1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 149 #include "net-sysfs.h" 150 151 /* Instead of increasing this, you should create a hash table. */ 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct net_device *dev, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 dev_base_seq_inc(struct net * net)199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 dev_name_hash(struct net * net,const char * name)205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 dev_index_hash(struct net * net,int ifindex)212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 rps_lock(struct softnet_data * sd)217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 rps_unlock(struct softnet_data * sd)224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ list_netdevice(struct net_device * dev)232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ unlist_netdevice(struct net_device * dev)251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 netdev_lock_pos(unsigned short dev_type)321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 netdev_set_addr_lockdep_class(struct net_device * dev)342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } netdev_set_addr_lockdep_class(struct net_device * dev)356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 ptype_head(const struct packet_type * pt)384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 dev_add_pack(struct packet_type * pt)406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ __dev_remove_pack(struct packet_type * pt)429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ dev_remove_pack(struct packet_type * pt)461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ dev_add_offload(struct packet_offload * po)482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ __dev_remove_offload(struct packet_offload * po)509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ dev_remove_offload(struct packet_offload * po)540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ netdev_boot_setup_add(char * name,struct ifmap * map)566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ netdev_boot_setup_check(struct net_device * dev)593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ netdev_boot_base(const char * prefix,int unit)623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ netdev_boot_setup(char * str)647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 dev_get_iflink(const struct net_device * dev)687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 __dev_get_by_name(struct net * net,const char * name)734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 dev_get_by_name_rcu(struct net * net,const char * name)759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 dev_get_by_name(struct net * net,const char * name)784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 __dev_get_by_index(struct net * net,int ifindex)809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 dev_get_by_index_rcu(struct net * net,int ifindex)833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 dev_get_by_index(struct net * net,int ifindex)858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 dev_get_by_napi_id(unsigned int napi_id)881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ netdev_get_name(struct net * net,char * name,int ifindex)906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 __dev_getfirstbyhwtype(struct net * net,unsigned short type)958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 dev_getfirstbyhwtype(struct net * net,unsigned short type)971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 __dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ dev_valid_name(const char * name)1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 __dev_alloc_name(struct net * net,const char * name,char * buf)1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 p = strnchr(name, IFNAMSIZ-1, '%'); 1066 if (p) { 1067 /* 1068 * Verify the string as this thing may have come from 1069 * the user. There must be either one "%d" and no other "%" 1070 * characters. 1071 */ 1072 if (p[1] != 'd' || strchr(p + 2, '%')) 1073 return -EINVAL; 1074 1075 /* Use one page as a bit array of possible slots */ 1076 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1077 if (!inuse) 1078 return -ENOMEM; 1079 1080 for_each_netdev(net, d) { 1081 if (!sscanf(d->name, name, &i)) 1082 continue; 1083 if (i < 0 || i >= max_netdevices) 1084 continue; 1085 1086 /* avoid cases where sscanf is not exact inverse of printf */ 1087 snprintf(buf, IFNAMSIZ, name, i); 1088 if (!strncmp(buf, d->name, IFNAMSIZ)) 1089 set_bit(i, inuse); 1090 } 1091 1092 i = find_first_zero_bit(inuse, max_netdevices); 1093 free_page((unsigned long) inuse); 1094 } 1095 1096 if (buf != name) 1097 snprintf(buf, IFNAMSIZ, name, i); 1098 if (!__dev_get_by_name(net, buf)) 1099 return i; 1100 1101 /* It is possible to run out of possible slots 1102 * when the name is long and there isn't enough space left 1103 * for the digits, or if all bits are used. 1104 */ 1105 return -ENFILE; 1106 } 1107 1108 /** 1109 * dev_alloc_name - allocate a name for a device 1110 * @dev: device 1111 * @name: name format string 1112 * 1113 * Passed a format string - eg "lt%d" it will try and find a suitable 1114 * id. It scans list of devices to build up a free map, then chooses 1115 * the first empty slot. The caller must hold the dev_base or rtnl lock 1116 * while allocating the name and adding the device in order to avoid 1117 * duplicates. 1118 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1119 * Returns the number of the unit assigned or a negative errno code. 1120 */ 1121 dev_alloc_name(struct net_device * dev,const char * name)1122 int dev_alloc_name(struct net_device *dev, const char *name) 1123 { 1124 char buf[IFNAMSIZ]; 1125 struct net *net; 1126 int ret; 1127 1128 BUG_ON(!dev_net(dev)); 1129 net = dev_net(dev); 1130 ret = __dev_alloc_name(net, name, buf); 1131 if (ret >= 0) 1132 strlcpy(dev->name, buf, IFNAMSIZ); 1133 return ret; 1134 } 1135 EXPORT_SYMBOL(dev_alloc_name); 1136 dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1137 static int dev_alloc_name_ns(struct net *net, 1138 struct net_device *dev, 1139 const char *name) 1140 { 1141 char buf[IFNAMSIZ]; 1142 int ret; 1143 1144 ret = __dev_alloc_name(net, name, buf); 1145 if (ret >= 0) 1146 strlcpy(dev->name, buf, IFNAMSIZ); 1147 return ret; 1148 } 1149 dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1150 int dev_get_valid_name(struct net *net, struct net_device *dev, 1151 const char *name) 1152 { 1153 BUG_ON(!net); 1154 1155 if (!dev_valid_name(name)) 1156 return -EINVAL; 1157 1158 if (strchr(name, '%')) 1159 return dev_alloc_name_ns(net, dev, name); 1160 else if (__dev_get_by_name(net, name)) 1161 return -EEXIST; 1162 else if (dev->name != name) 1163 strlcpy(dev->name, name, IFNAMSIZ); 1164 1165 return 0; 1166 } 1167 EXPORT_SYMBOL(dev_get_valid_name); 1168 1169 /** 1170 * dev_change_name - change name of a device 1171 * @dev: device 1172 * @newname: name (or format string) must be at least IFNAMSIZ 1173 * 1174 * Change name of a device, can pass format strings "eth%d". 1175 * for wildcarding. 1176 */ dev_change_name(struct net_device * dev,const char * newname)1177 int dev_change_name(struct net_device *dev, const char *newname) 1178 { 1179 unsigned char old_assign_type; 1180 char oldname[IFNAMSIZ]; 1181 int err = 0; 1182 int ret; 1183 struct net *net; 1184 1185 ASSERT_RTNL(); 1186 BUG_ON(!dev_net(dev)); 1187 1188 net = dev_net(dev); 1189 if (dev->flags & IFF_UP) 1190 return -EBUSY; 1191 1192 write_seqcount_begin(&devnet_rename_seq); 1193 1194 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1195 write_seqcount_end(&devnet_rename_seq); 1196 return 0; 1197 } 1198 1199 memcpy(oldname, dev->name, IFNAMSIZ); 1200 1201 err = dev_get_valid_name(net, dev, newname); 1202 if (err < 0) { 1203 write_seqcount_end(&devnet_rename_seq); 1204 return err; 1205 } 1206 1207 if (oldname[0] && !strchr(oldname, '%')) 1208 netdev_info(dev, "renamed from %s\n", oldname); 1209 1210 old_assign_type = dev->name_assign_type; 1211 dev->name_assign_type = NET_NAME_RENAMED; 1212 1213 rollback: 1214 ret = device_rename(&dev->dev, dev->name); 1215 if (ret) { 1216 memcpy(dev->name, oldname, IFNAMSIZ); 1217 dev->name_assign_type = old_assign_type; 1218 write_seqcount_end(&devnet_rename_seq); 1219 return ret; 1220 } 1221 1222 write_seqcount_end(&devnet_rename_seq); 1223 1224 netdev_adjacent_rename_links(dev, oldname); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_del_rcu(&dev->name_hlist); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 synchronize_rcu(); 1231 1232 write_lock_bh(&dev_base_lock); 1233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1234 write_unlock_bh(&dev_base_lock); 1235 1236 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1237 ret = notifier_to_errno(ret); 1238 1239 if (ret) { 1240 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1241 if (err >= 0) { 1242 err = ret; 1243 write_seqcount_begin(&devnet_rename_seq); 1244 memcpy(dev->name, oldname, IFNAMSIZ); 1245 memcpy(oldname, newname, IFNAMSIZ); 1246 dev->name_assign_type = old_assign_type; 1247 old_assign_type = NET_NAME_RENAMED; 1248 goto rollback; 1249 } else { 1250 pr_err("%s: name change rollback failed: %d\n", 1251 dev->name, ret); 1252 } 1253 } 1254 1255 return err; 1256 } 1257 1258 /** 1259 * dev_set_alias - change ifalias of a device 1260 * @dev: device 1261 * @alias: name up to IFALIASZ 1262 * @len: limit of bytes to copy from info 1263 * 1264 * Set ifalias for a device, 1265 */ dev_set_alias(struct net_device * dev,const char * alias,size_t len)1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1267 { 1268 char *new_ifalias; 1269 1270 ASSERT_RTNL(); 1271 1272 if (len >= IFALIASZ) 1273 return -EINVAL; 1274 1275 if (!len) { 1276 kfree(dev->ifalias); 1277 dev->ifalias = NULL; 1278 return 0; 1279 } 1280 1281 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1282 if (!new_ifalias) 1283 return -ENOMEM; 1284 dev->ifalias = new_ifalias; 1285 memcpy(dev->ifalias, alias, len); 1286 dev->ifalias[len] = 0; 1287 1288 return len; 1289 } 1290 1291 1292 /** 1293 * netdev_features_change - device changes features 1294 * @dev: device to cause notification 1295 * 1296 * Called to indicate a device has changed features. 1297 */ netdev_features_change(struct net_device * dev)1298 void netdev_features_change(struct net_device *dev) 1299 { 1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1301 } 1302 EXPORT_SYMBOL(netdev_features_change); 1303 1304 /** 1305 * netdev_state_change - device changes state 1306 * @dev: device to cause notification 1307 * 1308 * Called to indicate a device has changed state. This function calls 1309 * the notifier chains for netdev_chain and sends a NEWLINK message 1310 * to the routing socket. 1311 */ netdev_state_change(struct net_device * dev)1312 void netdev_state_change(struct net_device *dev) 1313 { 1314 if (dev->flags & IFF_UP) { 1315 struct netdev_notifier_change_info change_info; 1316 1317 change_info.flags_changed = 0; 1318 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1319 &change_info.info); 1320 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1321 } 1322 } 1323 EXPORT_SYMBOL(netdev_state_change); 1324 1325 /** 1326 * netdev_notify_peers - notify network peers about existence of @dev 1327 * @dev: network device 1328 * 1329 * Generate traffic such that interested network peers are aware of 1330 * @dev, such as by generating a gratuitous ARP. This may be used when 1331 * a device wants to inform the rest of the network about some sort of 1332 * reconfiguration such as a failover event or virtual machine 1333 * migration. 1334 */ netdev_notify_peers(struct net_device * dev)1335 void netdev_notify_peers(struct net_device *dev) 1336 { 1337 rtnl_lock(); 1338 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1339 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1340 rtnl_unlock(); 1341 } 1342 EXPORT_SYMBOL(netdev_notify_peers); 1343 __dev_open(struct net_device * dev)1344 static int __dev_open(struct net_device *dev) 1345 { 1346 const struct net_device_ops *ops = dev->netdev_ops; 1347 int ret; 1348 1349 ASSERT_RTNL(); 1350 1351 if (!netif_device_present(dev)) 1352 return -ENODEV; 1353 1354 /* Block netpoll from trying to do any rx path servicing. 1355 * If we don't do this there is a chance ndo_poll_controller 1356 * or ndo_poll may be running while we open the device 1357 */ 1358 netpoll_poll_disable(dev); 1359 1360 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1361 ret = notifier_to_errno(ret); 1362 if (ret) 1363 return ret; 1364 1365 set_bit(__LINK_STATE_START, &dev->state); 1366 1367 if (ops->ndo_validate_addr) 1368 ret = ops->ndo_validate_addr(dev); 1369 1370 if (!ret && ops->ndo_open) 1371 ret = ops->ndo_open(dev); 1372 1373 netpoll_poll_enable(dev); 1374 1375 if (ret) 1376 clear_bit(__LINK_STATE_START, &dev->state); 1377 else { 1378 dev->flags |= IFF_UP; 1379 dev_set_rx_mode(dev); 1380 dev_activate(dev); 1381 add_device_randomness(dev->dev_addr, dev->addr_len); 1382 } 1383 1384 return ret; 1385 } 1386 1387 /** 1388 * dev_open - prepare an interface for use. 1389 * @dev: device to open 1390 * 1391 * Takes a device from down to up state. The device's private open 1392 * function is invoked and then the multicast lists are loaded. Finally 1393 * the device is moved into the up state and a %NETDEV_UP message is 1394 * sent to the netdev notifier chain. 1395 * 1396 * Calling this function on an active interface is a nop. On a failure 1397 * a negative errno code is returned. 1398 */ dev_open(struct net_device * dev)1399 int dev_open(struct net_device *dev) 1400 { 1401 int ret; 1402 1403 if (dev->flags & IFF_UP) 1404 return 0; 1405 1406 ret = __dev_open(dev); 1407 if (ret < 0) 1408 return ret; 1409 1410 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1411 call_netdevice_notifiers(NETDEV_UP, dev); 1412 1413 return ret; 1414 } 1415 EXPORT_SYMBOL(dev_open); 1416 __dev_close_many(struct list_head * head)1417 static void __dev_close_many(struct list_head *head) 1418 { 1419 struct net_device *dev; 1420 1421 ASSERT_RTNL(); 1422 might_sleep(); 1423 1424 list_for_each_entry(dev, head, close_list) { 1425 /* Temporarily disable netpoll until the interface is down */ 1426 netpoll_poll_disable(dev); 1427 1428 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1429 1430 clear_bit(__LINK_STATE_START, &dev->state); 1431 1432 /* Synchronize to scheduled poll. We cannot touch poll list, it 1433 * can be even on different cpu. So just clear netif_running(). 1434 * 1435 * dev->stop() will invoke napi_disable() on all of it's 1436 * napi_struct instances on this device. 1437 */ 1438 smp_mb__after_atomic(); /* Commit netif_running(). */ 1439 } 1440 1441 dev_deactivate_many(head); 1442 1443 list_for_each_entry(dev, head, close_list) { 1444 const struct net_device_ops *ops = dev->netdev_ops; 1445 1446 /* 1447 * Call the device specific close. This cannot fail. 1448 * Only if device is UP 1449 * 1450 * We allow it to be called even after a DETACH hot-plug 1451 * event. 1452 */ 1453 if (ops->ndo_stop) 1454 ops->ndo_stop(dev); 1455 1456 dev->flags &= ~IFF_UP; 1457 netpoll_poll_enable(dev); 1458 } 1459 } 1460 __dev_close(struct net_device * dev)1461 static void __dev_close(struct net_device *dev) 1462 { 1463 LIST_HEAD(single); 1464 1465 list_add(&dev->close_list, &single); 1466 __dev_close_many(&single); 1467 list_del(&single); 1468 } 1469 dev_close_many(struct list_head * head,bool unlink)1470 void dev_close_many(struct list_head *head, bool unlink) 1471 { 1472 struct net_device *dev, *tmp; 1473 1474 /* Remove the devices that don't need to be closed */ 1475 list_for_each_entry_safe(dev, tmp, head, close_list) 1476 if (!(dev->flags & IFF_UP)) 1477 list_del_init(&dev->close_list); 1478 1479 __dev_close_many(head); 1480 1481 list_for_each_entry_safe(dev, tmp, head, close_list) { 1482 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1483 call_netdevice_notifiers(NETDEV_DOWN, dev); 1484 if (unlink) 1485 list_del_init(&dev->close_list); 1486 } 1487 } 1488 EXPORT_SYMBOL(dev_close_many); 1489 1490 /** 1491 * dev_close - shutdown an interface. 1492 * @dev: device to shutdown 1493 * 1494 * This function moves an active device into down state. A 1495 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1496 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1497 * chain. 1498 */ dev_close(struct net_device * dev)1499 void dev_close(struct net_device *dev) 1500 { 1501 if (dev->flags & IFF_UP) { 1502 LIST_HEAD(single); 1503 1504 list_add(&dev->close_list, &single); 1505 dev_close_many(&single, true); 1506 list_del(&single); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close); 1510 1511 1512 /** 1513 * dev_disable_lro - disable Large Receive Offload on a device 1514 * @dev: device 1515 * 1516 * Disable Large Receive Offload (LRO) on a net device. Must be 1517 * called under RTNL. This is needed if received packets may be 1518 * forwarded to another interface. 1519 */ dev_disable_lro(struct net_device * dev)1520 void dev_disable_lro(struct net_device *dev) 1521 { 1522 struct net_device *lower_dev; 1523 struct list_head *iter; 1524 1525 dev->wanted_features &= ~NETIF_F_LRO; 1526 netdev_update_features(dev); 1527 1528 if (unlikely(dev->features & NETIF_F_LRO)) 1529 netdev_WARN(dev, "failed to disable LRO!\n"); 1530 1531 netdev_for_each_lower_dev(dev, lower_dev, iter) 1532 dev_disable_lro(lower_dev); 1533 } 1534 EXPORT_SYMBOL(dev_disable_lro); 1535 call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1536 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1537 struct net_device *dev) 1538 { 1539 struct netdev_notifier_info info; 1540 1541 netdev_notifier_info_init(&info, dev); 1542 return nb->notifier_call(nb, val, &info); 1543 } 1544 1545 static int dev_boot_phase = 1; 1546 1547 /** 1548 * register_netdevice_notifier - register a network notifier block 1549 * @nb: notifier 1550 * 1551 * Register a notifier to be called when network device events occur. 1552 * The notifier passed is linked into the kernel structures and must 1553 * not be reused until it has been unregistered. A negative errno code 1554 * is returned on a failure. 1555 * 1556 * When registered all registration and up events are replayed 1557 * to the new notifier to allow device to have a race free 1558 * view of the network device list. 1559 */ 1560 register_netdevice_notifier(struct notifier_block * nb)1561 int register_netdevice_notifier(struct notifier_block *nb) 1562 { 1563 struct net_device *dev; 1564 struct net_device *last; 1565 struct net *net; 1566 int err; 1567 1568 rtnl_lock(); 1569 err = raw_notifier_chain_register(&netdev_chain, nb); 1570 if (err) 1571 goto unlock; 1572 if (dev_boot_phase) 1573 goto unlock; 1574 for_each_net(net) { 1575 for_each_netdev(net, dev) { 1576 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1577 err = notifier_to_errno(err); 1578 if (err) 1579 goto rollback; 1580 1581 if (!(dev->flags & IFF_UP)) 1582 continue; 1583 1584 call_netdevice_notifier(nb, NETDEV_UP, dev); 1585 } 1586 } 1587 1588 unlock: 1589 rtnl_unlock(); 1590 return err; 1591 1592 rollback: 1593 last = dev; 1594 for_each_net(net) { 1595 for_each_netdev(net, dev) { 1596 if (dev == last) 1597 goto outroll; 1598 1599 if (dev->flags & IFF_UP) { 1600 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1601 dev); 1602 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1603 } 1604 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1605 } 1606 } 1607 1608 outroll: 1609 raw_notifier_chain_unregister(&netdev_chain, nb); 1610 goto unlock; 1611 } 1612 EXPORT_SYMBOL(register_netdevice_notifier); 1613 1614 /** 1615 * unregister_netdevice_notifier - unregister a network notifier block 1616 * @nb: notifier 1617 * 1618 * Unregister a notifier previously registered by 1619 * register_netdevice_notifier(). The notifier is unlinked into the 1620 * kernel structures and may then be reused. A negative errno code 1621 * is returned on a failure. 1622 * 1623 * After unregistering unregister and down device events are synthesized 1624 * for all devices on the device list to the removed notifier to remove 1625 * the need for special case cleanup code. 1626 */ 1627 unregister_netdevice_notifier(struct notifier_block * nb)1628 int unregister_netdevice_notifier(struct notifier_block *nb) 1629 { 1630 struct net_device *dev; 1631 struct net *net; 1632 int err; 1633 1634 rtnl_lock(); 1635 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1636 if (err) 1637 goto unlock; 1638 1639 for_each_net(net) { 1640 for_each_netdev(net, dev) { 1641 if (dev->flags & IFF_UP) { 1642 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1643 dev); 1644 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1645 } 1646 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1647 } 1648 } 1649 unlock: 1650 rtnl_unlock(); 1651 return err; 1652 } 1653 EXPORT_SYMBOL(unregister_netdevice_notifier); 1654 1655 /** 1656 * call_netdevice_notifiers_info - call all network notifier blocks 1657 * @val: value passed unmodified to notifier function 1658 * @dev: net_device pointer passed unmodified to notifier function 1659 * @info: notifier information data 1660 * 1661 * Call all network notifier blocks. Parameters and return value 1662 * are as for raw_notifier_call_chain(). 1663 */ 1664 call_netdevice_notifiers_info(unsigned long val,struct net_device * dev,struct netdev_notifier_info * info)1665 static int call_netdevice_notifiers_info(unsigned long val, 1666 struct net_device *dev, 1667 struct netdev_notifier_info *info) 1668 { 1669 ASSERT_RTNL(); 1670 netdev_notifier_info_init(info, dev); 1671 return raw_notifier_call_chain(&netdev_chain, val, info); 1672 } 1673 1674 /** 1675 * call_netdevice_notifiers - call all network notifier blocks 1676 * @val: value passed unmodified to notifier function 1677 * @dev: net_device pointer passed unmodified to notifier function 1678 * 1679 * Call all network notifier blocks. Parameters and return value 1680 * are as for raw_notifier_call_chain(). 1681 */ 1682 call_netdevice_notifiers(unsigned long val,struct net_device * dev)1683 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1684 { 1685 struct netdev_notifier_info info; 1686 1687 return call_netdevice_notifiers_info(val, dev, &info); 1688 } 1689 EXPORT_SYMBOL(call_netdevice_notifiers); 1690 1691 /** 1692 * call_netdevice_notifiers_mtu - call all network notifier blocks 1693 * @val: value passed unmodified to notifier function 1694 * @dev: net_device pointer passed unmodified to notifier function 1695 * @arg: additional u32 argument passed to the notifier function 1696 * 1697 * Call all network notifier blocks. Parameters and return value 1698 * are as for raw_notifier_call_chain(). 1699 */ call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)1700 static int call_netdevice_notifiers_mtu(unsigned long val, 1701 struct net_device *dev, u32 arg) 1702 { 1703 struct netdev_notifier_info_ext info = { 1704 .info.dev = dev, 1705 .ext.mtu = arg, 1706 }; 1707 1708 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1709 1710 return call_netdevice_notifiers_info(val, dev, &info.info); 1711 } 1712 1713 #ifdef CONFIG_NET_INGRESS 1714 static struct static_key ingress_needed __read_mostly; 1715 net_inc_ingress_queue(void)1716 void net_inc_ingress_queue(void) 1717 { 1718 static_key_slow_inc(&ingress_needed); 1719 } 1720 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1721 net_dec_ingress_queue(void)1722 void net_dec_ingress_queue(void) 1723 { 1724 static_key_slow_dec(&ingress_needed); 1725 } 1726 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1727 #endif 1728 1729 #ifdef CONFIG_NET_EGRESS 1730 static struct static_key egress_needed __read_mostly; 1731 net_inc_egress_queue(void)1732 void net_inc_egress_queue(void) 1733 { 1734 static_key_slow_inc(&egress_needed); 1735 } 1736 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1737 net_dec_egress_queue(void)1738 void net_dec_egress_queue(void) 1739 { 1740 static_key_slow_dec(&egress_needed); 1741 } 1742 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1743 #endif 1744 1745 static struct static_key netstamp_needed __read_mostly; 1746 #ifdef HAVE_JUMP_LABEL 1747 static atomic_t netstamp_needed_deferred; 1748 static atomic_t netstamp_wanted; netstamp_clear(struct work_struct * work)1749 static void netstamp_clear(struct work_struct *work) 1750 { 1751 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1752 int wanted; 1753 1754 wanted = atomic_add_return(deferred, &netstamp_wanted); 1755 if (wanted > 0) 1756 static_key_enable(&netstamp_needed); 1757 else 1758 static_key_disable(&netstamp_needed); 1759 } 1760 static DECLARE_WORK(netstamp_work, netstamp_clear); 1761 #endif 1762 net_enable_timestamp(void)1763 void net_enable_timestamp(void) 1764 { 1765 #ifdef HAVE_JUMP_LABEL 1766 int wanted; 1767 1768 while (1) { 1769 wanted = atomic_read(&netstamp_wanted); 1770 if (wanted <= 0) 1771 break; 1772 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1773 return; 1774 } 1775 atomic_inc(&netstamp_needed_deferred); 1776 schedule_work(&netstamp_work); 1777 #else 1778 static_key_slow_inc(&netstamp_needed); 1779 #endif 1780 } 1781 EXPORT_SYMBOL(net_enable_timestamp); 1782 net_disable_timestamp(void)1783 void net_disable_timestamp(void) 1784 { 1785 #ifdef HAVE_JUMP_LABEL 1786 int wanted; 1787 1788 while (1) { 1789 wanted = atomic_read(&netstamp_wanted); 1790 if (wanted <= 1) 1791 break; 1792 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1793 return; 1794 } 1795 atomic_dec(&netstamp_needed_deferred); 1796 schedule_work(&netstamp_work); 1797 #else 1798 static_key_slow_dec(&netstamp_needed); 1799 #endif 1800 } 1801 EXPORT_SYMBOL(net_disable_timestamp); 1802 net_timestamp_set(struct sk_buff * skb)1803 static inline void net_timestamp_set(struct sk_buff *skb) 1804 { 1805 skb->tstamp = 0; 1806 if (static_key_false(&netstamp_needed)) 1807 __net_timestamp(skb); 1808 } 1809 1810 #define net_timestamp_check(COND, SKB) \ 1811 if (static_key_false(&netstamp_needed)) { \ 1812 if ((COND) && !(SKB)->tstamp) \ 1813 __net_timestamp(SKB); \ 1814 } \ 1815 is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)1816 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1817 { 1818 unsigned int len; 1819 1820 if (!(dev->flags & IFF_UP)) 1821 return false; 1822 1823 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1824 if (skb->len <= len) 1825 return true; 1826 1827 /* if TSO is enabled, we don't care about the length as the packet 1828 * could be forwarded without being segmented before 1829 */ 1830 if (skb_is_gso(skb)) 1831 return true; 1832 1833 return false; 1834 } 1835 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1836 __dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1837 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1838 { 1839 int ret = ____dev_forward_skb(dev, skb); 1840 1841 if (likely(!ret)) { 1842 skb->protocol = eth_type_trans(skb, dev); 1843 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1844 } 1845 1846 return ret; 1847 } 1848 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1849 1850 /** 1851 * dev_forward_skb - loopback an skb to another netif 1852 * 1853 * @dev: destination network device 1854 * @skb: buffer to forward 1855 * 1856 * return values: 1857 * NET_RX_SUCCESS (no congestion) 1858 * NET_RX_DROP (packet was dropped, but freed) 1859 * 1860 * dev_forward_skb can be used for injecting an skb from the 1861 * start_xmit function of one device into the receive queue 1862 * of another device. 1863 * 1864 * The receiving device may be in another namespace, so 1865 * we have to clear all information in the skb that could 1866 * impact namespace isolation. 1867 */ dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1868 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1869 { 1870 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1871 } 1872 EXPORT_SYMBOL_GPL(dev_forward_skb); 1873 deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1874 static inline int deliver_skb(struct sk_buff *skb, 1875 struct packet_type *pt_prev, 1876 struct net_device *orig_dev) 1877 { 1878 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1879 return -ENOMEM; 1880 refcount_inc(&skb->users); 1881 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1882 } 1883 deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1884 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1885 struct packet_type **pt, 1886 struct net_device *orig_dev, 1887 __be16 type, 1888 struct list_head *ptype_list) 1889 { 1890 struct packet_type *ptype, *pt_prev = *pt; 1891 1892 list_for_each_entry_rcu(ptype, ptype_list, list) { 1893 if (ptype->type != type) 1894 continue; 1895 if (pt_prev) 1896 deliver_skb(skb, pt_prev, orig_dev); 1897 pt_prev = ptype; 1898 } 1899 *pt = pt_prev; 1900 } 1901 skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1902 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1903 { 1904 if (!ptype->af_packet_priv || !skb->sk) 1905 return false; 1906 1907 if (ptype->id_match) 1908 return ptype->id_match(ptype, skb->sk); 1909 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1910 return true; 1911 1912 return false; 1913 } 1914 1915 /* 1916 * Support routine. Sends outgoing frames to any network 1917 * taps currently in use. 1918 */ 1919 dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1920 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1921 { 1922 struct packet_type *ptype; 1923 struct sk_buff *skb2 = NULL; 1924 struct packet_type *pt_prev = NULL; 1925 struct list_head *ptype_list = &ptype_all; 1926 1927 rcu_read_lock(); 1928 again: 1929 list_for_each_entry_rcu(ptype, ptype_list, list) { 1930 /* Never send packets back to the socket 1931 * they originated from - MvS (miquels@drinkel.ow.org) 1932 */ 1933 if (skb_loop_sk(ptype, skb)) 1934 continue; 1935 1936 if (pt_prev) { 1937 deliver_skb(skb2, pt_prev, skb->dev); 1938 pt_prev = ptype; 1939 continue; 1940 } 1941 1942 /* need to clone skb, done only once */ 1943 skb2 = skb_clone(skb, GFP_ATOMIC); 1944 if (!skb2) 1945 goto out_unlock; 1946 1947 net_timestamp_set(skb2); 1948 1949 /* skb->nh should be correctly 1950 * set by sender, so that the second statement is 1951 * just protection against buggy protocols. 