• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   *      NET3    Protocol independent device support routines.
3   *
4   *		This program is free software; you can redistribute it and/or
5   *		modify it under the terms of the GNU General Public License
6   *		as published by the Free Software Foundation; either version
7   *		2 of the License, or (at your option) any later version.
8   *
9   *	Derived from the non IP parts of dev.c 1.0.19
10   *              Authors:	Ross Biro
11   *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12   *				Mark Evans, <evansmp@uhura.aston.ac.uk>
13   *
14   *	Additional Authors:
15   *		Florian la Roche <rzsfl@rz.uni-sb.de>
16   *		Alan Cox <gw4pts@gw4pts.ampr.org>
17   *		David Hinds <dahinds@users.sourceforge.net>
18   *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19   *		Adam Sulmicki <adam@cfar.umd.edu>
20   *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21   *
22   *	Changes:
23   *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24   *                                      to 2 if register_netdev gets called
25   *                                      before net_dev_init & also removed a
26   *                                      few lines of code in the process.
27   *		Alan Cox	:	device private ioctl copies fields back.
28   *		Alan Cox	:	Transmit queue code does relevant
29   *					stunts to keep the queue safe.
30   *		Alan Cox	:	Fixed double lock.
31   *		Alan Cox	:	Fixed promisc NULL pointer trap
32   *		????????	:	Support the full private ioctl range
33   *		Alan Cox	:	Moved ioctl permission check into
34   *					drivers
35   *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36   *		Alan Cox	:	100 backlog just doesn't cut it when
37   *					you start doing multicast video 8)
38   *		Alan Cox	:	Rewrote net_bh and list manager.
39   *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40   *		Alan Cox	:	Took out transmit every packet pass
41   *					Saved a few bytes in the ioctl handler
42   *		Alan Cox	:	Network driver sets packet type before
43   *					calling netif_rx. Saves a function
44   *					call a packet.
45   *		Alan Cox	:	Hashed net_bh()
46   *		Richard Kooijman:	Timestamp fixes.
47   *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48   *		Alan Cox	:	Device lock protection.
49   *              Alan Cox        :       Fixed nasty side effect of device close
50   *					changes.
51   *		Rudi Cilibrasi	:	Pass the right thing to
52   *					set_mac_address()
53   *		Dave Miller	:	32bit quantity for the device lock to
54   *					make it work out on a Sparc.
55   *		Bjorn Ekwall	:	Added KERNELD hack.
56   *		Alan Cox	:	Cleaned up the backlog initialise.
57   *		Craig Metz	:	SIOCGIFCONF fix if space for under
58   *					1 device.
59   *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60   *					is no device open function.
61   *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62   *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63   *		Cyrus Durgin	:	Cleaned for KMOD
64   *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65   *					A network device unload needs to purge
66   *					the backlog queue.
67   *	Paul Rusty Russell	:	SIOCSIFNAME
68   *              Pekka Riikonen  :	Netdev boot-time settings code
69   *              Andrew Morton   :       Make unregister_netdevice wait
70   *                                      indefinitely on dev->refcnt
71   *              J Hadi Salim    :       - Backlog queue sampling
72   *				        - netif_rx() feedback
73   */
74  
75  #include <linux/uaccess.h>
76  #include <linux/bitops.h>
77  #include <linux/capability.h>
78  #include <linux/cpu.h>
79  #include <linux/types.h>
80  #include <linux/kernel.h>
81  #include <linux/hash.h>
82  #include <linux/slab.h>
83  #include <linux/sched.h>
84  #include <linux/sched/mm.h>
85  #include <linux/mutex.h>
86  #include <linux/string.h>
87  #include <linux/mm.h>
88  #include <linux/socket.h>
89  #include <linux/sockios.h>
90  #include <linux/errno.h>
91  #include <linux/interrupt.h>
92  #include <linux/if_ether.h>
93  #include <linux/netdevice.h>
94  #include <linux/etherdevice.h>
95  #include <linux/ethtool.h>
96  #include <linux/notifier.h>
97  #include <linux/skbuff.h>
98  #include <linux/bpf.h>
99  #include <linux/bpf_trace.h>
100  #include <net/net_namespace.h>
101  #include <net/sock.h>
102  #include <net/busy_poll.h>
103  #include <linux/rtnetlink.h>
104  #include <linux/stat.h>
105  #include <net/dst.h>
106  #include <net/dst_metadata.h>
107  #include <net/pkt_sched.h>
108  #include <net/pkt_cls.h>
109  #include <net/checksum.h>
110  #include <net/xfrm.h>
111  #include <linux/highmem.h>
112  #include <linux/init.h>
113  #include <linux/module.h>
114  #include <linux/netpoll.h>
115  #include <linux/rcupdate.h>
116  #include <linux/delay.h>
117  #include <net/iw_handler.h>
118  #include <asm/current.h>
119  #include <linux/audit.h>
120  #include <linux/dmaengine.h>
121  #include <linux/err.h>
122  #include <linux/ctype.h>
123  #include <linux/if_arp.h>
124  #include <linux/if_vlan.h>
125  #include <linux/ip.h>
126  #include <net/ip.h>
127  #include <net/mpls.h>
128  #include <linux/ipv6.h>
129  #include <linux/in.h>
130  #include <linux/jhash.h>
131  #include <linux/random.h>
132  #include <trace/events/napi.h>
133  #include <trace/events/net.h>
134  #include <trace/events/skb.h>
135  #include <linux/pci.h>
136  #include <linux/inetdevice.h>
137  #include <linux/cpu_rmap.h>
138  #include <linux/static_key.h>
139  #include <linux/hashtable.h>
140  #include <linux/vmalloc.h>
141  #include <linux/if_macvlan.h>
142  #include <linux/errqueue.h>
143  #include <linux/hrtimer.h>
144  #include <linux/netfilter_ingress.h>
145  #include <linux/crash_dump.h>
146  #include <linux/sctp.h>
147  #include <net/udp_tunnel.h>
148  
149  #include "net-sysfs.h"
150  
151  /* Instead of increasing this, you should create a hash table. */
152  #define MAX_GRO_SKBS 8
153  
154  /* This should be increased if a protocol with a bigger head is added. */
155  #define GRO_MAX_HEAD (MAX_HEADER + 128)
156  
157  static DEFINE_SPINLOCK(ptype_lock);
158  static DEFINE_SPINLOCK(offload_lock);
159  struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160  struct list_head ptype_all __read_mostly;	/* Taps */
161  static struct list_head offload_base __read_mostly;
162  
163  static int netif_rx_internal(struct sk_buff *skb);
164  static int call_netdevice_notifiers_info(unsigned long val,
165  					 struct net_device *dev,
166  					 struct netdev_notifier_info *info);
167  static struct napi_struct *napi_by_id(unsigned int napi_id);
168  
169  /*
170   * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171   * semaphore.
172   *
173   * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174   *
175   * Writers must hold the rtnl semaphore while they loop through the
176   * dev_base_head list, and hold dev_base_lock for writing when they do the
177   * actual updates.  This allows pure readers to access the list even
178   * while a writer is preparing to update it.
179   *
180   * To put it another way, dev_base_lock is held for writing only to
181   * protect against pure readers; the rtnl semaphore provides the
182   * protection against other writers.
183   *
184   * See, for example usages, register_netdevice() and
185   * unregister_netdevice(), which must be called with the rtnl
186   * semaphore held.
187   */
188  DEFINE_RWLOCK(dev_base_lock);
189  EXPORT_SYMBOL(dev_base_lock);
190  
191  /* protects napi_hash addition/deletion and napi_gen_id */
192  static DEFINE_SPINLOCK(napi_hash_lock);
193  
194  static unsigned int napi_gen_id = NR_CPUS;
195  static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196  
197  static seqcount_t devnet_rename_seq;
198  
dev_base_seq_inc(struct net * net)199  static inline void dev_base_seq_inc(struct net *net)
200  {
201  	while (++net->dev_base_seq == 0)
202  		;
203  }
204  
dev_name_hash(struct net * net,const char * name)205  static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206  {
207  	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208  
209  	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210  }
211  
dev_index_hash(struct net * net,int ifindex)212  static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213  {
214  	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215  }
216  
rps_lock(struct softnet_data * sd)217  static inline void rps_lock(struct softnet_data *sd)
218  {
219  #ifdef CONFIG_RPS
220  	spin_lock(&sd->input_pkt_queue.lock);
221  #endif
222  }
223  
rps_unlock(struct softnet_data * sd)224  static inline void rps_unlock(struct softnet_data *sd)
225  {
226  #ifdef CONFIG_RPS
227  	spin_unlock(&sd->input_pkt_queue.lock);
228  #endif
229  }
230  
231  /* Device list insertion */
list_netdevice(struct net_device * dev)232  static void list_netdevice(struct net_device *dev)
233  {
234  	struct net *net = dev_net(dev);
235  
236  	ASSERT_RTNL();
237  
238  	write_lock_bh(&dev_base_lock);
239  	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240  	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241  	hlist_add_head_rcu(&dev->index_hlist,
242  			   dev_index_hash(net, dev->ifindex));
243  	write_unlock_bh(&dev_base_lock);
244  
245  	dev_base_seq_inc(net);
246  }
247  
248  /* Device list removal
249   * caller must respect a RCU grace period before freeing/reusing dev
250   */
unlist_netdevice(struct net_device * dev)251  static void unlist_netdevice(struct net_device *dev)
252  {
253  	ASSERT_RTNL();
254  
255  	/* Unlink dev from the device chain */
256  	write_lock_bh(&dev_base_lock);
257  	list_del_rcu(&dev->dev_list);
258  	hlist_del_rcu(&dev->name_hlist);
259  	hlist_del_rcu(&dev->index_hlist);
260  	write_unlock_bh(&dev_base_lock);
261  
262  	dev_base_seq_inc(dev_net(dev));
263  }
264  
265  /*
266   *	Our notifier list
267   */
268  
269  static RAW_NOTIFIER_HEAD(netdev_chain);
270  
271  /*
272   *	Device drivers call our routines to queue packets here. We empty the
273   *	queue in the local softnet handler.
274   */
275  
276  DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277  EXPORT_PER_CPU_SYMBOL(softnet_data);
278  
279  #ifdef CONFIG_LOCKDEP
280  /*
281   * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282   * according to dev->type
283   */
284  static const unsigned short netdev_lock_type[] = {
285  	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286  	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287  	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288  	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289  	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290  	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291  	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292  	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293  	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294  	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295  	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296  	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297  	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298  	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299  	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300  
301  static const char *const netdev_lock_name[] = {
302  	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303  	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304  	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305  	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306  	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307  	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308  	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309  	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310  	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311  	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312  	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313  	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314  	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315  	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316  	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317  
318  static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319  static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320  
netdev_lock_pos(unsigned short dev_type)321  static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322  {
323  	int i;
324  
325  	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326  		if (netdev_lock_type[i] == dev_type)
327  			return i;
328  	/* the last key is used by default */
329  	return ARRAY_SIZE(netdev_lock_type) - 1;
330  }
331  
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)332  static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333  						 unsigned short dev_type)
334  {
335  	int i;
336  
337  	i = netdev_lock_pos(dev_type);
338  	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339  				   netdev_lock_name[i]);
340  }
341  
netdev_set_addr_lockdep_class(struct net_device * dev)342  static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343  {
344  	int i;
345  
346  	i = netdev_lock_pos(dev->type);
347  	lockdep_set_class_and_name(&dev->addr_list_lock,
348  				   &netdev_addr_lock_key[i],
349  				   netdev_lock_name[i]);
350  }
351  #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)352  static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353  						 unsigned short dev_type)
354  {
355  }
netdev_set_addr_lockdep_class(struct net_device * dev)356  static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357  {
358  }
359  #endif
360  
361  /*******************************************************************************
362   *
363   *		Protocol management and registration routines
364   *
365   *******************************************************************************/
366  
367  
368  /*
369   *	Add a protocol ID to the list. Now that the input handler is
370   *	smarter we can dispense with all the messy stuff that used to be
371   *	here.
372   *
373   *	BEWARE!!! Protocol handlers, mangling input packets,
374   *	MUST BE last in hash buckets and checking protocol handlers
375   *	MUST start from promiscuous ptype_all chain in net_bh.
376   *	It is true now, do not change it.
377   *	Explanation follows: if protocol handler, mangling packet, will
378   *	be the first on list, it is not able to sense, that packet
379   *	is cloned and should be copied-on-write, so that it will
380   *	change it and subsequent readers will get broken packet.
381   *							--ANK (980803)
382   */
383  
ptype_head(const struct packet_type * pt)384  static inline struct list_head *ptype_head(const struct packet_type *pt)
385  {
386  	if (pt->type == htons(ETH_P_ALL))
387  		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388  	else
389  		return pt->dev ? &pt->dev->ptype_specific :
390  				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391  }
392  
393  /**
394   *	dev_add_pack - add packet handler
395   *	@pt: packet type declaration
396   *
397   *	Add a protocol handler to the networking stack. The passed &packet_type
398   *	is linked into kernel lists and may not be freed until it has been
399   *	removed from the kernel lists.
400   *
401   *	This call does not sleep therefore it can not
402   *	guarantee all CPU's that are in middle of receiving packets
403   *	will see the new packet type (until the next received packet).
404   */
405  
dev_add_pack(struct packet_type * pt)406  void dev_add_pack(struct packet_type *pt)
407  {
408  	struct list_head *head = ptype_head(pt);
409  
410  	spin_lock(&ptype_lock);
411  	list_add_rcu(&pt->list, head);
412  	spin_unlock(&ptype_lock);
413  }
414  EXPORT_SYMBOL(dev_add_pack);
415  
416  /**
417   *	__dev_remove_pack	 - remove packet handler
418   *	@pt: packet type declaration
419   *
420   *	Remove a protocol handler that was previously added to the kernel
421   *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422   *	from the kernel lists and can be freed or reused once this function
423   *	returns.
424   *
425   *      The packet type might still be in use by receivers
426   *	and must not be freed until after all the CPU's have gone
427   *	through a quiescent state.
428   */
__dev_remove_pack(struct packet_type * pt)429  void __dev_remove_pack(struct packet_type *pt)
430  {
431  	struct list_head *head = ptype_head(pt);
432  	struct packet_type *pt1;
433  
434  	spin_lock(&ptype_lock);
435  
436  	list_for_each_entry(pt1, head, list) {
437  		if (pt == pt1) {
438  			list_del_rcu(&pt->list);
439  			goto out;
440  		}
441  	}
442  
443  	pr_warn("dev_remove_pack: %p not found\n", pt);
444  out:
445  	spin_unlock(&ptype_lock);
446  }
447  EXPORT_SYMBOL(__dev_remove_pack);
448  
449  /**
450   *	dev_remove_pack	 - remove packet handler
451   *	@pt: packet type declaration
452   *
453   *	Remove a protocol handler that was previously added to the kernel
454   *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455   *	from the kernel lists and can be freed or reused once this function
456   *	returns.
457   *
458   *	This call sleeps to guarantee that no CPU is looking at the packet
459   *	type after return.
460   */
dev_remove_pack(struct packet_type * pt)461  void dev_remove_pack(struct packet_type *pt)
462  {
463  	__dev_remove_pack(pt);
464  
465  	synchronize_net();
466  }
467  EXPORT_SYMBOL(dev_remove_pack);
468  
469  
470  /**
471   *	dev_add_offload - register offload handlers
472   *	@po: protocol offload declaration
473   *
474   *	Add protocol offload handlers to the networking stack. The passed
475   *	&proto_offload is linked into kernel lists and may not be freed until
476   *	it has been removed from the kernel lists.
477   *
478   *	This call does not sleep therefore it can not
479   *	guarantee all CPU's that are in middle of receiving packets
480   *	will see the new offload handlers (until the next received packet).
481   */
dev_add_offload(struct packet_offload * po)482  void dev_add_offload(struct packet_offload *po)
483  {
484  	struct packet_offload *elem;
485  
486  	spin_lock(&offload_lock);
487  	list_for_each_entry(elem, &offload_base, list) {
488  		if (po->priority < elem->priority)
489  			break;
490  	}
491  	list_add_rcu(&po->list, elem->list.prev);
492  	spin_unlock(&offload_lock);
493  }
494  EXPORT_SYMBOL(dev_add_offload);
495  
496  /**
497   *	__dev_remove_offload	 - remove offload handler
498   *	@po: packet offload declaration
499   *
500   *	Remove a protocol offload handler that was previously added to the
501   *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502   *	is removed from the kernel lists and can be freed or reused once this
503   *	function returns.
504   *
505   *      The packet type might still be in use by receivers
506   *	and must not be freed until after all the CPU's have gone
507   *	through a quiescent state.
508   */
__dev_remove_offload(struct packet_offload * po)509  static void __dev_remove_offload(struct packet_offload *po)
510  {
511  	struct list_head *head = &offload_base;
512  	struct packet_offload *po1;
513  
514  	spin_lock(&offload_lock);
515  
516  	list_for_each_entry(po1, head, list) {
517  		if (po == po1) {
518  			list_del_rcu(&po->list);
519  			goto out;
520  		}
521  	}
522  
523  	pr_warn("dev_remove_offload: %p not found\n", po);
524  out:
525  	spin_unlock(&offload_lock);
526  }
527  
528  /**
529   *	dev_remove_offload	 - remove packet offload handler
530   *	@po: packet offload declaration
531   *
532   *	Remove a packet offload handler that was previously added to the kernel
533   *	offload handlers by dev_add_offload(). The passed &offload_type is
534   *	removed from the kernel lists and can be freed or reused once this
535   *	function returns.
536   *
537   *	This call sleeps to guarantee that no CPU is looking at the packet
538   *	type after return.
539   */
dev_remove_offload(struct packet_offload * po)540  void dev_remove_offload(struct packet_offload *po)
541  {
542  	__dev_remove_offload(po);
543  
544  	synchronize_net();
545  }
546  EXPORT_SYMBOL(dev_remove_offload);
547  
548  /******************************************************************************
549   *
550   *		      Device Boot-time Settings Routines
551   *
552   ******************************************************************************/
553  
554  /* Boot time configuration table */
555  static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556  
557  /**
558   *	netdev_boot_setup_add	- add new setup entry
559   *	@name: name of the device
560   *	@map: configured settings for the device
561   *
562   *	Adds new setup entry to the dev_boot_setup list.  The function
563   *	returns 0 on error and 1 on success.  This is a generic routine to
564   *	all netdevices.
565   */
netdev_boot_setup_add(char * name,struct ifmap * map)566  static int netdev_boot_setup_add(char *name, struct ifmap *map)
567  {
568  	struct netdev_boot_setup *s;
569  	int i;
570  
571  	s = dev_boot_setup;
572  	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573  		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574  			memset(s[i].name, 0, sizeof(s[i].name));
575  			strlcpy(s[i].name, name, IFNAMSIZ);
576  			memcpy(&s[i].map, map, sizeof(s[i].map));
577  			break;
578  		}
579  	}
580  
581  	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582  }
583  
584  /**
585   * netdev_boot_setup_check	- check boot time settings
586   * @dev: the netdevice
587   *
588   * Check boot time settings for the device.
589   * The found settings are set for the device to be used
590   * later in the device probing.
591   * Returns 0 if no settings found, 1 if they are.
592   */
netdev_boot_setup_check(struct net_device * dev)593  int netdev_boot_setup_check(struct net_device *dev)
594  {
595  	struct netdev_boot_setup *s = dev_boot_setup;
596  	int i;
597  
598  	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599  		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600  		    !strcmp(dev->name, s[i].name)) {
601  			dev->irq = s[i].map.irq;
602  			dev->base_addr = s[i].map.base_addr;
603  			dev->mem_start = s[i].map.mem_start;
604  			dev->mem_end = s[i].map.mem_end;
605  			return 1;
606  		}
607  	}
608  	return 0;
609  }
610  EXPORT_SYMBOL(netdev_boot_setup_check);
611  
612  
613  /**
614   * netdev_boot_base	- get address from boot time settings
615   * @prefix: prefix for network device
616   * @unit: id for network device
617   *
618   * Check boot time settings for the base address of device.
619   * The found settings are set for the device to be used
620   * later in the device probing.
621   * Returns 0 if no settings found.
622   */
netdev_boot_base(const char * prefix,int unit)623  unsigned long netdev_boot_base(const char *prefix, int unit)
624  {
625  	const struct netdev_boot_setup *s = dev_boot_setup;
626  	char name[IFNAMSIZ];
627  	int i;
628  
629  	sprintf(name, "%s%d", prefix, unit);
630  
631  	/*
632  	 * If device already registered then return base of 1
633  	 * to indicate not to probe for this interface
634  	 */
635  	if (__dev_get_by_name(&init_net, name))
636  		return 1;
637  
638  	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639  		if (!strcmp(name, s[i].name))
640  			return s[i].map.base_addr;
641  	return 0;
642  }
643  
644  /*
645   * Saves at boot time configured settings for any netdevice.
646   */
netdev_boot_setup(char * str)647  int __init netdev_boot_setup(char *str)
648  {
649  	int ints[5];
650  	struct ifmap map;
651  
652  	str = get_options(str, ARRAY_SIZE(ints), ints);
653  	if (!str || !*str)
654  		return 0;
655  
656  	/* Save settings */
657  	memset(&map, 0, sizeof(map));
658  	if (ints[0] > 0)
659  		map.irq = ints[1];
660  	if (ints[0] > 1)
661  		map.base_addr = ints[2];
662  	if (ints[0] > 2)
663  		map.mem_start = ints[3];
664  	if (ints[0] > 3)
665  		map.mem_end = ints[4];
666  
667  	/* Add new entry to the list */
668  	return netdev_boot_setup_add(str, &map);
669  }
670  
671  __setup("netdev=", netdev_boot_setup);
672  
673  /*******************************************************************************
674   *
675   *			    Device Interface Subroutines
676   *
677   *******************************************************************************/
678  
679  /**
680   *	dev_get_iflink	- get 'iflink' value of a interface
681   *	@dev: targeted interface
682   *
683   *	Indicates the ifindex the interface is linked to.
684   *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685   */
686  
dev_get_iflink(const struct net_device * dev)687  int dev_get_iflink(const struct net_device *dev)
688  {
689  	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690  		return dev->netdev_ops->ndo_get_iflink(dev);
691  
692  	return dev->ifindex;
693  }
694  EXPORT_SYMBOL(dev_get_iflink);
695  
696  /**
697   *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698   *	@dev: targeted interface
699   *	@skb: The packet.
700   *
701   *	For better visibility of tunnel traffic OVS needs to retrieve
702   *	egress tunnel information for a packet. Following API allows
703   *	user to get this info.
704   */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705  int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706  {
707  	struct ip_tunnel_info *info;
708  
709  	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710  		return -EINVAL;
711  
712  	info = skb_tunnel_info_unclone(skb);
713  	if (!info)
714  		return -ENOMEM;
715  	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716  		return -EINVAL;
717  
718  	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719  }
720  EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721  
722  /**
723   *	__dev_get_by_name	- find a device by its name
724   *	@net: the applicable net namespace
725   *	@name: name to find
726   *
727   *	Find an interface by name. Must be called under RTNL semaphore
728   *	or @dev_base_lock. If the name is found a pointer to the device
729   *	is returned. If the name is not found then %NULL is returned. The
730   *	reference counters are not incremented so the caller must be
731   *	careful with locks.
732   */
733  
__dev_get_by_name(struct net * net,const char * name)734  struct net_device *__dev_get_by_name(struct net *net, const char *name)
735  {
736  	struct net_device *dev;
737  	struct hlist_head *head = dev_name_hash(net, name);
738  
739  	hlist_for_each_entry(dev, head, name_hlist)
740  		if (!strncmp(dev->name, name, IFNAMSIZ))
741  			return dev;
742  
743  	return NULL;
744  }
745  EXPORT_SYMBOL(__dev_get_by_name);
746  
747  /**
748   * dev_get_by_name_rcu	- find a device by its name
749   * @net: the applicable net namespace
750   * @name: name to find
751   *
752   * Find an interface by name.
753   * If the name is found a pointer to the device is returned.
754   * If the name is not found then %NULL is returned.
755   * The reference counters are not incremented so the caller must be
756   * careful with locks. The caller must hold RCU lock.
757   */
758  
dev_get_by_name_rcu(struct net * net,const char * name)759  struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760  {
761  	struct net_device *dev;
762  	struct hlist_head *head = dev_name_hash(net, name);
763  
764  	hlist_for_each_entry_rcu(dev, head, name_hlist)
765  		if (!strncmp(dev->name, name, IFNAMSIZ))
766  			return dev;
767  
768  	return NULL;
769  }
770  EXPORT_SYMBOL(dev_get_by_name_rcu);
771  
772  /**
773   *	dev_get_by_name		- find a device by its name
774   *	@net: the applicable net namespace
775   *	@name: name to find
776   *
777   *	Find an interface by name. This can be called from any
778   *	context and does its own locking. The returned handle has
779   *	the usage count incremented and the caller must use dev_put() to
780   *	release it when it is no longer needed. %NULL is returned if no
781   *	matching device is found.
782   */
783  
dev_get_by_name(struct net * net,const char * name)784  struct net_device *dev_get_by_name(struct net *net, const char *name)
785  {
786  	struct net_device *dev;
787  
788  	rcu_read_lock();
789  	dev = dev_get_by_name_rcu(net, name);
790  	if (dev)
791  		dev_hold(dev);
792  	rcu_read_unlock();
793  	return dev;
794  }
795  EXPORT_SYMBOL(dev_get_by_name);
796  
797  /**
798   *	__dev_get_by_index - find a device by its ifindex
799   *	@net: the applicable net namespace
800   *	@ifindex: index of device
801   *
802   *	Search for an interface by index. Returns %NULL if the device
803   *	is not found or a pointer to the device. The device has not
804   *	had its reference counter increased so the caller must be careful
805   *	about locking. The caller must hold either the RTNL semaphore
806   *	or @dev_base_lock.
807   */
808  
__dev_get_by_index(struct net * net,int ifindex)809  struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810  {
811  	struct net_device *dev;
812  	struct hlist_head *head = dev_index_hash(net, ifindex);
813  
814  	hlist_for_each_entry(dev, head, index_hlist)
815  		if (dev->ifindex == ifindex)
816  			return dev;
817  
818  	return NULL;
819  }
820  EXPORT_SYMBOL(__dev_get_by_index);
821  
822  /**
823   *	dev_get_by_index_rcu - find a device by its ifindex
824   *	@net: the applicable net namespace
825   *	@ifindex: index of device
826   *
827   *	Search for an interface by index. Returns %NULL if the device
828   *	is not found or a pointer to the device. The device has not
829   *	had its reference counter increased so the caller must be careful
830   *	about locking. The caller must hold RCU lock.
831   */
832  
dev_get_by_index_rcu(struct net * net,int ifindex)833  struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834  {
835  	struct net_device *dev;
836  	struct hlist_head *head = dev_index_hash(net, ifindex);
837  
838  	hlist_for_each_entry_rcu(dev, head, index_hlist)
839  		if (dev->ifindex == ifindex)
840  			return dev;
841  
842  	return NULL;
843  }
844  EXPORT_SYMBOL(dev_get_by_index_rcu);
845  
846  
847  /**
848   *	dev_get_by_index - find a device by its ifindex
849   *	@net: the applicable net namespace
850   *	@ifindex: index of device
851   *
852   *	Search for an interface by index. Returns NULL if the device
853   *	is not found or a pointer to the device. The device returned has
854   *	had a reference added and the pointer is safe until the user calls
855   *	dev_put to indicate they have finished with it.
856   */
857  
dev_get_by_index(struct net * net,int ifindex)858  struct net_device *dev_get_by_index(struct net *net, int ifindex)
859  {
860  	struct net_device *dev;
861  
862  	rcu_read_lock();
863  	dev = dev_get_by_index_rcu(net, ifindex);
864  	if (dev)
865  		dev_hold(dev);
866  	rcu_read_unlock();
867  	return dev;
868  }
869  EXPORT_SYMBOL(dev_get_by_index);
870  
871  /**
872   *	dev_get_by_napi_id - find a device by napi_id
873   *	@napi_id: ID of the NAPI struct
874   *
875   *	Search for an interface by NAPI ID. Returns %NULL if the device
876   *	is not found or a pointer to the device. The device has not had
877   *	its reference counter increased so the caller must be careful
878   *	about locking. The caller must hold RCU lock.
879   */
880  
dev_get_by_napi_id(unsigned int napi_id)881  struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882  {
883  	struct napi_struct *napi;
884  
885  	WARN_ON_ONCE(!rcu_read_lock_held());
886  
887  	if (napi_id < MIN_NAPI_ID)
888  		return NULL;
889  
890  	napi = napi_by_id(napi_id);
891  
892  	return napi ? napi->dev : NULL;
893  }
894  EXPORT_SYMBOL(dev_get_by_napi_id);
895  
896  /**
897   *	netdev_get_name - get a netdevice name, knowing its ifindex.
898   *	@net: network namespace
899   *	@name: a pointer to the buffer where the name will be stored.
900   *	@ifindex: the ifindex of the interface to get the name from.
901   *
902   *	The use of raw_seqcount_begin() and cond_resched() before
903   *	retrying is required as we want to give the writers a chance
904   *	to complete when CONFIG_PREEMPT is not set.
905   */
netdev_get_name(struct net * net,char * name,int ifindex)906  int netdev_get_name(struct net *net, char *name, int ifindex)
907  {
908  	struct net_device *dev;
909  	unsigned int seq;
910  
911  retry:
912  	seq = raw_seqcount_begin(&devnet_rename_seq);
913  	rcu_read_lock();
914  	dev = dev_get_by_index_rcu(net, ifindex);
915  	if (!dev) {
916  		rcu_read_unlock();
917  		return -ENODEV;
918  	}
919  
920  	strcpy(name, dev->name);
921  	rcu_read_unlock();
922  	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923  		cond_resched();
924  		goto retry;
925  	}
926  
927  	return 0;
928  }
929  
930  /**
931   *	dev_getbyhwaddr_rcu - find a device by its hardware address
932   *	@net: the applicable net namespace
933   *	@type: media type of device
934   *	@ha: hardware address
935   *
936   *	Search for an interface by MAC address. Returns NULL if the device
937   *	is not found or a pointer to the device.
