a @bitmap of @bits bits and 1050 * allocate them (set them to one). Only consider regions of length 1051 * a power (@order) of two, aligned to that power of two, which 1052 * makes the search algorithm much faster. 1053 * 1054 * Return the bit offset in bitmap of the allocated region, 1055 * or -errno on failure. 1056 */ bitmap_find_free_region(unsigned long * bitmap,unsigned int bits,int order)1057 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order) 1058 { 1059 unsigned int pos, end; /* scans bitmap by regions of size order */ 1060 1061 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) { 1062 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1063 continue; 1064 __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1065 return pos; 1066 } 1067 return -ENOMEM; 1068 } 1069 EXPORT_SYMBOL(bitmap_find_free_region); 1070 1071 /** 1072 * bitmap_release_region - release allocated bitmap region 1073 * @bitmap: array of unsigned longs corresponding to the bitmap 1074 * @pos: beginning of bit region to release 1075 * @order: region size (log base 2 of number of bits) to release 1076 * 1077 * This is the complement to __bitmap_find_free_region() and releases 1078 * the found region (by clearing it in the bitmap). 1079 * 1080 * No return value. 1081 */ bitmap_release_region(unsigned long * bitmap,unsigned int pos,int order)1082 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order) 1083 { 1084 __reg_op(bitmap, pos, order, REG_OP_RELEASE); 1085 } 1086 EXPORT_SYMBOL(bitmap_release_region); 1087 1088 /** 1089 * bitmap_allocate_region - allocate bitmap region 1090 * @bitmap: array of unsigned longs corresponding to the bitmap 1091 * @pos: beginning of bit region to allocate 1092 * @order: region size (log base 2 of number of bits) to allocate 1093 * 1094 * Allocate (set bits in) a specified region of a bitmap. 1095 * 1096 * Return 0 on success, or %-EBUSY if specified region wasn't 1097 * free (not all bits were zero). 1098 */ bitmap_allocate_region(unsigned long * bitmap,unsigned int pos,int order)1099 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order) 1100 { 1101 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) 1102 return -EBUSY; 1103 return __reg_op(bitmap, pos, order, REG_OP_ALLOC); 1104 } 1105 EXPORT_SYMBOL(bitmap_allocate_region); 1106 1107 /** 1108 * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap 1109 * @bitmap: array of unsigned longs, the destination bitmap, non NULL 1110 * @nbits: number of bits in @bitmap 1111 * @buf: array of u32 (in host byte order), the source bitmap, non NULL 1112 * @nwords: number of u32 words in @buf 1113 * 1114 * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining 1115 * bits between nword and nbits in @bitmap (if any) are cleared. In 1116 * last word of @bitmap, the bits beyond nbits (if any) are kept 1117 * unchanged. 1118 * 1119 * Return the number of bits effectively copied. 1120 */ 1121 unsigned int bitmap_from_u32array(unsigned long * bitmap,unsigned int nbits,const u32 * buf,unsigned int nwords)1122 bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits, 1123 const u32 *buf, unsigned int nwords) 1124 { 1125 unsigned int dst_idx, src_idx; 1126 1127 for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) { 1128 unsigned long part = 0; 1129 1130 if (src_idx < nwords) 1131 part = buf[src_idx++]; 1132 1133 #if BITS_PER_LONG == 64 1134 if (src_idx < nwords) 1135 part |= ((unsigned long) buf[src_idx++]) << 32; 1136 #endif 1137 1138 if (dst_idx < nbits/BITS_PER_LONG) 1139 bitmap[dst_idx] = part; 1140 else { 1141 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 1142 1143 bitmap[dst_idx] = (bitmap[dst_idx] & ~mask) 1144 | (part & mask); 1145 } 1146 } 1147 1148 return min_t(unsigned int, nbits, 32*nwords); 1149 } 1150 EXPORT_SYMBOL(bitmap_from_u32array); 1151 1152 /** 1153 * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits 1154 * @buf: array of u32 (in host byte order), the dest bitmap, non NULL 1155 * @nwords: number of u32 words in @buf 1156 * @bitmap: array of unsigned longs, the source bitmap, non NULL 1157 * @nbits: number of bits in @bitmap 1158 * 1159 * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining 1160 * bits after nbits in @buf (if any) are cleared. 1161 * 1162 * Return the number of bits effectively copied. 1163 */ 1164 unsigned int bitmap_to_u32array(u32 * buf,unsigned int nwords,const unsigned long * bitmap,unsigned int nbits)1165 bitmap_to_u32array(u32 *buf, unsigned int nwords, 1166 const unsigned long *bitmap, unsigned int nbits) 1167 { 1168 unsigned int dst_idx = 0, src_idx = 0; 1169 1170 while (dst_idx < nwords) { 1171 unsigned long part = 0; 1172 1173 if (src_idx < BITS_TO_LONGS(nbits)) { 1174 part = bitmap[src_idx]; 1175 if (src_idx >= nbits/BITS_PER_LONG) 1176 part &= BITMAP_LAST_WORD_MASK(nbits); 1177 src_idx++; 1178 } 1179 1180 buf[dst_idx++] = part & 0xffffffffUL; 1181 1182 #if BITS_PER_LONG == 64 1183 if (dst_idx < nwords) { 1184 part >>= 32; 1185 buf[dst_idx++] = part & 0xffffffffUL; 1186 } 1187 #endif 1188 } 1189 1190 return min_t(unsigned int, nbits, 32*nwords); 1191 } 1192 EXPORT_SYMBOL(bitmap_to_u32array); 1193 1194 /** 1195 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. 1196 * @dst: destination buffer 1197 * @src: bitmap to copy 1198 * @nbits: number of bits in the bitmap 1199 * 1200 * Require nbits % BITS_PER_LONG == 0. 1201 */ 1202 #ifdef __BIG_ENDIAN bitmap_copy_le(unsigned long * dst,const unsigned long * src,unsigned int nbits)1203 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits) 1204 { 1205 unsigned int i; 1206 1207 for (i = 0; i < nbits/BITS_PER_LONG; i++) { 1208 if (BITS_PER_LONG == 64) 1209 dst[i] = cpu_to_le64(src[i]); 1210 else 1211 dst[i] = cpu_to_le32(src[i]); 1212 } 1213 } 1214 EXPORT_SYMBOL(bitmap_copy_le); 1215 #endif 1216 bitmap_alloc(unsigned int nbits,gfp_t flags)1217 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 1218 { 1219 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 1220 flags); 1221 } 1222 EXPORT_SYMBOL(bitmap_alloc); 1223 bitmap_zalloc(unsigned int nbits,gfp_t flags)1224 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 1225 { 1226 return bitmap_alloc(nbits, flags | __GFP_ZERO); 1227 } 1228 EXPORT_SYMBOL(bitmap_zalloc); 1229 bitmap_free(const unsigned long * bitmap)1230 void bitmap_free(const unsigned long *bitmap) 1231 { 1232 kfree(bitmap); 1233 } 1234 EXPORT_SYMBOL(bitmap_free); 1235