1952 */ 1953 skb_reset_mac_header(skb2); 1954 1955 if (skb_network_header(skb2) < skb2->data || 1956 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1957 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1958 ntohs(skb2->protocol), 1959 dev->name); 1960 skb_reset_network_header(skb2); 1961 } 1962 1963 skb2->transport_header = skb2->network_header; 1964 skb2->pkt_type = PACKET_OUTGOING; 1965 pt_prev = ptype; 1966 } 1967 1968 if (ptype_list == &ptype_all) { 1969 ptype_list = &dev->ptype_all; 1970 goto again; 1971 } 1972 out_unlock: 1973 if (pt_prev) { 1974 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1975 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1976 else 1977 kfree_skb(skb2); 1978 } 1979 rcu_read_unlock(); 1980 } 1981 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1982 1983 /** 1984 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1985 * @dev: Network device 1986 * @txq: number of queues available 1987 * 1988 * If real_num_tx_queues is changed the tc mappings may no longer be 1989 * valid. To resolve this verify the tc mapping remains valid and if 1990 * not NULL the mapping. With no priorities mapping to this 1991 * offset/count pair it will no longer be used. In the worst case TC0 1992 * is invalid nothing can be done so disable priority mappings. If is 1993 * expected that drivers will fix this mapping if they can before 1994 * calling netif_set_real_num_tx_queues. 1995 */ netif_setup_tc(struct net_device * dev,unsigned int txq)1996 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1997 { 1998 int i; 1999 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2000 2001 /* If TC0 is invalidated disable TC mapping */ 2002 if (tc->offset + tc->count > txq) { 2003 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2004 dev->num_tc = 0; 2005 return; 2006 } 2007 2008 /* Invalidated prio to tc mappings set to TC0 */ 2009 for (i = 1; i < TC_BITMASK + 1; i++) { 2010 int q = netdev_get_prio_tc_map(dev, i); 2011 2012 tc = &dev->tc_to_txq[q]; 2013 if (tc->offset + tc->count > txq) { 2014 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2015 i, q); 2016 netdev_set_prio_tc_map(dev, i, 0); 2017 } 2018 } 2019 } 2020 netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2021 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2022 { 2023 if (dev->num_tc) { 2024 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2025 int i; 2026 2027 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2028 if ((txq - tc->offset) < tc->count) 2029 return i; 2030 } 2031 2032 return -1; 2033 } 2034 2035 return 0; 2036 } 2037 2038 #ifdef CONFIG_XPS 2039 static DEFINE_MUTEX(xps_map_mutex); 2040 #define xmap_dereference(P) \ 2041 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2042 remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2043 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2044 int tci, u16 index) 2045 { 2046 struct xps_map *map = NULL; 2047 int pos; 2048 2049 if (dev_maps) 2050 map = xmap_dereference(dev_maps->cpu_map[tci]); 2051 if (!map) 2052 return false; 2053 2054 for (pos = map->len; pos--;) { 2055 if (map->queues[pos] != index) 2056 continue; 2057 2058 if (map->len > 1) { 2059 map->queues[pos] = map->queues[--map->len]; 2060 break; 2061 } 2062 2063 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2064 kfree_rcu(map, rcu); 2065 return false; 2066 } 2067 2068 return true; 2069 } 2070 remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2071 static bool remove_xps_queue_cpu(struct net_device *dev, 2072 struct xps_dev_maps *dev_maps, 2073 int cpu, u16 offset, u16 count) 2074 { 2075 int num_tc = dev->num_tc ? : 1; 2076 bool active = false; 2077 int tci; 2078 2079 for (tci = cpu * num_tc; num_tc--; tci++) { 2080 int i, j; 2081 2082 for (i = count, j = offset; i--; j++) { 2083 if (!remove_xps_queue(dev_maps, tci, j)) 2084 break; 2085 } 2086 2087 active |= i < 0; 2088 } 2089 2090 return active; 2091 } 2092 netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2093 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2094 u16 count) 2095 { 2096 struct xps_dev_maps *dev_maps; 2097 int cpu, i; 2098 bool active = false; 2099 2100 mutex_lock(&xps_map_mutex); 2101 dev_maps = xmap_dereference(dev->xps_maps); 2102 2103 if (!dev_maps) 2104 goto out_no_maps; 2105 2106 for_each_possible_cpu(cpu) 2107 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2108 offset, count); 2109 2110 if (!active) { 2111 RCU_INIT_POINTER(dev->xps_maps, NULL); 2112 kfree_rcu(dev_maps, rcu); 2113 } 2114 2115 for (i = offset + (count - 1); count--; i--) 2116 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2117 NUMA_NO_NODE); 2118 2119 out_no_maps: 2120 mutex_unlock(&xps_map_mutex); 2121 } 2122 netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2123 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2124 { 2125 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2126 } 2127 expand_xps_map(struct xps_map * map,int cpu,u16 index)2128 static struct xps_map *expand_xps_map(struct xps_map *map, 2129 int cpu, u16 index) 2130 { 2131 struct xps_map *new_map; 2132 int alloc_len = XPS_MIN_MAP_ALLOC; 2133 int i, pos; 2134 2135 for (pos = 0; map && pos < map->len; pos++) { 2136 if (map->queues[pos] != index) 2137 continue; 2138 return map; 2139 } 2140 2141 /* Need to add queue to this CPU's existing map */ 2142 if (map) { 2143 if (pos < map->alloc_len) 2144 return map; 2145 2146 alloc_len = map->alloc_len * 2; 2147 } 2148 2149 /* Need to allocate new map to store queue on this CPU's map */ 2150 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2151 cpu_to_node(cpu)); 2152 if (!new_map) 2153 return NULL; 2154 2155 for (i = 0; i < pos; i++) 2156 new_map->queues[i] = map->queues[i]; 2157 new_map->alloc_len = alloc_len; 2158 new_map->len = pos; 2159 2160 return new_map; 2161 } 2162 netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2163 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2164 u16 index) 2165 { 2166 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2167 int i, cpu, tci, numa_node_id = -2; 2168 int maps_sz, num_tc = 1, tc = 0; 2169 struct xps_map *map, *new_map; 2170 bool active = false; 2171 2172 if (dev->num_tc) { 2173 num_tc = dev->num_tc; 2174 tc = netdev_txq_to_tc(dev, index); 2175 if (tc < 0) 2176 return -EINVAL; 2177 } 2178 2179 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2180 if (maps_sz < L1_CACHE_BYTES) 2181 maps_sz = L1_CACHE_BYTES; 2182 2183 mutex_lock(&xps_map_mutex); 2184 2185 dev_maps = xmap_dereference(dev->xps_maps); 2186 2187 /* allocate memory for queue storage */ 2188 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2189 if (!new_dev_maps) 2190 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2191 if (!new_dev_maps) { 2192 mutex_unlock(&xps_map_mutex); 2193 return -ENOMEM; 2194 } 2195 2196 tci = cpu * num_tc + tc; 2197 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2198 NULL; 2199 2200 map = expand_xps_map(map, cpu, index); 2201 if (!map) 2202 goto error; 2203 2204 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2205 } 2206 2207 if (!new_dev_maps) 2208 goto out_no_new_maps; 2209 2210 for_each_possible_cpu(cpu) { 2211 /* copy maps belonging to foreign traffic classes */ 2212 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2213 /* fill in the new device map from the old device map */ 2214 map = xmap_dereference(dev_maps->cpu_map[tci]); 2215 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2216 } 2217 2218 /* We need to explicitly update tci as prevous loop 2219 * could break out early if dev_maps is NULL. 2220 */ 2221 tci = cpu * num_tc + tc; 2222 2223 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2224 /* add queue to CPU maps */ 2225 int pos = 0; 2226 2227 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2228 while ((pos < map->len) && (map->queues[pos] != index)) 2229 pos++; 2230 2231 if (pos == map->len) 2232 map->queues[map->len++] = index; 2233 #ifdef CONFIG_NUMA 2234 if (numa_node_id == -2) 2235 numa_node_id = cpu_to_node(cpu); 2236 else if (numa_node_id != cpu_to_node(cpu)) 2237 numa_node_id = -1; 2238 #endif 2239 } else if (dev_maps) { 2240 /* fill in the new device map from the old device map */ 2241 map = xmap_dereference(dev_maps->cpu_map[tci]); 2242 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2243 } 2244 2245 /* copy maps belonging to foreign traffic classes */ 2246 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2247 /* fill in the new device map from the old device map */ 2248 map = xmap_dereference(dev_maps->cpu_map[tci]); 2249 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2250 } 2251 } 2252 2253 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2254 2255 /* Cleanup old maps */ 2256 if (!dev_maps) 2257 goto out_no_old_maps; 2258 2259 for_each_possible_cpu(cpu) { 2260 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2261 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2262 map = xmap_dereference(dev_maps->cpu_map[tci]); 2263 if (map && map != new_map) 2264 kfree_rcu(map, rcu); 2265 } 2266 } 2267 2268 kfree_rcu(dev_maps, rcu); 2269 2270 out_no_old_maps: 2271 dev_maps = new_dev_maps; 2272 active = true; 2273 2274 out_no_new_maps: 2275 /* update Tx queue numa node */ 2276 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2277 (numa_node_id >= 0) ? numa_node_id : 2278 NUMA_NO_NODE); 2279 2280 if (!dev_maps) 2281 goto out_no_maps; 2282 2283 /* removes queue from unused CPUs */ 2284 for_each_possible_cpu(cpu) { 2285 for (i = tc, tci = cpu * num_tc; i--; tci++) 2286 active |= remove_xps_queue(dev_maps, tci, index); 2287 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2288 active |= remove_xps_queue(dev_maps, tci, index); 2289 for (i = num_tc - tc, tci++; --i; tci++) 2290 active |= remove_xps_queue(dev_maps, tci, index); 2291 } 2292 2293 /* free map if not active */ 2294 if (!active) { 2295 RCU_INIT_POINTER(dev->xps_maps, NULL); 2296 kfree_rcu(dev_maps, rcu); 2297 } 2298 2299 out_no_maps: 2300 mutex_unlock(&xps_map_mutex); 2301 2302 return 0; 2303 error: 2304 /* remove any maps that we added */ 2305 for_each_possible_cpu(cpu) { 2306 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2307 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2308 map = dev_maps ? 2309 xmap_dereference(dev_maps->cpu_map[tci]) : 2310 NULL; 2311 if (new_map && new_map != map) 2312 kfree(new_map); 2313 } 2314 } 2315 2316 mutex_unlock(&xps_map_mutex); 2317 2318 kfree(new_dev_maps); 2319 return -ENOMEM; 2320 } 2321 EXPORT_SYMBOL(netif_set_xps_queue); 2322 2323 #endif netdev_reset_tc(struct net_device * dev)2324 void netdev_reset_tc(struct net_device *dev) 2325 { 2326 #ifdef CONFIG_XPS 2327 netif_reset_xps_queues_gt(dev, 0); 2328 #endif 2329 dev->num_tc = 0; 2330 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2331 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2332 } 2333 EXPORT_SYMBOL(netdev_reset_tc); 2334 netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2335 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2336 { 2337 if (tc >= dev->num_tc) 2338 return -EINVAL; 2339 2340 #ifdef CONFIG_XPS 2341 netif_reset_xps_queues(dev, offset, count); 2342 #endif 2343 dev->tc_to_txq[tc].count = count; 2344 dev->tc_to_txq[tc].offset = offset; 2345 return 0; 2346 } 2347 EXPORT_SYMBOL(netdev_set_tc_queue); 2348 netdev_set_num_tc(struct net_device * dev,u8 num_tc)2349 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2350 { 2351 if (num_tc > TC_MAX_QUEUE) 2352 return -EINVAL; 2353 2354 #ifdef CONFIG_XPS 2355 netif_reset_xps_queues_gt(dev, 0); 2356 #endif 2357 dev->num_tc = num_tc; 2358 return 0; 2359 } 2360 EXPORT_SYMBOL(netdev_set_num_tc); 2361 2362 /* 2363 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2364 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2365 */ netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2366 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2367 { 2368 bool disabling; 2369 int rc; 2370 2371 disabling = txq < dev->real_num_tx_queues; 2372 2373 if (txq < 1 || txq > dev->num_tx_queues) 2374 return -EINVAL; 2375 2376 if (dev->reg_state == NETREG_REGISTERED || 2377 dev->reg_state == NETREG_UNREGISTERING) { 2378 ASSERT_RTNL(); 2379 2380 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2381 txq); 2382 if (rc) 2383 return rc; 2384 2385 if (dev->num_tc) 2386 netif_setup_tc(dev, txq); 2387 2388 dev->real_num_tx_queues = txq; 2389 2390 if (disabling) { 2391 synchronize_net(); 2392 qdisc_reset_all_tx_gt(dev, txq); 2393 #ifdef CONFIG_XPS 2394 netif_reset_xps_queues_gt(dev, txq); 2395 #endif 2396 } 2397 } else { 2398 dev->real_num_tx_queues = txq; 2399 } 2400 2401 return 0; 2402 } 2403 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2404 2405 #ifdef CONFIG_SYSFS 2406 /** 2407 * netif_set_real_num_rx_queues - set actual number of RX queues used 2408 * @dev: Network device 2409 * @rxq: Actual number of RX queues 2410 * 2411 * This must be called either with the rtnl_lock held or before 2412 * registration of the net device. Returns 0 on success, or a 2413 * negative error code. If called before registration, it always 2414 * succeeds. 2415 */ netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2416 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2417 { 2418 int rc; 2419 2420 if (rxq < 1 || rxq > dev->num_rx_queues) 2421 return -EINVAL; 2422 2423 if (dev->reg_state == NETREG_REGISTERED) { 2424 ASSERT_RTNL(); 2425 2426 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2427 rxq); 2428 if (rc) 2429 return rc; 2430 } 2431 2432 dev->real_num_rx_queues = rxq; 2433 return 0; 2434 } 2435 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2436 #endif 2437 2438 /** 2439 * netif_get_num_default_rss_queues - default number of RSS queues 2440 * 2441 * This routine should set an upper limit on the number of RSS queues 2442 * used by default by multiqueue devices. 2443 */ netif_get_num_default_rss_queues(void)2444 int netif_get_num_default_rss_queues(void) 2445 { 2446 return is_kdump_kernel() ? 2447 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2448 } 2449 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2450 __netif_reschedule(struct Qdisc * q)2451 static void __netif_reschedule(struct Qdisc *q) 2452 { 2453 struct softnet_data *sd; 2454 unsigned long flags; 2455 2456 local_irq_save(flags); 2457 sd = this_cpu_ptr(&softnet_data); 2458 q->next_sched = NULL; 2459 *sd->output_queue_tailp = q; 2460 sd->output_queue_tailp = &q->next_sched; 2461 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2462 local_irq_restore(flags); 2463 } 2464 __netif_schedule(struct Qdisc * q)2465 void __netif_schedule(struct Qdisc *q) 2466 { 2467 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2468 __netif_reschedule(q); 2469 } 2470 EXPORT_SYMBOL(__netif_schedule); 2471 2472 struct dev_kfree_skb_cb { 2473 enum skb_free_reason reason; 2474 }; 2475 get_kfree_skb_cb(const struct sk_buff * skb)2476 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2477 { 2478 return (struct dev_kfree_skb_cb *)skb->cb; 2479 } 2480 netif_schedule_queue(struct netdev_queue * txq)2481 void netif_schedule_queue(struct netdev_queue *txq) 2482 { 2483 rcu_read_lock(); 2484 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2485 struct Qdisc *q = rcu_dereference(txq->qdisc); 2486 2487 __netif_schedule(q); 2488 } 2489 rcu_read_unlock(); 2490 } 2491 EXPORT_SYMBOL(netif_schedule_queue); 2492 netif_tx_wake_queue(struct netdev_queue * dev_queue)2493 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2494 { 2495 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2496 struct Qdisc *q; 2497 2498 rcu_read_lock(); 2499 q = rcu_dereference(dev_queue->qdisc); 2500 __netif_schedule(q); 2501 rcu_read_unlock(); 2502 } 2503 } 2504 EXPORT_SYMBOL(netif_tx_wake_queue); 2505 __dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2506 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2507 { 2508 unsigned long flags; 2509 2510 if (unlikely(!skb)) 2511 return; 2512 2513 if (likely(refcount_read(&skb->users) == 1)) { 2514 smp_rmb(); 2515 refcount_set(&skb->users, 0); 2516 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2517 return; 2518 } 2519 get_kfree_skb_cb(skb)->reason = reason; 2520 local_irq_save(flags); 2521 skb->next = __this_cpu_read(softnet_data.completion_queue); 2522 __this_cpu_write(softnet_data.completion_queue, skb); 2523 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2524 local_irq_restore(flags); 2525 } 2526 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2527 __dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2528 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2529 { 2530 if (in_irq() || irqs_disabled()) 2531 __dev_kfree_skb_irq(skb, reason); 2532 else 2533 dev_kfree_skb(skb); 2534 } 2535 EXPORT_SYMBOL(__dev_kfree_skb_any); 2536 2537 2538 /** 2539 * netif_device_detach - mark device as removed 2540 * @dev: network device 2541 * 2542 * Mark device as removed from system and therefore no longer available. 2543 */ netif_device_detach(struct net_device * dev)2544 void netif_device_detach(struct net_device *dev) 2545 { 2546 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2547 netif_running(dev)) { 2548 netif_tx_stop_all_queues(dev); 2549 } 2550 } 2551 EXPORT_SYMBOL(netif_device_detach); 2552 2553 /** 2554 * netif_device_attach - mark device as attached 2555 * @dev: network device 2556 * 2557 * Mark device as attached from system and restart if needed. 2558 */ netif_device_attach(struct net_device * dev)2559 void netif_device_attach(struct net_device *dev) 2560 { 2561 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2562 netif_running(dev)) { 2563 netif_tx_wake_all_queues(dev); 2564 __netdev_watchdog_up(dev); 2565 } 2566 } 2567 EXPORT_SYMBOL(netif_device_attach); 2568 2569 /* 2570 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2571 * to be used as a distribution range. 2572 */ __skb_tx_hash(const struct net_device * dev,struct sk_buff * skb,unsigned int num_tx_queues)2573 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2574 unsigned int num_tx_queues) 2575 { 2576 u32 hash; 2577 u16 qoffset = 0; 2578 u16 qcount = num_tx_queues; 2579 2580 if (skb_rx_queue_recorded(skb)) { 2581 hash = skb_get_rx_queue(skb); 2582 while (unlikely(hash >= num_tx_queues)) 2583 hash -= num_tx_queues; 2584 return hash; 2585 } 2586 2587 if (dev->num_tc) { 2588 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2589 2590 qoffset = dev->tc_to_txq[tc].offset; 2591 qcount = dev->tc_to_txq[tc].count; 2592 } 2593 2594 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2595 } 2596 EXPORT_SYMBOL(__skb_tx_hash); 2597 skb_warn_bad_offload(const struct sk_buff * skb)2598 static void skb_warn_bad_offload(const struct sk_buff *skb) 2599 { 2600 static const netdev_features_t null_features; 2601 struct net_device *dev = skb->dev; 2602 const char *name = ""; 2603 2604 if (!net_ratelimit()) 2605 return; 2606 2607 if (dev) { 2608 if (dev->dev.parent) 2609 name = dev_driver_string(dev->dev.parent); 2610 else 2611 name = netdev_name(dev); 2612 } 2613 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2614 "gso_type=%d ip_summed=%d\n", 2615 name, dev ? &dev->features : &null_features, 2616 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2617 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2618 skb_shinfo(skb)->gso_type, skb->ip_summed); 2619 } 2620 2621 /* 2622 * Invalidate hardware checksum when packet is to be mangled, and 2623 * complete checksum manually on outgoing path. 2624 */ skb_checksum_help(struct sk_buff * skb)2625 int skb_checksum_help(struct sk_buff *skb) 2626 { 2627 __wsum csum; 2628 int ret = 0, offset; 2629 2630 if (skb->ip_summed == CHECKSUM_COMPLETE) 2631 goto out_set_summed; 2632 2633 if (unlikely(skb_shinfo(skb)->gso_size)) { 2634 skb_warn_bad_offload(skb); 2635 return -EINVAL; 2636 } 2637 2638 /* Before computing a checksum, we should make sure no frag could 2639 * be modified by an external entity : checksum could be wrong. 2640 */ 2641 if (skb_has_shared_frag(skb)) { 2642 ret = __skb_linearize(skb); 2643 if (ret) 2644 goto out; 2645 } 2646 2647 offset = skb_checksum_start_offset(skb); 2648 BUG_ON(offset >= skb_headlen(skb)); 2649 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2650 2651 offset += skb->csum_offset; 2652 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2653 2654 if (skb_cloned(skb) && 2655 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2656 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2657 if (ret) 2658 goto out; 2659 } 2660 2661 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2662 out_set_summed: 2663 skb->ip_summed = CHECKSUM_NONE; 2664 out: 2665 return ret; 2666 } 2667 EXPORT_SYMBOL(skb_checksum_help); 2668 skb_crc32c_csum_help(struct sk_buff * skb)2669 int skb_crc32c_csum_help(struct sk_buff *skb) 2670 { 2671 __le32 crc32c_csum; 2672 int ret = 0, offset, start; 2673 2674 if (skb->ip_summed != CHECKSUM_PARTIAL) 2675 goto out; 2676 2677 if (unlikely(skb_is_gso(skb))) 2678 goto out; 2679 2680 /* Before computing a checksum, we should make sure no frag could 2681 * be modified by an external entity : checksum could be wrong. 2682 */ 2683 if (unlikely(skb_has_shared_frag(skb))) { 2684 ret = __skb_linearize(skb); 2685 if (ret) 2686 goto out; 2687 } 2688 start = skb_checksum_start_offset(skb); 2689 offset = start + offsetof(struct sctphdr, checksum); 2690 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2691 ret = -EINVAL; 2692 goto out; 2693 } 2694 if (skb_cloned(skb) && 2695 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2696 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2697 if (ret) 2698 goto out; 2699 } 2700 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2701 skb->len - start, ~(__u32)0, 2702 crc32c_csum_stub)); 2703 *(__le32 *)(skb->data + offset) = crc32c_csum; 2704 skb->ip_summed = CHECKSUM_NONE; 2705 skb->csum_not_inet = 0; 2706 out: 2707 return ret; 2708 } 2709 skb_network_protocol(struct sk_buff * skb,int * depth)2710 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2711 { 2712 __be16 type = skb->protocol; 2713 2714 /* Tunnel gso handlers can set protocol to ethernet. */ 2715 if (type == htons(ETH_P_TEB)) { 2716 struct ethhdr *eth; 2717 2718 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2719 return 0; 2720 2721 eth = (struct ethhdr *)skb->data; 2722 type = eth->h_proto; 2723 } 2724 2725 return __vlan_get_protocol(skb, type, depth); 2726 } 2727 2728 /** 2729 * skb_mac_gso_segment - mac layer segmentation handler. 2730 * @skb: buffer to segment 2731 * @features: features for the output path (see dev->features) 2732 */ skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2733 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2734 netdev_features_t features) 2735 { 2736 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2737 struct packet_offload *ptype; 2738 int vlan_depth = skb->mac_len; 2739 __be16 type = skb_network_protocol(skb, &vlan_depth); 2740 2741 if (unlikely(!type)) 2742 return ERR_PTR(-EINVAL); 2743 2744 __skb_pull(skb, vlan_depth); 2745 2746 rcu_read_lock(); 2747 list_for_each_entry_rcu(ptype, &offload_base, list) { 2748 if (ptype->type == type && ptype->callbacks.gso_segment) { 2749 segs = ptype->callbacks.gso_segment(skb, features); 2750 break; 2751 } 2752 } 2753 rcu_read_unlock(); 2754 2755 __skb_push(skb, skb->data - skb_mac_header(skb)); 2756 2757 return segs; 2758 } 2759 EXPORT_SYMBOL(skb_mac_gso_segment); 2760 2761 2762 /* openvswitch calls this on rx path, so we need a different check. 2763 */ skb_needs_check(struct sk_buff * skb,bool tx_path)2764 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2765 { 2766 if (tx_path) 2767 return skb->ip_summed != CHECKSUM_PARTIAL && 2768 skb->ip_summed != CHECKSUM_UNNECESSARY; 2769 2770 return skb->ip_summed == CHECKSUM_NONE; 2771 } 2772 2773 /** 2774 * __skb_gso_segment - Perform segmentation on skb. 2775 * @skb: buffer to segment 2776 * @features: features for the output path (see dev->features) 2777 * @tx_path: whether it is called in TX path 2778 * 2779 * This function segments the given skb and returns a list of segments. 2780 * 2781 * It may return NULL if the skb requires no segmentation. This is 2782 * only possible when GSO is used for verifying header integrity. 2783 * 2784 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2785 */ __skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)2786 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2787 netdev_features_t features, bool tx_path) 2788 { 2789 struct sk_buff *segs; 2790 2791 if (unlikely(skb_needs_check(skb, tx_path))) { 2792 int err; 2793 2794 /* We're going to init ->check field in TCP or UDP header */ 2795 err = skb_cow_head(skb, 0); 2796 if (err < 0) 2797 return ERR_PTR(err); 2798 } 2799 2800 /* Only report GSO partial support if it will enable us to 2801 * support segmentation on this frame without needing additional 2802 * work. 2803 */ 2804 if (features & NETIF_F_GSO_PARTIAL) { 2805 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2806 struct net_device *dev = skb->dev; 2807 2808 partial_features |= dev->features & dev->gso_partial_features; 2809 if (!skb_gso_ok(skb, features | partial_features)) 2810 features &= ~NETIF_F_GSO_PARTIAL; 2811 } 2812 2813 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2814 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2815 2816 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2817 SKB_GSO_CB(skb)->encap_level = 0; 2818 2819 skb_reset_mac_header(skb); 2820 skb_reset_mac_len(skb); 2821 2822 segs = skb_mac_gso_segment(skb, features); 2823 2824 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 2825 skb_warn_bad_offload(skb); 2826 2827 return segs; 2828 } 2829 EXPORT_SYMBOL(__skb_gso_segment); 2830 2831 /* Take action when hardware reception checksum errors are detected. */ 2832 #ifdef CONFIG_BUG netdev_rx_csum_fault(struct net_device * dev)2833 void netdev_rx_csum_fault(struct net_device *dev) 2834 { 2835 if (net_ratelimit()) { 2836 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2837 dump_stack(); 2838 } 2839 } 2840 EXPORT_SYMBOL(netdev_rx_csum_fault); 2841 #endif 2842 2843 /* Actually, we should eliminate this check as soon as we know, that: 2844 * 1. IOMMU is present and allows to map all the memory. 2845 * 2. No high memory really exists on this machine. 2846 */ 2847 illegal_highdma(struct net_device * dev,struct sk_buff * skb)2848 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2849 { 2850 #ifdef CONFIG_HIGHMEM 2851 int i; 2852 2853 if (!(dev->features & NETIF_F_HIGHDMA)) { 2854 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2855 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2856 2857 if (PageHighMem(skb_frag_page(frag))) 2858 return 1; 2859 } 2860 } 2861 2862 if (PCI_DMA_BUS_IS_PHYS) { 2863 struct device *pdev = dev->dev.parent; 2864 2865 if (!pdev) 2866 return 0; 2867 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2868 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2869 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2870 2871 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2872 return 1; 2873 } 2874 } 2875 #endif 2876 return 0; 2877 } 2878 2879 /* If MPLS offload request, verify we are testing hardware MPLS features 2880 * instead of standard features for the netdev. 2881 */ 2882 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2883 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2884 netdev_features_t features, 2885 __be16 type) 2886 { 2887 if (eth_p_mpls(type)) 2888 features &= skb->dev->mpls_features; 2889 2890 return features; 2891 } 2892 #else net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2893 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2894 netdev_features_t features, 2895 __be16 type) 2896 { 2897 return features; 2898 } 2899 #endif 2900 harmonize_features(struct sk_buff * skb,netdev_features_t features)2901 static netdev_features_t harmonize_features(struct sk_buff *skb, 2902 netdev_features_t features) 2903 { 2904 int tmp; 2905 __be16 type; 2906 2907 type = skb_network_protocol(skb, &tmp); 2908 features = net_mpls_features(skb, features, type); 2909 2910 if (skb->ip_summed != CHECKSUM_NONE && 2911 !can_checksum_protocol(features, type)) { 2912 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2913 } 2914 if (illegal_highdma(skb->dev, skb)) 2915 features &= ~NETIF_F_SG; 2916 2917 return features; 2918 } 2919 passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2920 netdev_features_t passthru_features_check(struct sk_buff *skb, 2921 struct net_device *dev, 2922 netdev_features_t features) 2923 { 2924 return features; 2925 } 2926 EXPORT_SYMBOL(passthru_features_check); 2927 dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2928 static netdev_features_t dflt_features_check(struct sk_buff *skb, 2929 struct net_device *dev, 2930 netdev_features_t features) 2931 { 2932 return vlan_features_check(skb, features); 2933 } 2934 gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2935 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2936 struct net_device *dev, 2937 netdev_features_t features) 2938 { 2939 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2940 2941 if (gso_segs > dev->gso_max_segs) 2942 return features & ~NETIF_F_GSO_MASK; 2943 2944 /* Support for GSO partial features requires software 2945 * intervention before we can actually process the packets 2946 * so we need to strip support for any partial features now 2947 * and we can pull them back in after we have partially 2948 * segmented the frame. 