938   *	The caller must hold RCU or RTNL.
939   *	The returned device has not had its ref count increased
940   *	and the caller must therefore be careful about locking
941   *
942   */
943  
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)944  struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945  				       const char *ha)
946  {
947  	struct net_device *dev;
948  
949  	for_each_netdev_rcu(net, dev)
950  		if (dev->type == type &&
951  		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952  			return dev;
953  
954  	return NULL;
955  }
956  EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957  
__dev_getfirstbyhwtype(struct net * net,unsigned short type)958  struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959  {
960  	struct net_device *dev;
961  
962  	ASSERT_RTNL();
963  	for_each_netdev(net, dev)
964  		if (dev->type == type)
965  			return dev;
966  
967  	return NULL;
968  }
969  EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970  
dev_getfirstbyhwtype(struct net * net,unsigned short type)971  struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972  {
973  	struct net_device *dev, *ret = NULL;
974  
975  	rcu_read_lock();
976  	for_each_netdev_rcu(net, dev)
977  		if (dev->type == type) {
978  			dev_hold(dev);
979  			ret = dev;
980  			break;
981  		}
982  	rcu_read_unlock();
983  	return ret;
984  }
985  EXPORT_SYMBOL(dev_getfirstbyhwtype);
986  
987  /**
988   *	__dev_get_by_flags - find any device with given flags
989   *	@net: the applicable net namespace
990   *	@if_flags: IFF_* values
991   *	@mask: bitmask of bits in if_flags to check
992   *
993   *	Search for any interface with the given flags. Returns NULL if a device
994   *	is not found or a pointer to the device. Must be called inside
995   *	rtnl_lock(), and result refcount is unchanged.
996   */
997  
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)998  struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999  				      unsigned short mask)
1000  {
1001  	struct net_device *dev, *ret;
1002  
1003  	ASSERT_RTNL();
1004  
1005  	ret = NULL;
1006  	for_each_netdev(net, dev) {
1007  		if (((dev->flags ^ if_flags) & mask) == 0) {
1008  			ret = dev;
1009  			break;
1010  		}
1011  	}
1012  	return ret;
1013  }
1014  EXPORT_SYMBOL(__dev_get_by_flags);
1015  
1016  /**
1017   *	dev_valid_name - check if name is okay for network device
1018   *	@name: name string
1019   *
1020   *	Network device names need to be valid file names to
1021   *	to allow sysfs to work.  We also disallow any kind of
1022   *	whitespace.
1023   */
dev_valid_name(const char * name)1024  bool dev_valid_name(const char *name)
1025  {
1026  	if (*name == '\0')
1027  		return false;
1028  	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029  		return false;
1030  	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031  		return false;
1032  
1033  	while (*name) {
1034  		if (*name == '/' || *name == ':' || isspace(*name))
1035  			return false;
1036  		name++;
1037  	}
1038  	return true;
1039  }
1040  EXPORT_SYMBOL(dev_valid_name);
1041  
1042  /**
1043   *	__dev_alloc_name - allocate a name for a device
1044   *	@net: network namespace to allocate the device name in
1045   *	@name: name format string
1046   *	@buf:  scratch buffer and result name string
1047   *
1048   *	Passed a format string - eg "lt%d" it will try and find a suitable
1049   *	id. It scans list of devices to build up a free map, then chooses
1050   *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051   *	while allocating the name and adding the device in order to avoid
1052   *	duplicates.
1053   *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054   *	Returns the number of the unit assigned or a negative errno code.
1055   */
1056  
__dev_alloc_name(struct net * net,const char * name,char * buf)1057  static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058  {
1059  	int i = 0;
1060  	const char *p;
1061  	const int max_netdevices = 8*PAGE_SIZE;
1062  	unsigned long *inuse;
1063  	struct net_device *d;
1064  
1065  	p = strnchr(name, IFNAMSIZ-1, '%');
1066  	if (p) {
1067  		/*
1068  		 * Verify the string as this thing may have come from
1069  		 * the user.  There must be either one "%d" and no other "%"
1070  		 * characters.
1071  		 */
1072  		if (p[1] != 'd' || strchr(p + 2, '%'))
1073  			return -EINVAL;
1074  
1075  		/* Use one page as a bit array of possible slots */
1076  		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077  		if (!inuse)
1078  			return -ENOMEM;
1079  
1080  		for_each_netdev(net, d) {
1081  			if (!sscanf(d->name, name, &i))
1082  				continue;
1083  			if (i < 0 || i >= max_netdevices)
1084  				continue;
1085  
1086  			/*  avoid cases where sscanf is not exact inverse of printf */
1087  			snprintf(buf, IFNAMSIZ, name, i);
1088  			if (!strncmp(buf, d->name, IFNAMSIZ))
1089  				set_bit(i, inuse);
1090  		}
1091  
1092  		i = find_first_zero_bit(inuse, max_netdevices);
1093  		free_page((unsigned long) inuse);
1094  	}
1095  
1096  	if (buf != name)
1097  		snprintf(buf, IFNAMSIZ, name, i);
1098  	if (!__dev_get_by_name(net, buf))
1099  		return i;
1100  
1101  	/* It is possible to run out of possible slots
1102  	 * when the name is long and there isn't enough space left
1103  	 * for the digits, or if all bits are used.
1104  	 */
1105  	return -ENFILE;
1106  }
1107  
1108  /**
1109   *	dev_alloc_name - allocate a name for a device
1110   *	@dev: device
1111   *	@name: name format string
1112   *
1113   *	Passed a format string - eg "lt%d" it will try and find a suitable
1114   *	id. It scans list of devices to build up a free map, then chooses
1115   *	the first empty slot. The caller must hold the dev_base or rtnl lock
1116   *	while allocating the name and adding the device in order to avoid
1117   *	duplicates.
1118   *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1119   *	Returns the number of the unit assigned or a negative errno code.
1120   */
1121  
dev_alloc_name(struct net_device * dev,const char * name)1122  int dev_alloc_name(struct net_device *dev, const char *name)
1123  {
1124  	char buf[IFNAMSIZ];
1125  	struct net *net;
1126  	int ret;
1127  
1128  	BUG_ON(!dev_net(dev));
1129  	net = dev_net(dev);
1130  	ret = __dev_alloc_name(net, name, buf);
1131  	if (ret >= 0)
1132  		strlcpy(dev->name, buf, IFNAMSIZ);
1133  	return ret;
1134  }
1135  EXPORT_SYMBOL(dev_alloc_name);
1136  
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1137  static int dev_alloc_name_ns(struct net *net,
1138  			     struct net_device *dev,
1139  			     const char *name)
1140  {
1141  	char buf[IFNAMSIZ];
1142  	int ret;
1143  
1144  	ret = __dev_alloc_name(net, name, buf);
1145  	if (ret >= 0)
1146  		strlcpy(dev->name, buf, IFNAMSIZ);
1147  	return ret;
1148  }
1149  
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1150  int dev_get_valid_name(struct net *net, struct net_device *dev,
1151  		       const char *name)
1152  {
1153  	BUG_ON(!net);
1154  
1155  	if (!dev_valid_name(name))
1156  		return -EINVAL;
1157  
1158  	if (strchr(name, '%'))
1159  		return dev_alloc_name_ns(net, dev, name);
1160  	else if (__dev_get_by_name(net, name))
1161  		return -EEXIST;
1162  	else if (dev->name != name)
1163  		strlcpy(dev->name, name, IFNAMSIZ);
1164  
1165  	return 0;
1166  }
1167  EXPORT_SYMBOL(dev_get_valid_name);
1168  
1169  /**
1170   *	dev_change_name - change name of a device
1171   *	@dev: device
1172   *	@newname: name (or format string) must be at least IFNAMSIZ
1173   *
1174   *	Change name of a device, can pass format strings "eth%d".
1175   *	for wildcarding.
1176   */
dev_change_name(struct net_device * dev,const char * newname)1177  int dev_change_name(struct net_device *dev, const char *newname)
1178  {
1179  	unsigned char old_assign_type;
1180  	char oldname[IFNAMSIZ];
1181  	int err = 0;
1182  	int ret;
1183  	struct net *net;
1184  
1185  	ASSERT_RTNL();
1186  	BUG_ON(!dev_net(dev));
1187  
1188  	net = dev_net(dev);
1189  	if (dev->flags & IFF_UP)
1190  		return -EBUSY;
1191  
1192  	write_seqcount_begin(&devnet_rename_seq);
1193  
1194  	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1195  		write_seqcount_end(&devnet_rename_seq);
1196  		return 0;
1197  	}
1198  
1199  	memcpy(oldname, dev->name, IFNAMSIZ);
1200  
1201  	err = dev_get_valid_name(net, dev, newname);
1202  	if (err < 0) {
1203  		write_seqcount_end(&devnet_rename_seq);
1204  		return err;
1205  	}
1206  
1207  	if (oldname[0] && !strchr(oldname, '%'))
1208  		netdev_info(dev, "renamed from %s\n", oldname);
1209  
1210  	old_assign_type = dev->name_assign_type;
1211  	dev->name_assign_type = NET_NAME_RENAMED;
1212  
1213  rollback:
1214  	ret = device_rename(&dev->dev, dev->name);
1215  	if (ret) {
1216  		memcpy(dev->name, oldname, IFNAMSIZ);
1217  		dev->name_assign_type = old_assign_type;
1218  		write_seqcount_end(&devnet_rename_seq);
1219  		return ret;
1220  	}
1221  
1222  	write_seqcount_end(&devnet_rename_seq);
1223  
1224  	netdev_adjacent_rename_links(dev, oldname);
1225  
1226  	write_lock_bh(&dev_base_lock);
1227  	hlist_del_rcu(&dev->name_hlist);
1228  	write_unlock_bh(&dev_base_lock);
1229  
1230  	synchronize_rcu();
1231  
1232  	write_lock_bh(&dev_base_lock);
1233  	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1234  	write_unlock_bh(&dev_base_lock);
1235  
1236  	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1237  	ret = notifier_to_errno(ret);
1238  
1239  	if (ret) {
1240  		/* err >= 0 after dev_alloc_name() or stores the first errno */
1241  		if (err >= 0) {
1242  			err = ret;
1243  			write_seqcount_begin(&devnet_rename_seq);
1244  			memcpy(dev->name, oldname, IFNAMSIZ);
1245  			memcpy(oldname, newname, IFNAMSIZ);
1246  			dev->name_assign_type = old_assign_type;
1247  			old_assign_type = NET_NAME_RENAMED;
1248  			goto rollback;
1249  		} else {
1250  			pr_err("%s: name change rollback failed: %d\n",
1251  			       dev->name, ret);
1252  		}
1253  	}
1254  
1255  	return err;
1256  }
1257  
1258  /**
1259   *	dev_set_alias - change ifalias of a device
1260   *	@dev: device
1261   *	@alias: name up to IFALIASZ
1262   *	@len: limit of bytes to copy from info
1263   *
1264   *	Set ifalias for a device,
1265   */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1266  int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267  {
1268  	char *new_ifalias;
1269  
1270  	ASSERT_RTNL();
1271  
1272  	if (len >= IFALIASZ)
1273  		return -EINVAL;
1274  
1275  	if (!len) {
1276  		kfree(dev->ifalias);
1277  		dev->ifalias = NULL;
1278  		return 0;
1279  	}
1280  
1281  	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1282  	if (!new_ifalias)
1283  		return -ENOMEM;
1284  	dev->ifalias = new_ifalias;
1285  	memcpy(dev->ifalias, alias, len);
1286  	dev->ifalias[len] = 0;
1287  
1288  	return len;
1289  }
1290  
1291  
1292  /**
1293   *	netdev_features_change - device changes features
1294   *	@dev: device to cause notification
1295   *
1296   *	Called to indicate a device has changed features.
1297   */
netdev_features_change(struct net_device * dev)1298  void netdev_features_change(struct net_device *dev)
1299  {
1300  	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301  }
1302  EXPORT_SYMBOL(netdev_features_change);
1303  
1304  /**
1305   *	netdev_state_change - device changes state
1306   *	@dev: device to cause notification
1307   *
1308   *	Called to indicate a device has changed state. This function calls
1309   *	the notifier chains for netdev_chain and sends a NEWLINK message
1310   *	to the routing socket.
1311   */
netdev_state_change(struct net_device * dev)1312  void netdev_state_change(struct net_device *dev)
1313  {
1314  	if (dev->flags & IFF_UP) {
1315  		struct netdev_notifier_change_info change_info;
1316  
1317  		change_info.flags_changed = 0;
1318  		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1319  					      &change_info.info);
1320  		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1321  	}
1322  }
1323  EXPORT_SYMBOL(netdev_state_change);
1324  
1325  /**
1326   * netdev_notify_peers - notify network peers about existence of @dev
1327   * @dev: network device
1328   *
1329   * Generate traffic such that interested network peers are aware of
1330   * @dev, such as by generating a gratuitous ARP. This may be used when
1331   * a device wants to inform the rest of the network about some sort of
1332   * reconfiguration such as a failover event or virtual machine
1333   * migration.
1334   */
netdev_notify_peers(struct net_device * dev)1335  void netdev_notify_peers(struct net_device *dev)
1336  {
1337  	rtnl_lock();
1338  	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339  	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340  	rtnl_unlock();
1341  }
1342  EXPORT_SYMBOL(netdev_notify_peers);
1343  
__dev_open(struct net_device * dev)1344  static int __dev_open(struct net_device *dev)
1345  {
1346  	const struct net_device_ops *ops = dev->netdev_ops;
1347  	int ret;
1348  
1349  	ASSERT_RTNL();
1350  
1351  	if (!netif_device_present(dev))
1352  		return -ENODEV;
1353  
1354  	/* Block netpoll from trying to do any rx path servicing.
1355  	 * If we don't do this there is a chance ndo_poll_controller
1356  	 * or ndo_poll may be running while we open the device
1357  	 */
1358  	netpoll_poll_disable(dev);
1359  
1360  	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1361  	ret = notifier_to_errno(ret);
1362  	if (ret)
1363  		return ret;
1364  
1365  	set_bit(__LINK_STATE_START, &dev->state);
1366  
1367  	if (ops->ndo_validate_addr)
1368  		ret = ops->ndo_validate_addr(dev);
1369  
1370  	if (!ret && ops->ndo_open)
1371  		ret = ops->ndo_open(dev);
1372  
1373  	netpoll_poll_enable(dev);
1374  
1375  	if (ret)
1376  		clear_bit(__LINK_STATE_START, &dev->state);
1377  	else {
1378  		dev->flags |= IFF_UP;
1379  		dev_set_rx_mode(dev);
1380  		dev_activate(dev);
1381  		add_device_randomness(dev->dev_addr, dev->addr_len);
1382  	}
1383  
1384  	return ret;
1385  }
1386  
1387  /**
1388   *	dev_open	- prepare an interface for use.
1389   *	@dev:	device to open
1390   *
1391   *	Takes a device from down to up state. The device's private open
1392   *	function is invoked and then the multicast lists are loaded. Finally
1393   *	the device is moved into the up state and a %NETDEV_UP message is
1394   *	sent to the netdev notifier chain.
1395   *
1396   *	Calling this function on an active interface is a nop. On a failure
1397   *	a negative errno code is returned.
1398   */
dev_open(struct net_device * dev)1399  int dev_open(struct net_device *dev)
1400  {
1401  	int ret;
1402  
1403  	if (dev->flags & IFF_UP)
1404  		return 0;
1405  
1406  	ret = __dev_open(dev);
1407  	if (ret < 0)
1408  		return ret;
1409  
1410  	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1411  	call_netdevice_notifiers(NETDEV_UP, dev);
1412  
1413  	return ret;
1414  }
1415  EXPORT_SYMBOL(dev_open);
1416  
__dev_close_many(struct list_head * head)1417  static void __dev_close_many(struct list_head *head)
1418  {
1419  	struct net_device *dev;
1420  
1421  	ASSERT_RTNL();
1422  	might_sleep();
1423  
1424  	list_for_each_entry(dev, head, close_list) {
1425  		/* Temporarily disable netpoll until the interface is down */
1426  		netpoll_poll_disable(dev);
1427  
1428  		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1429  
1430  		clear_bit(__LINK_STATE_START, &dev->state);
1431  
1432  		/* Synchronize to scheduled poll. We cannot touch poll list, it
1433  		 * can be even on different cpu. So just clear netif_running().
1434  		 *
1435  		 * dev->stop() will invoke napi_disable() on all of it's
1436  		 * napi_struct instances on this device.
1437  		 */
1438  		smp_mb__after_atomic(); /* Commit netif_running(). */
1439  	}
1440  
1441  	dev_deactivate_many(head);
1442  
1443  	list_for_each_entry(dev, head, close_list) {
1444  		const struct net_device_ops *ops = dev->netdev_ops;
1445  
1446  		/*
1447  		 *	Call the device specific close. This cannot fail.
1448  		 *	Only if device is UP
1449  		 *
1450  		 *	We allow it to be called even after a DETACH hot-plug
1451  		 *	event.
1452  		 */
1453  		if (ops->ndo_stop)
1454  			ops->ndo_stop(dev);
1455  
1456  		dev->flags &= ~IFF_UP;
1457  		netpoll_poll_enable(dev);
1458  	}
1459  }
1460  
__dev_close(struct net_device * dev)1461  static void __dev_close(struct net_device *dev)
1462  {
1463  	LIST_HEAD(single);
1464  
1465  	list_add(&dev->close_list, &single);
1466  	__dev_close_many(&single);
1467  	list_del(&single);
1468  }
1469  
dev_close_many(struct list_head * head,bool unlink)1470  void dev_close_many(struct list_head *head, bool unlink)
1471  {
1472  	struct net_device *dev, *tmp;
1473  
1474  	/* Remove the devices that don't need to be closed */
1475  	list_for_each_entry_safe(dev, tmp, head, close_list)
1476  		if (!(dev->flags & IFF_UP))
1477  			list_del_init(&dev->close_list);
1478  
1479  	__dev_close_many(head);
1480  
1481  	list_for_each_entry_safe(dev, tmp, head, close_list) {
1482  		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1483  		call_netdevice_notifiers(NETDEV_DOWN, dev);
1484  		if (unlink)
1485  			list_del_init(&dev->close_list);
1486  	}
1487  }
1488  EXPORT_SYMBOL(dev_close_many);
1489  
1490  /**
1491   *	dev_close - shutdown an interface.
1492   *	@dev: device to shutdown
1493   *
1494   *	This function moves an active device into down state. A
1495   *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1496   *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1497   *	chain.
1498   */
dev_close(struct net_device * dev)1499  void dev_close(struct net_device *dev)
1500  {
1501  	if (dev->flags & IFF_UP) {
1502  		LIST_HEAD(single);
1503  
1504  		list_add(&dev->close_list, &single);
1505  		dev_close_many(&single, true);
1506  		list_del(&single);
1507  	}
1508  }
1509  EXPORT_SYMBOL(dev_close);
1510  
1511  
1512  /**
1513   *	dev_disable_lro - disable Large Receive Offload on a device
1514   *	@dev: device
1515   *
1516   *	Disable Large Receive Offload (LRO) on a net device.  Must be
1517   *	called under RTNL.  This is needed if received packets may be
1518   *	forwarded to another interface.
1519   */
dev_disable_lro(struct net_device * dev)1520  void dev_disable_lro(struct net_device *dev)
1521  {
1522  	struct net_device *lower_dev;
1523  	struct list_head *iter;
1524  
1525  	dev->wanted_features &= ~NETIF_F_LRO;
1526  	netdev_update_features(dev);
1527  
1528  	if (unlikely(dev->features & NETIF_F_LRO))
1529  		netdev_WARN(dev, "failed to disable LRO!\n");
1530  
1531  	netdev_for_each_lower_dev(dev, lower_dev, iter)
1532  		dev_disable_lro(lower_dev);
1533  }
1534  EXPORT_SYMBOL(dev_disable_lro);
1535  
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1536  static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1537  				   struct net_device *dev)
1538  {
1539  	struct netdev_notifier_info info;
1540  
1541  	netdev_notifier_info_init(&info, dev);
1542  	return nb->notifier_call(nb, val, &info);
1543  }
1544  
1545  static int dev_boot_phase = 1;
1546  
1547  /**
1548   * register_netdevice_notifier - register a network notifier block
1549   * @nb: notifier
1550   *
1551   * Register a notifier to be called when network device events occur.
1552   * The notifier passed is linked into the kernel structures and must
1553   * not be reused until it has been unregistered. A negative errno code
1554   * is returned on a failure.
1555   *
1556   * When registered all registration and up events are replayed
1557   * to the new notifier to allow device to have a race free
1558   * view of the network device list.
1559   */
1560  
register_netdevice_notifier(struct notifier_block * nb)1561  int register_netdevice_notifier(struct notifier_block *nb)
1562  {
1563  	struct net_device *dev;
1564  	struct net_device *last;
1565  	struct net *net;
1566  	int err;
1567  
1568  	rtnl_lock();
1569  	err = raw_notifier_chain_register(&netdev_chain, nb);
1570  	if (err)
1571  		goto unlock;
1572  	if (dev_boot_phase)
1573  		goto unlock;
1574  	for_each_net(net) {
1575  		for_each_netdev(net, dev) {
1576  			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1577  			err = notifier_to_errno(err);
1578  			if (err)
1579  				goto rollback;
1580  
1581  			if (!(dev->flags & IFF_UP))
1582  				continue;
1583  
1584  			call_netdevice_notifier(nb, NETDEV_UP, dev);
1585  		}
1586  	}
1587  
1588  unlock:
1589  	rtnl_unlock();
1590  	return err;
1591  
1592  rollback:
1593  	last = dev;
1594  	for_each_net(net) {
1595  		for_each_netdev(net, dev) {
1596  			if (dev == last)
1597  				goto outroll;
1598  
1599  			if (dev->flags & IFF_UP) {
1600  				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1601  							dev);
1602  				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1603  			}
1604  			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1605  		}
1606  	}
1607  
1608  outroll:
1609  	raw_notifier_chain_unregister(&netdev_chain, nb);
1610  	goto unlock;
1611  }
1612  EXPORT_SYMBOL(register_netdevice_notifier);
1613  
1614  /**
1615   * unregister_netdevice_notifier - unregister a network notifier block
1616   * @nb: notifier
1617   *
1618   * Unregister a notifier previously registered by
1619   * register_netdevice_notifier(). The notifier is unlinked into the
1620   * kernel structures and may then be reused. A negative errno code
1621   * is returned on a failure.
1622   *
1623   * After unregistering unregister and down device events are synthesized
1624   * for all devices on the device list to the removed notifier to remove
1625   * the need for special case cleanup code.
1626   */
1627  
unregister_netdevice_notifier(struct notifier_block * nb)1628  int unregister_netdevice_notifier(struct notifier_block *nb)
1629  {
1630  	struct net_device *dev;
1631  	struct net *net;
1632  	int err;
1633  
1634  	rtnl_lock();
1635  	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1636  	if (err)
1637  		goto unlock;
1638  
1639  	for_each_net(net) {
1640  		for_each_netdev(net, dev) {
1641  			if (dev->flags & IFF_UP) {
1642  				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643  							dev);
1644  				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1645  			}
1646  			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1647  		}
1648  	}
1649  unlock:
1650  	rtnl_unlock();
1651  	return err;
1652  }
1653  EXPORT_SYMBOL(unregister_netdevice_notifier);
1654  
1655  /**
1656   *	call_netdevice_notifiers_info - call all network notifier blocks
1657   *	@val: value passed unmodified to notifier function
1658   *	@dev: net_device pointer passed unmodified to notifier function
1659   *	@info: notifier information data
1660   *
1661   *	Call all network notifier blocks.  Parameters and return value
1662   *	are as for raw_notifier_call_chain().
1663   */
1664  
call_netdevice_notifiers_info(unsigned long val,struct net_device * dev,struct netdev_notifier_info * info)1665  static int call_netdevice_notifiers_info(unsigned long val,
1666  					 struct net_device *dev,
1667  					 struct netdev_notifier_info *info)
1668  {
1669  	ASSERT_RTNL();
1670  	netdev_notifier_info_init(info, dev);
1671  	return raw_notifier_call_chain(&netdev_chain, val, info);
1672  }
1673  
1674  /**
1675   *	call_netdevice_notifiers - call all network notifier blocks
1676   *      @val: value passed unmodified to notifier function
1677   *      @dev: net_device pointer passed unmodified to notifier function
1678   *
1679   *	Call all network notifier blocks.  Parameters and return value
1680   *	are as for raw_notifier_call_chain().
1681   */
1682  
call_netdevice_notifiers(unsigned long val,struct net_device * dev)1683  int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1684  {
1685  	struct netdev_notifier_info info;
1686  
1687  	return call_netdevice_notifiers_info(val, dev, &info);
1688  }
1689  EXPORT_SYMBOL(call_netdevice_notifiers);
1690  
1691  /**
1692   *	call_netdevice_notifiers_mtu - call all network notifier blocks
1693   *	@val: value passed unmodified to notifier function
1694   *	@dev: net_device pointer passed unmodified to notifier function
1695   *	@arg: additional u32 argument passed to the notifier function
1696   *
1697   *	Call all network notifier blocks.  Parameters and return value
1698   *	are as for raw_notifier_call_chain().
1699   */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)1700  static int call_netdevice_notifiers_mtu(unsigned long val,
1701  					struct net_device *dev, u32 arg)
1702  {
1703  	struct netdev_notifier_info_ext info = {
1704  		.info.dev = dev,
1705  		.ext.mtu = arg,
1706  	};
1707  
1708  	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1709  
1710  	return call_netdevice_notifiers_info(val, dev, &info.info);
1711  }
1712  
1713  #ifdef CONFIG_NET_INGRESS
1714  static struct static_key ingress_needed __read_mostly;
1715  
net_inc_ingress_queue(void)1716  void net_inc_ingress_queue(void)
1717  {
1718  	static_key_slow_inc(&ingress_needed);
1719  }
1720  EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1721  
net_dec_ingress_queue(void)1722  void net_dec_ingress_queue(void)
1723  {
1724  	static_key_slow_dec(&ingress_needed);
1725  }
1726  EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1727  #endif
1728  
1729  #ifdef CONFIG_NET_EGRESS
1730  static struct static_key egress_needed __read_mostly;
1731  
net_inc_egress_queue(void)1732  void net_inc_egress_queue(void)
1733  {
1734  	static_key_slow_inc(&egress_needed);
1735  }
1736  EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1737  
net_dec_egress_queue(void)1738  void net_dec_egress_queue(void)
1739  {
1740  	static_key_slow_dec(&egress_needed);
1741  }
1742  EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1743  #endif
1744  
1745  static struct static_key netstamp_needed __read_mostly;
1746  #ifdef HAVE_JUMP_LABEL
1747  static atomic_t netstamp_needed_deferred;
1748  static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)1749  static void netstamp_clear(struct work_struct *work)
1750  {
1751  	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1752  	int wanted;
1753  
1754  	wanted = atomic_add_return(deferred, &netstamp_wanted);
1755  	if (wanted > 0)
1756  		static_key_enable(&netstamp_needed);
1757  	else
1758  		static_key_disable(&netstamp_needed);
1759  }
1760  static DECLARE_WORK(netstamp_work, netstamp_clear);
1761  #endif
1762  
net_enable_timestamp(void)1763  void net_enable_timestamp(void)
1764  {
1765  #ifdef HAVE_JUMP_LABEL
1766  	int wanted;
1767  
1768  	while (1) {
1769  		wanted = atomic_read(&netstamp_wanted);
1770  		if (wanted <= 0)
1771  			break;
1772  		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1773  			return;
1774  	}
1775  	atomic_inc(&netstamp_needed_deferred);
1776  	schedule_work(&netstamp_work);
1777  #else
1778  	static_key_slow_inc(&netstamp_needed);
1779  #endif
1780  }
1781  EXPORT_SYMBOL(net_enable_timestamp);
1782  
net_disable_timestamp(void)1783  void net_disable_timestamp(void)
1784  {
1785  #ifdef HAVE_JUMP_LABEL
1786  	int wanted;
1787  
1788  	while (1) {
1789  		wanted = atomic_read(&netstamp_wanted);
1790  		if (wanted <= 1)
1791  			break;
1792  		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1793  			return;
1794  	}
1795  	atomic_dec(&netstamp_needed_deferred);
1796  	schedule_work(&netstamp_work);
1797  #else
1798  	static_key_slow_dec(&netstamp_needed);
1799  #endif
1800  }
1801  EXPORT_SYMBOL(net_disable_timestamp);
1802  
net_timestamp_set(struct sk_buff * skb)1803  static inline void net_timestamp_set(struct sk_buff *skb)
1804  {
1805  	skb->tstamp = 0;
1806  	if (static_key_false(&netstamp_needed))
1807  		__net_timestamp(skb);
1808  }
1809  
1810  #define net_timestamp_check(COND, SKB)			\
1811  	if (static_key_false(&netstamp_needed)) {		\
1812  		if ((COND) && !(SKB)->tstamp)	\
1813  			__net_timestamp(SKB);		\
1814  	}						\
1815  
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)1816  bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1817  {
1818  	unsigned int len;
1819  
1820  	if (!(dev->flags & IFF_UP))
1821  		return false;
1822  
1823  	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1824  	if (skb->len <= len)
1825  		return true;
1826  
1827  	/* if TSO is enabled, we don't care about the length as the packet
1828  	 * could be forwarded without being segmented before
1829  	 */
1830  	if (skb_is_gso(skb))
1831  		return true;
1832  
1833  	return false;
1834  }
1835  EXPORT_SYMBOL_GPL(is_skb_forwardable);
1836  
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1837  int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1838  {
1839  	int ret = ____dev_forward_skb(dev, skb);
1840  
1841  	if (likely(!ret)) {
1842  		skb->protocol = eth_type_trans(skb, dev);
1843  		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1844  	}
1845  
1846  	return ret;
1847  }
1848  EXPORT_SYMBOL_GPL(__dev_forward_skb);
1849  
1850  /**
1851   * dev_forward_skb - loopback an skb to another netif
1852   *
1853   * @dev: destination network device
1854   * @skb: buffer to forward
1855   *
1856   * return values:
1857   *	NET_RX_SUCCESS	(no congestion)
1858   *	NET_RX_DROP     (packet was dropped, but freed)
1859   *
1860   * dev_forward_skb can be used for injecting an skb from the
1861   * start_xmit function of one device into the receive queue
1862   * of another device.