2949 */ 2950 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2951 features &= ~dev->gso_partial_features; 2952 2953 /* Make sure to clear the IPv4 ID mangling feature if the 2954 * IPv4 header has the potential to be fragmented. 2955 */ 2956 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2957 struct iphdr *iph = skb->encapsulation ? 2958 inner_ip_hdr(skb) : ip_hdr(skb); 2959 2960 if (!(iph->frag_off & htons(IP_DF))) 2961 features &= ~NETIF_F_TSO_MANGLEID; 2962 } 2963 2964 return features; 2965 } 2966 netif_skb_features(struct sk_buff * skb)2967 netdev_features_t netif_skb_features(struct sk_buff *skb) 2968 { 2969 struct net_device *dev = skb->dev; 2970 netdev_features_t features = dev->features; 2971 2972 if (skb_is_gso(skb)) 2973 features = gso_features_check(skb, dev, features); 2974 2975 /* If encapsulation offload request, verify we are testing 2976 * hardware encapsulation features instead of standard 2977 * features for the netdev 2978 */ 2979 if (skb->encapsulation) 2980 features &= dev->hw_enc_features; 2981 2982 if (skb_vlan_tagged(skb)) 2983 features = netdev_intersect_features(features, 2984 dev->vlan_features | 2985 NETIF_F_HW_VLAN_CTAG_TX | 2986 NETIF_F_HW_VLAN_STAG_TX); 2987 2988 if (dev->netdev_ops->ndo_features_check) 2989 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2990 features); 2991 else 2992 features &= dflt_features_check(skb, dev, features); 2993 2994 return harmonize_features(skb, features); 2995 } 2996 EXPORT_SYMBOL(netif_skb_features); 2997 xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)2998 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2999 struct netdev_queue *txq, bool more) 3000 { 3001 unsigned int len; 3002 int rc; 3003 3004 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3005 dev_queue_xmit_nit(skb, dev); 3006 3007 len = skb->len; 3008 trace_net_dev_start_xmit(skb, dev); 3009 rc = netdev_start_xmit(skb, dev, txq, more); 3010 trace_net_dev_xmit(skb, rc, dev, len); 3011 3012 return rc; 3013 } 3014 dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3015 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3016 struct netdev_queue *txq, int *ret) 3017 { 3018 struct sk_buff *skb = first; 3019 int rc = NETDEV_TX_OK; 3020 3021 while (skb) { 3022 struct sk_buff *next = skb->next; 3023 3024 skb->next = NULL; 3025 rc = xmit_one(skb, dev, txq, next != NULL); 3026 if (unlikely(!dev_xmit_complete(rc))) { 3027 skb->next = next; 3028 goto out; 3029 } 3030 3031 skb = next; 3032 if (netif_tx_queue_stopped(txq) && skb) { 3033 rc = NETDEV_TX_BUSY; 3034 break; 3035 } 3036 } 3037 3038 out: 3039 *ret = rc; 3040 return skb; 3041 } 3042 validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3043 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3044 netdev_features_t features) 3045 { 3046 if (skb_vlan_tag_present(skb) && 3047 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3048 skb = __vlan_hwaccel_push_inside(skb); 3049 return skb; 3050 } 3051 skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3052 int skb_csum_hwoffload_help(struct sk_buff *skb, 3053 const netdev_features_t features) 3054 { 3055 if (unlikely(skb->csum_not_inet)) 3056 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3057 skb_crc32c_csum_help(skb); 3058 3059 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3060 } 3061 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3062 validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3063 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3064 { 3065 netdev_features_t features; 3066 3067 features = netif_skb_features(skb); 3068 skb = validate_xmit_vlan(skb, features); 3069 if (unlikely(!skb)) 3070 goto out_null; 3071 3072 if (netif_needs_gso(skb, features)) { 3073 struct sk_buff *segs; 3074 3075 segs = skb_gso_segment(skb, features); 3076 if (IS_ERR(segs)) { 3077 goto out_kfree_skb; 3078 } else if (segs) { 3079 consume_skb(skb); 3080 skb = segs; 3081 } 3082 } else { 3083 if (skb_needs_linearize(skb, features) && 3084 __skb_linearize(skb)) 3085 goto out_kfree_skb; 3086 3087 if (validate_xmit_xfrm(skb, features)) 3088 goto out_kfree_skb; 3089 3090 /* If packet is not checksummed and device does not 3091 * support checksumming for this protocol, complete 3092 * checksumming here. 3093 */ 3094 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3095 if (skb->encapsulation) 3096 skb_set_inner_transport_header(skb, 3097 skb_checksum_start_offset(skb)); 3098 else 3099 skb_set_transport_header(skb, 3100 skb_checksum_start_offset(skb)); 3101 if (skb_csum_hwoffload_help(skb, features)) 3102 goto out_kfree_skb; 3103 } 3104 } 3105 3106 return skb; 3107 3108 out_kfree_skb: 3109 kfree_skb(skb); 3110 out_null: 3111 atomic_long_inc(&dev->tx_dropped); 3112 return NULL; 3113 } 3114 validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev)3115 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3116 { 3117 struct sk_buff *next, *head = NULL, *tail; 3118 3119 for (; skb != NULL; skb = next) { 3120 next = skb->next; 3121 skb->next = NULL; 3122 3123 /* in case skb wont be segmented, point to itself */ 3124 skb->prev = skb; 3125 3126 skb = validate_xmit_skb(skb, dev); 3127 if (!skb) 3128 continue; 3129 3130 if (!head) 3131 head = skb; 3132 else 3133 tail->next = skb; 3134 /* If skb was segmented, skb->prev points to 3135 * the last segment. If not, it still contains skb. 3136 */ 3137 tail = skb->prev; 3138 } 3139 return head; 3140 } 3141 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3142 qdisc_pkt_len_init(struct sk_buff * skb)3143 static void qdisc_pkt_len_init(struct sk_buff *skb) 3144 { 3145 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3146 3147 qdisc_skb_cb(skb)->pkt_len = skb->len; 3148 3149 /* To get more precise estimation of bytes sent on wire, 3150 * we add to pkt_len the headers size of all segments 3151 */ 3152 if (shinfo->gso_size) { 3153 unsigned int hdr_len; 3154 u16 gso_segs = shinfo->gso_segs; 3155 3156 /* mac layer + network layer */ 3157 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3158 3159 /* + transport layer */ 3160 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3161 const struct tcphdr *th; 3162 struct tcphdr _tcphdr; 3163 3164 th = skb_header_pointer(skb, skb_transport_offset(skb), 3165 sizeof(_tcphdr), &_tcphdr); 3166 if (likely(th)) 3167 hdr_len += __tcp_hdrlen(th); 3168 } else { 3169 struct udphdr _udphdr; 3170 3171 if (skb_header_pointer(skb, skb_transport_offset(skb), 3172 sizeof(_udphdr), &_udphdr)) 3173 hdr_len += sizeof(struct udphdr); 3174 } 3175 3176 if (shinfo->gso_type & SKB_GSO_DODGY) 3177 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3178 shinfo->gso_size); 3179 3180 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3181 } 3182 } 3183 __dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3184 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3185 struct net_device *dev, 3186 struct netdev_queue *txq) 3187 { 3188 spinlock_t *root_lock = qdisc_lock(q); 3189 struct sk_buff *to_free = NULL; 3190 bool contended; 3191 int rc; 3192 3193 qdisc_calculate_pkt_len(skb, q); 3194 /* 3195 * Heuristic to force contended enqueues to serialize on a 3196 * separate lock before trying to get qdisc main lock. 3197 * This permits qdisc->running owner to get the lock more 3198 * often and dequeue packets faster. 3199 */ 3200 contended = qdisc_is_running(q); 3201 if (unlikely(contended)) 3202 spin_lock(&q->busylock); 3203 3204 spin_lock(root_lock); 3205 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3206 __qdisc_drop(skb, &to_free); 3207 rc = NET_XMIT_DROP; 3208 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3209 qdisc_run_begin(q)) { 3210 /* 3211 * This is a work-conserving queue; there are no old skbs 3212 * waiting to be sent out; and the qdisc is not running - 3213 * xmit the skb directly. 3214 */ 3215 3216 qdisc_bstats_update(q, skb); 3217 3218 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3219 if (unlikely(contended)) { 3220 spin_unlock(&q->busylock); 3221 contended = false; 3222 } 3223 __qdisc_run(q); 3224 } else 3225 qdisc_run_end(q); 3226 3227 rc = NET_XMIT_SUCCESS; 3228 } else { 3229 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3230 if (qdisc_run_begin(q)) { 3231 if (unlikely(contended)) { 3232 spin_unlock(&q->busylock); 3233 contended = false; 3234 } 3235 __qdisc_run(q); 3236 } 3237 } 3238 spin_unlock(root_lock); 3239 if (unlikely(to_free)) 3240 kfree_skb_list(to_free); 3241 if (unlikely(contended)) 3242 spin_unlock(&q->busylock); 3243 return rc; 3244 } 3245 3246 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) skb_update_prio(struct sk_buff * skb)3247 static void skb_update_prio(struct sk_buff *skb) 3248 { 3249 const struct netprio_map *map; 3250 const struct sock *sk; 3251 unsigned int prioidx; 3252 3253 if (skb->priority) 3254 return; 3255 map = rcu_dereference_bh(skb->dev->priomap); 3256 if (!map) 3257 return; 3258 sk = skb_to_full_sk(skb); 3259 if (!sk) 3260 return; 3261 3262 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3263 3264 if (prioidx < map->priomap_len) 3265 skb->priority = map->priomap[prioidx]; 3266 } 3267 #else 3268 #define skb_update_prio(skb) 3269 #endif 3270 3271 DEFINE_PER_CPU(int, xmit_recursion); 3272 EXPORT_SYMBOL(xmit_recursion); 3273 3274 /** 3275 * dev_loopback_xmit - loop back @skb 3276 * @net: network namespace this loopback is happening in 3277 * @sk: sk needed to be a netfilter okfn 3278 * @skb: buffer to transmit 3279 */ dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3280 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3281 { 3282 skb_reset_mac_header(skb); 3283 __skb_pull(skb, skb_network_offset(skb)); 3284 skb->pkt_type = PACKET_LOOPBACK; 3285 skb->ip_summed = CHECKSUM_UNNECESSARY; 3286 WARN_ON(!skb_dst(skb)); 3287 skb_dst_force(skb); 3288 netif_rx_ni(skb); 3289 return 0; 3290 } 3291 EXPORT_SYMBOL(dev_loopback_xmit); 3292 3293 #ifdef CONFIG_NET_EGRESS 3294 static struct sk_buff * sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3295 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3296 { 3297 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3298 struct tcf_result cl_res; 3299 3300 if (!cl) 3301 return skb; 3302 3303 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3304 qdisc_bstats_cpu_update(cl->q, skb); 3305 3306 switch (tcf_classify(skb, cl, &cl_res, false)) { 3307 case TC_ACT_OK: 3308 case TC_ACT_RECLASSIFY: 3309 skb->tc_index = TC_H_MIN(cl_res.classid); 3310 break; 3311 case TC_ACT_SHOT: 3312 qdisc_qstats_cpu_drop(cl->q); 3313 *ret = NET_XMIT_DROP; 3314 kfree_skb(skb); 3315 return NULL; 3316 case TC_ACT_STOLEN: 3317 case TC_ACT_QUEUED: 3318 case TC_ACT_TRAP: 3319 *ret = NET_XMIT_SUCCESS; 3320 consume_skb(skb); 3321 return NULL; 3322 case TC_ACT_REDIRECT: 3323 /* No need to push/pop skb's mac_header here on egress! */ 3324 skb_do_redirect(skb); 3325 *ret = NET_XMIT_SUCCESS; 3326 return NULL; 3327 default: 3328 break; 3329 } 3330 3331 return skb; 3332 } 3333 #endif /* CONFIG_NET_EGRESS */ 3334 get_xps_queue(struct net_device * dev,struct sk_buff * skb)3335 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3336 { 3337 #ifdef CONFIG_XPS 3338 struct xps_dev_maps *dev_maps; 3339 struct xps_map *map; 3340 int queue_index = -1; 3341 3342 rcu_read_lock(); 3343 dev_maps = rcu_dereference(dev->xps_maps); 3344 if (dev_maps) { 3345 unsigned int tci = skb->sender_cpu - 1; 3346 3347 if (dev->num_tc) { 3348 tci *= dev->num_tc; 3349 tci += netdev_get_prio_tc_map(dev, skb->priority); 3350 } 3351 3352 map = rcu_dereference(dev_maps->cpu_map[tci]); 3353 if (map) { 3354 if (map->len == 1) 3355 queue_index = map->queues[0]; 3356 else 3357 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3358 map->len)]; 3359 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3360 queue_index = -1; 3361 } 3362 } 3363 rcu_read_unlock(); 3364 3365 return queue_index; 3366 #else 3367 return -1; 3368 #endif 3369 } 3370 __netdev_pick_tx(struct net_device * dev,struct sk_buff * skb)3371 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3372 { 3373 struct sock *sk = skb->sk; 3374 int queue_index = sk_tx_queue_get(sk); 3375 3376 if (queue_index < 0 || skb->ooo_okay || 3377 queue_index >= dev->real_num_tx_queues) { 3378 int new_index = get_xps_queue(dev, skb); 3379 3380 if (new_index < 0) 3381 new_index = skb_tx_hash(dev, skb); 3382 3383 if (queue_index != new_index && sk && 3384 sk_fullsock(sk) && 3385 rcu_access_pointer(sk->sk_dst_cache)) 3386 sk_tx_queue_set(sk, new_index); 3387 3388 queue_index = new_index; 3389 } 3390 3391 return queue_index; 3392 } 3393 netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,void * accel_priv)3394 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3395 struct sk_buff *skb, 3396 void *accel_priv) 3397 { 3398 int queue_index = 0; 3399 3400 #ifdef CONFIG_XPS 3401 u32 sender_cpu = skb->sender_cpu - 1; 3402 3403 if (sender_cpu >= (u32)NR_CPUS) 3404 skb->sender_cpu = raw_smp_processor_id() + 1; 3405 #endif 3406 3407 if (dev->real_num_tx_queues != 1) { 3408 const struct net_device_ops *ops = dev->netdev_ops; 3409 3410 if (ops->ndo_select_queue) 3411 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3412 __netdev_pick_tx); 3413 else 3414 queue_index = __netdev_pick_tx(dev, skb); 3415 3416 if (!accel_priv) 3417 queue_index = netdev_cap_txqueue(dev, queue_index); 3418 } 3419 3420 skb_set_queue_mapping(skb, queue_index); 3421 return netdev_get_tx_queue(dev, queue_index); 3422 } 3423 3424 /** 3425 * __dev_queue_xmit - transmit a buffer 3426 * @skb: buffer to transmit 3427 * @accel_priv: private data used for L2 forwarding offload 3428 * 3429 * Queue a buffer for transmission to a network device. The caller must 3430 * have set the device and priority and built the buffer before calling 3431 * this function. The function can be called from an interrupt. 3432 * 3433 * A negative errno code is returned on a failure. A success does not 3434 * guarantee the frame will be transmitted as it may be dropped due 3435 * to congestion or traffic shaping. 3436 * 3437 * ----------------------------------------------------------------------------------- 3438 * I notice this method can also return errors from the queue disciplines, 3439 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3440 * be positive. 3441 * 3442 * Regardless of the return value, the skb is consumed, so it is currently 3443 * difficult to retry a send to this method. (You can bump the ref count 3444 * before sending to hold a reference for retry if you are careful.) 3445 * 3446 * When calling this method, interrupts MUST be enabled. This is because 3447 * the BH enable code must have IRQs enabled so that it will not deadlock. 3448 * --BLG 3449 */ __dev_queue_xmit(struct sk_buff * skb,void * accel_priv)3450 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3451 { 3452 struct net_device *dev = skb->dev; 3453 struct netdev_queue *txq; 3454 struct Qdisc *q; 3455 int rc = -ENOMEM; 3456 3457 skb_reset_mac_header(skb); 3458 3459 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3460 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3461 3462 /* Disable soft irqs for various locks below. Also 3463 * stops preemption for RCU. 3464 */ 3465 rcu_read_lock_bh(); 3466 3467 skb_update_prio(skb); 3468 3469 qdisc_pkt_len_init(skb); 3470 #ifdef CONFIG_NET_CLS_ACT 3471 skb->tc_at_ingress = 0; 3472 # ifdef CONFIG_NET_EGRESS 3473 if (static_key_false(&egress_needed)) { 3474 skb = sch_handle_egress(skb, &rc, dev); 3475 if (!skb) 3476 goto out; 3477 } 3478 # endif 3479 #endif 3480 /* If device/qdisc don't need skb->dst, release it right now while 3481 * its hot in this cpu cache. 3482 */ 3483 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3484 skb_dst_drop(skb); 3485 else 3486 skb_dst_force(skb); 3487 3488 txq = netdev_pick_tx(dev, skb, accel_priv); 3489 q = rcu_dereference_bh(txq->qdisc); 3490 3491 trace_net_dev_queue(skb); 3492 if (q->enqueue) { 3493 rc = __dev_xmit_skb(skb, q, dev, txq); 3494 goto out; 3495 } 3496 3497 /* The device has no queue. Common case for software devices: 3498 * loopback, all the sorts of tunnels... 3499 3500 * Really, it is unlikely that netif_tx_lock protection is necessary 3501 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3502 * counters.) 3503 * However, it is possible, that they rely on protection 3504 * made by us here. 3505 3506 * Check this and shot the lock. It is not prone from deadlocks. 3507 *Either shot noqueue qdisc, it is even simpler 8) 3508 */ 3509 if (dev->flags & IFF_UP) { 3510 int cpu = smp_processor_id(); /* ok because BHs are off */ 3511 3512 if (txq->xmit_lock_owner != cpu) { 3513 if (unlikely(__this_cpu_read(xmit_recursion) > 3514 XMIT_RECURSION_LIMIT)) 3515 goto recursion_alert; 3516 3517 skb = validate_xmit_skb(skb, dev); 3518 if (!skb) 3519 goto out; 3520 3521 HARD_TX_LOCK(dev, txq, cpu); 3522 3523 if (!netif_xmit_stopped(txq)) { 3524 __this_cpu_inc(xmit_recursion); 3525 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3526 __this_cpu_dec(xmit_recursion); 3527 if (dev_xmit_complete(rc)) { 3528 HARD_TX_UNLOCK(dev, txq); 3529 goto out; 3530 } 3531 } 3532 HARD_TX_UNLOCK(dev, txq); 3533 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3534 dev->name); 3535 } else { 3536 /* Recursion is detected! It is possible, 3537 * unfortunately 3538 */ 3539 recursion_alert: 3540 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3541 dev->name); 3542 } 3543 } 3544 3545 rc = -ENETDOWN; 3546 rcu_read_unlock_bh(); 3547 3548 atomic_long_inc(&dev->tx_dropped); 3549 kfree_skb_list(skb); 3550 return rc; 3551 out: 3552 rcu_read_unlock_bh(); 3553 return rc; 3554 } 3555 dev_queue_xmit(struct sk_buff * skb)3556 int dev_queue_xmit(struct sk_buff *skb) 3557 { 3558 return __dev_queue_xmit(skb, NULL); 3559 } 3560 EXPORT_SYMBOL(dev_queue_xmit); 3561 dev_queue_xmit_accel(struct sk_buff * skb,void * accel_priv)3562 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3563 { 3564 return __dev_queue_xmit(skb, accel_priv); 3565 } 3566 EXPORT_SYMBOL(dev_queue_xmit_accel); 3567 3568 3569 /************************************************************************* 3570 * Receiver routines 3571 *************************************************************************/ 3572 3573 int netdev_max_backlog __read_mostly = 1000; 3574 EXPORT_SYMBOL(netdev_max_backlog); 3575 3576 int netdev_tstamp_prequeue __read_mostly = 1; 3577 int netdev_budget __read_mostly = 300; 3578 unsigned int __read_mostly netdev_budget_usecs = 2000; 3579 int weight_p __read_mostly = 64; /* old backlog weight */ 3580 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3581 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3582 int dev_rx_weight __read_mostly = 64; 3583 int dev_tx_weight __read_mostly = 64; 3584 3585 /* Called with irq disabled */ ____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3586 static inline void ____napi_schedule(struct softnet_data *sd, 3587 struct napi_struct *napi) 3588 { 3589 list_add_tail(&napi->poll_list, &sd->poll_list); 3590 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3591 } 3592 3593 #ifdef CONFIG_RPS 3594 3595 /* One global table that all flow-based protocols share. */ 3596 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3597 EXPORT_SYMBOL(rps_sock_flow_table); 3598 u32 rps_cpu_mask __read_mostly; 3599 EXPORT_SYMBOL(rps_cpu_mask); 3600 3601 struct static_key rps_needed __read_mostly; 3602 EXPORT_SYMBOL(rps_needed); 3603 struct static_key rfs_needed __read_mostly; 3604 EXPORT_SYMBOL(rfs_needed); 3605 3606 static struct rps_dev_flow * set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3607 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3608 struct rps_dev_flow *rflow, u16 next_cpu) 3609 { 3610 if (next_cpu < nr_cpu_ids) { 3611 #ifdef CONFIG_RFS_ACCEL 3612 struct netdev_rx_queue *rxqueue; 3613 struct rps_dev_flow_table *flow_table; 3614 struct rps_dev_flow *old_rflow; 3615 u32 flow_id; 3616 u16 rxq_index; 3617 int rc; 3618 3619 /* Should we steer this flow to a different hardware queue? */ 3620 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3621 !(dev->features & NETIF_F_NTUPLE)) 3622 goto out; 3623 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3624 if (rxq_index == skb_get_rx_queue(skb)) 3625 goto out; 3626 3627 rxqueue = dev->_rx + rxq_index; 3628 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3629 if (!flow_table) 3630 goto out; 3631 flow_id = skb_get_hash(skb) & flow_table->mask; 3632 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3633 rxq_index, flow_id); 3634 if (rc < 0) 3635 goto out; 3636 old_rflow = rflow; 3637 rflow = &flow_table->flows[flow_id]; 3638 rflow->filter = rc; 3639 if (old_rflow->filter == rflow->filter) 3640 old_rflow->filter = RPS_NO_FILTER; 3641 out: 3642 #endif 3643 rflow->last_qtail = 3644 per_cpu(softnet_data, next_cpu).input_queue_head; 3645 } 3646 3647 rflow->cpu = next_cpu; 3648 return rflow; 3649 } 3650 3651 /* 3652 * get_rps_cpu is called from netif_receive_skb and returns the target 3653 * CPU from the RPS map of the receiving queue for a given skb. 3654 * rcu_read_lock must be held on entry. 3655 */ get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3656 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3657 struct rps_dev_flow **rflowp) 3658 { 3659 const struct rps_sock_flow_table *sock_flow_table; 3660 struct netdev_rx_queue *rxqueue = dev->_rx; 3661 struct rps_dev_flow_table *flow_table; 3662 struct rps_map *map; 3663 int cpu = -1; 3664 u32 tcpu; 3665 u32 hash; 3666 3667 if (skb_rx_queue_recorded(skb)) { 3668 u16 index = skb_get_rx_queue(skb); 3669 3670 if (unlikely(index >= dev->real_num_rx_queues)) { 3671 WARN_ONCE(dev->real_num_rx_queues > 1, 3672 "%s received packet on queue %u, but number " 3673 "of RX queues is %u\n", 3674 dev->name, index, dev->real_num_rx_queues); 3675 goto done; 3676 } 3677 rxqueue += index; 3678 } 3679 3680 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3681 3682 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3683 map = rcu_dereference(rxqueue->rps_map); 3684 if (!flow_table && !map) 3685 goto done; 3686 3687 skb_reset_network_header(skb); 3688 hash = skb_get_hash(skb); 3689 if (!hash) 3690 goto done; 3691 3692 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3693 if (flow_table && sock_flow_table) { 3694 struct rps_dev_flow *rflow; 3695 u32 next_cpu; 3696 u32 ident; 3697 3698 /* First check into global flow table if there is a match */ 3699 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3700 if ((ident ^ hash) & ~rps_cpu_mask) 3701 goto try_rps; 3702 3703 next_cpu = ident & rps_cpu_mask; 3704 3705 /* OK, now we know there is a match, 3706 * we can look at the local (per receive queue) flow table 3707 */ 3708 rflow = &flow_table->flows[hash & flow_table->mask]; 3709 tcpu = rflow->cpu; 3710 3711 /* 3712 * If the desired CPU (where last recvmsg was done) is 3713 * different from current CPU (one in the rx-queue flow 3714 * table entry), switch if one of the following holds: 3715 * - Current CPU is unset (>= nr_cpu_ids). 3716 * - Current CPU is offline. 3717 * - The current CPU's queue tail has advanced beyond the 3718 * last packet that was enqueued using this table entry. 3719 * This guarantees that all previous packets for the flow 3720 * have been dequeued, thus preserving in order delivery. 3721 */ 3722 if (unlikely(tcpu != next_cpu) && 3723 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3724 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3725 rflow->last_qtail)) >= 0)) { 3726 tcpu = next_cpu; 3727 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3728 } 3729 3730 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3731 *rflowp = rflow; 3732 cpu = tcpu; 3733 goto done; 3734 } 3735 } 3736 3737 try_rps: 3738 3739 if (map) { 3740 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3741 if (cpu_online(tcpu)) { 3742 cpu = tcpu; 3743 goto done; 3744 } 3745 } 3746 3747 done: 3748 return cpu; 3749 } 3750 3751 #ifdef CONFIG_RFS_ACCEL 3752 3753 /** 3754 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3755 * @dev: Device on which the filter was set 3756 * @rxq_index: RX queue index 3757 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3758 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3759 * 3760 * Drivers that implement ndo_rx_flow_steer() should periodically call 3761 * this function for each installed filter and remove the filters for 3762 * which it returns %true. 3763 */ rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)3764 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3765 u32 flow_id, u16 filter_id) 3766 { 3767 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3768 struct rps_dev_flow_table *flow_table; 3769 struct rps_dev_flow *rflow; 3770 bool expire = true; 3771 unsigned int cpu; 3772 3773 rcu_read_lock(); 3774 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3775 if (flow_table && flow_id <= flow_table->mask) { 3776 rflow = &flow_table->flows[flow_id]; 3777 cpu = ACCESS_ONCE(rflow->cpu); 3778 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3779 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3780 rflow->last_qtail) < 3781 (int)(10 * flow_table->mask))) 3782 expire = false; 3783 } 3784 rcu_read_unlock(); 3785 return expire; 3786 } 3787 EXPORT_SYMBOL(rps_may_expire_flow); 3788 3789 #endif /* CONFIG_RFS_ACCEL */ 3790 3791 /* Called from hardirq (IPI) context */ rps_trigger_softirq(void * data)3792 static void rps_trigger_softirq(void *data) 3793 { 3794 struct softnet_data *sd = data; 3795 3796 ____napi_schedule(sd, &sd->backlog); 3797 sd->received_rps++; 3798 } 3799 3800 #endif /* CONFIG_RPS */ 3801 3802 /* 3803 * Check if this softnet_data structure is another cpu one 3804 * If yes, queue it to our IPI list and return 1 3805 * If no, return 0 3806 */ rps_ipi_queued(struct softnet_data * sd)3807 static int rps_ipi_queued(struct softnet_data *sd) 3808 { 3809 #ifdef CONFIG_RPS 3810 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3811 3812 if (sd != mysd) { 3813 sd->rps_ipi_next = mysd->rps_ipi_list; 3814 mysd->rps_ipi_list = sd; 3815 3816 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3817 return 1; 3818 } 3819 #endif /* CONFIG_RPS */ 3820 return 0; 3821 } 3822 3823 #ifdef CONFIG_NET_FLOW_LIMIT 3824 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3825 #endif 3826 skb_flow_limit(struct sk_buff * skb,unsigned int qlen)3827 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3828 { 3829 #ifdef CONFIG_NET_FLOW_LIMIT 3830 struct sd_flow_limit *fl; 3831 struct softnet_data *sd; 3832 unsigned int old_flow, new_flow; 3833 3834 if (qlen < (netdev_max_backlog >> 1)) 3835 return false; 3836 3837 sd = this_cpu_ptr(&softnet_data); 3838 3839 rcu_read_lock(); 3840 fl = rcu_dereference(sd->flow_limit); 3841 if (fl) { 3842 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3843 old_flow = fl->history[fl->history_head]; 3844 fl->history[fl->history_head] = new_flow; 3845 3846 fl->history_head++; 3847 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3848 3849 if (likely(fl->buckets[old_flow])) 3850 fl->buckets[old_flow]--; 3851 3852 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3853 fl->count++; 3854 rcu_read_unlock(); 3855 return true; 3856 } 3857 } 3858 rcu_read_unlock(); 3859 #endif 3860 return false; 3861 } 3862 3863 /* 3864 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3865 * queue (may be a remote CPU queue). 3866 */ enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)3867 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3868 unsigned int *qtail) 3869 { 3870 struct softnet_data *sd; 3871 unsigned long flags; 3872 unsigned int qlen; 3873 3874 sd = &per_cpu(softnet_data, cpu); 3875 3876 local_irq_save(flags); 3877 3878 rps_lock(sd); 3879 if (!netif_running(skb->dev)) 3880 goto drop; 3881 qlen = skb_queue_len(&sd->input_pkt_queue); 3882 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3883 if (qlen) { 3884 enqueue: 3885 __skb_queue_tail(&sd->input_pkt_queue, skb); 3886 input_queue_tail_incr_save(sd, qtail); 3887 rps_unlock(sd); 3888 local_irq_restore(flags); 3889 return NET_RX_SUCCESS; 3890 } 3891 3892 /* Schedule NAPI for backlog device 3893 * We can use non atomic operation since we own the queue lock 3894 */ 3895 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3896 if (!rps_ipi_queued(sd)) 3897 ____napi_schedule(sd, &sd->backlog); 3898 } 3899 goto enqueue; 3900 } 3901 3902 drop: 3903 sd->dropped++; 3904 rps_unlock(sd); 3905 3906 local_irq_restore(flags); 3907 3908 atomic_long_inc(&skb->dev->rx_dropped); 3909 kfree_skb(skb); 3910 return NET_RX_DROP; 3911 } 3912 netif_receive_generic_xdp(struct sk_buff * skb,struct bpf_prog * xdp_prog)3913 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3914 struct bpf_prog *xdp_prog) 3915 { 3916 struct xdp_buff xdp; 3917 u32 act = XDP_DROP; 3918 void *orig_data; 3919 int hlen, off; 3920 u32 mac_len; 3921 3922 /* Reinjected packets coming from act_mirred or similar should 3923 * not get XDP generic processing. 3924 */ 3925 if (skb_cloned(skb)) 3926 return XDP_PASS; 3927 3928 if (skb_linearize(skb)) 3929 goto do_drop; 3930 3931 /* The XDP program wants to see the packet starting at the MAC 3932 * header. 3933 */ 3934 mac_len = skb->data - skb_mac_header(skb); 3935 hlen = skb_headlen(skb) + mac_len; 3936 xdp.data = skb->data - mac_len; 3937 xdp.data_end = xdp.data + hlen; 3938 xdp.data_hard_start = skb->data - skb_headroom(skb); 3939 orig_data = xdp.data; 3940 3941 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3942 3943 off = xdp.data - orig_data; 3944 if (off > 0) 3945 __skb_pull(skb, off); 3946 else if (off < 0) 3947 __skb_push(skb, -off); 3948 skb->mac_header += off; 3949 3950 switch (act) { 3951 case XDP_REDIRECT: 3952 case XDP_TX: 3953 __skb_push(skb, mac_len); 3954 /* fall through */ 3955 case XDP_PASS: 3956 break; 3957 3958 default: 3959 bpf_warn_invalid_xdp_action(act); 3960 /* fall through */ 3961 case XDP_ABORTED: 3962 trace_xdp_exception(skb->dev, xdp_prog, act); 3963 /* fall through */ 3964 case XDP_DROP: 3965 do_drop: 3966 kfree_skb(skb); 3967 break; 3968 } 3969 3970 return act; 3971 } 3972 3973 /* When doing generic XDP we have to bypass the qdisc layer and the 3974 * network taps in order to match in-driver-XDP behavior. 3975 */ generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)3976 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3977 { 3978 struct net_device *dev = skb->dev; 3979 struct netdev_queue *txq; 3980 bool free_skb = true; 3981 int cpu, rc; 3982 3983 txq = netdev_pick_tx(dev, skb, NULL); 3984 cpu = smp_processor_id(); 3985 HARD_TX_LOCK(dev, txq, cpu); 3986 if (!netif_xmit_stopped(txq)) { 3987 rc = netdev_start_xmit(skb, dev, txq, 0); 3988 if (dev_xmit_complete(rc)) 3989 free_skb = false; 3990 } 3991 HARD_TX_UNLOCK(dev, txq); 3992 if (free_skb) { 3993 trace_xdp_exception(dev, xdp_prog, XDP_TX); 3994 kfree_skb(skb); 3995 } 3996 } 3997 EXPORT_SYMBOL_GPL(generic_xdp_tx); 3998 3999 static struct static_key generic_xdp_needed __read_mostly; 4000 do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4001 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4002 { 4003 if (xdp_prog) { 4004 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4005 int err; 4006 4007 if (act != XDP_PASS) { 4008 switch (act) { 4009 case XDP_REDIRECT: 4010 err = xdp_do_generic_redirect(skb->dev, skb, 4011 xdp_prog); 4012 if (err) 4013 goto out_redir; 4014 /* fallthru to submit skb */ 4015 case XDP_TX: 4016 generic_xdp_tx(skb, xdp_prog); 4017 break; 4018 } 4019 return XDP_DROP; 4020 } 4021 } 4022 return XDP_PASS; 4023 out_redir: 4024 kfree_skb(skb); 4025 return XDP_DROP; 4026 } 4027 EXPORT_SYMBOL_GPL(do_xdp_generic); 4028 netif_rx_internal(struct sk_buff * skb)4029 static int netif_rx_internal(struct sk_buff *skb) 4030 { 4031 int ret; 4032 4033 net_timestamp_check(netdev_tstamp_prequeue, skb); 4034 4035 trace_netif_rx(skb); 4036 4037 if (static_key_false(&generic_xdp_needed)) { 4038 int ret; 4039 4040 preempt_disable(); 4041 rcu_read_lock(); 4042 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4043 rcu_read_unlock(); 4044 preempt_enable(); 4045 4046 /* Consider XDP consuming the packet a success from 4047 * the netdev point of view we do not want to count 4048 * this as an error. 4049 */ 4050 if (ret != XDP_PASS) 4051 return NET_RX_SUCCESS; 4052 } 4053 4054 #ifdef CONFIG_RPS 4055 if (static_key_false(&rps_needed)) { 4056 struct rps_dev_flow voidflow, *rflow = &voidflow; 4057 int cpu; 4058 4059 preempt_disable(); 4060 rcu_read_lock(); 4061 4062 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4063 if (cpu < 0) 4064 cpu = smp_processor_id(); 4065 4066 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4067 4068 rcu_read_unlock(); 4069 preempt_enable(); 4070 } else 4071 #endif 4072 { 4073 unsigned int qtail; 4074 4075 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4076 put_cpu(); 4077 } 4078 return ret; 4079 } 4080 4081 /** 4082 * netif_rx - post buffer to the network code 4083 * @skb: buffer to post 4084 * 4085 * This function receives a packet from a device driver and queues it for 4086 * the upper (protocol) levels to process. It always succeeds. The buffer 4087 * may be dropped during processing for congestion control or by the 4088 * protocol layers. 4089 * 4090 * return values: 4091 * NET_RX_SUCCESS (no congestion) 4092 * NET_RX_DROP (packet was dropped) 4093 * 4094 */ 4095 netif_rx(struct sk_buff * skb)4096 int netif_rx(struct sk_buff *skb) 4097 { 4098 trace_netif_rx_entry(skb); 4099 4100 return netif_rx_internal(skb); 4101 } 4102 EXPORT_SYMBOL(netif_rx); 4103 netif_rx_ni(struct sk_buff * skb)4104 int netif_rx_ni(struct sk_buff *skb) 4105 { 4106 int err; 4107 4108 trace_netif_rx_ni_entry(skb); 4109 4110 preempt_disable(); 4111 err = netif_rx_internal(skb); 4112 if (local_softirq_pending()) 4113 do_softirq(); 4114 preempt_enable(); 4115 4116 return err; 4117 } 4118 EXPORT_SYMBOL(netif_rx_ni); 4119 net_tx_action(struct softirq_action * h)4120 static __latent_entropy void net_tx_action(struct softirq_action *h) 4121 { 4122 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4123 4124 if (sd->completion_queue) { 4125 struct sk_buff *clist; 4126 4127 local_irq_disable(); 4128 clist = sd->completion_queue; 4129 sd->completion_queue = NULL; 4130 local_irq_enable(); 4131 4132 while (clist) { 4133 struct sk_buff *skb = clist; 4134 4135 clist = clist->next; 4136 4137 WARN_ON(refcount_read(&skb->users)); 4138 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4139 trace_consume_skb(skb); 4140 else 4141 trace_kfree_skb(skb, net_tx_action); 4142 4143 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4144 __kfree_skb(skb); 4145 else 4146 __kfree_skb_defer(skb); 4147 } 4148 4149 __kfree_skb_flush(); 4150 } 4151 4152 if (sd->output_queue) { 4153 struct Qdisc *head; 4154 4155 local_irq_disable(); 4156 head = sd->output_queue; 4157 sd->output_queue = NULL; 4158 sd->output_queue_tailp = &sd->output_queue; 4159 local_irq_enable(); 4160 4161 while (head) { 4162 struct Qdisc *q = head; 4163 spinlock_t *root_lock; 4164 4165 head = head->next_sched; 4166 4167 root_lock = qdisc_lock(q); 4168 spin_lock(root_lock); 4169 /* We need to make sure head->next_sched is read 4170 * before clearing __QDISC_STATE_SCHED 4171 */ 4172 smp_mb__before_atomic(); 4173 clear_bit(__QDISC_STATE_SCHED, &q->state); 4174 qdisc_run(q); 4175 spin_unlock(root_lock); 4176 } 4177 } 4178 } 4179 4180 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4181 /* This hook is defined here for ATM LANE */ 4182 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4183 unsigned char *addr) __read_mostly; 4184 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4185 #endif 4186 4187 static inline struct sk_buff * sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4188 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4189 struct net_device *orig_dev) 4190 { 4191 #ifdef CONFIG_NET_CLS_ACT 4192 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 4193 struct tcf_result cl_res; 4194 4195 /* If there's at least one ingress present somewhere (so 4196 * we get here via enabled static key), remaining devices 4197 * that are not configured with an ingress qdisc will bail 4198 * out here. 4199 */ 4200 if (!cl) 4201 return skb; 4202 if (*pt_prev) { 4203 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4204 *pt_prev = NULL; 4205 } 4206 4207 qdisc_skb_cb(skb)->pkt_len = skb->len; 4208 skb->tc_at_ingress = 1; 4209 qdisc_bstats_cpu_update(cl->q, skb); 4210 4211 switch (tcf_classify(skb, cl, &cl_res, false)) { 4212 case TC_ACT_OK: 4213 case TC_ACT_RECLASSIFY: 4214 skb->tc_index = TC_H_MIN(cl_res.classid); 4215 break; 4216 case TC_ACT_SHOT: 4217 qdisc_qstats_cpu_drop(cl->q); 4218 kfree_skb(skb); 4219 return NULL; 4220 case TC_ACT_STOLEN: 4221 case TC_ACT_QUEUED: 4222 case TC_ACT_TRAP: 4223 consume_skb(skb); 4224 return NULL; 4225 case TC_ACT_REDIRECT: 4226 /* skb_mac_header check was done by cls/act_bpf, so 4227 * we can safely push the L2 header back before 4228 * redirecting to another netdev 4229 */ 4230 __skb_push(skb, skb->mac_len); 4231 skb_do_redirect(skb); 4232 return NULL; 4233 default: 4234 break; 4235 } 4236 #endif /* CONFIG_NET_CLS_ACT */ 4237 return skb; 4238 } 4239 4240 /** 4241 * netdev_is_rx_handler_busy - check if receive handler is registered 4242 * @dev: device to check 4243 * 4244 * Check if a receive handler is already registered for a given device. 4245 * Return true if there one. 4246 * 4247 * The caller must hold the rtnl_mutex. 4248 */ netdev_is_rx_handler_busy(struct net_device * dev)4249 bool netdev_is_rx_handler_busy(struct net_device *dev) 4250 { 4251 ASSERT_RTNL(); 4252 return dev && rtnl_dereference(dev->rx_handler); 4253 } 4254 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4255 4256 /** 4257 * netdev_rx_handler_register - register receive handler 4258 * @dev: device to register a handler for 4259 * @rx_handler: receive handler to register 4260 * @rx_handler_data: data pointer that is used by rx handler 4261 * 4262 * Register a receive handler for a device. This handler will then be 4263 * called from __netif_receive_skb. A negative errno code is returned 4264 * on a failure. 4265 * 4266 * The caller must hold the rtnl_mutex. 4267 * 4268 * For a general description of rx_handler, see enum rx_handler_result. 4269 */ netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)4270 int netdev_rx_handler_register(struct net_device *dev, 4271 rx_handler_func_t *rx_handler, 4272 void *rx_handler_data) 4273 { 4274 if (netdev_is_rx_handler_busy(dev)) 4275 return -EBUSY; 4276 4277 /* Note: rx_handler_data must be set before rx_handler */ 4278 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4279 rcu_assign_pointer(dev->rx_handler, rx_handler); 4280 4281 return 0; 4282 } 4283 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4284 4285 /** 4286 * netdev_rx_handler_unregister - unregister receive handler 4287 * @dev: device to unregister a handler from 4288 * 4289 * Unregister a receive handler from a device. 4290 * 4291 * The caller must hold the rtnl_mutex. 4292 */ netdev_rx_handler_unregister(struct net_device * dev)4293 void netdev_rx_handler_unregister(struct net_device *dev) 4294 { 4295 4296 ASSERT_RTNL(); 4297 RCU_INIT_POINTER(dev->rx_handler, NULL); 4298 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4299 * section has a guarantee to see a non NULL rx_handler_data 4300 * as well. 4301 */ 4302 synchronize_net(); 4303 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4304 } 4305 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4306 4307 /* 4308 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4309 * the special handling of PFMEMALLOC skbs. 4310 */ skb_pfmemalloc_protocol(struct sk_buff * skb)4311 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4312 { 4313 switch (skb->protocol) { 4314 case htons(ETH_P_ARP): 4315 case htons(ETH_P_IP): 4316 case htons(ETH_P_IPV6): 4317 case htons(ETH_P_8021Q): 4318 case htons(ETH_P_8021AD): 4319 return true; 4320 default: 4321 return false; 4322 } 4323 } 4324 nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4325 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4326 int *ret, struct net_device *orig_dev) 4327 { 4328 #ifdef CONFIG_NETFILTER_INGRESS 4329 if (nf_hook_ingress_active(skb)) { 4330 int ingress_retval; 4331 4332 if (*pt_prev) { 4333 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4334 *pt_prev = NULL; 4335 } 4336 4337 rcu_read_lock(); 4338 ingress_retval = nf_hook_ingress(skb); 4339 rcu_read_unlock(); 4340 return ingress_retval; 4341 } 4342 #endif /* CONFIG_NETFILTER_INGRESS */ 4343 return 0; 4344 } 4345 __netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc)4346 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4347 { 4348 struct packet_type *ptype, *pt_prev; 4349 rx_handler_func_t *rx_handler; 4350 struct net_device *orig_dev; 4351 bool deliver_exact = false; 4352 int ret = NET_RX_DROP; 4353 __be16 type; 4354 4355 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4356 4357 trace_netif_receive_skb(skb); 4358 4359 orig_dev = skb->dev; 4360 4361 skb_reset_network_header(skb); 4362 if (!skb_transport_header_was_set(skb)) 4363 skb_reset_transport_header(skb); 4364 skb_reset_mac_len(skb); 4365 4366 pt_prev = NULL; 4367 4368 another_round: 4369 skb->skb_iif = skb->dev->ifindex; 4370 4371 __this_cpu_inc(softnet_data.processed); 4372 4373 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4374 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4375 skb = skb_vlan_untag(skb); 4376 if (unlikely(!skb)) 4377 goto out; 4378 } 4379 4380 if (skb_skip_tc_classify(skb)) 4381 goto skip_classify; 4382 4383 if (pfmemalloc) 4384 goto skip_taps; 4385 4386 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4387 if (pt_prev) 4388 ret = deliver_skb(skb, pt_prev, orig_dev); 4389 pt_prev = ptype; 4390 } 4391 4392 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4393 if (pt_prev) 4394 ret = deliver_skb(skb, pt_prev, orig_dev); 4395 pt_prev = ptype; 4396 } 4397 4398 skip_taps: 4399 #ifdef CONFIG_NET_INGRESS 4400 if (static_key_false(&ingress_needed)) { 4401 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4402 if (!skb) 4403 goto out; 4404 4405 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4406 goto out; 4407 } 4408 #endif 4409 skb_reset_tc(skb); 4410 skip_classify: 4411 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4412 goto drop; 4413 4414 if (skb_vlan_tag_present(skb)) { 4415 if (pt_prev) { 4416 ret = deliver_skb(skb, pt_prev, orig_dev); 4417 pt_prev = NULL; 4418 } 4419 if (vlan_do_receive(&skb)) 4420 goto another_round; 4421 else if (unlikely(!skb)) 4422 goto out; 4423 } 4424 4425 rx_handler = rcu_dereference(skb->dev->rx_handler); 4426 if (rx_handler) { 4427 if (pt_prev) { 4428 ret = deliver_skb(skb, pt_prev, orig_dev); 4429 pt_prev = NULL; 4430 } 4431 switch (rx_handler(&skb)) { 4432 case RX_HANDLER_CONSUMED: 4433 ret = NET_RX_SUCCESS; 4434 goto out; 4435 case RX_HANDLER_ANOTHER: 4436 goto another_round; 4437 case RX_HANDLER_EXACT: 4438 deliver_exact = true; 4439 case RX_HANDLER_PASS: 4440 break; 4441 default: 4442 BUG(); 4443 } 4444 } 4445 4446 if (unlikely(skb_vlan_tag_present(skb))) { 4447 if (skb_vlan_tag_get_id(skb)) 4448 skb->pkt_type = PACKET_OTHERHOST; 4449 /* Note: we might in the future use prio bits 4450 * and set skb->priority like in vlan_do_receive() 4451 * For the time being, just ignore Priority Code Point 4452 */ 4453 skb->vlan_tci = 0; 4454 } 4455 4456 type = skb->protocol; 4457 4458 /* deliver only exact match when indicated */ 4459 if (likely(!deliver_exact)) { 4460 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4461 &ptype_base[ntohs(type) & 4462 PTYPE_HASH_MASK]); 4463 } 4464 4465 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4466 &orig_dev->ptype_specific); 4467 4468 if (unlikely(skb->dev != orig_dev)) { 4469 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4470 &skb->dev->ptype_specific); 4471 } 4472 4473 if (pt_prev) { 4474 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4475 goto drop; 4476 else 4477 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4478 } else { 4479 drop: 4480 if (!deliver_exact) 4481 atomic_long_inc(&skb->dev->rx_dropped); 4482 else 4483 atomic_long_inc(&skb->dev->rx_nohandler); 4484 kfree_skb(skb); 4485 /* Jamal, now you will not able to escape explaining 4486 * me how you were going to use this. :-) 4487 */ 4488 ret = NET_RX_DROP; 4489 } 4490 4491 out: 4492 return ret; 4493 } 4494 __netif_receive_skb(struct sk_buff * skb)4495 static int __netif_receive_skb(struct sk_buff *skb) 4496 { 4497 int ret; 4498 4499 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4500 unsigned int noreclaim_flag; 4501 4502 /* 4503 * PFMEMALLOC skbs are special, they should 4504 * - be delivered to SOCK_MEMALLOC sockets only 4505 * - stay away from userspace 4506 * - have bounded memory usage 4507 * 4508 * Use PF_MEMALLOC as this saves us from propagating the allocation 4509 * context down to all allocation sites. 4510 */ 4511 noreclaim_flag = memalloc_noreclaim_save(); 4512 ret = __netif_receive_skb_core(skb, true); 4513 memalloc_noreclaim_restore(noreclaim_flag); 4514 } else 4515 ret = __netif_receive_skb_core(skb, false); 4516 4517 return ret; 4518 } 4519 generic_xdp_install(struct net_device * dev,struct netdev_xdp * xdp)4520 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4521 { 4522 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4523 struct bpf_prog *new = xdp->prog; 4524 int ret = 0; 4525 4526 switch (xdp->command) { 4527 case XDP_SETUP_PROG: 4528 rcu_assign_pointer(dev->xdp_prog, new); 4529 if (old) 4530 bpf_prog_put(old); 4531 4532 if (old && !new) { 4533 static_key_slow_dec(&generic_xdp_needed); 4534 } else if (new && !old) { 4535 static_key_slow_inc(&generic_xdp_needed); 4536 dev_disable_lro(dev); 4537 } 4538 break; 4539 4540 case XDP_QUERY_PROG: 4541 xdp->prog_attached = !!old; 4542 xdp->prog_id = old ? old->aux->id : 0; 4543 break; 4544 4545 default: 4546 ret = -EINVAL; 4547 break; 4548 } 4549 4550 return ret; 4551 } 4552 netif_receive_skb_internal(struct sk_buff * skb)4553 static int netif_receive_skb_internal(struct sk_buff *skb) 4554 { 4555 int ret; 4556 4557 net_timestamp_check(netdev_tstamp_prequeue, skb); 4558 4559 if (skb_defer_rx_timestamp(skb)) 4560 return NET_RX_SUCCESS; 4561 4562 if (static_key_false(&generic_xdp_needed)) { 4563 int ret; 4564 4565 preempt_disable(); 4566 rcu_read_lock(); 4567 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4568 rcu_read_unlock(); 4569 preempt_enable(); 4570 4571 if (ret != XDP_PASS) 4572 return NET_RX_DROP; 4573 } 4574 4575 rcu_read_lock(); 4576 #ifdef CONFIG_RPS 4577 if (static_key_false(&rps_needed)) { 4578 struct rps_dev_flow voidflow, *rflow = &voidflow; 4579 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4580 4581 if (cpu >= 0) { 4582 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4583 rcu_read_unlock(); 4584 return ret; 4585 } 4586 } 4587 #endif 4588 ret = __netif_receive_skb(skb); 4589 rcu_read_unlock(); 4590 return ret; 4591 } 4592 4593 /** 4594 * netif_receive_skb - process receive buffer from network 4595 * @skb: buffer to process 4596 * 4597 * netif_receive_skb() is the main receive data processing function. 4598 * It always succeeds. The buffer may be dropped during processing 4599 * for congestion control or by the protocol layers. 4600 * 4601 * This function may only be called from softirq context and interrupts 4602 * should be enabled. 4603 * 4604 * Return values (usually ignored): 4605 * NET_RX_SUCCESS: no congestion 4606 * NET_RX_DROP: packet was dropped 4607 */ netif_receive_skb(struct sk_buff * skb)4608 int netif_receive_skb(struct sk_buff *skb) 4609 { 4610 trace_netif_receive_skb_entry(skb); 4611 4612 return netif_receive_skb_internal(skb); 4613 } 4614 EXPORT_SYMBOL(netif_receive_skb); 4615 4616 DEFINE_PER_CPU(struct work_struct, flush_works); 4617 4618 /* Network device is going away, flush any packets still pending */ flush_backlog(struct work_struct * work)4619 static void flush_backlog(struct work_struct *work) 4620 { 4621 struct sk_buff *skb, *tmp; 4622 struct softnet_data *sd; 4623 4624 local_bh_disable(); 4625 sd = this_cpu_ptr(&softnet_data); 4626 4627 local_irq_disable(); 4628 rps_lock(sd); 4629 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4630 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4631 __skb_unlink(skb, &sd->input_pkt_queue); 4632 kfree_skb(skb); 4633 input_queue_head_incr(sd); 4634 } 4635 } 4636 rps_unlock(sd); 4637 local_irq_enable(); 4638 4639 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4640 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4641 __skb_unlink(skb, &sd->process_queue); 4642 kfree_skb(skb); 4643 input_queue_head_incr(sd); 4644 } 4645 } 4646 local_bh_enable(); 4647 } 4648 flush_all_backlogs(void)4649 static void flush_all_backlogs(void) 4650 { 4651 unsigned int cpu; 4652 4653 get_online_cpus(); 4654 4655 for_each_online_cpu(cpu) 4656 queue_work_on(cpu, system_highpri_wq, 4657 per_cpu_ptr(&flush_works, cpu)); 4658 4659 for_each_online_cpu(cpu) 4660 flush_work(per_cpu_ptr(&flush_works, cpu)); 4661 4662 put_online_cpus(); 4663 } 4664 napi_gro_complete(struct sk_buff * skb)4665 static int napi_gro_complete(struct sk_buff *skb) 4666 { 4667 struct packet_offload *ptype; 4668 __be16 type = skb->protocol; 4669 struct list_head *head = &offload_base; 4670 int err = -ENOENT; 4671 4672 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4673 4674 if (NAPI_GRO_CB(skb)->count == 1) { 4675 skb_shinfo(skb)->gso_size = 0; 4676 goto out; 4677 } 4678 4679 rcu_read_lock(); 4680 list_for_each_entry_rcu(ptype, head, list) { 4681 if (ptype->type != type || !ptype->callbacks.gro_complete) 4682 continue; 4683 4684 err = ptype->callbacks.gro_complete(skb, 0); 4685 break; 4686 } 4687 rcu_read_unlock(); 4688 4689 if (err) { 4690 WARN_ON(&ptype->list == head); 4691 kfree_skb(skb); 4692 return NET_RX_SUCCESS; 4693 } 4694 4695 out: 4696 return netif_receive_skb_internal(skb); 4697 } 4698 4699 /* napi->gro_list contains packets ordered by age. 4700 * youngest packets at the head of it. 4701 * Complete skbs in reverse order to reduce latencies. 4702 */ napi_gro_flush(struct napi_struct * napi,bool flush_old)4703 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4704 { 4705 struct sk_buff *skb, *prev = NULL; 4706 4707 /* scan list and build reverse chain */ 4708 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4709 skb->prev = prev; 4710 prev = skb; 4711 } 4712 4713 for (skb = prev; skb; skb = prev) { 4714 skb->next = NULL; 4715 4716 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4717 return; 4718 4719 prev = skb->prev; 4720 napi_gro_complete(skb); 4721 napi->gro_count--; 4722 } 4723 4724 napi->gro_list = NULL; 4725 } 4726 EXPORT_SYMBOL(napi_gro_flush); 4727 gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)4728 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4729 { 4730 struct sk_buff *p; 4731 unsigned int maclen = skb->dev->hard_header_len; 4732 u32 hash = skb_get_hash_raw(skb); 4733 4734 for (p = napi->gro_list; p; p = p->next) { 4735 unsigned long diffs; 4736 4737 NAPI_GRO_CB(p)->flush = 0; 4738 4739 if (hash != skb_get_hash_raw(p)) { 4740 NAPI_GRO_CB(p)->same_flow = 0; 4741 continue; 4742 } 4743 4744 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4745 diffs |= p->vlan_tci ^ skb->vlan_tci; 4746 diffs |= skb_metadata_dst_cmp(p, skb); 4747 if (maclen == ETH_HLEN) 4748 diffs |= compare_ether_header(skb_mac_header(p), 4749 skb_mac_header(skb)); 4750 else if (!diffs) 4751 diffs = memcmp(skb_mac_header(p), 4752 skb_mac_header(skb), 4753 maclen); 4754 NAPI_GRO_CB(p)->same_flow = !diffs; 4755 } 4756 } 4757 skb_gro_reset_offset(struct sk_buff * skb)4758 static void skb_gro_reset_offset(struct sk_buff *skb) 4759 { 4760 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4761 const skb_frag_t *frag0 = &pinfo->frags[0]; 4762 4763 NAPI_GRO_CB(skb)->data_offset = 0; 4764 NAPI_GRO_CB(skb)->frag0 = NULL; 4765 NAPI_GRO_CB(skb)->frag0_len = 0; 4766 4767 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4768 pinfo->nr_frags && 4769 !PageHighMem(skb_frag_page(frag0))) { 4770 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4771 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4772 skb_frag_size(frag0), 4773 skb->end - skb->tail); 4774 } 4775 } 4776 gro_pull_from_frag0(struct sk_buff * skb,int grow)4777 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4778 { 4779 struct skb_shared_info *pinfo = skb_shinfo(skb); 4780 4781 BUG_ON(skb->end - skb->tail < grow); 4782 4783 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4784 4785 skb->data_len -= grow; 4786 skb->tail += grow; 4787 4788 pinfo->frags[0].page_offset += grow; 4789 skb_frag_size_sub(&pinfo->frags[0], grow); 4790 4791 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4792 skb_frag_unref(skb, 0); 4793 memmove(pinfo->frags, pinfo->frags + 1, 4794 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4795 } 4796 } 4797 dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4798 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4799 { 4800 struct sk_buff **pp = NULL; 4801 struct packet_offload *ptype; 4802 __be16 type = skb->protocol; 4803 struct list_head *head = &offload_base; 4804 int same_flow; 4805 enum gro_result ret; 4806 int grow; 4807 4808 if (netif_elide_gro(skb->dev)) 4809 goto normal; 4810 4811 gro_list_prepare(napi, skb); 4812 4813 rcu_read_lock(); 4814 list_for_each_entry_rcu(ptype, head, list) { 4815 if (ptype->type != type || !ptype->callbacks.gro_receive) 4816 continue; 4817 4818 skb_set_network_header(skb, skb_gro_offset(skb)); 4819 skb_reset_mac_len(skb); 4820 NAPI_GRO_CB(skb)->same_flow = 0; 4821 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4822 NAPI_GRO_CB(skb)->free = 0; 4823 NAPI_GRO_CB(skb)->encap_mark = 0; 4824 NAPI_GRO_CB(skb)->recursion_counter = 0; 4825 NAPI_GRO_CB(skb)->is_fou = 0; 4826 NAPI_GRO_CB(skb)->is_atomic = 1; 4827 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4828 4829 /* Setup for GRO checksum validation */ 4830 switch (skb->ip_summed) { 4831 case CHECKSUM_COMPLETE: 4832 NAPI_GRO_CB(skb)->csum = skb->csum; 4833 NAPI_GRO_CB(skb)->csum_valid = 1; 4834 NAPI_GRO_CB(skb)->csum_cnt = 0; 4835 break; 4836 case CHECKSUM_UNNECESSARY: 4837 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4838 NAPI_GRO_CB(skb)->csum_valid = 0; 4839 break; 4840 default: 4841 NAPI_GRO_CB(skb)->csum_cnt = 0; 4842 NAPI_GRO_CB(skb)->csum_valid = 0; 4843 } 4844 4845 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4846 break; 4847 } 4848 rcu_read_unlock(); 4849 4850 if (&ptype->list == head) 4851 goto normal; 4852 4853 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4854 ret = GRO_CONSUMED; 4855 goto ok; 4856 } 4857 4858 same_flow = NAPI_GRO_CB(skb)->same_flow; 4859 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4860 4861 if (pp) { 4862 struct sk_buff *nskb = *pp; 4863 4864 *pp = nskb->next; 4865 nskb->next = NULL; 4866 napi_gro_complete(nskb); 4867 napi->gro_count--; 4868 } 4869 4870 if (same_flow) 4871 goto ok; 4872 4873 if (NAPI_GRO_CB(skb)->flush) 4874 goto normal; 4875 4876 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4877 struct sk_buff *nskb = napi->gro_list; 4878 4879 /* locate the end of the list to select the 'oldest' flow */ 4880 while (nskb->next) { 4881 pp = &nskb->next; 4882 nskb = *pp; 4883 } 4884 *pp = NULL; 4885 nskb->next = NULL; 4886 napi_gro_complete(nskb); 4887 } else { 4888 napi->gro_count++; 4889 } 4890 NAPI_GRO_CB(skb)->count = 1; 4891 NAPI_GRO_CB(skb)->age = jiffies; 4892 NAPI_GRO_CB(skb)->last = skb; 4893 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4894 skb->next = napi->gro_list; 4895 napi->gro_list = skb; 4896 ret = GRO_HELD; 4897 4898 pull: 4899 grow = skb_gro_offset(skb) - skb_headlen(skb); 4900 if (grow > 0) 4901 gro_pull_from_frag0(skb, grow); 4902 ok: 4903 return ret; 4904 4905 normal: 4906 ret = GRO_NORMAL; 4907 goto pull; 4908 } 4909 gro_find_receive_by_type(__be16 type)4910 struct packet_offload *gro_find_receive_by_type(__be16 type) 4911 { 4912 struct list_head *offload_head = &offload_base; 4913 struct packet_offload *ptype; 4914 4915 list_for_each_entry_rcu(ptype, offload_head, list) { 4916 if (ptype->type != type || !ptype->callbacks.gro_receive) 4917 continue; 4918 return ptype; 4919 } 4920 return NULL; 4921 } 4922 EXPORT_SYMBOL(gro_find_receive_by_type); 4923 gro_find_complete_by_type(__be16 type)4924 struct packet_offload *gro_find_complete_by_type(__be16 type) 4925 { 4926 struct list_head *offload_head = &offload_base; 4927 struct packet_offload *ptype; 4928 4929 list_for_each_entry_rcu(ptype, offload_head, list) { 4930 if (ptype->type != type || !ptype->callbacks.gro_complete) 4931 continue; 4932 return ptype; 4933 } 4934 return NULL; 4935 } 4936 EXPORT_SYMBOL(gro_find_complete_by_type); 4937 napi_skb_free_stolen_head(struct sk_buff * skb)4938 static void napi_skb_free_stolen_head(struct sk_buff *skb) 4939 { 4940 skb_dst_drop(skb); 4941 secpath_reset(skb); 4942 kmem_cache_free(skbuff_head_cache, skb); 4943 } 4944 napi_skb_finish(gro_result_t ret,struct sk_buff * skb)4945 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4946 { 4947 switch (ret) { 4948 case GRO_NORMAL: 4949 if (netif_receive_skb_internal(skb)) 4950 ret = GRO_DROP; 4951 break; 4952 4953 case GRO_DROP: 4954 kfree_skb(skb); 4955 break; 4956 4957 case GRO_MERGED_FREE: 4958 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4959 napi_skb_free_stolen_head(skb); 4960 else 4961 __kfree_skb(skb); 4962 break; 4963 4964 case GRO_HELD: 4965 case GRO_MERGED: 4966 case GRO_CONSUMED: 4967 break; 4968 } 4969 4970 return ret; 4971 } 4972 napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4973 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4974 { 4975 skb_mark_napi_id(skb, napi); 4976 trace_napi_gro_receive_entry(skb); 4977 4978 skb_gro_reset_offset(skb); 4979 4980 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4981 } 4982 EXPORT_SYMBOL(napi_gro_receive); 4983 napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)4984 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4985 { 4986 if (unlikely(skb->pfmemalloc)) { 4987 consume_skb(skb); 4988 return; 4989 } 4990 __skb_pull(skb, skb_headlen(skb)); 4991 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4992 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4993 skb->vlan_tci = 0; 4994 skb->dev = napi->dev; 4995 skb->skb_iif = 0; 4996 4997 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 4998 skb->pkt_type = PACKET_HOST; 4999 5000 skb->encapsulation = 0; 5001 skb_shinfo(skb)->gso_type = 0; 5002 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5003 secpath_reset(skb); 5004 5005 napi->skb = skb; 5006 } 5007 napi_get_frags(struct napi_struct * napi)5008 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5009 { 5010 struct sk_buff *skb = napi->skb; 5011 5012 if (!skb) { 5013 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5014 if (skb) { 5015 napi->skb = skb; 5016 skb_mark_napi_id(skb, napi); 5017 } 5018 } 5019 return skb; 5020 } 5021 EXPORT_SYMBOL(napi_get_frags); 5022 napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)5023 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5024 struct sk_buff *skb, 5025 gro_result_t ret) 5026 { 5027 switch (ret) { 5028 case GRO_NORMAL: 5029 case GRO_HELD: 5030 __skb_push(skb, ETH_HLEN); 5031 skb->protocol = eth_type_trans(skb, skb->dev); 5032 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5033 ret = GRO_DROP; 5034 break; 5035 5036 case GRO_DROP: 5037 napi_reuse_skb(napi, skb); 5038 break; 5039 5040 case GRO_MERGED_FREE: 5041 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5042 napi_skb_free_stolen_head(skb); 5043 else 5044 napi_reuse_skb(napi, skb); 5045 break; 5046 5047 case GRO_MERGED: 5048 case GRO_CONSUMED: 5049 break; 5050 } 5051 5052 return ret; 5053 } 5054 5055 /* Upper GRO stack assumes network header starts at gro_offset=0 5056 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5057 * We copy ethernet header into skb->data to have a common layout. 