1863   *
1864   * The receiving device may be in another namespace, so
1865   * we have to clear all information in the skb that could
1866   * impact namespace isolation.
1867   */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)1868  int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1869  {
1870  	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1871  }
1872  EXPORT_SYMBOL_GPL(dev_forward_skb);
1873  
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)1874  static inline int deliver_skb(struct sk_buff *skb,
1875  			      struct packet_type *pt_prev,
1876  			      struct net_device *orig_dev)
1877  {
1878  	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1879  		return -ENOMEM;
1880  	refcount_inc(&skb->users);
1881  	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1882  }
1883  
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)1884  static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1885  					  struct packet_type **pt,
1886  					  struct net_device *orig_dev,
1887  					  __be16 type,
1888  					  struct list_head *ptype_list)
1889  {
1890  	struct packet_type *ptype, *pt_prev = *pt;
1891  
1892  	list_for_each_entry_rcu(ptype, ptype_list, list) {
1893  		if (ptype->type != type)
1894  			continue;
1895  		if (pt_prev)
1896  			deliver_skb(skb, pt_prev, orig_dev);
1897  		pt_prev = ptype;
1898  	}
1899  	*pt = pt_prev;
1900  }
1901  
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)1902  static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1903  {
1904  	if (!ptype->af_packet_priv || !skb->sk)
1905  		return false;
1906  
1907  	if (ptype->id_match)
1908  		return ptype->id_match(ptype, skb->sk);
1909  	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1910  		return true;
1911  
1912  	return false;
1913  }
1914  
1915  /*
1916   *	Support routine. Sends outgoing frames to any network
1917   *	taps currently in use.
1918   */
1919  
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)1920  void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1921  {
1922  	struct packet_type *ptype;
1923  	struct sk_buff *skb2 = NULL;
1924  	struct packet_type *pt_prev = NULL;
1925  	struct list_head *ptype_list = &ptype_all;
1926  
1927  	rcu_read_lock();
1928  again:
1929  	list_for_each_entry_rcu(ptype, ptype_list, list) {
1930  		/* Never send packets back to the socket
1931  		 * they originated from - MvS (miquels@drinkel.ow.org)
1932  		 */
1933  		if (skb_loop_sk(ptype, skb))
1934  			continue;
1935  
1936  		if (pt_prev) {
1937  			deliver_skb(skb2, pt_prev, skb->dev);
1938  			pt_prev = ptype;
1939  			continue;
1940  		}
1941  
1942  		/* need to clone skb, done only once */
1943  		skb2 = skb_clone(skb, GFP_ATOMIC);
1944  		if (!skb2)
1945  			goto out_unlock;
1946  
1947  		net_timestamp_set(skb2);
1948  
1949  		/* skb->nh should be correctly
1950  		 * set by sender, so that the second statement is
1951  		 * just protection against buggy protocols.
1952  		 */
1953  		skb_reset_mac_header(skb2);
1954  
1955  		if (skb_network_header(skb2) < skb2->data ||
1956  		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1957  			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1958  					     ntohs(skb2->protocol),
1959  					     dev->name);
1960  			skb_reset_network_header(skb2);
1961  		}
1962  
1963  		skb2->transport_header = skb2->network_header;
1964  		skb2->pkt_type = PACKET_OUTGOING;
1965  		pt_prev = ptype;
1966  	}
1967  
1968  	if (ptype_list == &ptype_all) {
1969  		ptype_list = &dev->ptype_all;
1970  		goto again;
1971  	}
1972  out_unlock:
1973  	if (pt_prev) {
1974  		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1975  			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1976  		else
1977  			kfree_skb(skb2);
1978  	}
1979  	rcu_read_unlock();
1980  }
1981  EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1982  
1983  /**
1984   * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1985   * @dev: Network device
1986   * @txq: number of queues available
1987   *
1988   * If real_num_tx_queues is changed the tc mappings may no longer be
1989   * valid. To resolve this verify the tc mapping remains valid and if
1990   * not NULL the mapping. With no priorities mapping to this
1991   * offset/count pair it will no longer be used. In the worst case TC0
1992   * is invalid nothing can be done so disable priority mappings. If is
1993   * expected that drivers will fix this mapping if they can before
1994   * calling netif_set_real_num_tx_queues.
1995   */
netif_setup_tc(struct net_device * dev,unsigned int txq)1996  static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1997  {
1998  	int i;
1999  	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2000  
2001  	/* If TC0 is invalidated disable TC mapping */
2002  	if (tc->offset + tc->count > txq) {
2003  		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2004  		dev->num_tc = 0;
2005  		return;
2006  	}
2007  
2008  	/* Invalidated prio to tc mappings set to TC0 */
2009  	for (i = 1; i < TC_BITMASK + 1; i++) {
2010  		int q = netdev_get_prio_tc_map(dev, i);
2011  
2012  		tc = &dev->tc_to_txq[q];
2013  		if (tc->offset + tc->count > txq) {
2014  			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2015  				i, q);
2016  			netdev_set_prio_tc_map(dev, i, 0);
2017  		}
2018  	}
2019  }
2020  
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2021  int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2022  {
2023  	if (dev->num_tc) {
2024  		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2025  		int i;
2026  
2027  		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2028  			if ((txq - tc->offset) < tc->count)
2029  				return i;
2030  		}
2031  
2032  		return -1;
2033  	}
2034  
2035  	return 0;
2036  }
2037  
2038  #ifdef CONFIG_XPS
2039  static DEFINE_MUTEX(xps_map_mutex);
2040  #define xmap_dereference(P)		\
2041  	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2042  
remove_xps_queue(struct xps_dev_maps * dev_maps,int tci,u16 index)2043  static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2044  			     int tci, u16 index)
2045  {
2046  	struct xps_map *map = NULL;
2047  	int pos;
2048  
2049  	if (dev_maps)
2050  		map = xmap_dereference(dev_maps->cpu_map[tci]);
2051  	if (!map)
2052  		return false;
2053  
2054  	for (pos = map->len; pos--;) {
2055  		if (map->queues[pos] != index)
2056  			continue;
2057  
2058  		if (map->len > 1) {
2059  			map->queues[pos] = map->queues[--map->len];
2060  			break;
2061  		}
2062  
2063  		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2064  		kfree_rcu(map, rcu);
2065  		return false;
2066  	}
2067  
2068  	return true;
2069  }
2070  
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2071  static bool remove_xps_queue_cpu(struct net_device *dev,
2072  				 struct xps_dev_maps *dev_maps,
2073  				 int cpu, u16 offset, u16 count)
2074  {
2075  	int num_tc = dev->num_tc ? : 1;
2076  	bool active = false;
2077  	int tci;
2078  
2079  	for (tci = cpu * num_tc; num_tc--; tci++) {
2080  		int i, j;
2081  
2082  		for (i = count, j = offset; i--; j++) {
2083  			if (!remove_xps_queue(dev_maps, tci, j))
2084  				break;
2085  		}
2086  
2087  		active |= i < 0;
2088  	}
2089  
2090  	return active;
2091  }
2092  
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2093  static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2094  				   u16 count)
2095  {
2096  	struct xps_dev_maps *dev_maps;
2097  	int cpu, i;
2098  	bool active = false;
2099  
2100  	mutex_lock(&xps_map_mutex);
2101  	dev_maps = xmap_dereference(dev->xps_maps);
2102  
2103  	if (!dev_maps)
2104  		goto out_no_maps;
2105  
2106  	for_each_possible_cpu(cpu)
2107  		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2108  					       offset, count);
2109  
2110  	if (!active) {
2111  		RCU_INIT_POINTER(dev->xps_maps, NULL);
2112  		kfree_rcu(dev_maps, rcu);
2113  	}
2114  
2115  	for (i = offset + (count - 1); count--; i--)
2116  		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2117  					     NUMA_NO_NODE);
2118  
2119  out_no_maps:
2120  	mutex_unlock(&xps_map_mutex);
2121  }
2122  
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2123  static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2124  {
2125  	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2126  }
2127  
expand_xps_map(struct xps_map * map,int cpu,u16 index)2128  static struct xps_map *expand_xps_map(struct xps_map *map,
2129  				      int cpu, u16 index)
2130  {
2131  	struct xps_map *new_map;
2132  	int alloc_len = XPS_MIN_MAP_ALLOC;
2133  	int i, pos;
2134  
2135  	for (pos = 0; map && pos < map->len; pos++) {
2136  		if (map->queues[pos] != index)
2137  			continue;
2138  		return map;
2139  	}
2140  
2141  	/* Need to add queue to this CPU's existing map */
2142  	if (map) {
2143  		if (pos < map->alloc_len)
2144  			return map;
2145  
2146  		alloc_len = map->alloc_len * 2;
2147  	}
2148  
2149  	/* Need to allocate new map to store queue on this CPU's map */
2150  	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2151  			       cpu_to_node(cpu));
2152  	if (!new_map)
2153  		return NULL;
2154  
2155  	for (i = 0; i < pos; i++)
2156  		new_map->queues[i] = map->queues[i];
2157  	new_map->alloc_len = alloc_len;
2158  	new_map->len = pos;
2159  
2160  	return new_map;
2161  }
2162  
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2163  int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2164  			u16 index)
2165  {
2166  	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2167  	int i, cpu, tci, numa_node_id = -2;
2168  	int maps_sz, num_tc = 1, tc = 0;
2169  	struct xps_map *map, *new_map;
2170  	bool active = false;
2171  
2172  	if (dev->num_tc) {
2173  		num_tc = dev->num_tc;
2174  		tc = netdev_txq_to_tc(dev, index);
2175  		if (tc < 0)
2176  			return -EINVAL;
2177  	}
2178  
2179  	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2180  	if (maps_sz < L1_CACHE_BYTES)
2181  		maps_sz = L1_CACHE_BYTES;
2182  
2183  	mutex_lock(&xps_map_mutex);
2184  
2185  	dev_maps = xmap_dereference(dev->xps_maps);
2186  
2187  	/* allocate memory for queue storage */
2188  	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2189  		if (!new_dev_maps)
2190  			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2191  		if (!new_dev_maps) {
2192  			mutex_unlock(&xps_map_mutex);
2193  			return -ENOMEM;
2194  		}
2195  
2196  		tci = cpu * num_tc + tc;
2197  		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2198  				 NULL;
2199  
2200  		map = expand_xps_map(map, cpu, index);
2201  		if (!map)
2202  			goto error;
2203  
2204  		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2205  	}
2206  
2207  	if (!new_dev_maps)
2208  		goto out_no_new_maps;
2209  
2210  	for_each_possible_cpu(cpu) {
2211  		/* copy maps belonging to foreign traffic classes */
2212  		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2213  			/* fill in the new device map from the old device map */
2214  			map = xmap_dereference(dev_maps->cpu_map[tci]);
2215  			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2216  		}
2217  
2218  		/* We need to explicitly update tci as prevous loop
2219  		 * could break out early if dev_maps is NULL.
2220  		 */
2221  		tci = cpu * num_tc + tc;
2222  
2223  		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2224  			/* add queue to CPU maps */
2225  			int pos = 0;
2226  
2227  			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2228  			while ((pos < map->len) && (map->queues[pos] != index))
2229  				pos++;
2230  
2231  			if (pos == map->len)
2232  				map->queues[map->len++] = index;
2233  #ifdef CONFIG_NUMA
2234  			if (numa_node_id == -2)
2235  				numa_node_id = cpu_to_node(cpu);
2236  			else if (numa_node_id != cpu_to_node(cpu))
2237  				numa_node_id = -1;
2238  #endif
2239  		} else if (dev_maps) {
2240  			/* fill in the new device map from the old device map */
2241  			map = xmap_dereference(dev_maps->cpu_map[tci]);
2242  			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2243  		}
2244  
2245  		/* copy maps belonging to foreign traffic classes */
2246  		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2247  			/* fill in the new device map from the old device map */
2248  			map = xmap_dereference(dev_maps->cpu_map[tci]);
2249  			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2250  		}
2251  	}
2252  
2253  	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2254  
2255  	/* Cleanup old maps */
2256  	if (!dev_maps)
2257  		goto out_no_old_maps;
2258  
2259  	for_each_possible_cpu(cpu) {
2260  		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2261  			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2262  			map = xmap_dereference(dev_maps->cpu_map[tci]);
2263  			if (map && map != new_map)
2264  				kfree_rcu(map, rcu);
2265  		}
2266  	}
2267  
2268  	kfree_rcu(dev_maps, rcu);
2269  
2270  out_no_old_maps:
2271  	dev_maps = new_dev_maps;
2272  	active = true;
2273  
2274  out_no_new_maps:
2275  	/* update Tx queue numa node */
2276  	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2277  				     (numa_node_id >= 0) ? numa_node_id :
2278  				     NUMA_NO_NODE);
2279  
2280  	if (!dev_maps)
2281  		goto out_no_maps;
2282  
2283  	/* removes queue from unused CPUs */
2284  	for_each_possible_cpu(cpu) {
2285  		for (i = tc, tci = cpu * num_tc; i--; tci++)
2286  			active |= remove_xps_queue(dev_maps, tci, index);
2287  		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2288  			active |= remove_xps_queue(dev_maps, tci, index);
2289  		for (i = num_tc - tc, tci++; --i; tci++)
2290  			active |= remove_xps_queue(dev_maps, tci, index);
2291  	}
2292  
2293  	/* free map if not active */
2294  	if (!active) {
2295  		RCU_INIT_POINTER(dev->xps_maps, NULL);
2296  		kfree_rcu(dev_maps, rcu);
2297  	}
2298  
2299  out_no_maps:
2300  	mutex_unlock(&xps_map_mutex);
2301  
2302  	return 0;
2303  error:
2304  	/* remove any maps that we added */
2305  	for_each_possible_cpu(cpu) {
2306  		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2307  			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2308  			map = dev_maps ?
2309  			      xmap_dereference(dev_maps->cpu_map[tci]) :
2310  			      NULL;
2311  			if (new_map && new_map != map)
2312  				kfree(new_map);
2313  		}
2314  	}
2315  
2316  	mutex_unlock(&xps_map_mutex);
2317  
2318  	kfree(new_dev_maps);
2319  	return -ENOMEM;
2320  }
2321  EXPORT_SYMBOL(netif_set_xps_queue);
2322  
2323  #endif
netdev_reset_tc(struct net_device * dev)2324  void netdev_reset_tc(struct net_device *dev)
2325  {
2326  #ifdef CONFIG_XPS
2327  	netif_reset_xps_queues_gt(dev, 0);
2328  #endif
2329  	dev->num_tc = 0;
2330  	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2331  	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2332  }
2333  EXPORT_SYMBOL(netdev_reset_tc);
2334  
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2335  int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2336  {
2337  	if (tc >= dev->num_tc)
2338  		return -EINVAL;
2339  
2340  #ifdef CONFIG_XPS
2341  	netif_reset_xps_queues(dev, offset, count);
2342  #endif
2343  	dev->tc_to_txq[tc].count = count;
2344  	dev->tc_to_txq[tc].offset = offset;
2345  	return 0;
2346  }
2347  EXPORT_SYMBOL(netdev_set_tc_queue);
2348  
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2349  int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2350  {
2351  	if (num_tc > TC_MAX_QUEUE)
2352  		return -EINVAL;
2353  
2354  #ifdef CONFIG_XPS
2355  	netif_reset_xps_queues_gt(dev, 0);
2356  #endif
2357  	dev->num_tc = num_tc;
2358  	return 0;
2359  }
2360  EXPORT_SYMBOL(netdev_set_num_tc);
2361  
2362  /*
2363   * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2364   * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2365   */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2366  int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2367  {
2368  	bool disabling;
2369  	int rc;
2370  
2371  	disabling = txq < dev->real_num_tx_queues;
2372  
2373  	if (txq < 1 || txq > dev->num_tx_queues)
2374  		return -EINVAL;
2375  
2376  	if (dev->reg_state == NETREG_REGISTERED ||
2377  	    dev->reg_state == NETREG_UNREGISTERING) {
2378  		ASSERT_RTNL();
2379  
2380  		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2381  						  txq);
2382  		if (rc)
2383  			return rc;
2384  
2385  		if (dev->num_tc)
2386  			netif_setup_tc(dev, txq);
2387  
2388  		dev->real_num_tx_queues = txq;
2389  
2390  		if (disabling) {
2391  			synchronize_net();
2392  			qdisc_reset_all_tx_gt(dev, txq);
2393  #ifdef CONFIG_XPS
2394  			netif_reset_xps_queues_gt(dev, txq);
2395  #endif
2396  		}
2397  	} else {
2398  		dev->real_num_tx_queues = txq;
2399  	}
2400  
2401  	return 0;
2402  }
2403  EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2404  
2405  #ifdef CONFIG_SYSFS
2406  /**
2407   *	netif_set_real_num_rx_queues - set actual number of RX queues used
2408   *	@dev: Network device
2409   *	@rxq: Actual number of RX queues
2410   *
2411   *	This must be called either with the rtnl_lock held or before
2412   *	registration of the net device.  Returns 0 on success, or a
2413   *	negative error code.  If called before registration, it always
2414   *	succeeds.
2415   */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2416  int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2417  {
2418  	int rc;
2419  
2420  	if (rxq < 1 || rxq > dev->num_rx_queues)
2421  		return -EINVAL;
2422  
2423  	if (dev->reg_state == NETREG_REGISTERED) {
2424  		ASSERT_RTNL();
2425  
2426  		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2427  						  rxq);
2428  		if (rc)
2429  			return rc;
2430  	}
2431  
2432  	dev->real_num_rx_queues = rxq;
2433  	return 0;
2434  }
2435  EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2436  #endif
2437  
2438  /**
2439   * netif_get_num_default_rss_queues - default number of RSS queues
2440   *
2441   * This routine should set an upper limit on the number of RSS queues
2442   * used by default by multiqueue devices.
2443   */
netif_get_num_default_rss_queues(void)2444  int netif_get_num_default_rss_queues(void)
2445  {
2446  	return is_kdump_kernel() ?
2447  		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2448  }
2449  EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2450  
__netif_reschedule(struct Qdisc * q)2451  static void __netif_reschedule(struct Qdisc *q)
2452  {
2453  	struct softnet_data *sd;
2454  	unsigned long flags;
2455  
2456  	local_irq_save(flags);
2457  	sd = this_cpu_ptr(&softnet_data);
2458  	q->next_sched = NULL;
2459  	*sd->output_queue_tailp = q;
2460  	sd->output_queue_tailp = &q->next_sched;
2461  	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2462  	local_irq_restore(flags);
2463  }
2464  
__netif_schedule(struct Qdisc * q)2465  void __netif_schedule(struct Qdisc *q)
2466  {
2467  	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2468  		__netif_reschedule(q);
2469  }
2470  EXPORT_SYMBOL(__netif_schedule);
2471  
2472  struct dev_kfree_skb_cb {
2473  	enum skb_free_reason reason;
2474  };
2475  
get_kfree_skb_cb(const struct sk_buff * skb)2476  static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2477  {
2478  	return (struct dev_kfree_skb_cb *)skb->cb;
2479  }
2480  
netif_schedule_queue(struct netdev_queue * txq)2481  void netif_schedule_queue(struct netdev_queue *txq)
2482  {
2483  	rcu_read_lock();
2484  	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2485  		struct Qdisc *q = rcu_dereference(txq->qdisc);
2486  
2487  		__netif_schedule(q);
2488  	}
2489  	rcu_read_unlock();
2490  }
2491  EXPORT_SYMBOL(netif_schedule_queue);
2492  
netif_tx_wake_queue(struct netdev_queue * dev_queue)2493  void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2494  {
2495  	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2496  		struct Qdisc *q;
2497  
2498  		rcu_read_lock();
2499  		q = rcu_dereference(dev_queue->qdisc);
2500  		__netif_schedule(q);
2501  		rcu_read_unlock();
2502  	}
2503  }
2504  EXPORT_SYMBOL(netif_tx_wake_queue);
2505  
__dev_kfree_skb_irq(struct sk_buff * skb,enum skb_free_reason reason)2506  void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2507  {
2508  	unsigned long flags;
2509  
2510  	if (unlikely(!skb))
2511  		return;
2512  
2513  	if (likely(refcount_read(&skb->users) == 1)) {
2514  		smp_rmb();
2515  		refcount_set(&skb->users, 0);
2516  	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2517  		return;
2518  	}
2519  	get_kfree_skb_cb(skb)->reason = reason;
2520  	local_irq_save(flags);
2521  	skb->next = __this_cpu_read(softnet_data.completion_queue);
2522  	__this_cpu_write(softnet_data.completion_queue, skb);
2523  	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2524  	local_irq_restore(flags);
2525  }
2526  EXPORT_SYMBOL(__dev_kfree_skb_irq);
2527  
__dev_kfree_skb_any(struct sk_buff * skb,enum skb_free_reason reason)2528  void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2529  {
2530  	if (in_irq() || irqs_disabled())
2531  		__dev_kfree_skb_irq(skb, reason);
2532  	else
2533  		dev_kfree_skb(skb);
2534  }
2535  EXPORT_SYMBOL(__dev_kfree_skb_any);
2536  
2537  
2538  /**
2539   * netif_device_detach - mark device as removed
2540   * @dev: network device
2541   *
2542   * Mark device as removed from system and therefore no longer available.
2543   */
netif_device_detach(struct net_device * dev)2544  void netif_device_detach(struct net_device *dev)
2545  {
2546  	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2547  	    netif_running(dev)) {
2548  		netif_tx_stop_all_queues(dev);
2549  	}
2550  }
2551  EXPORT_SYMBOL(netif_device_detach);
2552  
2553  /**
2554   * netif_device_attach - mark device as attached
2555   * @dev: network device
2556   *
2557   * Mark device as attached from system and restart if needed.
2558   */
netif_device_attach(struct net_device * dev)2559  void netif_device_attach(struct net_device *dev)
2560  {
2561  	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2562  	    netif_running(dev)) {
2563  		netif_tx_wake_all_queues(dev);
2564  		__netdev_watchdog_up(dev);
2565  	}
2566  }
2567  EXPORT_SYMBOL(netif_device_attach);
2568  
2569  /*
2570   * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2571   * to be used as a distribution range.
2572   */
__skb_tx_hash(const struct net_device * dev,struct sk_buff * skb,unsigned int num_tx_queues)2573  u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2574  		  unsigned int num_tx_queues)
2575  {
2576  	u32 hash;
2577  	u16 qoffset = 0;
2578  	u16 qcount = num_tx_queues;
2579  
2580  	if (skb_rx_queue_recorded(skb)) {
2581  		hash = skb_get_rx_queue(skb);
2582  		while (unlikely(hash >= num_tx_queues))
2583  			hash -= num_tx_queues;
2584  		return hash;
2585  	}
2586  
2587  	if (dev->num_tc) {
2588  		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2589  
2590  		qoffset = dev->tc_to_txq[tc].offset;
2591  		qcount = dev->tc_to_txq[tc].count;
2592  	}
2593  
2594  	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2595  }
2596  EXPORT_SYMBOL(__skb_tx_hash);
2597  
skb_warn_bad_offload(const struct sk_buff * skb)2598  static void skb_warn_bad_offload(const struct sk_buff *skb)
2599  {
2600  	static const netdev_features_t null_features;
2601  	struct net_device *dev = skb->dev;
2602  	const char *name = "";
2603  
2604  	if (!net_ratelimit())
2605  		return;
2606  
2607  	if (dev) {
2608  		if (dev->dev.parent)
2609  			name = dev_driver_string(dev->dev.parent);
2610  		else
2611  			name = netdev_name(dev);
2612  	}
2613  	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2614  	     "gso_type=%d ip_summed=%d\n",
2615  	     name, dev ? &dev->features : &null_features,
2616  	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2617  	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2618  	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2619  }
2620  
2621  /*
2622   * Invalidate hardware checksum when packet is to be mangled, and
2623   * complete checksum manually on outgoing path.
2624   */
skb_checksum_help(struct sk_buff * skb)2625  int skb_checksum_help(struct sk_buff *skb)
2626  {
2627  	__wsum csum;
2628  	int ret = 0, offset;
2629  
2630  	if (skb->ip_summed == CHECKSUM_COMPLETE)
2631  		goto out_set_summed;
2632  
2633  	if (unlikely(skb_shinfo(skb)->gso_size)) {
2634  		skb_warn_bad_offload(skb);
2635  		return -EINVAL;
2636  	}
2637  
2638  	/* Before computing a checksum, we should make sure no frag could
2639  	 * be modified by an external entity : checksum could be wrong.
2640  	 */
2641  	if (skb_has_shared_frag(skb)) {
2642  		ret = __skb_linearize(skb);
2643  		if (ret)
2644  			goto out;
2645  	}
2646  
2647  	offset = skb_checksum_start_offset(skb);
2648  	BUG_ON(offset >= skb_headlen(skb));
2649  	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2650  
2651  	offset += skb->csum_offset;
2652  	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2653  
2654  	if (skb_cloned(skb) &&
2655  	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2656  		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2657  		if (ret)
2658  			goto out;
2659  	}
2660  
2661  	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2662  out_set_summed:
2663  	skb->ip_summed = CHECKSUM_NONE;
2664  out:
2665  	return ret;
2666  }
2667  EXPORT_SYMBOL(skb_checksum_help);
2668  
skb_crc32c_csum_help(struct sk_buff * skb)2669  int skb_crc32c_csum_help(struct sk_buff *skb)
2670  {
2671  	__le32 crc32c_csum;
2672  	int ret = 0, offset, start;
2673  
2674  	if (skb->ip_summed != CHECKSUM_PARTIAL)
2675  		goto out;
2676  
2677  	if (unlikely(skb_is_gso(skb)))
2678  		goto out;
2679  
2680  	/* Before computing a checksum, we should make sure no frag could
2681  	 * be modified by an external entity : checksum could be wrong.
2682  	 */
2683  	if (unlikely(skb_has_shared_frag(skb))) {
2684  		ret = __skb_linearize(skb);
2685  		if (ret)
2686  			goto out;
2687  	}
2688  	start = skb_checksum_start_offset(skb);
2689  	offset = start + offsetof(struct sctphdr, checksum);
2690  	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2691  		ret = -EINVAL;
2692  		goto out;
2693  	}
2694  	if (skb_cloned(skb) &&
2695  	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2696  		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2697  		if (ret)
2698  			goto out;
2699  	}
2700  	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2701  						  skb->len - start, ~(__u32)0,
2702  						  crc32c_csum_stub));
2703  	*(__le32 *)(skb->data + offset) = crc32c_csum;
2704  	skb->ip_summed = CHECKSUM_NONE;
2705  	skb->csum_not_inet = 0;
2706  out:
2707  	return ret;
2708  }
2709  
skb_network_protocol(struct sk_buff * skb,int * depth)2710  __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2711  {
2712  	__be16 type = skb->protocol;
2713  
2714  	/* Tunnel gso handlers can set protocol to ethernet. */
2715  	if (type == htons(ETH_P_TEB)) {
2716  		struct ethhdr *eth;
2717  
2718  		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2719  			return 0;
2720  
2721  		eth = (struct ethhdr *)skb->data;
2722  		type = eth->h_proto;
2723  	}
2724  
2725  	return __vlan_get_protocol(skb, type, depth);
2726  }
2727  
2728  /**
2729   *	skb_mac_gso_segment - mac layer segmentation handler.
2730   *	@skb: buffer to segment
2731   *	@features: features for the output path (see dev->features)
2732   */
skb_mac_gso_segment(struct sk_buff * skb,netdev_features_t features)2733  struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2734  				    netdev_features_t features)
2735  {
2736  	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2737  	struct packet_offload *ptype;
2738  	int vlan_depth = skb->mac_len;
2739  	__be16 type = skb_network_protocol(skb, &vlan_depth);
2740  
2741  	if (unlikely(!type))
2742  		return ERR_PTR(-EINVAL);
2743  
2744  	__skb_pull(skb, vlan_depth);
2745  
2746  	rcu_read_lock();
2747  	list_for_each_entry_rcu(ptype, &offload_base, list) {
2748  		if (ptype->type == type && ptype->callbacks.gso_segment) {
2749  			segs = ptype->callbacks.gso_segment(skb, features);
2750  			break;
2751  		}
2752  	}
2753  	rcu_read_unlock();
2754  
2755  	__skb_push(skb, skb->data - skb_mac_header(skb));
2756  
2757  	return segs;
2758  }
2759  EXPORT_SYMBOL(skb_mac_gso_segment);
2760  
2761  
2762  /* openvswitch calls this on rx path, so we need a different check.
2763   */
skb_needs_check(struct sk_buff * skb,bool tx_path)2764  static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2765  {
2766  	if (tx_path)
2767  		return skb->ip_summed != CHECKSUM_PARTIAL &&
2768  		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2769  
2770  	return skb->ip_summed == CHECKSUM_NONE;
2771  }
2772  
2773  /**
2774   *	__skb_gso_segment - Perform segmentation on skb.
2775   *	@skb: buffer to segment
2776   *	@features: features for the output path (see dev->features)
2777   *	@tx_path: whether it is called in TX path
2778   *
2779   *	This function segments the given skb and returns a list of segments.
2780   *
2781   *	It may return NULL if the skb requires no segmentation.  This is
2782   *	only possible when GSO is used for verifying header integrity.
2783   *
2784   *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2785   */
__skb_gso_segment(struct sk_buff * skb,netdev_features_t features,bool tx_path)2786  struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2787  				  netdev_features_t features, bool tx_path)
2788  {
2789  	struct sk_buff *segs;
2790  
2791  	if (unlikely(skb_needs_check(skb, tx_path))) {
2792  		int err;
2793  
2794  		/* We're going to init ->check field in TCP or UDP header */
2795  		err = skb_cow_head(skb, 0);
2796  		if (err < 0)
2797  			return ERR_PTR(err);
2798  	}
2799  
2800  	/* Only report GSO partial support if it will enable us to
2801  	 * support segmentation on this frame without needing additional
2802  	 * work.
2803  	 */
2804  	if (features & NETIF_F_GSO_PARTIAL) {
2805  		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2806  		struct net_device *dev = skb->dev;
2807  
2808  		partial_features |= dev->features & dev->gso_partial_features;
2809  		if (!skb_gso_ok(skb, features | partial_features))
2810  			features &= ~NETIF_F_GSO_PARTIAL;
2811  	}
2812  
2813  	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2814  		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2815  
2816  	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2817  	SKB_GSO_CB(skb)->encap_level = 0;
2818  
2819  	skb_reset_mac_header(skb);
2820  	skb_reset_mac_len(skb);
2821  
2822  	segs = skb_mac_gso_segment(skb, features);
2823  
2824  	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2825  		skb_warn_bad_offload(skb);
2826  
2827  	return segs;
2828  }
2829  EXPORT_SYMBOL(__skb_gso_segment);
2830  
2831  /* Take action when hardware reception checksum errors are detected. */
2832  #ifdef CONFIG_BUG
netdev_rx_csum_fault(struct net_device * dev)2833  void netdev_rx_csum_fault(struct net_device *dev)
2834  {
2835  	if (net_ratelimit()) {
2836  		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2837  		dump_stack();
2838  	}
2839  }
2840  EXPORT_SYMBOL(netdev_rx_csum_fault);
2841  #endif
2842  
2843  /* Actually, we should eliminate this check as soon as we know, that:
2844   * 1. IOMMU is present and allows to map all the memory.
2845   * 2. No high memory really exists on this machine.
2846   */
2847  
illegal_highdma(struct net_device * dev,struct sk_buff * skb)2848  static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2849  {
2850  #ifdef CONFIG_HIGHMEM
2851  	int i;
2852  
2853  	if (!(dev->features & NETIF_F_HIGHDMA)) {
2854  		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2855  			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2856  
2857  			if (PageHighMem(skb_frag_page(frag)))
2858  				return 1;
2859  		}
2860  	}
2861  
2862  	if (PCI_DMA_BUS_IS_PHYS) {
2863  		struct device *pdev = dev->dev.parent;
2864  
2865  		if (!pdev)
2866  			return 0;
2867  		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2868  			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2869  			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2870  
2871  			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2872  				return 1;
2873  		}
2874  	}
2875  #endif
2876  	return 0;
2877  }
2878  
2879  /* If MPLS offload request, verify we are testing hardware MPLS features
2880   * instead of standard features for the netdev.
2881   */
2882  #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2883  static netdev_features_t net_mpls_features(struct sk_buff *skb,
2884  					   netdev_features_t features,
2885  					   __be16 type)
2886  {
2887  	if (eth_p_mpls(type))
2888  		features &= skb->dev->mpls_features;
2889  
2890  	return features;
2891  }
2892  #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)2893  static netdev_features_t net_mpls_features(struct sk_buff *skb,
2894  					   netdev_features_t features,
2895  					   __be16 type)
2896  {
2897  	return features;
2898  }
2899  #endif
2900  
harmonize_features(struct sk_buff * skb,netdev_features_t features)2901  static netdev_features_t harmonize_features(struct sk_buff *skb,
2902  	netdev_features_t features)
2903  {
2904  	int tmp;
2905  	__be16 type;
2906  
2907  	type = skb_network_protocol(skb, &tmp);
2908  	features = net_mpls_features(skb, features, type);
2909  
2910  	if (skb->ip_summed != CHECKSUM_NONE &&
2911  	    !can_checksum_protocol(features, type)) {
2912  		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2913  	}
2914  	if (illegal_highdma(skb->dev, skb))
2915  		features &= ~NETIF_F_SG;
2916  
2917  	return features;
2918  }
2919  
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2920  netdev_features_t passthru_features_check(struct sk_buff *skb,
2921  					  struct net_device *dev,
2922  					  netdev_features_t features)
2923  {
2924  	return features;
2925  }
2926  EXPORT_SYMBOL(passthru_features_check);
2927  
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2928  static netdev_features_t dflt_features_check(struct sk_buff *skb,
2929  					     struct net_device *dev,
2930  					     netdev_features_t features)
2931  {
2932  	return vlan_features_check(skb, features);
2933  }
2934  
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)2935  static netdev_features_t gso_features_check(const struct sk_buff *skb,
2936  					    struct net_device *dev,
2937  					    netdev_features_t features)
2938  {
2939  	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2940  
2941  	if (gso_segs > dev->gso_max_segs)
2942  		return features & ~NETIF_F_GSO_MASK;
2943  
2944  	/* Support for GSO partial features requires software
2945  	 * intervention before we can actually process the packets
2946  	 * so we need to strip support for any partial features now
2947  	 * and we can pull them back in after we have partially
2948  	 * segmented the frame.
2949  	 */
2950  	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2951  		features &= ~dev->gso_partial_features;
2952  
2953  	/* Make sure to clear the IPv4 ID mangling feature if the
2954  	 * IPv4 header has the potential to be fragmented.
2955  	 */
2956  	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2957  		struct iphdr *iph = skb->encapsulation ?
2958  				    inner_ip_hdr(skb) : ip_hdr(skb);
2959  
2960  		if (!(iph->frag_off & htons(IP_DF)))
2961  			features &= ~NETIF_F_TSO_MANGLEID;
2962  	}
2963  
2964  	return features;
2965  }
2966  
netif_skb_features(struct sk_buff * skb)2967  netdev_features_t netif_skb_features(struct sk_buff *skb)
2968  {
2969  	struct net_device *dev = skb->dev;
2970  	netdev_features_t features = dev->features;
2971  
2972  	if (skb_is_gso(skb))
2973  		features = gso_features_check(skb, dev, features);
2974  
2975  	/* If encapsulation offload request, verify we are testing
2976  	 * hardware encapsulation features instead of standard
2977  	 * features for the netdev
2978  	 */
2979  	if (skb->encapsulation)
2980  		features &= dev->hw_enc_features;
2981  
2982  	if (skb_vlan_tagged(skb))
2983  		features = netdev_intersect_features(features,
2984  						     dev->vlan_features |
2985  						     NETIF_F_HW_VLAN_CTAG_TX |
2986  						     NETIF_F_HW_VLAN_STAG_TX);
2987  
2988  	if (dev->netdev_ops->ndo_features_check)
2989  		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2990  								features);
2991  	else
2992  		features &= dflt_features_check(skb, dev, features);
2993  
2994  	return harmonize_features(skb, features);
2995  }
2996  EXPORT_SYMBOL(netif_skb_features);
2997  
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)2998  static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2999  		    struct netdev_queue *txq, bool more)
3000  {
3001  	unsigned int len;
3002  	int rc;
3003  
3004  	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3005  		dev_queue_xmit_nit(skb, dev);
3006  
3007  	len = skb->len;
3008  	trace_net_dev_start_xmit(skb, dev);
3009  	rc = netdev_start_xmit(skb, dev, txq, more);
3010  	trace_net_dev_xmit(skb, rc, dev, len);
3011  
3012  	return rc;
3013  }
3014  
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3015  struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3016  				    struct netdev_queue *txq, int *ret)
3017  {
3018  	struct sk_buff *skb = first;
3019  	int rc = NETDEV_TX_OK;
3020  
3021  	while (skb) {
3022  		struct sk_buff *next = skb->next;
3023  
3024  		skb->next = NULL;
3025  		rc = xmit_one(skb, dev, txq, next != NULL);
3026  		if (unlikely(!dev_xmit_complete(rc))) {
3027  			skb->next = next;
3028  			goto out;
3029  		}
3030  
3031  		skb = next;
3032  		if (netif_tx_queue_stopped(txq) && skb) {
3033  			rc = NETDEV_TX_BUSY;
3034  			break;
3035  		}
3036  	}
3037  
3038  out:
3039  	*ret = rc;
3040  	return skb;
3041  }
3042  
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3043  static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3044  					  netdev_features_t features)
3045  {
3046  	if (skb_vlan_tag_present(skb) &&
3047  	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3048  		skb = __vlan_hwaccel_push_inside(skb);
3049  	return skb;
3050  }
3051  
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3052  int skb_csum_hwoffload_help(struct sk_buff *skb,
3053  			    const netdev_features_t features)
3054  {
3055  	if (unlikely(skb->csum_not_inet))
3056  		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3057  			skb_crc32c_csum_help(skb);
3058  
3059  	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3060  }
3061  EXPORT_SYMBOL(skb_csum_hwoffload_help);
3062  
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3063  static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3064  {
3065  	netdev_features_t features;
3066  
3067  	features = netif_skb_features(skb);
3068  	skb = validate_xmit_vlan(skb, features);
3069  	if (unlikely(!skb))
3070  		goto out_null;
3071  
3072  	if (netif_needs_gso(skb, features)) {
3073  		struct sk_buff *segs;
3074  
3075  		segs = skb_gso_segment(skb, features);
3076  		if (IS_ERR(segs)) {
3077  			goto out_kfree_skb;
3078  		} else if (segs) {
3079  			consume_skb(skb);
3080  			skb = segs;
3081  		}
3082  	} else {
3083  		if (skb_needs_linearize(skb, features) &&
3084  		    __skb_linearize(skb))
3085  			goto out_kfree_skb;
3086  
3087  		if (validate_xmit_xfrm(skb, features))
3088  			goto out_kfree_skb;
3089  
3090  		/* If packet is not checksummed and device does not
3091  		 * support checksumming for this protocol, complete
3092  		 * checksumming here.
3093  		 */
3094  		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3095  			if (skb->encapsulation)
3096  				skb_set_inner_transport_header(skb,
3097  							       skb_checksum_start_offset(skb));
3098  			else
3099  				skb_set_transport_header(skb,
3100  							 skb_checksum_start_offset(skb));
3101  			if (skb_csum_hwoffload_help(skb, features))
3102  				goto out_kfree_skb;
3103  		}
3104  	}
3105  
3106  	return skb;
3107  
3108  out_kfree_skb:
3109  	kfree_skb(skb);
3110  out_null:
3111  	atomic_long_inc(&dev->tx_dropped);
3112  	return NULL;
3113  }
3114  
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev)3115  struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3116  {
3117  	struct sk_buff *next, *head = NULL, *tail;
3118  
3119  	for (; skb != NULL; skb = next) {
3120  		next = skb->next;
3121  		skb->next = NULL;
3122  
3123  		/* in case skb wont be segmented, point to itself */
3124  		skb->prev = skb;
3125  
3126  		skb = validate_xmit_skb(skb, dev);
3127  		if (!skb)
3128  			continue;
3129  
3130  		if (!head)
3131  			head = skb;
3132  		else
3133  			tail->next = skb;
3134  		/* If skb was segmented, skb->prev points to
3135  		 * the last segment. If not, it still contains skb.
3136  		 */
3137  		tail = skb->prev;
3138  	}
3139  	return head;
3140  }
3141  EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3142  
qdisc_pkt_len_init(struct sk_buff * skb)3143  static void qdisc_pkt_len_init(struct sk_buff *skb)
3144  {
3145  	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3146  
3147  	qdisc_skb_cb(skb)->pkt_len = skb->len;
3148  
3149  	/* To get more precise estimation of bytes sent on wire,
3150  	 * we add to pkt_len the headers size of all segments
3151  	 */
3152  	if (shinfo->gso_size)  {
3153  		unsigned int hdr_len;
3154  		u16 gso_segs = shinfo->gso_segs;
3155  
3156  		/* mac layer + network layer */
3157  		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3158  
3159  		/* + transport layer */
3160  		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3161  			const struct tcphdr *th;
3162  			struct tcphdr _tcphdr;
3163  
3164  			th = skb_header_pointer(skb, skb_transport_offset(skb),
3165  						sizeof(_tcphdr), &_tcphdr);
3166  			if (likely(th))
3167  				hdr_len += __tcp_hdrlen(th);
3168  		} else {
3169  			struct udphdr _udphdr;
3170  
3171  			if (skb_header_pointer(skb, skb_transport_offset(skb),
3172  					       sizeof(_udphdr), &_udphdr))
3173  				hdr_len += sizeof(struct udphdr);
3174  		}
3175  
3176  		if (shinfo->gso_type & SKB_GSO_DODGY)
3177  			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3178  						shinfo->gso_size);
3179  
3180  		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3181  	}
3182  }
3183  
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3184  static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3185  				 struct net_device *dev,
3186  				 struct netdev_queue *txq)
3187  {
3188  	spinlock_t *root_lock = qdisc_lock(q);
3189  	struct sk_buff *to_free = NULL;
3190  	bool contended;
3191  	int rc;
3192  
3193  	qdisc_calculate_pkt_len(skb, q);
3194  	/*
3195  	 * Heuristic to force contended enqueues to serialize on a
3196  	 * separate lock before trying to get qdisc main lock.
3197  	 * This permits qdisc->running owner to get the lock more
3198  	 * often and dequeue packets faster.
3199  	 */
3200  	contended = qdisc_is_running(q);
3201  	if (unlikely(contended))
3202  		spin_lock(&q->busylock);
3203  
3204  	spin_lock(root_lock);
3205  	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3206  		__qdisc_drop(skb, &to_free);
3207  		rc = NET_XMIT_DROP;
3208  	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3209  		   qdisc_run_begin(q)) {
3210  		/*
3211  		 * This is a work-conserving queue; there are no old skbs
3212  		 * waiting to be sent out; and the qdisc is not running -
3213  		 * xmit the skb directly.
3214  		 */
3215  
3216  		qdisc_bstats_update(q, skb);
3217  
3218  		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3219  			if (unlikely(contended)) {
3220  				spin_unlock(&q->busylock);
3221  				contended = false;
3222  			}
3223  			__qdisc_run(q);
3224  		} else
3225  			qdisc_run_end(q);
3226  
3227  		rc = NET_XMIT_SUCCESS;
3228  	} else {
3229  		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3230  		if (qdisc_run_begin(q)) {
3231  			if (unlikely(contended)) {
3232  				spin_unlock(&q->busylock);
3233  				contended = false;
3234  			}
3235  			__qdisc_run(q);
3236  		}
3237  	}
3238  	spin_unlock(root_lock);
3239  	if (unlikely(to_free))
3240  		kfree_skb_list(to_free);
3241  	if (unlikely(contended))
3242  		spin_unlock(&q->busylock);
3243  	return rc;
3244  }
3245  
3246  #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3247  static void skb_update_prio(struct sk_buff *skb)
3248  {
3249  	const struct netprio_map *map;
3250  	const struct sock *sk;
3251  	unsigned int prioidx;
3252  
3253  	if (skb->priority)
3254  		return;
3255  	map = rcu_dereference_bh(skb->dev->priomap);
3256  	if (!map)
3257  		return;
3258  	sk = skb_to_full_sk(skb);
3259  	if (!sk)
3260  		return;
3261  
3262  	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3263  
3264  	if (prioidx < map->priomap_len)
3265  		skb->priority = map->priomap[prioidx];
3266  }
3267  #else
3268  #define skb_update_prio(skb)
3269  #endif
3270  
3271  DEFINE_PER_CPU(int, xmit_recursion);
3272  EXPORT_SYMBOL(xmit_recursion);
3273  
3274  /**
3275   *	dev_loopback_xmit - loop back @skb
3276   *	@net: network namespace this loopback is happening in
3277   *	@sk:  sk needed to be a netfilter okfn
3278   *	@skb: buffer to transmit
3279   */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3280  int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3281  {
3282  	skb_reset_mac_header(skb);
3283  	__skb_pull(skb, skb_network_offset(skb));
3284  	skb->pkt_type = PACKET_LOOPBACK;
3285  	skb->ip_summed = CHECKSUM_UNNECESSARY;
3286  	WARN_ON(!skb_dst(skb));
3287  	skb_dst_force(skb);
3288  	netif_rx_ni(skb);
3289  	return 0;
3290  }
3291  EXPORT_SYMBOL(dev_loopback_xmit);
3292  
3293  #ifdef CONFIG_NET_EGRESS
3294  static struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)3295  sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3296  {
3297  	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3298  	struct tcf_result cl_res;
3299  
3300  	if (!cl)
3301  		return skb;
3302  
3303  	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3304  	qdisc_bstats_cpu_update(cl->q, skb);
3305  
3306  	switch (tcf_classify(skb, cl, &cl_res, false)) {
3307  	case TC_ACT_OK:
3308  	case TC_ACT_RECLASSIFY:
3309  		skb->tc_index = TC_H_MIN(cl_res.classid);
3310  		break;
3311  	case TC_ACT_SHOT:
3312  		qdisc_qstats_cpu_drop(cl->q);
3313  		*ret = NET_XMIT_DROP;
3314  		kfree_skb(skb);
3315  		return NULL;
3316  	case TC_ACT_STOLEN:
3317  	case TC_ACT_QUEUED:
3318  	case TC_ACT_TRAP:
3319  		*ret = NET_XMIT_SUCCESS;
3320  		consume_skb(skb);
3321  		return NULL;
3322  	case TC_ACT_REDIRECT:
3323  		/* No need to push/pop skb's mac_header here on egress! */
3324  		skb_do_redirect(skb);
3325  		*ret = NET_XMIT_SUCCESS;
3326  		return NULL;
3327  	default:
3328  		break;
3329  	}
3330  
3331  	return skb;
3332  }
3333  #endif /* CONFIG_NET_EGRESS */
3334  
get_xps_queue(struct net_device * dev,struct sk_buff * skb)3335  static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3336  {
3337  #ifdef CONFIG_XPS
3338  	struct xps_dev_maps *dev_maps;
3339  	struct xps_map *map;
3340  	int queue_index = -1;
3341  
3342  	rcu_read_lock();
3343  	dev_maps = rcu_dereference(dev->xps_maps);
3344  	if (dev_maps) {
3345  		unsigned int tci = skb->sender_cpu - 1;
3346  
3347  		if (dev->num_tc) {
3348  			tci *= dev->num_tc;
3349  			tci += netdev_get_prio_tc_map(dev, skb->priority);
3350  		}
3351  
3352  		map = rcu_dereference(dev_maps->cpu_map[tci]);
3353  		if (map) {
3354  			if (map->len == 1)
3355  				queue_index = map->queues[0];
3356  			else
3357  				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3358  									   map->len)];
3359  			if (unlikely(queue_index >= dev->real_num_tx_queues))
3360  				queue_index = -1;
3361  		}
3362  	}
3363  	rcu_read_unlock();
3364  
3365  	return queue_index;
3366  #else
3367  	return -1;
3368  #endif
3369  }
3370  
__netdev_pick_tx(struct net_device * dev,struct sk_buff * skb)3371  static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3372  {
3373  	struct sock *sk = skb->sk;
3374  	int queue_index = sk_tx_queue_get(sk);
3375  
3376  	if (queue_index < 0 || skb->ooo_okay ||
3377  	    queue_index >= dev->real_num_tx_queues) {
3378  		int new_index = get_xps_queue(dev, skb);
3379  
3380  		if (new_index < 0)
3381  			new_index = skb_tx_hash(dev, skb);
3382  
3383  		if (queue_index != new_index && sk &&
3384  		    sk_fullsock(sk) &&
3385  		    rcu_access_pointer(sk->sk_dst_cache))
3386  			sk_tx_queue_set(sk, new_index);
3387  
3388  		queue_index = new_index;
3389  	}
3390  
3391  	return queue_index;
3392  }
3393  
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,void * accel_priv)3394  struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3395  				    struct sk_buff *skb,
3396  				    void *accel_priv)
3397  {
3398  	int queue_index = 0;
3399  
3400  #ifdef CONFIG_XPS
3401  	u32 sender_cpu = skb->sender_cpu - 1;
3402  
3403  	if (sender_cpu >= (u32)NR_CPUS)
3404  		skb->sender_cpu = raw_smp_processor_id() + 1;
3405  #endif
3406  
3407  	if (dev->real_num_tx_queues != 1) {
3408  		const struct net_device_ops *ops = dev->netdev_ops;
3409  
3410  		if (ops->ndo_select_queue)
3411  			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3412  							    __netdev_pick_tx);
3413  		else
3414  			queue_index = __netdev_pick_tx(dev, skb);
3415  
3416  		if (!accel_priv)
3417  			queue_index = netdev_cap_txqueue(dev, queue_index);
3418  	}
3419  
3420  	skb_set_queue_mapping(skb, queue_index);
3421  	return netdev_get_tx_queue(dev, queue_index);
3422  }
3423  
3424  /**
3425   *	__dev_queue_xmit - transmit a buffer
3426   *	@skb: buffer to transmit
3427   *	@accel_priv: private data used for L2 forwarding offload
3428   *
3429   *	Queue a buffer for transmission to a network device. The caller must
3430   *	have set the device and priority and built the buffer before calling
3431   *	this function. The function can be called from an interrupt.
3432   *
3433   *	A negative errno code is returned on a failure. A success does not
3434   *	guarantee the frame will be transmitted as it may be dropped due
3435   *	to congestion or traffic shaping.
3436   *
3437   * -----------------------------------------------------------------------------------
3438   *      I notice this method can also return errors from the queue disciplines,
3439   *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3440   *      be positive.
3441   *
3442   *      Regardless of the return value, the skb is consumed, so it is currently
3443   *      difficult to retry a send to this method.  (You can bump the ref count
3444   *      before sending to hold a reference for retry if you are careful.)
3445   *
3446   *      When calling this method, interrupts MUST be enabled.  This is because
3447   *      the BH enable code must have IRQs enabled so that it will not deadlock.
3448   *          --BLG
3449   */
__dev_queue_xmit(struct sk_buff * skb,void * accel_priv)3450  static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3451  {
3452  	struct net_device *dev = skb->dev;
3453  	struct netdev_queue *txq;
3454  	struct Qdisc *q;
3455  	int rc = -ENOMEM;
3456  
3457  	skb_reset_mac_header(skb);
3458  
3459  	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3460  		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3461  
3462  	/* Disable soft irqs for various locks below. Also
3463  	 * stops preemption for RCU.
3464  	 */
3465  	rcu_read_lock_bh();
3466  
3467  	skb_update_prio(skb);
3468  
3469  	qdisc_pkt_len_init(skb);
3470  #ifdef CONFIG_NET_CLS_ACT
3471  	skb->tc_at_ingress = 0;
3472  # ifdef CONFIG_NET_EGRESS
3473  	if (static_key_false(&egress_needed)) {
3474  		skb = sch_handle_egress(skb, &rc, dev);
3475  		if (!skb)
3476  			goto out;
3477  	}
3478  # endif
3479  #endif
3480  	/* If device/qdisc don't need skb->dst, release it right now while
3481  	 * its hot in this cpu cache.
3482  	 */
3483  	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3484  		skb_dst_drop(skb);
3485  	else
3486  		skb_dst_force(skb);
3487  
3488  	txq = netdev_pick_tx(dev, skb, accel_priv);
3489  	q = rcu_dereference_bh(txq->qdisc);
3490  
3491  	trace_net_dev_queue(skb);
3492  	if (q->enqueue) {
3493  		rc = __dev_xmit_skb(skb, q, dev, txq);
3494  		goto out;
3495  	}
3496  
3497  	/* The device has no queue. Common case for software devices:
3498  	 * loopback, all the sorts of tunnels...
3499  
3500  	 * Really, it is unlikely that netif_tx_lock protection is necessary
3501  	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3502  	 * counters.)
3503  	 * However, it is possible, that they rely on protection
3504  	 * made by us here.
3505  
3506  	 * Check this and shot the lock. It is not prone from deadlocks.
3507  	 *Either shot noqueue qdisc, it is even simpler 8)
3508  	 */
3509  	if (dev->flags & IFF_UP) {
3510  		int cpu = smp_processor_id(); /* ok because BHs are off */
3511  
3512  		if (txq->xmit_lock_owner != cpu) {
3513  			if (unlikely(__this_cpu_read(xmit_recursion) >
3514  				     XMIT_RECURSION_LIMIT))
3515  				goto recursion_alert;
3516  
3517  			skb = validate_xmit_skb(skb, dev);
3518  			if (!skb)
3519  				goto out;
3520  
3521  			HARD_TX_LOCK(dev, txq, cpu);
3522  
3523  			if (!netif_xmit_stopped(txq)) {
3524  				__this_cpu_inc(xmit_recursion);
3525  				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3526  				__this_cpu_dec(xmit_recursion);
3527  				if (dev_xmit_complete(rc)) {
3528  					HARD_TX_UNLOCK(dev, txq);
3529  					goto out;
3530  				}
3531  			}
3532  			HARD_TX_UNLOCK(dev, txq);
3533  			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3534  					     dev->name);
3535  		} else {
3536  			/* Recursion is detected! It is possible,
3537  			 * unfortunately
3538  			 */
3539  recursion_alert:
3540  			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3541  					     dev->name);
3542  		}
3543  	}
3544  
3545  	rc = -ENETDOWN;
3546  	rcu_read_unlock_bh();
3547  
3548  	atomic_long_inc(&dev->tx_dropped);
3549  	kfree_skb_list(skb);
3550  	return rc;
3551  out:
3552  	rcu_read_unlock_bh();
3553  	return rc;
3554  }
3555  
dev_queue_xmit(struct sk_buff * skb)3556  int dev_queue_xmit(struct sk_buff *skb)
3557  {
3558  	return __dev_queue_xmit(skb, NULL);
3559  }
3560  EXPORT_SYMBOL(dev_queue_xmit);
3561  
dev_queue_xmit_accel(struct sk_buff * skb,void * accel_priv)3562  int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3563  {
3564  	return __dev_queue_xmit(skb, accel_priv);
3565  }
3566  EXPORT_SYMBOL(dev_queue_xmit_accel);
3567  
3568  
3569  /*************************************************************************
3570   *			Receiver routines
3571   *************************************************************************/
3572  
3573  int netdev_max_backlog __read_mostly = 1000;
3574  EXPORT_SYMBOL(netdev_max_backlog);
3575  
3576  int netdev_tstamp_prequeue __read_mostly = 1;
3577  int netdev_budget __read_mostly = 300;
3578  unsigned int __read_mostly netdev_budget_usecs = 2000;
3579  int weight_p __read_mostly = 64;           /* old backlog weight */
3580  int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3581  int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3582  int dev_rx_weight __read_mostly = 64;
3583  int dev_tx_weight __read_mostly = 64;
3584  
3585  /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)3586  static inline void ____napi_schedule(struct softnet_data *sd,
3587  				     struct napi_struct *napi)
3588  {
3589  	list_add_tail(&napi->poll_list, &sd->poll_list);
3590  	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3591  }
3592  
3593  #ifdef CONFIG_RPS
3594  
3595  /* One global table that all flow-based protocols share. */
3596  struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3597  EXPORT_SYMBOL(rps_sock_flow_table);
3598  u32 rps_cpu_mask __read_mostly;
3599  EXPORT_SYMBOL(rps_cpu_mask);
3600  
3601  struct static_key rps_needed __read_mostly;
3602  EXPORT_SYMBOL(rps_needed);
3603  struct static_key rfs_needed __read_mostly;
3604  EXPORT_SYMBOL(rfs_needed);
3605  
3606  static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)3607  set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3608  	    struct rps_dev_flow *rflow, u16 next_cpu)
3609  {
3610  	if (next_cpu < nr_cpu_ids) {
3611  #ifdef CONFIG_RFS_ACCEL
3612  		struct netdev_rx_queue *rxqueue;
3613  		struct rps_dev_flow_table *flow_table;
3614  		struct rps_dev_flow *old_rflow;
3615  		u32 flow_id;
3616  		u16 rxq_index;
3617  		int rc;
3618  
3619  		/* Should we steer this flow to a different hardware queue? */
3620  		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3621  		    !(dev->features & NETIF_F_NTUPLE))
3622  			goto out;
3623  		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3624  		if (rxq_index == skb_get_rx_queue(skb))
3625  			goto out;
3626  
3627  		rxqueue = dev->_rx + rxq_index;
3628  		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3629  		if (!flow_table)
3630  			goto out;
3631  		flow_id = skb_get_hash(skb) & flow_table->mask;
3632  		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3633  							rxq_index, flow_id);
3634  		if (rc < 0)
3635  			goto out;
3636  		old_rflow = rflow;
3637  		rflow = &flow_table->flows[flow_id];
3638  		rflow->filter = rc;
3639  		if (old_rflow->filter == rflow->filter)
3640  			old_rflow->filter = RPS_NO_FILTER;
3641  	out:
3642  #endif
3643  		rflow->last_qtail =
3644  			per_cpu(softnet_data, next_cpu).input_queue_head;
3645  	}
3646  
3647  	rflow->cpu = next_cpu;
3648  	return rflow;
3649  }
3650  
3651  /*
3652   * get_rps_cpu is called from netif_receive_skb and returns the target
3653   * CPU from the RPS map of the receiving queue for a given skb.
3654   * rcu_read_lock must be held on entry.
3655   */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)3656  static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3657  		       struct rps_dev_flow **rflowp)
3658  {
3659  	const struct rps_sock_flow_table *sock_flow_table;
3660  	struct netdev_rx_queue *rxqueue = dev->_rx;
3661  	struct rps_dev_flow_table *flow_table;
3662  	struct rps_map *map;
3663  	int cpu = -1;
3664  	u32 tcpu;
3665  	u32 hash;
3666  
3667  	if (skb_rx_queue_recorded(skb)) {
3668  		u16 index = skb_get_rx_queue(skb);
3669  
3670  		if (unlikely(index >= dev->real_num_rx_queues)) {
3671  			WARN_ONCE(dev->real_num_rx_queues > 1,
3672  				  "%s received packet on queue %u, but number "
3673  				  "of RX queues is %u\n",
3674  				  dev->name, index, dev->real_num_rx_queues);
3675  			goto done;
3676  		}
3677  		rxqueue += index;
3678  	}
3679  
3680  	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3681  
3682  	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3683  	map = rcu_dereference(rxqueue->rps_map);
3684  	if (!flow_table && !map)
3685  		goto done;
3686  
3687  	skb_reset_network_header(skb);
3688  	hash = skb_get_hash(skb);
3689  	if (!hash)
3690  		goto done;
3691  
3692  	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3693  	if (flow_table && sock_flow_table) {
3694  		struct rps_dev_flow *rflow;
3695  		u32 next_cpu;
3696  		u32 ident;
3697  
3698  		/* First check into global flow table if there is a match */
3699  		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3700  		if ((ident ^ hash) & ~rps_cpu_mask)
3701  			goto try_rps;
3702  
3703  		next_cpu = ident & rps_cpu_mask;
3704  
3705  		/* OK, now we know there is a match,
3706  		 * we can look at the local (per receive queue) flow table
3707  		 */
3708  		rflow = &flow_table->flows[hash & flow_table->mask];
3709  		tcpu = rflow->cpu;
3710  
3711  		/*
3712  		 * If the desired CPU (where last recvmsg was done) is
3713  		 * different from current CPU (one in the rx-queue flow
3714  		 * table entry), switch if one of the following holds:
3715  		 *   - Current CPU is unset (>= nr_cpu_ids).