5058 */ napi_frags_skb(struct napi_struct * napi)5059 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5060 { 5061 struct sk_buff *skb = napi->skb; 5062 const struct ethhdr *eth; 5063 unsigned int hlen = sizeof(*eth); 5064 5065 napi->skb = NULL; 5066 5067 skb_reset_mac_header(skb); 5068 skb_gro_reset_offset(skb); 5069 5070 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5071 eth = skb_gro_header_slow(skb, hlen, 0); 5072 if (unlikely(!eth)) { 5073 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5074 __func__, napi->dev->name); 5075 napi_reuse_skb(napi, skb); 5076 return NULL; 5077 } 5078 } else { 5079 eth = (const struct ethhdr *)skb->data; 5080 gro_pull_from_frag0(skb, hlen); 5081 NAPI_GRO_CB(skb)->frag0 += hlen; 5082 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5083 } 5084 __skb_pull(skb, hlen); 5085 5086 /* 5087 * This works because the only protocols we care about don't require 5088 * special handling. 5089 * We'll fix it up properly in napi_frags_finish() 5090 */ 5091 skb->protocol = eth->h_proto; 5092 5093 return skb; 5094 } 5095 napi_gro_frags(struct napi_struct * napi)5096 gro_result_t napi_gro_frags(struct napi_struct *napi) 5097 { 5098 struct sk_buff *skb = napi_frags_skb(napi); 5099 5100 if (!skb) 5101 return GRO_DROP; 5102 5103 trace_napi_gro_frags_entry(skb); 5104 5105 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5106 } 5107 EXPORT_SYMBOL(napi_gro_frags); 5108 5109 /* Compute the checksum from gro_offset and return the folded value 5110 * after adding in any pseudo checksum. 5111 */ __skb_gro_checksum_complete(struct sk_buff * skb)5112 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5113 { 5114 __wsum wsum; 5115 __sum16 sum; 5116 5117 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5118 5119 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5120 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5121 if (likely(!sum)) { 5122 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5123 !skb->csum_complete_sw) 5124 netdev_rx_csum_fault(skb->dev); 5125 } 5126 5127 NAPI_GRO_CB(skb)->csum = wsum; 5128 NAPI_GRO_CB(skb)->csum_valid = 1; 5129 5130 return sum; 5131 } 5132 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5133 net_rps_send_ipi(struct softnet_data * remsd)5134 static void net_rps_send_ipi(struct softnet_data *remsd) 5135 { 5136 #ifdef CONFIG_RPS 5137 while (remsd) { 5138 struct softnet_data *next = remsd->rps_ipi_next; 5139 5140 if (cpu_online(remsd->cpu)) 5141 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5142 remsd = next; 5143 } 5144 #endif 5145 } 5146 5147 /* 5148 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5149 * Note: called with local irq disabled, but exits with local irq enabled. 5150 */ net_rps_action_and_irq_enable(struct softnet_data * sd)5151 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5152 { 5153 #ifdef CONFIG_RPS 5154 struct softnet_data *remsd = sd->rps_ipi_list; 5155 5156 if (remsd) { 5157 sd->rps_ipi_list = NULL; 5158 5159 local_irq_enable(); 5160 5161 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5162 net_rps_send_ipi(remsd); 5163 } else 5164 #endif 5165 local_irq_enable(); 5166 } 5167 sd_has_rps_ipi_waiting(struct softnet_data * sd)5168 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5169 { 5170 #ifdef CONFIG_RPS 5171 return sd->rps_ipi_list != NULL; 5172 #else 5173 return false; 5174 #endif 5175 } 5176 process_backlog(struct napi_struct * napi,int quota)5177 static int process_backlog(struct napi_struct *napi, int quota) 5178 { 5179 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5180 bool again = true; 5181 int work = 0; 5182 5183 /* Check if we have pending ipi, its better to send them now, 5184 * not waiting net_rx_action() end. 5185 */ 5186 if (sd_has_rps_ipi_waiting(sd)) { 5187 local_irq_disable(); 5188 net_rps_action_and_irq_enable(sd); 5189 } 5190 5191 napi->weight = dev_rx_weight; 5192 while (again) { 5193 struct sk_buff *skb; 5194 5195 while ((skb = __skb_dequeue(&sd->process_queue))) { 5196 rcu_read_lock(); 5197 __netif_receive_skb(skb); 5198 rcu_read_unlock(); 5199 input_queue_head_incr(sd); 5200 if (++work >= quota) 5201 return work; 5202 5203 } 5204 5205 local_irq_disable(); 5206 rps_lock(sd); 5207 if (skb_queue_empty(&sd->input_pkt_queue)) { 5208 /* 5209 * Inline a custom version of __napi_complete(). 5210 * only current cpu owns and manipulates this napi, 5211 * and NAPI_STATE_SCHED is the only possible flag set 5212 * on backlog. 5213 * We can use a plain write instead of clear_bit(), 5214 * and we dont need an smp_mb() memory barrier. 5215 */ 5216 napi->state = 0; 5217 again = false; 5218 } else { 5219 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5220 &sd->process_queue); 5221 } 5222 rps_unlock(sd); 5223 local_irq_enable(); 5224 } 5225 5226 return work; 5227 } 5228 5229 /** 5230 * __napi_schedule - schedule for receive 5231 * @n: entry to schedule 5232 * 5233 * The entry's receive function will be scheduled to run. 5234 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5235 */ __napi_schedule(struct napi_struct * n)5236 void __napi_schedule(struct napi_struct *n) 5237 { 5238 unsigned long flags; 5239 5240 local_irq_save(flags); 5241 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5242 local_irq_restore(flags); 5243 } 5244 EXPORT_SYMBOL(__napi_schedule); 5245 5246 /** 5247 * napi_schedule_prep - check if napi can be scheduled 5248 * @n: napi context 5249 * 5250 * Test if NAPI routine is already running, and if not mark 5251 * it as running. This is used as a condition variable 5252 * insure only one NAPI poll instance runs. We also make 5253 * sure there is no pending NAPI disable. 5254 */ napi_schedule_prep(struct napi_struct * n)5255 bool napi_schedule_prep(struct napi_struct *n) 5256 { 5257 unsigned long val, new; 5258 5259 do { 5260 val = READ_ONCE(n->state); 5261 if (unlikely(val & NAPIF_STATE_DISABLE)) 5262 return false; 5263 new = val | NAPIF_STATE_SCHED; 5264 5265 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5266 * This was suggested by Alexander Duyck, as compiler 5267 * emits better code than : 5268 * if (val & NAPIF_STATE_SCHED) 5269 * new |= NAPIF_STATE_MISSED; 5270 */ 5271 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5272 NAPIF_STATE_MISSED; 5273 } while (cmpxchg(&n->state, val, new) != val); 5274 5275 return !(val & NAPIF_STATE_SCHED); 5276 } 5277 EXPORT_SYMBOL(napi_schedule_prep); 5278 5279 /** 5280 * __napi_schedule_irqoff - schedule for receive 5281 * @n: entry to schedule 5282 * 5283 * Variant of __napi_schedule() assuming hard irqs are masked 5284 */ __napi_schedule_irqoff(struct napi_struct * n)5285 void __napi_schedule_irqoff(struct napi_struct *n) 5286 { 5287 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5288 } 5289 EXPORT_SYMBOL(__napi_schedule_irqoff); 5290 napi_complete_done(struct napi_struct * n,int work_done)5291 bool napi_complete_done(struct napi_struct *n, int work_done) 5292 { 5293 unsigned long flags, val, new; 5294 5295 /* 5296 * 1) Don't let napi dequeue from the cpu poll list 5297 * just in case its running on a different cpu. 5298 * 2) If we are busy polling, do nothing here, we have 5299 * the guarantee we will be called later. 5300 */ 5301 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5302 NAPIF_STATE_IN_BUSY_POLL))) 5303 return false; 5304 5305 if (n->gro_list) { 5306 unsigned long timeout = 0; 5307 5308 if (work_done) 5309 timeout = n->dev->gro_flush_timeout; 5310 5311 /* When the NAPI instance uses a timeout and keeps postponing 5312 * it, we need to bound somehow the time packets are kept in 5313 * the GRO layer 5314 */ 5315 napi_gro_flush(n, !!timeout); 5316 if (timeout) 5317 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5318 HRTIMER_MODE_REL_PINNED); 5319 } 5320 if (unlikely(!list_empty(&n->poll_list))) { 5321 /* If n->poll_list is not empty, we need to mask irqs */ 5322 local_irq_save(flags); 5323 list_del_init(&n->poll_list); 5324 local_irq_restore(flags); 5325 } 5326 5327 do { 5328 val = READ_ONCE(n->state); 5329 5330 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5331 5332 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5333 5334 /* If STATE_MISSED was set, leave STATE_SCHED set, 5335 * because we will call napi->poll() one more time. 5336 * This C code was suggested by Alexander Duyck to help gcc. 5337 */ 5338 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5339 NAPIF_STATE_SCHED; 5340 } while (cmpxchg(&n->state, val, new) != val); 5341 5342 if (unlikely(val & NAPIF_STATE_MISSED)) { 5343 __napi_schedule(n); 5344 return false; 5345 } 5346 5347 return true; 5348 } 5349 EXPORT_SYMBOL(napi_complete_done); 5350 5351 /* must be called under rcu_read_lock(), as we dont take a reference */ napi_by_id(unsigned int napi_id)5352 static struct napi_struct *napi_by_id(unsigned int napi_id) 5353 { 5354 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5355 struct napi_struct *napi; 5356 5357 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5358 if (napi->napi_id == napi_id) 5359 return napi; 5360 5361 return NULL; 5362 } 5363 5364 #if defined(CONFIG_NET_RX_BUSY_POLL) 5365 5366 #define BUSY_POLL_BUDGET 8 5367 busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)5368 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5369 { 5370 int rc; 5371 5372 /* Busy polling means there is a high chance device driver hard irq 5373 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5374 * set in napi_schedule_prep(). 5375 * Since we are about to call napi->poll() once more, we can safely 5376 * clear NAPI_STATE_MISSED. 5377 * 5378 * Note: x86 could use a single "lock and ..." instruction 5379 * to perform these two clear_bit() 5380 */ 5381 clear_bit(NAPI_STATE_MISSED, &napi->state); 5382 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5383 5384 local_bh_disable(); 5385 5386 /* All we really want here is to re-enable device interrupts. 5387 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5388 */ 5389 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5390 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5391 netpoll_poll_unlock(have_poll_lock); 5392 if (rc == BUSY_POLL_BUDGET) 5393 __napi_schedule(napi); 5394 local_bh_enable(); 5395 } 5396 napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)5397 void napi_busy_loop(unsigned int napi_id, 5398 bool (*loop_end)(void *, unsigned long), 5399 void *loop_end_arg) 5400 { 5401 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5402 int (*napi_poll)(struct napi_struct *napi, int budget); 5403 void *have_poll_lock = NULL; 5404 struct napi_struct *napi; 5405 5406 restart: 5407 napi_poll = NULL; 5408 5409 rcu_read_lock(); 5410 5411 napi = napi_by_id(napi_id); 5412 if (!napi) 5413 goto out; 5414 5415 preempt_disable(); 5416 for (;;) { 5417 int work = 0; 5418 5419 local_bh_disable(); 5420 if (!napi_poll) { 5421 unsigned long val = READ_ONCE(napi->state); 5422 5423 /* If multiple threads are competing for this napi, 5424 * we avoid dirtying napi->state as much as we can. 5425 */ 5426 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5427 NAPIF_STATE_IN_BUSY_POLL)) 5428 goto count; 5429 if (cmpxchg(&napi->state, val, 5430 val | NAPIF_STATE_IN_BUSY_POLL | 5431 NAPIF_STATE_SCHED) != val) 5432 goto count; 5433 have_poll_lock = netpoll_poll_lock(napi); 5434 napi_poll = napi->poll; 5435 } 5436 work = napi_poll(napi, BUSY_POLL_BUDGET); 5437 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5438 count: 5439 if (work > 0) 5440 __NET_ADD_STATS(dev_net(napi->dev), 5441 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5442 local_bh_enable(); 5443 5444 if (!loop_end || loop_end(loop_end_arg, start_time)) 5445 break; 5446 5447 if (unlikely(need_resched())) { 5448 if (napi_poll) 5449 busy_poll_stop(napi, have_poll_lock); 5450 preempt_enable(); 5451 rcu_read_unlock(); 5452 cond_resched(); 5453 if (loop_end(loop_end_arg, start_time)) 5454 return; 5455 goto restart; 5456 } 5457 cpu_relax(); 5458 } 5459 if (napi_poll) 5460 busy_poll_stop(napi, have_poll_lock); 5461 preempt_enable(); 5462 out: 5463 rcu_read_unlock(); 5464 } 5465 EXPORT_SYMBOL(napi_busy_loop); 5466 5467 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5468 napi_hash_add(struct napi_struct * napi)5469 static void napi_hash_add(struct napi_struct *napi) 5470 { 5471 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5472 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5473 return; 5474 5475 spin_lock(&napi_hash_lock); 5476 5477 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5478 do { 5479 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5480 napi_gen_id = MIN_NAPI_ID; 5481 } while (napi_by_id(napi_gen_id)); 5482 napi->napi_id = napi_gen_id; 5483 5484 hlist_add_head_rcu(&napi->napi_hash_node, 5485 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5486 5487 spin_unlock(&napi_hash_lock); 5488 } 5489 5490 /* Warning : caller is responsible to make sure rcu grace period 5491 * is respected before freeing memory containing @napi 5492 */ napi_hash_del(struct napi_struct * napi)5493 bool napi_hash_del(struct napi_struct *napi) 5494 { 5495 bool rcu_sync_needed = false; 5496 5497 spin_lock(&napi_hash_lock); 5498 5499 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5500 rcu_sync_needed = true; 5501 hlist_del_rcu(&napi->napi_hash_node); 5502 } 5503 spin_unlock(&napi_hash_lock); 5504 return rcu_sync_needed; 5505 } 5506 EXPORT_SYMBOL_GPL(napi_hash_del); 5507 napi_watchdog(struct hrtimer * timer)5508 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5509 { 5510 struct napi_struct *napi; 5511 5512 napi = container_of(timer, struct napi_struct, timer); 5513 5514 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5515 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5516 */ 5517 if (napi->gro_list && !napi_disable_pending(napi) && 5518 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5519 __napi_schedule_irqoff(napi); 5520 5521 return HRTIMER_NORESTART; 5522 } 5523 netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)5524 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5525 int (*poll)(struct napi_struct *, int), int weight) 5526 { 5527 INIT_LIST_HEAD(&napi->poll_list); 5528 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5529 napi->timer.function = napi_watchdog; 5530 napi->gro_count = 0; 5531 napi->gro_list = NULL; 5532 napi->skb = NULL; 5533 napi->poll = poll; 5534 if (weight > NAPI_POLL_WEIGHT) 5535 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5536 weight, dev->name); 5537 napi->weight = weight; 5538 list_add(&napi->dev_list, &dev->napi_list); 5539 napi->dev = dev; 5540 #ifdef CONFIG_NETPOLL 5541 napi->poll_owner = -1; 5542 #endif 5543 set_bit(NAPI_STATE_SCHED, &napi->state); 5544 napi_hash_add(napi); 5545 } 5546 EXPORT_SYMBOL(netif_napi_add); 5547 napi_disable(struct napi_struct * n)5548 void napi_disable(struct napi_struct *n) 5549 { 5550 might_sleep(); 5551 set_bit(NAPI_STATE_DISABLE, &n->state); 5552 5553 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5554 msleep(1); 5555 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5556 msleep(1); 5557 5558 hrtimer_cancel(&n->timer); 5559 5560 clear_bit(NAPI_STATE_DISABLE, &n->state); 5561 } 5562 EXPORT_SYMBOL(napi_disable); 5563 5564 /* Must be called in process context */ netif_napi_del(struct napi_struct * napi)5565 void netif_napi_del(struct napi_struct *napi) 5566 { 5567 might_sleep(); 5568 if (napi_hash_del(napi)) 5569 synchronize_net(); 5570 list_del_init(&napi->dev_list); 5571 napi_free_frags(napi); 5572 5573 kfree_skb_list(napi->gro_list); 5574 napi->gro_list = NULL; 5575 napi->gro_count = 0; 5576 } 5577 EXPORT_SYMBOL(netif_napi_del); 5578 napi_poll(struct napi_struct * n,struct list_head * repoll)5579 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5580 { 5581 void *have; 5582 int work, weight; 5583 5584 list_del_init(&n->poll_list); 5585 5586 have = netpoll_poll_lock(n); 5587 5588 weight = n->weight; 5589 5590 /* This NAPI_STATE_SCHED test is for avoiding a race 5591 * with netpoll's poll_napi(). Only the entity which 5592 * obtains the lock and sees NAPI_STATE_SCHED set will 5593 * actually make the ->poll() call. Therefore we avoid 5594 * accidentally calling ->poll() when NAPI is not scheduled. 5595 */ 5596 work = 0; 5597 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5598 work = n->poll(n, weight); 5599 trace_napi_poll(n, work, weight); 5600 } 5601 5602 WARN_ON_ONCE(work > weight); 5603 5604 if (likely(work < weight)) 5605 goto out_unlock; 5606 5607 /* Drivers must not modify the NAPI state if they 5608 * consume the entire weight. In such cases this code 5609 * still "owns" the NAPI instance and therefore can 5610 * move the instance around on the list at-will. 5611 */ 5612 if (unlikely(napi_disable_pending(n))) { 5613 napi_complete(n); 5614 goto out_unlock; 5615 } 5616 5617 if (n->gro_list) { 5618 /* flush too old packets 5619 * If HZ < 1000, flush all packets. 5620 */ 5621 napi_gro_flush(n, HZ >= 1000); 5622 } 5623 5624 /* Some drivers may have called napi_schedule 5625 * prior to exhausting their budget. 5626 */ 5627 if (unlikely(!list_empty(&n->poll_list))) { 5628 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5629 n->dev ? n->dev->name : "backlog"); 5630 goto out_unlock; 5631 } 5632 5633 list_add_tail(&n->poll_list, repoll); 5634 5635 out_unlock: 5636 netpoll_poll_unlock(have); 5637 5638 return work; 5639 } 5640 net_rx_action(struct softirq_action * h)5641 static __latent_entropy void net_rx_action(struct softirq_action *h) 5642 { 5643 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5644 unsigned long time_limit = jiffies + 5645 usecs_to_jiffies(netdev_budget_usecs); 5646 int budget = netdev_budget; 5647 LIST_HEAD(list); 5648 LIST_HEAD(repoll); 5649 5650 local_irq_disable(); 5651 list_splice_init(&sd->poll_list, &list); 5652 local_irq_enable(); 5653 5654 for (;;) { 5655 struct napi_struct *n; 5656 5657 if (list_empty(&list)) { 5658 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5659 goto out; 5660 break; 5661 } 5662 5663 n = list_first_entry(&list, struct napi_struct, poll_list); 5664 budget -= napi_poll(n, &repoll); 5665 5666 /* If softirq window is exhausted then punt. 5667 * Allow this to run for 2 jiffies since which will allow 5668 * an average latency of 1.5/HZ. 5669 */ 5670 if (unlikely(budget <= 0 || 5671 time_after_eq(jiffies, time_limit))) { 5672 sd->time_squeeze++; 5673 break; 5674 } 5675 } 5676 5677 local_irq_disable(); 5678 5679 list_splice_tail_init(&sd->poll_list, &list); 5680 list_splice_tail(&repoll, &list); 5681 list_splice(&list, &sd->poll_list); 5682 if (!list_empty(&sd->poll_list)) 5683 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5684 5685 net_rps_action_and_irq_enable(sd); 5686 out: 5687 __kfree_skb_flush(); 5688 } 5689 5690 struct netdev_adjacent { 5691 struct net_device *dev; 5692 5693 /* upper master flag, there can only be one master device per list */ 5694 bool master; 5695 5696 /* counter for the number of times this device was added to us */ 5697 u16 ref_nr; 5698 5699 /* private field for the users */ 5700 void *private; 5701 5702 struct list_head list; 5703 struct rcu_head rcu; 5704 }; 5705 __netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)5706 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5707 struct list_head *adj_list) 5708 { 5709 struct netdev_adjacent *adj; 5710 5711 list_for_each_entry(adj, adj_list, list) { 5712 if (adj->dev == adj_dev) 5713 return adj; 5714 } 5715 return NULL; 5716 } 5717 __netdev_has_upper_dev(struct net_device * upper_dev,void * data)5718 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5719 { 5720 struct net_device *dev = data; 5721 5722 return upper_dev == dev; 5723 } 5724 5725 /** 5726 * netdev_has_upper_dev - Check if device is linked to an upper device 5727 * @dev: device 5728 * @upper_dev: upper device to check 5729 * 5730 * Find out if a device is linked to specified upper device and return true 5731 * in case it is. Note that this checks only immediate upper device, 5732 * not through a complete stack of devices. The caller must hold the RTNL lock. 5733 */ netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)5734 bool netdev_has_upper_dev(struct net_device *dev, 5735 struct net_device *upper_dev) 5736 { 5737 ASSERT_RTNL(); 5738 5739 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5740 upper_dev); 5741 } 5742 EXPORT_SYMBOL(netdev_has_upper_dev); 5743 5744 /** 5745 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5746 * @dev: device 5747 * @upper_dev: upper device to check 5748 * 5749 * Find out if a device is linked to specified upper device and return true 5750 * in case it is. Note that this checks the entire upper device chain. 5751 * The caller must hold rcu lock. 5752 */ 5753 netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)5754 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5755 struct net_device *upper_dev) 5756 { 5757 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5758 upper_dev); 5759 } 5760 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5761 5762 /** 5763 * netdev_has_any_upper_dev - Check if device is linked to some device 5764 * @dev: device 5765 * 5766 * Find out if a device is linked to an upper device and return true in case 5767 * it is. The caller must hold the RTNL lock. 5768 */ netdev_has_any_upper_dev(struct net_device * dev)5769 bool netdev_has_any_upper_dev(struct net_device *dev) 5770 { 5771 ASSERT_RTNL(); 5772 5773 return !list_empty(&dev->adj_list.upper); 5774 } 5775 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5776 5777 /** 5778 * netdev_master_upper_dev_get - Get master upper device 5779 * @dev: device 5780 * 5781 * Find a master upper device and return pointer to it or NULL in case 5782 * it's not there. The caller must hold the RTNL lock. 5783 */ netdev_master_upper_dev_get(struct net_device * dev)5784 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5785 { 5786 struct netdev_adjacent *upper; 5787 5788 ASSERT_RTNL(); 5789 5790 if (list_empty(&dev->adj_list.upper)) 5791 return NULL; 5792 5793 upper = list_first_entry(&dev->adj_list.upper, 5794 struct netdev_adjacent, list); 5795 if (likely(upper->master)) 5796 return upper->dev; 5797 return NULL; 5798 } 5799 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5800 5801 /** 5802 * netdev_has_any_lower_dev - Check if device is linked to some device 5803 * @dev: device 5804 * 5805 * Find out if a device is linked to a lower device and return true in case 5806 * it is. The caller must hold the RTNL lock. 5807 */ netdev_has_any_lower_dev(struct net_device * dev)5808 static bool netdev_has_any_lower_dev(struct net_device *dev) 5809 { 5810 ASSERT_RTNL(); 5811 5812 return !list_empty(&dev->adj_list.lower); 5813 } 5814 netdev_adjacent_get_private(struct list_head * adj_list)5815 void *netdev_adjacent_get_private(struct list_head *adj_list) 5816 { 5817 struct netdev_adjacent *adj; 5818 5819 adj = list_entry(adj_list, struct netdev_adjacent, list); 5820 5821 return adj->private; 5822 } 5823 EXPORT_SYMBOL(netdev_adjacent_get_private); 5824 5825 /** 5826 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5827 * @dev: device 5828 * @iter: list_head ** of the current position 5829 * 5830 * Gets the next device from the dev's upper list, starting from iter 5831 * position. The caller must hold RCU read lock. 5832 */ netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)5833 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5834 struct list_head **iter) 5835 { 5836 struct netdev_adjacent *upper; 5837 5838 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5839 5840 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5841 5842 if (&upper->list == &dev->adj_list.upper) 5843 return NULL; 5844 5845 *iter = &upper->list; 5846 5847 return upper->dev; 5848 } 5849 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5850 netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)5851 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5852 struct list_head **iter) 5853 { 5854 struct netdev_adjacent *upper; 5855 5856 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5857 5858 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5859 5860 if (&upper->list == &dev->adj_list.upper) 5861 return NULL; 5862 5863 *iter = &upper->list; 5864 5865 return upper->dev; 5866 } 5867 netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)5868 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5869 int (*fn)(struct net_device *dev, 5870 void *data), 5871 void *data) 5872 { 5873 struct net_device *udev; 5874 struct list_head *iter; 5875 int ret; 5876 5877 for (iter = &dev->adj_list.upper, 5878 udev = netdev_next_upper_dev_rcu(dev, &iter); 5879 udev; 5880 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5881 /* first is the upper device itself */ 5882 ret = fn(udev, data); 5883 if (ret) 5884 return ret; 5885 5886 /* then look at all of its upper devices */ 5887 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5888 if (ret) 5889 return ret; 5890 } 5891 5892 return 0; 5893 } 5894 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5895 5896 /** 5897 * netdev_lower_get_next_private - Get the next ->private from the 5898 * lower neighbour list 5899 * @dev: device 5900 * @iter: list_head ** of the current position 5901 * 5902 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5903 * list, starting from iter position. The caller must hold either hold the 5904 * RTNL lock or its own locking that guarantees that the neighbour lower 5905 * list will remain unchanged. 5906 */ netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)5907 void *netdev_lower_get_next_private(struct net_device *dev, 5908 struct list_head **iter) 5909 { 5910 struct netdev_adjacent *lower; 5911 5912 lower = list_entry(*iter, struct netdev_adjacent, list); 5913 5914 if (&lower->list == &dev->adj_list.lower) 5915 return NULL; 5916 5917 *iter = lower->list.next; 5918 5919 return lower->private; 5920 } 5921 EXPORT_SYMBOL(netdev_lower_get_next_private); 5922 5923 /** 5924 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5925 * lower neighbour list, RCU 5926 * variant 5927 * @dev: device 5928 * @iter: list_head ** of the current position 5929 * 5930 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5931 * list, starting from iter position. The caller must hold RCU read lock. 5932 */ netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)5933 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5934 struct list_head **iter) 5935 { 5936 struct netdev_adjacent *lower; 5937 5938 WARN_ON_ONCE(!rcu_read_lock_held()); 5939 5940 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5941 5942 if (&lower->list == &dev->adj_list.lower) 5943 return NULL; 5944 5945 *iter = &lower->list; 5946 5947 return lower->private; 5948 } 5949 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5950 5951 /** 5952 * netdev_lower_get_next - Get the next device from the lower neighbour 5953 * list 5954 * @dev: device 5955 * @iter: list_head ** of the current position 5956 * 5957 * Gets the next netdev_adjacent from the dev's lower neighbour 5958 * list, starting from iter position. The caller must hold RTNL lock or 5959 * its own locking that guarantees that the neighbour lower 5960 * list will remain unchanged. 