3716  		 *   - Current CPU is offline.
3717  		 *   - The current CPU's queue tail has advanced beyond the
3718  		 *     last packet that was enqueued using this table entry.
3719  		 *     This guarantees that all previous packets for the flow
3720  		 *     have been dequeued, thus preserving in order delivery.
3721  		 */
3722  		if (unlikely(tcpu != next_cpu) &&
3723  		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3724  		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3725  		      rflow->last_qtail)) >= 0)) {
3726  			tcpu = next_cpu;
3727  			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3728  		}
3729  
3730  		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3731  			*rflowp = rflow;
3732  			cpu = tcpu;
3733  			goto done;
3734  		}
3735  	}
3736  
3737  try_rps:
3738  
3739  	if (map) {
3740  		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3741  		if (cpu_online(tcpu)) {
3742  			cpu = tcpu;
3743  			goto done;
3744  		}
3745  	}
3746  
3747  done:
3748  	return cpu;
3749  }
3750  
3751  #ifdef CONFIG_RFS_ACCEL
3752  
3753  /**
3754   * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3755   * @dev: Device on which the filter was set
3756   * @rxq_index: RX queue index
3757   * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3758   * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3759   *
3760   * Drivers that implement ndo_rx_flow_steer() should periodically call
3761   * this function for each installed filter and remove the filters for
3762   * which it returns %true.
3763   */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)3764  bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3765  			 u32 flow_id, u16 filter_id)
3766  {
3767  	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3768  	struct rps_dev_flow_table *flow_table;
3769  	struct rps_dev_flow *rflow;
3770  	bool expire = true;
3771  	unsigned int cpu;
3772  
3773  	rcu_read_lock();
3774  	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3775  	if (flow_table && flow_id <= flow_table->mask) {
3776  		rflow = &flow_table->flows[flow_id];
3777  		cpu = ACCESS_ONCE(rflow->cpu);
3778  		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3779  		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3780  			   rflow->last_qtail) <
3781  		     (int)(10 * flow_table->mask)))
3782  			expire = false;
3783  	}
3784  	rcu_read_unlock();
3785  	return expire;
3786  }
3787  EXPORT_SYMBOL(rps_may_expire_flow);
3788  
3789  #endif /* CONFIG_RFS_ACCEL */
3790  
3791  /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)3792  static void rps_trigger_softirq(void *data)
3793  {
3794  	struct softnet_data *sd = data;
3795  
3796  	____napi_schedule(sd, &sd->backlog);
3797  	sd->received_rps++;
3798  }
3799  
3800  #endif /* CONFIG_RPS */
3801  
3802  /*
3803   * Check if this softnet_data structure is another cpu one
3804   * If yes, queue it to our IPI list and return 1
3805   * If no, return 0
3806   */
rps_ipi_queued(struct softnet_data * sd)3807  static int rps_ipi_queued(struct softnet_data *sd)
3808  {
3809  #ifdef CONFIG_RPS
3810  	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3811  
3812  	if (sd != mysd) {
3813  		sd->rps_ipi_next = mysd->rps_ipi_list;
3814  		mysd->rps_ipi_list = sd;
3815  
3816  		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3817  		return 1;
3818  	}
3819  #endif /* CONFIG_RPS */
3820  	return 0;
3821  }
3822  
3823  #ifdef CONFIG_NET_FLOW_LIMIT
3824  int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3825  #endif
3826  
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)3827  static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3828  {
3829  #ifdef CONFIG_NET_FLOW_LIMIT
3830  	struct sd_flow_limit *fl;
3831  	struct softnet_data *sd;
3832  	unsigned int old_flow, new_flow;
3833  
3834  	if (qlen < (netdev_max_backlog >> 1))
3835  		return false;
3836  
3837  	sd = this_cpu_ptr(&softnet_data);
3838  
3839  	rcu_read_lock();
3840  	fl = rcu_dereference(sd->flow_limit);
3841  	if (fl) {
3842  		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3843  		old_flow = fl->history[fl->history_head];
3844  		fl->history[fl->history_head] = new_flow;
3845  
3846  		fl->history_head++;
3847  		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3848  
3849  		if (likely(fl->buckets[old_flow]))
3850  			fl->buckets[old_flow]--;
3851  
3852  		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3853  			fl->count++;
3854  			rcu_read_unlock();
3855  			return true;
3856  		}
3857  	}
3858  	rcu_read_unlock();
3859  #endif
3860  	return false;
3861  }
3862  
3863  /*
3864   * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3865   * queue (may be a remote CPU queue).
3866   */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)3867  static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3868  			      unsigned int *qtail)
3869  {
3870  	struct softnet_data *sd;
3871  	unsigned long flags;
3872  	unsigned int qlen;
3873  
3874  	sd = &per_cpu(softnet_data, cpu);
3875  
3876  	local_irq_save(flags);
3877  
3878  	rps_lock(sd);
3879  	if (!netif_running(skb->dev))
3880  		goto drop;
3881  	qlen = skb_queue_len(&sd->input_pkt_queue);
3882  	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3883  		if (qlen) {
3884  enqueue:
3885  			__skb_queue_tail(&sd->input_pkt_queue, skb);
3886  			input_queue_tail_incr_save(sd, qtail);
3887  			rps_unlock(sd);
3888  			local_irq_restore(flags);
3889  			return NET_RX_SUCCESS;
3890  		}
3891  
3892  		/* Schedule NAPI for backlog device
3893  		 * We can use non atomic operation since we own the queue lock
3894  		 */
3895  		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3896  			if (!rps_ipi_queued(sd))
3897  				____napi_schedule(sd, &sd->backlog);
3898  		}
3899  		goto enqueue;
3900  	}
3901  
3902  drop:
3903  	sd->dropped++;
3904  	rps_unlock(sd);
3905  
3906  	local_irq_restore(flags);
3907  
3908  	atomic_long_inc(&skb->dev->rx_dropped);
3909  	kfree_skb(skb);
3910  	return NET_RX_DROP;
3911  }
3912  
netif_receive_generic_xdp(struct sk_buff * skb,struct bpf_prog * xdp_prog)3913  static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3914  				     struct bpf_prog *xdp_prog)
3915  {
3916  	struct xdp_buff xdp;
3917  	u32 act = XDP_DROP;
3918  	void *orig_data;
3919  	int hlen, off;
3920  	u32 mac_len;
3921  
3922  	/* Reinjected packets coming from act_mirred or similar should
3923  	 * not get XDP generic processing.
3924  	 */
3925  	if (skb_cloned(skb))
3926  		return XDP_PASS;
3927  
3928  	if (skb_linearize(skb))
3929  		goto do_drop;
3930  
3931  	/* The XDP program wants to see the packet starting at the MAC
3932  	 * header.
3933  	 */
3934  	mac_len = skb->data - skb_mac_header(skb);
3935  	hlen = skb_headlen(skb) + mac_len;
3936  	xdp.data = skb->data - mac_len;
3937  	xdp.data_end = xdp.data + hlen;
3938  	xdp.data_hard_start = skb->data - skb_headroom(skb);
3939  	orig_data = xdp.data;
3940  
3941  	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3942  
3943  	off = xdp.data - orig_data;
3944  	if (off > 0)
3945  		__skb_pull(skb, off);
3946  	else if (off < 0)
3947  		__skb_push(skb, -off);
3948  	skb->mac_header += off;
3949  
3950  	switch (act) {
3951  	case XDP_REDIRECT:
3952  	case XDP_TX:
3953  		__skb_push(skb, mac_len);
3954  		/* fall through */
3955  	case XDP_PASS:
3956  		break;
3957  
3958  	default:
3959  		bpf_warn_invalid_xdp_action(act);
3960  		/* fall through */
3961  	case XDP_ABORTED:
3962  		trace_xdp_exception(skb->dev, xdp_prog, act);
3963  		/* fall through */
3964  	case XDP_DROP:
3965  	do_drop:
3966  		kfree_skb(skb);
3967  		break;
3968  	}
3969  
3970  	return act;
3971  }
3972  
3973  /* When doing generic XDP we have to bypass the qdisc layer and the
3974   * network taps in order to match in-driver-XDP behavior.
3975   */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)3976  void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3977  {
3978  	struct net_device *dev = skb->dev;
3979  	struct netdev_queue *txq;
3980  	bool free_skb = true;
3981  	int cpu, rc;
3982  
3983  	txq = netdev_pick_tx(dev, skb, NULL);
3984  	cpu = smp_processor_id();
3985  	HARD_TX_LOCK(dev, txq, cpu);
3986  	if (!netif_xmit_stopped(txq)) {
3987  		rc = netdev_start_xmit(skb, dev, txq, 0);
3988  		if (dev_xmit_complete(rc))
3989  			free_skb = false;
3990  	}
3991  	HARD_TX_UNLOCK(dev, txq);
3992  	if (free_skb) {
3993  		trace_xdp_exception(dev, xdp_prog, XDP_TX);
3994  		kfree_skb(skb);
3995  	}
3996  }
3997  EXPORT_SYMBOL_GPL(generic_xdp_tx);
3998  
3999  static struct static_key generic_xdp_needed __read_mostly;
4000  
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)4001  int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4002  {
4003  	if (xdp_prog) {
4004  		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4005  		int err;
4006  
4007  		if (act != XDP_PASS) {
4008  			switch (act) {
4009  			case XDP_REDIRECT:
4010  				err = xdp_do_generic_redirect(skb->dev, skb,
4011  							      xdp_prog);
4012  				if (err)
4013  					goto out_redir;
4014  			/* fallthru to submit skb */
4015  			case XDP_TX:
4016  				generic_xdp_tx(skb, xdp_prog);
4017  				break;
4018  			}
4019  			return XDP_DROP;
4020  		}
4021  	}
4022  	return XDP_PASS;
4023  out_redir:
4024  	kfree_skb(skb);
4025  	return XDP_DROP;
4026  }
4027  EXPORT_SYMBOL_GPL(do_xdp_generic);
4028  
netif_rx_internal(struct sk_buff * skb)4029  static int netif_rx_internal(struct sk_buff *skb)
4030  {
4031  	int ret;
4032  
4033  	net_timestamp_check(netdev_tstamp_prequeue, skb);
4034  
4035  	trace_netif_rx(skb);
4036  
4037  	if (static_key_false(&generic_xdp_needed)) {
4038  		int ret;
4039  
4040  		preempt_disable();
4041  		rcu_read_lock();
4042  		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4043  		rcu_read_unlock();
4044  		preempt_enable();
4045  
4046  		/* Consider XDP consuming the packet a success from
4047  		 * the netdev point of view we do not want to count
4048  		 * this as an error.
4049  		 */
4050  		if (ret != XDP_PASS)
4051  			return NET_RX_SUCCESS;
4052  	}
4053  
4054  #ifdef CONFIG_RPS
4055  	if (static_key_false(&rps_needed)) {
4056  		struct rps_dev_flow voidflow, *rflow = &voidflow;
4057  		int cpu;
4058  
4059  		preempt_disable();
4060  		rcu_read_lock();
4061  
4062  		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4063  		if (cpu < 0)
4064  			cpu = smp_processor_id();
4065  
4066  		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4067  
4068  		rcu_read_unlock();
4069  		preempt_enable();
4070  	} else
4071  #endif
4072  	{
4073  		unsigned int qtail;
4074  
4075  		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4076  		put_cpu();
4077  	}
4078  	return ret;
4079  }
4080  
4081  /**
4082   *	netif_rx	-	post buffer to the network code
4083   *	@skb: buffer to post
4084   *
4085   *	This function receives a packet from a device driver and queues it for
4086   *	the upper (protocol) levels to process.  It always succeeds. The buffer
4087   *	may be dropped during processing for congestion control or by the
4088   *	protocol layers.
4089   *
4090   *	return values:
4091   *	NET_RX_SUCCESS	(no congestion)
4092   *	NET_RX_DROP     (packet was dropped)
4093   *
4094   */
4095  
netif_rx(struct sk_buff * skb)4096  int netif_rx(struct sk_buff *skb)
4097  {
4098  	trace_netif_rx_entry(skb);
4099  
4100  	return netif_rx_internal(skb);
4101  }
4102  EXPORT_SYMBOL(netif_rx);
4103  
netif_rx_ni(struct sk_buff * skb)4104  int netif_rx_ni(struct sk_buff *skb)
4105  {
4106  	int err;
4107  
4108  	trace_netif_rx_ni_entry(skb);
4109  
4110  	preempt_disable();
4111  	err = netif_rx_internal(skb);
4112  	if (local_softirq_pending())
4113  		do_softirq();
4114  	preempt_enable();
4115  
4116  	return err;
4117  }
4118  EXPORT_SYMBOL(netif_rx_ni);
4119  
net_tx_action(struct softirq_action * h)4120  static __latent_entropy void net_tx_action(struct softirq_action *h)
4121  {
4122  	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4123  
4124  	if (sd->completion_queue) {
4125  		struct sk_buff *clist;
4126  
4127  		local_irq_disable();
4128  		clist = sd->completion_queue;
4129  		sd->completion_queue = NULL;
4130  		local_irq_enable();
4131  
4132  		while (clist) {
4133  			struct sk_buff *skb = clist;
4134  
4135  			clist = clist->next;
4136  
4137  			WARN_ON(refcount_read(&skb->users));
4138  			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4139  				trace_consume_skb(skb);
4140  			else
4141  				trace_kfree_skb(skb, net_tx_action);
4142  
4143  			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4144  				__kfree_skb(skb);
4145  			else
4146  				__kfree_skb_defer(skb);
4147  		}
4148  
4149  		__kfree_skb_flush();
4150  	}
4151  
4152  	if (sd->output_queue) {
4153  		struct Qdisc *head;
4154  
4155  		local_irq_disable();
4156  		head = sd->output_queue;
4157  		sd->output_queue = NULL;
4158  		sd->output_queue_tailp = &sd->output_queue;
4159  		local_irq_enable();
4160  
4161  		while (head) {
4162  			struct Qdisc *q = head;
4163  			spinlock_t *root_lock;
4164  
4165  			head = head->next_sched;
4166  
4167  			root_lock = qdisc_lock(q);
4168  			spin_lock(root_lock);
4169  			/* We need to make sure head->next_sched is read
4170  			 * before clearing __QDISC_STATE_SCHED
4171  			 */
4172  			smp_mb__before_atomic();
4173  			clear_bit(__QDISC_STATE_SCHED, &q->state);
4174  			qdisc_run(q);
4175  			spin_unlock(root_lock);
4176  		}
4177  	}
4178  }
4179  
4180  #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4181  /* This hook is defined here for ATM LANE */
4182  int (*br_fdb_test_addr_hook)(struct net_device *dev,
4183  			     unsigned char *addr) __read_mostly;
4184  EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4185  #endif
4186  
4187  static inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4188  sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4189  		   struct net_device *orig_dev)
4190  {
4191  #ifdef CONFIG_NET_CLS_ACT
4192  	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4193  	struct tcf_result cl_res;
4194  
4195  	/* If there's at least one ingress present somewhere (so
4196  	 * we get here via enabled static key), remaining devices
4197  	 * that are not configured with an ingress qdisc will bail
4198  	 * out here.
4199  	 */
4200  	if (!cl)
4201  		return skb;
4202  	if (*pt_prev) {
4203  		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4204  		*pt_prev = NULL;
4205  	}
4206  
4207  	qdisc_skb_cb(skb)->pkt_len = skb->len;
4208  	skb->tc_at_ingress = 1;
4209  	qdisc_bstats_cpu_update(cl->q, skb);
4210  
4211  	switch (tcf_classify(skb, cl, &cl_res, false)) {
4212  	case TC_ACT_OK:
4213  	case TC_ACT_RECLASSIFY:
4214  		skb->tc_index = TC_H_MIN(cl_res.classid);
4215  		break;
4216  	case TC_ACT_SHOT:
4217  		qdisc_qstats_cpu_drop(cl->q);
4218  		kfree_skb(skb);
4219  		return NULL;
4220  	case TC_ACT_STOLEN:
4221  	case TC_ACT_QUEUED:
4222  	case TC_ACT_TRAP:
4223  		consume_skb(skb);
4224  		return NULL;
4225  	case TC_ACT_REDIRECT:
4226  		/* skb_mac_header check was done by cls/act_bpf, so
4227  		 * we can safely push the L2 header back before
4228  		 * redirecting to another netdev
4229  		 */
4230  		__skb_push(skb, skb->mac_len);
4231  		skb_do_redirect(skb);
4232  		return NULL;
4233  	default:
4234  		break;
4235  	}
4236  #endif /* CONFIG_NET_CLS_ACT */
4237  	return skb;
4238  }
4239  
4240  /**
4241   *	netdev_is_rx_handler_busy - check if receive handler is registered
4242   *	@dev: device to check
4243   *
4244   *	Check if a receive handler is already registered for a given device.
4245   *	Return true if there one.
4246   *
4247   *	The caller must hold the rtnl_mutex.
4248   */
netdev_is_rx_handler_busy(struct net_device * dev)4249  bool netdev_is_rx_handler_busy(struct net_device *dev)
4250  {
4251  	ASSERT_RTNL();
4252  	return dev && rtnl_dereference(dev->rx_handler);
4253  }
4254  EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4255  
4256  /**
4257   *	netdev_rx_handler_register - register receive handler
4258   *	@dev: device to register a handler for
4259   *	@rx_handler: receive handler to register
4260   *	@rx_handler_data: data pointer that is used by rx handler
4261   *
4262   *	Register a receive handler for a device. This handler will then be
4263   *	called from __netif_receive_skb. A negative errno code is returned
4264   *	on a failure.
4265   *
4266   *	The caller must hold the rtnl_mutex.
4267   *
4268   *	For a general description of rx_handler, see enum rx_handler_result.
4269   */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)4270  int netdev_rx_handler_register(struct net_device *dev,
4271  			       rx_handler_func_t *rx_handler,
4272  			       void *rx_handler_data)
4273  {
4274  	if (netdev_is_rx_handler_busy(dev))
4275  		return -EBUSY;
4276  
4277  	/* Note: rx_handler_data must be set before rx_handler */
4278  	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4279  	rcu_assign_pointer(dev->rx_handler, rx_handler);
4280  
4281  	return 0;
4282  }
4283  EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4284  
4285  /**
4286   *	netdev_rx_handler_unregister - unregister receive handler
4287   *	@dev: device to unregister a handler from
4288   *
4289   *	Unregister a receive handler from a device.
4290   *
4291   *	The caller must hold the rtnl_mutex.
4292   */
netdev_rx_handler_unregister(struct net_device * dev)4293  void netdev_rx_handler_unregister(struct net_device *dev)
4294  {
4295  
4296  	ASSERT_RTNL();
4297  	RCU_INIT_POINTER(dev->rx_handler, NULL);
4298  	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4299  	 * section has a guarantee to see a non NULL rx_handler_data
4300  	 * as well.
4301  	 */
4302  	synchronize_net();
4303  	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4304  }
4305  EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4306  
4307  /*
4308   * Limit the use of PFMEMALLOC reserves to those protocols that implement
4309   * the special handling of PFMEMALLOC skbs.
4310   */
skb_pfmemalloc_protocol(struct sk_buff * skb)4311  static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4312  {
4313  	switch (skb->protocol) {
4314  	case htons(ETH_P_ARP):
4315  	case htons(ETH_P_IP):
4316  	case htons(ETH_P_IPV6):
4317  	case htons(ETH_P_8021Q):
4318  	case htons(ETH_P_8021AD):
4319  		return true;
4320  	default:
4321  		return false;
4322  	}
4323  }
4324  
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)4325  static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4326  			     int *ret, struct net_device *orig_dev)
4327  {
4328  #ifdef CONFIG_NETFILTER_INGRESS
4329  	if (nf_hook_ingress_active(skb)) {
4330  		int ingress_retval;
4331  
4332  		if (*pt_prev) {
4333  			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4334  			*pt_prev = NULL;
4335  		}
4336  
4337  		rcu_read_lock();
4338  		ingress_retval = nf_hook_ingress(skb);
4339  		rcu_read_unlock();
4340  		return ingress_retval;
4341  	}
4342  #endif /* CONFIG_NETFILTER_INGRESS */
4343  	return 0;
4344  }
4345  
__netif_receive_skb_core(struct sk_buff * skb,bool pfmemalloc)4346  static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4347  {
4348  	struct packet_type *ptype, *pt_prev;
4349  	rx_handler_func_t *rx_handler;
4350  	struct net_device *orig_dev;
4351  	bool deliver_exact = false;
4352  	int ret = NET_RX_DROP;
4353  	__be16 type;
4354  
4355  	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4356  
4357  	trace_netif_receive_skb(skb);
4358  
4359  	orig_dev = skb->dev;
4360  
4361  	skb_reset_network_header(skb);
4362  	if (!skb_transport_header_was_set(skb))
4363  		skb_reset_transport_header(skb);
4364  	skb_reset_mac_len(skb);
4365  
4366  	pt_prev = NULL;
4367  
4368  another_round:
4369  	skb->skb_iif = skb->dev->ifindex;
4370  
4371  	__this_cpu_inc(softnet_data.processed);
4372  
4373  	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4374  	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4375  		skb = skb_vlan_untag(skb);
4376  		if (unlikely(!skb))
4377  			goto out;
4378  	}
4379  
4380  	if (skb_skip_tc_classify(skb))
4381  		goto skip_classify;
4382  
4383  	if (pfmemalloc)
4384  		goto skip_taps;
4385  
4386  	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4387  		if (pt_prev)
4388  			ret = deliver_skb(skb, pt_prev, orig_dev);
4389  		pt_prev = ptype;
4390  	}
4391  
4392  	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4393  		if (pt_prev)
4394  			ret = deliver_skb(skb, pt_prev, orig_dev);
4395  		pt_prev = ptype;
4396  	}
4397  
4398  skip_taps:
4399  #ifdef CONFIG_NET_INGRESS
4400  	if (static_key_false(&ingress_needed)) {
4401  		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4402  		if (!skb)
4403  			goto out;
4404  
4405  		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4406  			goto out;
4407  	}
4408  #endif
4409  	skb_reset_tc(skb);
4410  skip_classify:
4411  	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4412  		goto drop;
4413  
4414  	if (skb_vlan_tag_present(skb)) {
4415  		if (pt_prev) {
4416  			ret = deliver_skb(skb, pt_prev, orig_dev);
4417  			pt_prev = NULL;
4418  		}
4419  		if (vlan_do_receive(&skb))
4420  			goto another_round;
4421  		else if (unlikely(!skb))
4422  			goto out;
4423  	}
4424  
4425  	rx_handler = rcu_dereference(skb->dev->rx_handler);
4426  	if (rx_handler) {
4427  		if (pt_prev) {
4428  			ret = deliver_skb(skb, pt_prev, orig_dev);
4429  			pt_prev = NULL;
4430  		}
4431  		switch (rx_handler(&skb)) {
4432  		case RX_HANDLER_CONSUMED:
4433  			ret = NET_RX_SUCCESS;
4434  			goto out;
4435  		case RX_HANDLER_ANOTHER:
4436  			goto another_round;
4437  		case RX_HANDLER_EXACT:
4438  			deliver_exact = true;
4439  		case RX_HANDLER_PASS:
4440  			break;
4441  		default:
4442  			BUG();
4443  		}
4444  	}
4445  
4446  	if (unlikely(skb_vlan_tag_present(skb))) {
4447  		if (skb_vlan_tag_get_id(skb))
4448  			skb->pkt_type = PACKET_OTHERHOST;
4449  		/* Note: we might in the future use prio bits
4450  		 * and set skb->priority like in vlan_do_receive()
4451  		 * For the time being, just ignore Priority Code Point
4452  		 */
4453  		skb->vlan_tci = 0;
4454  	}
4455  
4456  	type = skb->protocol;
4457  
4458  	/* deliver only exact match when indicated */
4459  	if (likely(!deliver_exact)) {
4460  		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4461  				       &ptype_base[ntohs(type) &
4462  						   PTYPE_HASH_MASK]);
4463  	}
4464  
4465  	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4466  			       &orig_dev->ptype_specific);
4467  
4468  	if (unlikely(skb->dev != orig_dev)) {
4469  		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4470  				       &skb->dev->ptype_specific);
4471  	}
4472  
4473  	if (pt_prev) {
4474  		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4475  			goto drop;
4476  		else
4477  			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4478  	} else {
4479  drop:
4480  		if (!deliver_exact)
4481  			atomic_long_inc(&skb->dev->rx_dropped);
4482  		else
4483  			atomic_long_inc(&skb->dev->rx_nohandler);
4484  		kfree_skb(skb);
4485  		/* Jamal, now you will not able to escape explaining
4486  		 * me how you were going to use this. :-)
4487  		 */
4488  		ret = NET_RX_DROP;
4489  	}
4490  
4491  out:
4492  	return ret;
4493  }
4494  
__netif_receive_skb(struct sk_buff * skb)4495  static int __netif_receive_skb(struct sk_buff *skb)
4496  {
4497  	int ret;
4498  
4499  	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4500  		unsigned int noreclaim_flag;
4501  
4502  		/*
4503  		 * PFMEMALLOC skbs are special, they should
4504  		 * - be delivered to SOCK_MEMALLOC sockets only
4505  		 * - stay away from userspace
4506  		 * - have bounded memory usage
4507  		 *
4508  		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4509  		 * context down to all allocation sites.
4510  		 */
4511  		noreclaim_flag = memalloc_noreclaim_save();
4512  		ret = __netif_receive_skb_core(skb, true);
4513  		memalloc_noreclaim_restore(noreclaim_flag);
4514  	} else
4515  		ret = __netif_receive_skb_core(skb, false);
4516  
4517  	return ret;
4518  }
4519  
generic_xdp_install(struct net_device * dev,struct netdev_xdp * xdp)4520  static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4521  {
4522  	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4523  	struct bpf_prog *new = xdp->prog;
4524  	int ret = 0;
4525  
4526  	switch (xdp->command) {
4527  	case XDP_SETUP_PROG:
4528  		rcu_assign_pointer(dev->xdp_prog, new);
4529  		if (old)
4530  			bpf_prog_put(old);
4531  
4532  		if (old && !new) {
4533  			static_key_slow_dec(&generic_xdp_needed);
4534  		} else if (new && !old) {
4535  			static_key_slow_inc(&generic_xdp_needed);
4536  			dev_disable_lro(dev);
4537  		}
4538  		break;
4539  
4540  	case XDP_QUERY_PROG:
4541  		xdp->prog_attached = !!old;
4542  		xdp->prog_id = old ? old->aux->id : 0;
4543  		break;
4544  
4545  	default:
4546  		ret = -EINVAL;
4547  		break;
4548  	}
4549  
4550  	return ret;
4551  }
4552  
netif_receive_skb_internal(struct sk_buff * skb)4553  static int netif_receive_skb_internal(struct sk_buff *skb)
4554  {
4555  	int ret;
4556  
4557  	net_timestamp_check(netdev_tstamp_prequeue, skb);
4558  
4559  	if (skb_defer_rx_timestamp(skb))
4560  		return NET_RX_SUCCESS;
4561  
4562  	if (static_key_false(&generic_xdp_needed)) {
4563  		int ret;
4564  
4565  		preempt_disable();
4566  		rcu_read_lock();
4567  		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4568  		rcu_read_unlock();
4569  		preempt_enable();
4570  
4571  		if (ret != XDP_PASS)
4572  			return NET_RX_DROP;
4573  	}
4574  
4575  	rcu_read_lock();
4576  #ifdef CONFIG_RPS
4577  	if (static_key_false(&rps_needed)) {
4578  		struct rps_dev_flow voidflow, *rflow = &voidflow;
4579  		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4580  
4581  		if (cpu >= 0) {
4582  			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4583  			rcu_read_unlock();
4584  			return ret;
4585  		}
4586  	}
4587  #endif
4588  	ret = __netif_receive_skb(skb);
4589  	rcu_read_unlock();
4590  	return ret;
4591  }
4592  
4593  /**
4594   *	netif_receive_skb - process receive buffer from network
4595   *	@skb: buffer to process
4596   *
4597   *	netif_receive_skb() is the main receive data processing function.
4598   *	It always succeeds. The buffer may be dropped during processing
4599   *	for congestion control or by the protocol layers.
4600   *
4601   *	This function may only be called from softirq context and interrupts
4602   *	should be enabled.