5961 */ netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)5962 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5963 { 5964 struct netdev_adjacent *lower; 5965 5966 lower = list_entry(*iter, struct netdev_adjacent, list); 5967 5968 if (&lower->list == &dev->adj_list.lower) 5969 return NULL; 5970 5971 *iter = lower->list.next; 5972 5973 return lower->dev; 5974 } 5975 EXPORT_SYMBOL(netdev_lower_get_next); 5976 netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)5977 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5978 struct list_head **iter) 5979 { 5980 struct netdev_adjacent *lower; 5981 5982 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5983 5984 if (&lower->list == &dev->adj_list.lower) 5985 return NULL; 5986 5987 *iter = &lower->list; 5988 5989 return lower->dev; 5990 } 5991 netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)5992 int netdev_walk_all_lower_dev(struct net_device *dev, 5993 int (*fn)(struct net_device *dev, 5994 void *data), 5995 void *data) 5996 { 5997 struct net_device *ldev; 5998 struct list_head *iter; 5999 int ret; 6000 6001 for (iter = &dev->adj_list.lower, 6002 ldev = netdev_next_lower_dev(dev, &iter); 6003 ldev; 6004 ldev = netdev_next_lower_dev(dev, &iter)) { 6005 /* first is the lower device itself */ 6006 ret = fn(ldev, data); 6007 if (ret) 6008 return ret; 6009 6010 /* then look at all of its lower devices */ 6011 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6012 if (ret) 6013 return ret; 6014 } 6015 6016 return 0; 6017 } 6018 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6019 netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)6020 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6021 struct list_head **iter) 6022 { 6023 struct netdev_adjacent *lower; 6024 6025 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6026 if (&lower->list == &dev->adj_list.lower) 6027 return NULL; 6028 6029 *iter = &lower->list; 6030 6031 return lower->dev; 6032 } 6033 netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6034 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6035 int (*fn)(struct net_device *dev, 6036 void *data), 6037 void *data) 6038 { 6039 struct net_device *ldev; 6040 struct list_head *iter; 6041 int ret; 6042 6043 for (iter = &dev->adj_list.lower, 6044 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6045 ldev; 6046 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6047 /* first is the lower device itself */ 6048 ret = fn(ldev, data); 6049 if (ret) 6050 return ret; 6051 6052 /* then look at all of its lower devices */ 6053 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6054 if (ret) 6055 return ret; 6056 } 6057 6058 return 0; 6059 } 6060 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6061 6062 /** 6063 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6064 * lower neighbour list, RCU 6065 * variant 6066 * @dev: device 6067 * 6068 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6069 * list. The caller must hold RCU read lock. 6070 */ netdev_lower_get_first_private_rcu(struct net_device * dev)6071 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6072 { 6073 struct netdev_adjacent *lower; 6074 6075 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6076 struct netdev_adjacent, list); 6077 if (lower) 6078 return lower->private; 6079 return NULL; 6080 } 6081 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6082 6083 /** 6084 * netdev_master_upper_dev_get_rcu - Get master upper device 6085 * @dev: device 6086 * 6087 * Find a master upper device and return pointer to it or NULL in case 6088 * it's not there. The caller must hold the RCU read lock. 6089 */ netdev_master_upper_dev_get_rcu(struct net_device * dev)6090 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6091 { 6092 struct netdev_adjacent *upper; 6093 6094 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6095 struct netdev_adjacent, list); 6096 if (upper && likely(upper->master)) 6097 return upper->dev; 6098 return NULL; 6099 } 6100 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6101 netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6102 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6103 struct net_device *adj_dev, 6104 struct list_head *dev_list) 6105 { 6106 char linkname[IFNAMSIZ+7]; 6107 6108 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6109 "upper_%s" : "lower_%s", adj_dev->name); 6110 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6111 linkname); 6112 } netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)6113 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6114 char *name, 6115 struct list_head *dev_list) 6116 { 6117 char linkname[IFNAMSIZ+7]; 6118 6119 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6120 "upper_%s" : "lower_%s", name); 6121 sysfs_remove_link(&(dev->dev.kobj), linkname); 6122 } 6123 netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6124 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6125 struct net_device *adj_dev, 6126 struct list_head *dev_list) 6127 { 6128 return (dev_list == &dev->adj_list.upper || 6129 dev_list == &dev->adj_list.lower) && 6130 net_eq(dev_net(dev), dev_net(adj_dev)); 6131 } 6132 __netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)6133 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6134 struct net_device *adj_dev, 6135 struct list_head *dev_list, 6136 void *private, bool master) 6137 { 6138 struct netdev_adjacent *adj; 6139 int ret; 6140 6141 adj = __netdev_find_adj(adj_dev, dev_list); 6142 6143 if (adj) { 6144 adj->ref_nr += 1; 6145 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6146 dev->name, adj_dev->name, adj->ref_nr); 6147 6148 return 0; 6149 } 6150 6151 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6152 if (!adj) 6153 return -ENOMEM; 6154 6155 adj->dev = adj_dev; 6156 adj->master = master; 6157 adj->ref_nr = 1; 6158 adj->private = private; 6159 dev_hold(adj_dev); 6160 6161 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6162 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6163 6164 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6165 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6166 if (ret) 6167 goto free_adj; 6168 } 6169 6170 /* Ensure that master link is always the first item in list. */ 6171 if (master) { 6172 ret = sysfs_create_link(&(dev->dev.kobj), 6173 &(adj_dev->dev.kobj), "master"); 6174 if (ret) 6175 goto remove_symlinks; 6176 6177 list_add_rcu(&adj->list, dev_list); 6178 } else { 6179 list_add_tail_rcu(&adj->list, dev_list); 6180 } 6181 6182 return 0; 6183 6184 remove_symlinks: 6185 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6186 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6187 free_adj: 6188 kfree(adj); 6189 dev_put(adj_dev); 6190 6191 return ret; 6192 } 6193 __netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)6194 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6195 struct net_device *adj_dev, 6196 u16 ref_nr, 6197 struct list_head *dev_list) 6198 { 6199 struct netdev_adjacent *adj; 6200 6201 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6202 dev->name, adj_dev->name, ref_nr); 6203 6204 adj = __netdev_find_adj(adj_dev, dev_list); 6205 6206 if (!adj) { 6207 pr_err("Adjacency does not exist for device %s from %s\n", 6208 dev->name, adj_dev->name); 6209 WARN_ON(1); 6210 return; 6211 } 6212 6213 if (adj->ref_nr > ref_nr) { 6214 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6215 dev->name, adj_dev->name, ref_nr, 6216 adj->ref_nr - ref_nr); 6217 adj->ref_nr -= ref_nr; 6218 return; 6219 } 6220 6221 if (adj->master) 6222 sysfs_remove_link(&(dev->dev.kobj), "master"); 6223 6224 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6225 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6226 6227 list_del_rcu(&adj->list); 6228 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6229 adj_dev->name, dev->name, adj_dev->name); 6230 dev_put(adj_dev); 6231 kfree_rcu(adj, rcu); 6232 } 6233 __netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)6234 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6235 struct net_device *upper_dev, 6236 struct list_head *up_list, 6237 struct list_head *down_list, 6238 void *private, bool master) 6239 { 6240 int ret; 6241 6242 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6243 private, master); 6244 if (ret) 6245 return ret; 6246 6247 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6248 private, false); 6249 if (ret) { 6250 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6251 return ret; 6252 } 6253 6254 return 0; 6255 } 6256 __netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)6257 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6258 struct net_device *upper_dev, 6259 u16 ref_nr, 6260 struct list_head *up_list, 6261 struct list_head *down_list) 6262 { 6263 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6264 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6265 } 6266 __netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)6267 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6268 struct net_device *upper_dev, 6269 void *private, bool master) 6270 { 6271 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6272 &dev->adj_list.upper, 6273 &upper_dev->adj_list.lower, 6274 private, master); 6275 } 6276 __netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)6277 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6278 struct net_device *upper_dev) 6279 { 6280 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6281 &dev->adj_list.upper, 6282 &upper_dev->adj_list.lower); 6283 } 6284 __netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info)6285 static int __netdev_upper_dev_link(struct net_device *dev, 6286 struct net_device *upper_dev, bool master, 6287 void *upper_priv, void *upper_info) 6288 { 6289 struct netdev_notifier_changeupper_info changeupper_info; 6290 int ret = 0; 6291 6292 ASSERT_RTNL(); 6293 6294 if (dev == upper_dev) 6295 return -EBUSY; 6296 6297 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6298 if (netdev_has_upper_dev(upper_dev, dev)) 6299 return -EBUSY; 6300 6301 if (netdev_has_upper_dev(dev, upper_dev)) 6302 return -EEXIST; 6303 6304 if (master && netdev_master_upper_dev_get(dev)) 6305 return -EBUSY; 6306 6307 changeupper_info.upper_dev = upper_dev; 6308 changeupper_info.master = master; 6309 changeupper_info.linking = true; 6310 changeupper_info.upper_info = upper_info; 6311 6312 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6313 &changeupper_info.info); 6314 ret = notifier_to_errno(ret); 6315 if (ret) 6316 return ret; 6317 6318 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6319 master); 6320 if (ret) 6321 return ret; 6322 6323 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6324 &changeupper_info.info); 6325 ret = notifier_to_errno(ret); 6326 if (ret) 6327 goto rollback; 6328 6329 return 0; 6330 6331 rollback: 6332 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6333 6334 return ret; 6335 } 6336 6337 /** 6338 * netdev_upper_dev_link - Add a link to the upper device 6339 * @dev: device 6340 * @upper_dev: new upper device 6341 * 6342 * Adds a link to device which is upper to this one. The caller must hold 6343 * the RTNL lock. On a failure a negative errno code is returned. 6344 * On success the reference counts are adjusted and the function 6345 * returns zero. 6346 */ netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)6347 int netdev_upper_dev_link(struct net_device *dev, 6348 struct net_device *upper_dev) 6349 { 6350 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6351 } 6352 EXPORT_SYMBOL(netdev_upper_dev_link); 6353 6354 /** 6355 * netdev_master_upper_dev_link - Add a master link to the upper device 6356 * @dev: device 6357 * @upper_dev: new upper device 6358 * @upper_priv: upper device private 6359 * @upper_info: upper info to be passed down via notifier 6360 * 6361 * Adds a link to device which is upper to this one. In this case, only 6362 * one master upper device can be linked, although other non-master devices 6363 * might be linked as well. The caller must hold the RTNL lock. 6364 * On a failure a negative errno code is returned. On success the reference 6365 * counts are adjusted and the function returns zero. 6366 */ netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info)6367 int netdev_master_upper_dev_link(struct net_device *dev, 6368 struct net_device *upper_dev, 6369 void *upper_priv, void *upper_info) 6370 { 6371 return __netdev_upper_dev_link(dev, upper_dev, true, 6372 upper_priv, upper_info); 6373 } 6374 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6375 6376 /** 6377 * netdev_upper_dev_unlink - Removes a link to upper device 6378 * @dev: device 6379 * @upper_dev: new upper device 6380 * 6381 * Removes a link to device which is upper to this one. The caller must hold 6382 * the RTNL lock. 6383 */ netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)6384 void netdev_upper_dev_unlink(struct net_device *dev, 6385 struct net_device *upper_dev) 6386 { 6387 struct netdev_notifier_changeupper_info changeupper_info; 6388 6389 ASSERT_RTNL(); 6390 6391 changeupper_info.upper_dev = upper_dev; 6392 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6393 changeupper_info.linking = false; 6394 6395 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6396 &changeupper_info.info); 6397 6398 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6399 6400 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6401 &changeupper_info.info); 6402 } 6403 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6404 6405 /** 6406 * netdev_bonding_info_change - Dispatch event about slave change 6407 * @dev: device 6408 * @bonding_info: info to dispatch 6409 * 6410 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6411 * The caller must hold the RTNL lock. 6412 */ netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)6413 void netdev_bonding_info_change(struct net_device *dev, 6414 struct netdev_bonding_info *bonding_info) 6415 { 6416 struct netdev_notifier_bonding_info info; 6417 6418 memcpy(&info.bonding_info, bonding_info, 6419 sizeof(struct netdev_bonding_info)); 6420 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6421 &info.info); 6422 } 6423 EXPORT_SYMBOL(netdev_bonding_info_change); 6424 netdev_adjacent_add_links(struct net_device * dev)6425 static void netdev_adjacent_add_links(struct net_device *dev) 6426 { 6427 struct netdev_adjacent *iter; 6428 6429 struct net *net = dev_net(dev); 6430 6431 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6432 if (!net_eq(net, dev_net(iter->dev))) 6433 continue; 6434 netdev_adjacent_sysfs_add(iter->dev, dev, 6435 &iter->dev->adj_list.lower); 6436 netdev_adjacent_sysfs_add(dev, iter->dev, 6437 &dev->adj_list.upper); 6438 } 6439 6440 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6441 if (!net_eq(net, dev_net(iter->dev))) 6442 continue; 6443 netdev_adjacent_sysfs_add(iter->dev, dev, 6444 &iter->dev->adj_list.upper); 6445 netdev_adjacent_sysfs_add(dev, iter->dev, 6446 &dev->adj_list.lower); 6447 } 6448 } 6449 netdev_adjacent_del_links(struct net_device * dev)6450 static void netdev_adjacent_del_links(struct net_device *dev) 6451 { 6452 struct netdev_adjacent *iter; 6453 6454 struct net *net = dev_net(dev); 6455 6456 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6457 if (!net_eq(net, dev_net(iter->dev))) 6458 continue; 6459 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6460 &iter->dev->adj_list.lower); 6461 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6462 &dev->adj_list.upper); 6463 } 6464 6465 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6466 if (!net_eq(net, dev_net(iter->dev))) 6467 continue; 6468 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6469 &iter->dev->adj_list.upper); 6470 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6471 &dev->adj_list.lower); 6472 } 6473 } 6474 netdev_adjacent_rename_links(struct net_device * dev,char * oldname)6475 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6476 { 6477 struct netdev_adjacent *iter; 6478 6479 struct net *net = dev_net(dev); 6480 6481 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6482 if (!net_eq(net, dev_net(iter->dev))) 6483 continue; 6484 netdev_adjacent_sysfs_del(iter->dev, oldname, 6485 &iter->dev->adj_list.lower); 6486 netdev_adjacent_sysfs_add(iter->dev, dev, 6487 &iter->dev->adj_list.lower); 6488 } 6489 6490 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6491 if (!net_eq(net, dev_net(iter->dev))) 6492 continue; 6493 netdev_adjacent_sysfs_del(iter->dev, oldname, 6494 &iter->dev->adj_list.upper); 6495 netdev_adjacent_sysfs_add(iter->dev, dev, 6496 &iter->dev->adj_list.upper); 6497 } 6498 } 6499 netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)6500 void *netdev_lower_dev_get_private(struct net_device *dev, 6501 struct net_device *lower_dev) 6502 { 6503 struct netdev_adjacent *lower; 6504 6505 if (!lower_dev) 6506 return NULL; 6507 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6508 if (!lower) 6509 return NULL; 6510 6511 return lower->private; 6512 } 6513 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6514 6515 dev_get_nest_level(struct net_device * dev)6516 int dev_get_nest_level(struct net_device *dev) 6517 { 6518 struct net_device *lower = NULL; 6519 struct list_head *iter; 6520 int max_nest = -1; 6521 int nest; 6522 6523 ASSERT_RTNL(); 6524 6525 netdev_for_each_lower_dev(dev, lower, iter) { 6526 nest = dev_get_nest_level(lower); 6527 if (max_nest < nest) 6528 max_nest = nest; 6529 } 6530 6531 return max_nest + 1; 6532 } 6533 EXPORT_SYMBOL(dev_get_nest_level); 6534 6535 /** 6536 * netdev_lower_change - Dispatch event about lower device state change 6537 * @lower_dev: device 6538 * @lower_state_info: state to dispatch 6539 * 6540 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6541 * The caller must hold the RTNL lock. 6542 */ netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)6543 void netdev_lower_state_changed(struct net_device *lower_dev, 6544 void *lower_state_info) 6545 { 6546 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6547 6548 ASSERT_RTNL(); 6549 changelowerstate_info.lower_state_info = lower_state_info; 6550 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6551 &changelowerstate_info.info); 6552 } 6553 EXPORT_SYMBOL(netdev_lower_state_changed); 6554 dev_change_rx_flags(struct net_device * dev,int flags)6555 static void dev_change_rx_flags(struct net_device *dev, int flags) 6556 { 6557 const struct net_device_ops *ops = dev->netdev_ops; 6558 6559 if (ops->ndo_change_rx_flags) 6560 ops->ndo_change_rx_flags(dev, flags); 6561 } 6562 __dev_set_promiscuity(struct net_device * dev,int inc,bool notify)6563 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6564 { 6565 unsigned int old_flags = dev->flags; 6566 kuid_t uid; 6567 kgid_t gid; 6568 6569 ASSERT_RTNL(); 6570 6571 dev->flags |= IFF_PROMISC; 6572 dev->promiscuity += inc; 6573 if (dev->promiscuity == 0) { 6574 /* 6575 * Avoid overflow. 6576 * If inc causes overflow, untouch promisc and return error. 6577 */ 6578 if (inc < 0) 6579 dev->flags &= ~IFF_PROMISC; 6580 else { 6581 dev->promiscuity -= inc; 6582 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6583 dev->name); 6584 return -EOVERFLOW; 6585 } 6586 } 6587 if (dev->flags != old_flags) { 6588 pr_info("device %s %s promiscuous mode\n", 6589 dev->name, 6590 dev->flags & IFF_PROMISC ? "entered" : "left"); 6591 if (audit_enabled) { 6592 current_uid_gid(&uid, &gid); 6593 audit_log(current->audit_context, GFP_ATOMIC, 6594 AUDIT_ANOM_PROMISCUOUS, 6595 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6596 dev->name, (dev->flags & IFF_PROMISC), 6597 (old_flags & IFF_PROMISC), 6598 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6599 from_kuid(&init_user_ns, uid), 6600 from_kgid(&init_user_ns, gid), 6601 audit_get_sessionid(current)); 6602 } 6603 6604 dev_change_rx_flags(dev, IFF_PROMISC); 6605 } 6606 if (notify) 6607 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6608 return 0; 6609 } 6610 6611 /** 6612 * dev_set_promiscuity - update promiscuity count on a device 6613 * @dev: device 6614 * @inc: modifier 6615 * 6616 * Add or remove promiscuity from a device. While the count in the device 6617 * remains above zero the interface remains promiscuous. Once it hits zero 6618 * the device reverts back to normal filtering operation. A negative inc 6619 * value is used to drop promiscuity on the device. 6620 * Return 0 if successful or a negative errno code on error. 6621 */ dev_set_promiscuity(struct net_device * dev,int inc)6622 int dev_set_promiscuity(struct net_device *dev, int inc) 6623 { 6624 unsigned int old_flags = dev->flags; 6625 int err; 6626 6627 err = __dev_set_promiscuity(dev, inc, true); 6628 if (err < 0) 6629 return err; 6630 if (dev->flags != old_flags) 6631 dev_set_rx_mode(dev); 6632 return err; 6633 } 6634 EXPORT_SYMBOL(dev_set_promiscuity); 6635 __dev_set_allmulti(struct net_device * dev,int inc,bool notify)6636 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6637 { 6638 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6639 6640 ASSERT_RTNL(); 6641 6642 dev->flags |= IFF_ALLMULTI; 6643 dev->allmulti += inc; 6644 if (dev->allmulti == 0) { 6645 /* 6646 * Avoid overflow. 6647 * If inc causes overflow, untouch allmulti and return error. 6648 */ 6649 if (inc < 0) 6650 dev->flags &= ~IFF_ALLMULTI; 6651 else { 6652 dev->allmulti -= inc; 6653 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6654 dev->name); 6655 return -EOVERFLOW; 6656 } 6657 } 6658 if (dev->flags ^ old_flags) { 6659 dev_change_rx_flags(dev, IFF_ALLMULTI); 6660 dev_set_rx_mode(dev); 6661 if (notify) 6662 __dev_notify_flags(dev, old_flags, 6663 dev->gflags ^ old_gflags); 6664 } 6665 return 0; 6666 } 6667 6668 /** 6669 * dev_set_allmulti - update allmulti count on a device 6670 * @dev: device 6671 * @inc: modifier 6672 * 6673 * Add or remove reception of all multicast frames to a device. While the 6674 * count in the device remains above zero the interface remains listening 6675 * to all interfaces. Once it hits zero the device reverts back to normal 6676 * filtering operation. A negative @inc value is used to drop the counter 6677 * when releasing a resource needing all multicasts. 6678 * Return 0 if successful or a negative errno code on error. 6679 */ 6680 dev_set_allmulti(struct net_device * dev,int inc)6681 int dev_set_allmulti(struct net_device *dev, int inc) 6682 { 6683 return __dev_set_allmulti(dev, inc, true); 6684 } 6685 EXPORT_SYMBOL(dev_set_allmulti); 6686 6687 /* 6688 * Upload unicast and multicast address lists to device and 6689 * configure RX filtering. When the device doesn't support unicast 6690 * filtering it is put in promiscuous mode while unicast addresses 6691 * are present. 6692 */ __dev_set_rx_mode(struct net_device * dev)6693 void __dev_set_rx_mode(struct net_device *dev) 6694 { 6695 const struct net_device_ops *ops = dev->netdev_ops; 6696 6697 /* dev_open will call this function so the list will stay sane. */ 6698 if (!(dev->flags&IFF_UP)) 6699 return; 6700 6701 if (!netif_device_present(dev)) 6702 return; 6703 6704 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6705 /* Unicast addresses changes may only happen under the rtnl, 6706 * therefore calling __dev_set_promiscuity here is safe. 6707 */ 6708 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6709 __dev_set_promiscuity(dev, 1, false); 6710 dev->uc_promisc = true; 6711 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6712 __dev_set_promiscuity(dev, -1, false); 6713 dev->uc_promisc = false; 6714 } 6715 } 6716 6717 if (ops->ndo_set_rx_mode) 6718 ops->ndo_set_rx_mode(dev); 6719 } 6720 dev_set_rx_mode(struct net_device * dev)6721 void dev_set_rx_mode(struct net_device *dev) 6722 { 6723 netif_addr_lock_bh(dev); 6724 __dev_set_rx_mode(dev); 6725 netif_addr_unlock_bh(dev); 6726 } 6727 6728 /** 6729 * dev_get_flags - get flags reported to userspace 6730 * @dev: device 6731 * 6732 * Get the combination of flag bits exported through APIs to userspace. 6733 */ dev_get_flags(const struct net_device * dev)6734 unsigned int dev_get_flags(const struct net_device *dev) 6735 { 6736 unsigned int flags; 6737 6738 flags = (dev->flags & ~(IFF_PROMISC | 6739 IFF_ALLMULTI | 6740 IFF_RUNNING | 6741 IFF_LOWER_UP | 6742 IFF_DORMANT)) | 6743 (dev->gflags & (IFF_PROMISC | 6744 IFF_ALLMULTI)); 6745 6746 if (netif_running(dev)) { 6747 if (netif_oper_up(dev)) 6748 flags |= IFF_RUNNING; 6749 if (netif_carrier_ok(dev)) 6750 flags |= IFF_LOWER_UP; 6751 if (netif_dormant(dev)) 6752 flags |= IFF_DORMANT; 6753 } 6754 6755 return flags; 6756 } 6757 EXPORT_SYMBOL(dev_get_flags); 6758 __dev_change_flags(struct net_device * dev,unsigned int flags)6759 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6760 { 6761 unsigned int old_flags = dev->flags; 6762 int ret; 6763 6764 ASSERT_RTNL(); 6765 6766 /* 6767 * Set the flags on our device. 6768 */ 6769 6770 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6771 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6772 IFF_AUTOMEDIA)) | 6773 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6774 IFF_ALLMULTI)); 6775 6776 /* 6777 * Load in the correct multicast list now the flags have changed. 6778 */ 6779 6780 if ((old_flags ^ flags) & IFF_MULTICAST) 6781 dev_change_rx_flags(dev, IFF_MULTICAST); 6782 6783 dev_set_rx_mode(dev); 6784 6785 /* 6786 * Have we downed the interface. We handle IFF_UP ourselves 6787 * according to user attempts to set it, rather than blindly 6788 * setting it. 6789 */ 6790 6791 ret = 0; 6792 if ((old_flags ^ flags) & IFF_UP) { 6793 if (old_flags & IFF_UP) 6794 __dev_close(dev); 6795 else 6796 ret = __dev_open(dev); 6797 } 6798 6799 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6800 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6801 unsigned int old_flags = dev->flags; 6802 6803 dev->gflags ^= IFF_PROMISC; 6804 6805 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6806 if (dev->flags != old_flags) 6807 dev_set_rx_mode(dev); 6808 } 6809 6810 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6811 * is important. Some (broken) drivers set IFF_PROMISC, when 6812 * IFF_ALLMULTI is requested not asking us and not reporting. 6813 */ 6814 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6815 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6816 6817 dev->gflags ^= IFF_ALLMULTI; 6818 __dev_set_allmulti(dev, inc, false); 6819 } 6820 6821 return ret; 6822 } 6823 __dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)6824 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6825 unsigned int gchanges) 6826 { 6827 unsigned int changes = dev->flags ^ old_flags; 6828 6829 if (gchanges) 6830 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6831 6832 if (changes & IFF_UP) { 6833 if (dev->flags & IFF_UP) 6834 call_netdevice_notifiers(NETDEV_UP, dev); 6835 else 6836 call_netdevice_notifiers(NETDEV_DOWN, dev); 6837 } 6838 6839 if (dev->flags & IFF_UP && 6840 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6841 struct netdev_notifier_change_info change_info; 6842 6843 change_info.flags_changed = changes; 6844 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6845 &change_info.info); 6846 } 6847 } 6848 6849 /** 6850 * dev_change_flags - change device settings 6851 * @dev: device 6852 * @flags: device state flags 6853 * 6854 * Change settings on device based state flags. The flags are 6855 * in the userspace exported format. 6856 */ dev_change_flags(struct net_device * dev,unsigned int flags)6857 int dev_change_flags(struct net_device *dev, unsigned int flags) 6858 { 6859 int ret; 6860 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6861 6862 ret = __dev_change_flags(dev, flags); 6863 if (ret < 0) 6864 return ret; 6865 6866 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6867 __dev_notify_flags(dev, old_flags, changes); 6868 return ret; 6869 } 6870 EXPORT_SYMBOL(dev_change_flags); 6871 __dev_set_mtu(struct net_device * dev,int new_mtu)6872 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6873 { 6874 const struct net_device_ops *ops = dev->netdev_ops; 6875 6876 if (ops->ndo_change_mtu) 6877 return ops->ndo_change_mtu(dev, new_mtu); 6878 6879 /* Pairs with all the lockless reads of dev->mtu in the stack */ 6880 WRITE_ONCE(dev->mtu, new_mtu); 6881 return 0; 6882 } 6883 EXPORT_SYMBOL(__dev_set_mtu); 6884 6885 /** 6886 * dev_set_mtu - Change maximum transfer unit 6887 * @dev: device 6888 * @new_mtu: new transfer unit 6889 * 6890 * Change the maximum transfer size of the network device. 6891 */ dev_set_mtu(struct net_device * dev,int new_mtu)6892 int dev_set_mtu(struct net_device *dev, int new_mtu) 6893 { 6894 int err, orig_mtu; 6895 6896 if (new_mtu == dev->mtu) 6897 return 0; 6898 6899 err = dev_validate_mtu(dev, new_mtu); 6900 if (err) 6901 return err; 6902 6903 if (!netif_device_present(dev)) 6904 return -ENODEV; 6905 6906 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6907 err = notifier_to_errno(err); 6908 if (err) 6909 return err; 6910 6911 orig_mtu = dev->mtu; 6912 err = __dev_set_mtu(dev, new_mtu); 6913 6914 if (!err) { 6915 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 6916 orig_mtu); 6917 err = notifier_to_errno(err); 6918 if (err) { 6919 /* setting mtu back and notifying everyone again, 6920 * so that they have a chance to revert changes. 