4603   *
4604   *	Return values (usually ignored):
4605   *	NET_RX_SUCCESS: no congestion
4606   *	NET_RX_DROP: packet was dropped
4607   */
netif_receive_skb(struct sk_buff * skb)4608  int netif_receive_skb(struct sk_buff *skb)
4609  {
4610  	trace_netif_receive_skb_entry(skb);
4611  
4612  	return netif_receive_skb_internal(skb);
4613  }
4614  EXPORT_SYMBOL(netif_receive_skb);
4615  
4616  DEFINE_PER_CPU(struct work_struct, flush_works);
4617  
4618  /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)4619  static void flush_backlog(struct work_struct *work)
4620  {
4621  	struct sk_buff *skb, *tmp;
4622  	struct softnet_data *sd;
4623  
4624  	local_bh_disable();
4625  	sd = this_cpu_ptr(&softnet_data);
4626  
4627  	local_irq_disable();
4628  	rps_lock(sd);
4629  	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4630  		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4631  			__skb_unlink(skb, &sd->input_pkt_queue);
4632  			kfree_skb(skb);
4633  			input_queue_head_incr(sd);
4634  		}
4635  	}
4636  	rps_unlock(sd);
4637  	local_irq_enable();
4638  
4639  	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4640  		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4641  			__skb_unlink(skb, &sd->process_queue);
4642  			kfree_skb(skb);
4643  			input_queue_head_incr(sd);
4644  		}
4645  	}
4646  	local_bh_enable();
4647  }
4648  
flush_all_backlogs(void)4649  static void flush_all_backlogs(void)
4650  {
4651  	unsigned int cpu;
4652  
4653  	get_online_cpus();
4654  
4655  	for_each_online_cpu(cpu)
4656  		queue_work_on(cpu, system_highpri_wq,
4657  			      per_cpu_ptr(&flush_works, cpu));
4658  
4659  	for_each_online_cpu(cpu)
4660  		flush_work(per_cpu_ptr(&flush_works, cpu));
4661  
4662  	put_online_cpus();
4663  }
4664  
napi_gro_complete(struct sk_buff * skb)4665  static int napi_gro_complete(struct sk_buff *skb)
4666  {
4667  	struct packet_offload *ptype;
4668  	__be16 type = skb->protocol;
4669  	struct list_head *head = &offload_base;
4670  	int err = -ENOENT;
4671  
4672  	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4673  
4674  	if (NAPI_GRO_CB(skb)->count == 1) {
4675  		skb_shinfo(skb)->gso_size = 0;
4676  		goto out;
4677  	}
4678  
4679  	rcu_read_lock();
4680  	list_for_each_entry_rcu(ptype, head, list) {
4681  		if (ptype->type != type || !ptype->callbacks.gro_complete)
4682  			continue;
4683  
4684  		err = ptype->callbacks.gro_complete(skb, 0);
4685  		break;
4686  	}
4687  	rcu_read_unlock();
4688  
4689  	if (err) {
4690  		WARN_ON(&ptype->list == head);
4691  		kfree_skb(skb);
4692  		return NET_RX_SUCCESS;
4693  	}
4694  
4695  out:
4696  	return netif_receive_skb_internal(skb);
4697  }
4698  
4699  /* napi->gro_list contains packets ordered by age.
4700   * youngest packets at the head of it.
4701   * Complete skbs in reverse order to reduce latencies.
4702   */
napi_gro_flush(struct napi_struct * napi,bool flush_old)4703  void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4704  {
4705  	struct sk_buff *skb, *prev = NULL;
4706  
4707  	/* scan list and build reverse chain */
4708  	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4709  		skb->prev = prev;
4710  		prev = skb;
4711  	}
4712  
4713  	for (skb = prev; skb; skb = prev) {
4714  		skb->next = NULL;
4715  
4716  		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4717  			return;
4718  
4719  		prev = skb->prev;
4720  		napi_gro_complete(skb);
4721  		napi->gro_count--;
4722  	}
4723  
4724  	napi->gro_list = NULL;
4725  }
4726  EXPORT_SYMBOL(napi_gro_flush);
4727  
gro_list_prepare(struct napi_struct * napi,struct sk_buff * skb)4728  static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4729  {
4730  	struct sk_buff *p;
4731  	unsigned int maclen = skb->dev->hard_header_len;
4732  	u32 hash = skb_get_hash_raw(skb);
4733  
4734  	for (p = napi->gro_list; p; p = p->next) {
4735  		unsigned long diffs;
4736  
4737  		NAPI_GRO_CB(p)->flush = 0;
4738  
4739  		if (hash != skb_get_hash_raw(p)) {
4740  			NAPI_GRO_CB(p)->same_flow = 0;
4741  			continue;
4742  		}
4743  
4744  		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4745  		diffs |= p->vlan_tci ^ skb->vlan_tci;
4746  		diffs |= skb_metadata_dst_cmp(p, skb);
4747  		if (maclen == ETH_HLEN)
4748  			diffs |= compare_ether_header(skb_mac_header(p),
4749  						      skb_mac_header(skb));
4750  		else if (!diffs)
4751  			diffs = memcmp(skb_mac_header(p),
4752  				       skb_mac_header(skb),
4753  				       maclen);
4754  		NAPI_GRO_CB(p)->same_flow = !diffs;
4755  	}
4756  }
4757  
skb_gro_reset_offset(struct sk_buff * skb)4758  static void skb_gro_reset_offset(struct sk_buff *skb)
4759  {
4760  	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4761  	const skb_frag_t *frag0 = &pinfo->frags[0];
4762  
4763  	NAPI_GRO_CB(skb)->data_offset = 0;
4764  	NAPI_GRO_CB(skb)->frag0 = NULL;
4765  	NAPI_GRO_CB(skb)->frag0_len = 0;
4766  
4767  	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4768  	    pinfo->nr_frags &&
4769  	    !PageHighMem(skb_frag_page(frag0))) {
4770  		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4771  		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4772  						    skb_frag_size(frag0),
4773  						    skb->end - skb->tail);
4774  	}
4775  }
4776  
gro_pull_from_frag0(struct sk_buff * skb,int grow)4777  static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4778  {
4779  	struct skb_shared_info *pinfo = skb_shinfo(skb);
4780  
4781  	BUG_ON(skb->end - skb->tail < grow);
4782  
4783  	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4784  
4785  	skb->data_len -= grow;
4786  	skb->tail += grow;
4787  
4788  	pinfo->frags[0].page_offset += grow;
4789  	skb_frag_size_sub(&pinfo->frags[0], grow);
4790  
4791  	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4792  		skb_frag_unref(skb, 0);
4793  		memmove(pinfo->frags, pinfo->frags + 1,
4794  			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4795  	}
4796  }
4797  
dev_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4798  static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4799  {
4800  	struct sk_buff **pp = NULL;
4801  	struct packet_offload *ptype;
4802  	__be16 type = skb->protocol;
4803  	struct list_head *head = &offload_base;
4804  	int same_flow;
4805  	enum gro_result ret;
4806  	int grow;
4807  
4808  	if (netif_elide_gro(skb->dev))
4809  		goto normal;
4810  
4811  	gro_list_prepare(napi, skb);
4812  
4813  	rcu_read_lock();
4814  	list_for_each_entry_rcu(ptype, head, list) {
4815  		if (ptype->type != type || !ptype->callbacks.gro_receive)
4816  			continue;
4817  
4818  		skb_set_network_header(skb, skb_gro_offset(skb));
4819  		skb_reset_mac_len(skb);
4820  		NAPI_GRO_CB(skb)->same_flow = 0;
4821  		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4822  		NAPI_GRO_CB(skb)->free = 0;
4823  		NAPI_GRO_CB(skb)->encap_mark = 0;
4824  		NAPI_GRO_CB(skb)->recursion_counter = 0;
4825  		NAPI_GRO_CB(skb)->is_fou = 0;
4826  		NAPI_GRO_CB(skb)->is_atomic = 1;
4827  		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4828  
4829  		/* Setup for GRO checksum validation */
4830  		switch (skb->ip_summed) {
4831  		case CHECKSUM_COMPLETE:
4832  			NAPI_GRO_CB(skb)->csum = skb->csum;
4833  			NAPI_GRO_CB(skb)->csum_valid = 1;
4834  			NAPI_GRO_CB(skb)->csum_cnt = 0;
4835  			break;
4836  		case CHECKSUM_UNNECESSARY:
4837  			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4838  			NAPI_GRO_CB(skb)->csum_valid = 0;
4839  			break;
4840  		default:
4841  			NAPI_GRO_CB(skb)->csum_cnt = 0;
4842  			NAPI_GRO_CB(skb)->csum_valid = 0;
4843  		}
4844  
4845  		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4846  		break;
4847  	}
4848  	rcu_read_unlock();
4849  
4850  	if (&ptype->list == head)
4851  		goto normal;
4852  
4853  	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4854  		ret = GRO_CONSUMED;
4855  		goto ok;
4856  	}
4857  
4858  	same_flow = NAPI_GRO_CB(skb)->same_flow;
4859  	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4860  
4861  	if (pp) {
4862  		struct sk_buff *nskb = *pp;
4863  
4864  		*pp = nskb->next;
4865  		nskb->next = NULL;
4866  		napi_gro_complete(nskb);
4867  		napi->gro_count--;
4868  	}
4869  
4870  	if (same_flow)
4871  		goto ok;
4872  
4873  	if (NAPI_GRO_CB(skb)->flush)
4874  		goto normal;
4875  
4876  	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4877  		struct sk_buff *nskb = napi->gro_list;
4878  
4879  		/* locate the end of the list to select the 'oldest' flow */
4880  		while (nskb->next) {
4881  			pp = &nskb->next;
4882  			nskb = *pp;
4883  		}
4884  		*pp = NULL;
4885  		nskb->next = NULL;
4886  		napi_gro_complete(nskb);
4887  	} else {
4888  		napi->gro_count++;
4889  	}
4890  	NAPI_GRO_CB(skb)->count = 1;
4891  	NAPI_GRO_CB(skb)->age = jiffies;
4892  	NAPI_GRO_CB(skb)->last = skb;
4893  	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4894  	skb->next = napi->gro_list;
4895  	napi->gro_list = skb;
4896  	ret = GRO_HELD;
4897  
4898  pull:
4899  	grow = skb_gro_offset(skb) - skb_headlen(skb);
4900  	if (grow > 0)
4901  		gro_pull_from_frag0(skb, grow);
4902  ok:
4903  	return ret;
4904  
4905  normal:
4906  	ret = GRO_NORMAL;
4907  	goto pull;
4908  }
4909  
gro_find_receive_by_type(__be16 type)4910  struct packet_offload *gro_find_receive_by_type(__be16 type)
4911  {
4912  	struct list_head *offload_head = &offload_base;
4913  	struct packet_offload *ptype;
4914  
4915  	list_for_each_entry_rcu(ptype, offload_head, list) {
4916  		if (ptype->type != type || !ptype->callbacks.gro_receive)
4917  			continue;
4918  		return ptype;
4919  	}
4920  	return NULL;
4921  }
4922  EXPORT_SYMBOL(gro_find_receive_by_type);
4923  
gro_find_complete_by_type(__be16 type)4924  struct packet_offload *gro_find_complete_by_type(__be16 type)
4925  {
4926  	struct list_head *offload_head = &offload_base;
4927  	struct packet_offload *ptype;
4928  
4929  	list_for_each_entry_rcu(ptype, offload_head, list) {
4930  		if (ptype->type != type || !ptype->callbacks.gro_complete)
4931  			continue;
4932  		return ptype;
4933  	}
4934  	return NULL;
4935  }
4936  EXPORT_SYMBOL(gro_find_complete_by_type);
4937  
napi_skb_free_stolen_head(struct sk_buff * skb)4938  static void napi_skb_free_stolen_head(struct sk_buff *skb)
4939  {
4940  	skb_dst_drop(skb);
4941  	secpath_reset(skb);
4942  	kmem_cache_free(skbuff_head_cache, skb);
4943  }
4944  
napi_skb_finish(gro_result_t ret,struct sk_buff * skb)4945  static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4946  {
4947  	switch (ret) {
4948  	case GRO_NORMAL:
4949  		if (netif_receive_skb_internal(skb))
4950  			ret = GRO_DROP;
4951  		break;
4952  
4953  	case GRO_DROP:
4954  		kfree_skb(skb);
4955  		break;
4956  
4957  	case GRO_MERGED_FREE:
4958  		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4959  			napi_skb_free_stolen_head(skb);
4960  		else
4961  			__kfree_skb(skb);
4962  		break;
4963  
4964  	case GRO_HELD:
4965  	case GRO_MERGED:
4966  	case GRO_CONSUMED:
4967  		break;
4968  	}
4969  
4970  	return ret;
4971  }
4972  
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4973  gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4974  {
4975  	skb_mark_napi_id(skb, napi);
4976  	trace_napi_gro_receive_entry(skb);
4977  
4978  	skb_gro_reset_offset(skb);
4979  
4980  	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4981  }
4982  EXPORT_SYMBOL(napi_gro_receive);
4983  
napi_reuse_skb(struct napi_struct * napi,struct sk_buff * skb)4984  static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4985  {
4986  	if (unlikely(skb->pfmemalloc)) {
4987  		consume_skb(skb);
4988  		return;
4989  	}
4990  	__skb_pull(skb, skb_headlen(skb));
4991  	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4992  	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4993  	skb->vlan_tci = 0;
4994  	skb->dev = napi->dev;
4995  	skb->skb_iif = 0;
4996  
4997  	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
4998  	skb->pkt_type = PACKET_HOST;
4999  
5000  	skb->encapsulation = 0;
5001  	skb_shinfo(skb)->gso_type = 0;
5002  	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5003  	secpath_reset(skb);
5004  
5005  	napi->skb = skb;
5006  }
5007  
napi_get_frags(struct napi_struct * napi)5008  struct sk_buff *napi_get_frags(struct napi_struct *napi)
5009  {
5010  	struct sk_buff *skb = napi->skb;
5011  
5012  	if (!skb) {
5013  		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5014  		if (skb) {
5015  			napi->skb = skb;
5016  			skb_mark_napi_id(skb, napi);
5017  		}
5018  	}
5019  	return skb;
5020  }
5021  EXPORT_SYMBOL(napi_get_frags);
5022  
napi_frags_finish(struct napi_struct * napi,struct sk_buff * skb,gro_result_t ret)5023  static gro_result_t napi_frags_finish(struct napi_struct *napi,
5024  				      struct sk_buff *skb,
5025  				      gro_result_t ret)
5026  {
5027  	switch (ret) {
5028  	case GRO_NORMAL:
5029  	case GRO_HELD:
5030  		__skb_push(skb, ETH_HLEN);
5031  		skb->protocol = eth_type_trans(skb, skb->dev);
5032  		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5033  			ret = GRO_DROP;
5034  		break;
5035  
5036  	case GRO_DROP:
5037  		napi_reuse_skb(napi, skb);
5038  		break;
5039  
5040  	case GRO_MERGED_FREE:
5041  		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5042  			napi_skb_free_stolen_head(skb);
5043  		else
5044  			napi_reuse_skb(napi, skb);
5045  		break;
5046  
5047  	case GRO_MERGED:
5048  	case GRO_CONSUMED:
5049  		break;
5050  	}
5051  
5052  	return ret;
5053  }
5054  
5055  /* Upper GRO stack assumes network header starts at gro_offset=0
5056   * Drivers could call both napi_gro_frags() and napi_gro_receive()
5057   * We copy ethernet header into skb->data to have a common layout.
5058   */
napi_frags_skb(struct napi_struct * napi)5059  static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5060  {
5061  	struct sk_buff *skb = napi->skb;
5062  	const struct ethhdr *eth;
5063  	unsigned int hlen = sizeof(*eth);
5064  
5065  	napi->skb = NULL;
5066  
5067  	skb_reset_mac_header(skb);
5068  	skb_gro_reset_offset(skb);
5069  
5070  	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5071  		eth = skb_gro_header_slow(skb, hlen, 0);
5072  		if (unlikely(!eth)) {
5073  			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5074  					     __func__, napi->dev->name);
5075  			napi_reuse_skb(napi, skb);
5076  			return NULL;
5077  		}
5078  	} else {
5079  		eth = (const struct ethhdr *)skb->data;
5080  		gro_pull_from_frag0(skb, hlen);
5081  		NAPI_GRO_CB(skb)->frag0 += hlen;
5082  		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5083  	}
5084  	__skb_pull(skb, hlen);
5085  
5086  	/*
5087  	 * This works because the only protocols we care about don't require
5088  	 * special handling.
5089  	 * We'll fix it up properly in napi_frags_finish()
5090  	 */
5091  	skb->protocol = eth->h_proto;
5092  
5093  	return skb;
5094  }
5095  
napi_gro_frags(struct napi_struct * napi)5096  gro_result_t napi_gro_frags(struct napi_struct *napi)
5097  {
5098  	struct sk_buff *skb = napi_frags_skb(napi);
5099  
5100  	if (!skb)
5101  		return GRO_DROP;
5102  
5103  	trace_napi_gro_frags_entry(skb);
5104  
5105  	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5106  }
5107  EXPORT_SYMBOL(napi_gro_frags);
5108  
5109  /* Compute the checksum from gro_offset and return the folded value
5110   * after adding in any pseudo checksum.
5111   */
__skb_gro_checksum_complete(struct sk_buff * skb)5112  __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5113  {
5114  	__wsum wsum;
5115  	__sum16 sum;
5116  
5117  	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5118  
5119  	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5120  	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5121  	if (likely(!sum)) {
5122  		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5123  		    !skb->csum_complete_sw)
5124  			netdev_rx_csum_fault(skb->dev);
5125  	}
5126  
5127  	NAPI_GRO_CB(skb)->csum = wsum;
5128  	NAPI_GRO_CB(skb)->csum_valid = 1;
5129  
5130  	return sum;
5131  }
5132  EXPORT_SYMBOL(__skb_gro_checksum_complete);
5133  
net_rps_send_ipi(struct softnet_data * remsd)5134  static void net_rps_send_ipi(struct softnet_data *remsd)
5135  {
5136  #ifdef CONFIG_RPS
5137  	while (remsd) {
5138  		struct softnet_data *next = remsd->rps_ipi_next;
5139  
5140  		if (cpu_online(remsd->cpu))
5141  			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5142  		remsd = next;
5143  	}
5144  #endif
5145  }
5146  
5147  /*
5148   * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5149   * Note: called with local irq disabled, but exits with local irq enabled.
5150   */
net_rps_action_and_irq_enable(struct softnet_data * sd)5151  static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5152  {
5153  #ifdef CONFIG_RPS
5154  	struct softnet_data *remsd = sd->rps_ipi_list;
5155  
5156  	if (remsd) {
5157  		sd->rps_ipi_list = NULL;
5158  
5159  		local_irq_enable();
5160  
5161  		/* Send pending IPI's to kick RPS processing on remote cpus. */
5162  		net_rps_send_ipi(remsd);
5163  	} else
5164  #endif
5165  		local_irq_enable();
5166  }
5167  
sd_has_rps_ipi_waiting(struct softnet_data * sd)5168  static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5169  {
5170  #ifdef CONFIG_RPS
5171  	return sd->rps_ipi_list != NULL;
5172  #else
5173  	return false;
5174  #endif
5175  }
5176  
process_backlog(struct napi_struct * napi,int quota)5177  static int process_backlog(struct napi_struct *napi, int quota)
5178  {
5179  	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5180  	bool again = true;
5181  	int work = 0;
5182  
5183  	/* Check if we have pending ipi, its better to send them now,
5184  	 * not waiting net_rx_action() end.
5185  	 */
5186  	if (sd_has_rps_ipi_waiting(sd)) {
5187  		local_irq_disable();
5188  		net_rps_action_and_irq_enable(sd);
5189  	}
5190  
5191  	napi->weight = dev_rx_weight;
5192  	while (again) {
5193  		struct sk_buff *skb;
5194  
5195  		while ((skb = __skb_dequeue(&sd->process_queue))) {
5196  			rcu_read_lock();
5197  			__netif_receive_skb(skb);
5198  			rcu_read_unlock();
5199  			input_queue_head_incr(sd);
5200  			if (++work >= quota)
5201  				return work;
5202  
5203  		}
5204  
5205  		local_irq_disable();
5206  		rps_lock(sd);
5207  		if (skb_queue_empty(&sd->input_pkt_queue)) {
5208  			/*
5209  			 * Inline a custom version of __napi_complete().
5210  			 * only current cpu owns and manipulates this napi,
5211  			 * and NAPI_STATE_SCHED is the only possible flag set
5212  			 * on backlog.
5213  			 * We can use a plain write instead of clear_bit(),
5214  			 * and we dont need an smp_mb() memory barrier.
5215  			 */
5216  			napi->state = 0;
5217  			again = false;
5218  		} else {
5219  			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5220  						   &sd->process_queue);
5221  		}
5222  		rps_unlock(sd);
5223  		local_irq_enable();
5224  	}
5225  
5226  	return work;
5227  }
5228  
5229  /**
5230   * __napi_schedule - schedule for receive
5231   * @n: entry to schedule
5232   *
5233   * The entry's receive function will be scheduled to run.
5234   * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5235   */
__napi_schedule(struct napi_struct * n)5236  void __napi_schedule(struct napi_struct *n)
5237  {
5238  	unsigned long flags;
5239  
5240  	local_irq_save(flags);
5241  	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5242  	local_irq_restore(flags);
5243  }
5244  EXPORT_SYMBOL(__napi_schedule);
5245  
5246  /**
5247   *	napi_schedule_prep - check if napi can be scheduled
5248   *	@n: napi context
5249   *
5250   * Test if NAPI routine is already running, and if not mark
5251   * it as running.  This is used as a condition variable
5252   * insure only one NAPI poll instance runs.  We also make
5253   * sure there is no pending NAPI disable.
5254   */
napi_schedule_prep(struct napi_struct * n)5255  bool napi_schedule_prep(struct napi_struct *n)
5256  {
5257  	unsigned long val, new;
5258  
5259  	do {
5260  		val = READ_ONCE(n->state);
5261  		if (unlikely(val & NAPIF_STATE_DISABLE))
5262  			return false;
5263  		new = val | NAPIF_STATE_SCHED;
5264  
5265  		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5266  		 * This was suggested by Alexander Duyck, as compiler
5267  		 * emits better code than :
5268  		 * if (val & NAPIF_STATE_SCHED)
5269  		 *     new |= NAPIF_STATE_MISSED;
5270  		 */
5271  		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5272  						   NAPIF_STATE_MISSED;
5273  	} while (cmpxchg(&n->state, val, new) != val);
5274  
5275  	return !(val & NAPIF_STATE_SCHED);
5276  }
5277  EXPORT_SYMBOL(napi_schedule_prep);
5278  
5279  /**
5280   * __napi_schedule_irqoff - schedule for receive
5281   * @n: entry to schedule
5282   *
5283   * Variant of __napi_schedule() assuming hard irqs are masked
5284   */
__napi_schedule_irqoff(struct napi_struct * n)5285  void __napi_schedule_irqoff(struct napi_struct *n)
5286  {
5287  	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5288  }
5289  EXPORT_SYMBOL(__napi_schedule_irqoff);
5290  
napi_complete_done(struct napi_struct * n,int work_done)5291  bool napi_complete_done(struct napi_struct *n, int work_done)
5292  {
5293  	unsigned long flags, val, new;
5294  
5295  	/*
5296  	 * 1) Don't let napi dequeue from the cpu poll list
5297  	 *    just in case its running on a different cpu.
5298  	 * 2) If we are busy polling, do nothing here, we have
5299  	 *    the guarantee we will be called later.
5300  	 */
5301  	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5302  				 NAPIF_STATE_IN_BUSY_POLL)))
5303  		return false;
5304  
5305  	if (n->gro_list) {
5306  		unsigned long timeout = 0;
5307  
5308  		if (work_done)
5309  			timeout = n->dev->gro_flush_timeout;
5310  
5311  		/* When the NAPI instance uses a timeout and keeps postponing
5312  		 * it, we need to bound somehow the time packets are kept in
5313  		 * the GRO layer
5314  		 */
5315  		napi_gro_flush(n, !!timeout);
5316  		if (timeout)
5317  			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5318  				      HRTIMER_MODE_REL_PINNED);
5319  	}
5320  	if (unlikely(!list_empty(&n->poll_list))) {
5321  		/* If n->poll_list is not empty, we need to mask irqs */
5322  		local_irq_save(flags);
5323  		list_del_init(&n->poll_list);
5324  		local_irq_restore(flags);
5325  	}
5326  
5327  	do {
5328  		val = READ_ONCE(n->state);
5329  
5330  		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5331  
5332  		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5333  
5334  		/* If STATE_MISSED was set, leave STATE_SCHED set,
5335  		 * because we will call napi->poll() one more time.
5336  		 * This C code was suggested by Alexander Duyck to help gcc.
5337  		 */
5338  		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5339  						    NAPIF_STATE_SCHED;
5340  	} while (cmpxchg(&n->state, val, new) != val);
5341  
5342  	if (unlikely(val & NAPIF_STATE_MISSED)) {
5343  		__napi_schedule(n);
5344  		return false;
5345  	}
5346  
5347  	return true;
5348  }
5349  EXPORT_SYMBOL(napi_complete_done);
5350  
5351  /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)5352  static struct napi_struct *napi_by_id(unsigned int napi_id)
5353  {
5354  	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5355  	struct napi_struct *napi;
5356  
5357  	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5358  		if (napi->napi_id == napi_id)
5359  			return napi;
5360  
5361  	return NULL;
5362  }
5363  
5364  #if defined(CONFIG_NET_RX_BUSY_POLL)
5365  
5366  #define BUSY_POLL_BUDGET 8
5367  
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock)5368  static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5369  {
5370  	int rc;
5371  
5372  	/* Busy polling means there is a high chance device driver hard irq
5373  	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5374  	 * set in napi_schedule_prep().
5375  	 * Since we are about to call napi->poll() once more, we can safely
5376  	 * clear NAPI_STATE_MISSED.
5377  	 *
5378  	 * Note: x86 could use a single "lock and ..." instruction
5379  	 * to perform these two clear_bit()
5380  	 */
5381  	clear_bit(NAPI_STATE_MISSED, &napi->state);
5382  	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5383  
5384  	local_bh_disable();
5385  
5386  	/* All we really want here is to re-enable device interrupts.
5387  	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5388  	 */
5389  	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5390  	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5391  	netpoll_poll_unlock(have_poll_lock);
5392  	if (rc == BUSY_POLL_BUDGET)
5393  		__napi_schedule(napi);
5394  	local_bh_enable();
5395  }
5396  
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg)5397  void napi_busy_loop(unsigned int napi_id,
5398  		    bool (*loop_end)(void *, unsigned long),
5399  		    void *loop_end_arg)
5400  {
5401  	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5402  	int (*napi_poll)(struct napi_struct *napi, int budget);
5403  	void *have_poll_lock = NULL;
5404  	struct napi_struct *napi;
5405  
5406  restart:
5407  	napi_poll = NULL;
5408  
5409  	rcu_read_lock();
5410  
5411  	napi = napi_by_id(napi_id);
5412  	if (!napi)
5413  		goto out;
5414  
5415  	preempt_disable();
5416  	for (;;) {
5417  		int work = 0;
5418  
5419  		local_bh_disable();
5420  		if (!napi_poll) {
5421  			unsigned long val = READ_ONCE(napi->state);
5422  
5423  			/* If multiple threads are competing for this napi,
5424  			 * we avoid dirtying napi->state as much as we can.
5425  			 */
5426  			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5427  				   NAPIF_STATE_IN_BUSY_POLL))
5428  				goto count;
5429  			if (cmpxchg(&napi->state, val,
5430  				    val | NAPIF_STATE_IN_BUSY_POLL |
5431  					  NAPIF_STATE_SCHED) != val)
5432  				goto count;
5433  			have_poll_lock = netpoll_poll_lock(napi);
5434  			napi_poll = napi->poll;
5435  		}
5436  		work = napi_poll(napi, BUSY_POLL_BUDGET);
5437  		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5438  count:
5439  		if (work > 0)
5440  			__NET_ADD_STATS(dev_net(napi->dev),
5441  					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5442  		local_bh_enable();
5443  
5444  		if (!loop_end || loop_end(loop_end_arg, start_time))
5445  			break;
5446  
5447  		if (unlikely(need_resched())) {
5448  			if (napi_poll)
5449  				busy_poll_stop(napi, have_poll_lock);
5450  			preempt_enable();
5451  			rcu_read_unlock();
5452  			cond_resched();
5453  			if (loop_end(loop_end_arg, start_time))
5454  				return;
5455  			goto restart;
5456  		}
5457  		cpu_relax();
5458  	}
5459  	if (napi_poll)
5460  		busy_poll_stop(napi, have_poll_lock);
5461  	preempt_enable();
5462  out:
5463  	rcu_read_unlock();
5464  }
5465  EXPORT_SYMBOL(napi_busy_loop);
5466  
5467  #endif /* CONFIG_NET_RX_BUSY_POLL */
5468  
napi_hash_add(struct napi_struct * napi)5469  static void napi_hash_add(struct napi_struct *napi)
5470  {
5471  	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5472  	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5473  		return;
5474  
5475  	spin_lock(&napi_hash_lock);
5476  
5477  	/* 0..NR_CPUS range is reserved for sender_cpu use */
5478  	do {
5479  		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5480  			napi_gen_id = MIN_NAPI_ID;
5481  	} while (napi_by_id(napi_gen_id));
5482  	napi->napi_id = napi_gen_id;
5483  
5484  	hlist_add_head_rcu(&napi->napi_hash_node,
5485  			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5486  
5487  	spin_unlock(&napi_hash_lock);
5488  }
5489  
5490  /* Warning : caller is responsible to make sure rcu grace period
5491   * is respected before freeing memory containing @napi
5492   */
napi_hash_del(struct napi_struct * napi)5493  bool napi_hash_del(struct napi_struct *napi)
5494  {
5495  	bool rcu_sync_needed = false;
5496  
5497  	spin_lock(&napi_hash_lock);
5498  
5499  	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5500  		rcu_sync_needed = true;
5501  		hlist_del_rcu(&napi->napi_hash_node);
5502  	}
5503  	spin_unlock(&napi_hash_lock);
5504  	return rcu_sync_needed;
5505  }
5506  EXPORT_SYMBOL_GPL(napi_hash_del);
5507  
napi_watchdog(struct hrtimer * timer)5508  static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5509  {
5510  	struct napi_struct *napi;
5511  
5512  	napi = container_of(timer, struct napi_struct, timer);
5513  
5514  	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5515  	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5516  	 */
5517  	if (napi->gro_list && !napi_disable_pending(napi) &&
5518  	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5519  		__napi_schedule_irqoff(napi);
5520  
5521  	return HRTIMER_NORESTART;
5522  }
5523  
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)5524  void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5525  		    int (*poll)(struct napi_struct *, int), int weight)
5526  {
5527  	INIT_LIST_HEAD(&napi->poll_list);
5528  	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5529  	napi->timer.function = napi_watchdog;
5530  	napi->gro_count = 0;
5531  	napi->gro_list = NULL;
5532  	napi->skb = NULL;
5533  	napi->poll = poll;
5534  	if (weight > NAPI_POLL_WEIGHT)
5535  		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5536  			    weight, dev->name);
5537  	napi->weight = weight;
5538  	list_add(&napi->dev_list, &dev->napi_list);
5539  	napi->dev = dev;
5540  #ifdef CONFIG_NETPOLL
5541  	napi->poll_owner = -1;
5542  #endif
5543  	set_bit(NAPI_STATE_SCHED, &napi->state);
5544  	napi_hash_add(napi);
5545  }
5546  EXPORT_SYMBOL(netif_napi_add);
5547  
napi_disable(struct napi_struct * n)5548  void napi_disable(struct napi_struct *n)
5549  {
5550  	might_sleep();
5551  	set_bit(NAPI_STATE_DISABLE, &n->state);
5552  
5553  	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5554  		msleep(1);
5555  	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5556  		msleep(1);
5557  
5558  	hrtimer_cancel(&n->timer);
5559  
5560  	clear_bit(NAPI_STATE_DISABLE, &n->state);
5561  }
5562  EXPORT_SYMBOL(napi_disable);
5563  
5564  /* Must be called in process context */
netif_napi_del(struct napi_struct * napi)5565  void netif_napi_del(struct napi_struct *napi)
5566  {
5567  	might_sleep();
5568  	if (napi_hash_del(napi))
5569  		synchronize_net();
5570  	list_del_init(&napi->dev_list);
5571  	napi_free_frags(napi);
5572  
5573  	kfree_skb_list(napi->gro_list);
5574  	napi->gro_list = NULL;
5575  	napi->gro_count = 0;
5576  }
5577  EXPORT_SYMBOL(netif_napi_del);
5578  
napi_poll(struct napi_struct * n,struct list_head * repoll)5579  static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5580  {
5581  	void *have;
5582  	int work, weight;
5583  
5584  	list_del_init(&n->poll_list);
5585  
5586  	have = netpoll_poll_lock(n);
5587  
5588  	weight = n->weight;
5589  
5590  	/* This NAPI_STATE_SCHED test is for avoiding a race
5591  	 * with netpoll's poll_napi().  Only the entity which
5592  	 * obtains the lock and sees NAPI_STATE_SCHED set will
5593  	 * actually make the ->poll() call.  Therefore we avoid
5594  	 * accidentally calling ->poll() when NAPI is not scheduled.