6921 */ 6922 __dev_set_mtu(dev, orig_mtu); 6923 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 6924 new_mtu); 6925 } 6926 } 6927 return err; 6928 } 6929 EXPORT_SYMBOL(dev_set_mtu); 6930 6931 /** 6932 * dev_set_group - Change group this device belongs to 6933 * @dev: device 6934 * @new_group: group this device should belong to 6935 */ dev_set_group(struct net_device * dev,int new_group)6936 void dev_set_group(struct net_device *dev, int new_group) 6937 { 6938 dev->group = new_group; 6939 } 6940 EXPORT_SYMBOL(dev_set_group); 6941 6942 /** 6943 * dev_set_mac_address - Change Media Access Control Address 6944 * @dev: device 6945 * @sa: new address 6946 * 6947 * Change the hardware (MAC) address of the device 6948 */ dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)6949 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6950 { 6951 const struct net_device_ops *ops = dev->netdev_ops; 6952 int err; 6953 6954 if (!ops->ndo_set_mac_address) 6955 return -EOPNOTSUPP; 6956 if (sa->sa_family != dev->type) 6957 return -EINVAL; 6958 if (!netif_device_present(dev)) 6959 return -ENODEV; 6960 err = ops->ndo_set_mac_address(dev, sa); 6961 if (err) 6962 return err; 6963 dev->addr_assign_type = NET_ADDR_SET; 6964 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6965 add_device_randomness(dev->dev_addr, dev->addr_len); 6966 return 0; 6967 } 6968 EXPORT_SYMBOL(dev_set_mac_address); 6969 6970 /** 6971 * dev_change_carrier - Change device carrier 6972 * @dev: device 6973 * @new_carrier: new value 6974 * 6975 * Change device carrier 6976 */ dev_change_carrier(struct net_device * dev,bool new_carrier)6977 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6978 { 6979 const struct net_device_ops *ops = dev->netdev_ops; 6980 6981 if (!ops->ndo_change_carrier) 6982 return -EOPNOTSUPP; 6983 if (!netif_device_present(dev)) 6984 return -ENODEV; 6985 return ops->ndo_change_carrier(dev, new_carrier); 6986 } 6987 EXPORT_SYMBOL(dev_change_carrier); 6988 6989 /** 6990 * dev_get_phys_port_id - Get device physical port ID 6991 * @dev: device 6992 * @ppid: port ID 6993 * 6994 * Get device physical port ID 6995 */ dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)6996 int dev_get_phys_port_id(struct net_device *dev, 6997 struct netdev_phys_item_id *ppid) 6998 { 6999 const struct net_device_ops *ops = dev->netdev_ops; 7000 7001 if (!ops->ndo_get_phys_port_id) 7002 return -EOPNOTSUPP; 7003 return ops->ndo_get_phys_port_id(dev, ppid); 7004 } 7005 EXPORT_SYMBOL(dev_get_phys_port_id); 7006 7007 /** 7008 * dev_get_phys_port_name - Get device physical port name 7009 * @dev: device 7010 * @name: port name 7011 * @len: limit of bytes to copy to name 7012 * 7013 * Get device physical port name 7014 */ dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)7015 int dev_get_phys_port_name(struct net_device *dev, 7016 char *name, size_t len) 7017 { 7018 const struct net_device_ops *ops = dev->netdev_ops; 7019 7020 if (!ops->ndo_get_phys_port_name) 7021 return -EOPNOTSUPP; 7022 return ops->ndo_get_phys_port_name(dev, name, len); 7023 } 7024 EXPORT_SYMBOL(dev_get_phys_port_name); 7025 7026 /** 7027 * dev_change_proto_down - update protocol port state information 7028 * @dev: device 7029 * @proto_down: new value 7030 * 7031 * This info can be used by switch drivers to set the phys state of the 7032 * port. 7033 */ dev_change_proto_down(struct net_device * dev,bool proto_down)7034 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7035 { 7036 const struct net_device_ops *ops = dev->netdev_ops; 7037 7038 if (!ops->ndo_change_proto_down) 7039 return -EOPNOTSUPP; 7040 if (!netif_device_present(dev)) 7041 return -ENODEV; 7042 return ops->ndo_change_proto_down(dev, proto_down); 7043 } 7044 EXPORT_SYMBOL(dev_change_proto_down); 7045 __dev_xdp_attached(struct net_device * dev,xdp_op_t xdp_op,u32 * prog_id)7046 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id) 7047 { 7048 struct netdev_xdp xdp; 7049 7050 memset(&xdp, 0, sizeof(xdp)); 7051 xdp.command = XDP_QUERY_PROG; 7052 7053 /* Query must always succeed. */ 7054 WARN_ON(xdp_op(dev, &xdp) < 0); 7055 if (prog_id) 7056 *prog_id = xdp.prog_id; 7057 7058 return xdp.prog_attached; 7059 } 7060 dev_xdp_install(struct net_device * dev,xdp_op_t xdp_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)7061 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op, 7062 struct netlink_ext_ack *extack, u32 flags, 7063 struct bpf_prog *prog) 7064 { 7065 struct netdev_xdp xdp; 7066 7067 memset(&xdp, 0, sizeof(xdp)); 7068 if (flags & XDP_FLAGS_HW_MODE) 7069 xdp.command = XDP_SETUP_PROG_HW; 7070 else 7071 xdp.command = XDP_SETUP_PROG; 7072 xdp.extack = extack; 7073 xdp.flags = flags; 7074 xdp.prog = prog; 7075 7076 return xdp_op(dev, &xdp); 7077 } 7078 7079 /** 7080 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7081 * @dev: device 7082 * @extack: netlink extended ack 7083 * @fd: new program fd or negative value to clear 7084 * @flags: xdp-related flags 7085 * 7086 * Set or clear a bpf program for a device 7087 */ dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,u32 flags)7088 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7089 int fd, u32 flags) 7090 { 7091 const struct net_device_ops *ops = dev->netdev_ops; 7092 struct bpf_prog *prog = NULL; 7093 xdp_op_t xdp_op, xdp_chk; 7094 int err; 7095 7096 ASSERT_RTNL(); 7097 7098 xdp_op = xdp_chk = ops->ndo_xdp; 7099 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7100 return -EOPNOTSUPP; 7101 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 7102 xdp_op = generic_xdp_install; 7103 if (xdp_op == xdp_chk) 7104 xdp_chk = generic_xdp_install; 7105 7106 if (fd >= 0) { 7107 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL)) 7108 return -EEXIST; 7109 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7110 __dev_xdp_attached(dev, xdp_op, NULL)) 7111 return -EBUSY; 7112 7113 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 7114 if (IS_ERR(prog)) 7115 return PTR_ERR(prog); 7116 } 7117 7118 err = dev_xdp_install(dev, xdp_op, extack, flags, prog); 7119 if (err < 0 && prog) 7120 bpf_prog_put(prog); 7121 7122 return err; 7123 } 7124 7125 /** 7126 * dev_new_index - allocate an ifindex 7127 * @net: the applicable net namespace 7128 * 7129 * Returns a suitable unique value for a new device interface 7130 * number. The caller must hold the rtnl semaphore or the 7131 * dev_base_lock to be sure it remains unique. 7132 */ dev_new_index(struct net * net)7133 static int dev_new_index(struct net *net) 7134 { 7135 int ifindex = net->ifindex; 7136 7137 for (;;) { 7138 if (++ifindex <= 0) 7139 ifindex = 1; 7140 if (!__dev_get_by_index(net, ifindex)) 7141 return net->ifindex = ifindex; 7142 } 7143 } 7144 7145 /* Delayed registration/unregisteration */ 7146 static LIST_HEAD(net_todo_list); 7147 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7148 net_set_todo(struct net_device * dev)7149 static void net_set_todo(struct net_device *dev) 7150 { 7151 list_add_tail(&dev->todo_list, &net_todo_list); 7152 dev_net(dev)->dev_unreg_count++; 7153 } 7154 rollback_registered_many(struct list_head * head)7155 static void rollback_registered_many(struct list_head *head) 7156 { 7157 struct net_device *dev, *tmp; 7158 LIST_HEAD(close_head); 7159 7160 BUG_ON(dev_boot_phase); 7161 ASSERT_RTNL(); 7162 7163 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7164 /* Some devices call without registering 7165 * for initialization unwind. Remove those 7166 * devices and proceed with the remaining. 7167 */ 7168 if (dev->reg_state == NETREG_UNINITIALIZED) { 7169 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7170 dev->name, dev); 7171 7172 WARN_ON(1); 7173 list_del(&dev->unreg_list); 7174 continue; 7175 } 7176 dev->dismantle = true; 7177 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7178 } 7179 7180 /* If device is running, close it first. */ 7181 list_for_each_entry(dev, head, unreg_list) 7182 list_add_tail(&dev->close_list, &close_head); 7183 dev_close_many(&close_head, true); 7184 7185 list_for_each_entry(dev, head, unreg_list) { 7186 /* And unlink it from device chain. */ 7187 unlist_netdevice(dev); 7188 7189 dev->reg_state = NETREG_UNREGISTERING; 7190 } 7191 flush_all_backlogs(); 7192 7193 synchronize_net(); 7194 7195 list_for_each_entry(dev, head, unreg_list) { 7196 struct sk_buff *skb = NULL; 7197 7198 /* Shutdown queueing discipline. */ 7199 dev_shutdown(dev); 7200 7201 7202 /* Notify protocols, that we are about to destroy 7203 * this device. They should clean all the things. 7204 */ 7205 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7206 7207 if (!dev->rtnl_link_ops || 7208 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7209 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7210 GFP_KERNEL); 7211 7212 /* 7213 * Flush the unicast and multicast chains 7214 */ 7215 dev_uc_flush(dev); 7216 dev_mc_flush(dev); 7217 7218 if (dev->netdev_ops->ndo_uninit) 7219 dev->netdev_ops->ndo_uninit(dev); 7220 7221 if (skb) 7222 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7223 7224 /* Notifier chain MUST detach us all upper devices. */ 7225 WARN_ON(netdev_has_any_upper_dev(dev)); 7226 WARN_ON(netdev_has_any_lower_dev(dev)); 7227 7228 /* Remove entries from kobject tree */ 7229 netdev_unregister_kobject(dev); 7230 #ifdef CONFIG_XPS 7231 /* Remove XPS queueing entries */ 7232 netif_reset_xps_queues_gt(dev, 0); 7233 #endif 7234 } 7235 7236 synchronize_net(); 7237 7238 list_for_each_entry(dev, head, unreg_list) 7239 dev_put(dev); 7240 } 7241 rollback_registered(struct net_device * dev)7242 static void rollback_registered(struct net_device *dev) 7243 { 7244 LIST_HEAD(single); 7245 7246 list_add(&dev->unreg_list, &single); 7247 rollback_registered_many(&single); 7248 list_del(&single); 7249 } 7250 netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)7251 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7252 struct net_device *upper, netdev_features_t features) 7253 { 7254 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7255 netdev_features_t feature; 7256 int feature_bit; 7257 7258 for_each_netdev_feature(upper_disables, feature_bit) { 7259 feature = __NETIF_F_BIT(feature_bit); 7260 if (!(upper->wanted_features & feature) 7261 && (features & feature)) { 7262 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7263 &feature, upper->name); 7264 features &= ~feature; 7265 } 7266 } 7267 7268 return features; 7269 } 7270 netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)7271 static void netdev_sync_lower_features(struct net_device *upper, 7272 struct net_device *lower, netdev_features_t features) 7273 { 7274 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7275 netdev_features_t feature; 7276 int feature_bit; 7277 7278 for_each_netdev_feature(upper_disables, feature_bit) { 7279 feature = __NETIF_F_BIT(feature_bit); 7280 if (!(features & feature) && (lower->features & feature)) { 7281 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7282 &feature, lower->name); 7283 lower->wanted_features &= ~feature; 7284 netdev_update_features(lower); 7285 7286 if (unlikely(lower->features & feature)) 7287 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7288 &feature, lower->name); 7289 } 7290 } 7291 } 7292 netdev_fix_features(struct net_device * dev,netdev_features_t features)7293 static netdev_features_t netdev_fix_features(struct net_device *dev, 7294 netdev_features_t features) 7295 { 7296 /* Fix illegal checksum combinations */ 7297 if ((features & NETIF_F_HW_CSUM) && 7298 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7299 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7300 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7301 } 7302 7303 /* TSO requires that SG is present as well. */ 7304 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7305 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7306 features &= ~NETIF_F_ALL_TSO; 7307 } 7308 7309 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7310 !(features & NETIF_F_IP_CSUM)) { 7311 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7312 features &= ~NETIF_F_TSO; 7313 features &= ~NETIF_F_TSO_ECN; 7314 } 7315 7316 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7317 !(features & NETIF_F_IPV6_CSUM)) { 7318 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7319 features &= ~NETIF_F_TSO6; 7320 } 7321 7322 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7323 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7324 features &= ~NETIF_F_TSO_MANGLEID; 7325 7326 /* TSO ECN requires that TSO is present as well. */ 7327 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7328 features &= ~NETIF_F_TSO_ECN; 7329 7330 /* Software GSO depends on SG. */ 7331 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7332 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7333 features &= ~NETIF_F_GSO; 7334 } 7335 7336 /* GSO partial features require GSO partial be set */ 7337 if ((features & dev->gso_partial_features) && 7338 !(features & NETIF_F_GSO_PARTIAL)) { 7339 netdev_dbg(dev, 7340 "Dropping partially supported GSO features since no GSO partial.\n"); 7341 features &= ~dev->gso_partial_features; 7342 } 7343 7344 return features; 7345 } 7346 __netdev_update_features(struct net_device * dev)7347 int __netdev_update_features(struct net_device *dev) 7348 { 7349 struct net_device *upper, *lower; 7350 netdev_features_t features; 7351 struct list_head *iter; 7352 int err = -1; 7353 7354 ASSERT_RTNL(); 7355 7356 features = netdev_get_wanted_features(dev); 7357 7358 if (dev->netdev_ops->ndo_fix_features) 7359 features = dev->netdev_ops->ndo_fix_features(dev, features); 7360 7361 /* driver might be less strict about feature dependencies */ 7362 features = netdev_fix_features(dev, features); 7363 7364 /* some features can't be enabled if they're off an an upper device */ 7365 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7366 features = netdev_sync_upper_features(dev, upper, features); 7367 7368 if (dev->features == features) 7369 goto sync_lower; 7370 7371 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7372 &dev->features, &features); 7373 7374 if (dev->netdev_ops->ndo_set_features) 7375 err = dev->netdev_ops->ndo_set_features(dev, features); 7376 else 7377 err = 0; 7378 7379 if (unlikely(err < 0)) { 7380 netdev_err(dev, 7381 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7382 err, &features, &dev->features); 7383 /* return non-0 since some features might have changed and 7384 * it's better to fire a spurious notification than miss it 7385 */ 7386 return -1; 7387 } 7388 7389 sync_lower: 7390 /* some features must be disabled on lower devices when disabled 7391 * on an upper device (think: bonding master or bridge) 7392 */ 7393 netdev_for_each_lower_dev(dev, lower, iter) 7394 netdev_sync_lower_features(dev, lower, features); 7395 7396 if (!err) { 7397 netdev_features_t diff = features ^ dev->features; 7398 7399 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7400 /* udp_tunnel_{get,drop}_rx_info both need 7401 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7402 * device, or they won't do anything. 7403 * Thus we need to update dev->features 7404 * *before* calling udp_tunnel_get_rx_info, 7405 * but *after* calling udp_tunnel_drop_rx_info. 7406 */ 7407 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7408 dev->features = features; 7409 udp_tunnel_get_rx_info(dev); 7410 } else { 7411 udp_tunnel_drop_rx_info(dev); 7412 } 7413 } 7414 7415 dev->features = features; 7416 } 7417 7418 return err < 0 ? 0 : 1; 7419 } 7420 7421 /** 7422 * netdev_update_features - recalculate device features 7423 * @dev: the device to check 7424 * 7425 * Recalculate dev->features set and send notifications if it 7426 * has changed. Should be called after driver or hardware dependent 7427 * conditions might have changed that influence the features. 7428 */ netdev_update_features(struct net_device * dev)7429 void netdev_update_features(struct net_device *dev) 7430 { 7431 if (__netdev_update_features(dev)) 7432 netdev_features_change(dev); 7433 } 7434 EXPORT_SYMBOL(netdev_update_features); 7435 7436 /** 7437 * netdev_change_features - recalculate device features 7438 * @dev: the device to check 7439 * 7440 * Recalculate dev->features set and send notifications even 7441 * if they have not changed. Should be called instead of 7442 * netdev_update_features() if also dev->vlan_features might 7443 * have changed to allow the changes to be propagated to stacked 7444 * VLAN devices. 7445 */ netdev_change_features(struct net_device * dev)7446 void netdev_change_features(struct net_device *dev) 7447 { 7448 __netdev_update_features(dev); 7449 netdev_features_change(dev); 7450 } 7451 EXPORT_SYMBOL(netdev_change_features); 7452 7453 /** 7454 * netif_stacked_transfer_operstate - transfer operstate 7455 * @rootdev: the root or lower level device to transfer state from 7456 * @dev: the device to transfer operstate to 7457 * 7458 * Transfer operational state from root to device. This is normally 7459 * called when a stacking relationship exists between the root 7460 * device and the device(a leaf device). 7461 */ netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)7462 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7463 struct net_device *dev) 7464 { 7465 if (rootdev->operstate == IF_OPER_DORMANT) 7466 netif_dormant_on(dev); 7467 else 7468 netif_dormant_off(dev); 7469 7470 if (netif_carrier_ok(rootdev)) 7471 netif_carrier_on(dev); 7472 else 7473 netif_carrier_off(dev); 7474 } 7475 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7476 7477 #ifdef CONFIG_SYSFS netif_alloc_rx_queues(struct net_device * dev)7478 static int netif_alloc_rx_queues(struct net_device *dev) 7479 { 7480 unsigned int i, count = dev->num_rx_queues; 7481 struct netdev_rx_queue *rx; 7482 size_t sz = count * sizeof(*rx); 7483 7484 BUG_ON(count < 1); 7485 7486 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7487 if (!rx) 7488 return -ENOMEM; 7489 7490 dev->_rx = rx; 7491 7492 for (i = 0; i < count; i++) 7493 rx[i].dev = dev; 7494 return 0; 7495 } 7496 #endif 7497 netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)7498 static void netdev_init_one_queue(struct net_device *dev, 7499 struct netdev_queue *queue, void *_unused) 7500 { 7501 /* Initialize queue lock */ 7502 spin_lock_init(&queue->_xmit_lock); 7503 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7504 queue->xmit_lock_owner = -1; 7505 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7506 queue->dev = dev; 7507 #ifdef CONFIG_BQL 7508 dql_init(&queue->dql, HZ); 7509 #endif 7510 } 7511 netif_free_tx_queues(struct net_device * dev)7512 static void netif_free_tx_queues(struct net_device *dev) 7513 { 7514 kvfree(dev->_tx); 7515 } 7516 netif_alloc_netdev_queues(struct net_device * dev)7517 static int netif_alloc_netdev_queues(struct net_device *dev) 7518 { 7519 unsigned int count = dev->num_tx_queues; 7520 struct netdev_queue *tx; 7521 size_t sz = count * sizeof(*tx); 7522 7523 if (count < 1 || count > 0xffff) 7524 return -EINVAL; 7525 7526 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7527 if (!tx) 7528 return -ENOMEM; 7529 7530 dev->_tx = tx; 7531 7532 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7533 spin_lock_init(&dev->tx_global_lock); 7534 7535 return 0; 7536 } 7537 netif_tx_stop_all_queues(struct net_device * dev)7538 void netif_tx_stop_all_queues(struct net_device *dev) 7539 { 7540 unsigned int i; 7541 7542 for (i = 0; i < dev->num_tx_queues; i++) { 7543 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7544 7545 netif_tx_stop_queue(txq); 7546 } 7547 } 7548 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7549 7550 /** 7551 * register_netdevice - register a network device 7552 * @dev: device to register 7553 * 7554 * Take a completed network device structure and add it to the kernel 7555 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7556 * chain. 0 is returned on success. A negative errno code is returned 7557 * on a failure to set up the device, or if the name is a duplicate. 7558 * 7559 * Callers must hold the rtnl semaphore. You may want 7560 * register_netdev() instead of this. 7561 * 7562 * BUGS: 7563 * The locking appears insufficient to guarantee two parallel registers 7564 * will not get the same name. 7565 */ 7566 register_netdevice(struct net_device * dev)7567 int register_netdevice(struct net_device *dev) 7568 { 7569 int ret; 7570 struct net *net = dev_net(dev); 7571 7572 BUG_ON(dev_boot_phase); 7573 ASSERT_RTNL(); 7574 7575 might_sleep(); 7576 7577 /* When net_device's are persistent, this will be fatal. */ 7578 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7579 BUG_ON(!net); 7580 7581 spin_lock_init(&dev->addr_list_lock); 7582 netdev_set_addr_lockdep_class(dev); 7583 7584 ret = dev_get_valid_name(net, dev, dev->name); 7585 if (ret < 0) 7586 goto out; 7587 7588 /* Init, if this function is available */ 7589 if (dev->netdev_ops->ndo_init) { 7590 ret = dev->netdev_ops->ndo_init(dev); 7591 if (ret) { 7592 if (ret > 0) 7593 ret = -EIO; 7594 goto out; 7595 } 7596 } 7597 7598 if (((dev->hw_features | dev->features) & 7599 NETIF_F_HW_VLAN_CTAG_FILTER) && 7600 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7601 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7602 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7603 ret = -EINVAL; 7604 goto err_uninit; 7605 } 7606 7607 ret = -EBUSY; 7608 if (!dev->ifindex) 7609 dev->ifindex = dev_new_index(net); 7610 else if (__dev_get_by_index(net, dev->ifindex)) 7611 goto err_uninit; 7612 7613 /* Transfer changeable features to wanted_features and enable 7614 * software offloads (GSO and GRO). 7615 */ 7616 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7617 dev->features |= NETIF_F_SOFT_FEATURES; 7618 7619 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7620 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7621 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7622 } 7623 7624 dev->wanted_features = dev->features & dev->hw_features; 7625 7626 if (!(dev->flags & IFF_LOOPBACK)) 7627 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7628 7629 /* If IPv4 TCP segmentation offload is supported we should also 7630 * allow the device to enable segmenting the frame with the option 7631 * of ignoring a static IP ID value. This doesn't enable the 7632 * feature itself but allows the user to enable it later. 7633 */ 7634 if (dev->hw_features & NETIF_F_TSO) 7635 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7636 if (dev->vlan_features & NETIF_F_TSO) 7637 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7638 if (dev->mpls_features & NETIF_F_TSO) 7639 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7640 if (dev->hw_enc_features & NETIF_F_TSO) 7641 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7642 7643 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7644 */ 7645 dev->vlan_features |= NETIF_F_HIGHDMA; 7646 7647 /* Make NETIF_F_SG inheritable to tunnel devices. 7648 */ 7649 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7650 7651 /* Make NETIF_F_SG inheritable to MPLS. 7652 */ 7653 dev->mpls_features |= NETIF_F_SG; 7654 7655 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7656 ret = notifier_to_errno(ret); 7657 if (ret) 7658 goto err_uninit; 7659 7660 ret = netdev_register_kobject(dev); 7661 if (ret) { 7662 dev->reg_state = NETREG_UNREGISTERED; 7663 goto err_uninit; 7664 } 7665 dev->reg_state = NETREG_REGISTERED; 7666 7667 __netdev_update_features(dev); 7668 7669 /* 7670 * Default initial state at registry is that the 7671 * device is present. 7672 */ 7673 7674 set_bit(__LINK_STATE_PRESENT, &dev->state); 7675 7676 linkwatch_init_dev(dev); 7677 7678 dev_init_scheduler(dev); 7679 dev_hold(dev); 7680 list_netdevice(dev); 7681 add_device_randomness(dev->dev_addr, dev->addr_len); 7682 7683 /* If the device has permanent device address, driver should 7684 * set dev_addr and also addr_assign_type should be set to 7685 * NET_ADDR_PERM (default value). 7686 */ 7687 if (dev->addr_assign_type == NET_ADDR_PERM) 7688 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7689 7690 /* Notify protocols, that a new device appeared. */ 7691 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7692 ret = notifier_to_errno(ret); 7693 if (ret) { 7694 rollback_registered(dev); 7695 rcu_barrier(); 7696 7697 dev->reg_state = NETREG_UNREGISTERED; 7698 } 7699 /* 7700 * Prevent userspace races by waiting until the network 7701 * device is fully setup before sending notifications. 7702 */ 7703 if (!dev->rtnl_link_ops || 7704 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7705 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7706 7707 out: 7708 return ret; 7709 7710 err_uninit: 7711 if (dev->netdev_ops->ndo_uninit) 7712 dev->netdev_ops->ndo_uninit(dev); 7713 if (dev->priv_destructor) 7714 dev->priv_destructor(dev); 7715 goto out; 7716 } 7717 EXPORT_SYMBOL(register_netdevice); 7718 7719 /** 7720 * init_dummy_netdev - init a dummy network device for NAPI 7721 * @dev: device to init 7722 * 7723 * This takes a network device structure and initialize the minimum 7724 * amount of fields so it can be used to schedule NAPI polls without 7725 * registering a full blown interface. This is to be used by drivers 7726 * that need to tie several hardware interfaces to a single NAPI 7727 * poll scheduler due to HW limitations. 7728 */ init_dummy_netdev(struct net_device * dev)7729 int init_dummy_netdev(struct net_device *dev) 7730 { 7731 /* Clear everything. Note we don't initialize spinlocks 7732 * are they aren't supposed to be taken by any of the 7733 * NAPI code and this dummy netdev is supposed to be 7734 * only ever used for NAPI polls 7735 */ 7736 memset(dev, 0, sizeof(struct net_device)); 7737 7738 /* make sure we BUG if trying to hit standard 7739 * register/unregister code path 7740 */ 7741 dev->reg_state = NETREG_DUMMY; 7742 7743 /* NAPI wants this */ 7744 INIT_LIST_HEAD(&dev->napi_list); 7745 7746 /* a dummy interface is started by default */ 7747 set_bit(__LINK_STATE_PRESENT, &dev->state); 7748 set_bit(__LINK_STATE_START, &dev->state); 7749 7750 /* napi_busy_loop stats accounting wants this */ 7751 dev_net_set(dev, &init_net); 7752 7753 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7754 * because users of this 'device' dont need to change 7755 * its refcount. 7756 */ 7757 7758 return 0; 7759 } 7760 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7761 7762 dev_validate_mtu(struct net_device * dev,int new_mtu)7763 int dev_validate_mtu(struct net_device *dev, int new_mtu) 7764 { 7765 /* MTU must be positive, and in range */ 7766 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7767 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 7768 dev->name, new_mtu, dev->min_mtu); 7769 return -EINVAL; 7770 } 7771 7772 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7773 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 7774 dev->name, new_mtu, dev->max_mtu); 7775 return -EINVAL; 7776 } 7777 return 0; 7778 } 7779 7780 /** 7781 * register_netdev - register a network device 7782 * @dev: device to register 7783 * 7784 * Take a completed network device structure and add it to the kernel 7785 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7786 * chain. 0 is returned on success. A negative errno code is returned 7787 * on a failure to set up the device, or if the name is a duplicate. 7788 * 7789 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7790 * and expands the device name if you passed a format string to 7791 * alloc_netdev. 7792 */ register_netdev(struct net_device * dev)7793 int register_netdev(struct net_device *dev) 7794 { 7795 int err; 7796 7797 rtnl_lock(); 7798 err = register_netdevice(dev); 7799 rtnl_unlock(); 7800 return err; 7801 } 7802 EXPORT_SYMBOL(register_netdev); 7803 netdev_refcnt_read(const struct net_device * dev)7804 int netdev_refcnt_read(const struct net_device *dev) 7805 { 7806 int i, refcnt = 0; 7807 7808 for_each_possible_cpu(i) 7809 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7810 return refcnt; 7811 } 7812 EXPORT_SYMBOL(netdev_refcnt_read); 7813 7814 /** 7815 * netdev_wait_allrefs - wait until all references are gone. 7816 * @dev: target net_device 7817 * 7818 * This is called when unregistering network devices. 7819 * 7820 * Any protocol or device that holds a reference should register 7821 * for netdevice notification, and cleanup and put back the 7822 * reference if they receive an UNREGISTER event. 7823 * We can get stuck here if buggy protocols don't correctly 7824 * call dev_put. 7825 */ netdev_wait_allrefs(struct net_device * dev)7826 static void netdev_wait_allrefs(struct net_device *dev) 7827 { 7828 unsigned long rebroadcast_time, warning_time; 7829 int refcnt; 7830 7831 linkwatch_forget_dev(dev); 7832 7833 rebroadcast_time = warning_time = jiffies; 7834 refcnt = netdev_refcnt_read(dev); 7835 7836 while (refcnt != 0) { 7837 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7838 rtnl_lock(); 7839 7840 /* Rebroadcast unregister notification */ 7841 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7842 7843 __rtnl_unlock(); 7844 rcu_barrier(); 7845 rtnl_lock(); 7846 7847 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7848 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7849 &dev->state)) { 7850 /* We must not have linkwatch events 7851 * pending on unregister. If this 7852 * happens, we simply run the queue 7853 * unscheduled, resulting in a noop 7854 * for this device. 7855 */ 7856 linkwatch_run_queue(); 7857 } 7858 7859 __rtnl_unlock(); 7860 7861 rebroadcast_time = jiffies; 7862 } 7863 7864 msleep(250); 7865 7866 refcnt = netdev_refcnt_read(dev); 7867 7868 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 7869 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7870 dev->name, refcnt); 7871 warning_time = jiffies; 7872 } 7873 } 7874 } 7875 7876 /* The sequence is: 7877 * 7878 * rtnl_lock(); 7879 * ... 7880 * register_netdevice(x1); 7881 * register_netdevice(x2); 7882 * ... 7883 * unregister_netdevice(y1); 7884 * unregister_netdevice(y2); 7885 * ... 7886 * rtnl_unlock(); 7887 * free_netdev(y1); 7888 * free_netdev(y2); 7889 * 7890 * We are invoked by rtnl_unlock(). 7891 * This allows us to deal with problems: 7892 * 1) We can delete sysfs objects which invoke hotplug 7893 * without deadlocking with linkwatch via keventd. 7894 * 2) Since we run with the RTNL semaphore not held, we can sleep 7895 * safely in order to wait for the netdev refcnt to drop to zero. 7896 * 7897 * We must not return until all unregister events added during 7898 * the interval the lock was held have been completed. 7899 */ netdev_run_todo(void)7900 void netdev_run_todo(void) 7901 { 7902 struct list_head list; 7903 7904 /* Snapshot list, allow later requests */ 7905 list_replace_init(&net_todo_list, &list); 7906 7907 __rtnl_unlock(); 7908 7909 7910 /* Wait for rcu callbacks to finish before next phase */ 7911 if (!list_empty(&list)) 7912 rcu_barrier(); 7913 7914 while (!list_empty(&list)) { 7915 struct net_device *dev 7916 = list_first_entry(&list, struct net_device, todo_list); 7917 list_del(&dev->todo_list); 7918 7919 rtnl_lock(); 7920 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7921 __rtnl_unlock(); 7922 7923 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7924 pr_err("network todo '%s' but state %d\n", 7925 dev->name, dev->reg_state); 7926 dump_stack(); 7927 continue; 7928 } 7929 7930 dev->reg_state = NETREG_UNREGISTERED; 7931 7932 netdev_wait_allrefs(dev); 7933 7934 /* paranoia */ 7935 BUG_ON(netdev_refcnt_read(dev)); 7936 BUG_ON(!list_empty(&dev->ptype_all)); 7937 BUG_ON(!list_empty(&dev->ptype_specific)); 7938 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7939 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7940 WARN_ON(dev->dn_ptr); 7941 7942 if (dev->priv_destructor) 7943 dev->priv_destructor(dev); 7944 if (dev->needs_free_netdev) 7945 free_netdev(dev); 7946 7947 /* Report a network device has been unregistered */ 7948 rtnl_lock(); 7949 dev_net(dev)->dev_unreg_count--; 7950 __rtnl_unlock(); 7951 wake_up(&netdev_unregistering_wq); 7952 7953 /* Free network device */ 7954 kobject_put(&dev->dev.kobj); 7955 } 7956 } 7957 7958 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7959 * all the same fields in the same order as net_device_stats, with only 7960 * the type differing, but rtnl_link_stats64 may have additional fields 7961 * at the end for newer counters. 7962 */ netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)7963 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7964 const struct net_device_stats *netdev_stats) 7965 { 7966 #if BITS_PER_LONG == 64 7967 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7968 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 7969 /* zero out counters that only exist in rtnl_link_stats64 */ 7970 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7971 sizeof(*stats64) - sizeof(*netdev_stats)); 7972 #else 7973 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7974 const unsigned long *src = (const unsigned long *)netdev_stats; 7975 u64 *dst = (u64 *)stats64; 7976 7977 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7978 for (i = 0; i < n; i++) 7979 dst[i] = src[i]; 7980 /* zero out counters that only exist in rtnl_link_stats64 */ 7981 memset((char *)stats64 + n * sizeof(u64), 0, 7982 sizeof(*stats64) - n * sizeof(u64)); 7983 #endif 7984 } 7985 EXPORT_SYMBOL(netdev_stats_to_stats64); 7986 7987 /** 7988 * dev_get_stats - get network device statistics 7989 * @dev: device to get statistics from 7990 * @storage: place to store stats 7991 * 7992 * Get network statistics from device. Return @storage. 7993 * The device driver may provide its own method by setting 7994 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7995 * otherwise the internal statistics structure is used. 7996 */ dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)7997 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7998 struct rtnl_link_stats64 *storage) 7999 { 8000 const struct net_device_ops *ops = dev->netdev_ops; 8001 8002 if (ops->ndo_get_stats64) { 8003 memset(storage, 0, sizeof(*storage)); 8004 ops->ndo_get_stats64(dev, storage); 8005 } else if (ops->ndo_get_stats) { 8006 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8007 } else { 8008 netdev_stats_to_stats64(storage, &dev->stats); 8009 } 8010 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8011 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8012 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8013 return storage; 8014 } 8015 EXPORT_SYMBOL(dev_get_stats); 8016 dev_ingress_queue_create(struct net_device * dev)8017 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8018 { 8019 struct netdev_queue *queue = dev_ingress_queue(dev); 8020 8021 #ifdef CONFIG_NET_CLS_ACT 8022 if (queue) 8023 return queue; 8024 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8025 if (!queue) 8026 return NULL; 8027 netdev_init_one_queue(dev, queue, NULL); 8028 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8029 queue->qdisc_sleeping = &noop_qdisc; 8030 rcu_assign_pointer(dev->ingress_queue, queue); 8031 #endif 8032 return queue; 8033 } 8034 8035 static const struct ethtool_ops default_ethtool_ops; 8036 netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)8037 void netdev_set_default_ethtool_ops(struct net_device *dev, 8038 const struct ethtool_ops *ops) 8039 { 8040 if (dev->ethtool_ops == &default_ethtool_ops) 8041 dev->ethtool_ops = ops; 8042 } 8043 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8044 netdev_freemem(struct net_device * dev)8045 void netdev_freemem(struct net_device *dev) 8046 { 8047 char *addr = (char *)dev - dev->padded; 8048 8049 kvfree(addr); 8050 } 8051 8052 /** 8053 * alloc_netdev_mqs - allocate network device 8054 * @sizeof_priv: size of private data to allocate space for 8055 * @name: device name format string 8056 * @name_assign_type: origin of device name 8057 * @setup: callback to initialize device 8058 * @txqs: the number of TX subqueues to allocate 8059 * @rxqs: the number of RX subqueues to allocate 8060 * 8061 * Allocates a struct net_device with private data area for driver use 8062 * and performs basic initialization. Also allocates subqueue structs 8063 * for each queue on the device. 8064 */ alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)8065 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8066 unsigned char name_assign_type, 8067 void (*setup)(struct net_device *), 8068 unsigned int txqs, unsigned int rxqs) 8069 { 8070 struct net_device *dev; 8071 size_t alloc_size; 8072 struct net_device *p; 8073 8074 BUG_ON(strlen(name) >= sizeof(dev->name)); 8075 8076 if (txqs < 1) { 8077 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8078 return NULL; 8079 } 8080 8081 #ifdef CONFIG_SYSFS 8082 if (rxqs < 1) { 8083 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8084 return NULL; 8085 } 8086 #endif 8087 8088 alloc_size = sizeof(struct net_device); 8089 if (sizeof_priv) { 8090 /* ensure 32-byte alignment of private area */ 8091 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8092 alloc_size += sizeof_priv; 8093 } 8094 /* ensure 32-byte alignment of whole construct */ 8095 alloc_size += NETDEV_ALIGN - 1; 8096 8097 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8098 if (!p) 8099 return NULL; 8100 8101 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8102 dev->padded = (char *)dev - (char *)p; 8103 8104 dev->pcpu_refcnt = alloc_percpu(int); 8105 if (!dev->pcpu_refcnt) 8106 goto free_dev; 8107 8108 if (dev_addr_init(dev)) 8109 goto free_pcpu; 8110 8111 dev_mc_init(dev); 8112 dev_uc_init(dev); 8113 8114 dev_net_set(dev, &init_net); 8115 8116 dev->gso_max_size = GSO_MAX_SIZE; 8117 dev->gso_max_segs = GSO_MAX_SEGS; 8118 8119 INIT_LIST_HEAD(&dev->napi_list); 8120 INIT_LIST_HEAD(&dev->unreg_list); 8121 INIT_LIST_HEAD(&dev->close_list); 8122 INIT_LIST_HEAD(&dev->link_watch_list); 8123 INIT_LIST_HEAD(&dev->adj_list.upper); 8124 INIT_LIST_HEAD(&dev->adj_list.lower); 8125 INIT_LIST_HEAD(&dev->ptype_all); 8126 INIT_LIST_HEAD(&dev->ptype_specific); 8127 #ifdef CONFIG_NET_SCHED 8128 hash_init(dev->qdisc_hash); 8129 #endif 8130 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8131 setup(dev); 8132 8133 if (!dev->tx_queue_len) { 8134 dev->priv_flags |= IFF_NO_QUEUE; 8135 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8136 } 8137 8138 dev->num_tx_queues = txqs; 8139 dev->real_num_tx_queues = txqs; 8140 if (netif_alloc_netdev_queues(dev)) 8141 goto free_all; 8142 8143 #ifdef CONFIG_SYSFS 8144 dev->num_rx_queues = rxqs; 8145 dev->real_num_rx_queues = rxqs; 8146 if (netif_alloc_rx_queues(dev)) 8147 goto free_all; 8148 #endif 8149 8150 strcpy(dev->name, name); 8151 dev->name_assign_type = name_assign_type; 8152 dev->group = INIT_NETDEV_GROUP; 8153 if (!dev->ethtool_ops) 8154 dev->ethtool_ops = &default_ethtool_ops; 8155 8156 nf_hook_ingress_init(dev); 8157 8158 return dev; 8159 8160 free_all: 8161 free_netdev(dev); 8162 return NULL; 8163 8164 free_pcpu: 8165 free_percpu(dev->pcpu_refcnt); 8166 free_dev: 8167 netdev_freemem(dev); 8168 return NULL; 8169 } 8170 EXPORT_SYMBOL(alloc_netdev_mqs); 8171 8172 /** 8173 * free_netdev - free network device 8174 * @dev: device 8175 * 8176 * This function does the last stage of destroying an allocated device 8177 * interface. The reference to the device object is released. If this 8178 * is the last reference then it will be freed.Must be called in process 8179 * context. 8180 */ free_netdev(struct net_device * dev)8181 void free_netdev(struct net_device *dev) 8182 { 8183 struct napi_struct *p, *n; 8184 struct bpf_prog *prog; 8185 8186 might_sleep(); 8187 netif_free_tx_queues(dev); 8188 #ifdef CONFIG_SYSFS 8189 kvfree(dev->_rx); 8190 #endif 8191 8192 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8193 8194 /* Flush device addresses */ 8195 dev_addr_flush(dev); 8196 8197 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8198 netif_napi_del(p); 8199 8200 free_percpu(dev->pcpu_refcnt); 8201 dev->pcpu_refcnt = NULL; 8202 8203 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8204 if (prog) { 8205 bpf_prog_put(prog); 8206 static_key_slow_dec(&generic_xdp_needed); 8207 } 8208 8209 /* Compatibility with error handling in drivers */ 8210 if (dev->reg_state == NETREG_UNINITIALIZED) { 8211 netdev_freemem(dev); 8212 return; 8213 } 8214 8215 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8216 dev->reg_state = NETREG_RELEASED; 8217 8218 /* will free via device release */ 8219 put_device(&dev->dev); 8220 } 8221 EXPORT_SYMBOL(free_netdev); 8222 8223 /** 8224 * synchronize_net - Synchronize with packet receive processing 8225 * 8226 * Wait for packets currently being received to be done. 8227 * Does not block later packets from starting. 8228 */ synchronize_net(void)8229 void synchronize_net(void) 8230 { 8231 might_sleep(); 8232 if (rtnl_is_locked()) 8233 synchronize_rcu_expedited(); 8234 else 8235 synchronize_rcu(); 8236 } 8237 EXPORT_SYMBOL(synchronize_net); 8238 8239 /** 8240 * unregister_netdevice_queue - remove device from the kernel 8241 * @dev: device 8242 * @head: list 8243 * 8244 * This function shuts down a device interface and removes it 8245 * from the kernel tables. 8246 * If head not NULL, device is queued to be unregistered later. 8247 * 8248 * Callers must hold the rtnl semaphore. You may want 8249 * unregister_netdev() instead of this. 8250 */ 8251 unregister_netdevice_queue(struct net_device * dev,struct list_head * head)8252 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8253 { 8254 ASSERT_RTNL(); 8255 8256 if (head) { 8257 list_move_tail(&dev->unreg_list, head); 8258 } else { 8259 rollback_registered(dev); 8260 /* Finish processing unregister after unlock */ 8261 net_set_todo(dev); 8262 } 8263 } 8264 EXPORT_SYMBOL(unregister_netdevice_queue); 8265 8266 /** 8267 * unregister_netdevice_many - unregister many devices 8268 * @head: list of devices 8269 * 8270 * Note: As most callers use a stack allocated list_head, 8271 * we force a list_del() to make sure stack wont be corrupted later. 8272 */ unregister_netdevice_many(struct list_head * head)8273 void unregister_netdevice_many(struct list_head *head) 8274 { 8275 struct net_device *dev; 8276 8277 if (!list_empty(head)) { 8278 rollback_registered_many(head); 8279 list_for_each_entry(dev, head, unreg_list) 8280 net_set_todo(dev); 8281 list_del(head); 8282 } 8283 } 8284 EXPORT_SYMBOL(unregister_netdevice_many); 8285 8286 /** 8287 * unregister_netdev - remove device from the kernel 8288 * @dev: device 8289 * 8290 * This function shuts down a device interface and removes it 8291 * from the kernel tables. 8292 * 8293 * This is just a wrapper for unregister_netdevice that takes 8294 * the rtnl semaphore. In general you want to use this and not 8295 * unregister_netdevice. 8296 */ unregister_netdev(struct net_device * dev)8297 void unregister_netdev(struct net_device *dev) 8298 { 8299 rtnl_lock(); 8300 unregister_netdevice(dev); 8301 rtnl_unlock(); 8302 } 8303 EXPORT_SYMBOL(unregister_netdev); 8304 8305 /** 8306 * dev_change_net_namespace - move device to different nethost namespace 8307 * @dev: device 8308 * @net: network namespace 8309 * @pat: If not NULL name pattern to try if the current device name 8310 * is already taken in the destination network namespace. 8311 * 8312 * This function shuts down a device interface and moves it 8313 * to a new network namespace. On success 0 is returned, on 8314 * a failure a netagive errno code is returned. 8315 * 8316 * Callers must hold the rtnl semaphore. 8317 */ 8318 dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)8319 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8320 { 8321 int err; 8322 8323 ASSERT_RTNL(); 8324 8325 /* Don't allow namespace local devices to be moved. */ 8326 err = -EINVAL; 8327 if (dev->features & NETIF_F_NETNS_LOCAL) 8328 goto out; 8329 8330 /* Ensure the device has been registrered */ 8331 if (dev->reg_state != NETREG_REGISTERED) 8332 goto out; 8333 8334 /* Get out if there is nothing todo */ 8335 err = 0; 8336 if (net_eq(dev_net(dev), net)) 8337 goto out; 8338 8339 /* Pick the destination device name, and ensure 8340 * we can use it in the destination network namespace. 8341 */ 8342 err = -EEXIST; 8343 if (__dev_get_by_name(net, dev->name)) { 8344 /* We get here if we can't use the current device name */ 8345 if (!pat) 8346 goto out; 8347 err = dev_get_valid_name(net, dev, pat); 8348 if (err < 0) 8349 goto out; 8350 } 8351 8352 /* 8353 * And now a mini version of register_netdevice unregister_netdevice. 8354 */ 8355 8356 /* If device is running close it first. */ 8357 dev_close(dev); 8358 8359 /* And unlink it from device chain */ 8360 unlist_netdevice(dev); 8361 8362 synchronize_net(); 8363 8364 /* Shutdown queueing discipline. */ 8365 dev_shutdown(dev); 8366 8367 /* Notify protocols, that we are about to destroy 8368 * this device. They should clean all the things. 8369 * 8370 * Note that dev->reg_state stays at NETREG_REGISTERED. 8371 * This is wanted because this way 8021q and macvlan know 8372 * the device is just moving and can keep their slaves up. 8373 */ 8374 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8375 rcu_barrier(); 8376 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8377 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 8378 8379 /* 8380 * Flush the unicast and multicast chains 8381 */ 8382 dev_uc_flush(dev); 8383 dev_mc_flush(dev); 8384 8385 /* Send a netdev-removed uevent to the old namespace */ 8386 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8387 netdev_adjacent_del_links(dev); 8388 8389 /* Actually switch the network namespace */ 8390 dev_net_set(dev, net); 8391 8392 /* If there is an ifindex conflict assign a new one */ 8393 if (__dev_get_by_index(net, dev->ifindex)) 8394 dev->ifindex = dev_new_index(net); 8395 8396 /* Send a netdev-add uevent to the new namespace */ 8397 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8398 netdev_adjacent_add_links(dev); 8399 8400 /* Fixup kobjects */ 8401 err = device_rename(&dev->dev, dev->name); 8402 WARN_ON(err); 8403 8404 /* Add the device back in the hashes */ 8405 list_netdevice(dev); 8406 8407 /* Notify protocols, that a new device appeared. */ 8408 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8409 8410 /* 8411 * Prevent userspace races by waiting until the network 8412 * device is fully setup before sending notifications. 8413 */ 8414 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8415 8416 synchronize_net(); 8417 err = 0; 8418 out: 8419 return err; 8420 } 8421 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8422 dev_cpu_dead(unsigned int oldcpu)8423 static int dev_cpu_dead(unsigned int oldcpu) 8424 { 8425 struct sk_buff **list_skb; 8426 struct sk_buff *skb; 8427 unsigned int cpu; 8428 struct softnet_data *sd, *oldsd, *remsd = NULL; 8429 8430 local_irq_disable(); 8431 cpu = smp_processor_id(); 8432 sd = &per_cpu(softnet_data, cpu); 8433 oldsd = &per_cpu(softnet_data, oldcpu); 8434 8435 /* Find end of our completion_queue. */ 8436 list_skb = &sd->completion_queue; 8437 while (*list_skb) 8438 list_skb = &(*list_skb)->next; 8439 /* Append completion queue from offline CPU. */ 8440 *list_skb = oldsd->completion_queue; 8441 oldsd->completion_queue = NULL; 8442 8443 /* Append output queue from offline CPU. */ 8444 if (oldsd->output_queue) { 8445 *sd->output_queue_tailp = oldsd->output_queue; 8446 sd->output_queue_tailp = oldsd->output_queue_tailp; 8447 oldsd->output_queue = NULL; 8448 oldsd->output_queue_tailp = &oldsd->output_queue; 8449 } 8450 /* Append NAPI poll list from offline CPU, with one exception : 8451 * process_backlog() must be called by cpu owning percpu backlog. 8452 * We properly handle process_queue & input_pkt_queue later. 8453 */ 8454 while (!list_empty(&oldsd->poll_list)) { 8455 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8456 struct napi_struct, 8457 poll_list); 8458 8459 list_del_init(&napi->poll_list); 8460 if (napi->poll == process_backlog) 8461 napi->state = 0; 8462 else 8463 ____napi_schedule(sd, napi); 8464 } 8465 8466 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8467 local_irq_enable(); 8468 8469 #ifdef CONFIG_RPS 8470 remsd = oldsd->rps_ipi_list; 8471 oldsd->rps_ipi_list = NULL; 8472 #endif 8473 /* send out pending IPI's on offline CPU */ 8474 net_rps_send_ipi(remsd); 8475 8476 /* Process offline CPU's input_pkt_queue */ 8477 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8478 netif_rx_ni(skb); 8479 input_queue_head_incr(oldsd); 8480 } 8481 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8482 netif_rx_ni(skb); 8483 input_queue_head_incr(oldsd); 8484 } 8485 8486 return 0; 8487 } 8488 8489 /** 8490 * netdev_increment_features - increment feature set by one 8491 * @all: current feature set 8492 * @one: new feature set 8493 * @mask: mask feature set 8494 * 8495 * Computes a new feature set after adding a device with feature set 8496 * @one to the master device with current feature set @all. Will not 8497 * enable anything that is off in @mask. Returns the new feature set. 8498 */ netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)8499 netdev_features_t netdev_increment_features(netdev_features_t all, 8500 netdev_features_t one, netdev_features_t mask) 8501 { 8502 if (mask & NETIF_F_HW_CSUM) 8503 mask |= NETIF_F_CSUM_MASK; 8504 mask |= NETIF_F_VLAN_CHALLENGED; 8505 8506 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8507 all &= one | ~NETIF_F_ALL_FOR_ALL; 8508 8509 /* If one device supports hw checksumming, set for all. */ 8510 if (all & NETIF_F_HW_CSUM) 8511 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8512 8513 return all; 8514 } 8515 EXPORT_SYMBOL(netdev_increment_features); 8516 netdev_create_hash(void)8517 static struct hlist_head * __net_init netdev_create_hash(void) 8518 { 8519 int i; 8520 struct hlist_head *hash; 8521 8522 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8523 if (hash != NULL) 8524 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8525 INIT_HLIST_HEAD(&hash[i]); 8526 8527 return hash; 8528 } 8529 8530 /* Initialize per network namespace state */ netdev_init(struct net * net)8531 static int __net_init netdev_init(struct net *net) 8532 { 8533 if (net != &init_net) 8534 INIT_LIST_HEAD(&net->dev_base_head); 8535 8536 net->dev_name_head = netdev_create_hash(); 8537 if (net->dev_name_head == NULL) 8538 goto err_name; 8539 8540 net->dev_index_head = netdev_create_hash(); 8541 if (net->dev_index_head == NULL) 8542 goto err_idx; 8543 8544 return 0; 8545 8546 err_idx: 8547 kfree(net->dev_name_head); 8548 err_name: 8549 return -ENOMEM; 8550 } 8551 8552 /** 8553 * netdev_drivername - network driver for the device 8554 * @dev: network device 8555 * 8556 * Determine network driver for device. 8557 */ netdev_drivername(const struct net_device * dev)8558 const char *netdev_drivername(const struct net_device *dev) 8559 { 8560 const struct device_driver *driver; 8561 const struct device *parent; 8562 const char *empty = ""; 8563 8564 parent = dev->dev.parent; 8565 if (!parent) 8566 return empty; 8567 8568 driver = parent->driver; 8569 if (driver && driver->name) 8570 return driver->name; 8571 return empty; 8572 } 8573 __netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)8574 static void __netdev_printk(const char *level, const struct net_device *dev, 8575 struct va_format *vaf) 8576 { 8577 if (dev && dev->dev.parent) { 8578 dev_printk_emit(level[1] - '0', 8579 dev->dev.parent, 8580 "%s %s %s%s: %pV", 8581 dev_driver_string(dev->dev.parent), 8582 dev_name(dev->dev.parent), 8583 netdev_name(dev), netdev_reg_state(dev), 8584 vaf); 8585 } else if (dev) { 8586 printk("%s%s%s: %pV", 8587 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8588 } else { 8589 printk("%s(NULL net_device): %pV", level, vaf); 8590 } 8591 } 8592 netdev_printk(const char * level,const struct net_device * dev,const char * format,...)8593 void netdev_printk(const char *level, const struct net_device *dev, 8594 const char *format, ...) 8595 { 8596 struct va_format vaf; 8597 va_list args; 8598 8599 va_start(args, format); 8600 8601 vaf.fmt = format; 8602 vaf.va = &args; 8603 8604 __netdev_printk(level, dev, &vaf); 8605 8606 va_end(args); 8607 } 8608 EXPORT_SYMBOL(netdev_printk); 8609 8610 #define define_netdev_printk_level(func, level) \ 8611 void func(const struct net_device *dev, const char *fmt, ...) \ 8612 { \ 8613 struct va_format vaf; \ 8614 va_list args; \ 8615 \ 8616 va_start(args, fmt); \ 8617 \ 8618 vaf.fmt = fmt; \ 8619 vaf.va = &args; \ 8620 \ 8621 __netdev_printk(level, dev, &vaf); \ 8622 \ 8623 va_end(args); \ 8624 } \ 8625 EXPORT_SYMBOL(func); 8626 8627 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8628 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8629 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8630 define_netdev_printk_level(netdev_err, KERN_ERR); 8631 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8632 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8633 define_netdev_printk_level(netdev_info, KERN_INFO); 8634 netdev_exit(struct net * net)8635 static void __net_exit netdev_exit(struct net *net) 8636 { 8637 kfree(net->dev_name_head); 8638 kfree(net->dev_index_head); 8639 } 8640 8641 static struct pernet_operations __net_initdata netdev_net_ops = { 8642 .init = netdev_init, 8643 .exit = netdev_exit, 8644 }; 8645 default_device_exit(struct net * net)8646 static void __net_exit default_device_exit(struct net *net) 8647 { 8648 struct net_device *dev, *aux; 8649 /* 8650 * Push all migratable network devices back to the 8651 * initial network namespace 8652 */ 8653 rtnl_lock(); 8654 for_each_netdev_safe(net, dev, aux) { 8655 int err; 8656 char fb_name[IFNAMSIZ]; 8657 8658 /* Ignore unmoveable devices (i.e. loopback) */ 8659 if (dev->features & NETIF_F_NETNS_LOCAL) 8660 continue; 8661 8662 /* Leave virtual devices for the generic cleanup */ 8663 if (dev->rtnl_link_ops) 8664 continue; 8665 8666 /* Push remaining network devices to init_net */ 8667 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8668 if (__dev_get_by_name(&init_net, fb_name)) 8669 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 8670 err = dev_change_net_namespace(dev, &init_net, fb_name); 8671 if (err) { 8672 pr_emerg("%s: failed to move %s to init_net: %d\n", 8673 __func__, dev->name, err); 8674 BUG(); 8675 } 8676 } 8677 rtnl_unlock(); 8678 } 8679 rtnl_lock_unregistering(struct list_head * net_list)8680 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8681 { 8682 /* Return with the rtnl_lock held when there are no network 8683 * devices unregistering in any network namespace in net_list. 8684 */ 8685 struct net *net; 8686 bool unregistering; 8687 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8688 8689 add_wait_queue(&netdev_unregistering_wq, &wait); 8690 for (;;) { 8691 unregistering = false; 8692 rtnl_lock(); 8693 list_for_each_entry(net, net_list, exit_list) { 8694 if (net->dev_unreg_count > 0) { 8695 unregistering = true; 8696 break; 8697 } 8698 } 8699 if (!unregistering) 8700 break; 8701 __rtnl_unlock(); 8702 8703 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8704 } 8705 remove_wait_queue(&netdev_unregistering_wq, &wait); 8706 } 8707 default_device_exit_batch(struct list_head * net_list)8708 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8709 { 8710 /* At exit all network devices most be removed from a network 8711 * namespace. Do this in the reverse order of registration. 8712 * Do this across as many network namespaces as possible to 8713 * improve batching efficiency. 8714 */ 8715 struct net_device *dev; 8716 struct net *net; 8717 LIST_HEAD(dev_kill_list); 8718 8719 /* To prevent network device cleanup code from dereferencing 8720 * loopback devices or network devices that have been freed 8721 * wait here for all pending unregistrations to complete, 8722 * before unregistring the loopback device and allowing the 8723 * network namespace be freed. 8724 * 8725 * The netdev todo list containing all network devices 8726 * unregistrations that happen in default_device_exit_batch 8727 * will run in the rtnl_unlock() at the end of 8728 * default_device_exit_batch. 8729 */ 8730 rtnl_lock_unregistering(net_list); 8731 list_for_each_entry(net, net_list, exit_list) { 8732 for_each_netdev_reverse(net, dev) { 8733 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8734 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8735 else 8736 unregister_netdevice_queue(dev, &dev_kill_list); 8737 } 8738 } 8739 unregister_netdevice_many(&dev_kill_list); 8740 rtnl_unlock(); 8741 } 8742 8743 static struct pernet_operations __net_initdata default_device_ops = { 8744 .exit = default_device_exit, 8745 .exit_batch = default_device_exit_batch, 8746 }; 8747 8748 /* 8749 * Initialize the DEV module. At boot time this walks the device list and 8750 * unhooks any devices that fail to initialise (normally hardware not 8751 * present) and leaves us with a valid list of present and active devices. 8752 * 8753 */ 8754 8755 /* 8756 * This is called single threaded during boot, so no need 8757 * to take the rtnl semaphore. 8758 */ net_dev_init(void)8759 static int __init net_dev_init(void) 8760 { 8761 int i, rc = -ENOMEM; 8762 8763 BUG_ON(!dev_boot_phase); 8764 8765 if (dev_proc_init()) 8766 goto out; 8767 8768 if (netdev_kobject_init()) 8769 goto out; 8770 8771 INIT_LIST_HEAD(&ptype_all); 8772 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8773 INIT_LIST_HEAD(&ptype_base[i]); 8774 8775 INIT_LIST_HEAD(&offload_base); 8776 8777 if (register_pernet_subsys(&netdev_net_ops)) 8778 goto out; 8779 8780 /* 8781 * Initialise the packet receive queues. 8782 */ 8783 8784 for_each_possible_cpu(i) { 8785 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8786 struct softnet_data *sd = &per_cpu(softnet_data, i); 8787 8788 INIT_WORK(flush, flush_backlog); 8789 8790 skb_queue_head_init(&sd->input_pkt_queue); 8791 skb_queue_head_init(&sd->process_queue); 8792 INIT_LIST_HEAD(&sd->poll_list); 8793 sd->output_queue_tailp = &sd->output_queue; 8794 #ifdef CONFIG_RPS 8795 sd->csd.func = rps_trigger_softirq; 8796 sd->csd.info = sd; 8797 sd->cpu = i; 8798 #endif 8799 8800 sd->backlog.poll = process_backlog; 8801 sd->backlog.weight = weight_p; 8802 } 8803 8804 dev_boot_phase = 0; 8805 8806 /* The loopback device is special if any other network devices 8807 * is present in a network namespace the loopback device must 8808 * be present. Since we now dynamically allocate and free the 8809 * loopback device ensure this invariant is maintained by 8810 * keeping the loopback device as the first device on the 8811 * list of network devices. Ensuring the loopback devices 8812 * is the first device that appears and the last network device 8813 * that disappears. 8814 */ 8815 if (register_pernet_device(&loopback_net_ops)) 8816 goto out; 8817 8818 if (register_pernet_device(&default_device_ops)) 8819 goto out; 8820 8821 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8822 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8823 8824 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8825 NULL, dev_cpu_dead); 8826 WARN_ON(rc < 0); 8827 rc = 0; 8828 out: 8829 return rc; 8830 } 8831 8832 subsys_initcall(net_dev_init); 8833