5595  	 */
5596  	work = 0;
5597  	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5598  		work = n->poll(n, weight);
5599  		trace_napi_poll(n, work, weight);
5600  	}
5601  
5602  	WARN_ON_ONCE(work > weight);
5603  
5604  	if (likely(work < weight))
5605  		goto out_unlock;
5606  
5607  	/* Drivers must not modify the NAPI state if they
5608  	 * consume the entire weight.  In such cases this code
5609  	 * still "owns" the NAPI instance and therefore can
5610  	 * move the instance around on the list at-will.
5611  	 */
5612  	if (unlikely(napi_disable_pending(n))) {
5613  		napi_complete(n);
5614  		goto out_unlock;
5615  	}
5616  
5617  	if (n->gro_list) {
5618  		/* flush too old packets
5619  		 * If HZ < 1000, flush all packets.
5620  		 */
5621  		napi_gro_flush(n, HZ >= 1000);
5622  	}
5623  
5624  	/* Some drivers may have called napi_schedule
5625  	 * prior to exhausting their budget.
5626  	 */
5627  	if (unlikely(!list_empty(&n->poll_list))) {
5628  		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5629  			     n->dev ? n->dev->name : "backlog");
5630  		goto out_unlock;
5631  	}
5632  
5633  	list_add_tail(&n->poll_list, repoll);
5634  
5635  out_unlock:
5636  	netpoll_poll_unlock(have);
5637  
5638  	return work;
5639  }
5640  
net_rx_action(struct softirq_action * h)5641  static __latent_entropy void net_rx_action(struct softirq_action *h)
5642  {
5643  	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5644  	unsigned long time_limit = jiffies +
5645  		usecs_to_jiffies(netdev_budget_usecs);
5646  	int budget = netdev_budget;
5647  	LIST_HEAD(list);
5648  	LIST_HEAD(repoll);
5649  
5650  	local_irq_disable();
5651  	list_splice_init(&sd->poll_list, &list);
5652  	local_irq_enable();
5653  
5654  	for (;;) {
5655  		struct napi_struct *n;
5656  
5657  		if (list_empty(&list)) {
5658  			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5659  				goto out;
5660  			break;
5661  		}
5662  
5663  		n = list_first_entry(&list, struct napi_struct, poll_list);
5664  		budget -= napi_poll(n, &repoll);
5665  
5666  		/* If softirq window is exhausted then punt.
5667  		 * Allow this to run for 2 jiffies since which will allow
5668  		 * an average latency of 1.5/HZ.
5669  		 */
5670  		if (unlikely(budget <= 0 ||
5671  			     time_after_eq(jiffies, time_limit))) {
5672  			sd->time_squeeze++;
5673  			break;
5674  		}
5675  	}
5676  
5677  	local_irq_disable();
5678  
5679  	list_splice_tail_init(&sd->poll_list, &list);
5680  	list_splice_tail(&repoll, &list);
5681  	list_splice(&list, &sd->poll_list);
5682  	if (!list_empty(&sd->poll_list))
5683  		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5684  
5685  	net_rps_action_and_irq_enable(sd);
5686  out:
5687  	__kfree_skb_flush();
5688  }
5689  
5690  struct netdev_adjacent {
5691  	struct net_device *dev;
5692  
5693  	/* upper master flag, there can only be one master device per list */
5694  	bool master;
5695  
5696  	/* counter for the number of times this device was added to us */
5697  	u16 ref_nr;
5698  
5699  	/* private field for the users */
5700  	void *private;
5701  
5702  	struct list_head list;
5703  	struct rcu_head rcu;
5704  };
5705  
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)5706  static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5707  						 struct list_head *adj_list)
5708  {
5709  	struct netdev_adjacent *adj;
5710  
5711  	list_for_each_entry(adj, adj_list, list) {
5712  		if (adj->dev == adj_dev)
5713  			return adj;
5714  	}
5715  	return NULL;
5716  }
5717  
__netdev_has_upper_dev(struct net_device * upper_dev,void * data)5718  static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5719  {
5720  	struct net_device *dev = data;
5721  
5722  	return upper_dev == dev;
5723  }
5724  
5725  /**
5726   * netdev_has_upper_dev - Check if device is linked to an upper device
5727   * @dev: device
5728   * @upper_dev: upper device to check
5729   *
5730   * Find out if a device is linked to specified upper device and return true
5731   * in case it is. Note that this checks only immediate upper device,
5732   * not through a complete stack of devices. The caller must hold the RTNL lock.
5733   */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)5734  bool netdev_has_upper_dev(struct net_device *dev,
5735  			  struct net_device *upper_dev)
5736  {
5737  	ASSERT_RTNL();
5738  
5739  	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5740  					     upper_dev);
5741  }
5742  EXPORT_SYMBOL(netdev_has_upper_dev);
5743  
5744  /**
5745   * netdev_has_upper_dev_all - Check if device is linked to an upper device
5746   * @dev: device
5747   * @upper_dev: upper device to check
5748   *
5749   * Find out if a device is linked to specified upper device and return true
5750   * in case it is. Note that this checks the entire upper device chain.
5751   * The caller must hold rcu lock.
5752   */
5753  
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)5754  bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5755  				  struct net_device *upper_dev)
5756  {
5757  	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5758  					       upper_dev);
5759  }
5760  EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5761  
5762  /**
5763   * netdev_has_any_upper_dev - Check if device is linked to some device
5764   * @dev: device
5765   *
5766   * Find out if a device is linked to an upper device and return true in case
5767   * it is. The caller must hold the RTNL lock.
5768   */
netdev_has_any_upper_dev(struct net_device * dev)5769  bool netdev_has_any_upper_dev(struct net_device *dev)
5770  {
5771  	ASSERT_RTNL();
5772  
5773  	return !list_empty(&dev->adj_list.upper);
5774  }
5775  EXPORT_SYMBOL(netdev_has_any_upper_dev);
5776  
5777  /**
5778   * netdev_master_upper_dev_get - Get master upper device
5779   * @dev: device
5780   *
5781   * Find a master upper device and return pointer to it or NULL in case
5782   * it's not there. The caller must hold the RTNL lock.
5783   */
netdev_master_upper_dev_get(struct net_device * dev)5784  struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5785  {
5786  	struct netdev_adjacent *upper;
5787  
5788  	ASSERT_RTNL();
5789  
5790  	if (list_empty(&dev->adj_list.upper))
5791  		return NULL;
5792  
5793  	upper = list_first_entry(&dev->adj_list.upper,
5794  				 struct netdev_adjacent, list);
5795  	if (likely(upper->master))
5796  		return upper->dev;
5797  	return NULL;
5798  }
5799  EXPORT_SYMBOL(netdev_master_upper_dev_get);
5800  
5801  /**
5802   * netdev_has_any_lower_dev - Check if device is linked to some device
5803   * @dev: device
5804   *
5805   * Find out if a device is linked to a lower device and return true in case
5806   * it is. The caller must hold the RTNL lock.
5807   */
netdev_has_any_lower_dev(struct net_device * dev)5808  static bool netdev_has_any_lower_dev(struct net_device *dev)
5809  {
5810  	ASSERT_RTNL();
5811  
5812  	return !list_empty(&dev->adj_list.lower);
5813  }
5814  
netdev_adjacent_get_private(struct list_head * adj_list)5815  void *netdev_adjacent_get_private(struct list_head *adj_list)
5816  {
5817  	struct netdev_adjacent *adj;
5818  
5819  	adj = list_entry(adj_list, struct netdev_adjacent, list);
5820  
5821  	return adj->private;
5822  }
5823  EXPORT_SYMBOL(netdev_adjacent_get_private);
5824  
5825  /**
5826   * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5827   * @dev: device
5828   * @iter: list_head ** of the current position
5829   *
5830   * Gets the next device from the dev's upper list, starting from iter
5831   * position. The caller must hold RCU read lock.
5832   */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)5833  struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5834  						 struct list_head **iter)
5835  {
5836  	struct netdev_adjacent *upper;
5837  
5838  	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5839  
5840  	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5841  
5842  	if (&upper->list == &dev->adj_list.upper)
5843  		return NULL;
5844  
5845  	*iter = &upper->list;
5846  
5847  	return upper->dev;
5848  }
5849  EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5850  
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)5851  static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5852  						    struct list_head **iter)
5853  {
5854  	struct netdev_adjacent *upper;
5855  
5856  	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5857  
5858  	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5859  
5860  	if (&upper->list == &dev->adj_list.upper)
5861  		return NULL;
5862  
5863  	*iter = &upper->list;
5864  
5865  	return upper->dev;
5866  }
5867  
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)5868  int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5869  				  int (*fn)(struct net_device *dev,
5870  					    void *data),
5871  				  void *data)
5872  {
5873  	struct net_device *udev;
5874  	struct list_head *iter;
5875  	int ret;
5876  
5877  	for (iter = &dev->adj_list.upper,
5878  	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5879  	     udev;
5880  	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5881  		/* first is the upper device itself */
5882  		ret = fn(udev, data);
5883  		if (ret)
5884  			return ret;
5885  
5886  		/* then look at all of its upper devices */
5887  		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5888  		if (ret)
5889  			return ret;
5890  	}
5891  
5892  	return 0;
5893  }
5894  EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5895  
5896  /**
5897   * netdev_lower_get_next_private - Get the next ->private from the
5898   *				   lower neighbour list
5899   * @dev: device
5900   * @iter: list_head ** of the current position
5901   *
5902   * Gets the next netdev_adjacent->private from the dev's lower neighbour
5903   * list, starting from iter position. The caller must hold either hold the
5904   * RTNL lock or its own locking that guarantees that the neighbour lower
5905   * list will remain unchanged.
5906   */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)5907  void *netdev_lower_get_next_private(struct net_device *dev,
5908  				    struct list_head **iter)
5909  {
5910  	struct netdev_adjacent *lower;
5911  
5912  	lower = list_entry(*iter, struct netdev_adjacent, list);
5913  
5914  	if (&lower->list == &dev->adj_list.lower)
5915  		return NULL;
5916  
5917  	*iter = lower->list.next;
5918  
5919  	return lower->private;
5920  }
5921  EXPORT_SYMBOL(netdev_lower_get_next_private);
5922  
5923  /**
5924   * netdev_lower_get_next_private_rcu - Get the next ->private from the
5925   *				       lower neighbour list, RCU
5926   *				       variant
5927   * @dev: device
5928   * @iter: list_head ** of the current position
5929   *
5930   * Gets the next netdev_adjacent->private from the dev's lower neighbour
5931   * list, starting from iter position. The caller must hold RCU read lock.
5932   */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)5933  void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5934  					struct list_head **iter)
5935  {
5936  	struct netdev_adjacent *lower;
5937  
5938  	WARN_ON_ONCE(!rcu_read_lock_held());
5939  
5940  	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5941  
5942  	if (&lower->list == &dev->adj_list.lower)
5943  		return NULL;
5944  
5945  	*iter = &lower->list;
5946  
5947  	return lower->private;
5948  }
5949  EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5950  
5951  /**
5952   * netdev_lower_get_next - Get the next device from the lower neighbour
5953   *                         list
5954   * @dev: device
5955   * @iter: list_head ** of the current position
5956   *
5957   * Gets the next netdev_adjacent from the dev's lower neighbour
5958   * list, starting from iter position. The caller must hold RTNL lock or
5959   * its own locking that guarantees that the neighbour lower
5960   * list will remain unchanged.
5961   */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)5962  void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5963  {
5964  	struct netdev_adjacent *lower;
5965  
5966  	lower = list_entry(*iter, struct netdev_adjacent, list);
5967  
5968  	if (&lower->list == &dev->adj_list.lower)
5969  		return NULL;
5970  
5971  	*iter = lower->list.next;
5972  
5973  	return lower->dev;
5974  }
5975  EXPORT_SYMBOL(netdev_lower_get_next);
5976  
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)5977  static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5978  						struct list_head **iter)
5979  {
5980  	struct netdev_adjacent *lower;
5981  
5982  	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5983  
5984  	if (&lower->list == &dev->adj_list.lower)
5985  		return NULL;
5986  
5987  	*iter = &lower->list;
5988  
5989  	return lower->dev;
5990  }
5991  
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)5992  int netdev_walk_all_lower_dev(struct net_device *dev,
5993  			      int (*fn)(struct net_device *dev,
5994  					void *data),
5995  			      void *data)
5996  {
5997  	struct net_device *ldev;
5998  	struct list_head *iter;
5999  	int ret;
6000  
6001  	for (iter = &dev->adj_list.lower,
6002  	     ldev = netdev_next_lower_dev(dev, &iter);
6003  	     ldev;
6004  	     ldev = netdev_next_lower_dev(dev, &iter)) {
6005  		/* first is the lower device itself */
6006  		ret = fn(ldev, data);
6007  		if (ret)
6008  			return ret;
6009  
6010  		/* then look at all of its lower devices */
6011  		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6012  		if (ret)
6013  			return ret;
6014  	}
6015  
6016  	return 0;
6017  }
6018  EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6019  
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)6020  static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6021  						    struct list_head **iter)
6022  {
6023  	struct netdev_adjacent *lower;
6024  
6025  	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6026  	if (&lower->list == &dev->adj_list.lower)
6027  		return NULL;
6028  
6029  	*iter = &lower->list;
6030  
6031  	return lower->dev;
6032  }
6033  
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,void * data),void * data)6034  int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6035  				  int (*fn)(struct net_device *dev,
6036  					    void *data),
6037  				  void *data)
6038  {
6039  	struct net_device *ldev;
6040  	struct list_head *iter;
6041  	int ret;
6042  
6043  	for (iter = &dev->adj_list.lower,
6044  	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6045  	     ldev;
6046  	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6047  		/* first is the lower device itself */
6048  		ret = fn(ldev, data);
6049  		if (ret)
6050  			return ret;
6051  
6052  		/* then look at all of its lower devices */
6053  		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6054  		if (ret)
6055  			return ret;
6056  	}
6057  
6058  	return 0;
6059  }
6060  EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6061  
6062  /**
6063   * netdev_lower_get_first_private_rcu - Get the first ->private from the
6064   *				       lower neighbour list, RCU
6065   *				       variant
6066   * @dev: device
6067   *
6068   * Gets the first netdev_adjacent->private from the dev's lower neighbour
6069   * list. The caller must hold RCU read lock.
6070   */
netdev_lower_get_first_private_rcu(struct net_device * dev)6071  void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6072  {
6073  	struct netdev_adjacent *lower;
6074  
6075  	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6076  			struct netdev_adjacent, list);
6077  	if (lower)
6078  		return lower->private;
6079  	return NULL;
6080  }
6081  EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6082  
6083  /**
6084   * netdev_master_upper_dev_get_rcu - Get master upper device
6085   * @dev: device
6086   *
6087   * Find a master upper device and return pointer to it or NULL in case
6088   * it's not there. The caller must hold the RCU read lock.
6089   */
netdev_master_upper_dev_get_rcu(struct net_device * dev)6090  struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6091  {
6092  	struct netdev_adjacent *upper;
6093  
6094  	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6095  				       struct netdev_adjacent, list);
6096  	if (upper && likely(upper->master))
6097  		return upper->dev;
6098  	return NULL;
6099  }
6100  EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6101  
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6102  static int netdev_adjacent_sysfs_add(struct net_device *dev,
6103  			      struct net_device *adj_dev,
6104  			      struct list_head *dev_list)
6105  {
6106  	char linkname[IFNAMSIZ+7];
6107  
6108  	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6109  		"upper_%s" : "lower_%s", adj_dev->name);
6110  	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6111  				 linkname);
6112  }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)6113  static void netdev_adjacent_sysfs_del(struct net_device *dev,
6114  			       char *name,
6115  			       struct list_head *dev_list)
6116  {
6117  	char linkname[IFNAMSIZ+7];
6118  
6119  	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6120  		"upper_%s" : "lower_%s", name);
6121  	sysfs_remove_link(&(dev->dev.kobj), linkname);
6122  }
6123  
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)6124  static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6125  						 struct net_device *adj_dev,
6126  						 struct list_head *dev_list)
6127  {
6128  	return (dev_list == &dev->adj_list.upper ||
6129  		dev_list == &dev->adj_list.lower) &&
6130  		net_eq(dev_net(dev), dev_net(adj_dev));
6131  }
6132  
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)6133  static int __netdev_adjacent_dev_insert(struct net_device *dev,
6134  					struct net_device *adj_dev,
6135  					struct list_head *dev_list,
6136  					void *private, bool master)
6137  {
6138  	struct netdev_adjacent *adj;
6139  	int ret;
6140  
6141  	adj = __netdev_find_adj(adj_dev, dev_list);
6142  
6143  	if (adj) {
6144  		adj->ref_nr += 1;
6145  		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6146  			 dev->name, adj_dev->name, adj->ref_nr);
6147  
6148  		return 0;
6149  	}
6150  
6151  	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6152  	if (!adj)
6153  		return -ENOMEM;
6154  
6155  	adj->dev = adj_dev;
6156  	adj->master = master;
6157  	adj->ref_nr = 1;
6158  	adj->private = private;
6159  	dev_hold(adj_dev);
6160  
6161  	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6162  		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6163  
6164  	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6165  		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6166  		if (ret)
6167  			goto free_adj;
6168  	}
6169  
6170  	/* Ensure that master link is always the first item in list. */
6171  	if (master) {
6172  		ret = sysfs_create_link(&(dev->dev.kobj),
6173  					&(adj_dev->dev.kobj), "master");
6174  		if (ret)
6175  			goto remove_symlinks;
6176  
6177  		list_add_rcu(&adj->list, dev_list);
6178  	} else {
6179  		list_add_tail_rcu(&adj->list, dev_list);
6180  	}
6181  
6182  	return 0;
6183  
6184  remove_symlinks:
6185  	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6186  		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6187  free_adj:
6188  	kfree(adj);
6189  	dev_put(adj_dev);
6190  
6191  	return ret;
6192  }
6193  
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)6194  static void __netdev_adjacent_dev_remove(struct net_device *dev,
6195  					 struct net_device *adj_dev,
6196  					 u16 ref_nr,
6197  					 struct list_head *dev_list)
6198  {
6199  	struct netdev_adjacent *adj;
6200  
6201  	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6202  		 dev->name, adj_dev->name, ref_nr);
6203  
6204  	adj = __netdev_find_adj(adj_dev, dev_list);
6205  
6206  	if (!adj) {
6207  		pr_err("Adjacency does not exist for device %s from %s\n",
6208  		       dev->name, adj_dev->name);
6209  		WARN_ON(1);
6210  		return;
6211  	}
6212  
6213  	if (adj->ref_nr > ref_nr) {
6214  		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6215  			 dev->name, adj_dev->name, ref_nr,
6216  			 adj->ref_nr - ref_nr);
6217  		adj->ref_nr -= ref_nr;
6218  		return;
6219  	}
6220  
6221  	if (adj->master)
6222  		sysfs_remove_link(&(dev->dev.kobj), "master");
6223  
6224  	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6225  		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6226  
6227  	list_del_rcu(&adj->list);
6228  	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6229  		 adj_dev->name, dev->name, adj_dev->name);
6230  	dev_put(adj_dev);
6231  	kfree_rcu(adj, rcu);
6232  }
6233  
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)6234  static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6235  					    struct net_device *upper_dev,
6236  					    struct list_head *up_list,
6237  					    struct list_head *down_list,
6238  					    void *private, bool master)
6239  {
6240  	int ret;
6241  
6242  	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6243  					   private, master);
6244  	if (ret)
6245  		return ret;
6246  
6247  	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6248  					   private, false);
6249  	if (ret) {
6250  		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6251  		return ret;
6252  	}
6253  
6254  	return 0;
6255  }
6256  
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)6257  static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6258  					       struct net_device *upper_dev,
6259  					       u16 ref_nr,
6260  					       struct list_head *up_list,
6261  					       struct list_head *down_list)
6262  {
6263  	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6264  	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6265  }
6266  
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)6267  static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6268  						struct net_device *upper_dev,
6269  						void *private, bool master)
6270  {
6271  	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6272  						&dev->adj_list.upper,
6273  						&upper_dev->adj_list.lower,
6274  						private, master);
6275  }
6276  
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)6277  static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6278  						   struct net_device *upper_dev)
6279  {
6280  	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6281  					   &dev->adj_list.upper,
6282  					   &upper_dev->adj_list.lower);
6283  }
6284  
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info)6285  static int __netdev_upper_dev_link(struct net_device *dev,
6286  				   struct net_device *upper_dev, bool master,
6287  				   void *upper_priv, void *upper_info)
6288  {
6289  	struct netdev_notifier_changeupper_info changeupper_info;
6290  	int ret = 0;
6291  
6292  	ASSERT_RTNL();
6293  
6294  	if (dev == upper_dev)
6295  		return -EBUSY;
6296  
6297  	/* To prevent loops, check if dev is not upper device to upper_dev. */
6298  	if (netdev_has_upper_dev(upper_dev, dev))
6299  		return -EBUSY;
6300  
6301  	if (netdev_has_upper_dev(dev, upper_dev))
6302  		return -EEXIST;
6303  
6304  	if (master && netdev_master_upper_dev_get(dev))
6305  		return -EBUSY;
6306  
6307  	changeupper_info.upper_dev = upper_dev;
6308  	changeupper_info.master = master;
6309  	changeupper_info.linking = true;
6310  	changeupper_info.upper_info = upper_info;
6311  
6312  	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6313  					    &changeupper_info.info);
6314  	ret = notifier_to_errno(ret);
6315  	if (ret)
6316  		return ret;
6317  
6318  	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6319  						   master);
6320  	if (ret)
6321  		return ret;
6322  
6323  	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6324  					    &changeupper_info.info);
6325  	ret = notifier_to_errno(ret);
6326  	if (ret)
6327  		goto rollback;
6328  
6329  	return 0;
6330  
6331  rollback:
6332  	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6333  
6334  	return ret;
6335  }
6336  
6337  /**
6338   * netdev_upper_dev_link - Add a link to the upper device
6339   * @dev: device
6340   * @upper_dev: new upper device
6341   *
6342   * Adds a link to device which is upper to this one. The caller must hold
6343   * the RTNL lock. On a failure a negative errno code is returned.
6344   * On success the reference counts are adjusted and the function
6345   * returns zero.
6346   */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev)6347  int netdev_upper_dev_link(struct net_device *dev,
6348  			  struct net_device *upper_dev)
6349  {
6350  	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6351  }
6352  EXPORT_SYMBOL(netdev_upper_dev_link);
6353  
6354  /**
6355   * netdev_master_upper_dev_link - Add a master link to the upper device
6356   * @dev: device
6357   * @upper_dev: new upper device
6358   * @upper_priv: upper device private
6359   * @upper_info: upper info to be passed down via notifier
6360   *
6361   * Adds a link to device which is upper to this one. In this case, only
6362   * one master upper device can be linked, although other non-master devices
6363   * might be linked as well. The caller must hold the RTNL lock.
6364   * On a failure a negative errno code is returned. On success the reference
6365   * counts are adjusted and the function returns zero.
6366   */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info)6367  int netdev_master_upper_dev_link(struct net_device *dev,
6368  				 struct net_device *upper_dev,
6369  				 void *upper_priv, void *upper_info)
6370  {
6371  	return __netdev_upper_dev_link(dev, upper_dev, true,
6372  				       upper_priv, upper_info);
6373  }
6374  EXPORT_SYMBOL(netdev_master_upper_dev_link);
6375  
6376  /**
6377   * netdev_upper_dev_unlink - Removes a link to upper device
6378   * @dev: device
6379   * @upper_dev: new upper device
6380   *
6381   * Removes a link to device which is upper to this one. The caller must hold
6382   * the RTNL lock.
6383   */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)6384  void netdev_upper_dev_unlink(struct net_device *dev,
6385  			     struct net_device *upper_dev)
6386  {
6387  	struct netdev_notifier_changeupper_info changeupper_info;
6388  
6389  	ASSERT_RTNL();
6390  
6391  	changeupper_info.upper_dev = upper_dev;
6392  	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6393  	changeupper_info.linking = false;
6394  
6395  	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6396  				      &changeupper_info.info);
6397  
6398  	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6399  
6400  	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6401  				      &changeupper_info.info);
6402  }
6403  EXPORT_SYMBOL(netdev_upper_dev_unlink);
6404  
6405  /**
6406   * netdev_bonding_info_change - Dispatch event about slave change
6407   * @dev: device
6408   * @bonding_info: info to dispatch
6409   *
6410   * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6411   * The caller must hold the RTNL lock.
6412   */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)6413  void netdev_bonding_info_change(struct net_device *dev,
6414  				struct netdev_bonding_info *bonding_info)
6415  {
6416  	struct netdev_notifier_bonding_info	info;
6417  
6418  	memcpy(&info.bonding_info, bonding_info,
6419  	       sizeof(struct netdev_bonding_info));
6420  	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6421  				      &info.info);
6422  }
6423  EXPORT_SYMBOL(netdev_bonding_info_change);
6424  
netdev_adjacent_add_links(struct net_device * dev)6425  static void netdev_adjacent_add_links(struct net_device *dev)
6426  {
6427  	struct netdev_adjacent *iter;
6428  
6429  	struct net *net = dev_net(dev);
6430  
6431  	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6432  		if (!net_eq(net, dev_net(iter->dev)))
6433  			continue;
6434  		netdev_adjacent_sysfs_add(iter->dev, dev,
6435  					  &iter->dev->adj_list.lower);
6436  		netdev_adjacent_sysfs_add(dev, iter->dev,
6437  					  &dev->adj_list.upper);
6438  	}
6439  
6440  	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6441  		if (!net_eq(net, dev_net(iter->dev)))
6442  			continue;
6443  		netdev_adjacent_sysfs_add(iter->dev, dev,
6444  					  &iter->dev->adj_list.upper);
6445  		netdev_adjacent_sysfs_add(dev, iter->dev,
6446  					  &dev->adj_list.lower);
6447  	}
6448  }
6449  
netdev_adjacent_del_links(struct net_device * dev)6450  static void netdev_adjacent_del_links(struct net_device *dev)
6451  {
6452  	struct netdev_adjacent *iter;
6453  
6454  	struct net *net = dev_net(dev);
6455  
6456  	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6457  		if (!net_eq(net, dev_net(iter->dev)))
6458  			continue;
6459  		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6460  					  &iter->dev->adj_list.lower);
6461  		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6462  					  &dev->adj_list.upper);
6463  	}
6464  
6465  	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6466  		if (!net_eq(net, dev_net(iter->dev)))
6467  			continue;
6468  		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6469  					  &iter->dev->adj_list.upper);
6470  		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6471  					  &dev->adj_list.lower);
6472  	}
6473  }
6474  
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)6475  void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6476  {
6477  	struct netdev_adjacent *iter;
6478  
6479  	struct net *net = dev_net(dev);
6480  
6481  	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6482  		if (!net_eq(net, dev_net(iter->dev)))
6483  			continue;
6484  		netdev_adjacent_sysfs_del(iter->dev, oldname,
6485  					  &iter->dev->adj_list.lower);
6486  		netdev_adjacent_sysfs_add(iter->dev, dev,
6487  					  &iter->dev->adj_list.lower);
6488  	}
6489  
6490  	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6491  		if (!net_eq(net, dev_net(iter->dev)))
6492  			continue;
6493  		netdev_adjacent_sysfs_del(iter->dev, oldname,
6494  					  &iter->dev->adj_list.upper);
6495  		netdev_adjacent_sysfs_add(iter->dev, dev,
6496  					  &iter->dev->adj_list.upper);
6497  	}
6498  }
6499  
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)6500  void *netdev_lower_dev_get_private(struct net_device *dev,
6501  				   struct net_device *lower_dev)
6502  {
6503  	struct netdev_adjacent *lower;
6504  
6505  	if (!lower_dev)
6506  		return NULL;
6507  	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6508  	if (!lower)
6509  		return NULL;
6510  
6511  	return lower->private;
6512  }
6513  EXPORT_SYMBOL(netdev_lower_dev_get_private);
6514  
6515  
dev_get_nest_level(struct net_device * dev)6516  int dev_get_nest_level(struct net_device *dev)
6517  {
6518  	struct net_device *lower = NULL;
6519  	struct list_head *iter;
6520  	int max_nest = -1;
6521  	int nest;
6522  
6523  	ASSERT_RTNL();
6524  
6525  	netdev_for_each_lower_dev(dev, lower, iter) {
6526  		nest = dev_get_nest_level(lower);
6527  		if (max_nest < nest)
6528  			max_nest = nest;
6529  	}
6530  
6531  	return max_nest + 1;
6532  }
6533  EXPORT_SYMBOL(dev_get_nest_level);
6534  
6535  /**
6536   * netdev_lower_change - Dispatch event about lower device state change
6537   * @lower_dev: device
6538   * @lower_state_info: state to dispatch
6539   *
6540   * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6541   * The caller must hold the RTNL lock.
6542   */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)6543  void netdev_lower_state_changed(struct net_device *lower_dev,
6544  				void *lower_state_info)
6545  {
6546  	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6547  
6548  	ASSERT_RTNL();
6549  	changelowerstate_info.lower_state_info = lower_state_info;
6550  	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6551  				      &changelowerstate_info.info);
6552  }
6553  EXPORT_SYMBOL(netdev_lower_state_changed);
6554  
dev_change_rx_flags(struct net_device * dev,int flags)6555  static void dev_change_rx_flags(struct net_device *dev, int flags)
6556  {
6557  	const struct net_device_ops *ops = dev->netdev_ops;
6558  
6559  	if (ops->ndo_change_rx_flags)
6560  		ops->ndo_change_rx_flags(dev, flags);
6561  }
6562  
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)6563  static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6564  {
6565  	unsigned int old_flags = dev->flags;
6566  	kuid_t uid;
6567  	kgid_t gid;
6568  
6569  	ASSERT_RTNL();
6570  
6571  	dev->flags |= IFF_PROMISC;
6572  	dev->promiscuity += inc;
6573  	if (dev->promiscuity == 0) {
6574  		/*
6575  		 * Avoid overflow.
6576  		 * If inc causes overflow, untouch promisc and return error.
6577  		 */
6578  		if (inc < 0)
6579  			dev->flags &= ~IFF_PROMISC;
6580  		else {
6581  			dev->promiscuity -= inc;
6582  			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6583  				dev->name);
6584  			return -EOVERFLOW;
6585  		}
6586  	}
6587  	if (dev->flags != old_flags) {
6588  		pr_info("device %s %s promiscuous mode\n",
6589  			dev->name,
6590  			dev->flags & IFF_PROMISC ? "entered" : "left");
6591  		if (audit_enabled) {
6592  			current_uid_gid(&uid, &gid);
6593  			audit_log(current->audit_context, GFP_ATOMIC,
6594  				AUDIT_ANOM_PROMISCUOUS,
6595  				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6596  				dev->name, (dev->flags & IFF_PROMISC),
6597  				(old_flags & IFF_PROMISC),
6598  				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6599  				from_kuid(&init_user_ns, uid),
6600  				from_kgid(&init_user_ns, gid),
6601  				audit_get_sessionid(current));
6602  		}
6603  
6604  		dev_change_rx_flags(dev, IFF_PROMISC);
6605  	}
6606  	if (notify)
6607  		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6608  	return 0;
6609  }
6610  
6611  /**
6612   *	dev_set_promiscuity	- update promiscuity count on a device
6613   *	@dev: device
6614   *	@inc: modifier
6615   *
6616   *	Add or remove promiscuity from a device. While the count in the device
6617   *	remains above zero the interface remains promiscuous. Once it hits zero
6618   *	the device reverts back to normal filtering operation. A negative inc
6619   *	value is used to drop promiscuity on the device.
6620   *	Return 0 if successful or a negative errno code on error.
6621   */
dev_set_promiscuity(struct net_device * dev,int inc)6622  int dev_set_promiscuity(struct net_device *dev, int inc)
6623  {
6624  	unsigned int old_flags = dev->flags;
6625  	int err;
6626  
6627  	err = __dev_set_promiscuity(dev, inc, true);
6628  	if (err < 0)
6629  		return err;
6630  	if (dev->flags != old_flags)
6631  		dev_set_rx_mode(dev);
6632  	return err;
6633  }
6634  EXPORT_SYMBOL(dev_set_promiscuity);
6635  
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)6636  static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6637  {
6638  	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6639  
6640  	ASSERT_RTNL();
6641  
6642  	dev->flags |= IFF_ALLMULTI;
6643  	dev->allmulti += inc;
6644  	if (dev->allmulti == 0) {
6645  		/*
6646  		 * Avoid overflow.
6647  		 * If inc causes overflow, untouch allmulti and return error.
6648  		 */
6649  		if (inc < 0)
6650  			dev->flags &= ~IFF_ALLMULTI;
6651  		else {
6652  			dev->allmulti -= inc;
6653  			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6654  				dev->name);
6655  			return -EOVERFLOW;
6656  		}
6657  	}
6658  	if (dev->flags ^ old_flags) {
6659  		dev_change_rx_flags(dev, IFF_ALLMULTI);
6660  		dev_set_rx_mode(dev);
6661  		if (notify)
6662  			__dev_notify_flags(dev, old_flags,
6663  					   dev->gflags ^ old_gflags);
6664  	}
6665  	return 0;
6666  }
6667  
6668  /**
6669   *	dev_set_allmulti	- update allmulti count on a device
6670   *	@dev: device
6671   *	@inc: modifier
6672   *
6673   *	Add or remove reception of all multicast frames to a device. While the
6674   *	count in the device remains above zero the interface remains listening
6675   *	to all interfaces. Once it hits zero the device reverts back to normal
6676   *	filtering operation. A negative @inc value is used to drop the counter
6677   *	when releasing a resource needing all multicasts.
6678   *	Return 0 if successful or a negative errno code on error.
6679   */
6680  
dev_set_allmulti(struct net_device * dev,int inc)6681  int dev_set_allmulti(struct net_device *dev, int inc)
6682  {
6683  	return __dev_set_allmulti(dev, inc, true);
6684  }
6685  EXPORT_SYMBOL(dev_set_allmulti);
6686  
6687  /*
6688   *	Upload unicast and multicast address lists to device and
6689   *	configure RX filtering. When the device doesn't support unicast
6690   *	filtering it is put in promiscuous mode while unicast addresses
6691   *	are present.
6692   */
__dev_set_rx_mode(struct net_device * dev)6693  void __dev_set_rx_mode(struct net_device *dev)
6694  {
6695  	const struct net_device_ops *ops = dev->netdev_ops;
6696  
6697  	/* dev_open will call this function so the list will stay sane. */
6698  	if (!(dev->flags&IFF_UP))
6699  		return;
6700  
6701  	if (!netif_device_present(dev))
6702  		return;
6703  
6704  	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6705  		/* Unicast addresses changes may only happen under the rtnl,
6706  		 * therefore calling __dev_set_promiscuity here is safe.
6707  		 */
6708  		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6709  			__dev_set_promiscuity(dev, 1, false);
6710  			dev->uc_promisc = true;
6711  		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6712  			__dev_set_promiscuity(dev, -1, false);
6713  			dev->uc_promisc = false;
6714  		}
6715  	}
6716  
6717  	if (ops->ndo_set_rx_mode)
6718  		ops->ndo_set_rx_mode(dev);
6719  }
6720  
dev_set_rx_mode(struct net_device * dev)6721  void dev_set_rx_mode(struct net_device *dev)
6722  {
6723  	netif_addr_lock_bh(dev);
6724  	__dev_set_rx_mode(dev);
6725  	netif_addr_unlock_bh(dev);
6726  }
6727  
6728  /**
6729   *	dev_get_flags - get flags reported to userspace
6730   *	@dev: device
6731   *
6732   *	Get the combination of flag bits exported through APIs to userspace.
6733   */
dev_get_flags(const struct net_device * dev)6734  unsigned int dev_get_flags(const struct net_device *dev)
6735  {
6736  	unsigned int flags;
6737  
6738  	flags = (dev->flags & ~(IFF_PROMISC |
6739  				IFF_ALLMULTI |
6740  				IFF_RUNNING |
6741  				IFF_LOWER_UP |
6742  				IFF_DORMANT)) |
6743  		(dev->gflags & (IFF_PROMISC |
6744  				IFF_ALLMULTI));
6745  
6746  	if (netif_running(dev)) {
6747  		if (netif_oper_up(dev))
6748  			flags |= IFF_RUNNING;
6749  		if (netif_carrier_ok(dev))
6750  			flags |= IFF_LOWER_UP;
6751  		if (netif_dormant(dev))
6752  			flags |= IFF_DORMANT;
6753  	}
6754  
6755  	return flags;
6756  }
6757  EXPORT_SYMBOL(dev_get_flags);
6758  
__dev_change_flags(struct net_device * dev,unsigned int flags)6759  int __dev_change_flags(struct net_device *dev, unsigned int flags)
6760  {
6761  	unsigned int old_flags = dev->flags;
6762  	int ret;
6763  
6764  	ASSERT_RTNL();
6765  
6766  	/*
6767  	 *	Set the flags on our device.
6768  	 */
6769  
6770  	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6771  			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6772  			       IFF_AUTOMEDIA)) |
6773  		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6774  				    IFF_ALLMULTI));
6775  
6776  	/*
6777  	 *	Load in the correct multicast list now the flags have changed.
6778  	 */
6779  
6780  	if ((old_flags ^ flags) & IFF_MULTICAST)
6781  		dev_change_rx_flags(dev, IFF_MULTICAST);
6782  
6783  	dev_set_rx_mode(dev);
6784  
6785  	/*
6786  	 *	Have we downed the interface. We handle IFF_UP ourselves
6787  	 *	according to user attempts to set it, rather than blindly
6788  	 *	setting it.
6789  	 */
6790  
6791  	ret = 0;
6792  	if ((old_flags ^ flags) & IFF_UP) {
6793  		if (old_flags & IFF_UP)
6794  			__dev_close(dev);
6795  		else
6796  			ret = __dev_open(dev);
6797  	}
6798  
6799  	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6800  		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6801  		unsigned int old_flags = dev->flags;
6802  
6803  		dev->gflags ^= IFF_PROMISC;
6804  
6805  		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6806  			if (dev->flags != old_flags)
6807  				dev_set_rx_mode(dev);
6808  	}
6809  
6810  	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6811  	 * is important. Some (broken) drivers set IFF_PROMISC, when
6812  	 * IFF_ALLMULTI is requested not asking us and not reporting.
6813  	 */
6814  	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6815  		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6816  
6817  		dev->gflags ^= IFF_ALLMULTI;
6818  		__dev_set_allmulti(dev, inc, false);
6819  	}
6820  
6821  	return ret;
6822  }
6823  
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges)6824  void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6825  			unsigned int gchanges)
6826  {
6827  	unsigned int changes = dev->flags ^ old_flags;
6828  
6829  	if (gchanges)
6830  		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6831  
6832  	if (changes & IFF_UP) {
6833  		if (dev->flags & IFF_UP)
6834  			call_netdevice_notifiers(NETDEV_UP, dev);
6835  		else
6836  			call_netdevice_notifiers(NETDEV_DOWN, dev);
6837  	}
6838  
6839  	if (dev->flags & IFF_UP &&
6840  	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6841  		struct netdev_notifier_change_info change_info;
6842  
6843  		change_info.flags_changed = changes;
6844  		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6845  					      &change_info.info);
6846  	}
6847  }
6848  
6849  /**
6850   *	dev_change_flags - change device settings
6851   *	@dev: device
6852   *	@flags: device state flags
6853   *
6854   *	Change settings on device based state flags. The flags are
6855   *	in the userspace exported format.
6856   */
dev_change_flags(struct net_device * dev,unsigned int flags)6857  int dev_change_flags(struct net_device *dev, unsigned int flags)
6858  {
6859  	int ret;
6860  	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6861  
6862  	ret = __dev_change_flags(dev, flags);
6863  	if (ret < 0)
6864  		return ret;
6865  
6866  	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6867  	__dev_notify_flags(dev, old_flags, changes);
6868  	return ret;
6869  }
6870  EXPORT_SYMBOL(dev_change_flags);
6871  
__dev_set_mtu(struct net_device * dev,int new_mtu)6872  int __dev_set_mtu(struct net_device *dev, int new_mtu)
6873  {
6874  	const struct net_device_ops *ops = dev->netdev_ops;
6875  
6876  	if (ops->ndo_change_mtu)
6877  		return ops->ndo_change_mtu(dev, new_mtu);
6878  
6879  	/* Pairs with all the lockless reads of dev->mtu in the stack */
6880  	WRITE_ONCE(dev->mtu, new_mtu);
6881  	return 0;
6882  }
6883  EXPORT_SYMBOL(__dev_set_mtu);
6884  
6885  /**
6886   *	dev_set_mtu - Change maximum transfer unit
6887   *	@dev: device
6888   *	@new_mtu: new transfer unit
6889   *
6890   *	Change the maximum transfer size of the network device.
6891   */
dev_set_mtu(struct net_device * dev,int new_mtu)6892  int dev_set_mtu(struct net_device *dev, int new_mtu)
6893  {
6894  	int err, orig_mtu;
6895  
6896  	if (new_mtu == dev->mtu)
6897  		return 0;
6898  
6899  	err = dev_validate_mtu(dev, new_mtu);
6900  	if (err)
6901  		return err;
6902  
6903  	if (!netif_device_present(dev))
6904  		return -ENODEV;
6905  
6906  	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6907  	err = notifier_to_errno(err);
6908  	if (err)
6909  		return err;
6910  
6911  	orig_mtu = dev->mtu;
6912  	err = __dev_set_mtu(dev, new_mtu);
6913  
6914  	if (!err) {
6915  		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6916  						   orig_mtu);
6917  		err = notifier_to_errno(err);
6918  		if (err) {
6919  			/* setting mtu back and notifying everyone again,
6920  			 * so that they have a chance to revert changes.
6921  			 */
6922  			__dev_set_mtu(dev, orig_mtu);
6923  			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
6924  						     new_mtu);
6925  		}
6926  	}
6927  	return err;
6928  }
6929  EXPORT_SYMBOL(dev_set_mtu);
6930  
6931  /**
6932   *	dev_set_group - Change group this device belongs to
6933   *	@dev: device
6934   *	@new_group: group this device should belong to
6935   */
dev_set_group(struct net_device * dev,int new_group)6936  void dev_set_group(struct net_device *dev, int new_group)
6937  {
6938  	dev->group = new_group;
6939  }
6940  EXPORT_SYMBOL(dev_set_group);
6941  
6942  /**
6943   *	dev_set_mac_address - Change Media Access Control Address
6944   *	@dev: device
6945   *	@sa: new address
6946   *
6947   *	Change the hardware (MAC) address of the device
6948   */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa)6949  int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6950  {
6951  	const struct net_device_ops *ops = dev->netdev_ops;
6952  	int err;
6953  
6954  	if (!ops->ndo_set_mac_address)
6955  		return -EOPNOTSUPP;
6956  	if (sa->sa_family != dev->type)
6957  		return -EINVAL;
6958  	if (!netif_device_present(dev))
6959  		return -ENODEV;
6960  	err = ops->ndo_set_mac_address(dev, sa);
6961  	if (err)
6962  		return err;
6963  	dev->addr_assign_type = NET_ADDR_SET;
6964  	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6965  	add_device_randomness(dev->dev_addr, dev->addr_len);
6966  	return 0;
6967  }
6968  EXPORT_SYMBOL(dev_set_mac_address);
6969  
6970  /**
6971   *	dev_change_carrier - Change device carrier
6972   *	@dev: device
6973   *	@new_carrier: new value
6974   *
6975   *	Change device carrier
6976   */
dev_change_carrier(struct net_device * dev,bool new_carrier)6977  int dev_change_carrier(struct net_device *dev, bool new_carrier)
6978  {
6979  	const struct net_device_ops *ops = dev->netdev_ops;
6980  
6981  	if (!ops->ndo_change_carrier)
6982  		return -EOPNOTSUPP;
6983  	if (!netif_device_present(dev))
6984  		return -ENODEV;
6985  	return ops->ndo_change_carrier(dev, new_carrier);
6986  }
6987  EXPORT_SYMBOL(dev_change_carrier);
6988  
6989  /**
6990   *	dev_get_phys_port_id - Get device physical port ID
6991   *	@dev: device
6992   *	@ppid: port ID
6993   *
6994   *	Get device physical port ID
6995   */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)6996  int dev_get_phys_port_id(struct net_device *dev,
6997  			 struct netdev_phys_item_id *ppid)
6998  {
6999  	const struct net_device_ops *ops = dev->netdev_ops;
7000  
7001  	if (!ops->ndo_get_phys_port_id)
7002  		return -EOPNOTSUPP;
7003  	return ops->ndo_get_phys_port_id(dev, ppid);
7004  }
7005  EXPORT_SYMBOL(dev_get_phys_port_id);
7006  
7007  /**
7008   *	dev_get_phys_port_name - Get device physical port name
7009   *	@dev: device
7010   *	@name: port name
7011   *	@len: limit of bytes to copy to name
7012   *
7013   *	Get device physical port name
7014   */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)7015  int dev_get_phys_port_name(struct net_device *dev,
7016  			   char *name, size_t len)
7017  {
7018  	const struct net_device_ops *ops = dev->netdev_ops;
7019  
7020  	if (!ops->ndo_get_phys_port_name)
7021  		return -EOPNOTSUPP;
7022  	return ops->ndo_get_phys_port_name(dev, name, len);
7023  }
7024  EXPORT_SYMBOL(dev_get_phys_port_name);
7025  
7026  /**
7027   *	dev_change_proto_down - update protocol port state information
7028   *	@dev: device
7029   *	@proto_down: new value
7030   *
7031   *	This info can be used by switch drivers to set the phys state of the
7032   *	port.
7033   */
dev_change_proto_down(struct net_device * dev,bool proto_down)7034  int dev_change_proto_down(struct net_device *dev, bool proto_down)
7035  {
7036  	const struct net_device_ops *ops = dev->netdev_ops;
7037  
7038  	if (!ops->ndo_change_proto_down)
7039  		return -EOPNOTSUPP;
7040  	if (!netif_device_present(dev))
7041  		return -ENODEV;
7042  	return ops->ndo_change_proto_down(dev, proto_down);
7043  }
7044  EXPORT_SYMBOL(dev_change_proto_down);
7045  
__dev_xdp_attached(struct net_device * dev,xdp_op_t xdp_op,u32 * prog_id)7046  u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
7047  {
7048  	struct netdev_xdp xdp;
7049  
7050  	memset(&xdp, 0, sizeof(xdp));
7051  	xdp.command = XDP_QUERY_PROG;
7052  
7053  	/* Query must always succeed. */
7054  	WARN_ON(xdp_op(dev, &xdp) < 0);
7055  	if (prog_id)
7056  		*prog_id = xdp.prog_id;
7057  
7058  	return xdp.prog_attached;
7059  }
7060  
dev_xdp_install(struct net_device * dev,xdp_op_t xdp_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)7061  static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7062  			   struct netlink_ext_ack *extack, u32 flags,
7063  			   struct bpf_prog *prog)
7064  {
7065  	struct netdev_xdp xdp;
7066  
7067  	memset(&xdp, 0, sizeof(xdp));
7068  	if (flags & XDP_FLAGS_HW_MODE)
7069  		xdp.command = XDP_SETUP_PROG_HW;
7070  	else
7071  		xdp.command = XDP_SETUP_PROG;
7072  	xdp.extack = extack;
7073  	xdp.flags = flags;
7074  	xdp.prog = prog;
7075  
7076  	return xdp_op(dev, &xdp);
7077  }
7078  
7079  /**
7080   *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7081   *	@dev: device
7082   *	@extack: netlink extended ack
7083   *	@fd: new program fd or negative value to clear
7084   *	@flags: xdp-related flags
7085   *
7086   *	Set or clear a bpf program for a device
7087   */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,u32 flags)7088  int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7089  		      int fd, u32 flags)
7090  {
7091  	const struct net_device_ops *ops = dev->netdev_ops;
7092  	struct bpf_prog *prog = NULL;
7093  	xdp_op_t xdp_op, xdp_chk;
7094  	int err;
7095  
7096  	ASSERT_RTNL();
7097  
7098  	xdp_op = xdp_chk = ops->ndo_xdp;
7099  	if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7100  		return -EOPNOTSUPP;
7101  	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7102  		xdp_op = generic_xdp_install;
7103  	if (xdp_op == xdp_chk)
7104  		xdp_chk = generic_xdp_install;
7105  
7106  	if (fd >= 0) {
7107  		if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7108  			return -EEXIST;
7109  		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7110  		    __dev_xdp_attached(dev, xdp_op, NULL))
7111  			return -EBUSY;
7112  
7113  		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7114  		if (IS_ERR(prog))
7115  			return PTR_ERR(prog);
7116  	}
7117  
7118  	err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7119  	if (err < 0 && prog)
7120  		bpf_prog_put(prog);
7121  
7122  	return err;
7123  }
7124  
7125  /**
7126   *	dev_new_index	-	allocate an ifindex
7127   *	@net: the applicable net namespace
7128   *
7129   *	Returns a suitable unique value for a new device interface
7130   *	number.  The caller must hold the rtnl semaphore or the
7131   *	dev_base_lock to be sure it remains unique.
7132   */
dev_new_index(struct net * net)7133  static int dev_new_index(struct net *net)
7134  {
7135  	int ifindex = net->ifindex;
7136  
7137  	for (;;) {
7138  		if (++ifindex <= 0)
7139  			ifindex = 1;
7140  		if (!__dev_get_by_index(net, ifindex))
7141  			return net->ifindex = ifindex;
7142  	}
7143  }
7144  
7145  /* Delayed registration/unregisteration */
7146  static LIST_HEAD(net_todo_list);
7147  DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7148  
net_set_todo(struct net_device * dev)7149  static void net_set_todo(struct net_device *dev)
7150  {
7151  	list_add_tail(&dev->todo_list, &net_todo_list);
7152  	dev_net(dev)->dev_unreg_count++;
7153  }
7154  
rollback_registered_many(struct list_head * head)7155  static void rollback_registered_many(struct list_head *head)
7156  {
7157  	struct net_device *dev, *tmp;
7158  	LIST_HEAD(close_head);
7159  
7160  	BUG_ON(dev_boot_phase);
7161  	ASSERT_RTNL();
7162  
7163  	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7164  		/* Some devices call without registering
7165  		 * for initialization unwind. Remove those
7166  		 * devices and proceed with the remaining.
7167  		 */
7168  		if (dev->reg_state == NETREG_UNINITIALIZED) {
7169  			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7170  				 dev->name, dev);
7171  
7172  			WARN_ON(1);
7173  			list_del(&dev->unreg_list);
7174  			continue;
7175  		}
7176  		dev->dismantle = true;
7177  		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7178  	}
7179  
7180  	/* If device is running, close it first. */
7181  	list_for_each_entry(dev, head, unreg_list)
7182  		list_add_tail(&dev->close_list, &close_head);
7183  	dev_close_many(&close_head, true);
7184  
7185  	list_for_each_entry(dev, head, unreg_list) {
7186  		/* And unlink it from device chain. */
7187  		unlist_netdevice(dev);
7188  
7189  		dev->reg_state = NETREG_UNREGISTERING;
7190  	}
7191  	flush_all_backlogs();
7192  
7193  	synchronize_net();
7194  
7195  	list_for_each_entry(dev, head, unreg_list) {
7196  		struct sk_buff *skb = NULL;
7197  
7198  		/* Shutdown queueing discipline. */
7199  		dev_shutdown(dev);
7200  
7201  
7202  		/* Notify protocols, that we are about to destroy
7203  		 * this device. They should clean all the things.
7204  		 */
7205  		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7206  
7207  		if (!dev->rtnl_link_ops ||
7208  		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7209  			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7210  						     GFP_KERNEL);
7211  
7212  		/*
7213  		 *	Flush the unicast and multicast chains
7214  		 */
7215  		dev_uc_flush(dev);
7216  		dev_mc_flush(dev);
7217  
7218  		if (dev->netdev_ops->ndo_uninit)
7219  			dev->netdev_ops->ndo_uninit(dev);
7220  
7221  		if (skb)
7222  			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7223  
7224  		/* Notifier chain MUST detach us all upper devices. */
7225  		WARN_ON(netdev_has_any_upper_dev(dev));
7226  		WARN_ON(netdev_has_any_lower_dev(dev));
7227  
7228  		/* Remove entries from kobject tree */
7229  		netdev_unregister_kobject(dev);
7230  #ifdef CONFIG_XPS
7231  		/* Remove XPS queueing entries */
7232  		netif_reset_xps_queues_gt(dev, 0);
7233  #endif
7234  	}
7235  
7236  	synchronize_net();
7237  
7238  	list_for_each_entry(dev, head, unreg_list)
7239  		dev_put(dev);
7240  }
7241  
rollback_registered(struct net_device * dev)7242  static void rollback_registered(struct net_device *dev)
7243  {
7244  	LIST_HEAD(single);
7245  
7246  	list_add(&dev->unreg_list, &single);
7247  	rollback_registered_many(&single);
7248  	list_del(&single);
7249  }
7250  
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)7251  static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7252  	struct net_device *upper, netdev_features_t features)
7253  {
7254  	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7255  	netdev_features_t feature;
7256  	int feature_bit;
7257  
7258  	for_each_netdev_feature(upper_disables, feature_bit) {
7259  		feature = __NETIF_F_BIT(feature_bit);
7260  		if (!(upper->wanted_features & feature)
7261  		    && (features & feature)) {
7262  			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7263  				   &feature, upper->name);
7264  			features &= ~feature;
7265  		}
7266  	}
7267  
7268  	return features;
7269  }
7270  
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)7271  static void netdev_sync_lower_features(struct net_device *upper,
7272  	struct net_device *lower, netdev_features_t features)
7273  {
7274  	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7275  	netdev_features_t feature;
7276  	int feature_bit;
7277  
7278  	for_each_netdev_feature(upper_disables, feature_bit) {
7279  		feature = __NETIF_F_BIT(feature_bit);
7280  		if (!(features & feature) && (lower->features & feature)) {
7281  			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7282  				   &feature, lower->name);
7283  			lower->wanted_features &= ~feature;
7284  			netdev_update_features(lower);
7285  
7286  			if (unlikely(lower->features & feature))
7287  				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7288  					    &feature, lower->name);
7289  		}
7290  	}
7291  }
7292  
netdev_fix_features(struct net_device * dev,netdev_features_t features)7293  static netdev_features_t netdev_fix_features(struct net_device *dev,
7294  	netdev_features_t features)
7295  {
7296  	/* Fix illegal checksum combinations */
7297  	if ((features & NETIF_F_HW_CSUM) &&
7298  	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7299  		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7300  		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7301  	}
7302  
7303  	/* TSO requires that SG is present as well. */
7304  	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7305  		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7306  		features &= ~NETIF_F_ALL_TSO;
7307  	}
7308  
7309  	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7310  					!(features & NETIF_F_IP_CSUM)) {
7311  		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7312  		features &= ~NETIF_F_TSO;
7313  		features &= ~NETIF_F_TSO_ECN;
7314  	}
7315  
7316  	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7317  					 !(features & NETIF_F_IPV6_CSUM)) {
7318  		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7319  		features &= ~NETIF_F_TSO6;
7320  	}
7321  
7322  	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7323  	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7324  		features &= ~NETIF_F_TSO_MANGLEID;
7325  
7326  	/* TSO ECN requires that TSO is present as well. */
7327  	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7328  		features &= ~NETIF_F_TSO_ECN;
7329  
7330  	/* Software GSO depends on SG. */
7331  	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7332  		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7333  		features &= ~NETIF_F_GSO;
7334  	}
7335  
7336  	/* GSO partial features require GSO partial be set */
7337  	if ((features & dev->gso_partial_features) &&
7338  	    !(features & NETIF_F_GSO_PARTIAL)) {
7339  		netdev_dbg(dev,
7340  			   "Dropping partially supported GSO features since no GSO partial.\n");
7341  		features &= ~dev->gso_partial_features;
7342  	}
7343  
7344  	return features;
7345  }
7346  
__netdev_update_features(struct net_device * dev)7347  int __netdev_update_features(struct net_device *dev)
7348  {
7349  	struct net_device *upper, *lower;
7350  	netdev_features_t features;
7351  	struct list_head *iter;
7352  	int err = -1;
7353  
7354  	ASSERT_RTNL();
7355  
7356  	features = netdev_get_wanted_features(dev);
7357  
7358  	if (dev->netdev_ops->ndo_fix_features)
7359  		features = dev->netdev_ops->ndo_fix_features(dev, features);
7360  
7361  	/* driver might be less strict about feature dependencies */
7362  	features = netdev_fix_features(dev, features);
7363  
7364  	/* some features can't be enabled if they're off an an upper device */
7365  	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7366  		features = netdev_sync_upper_features(dev, upper, features);
7367  
7368  	if (dev->features == features)
7369  		goto sync_lower;
7370  
7371  	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7372  		&dev->features, &features);
7373  
7374  	if (dev->netdev_ops->ndo_set_features)
7375  		err = dev->netdev_ops->ndo_set_features(dev, features);
7376  	else
7377  		err = 0;
7378  
7379  	if (unlikely(err < 0)) {
7380  		netdev_err(dev,
7381  			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7382  			err, &features, &dev->features);
7383  		/* return non-0 since some features might have changed and
7384  		 * it's better to fire a spurious notification than miss it
7385  		 */
7386  		return -1;
7387  	}
7388  
7389  sync_lower:
7390  	/* some features must be disabled on lower devices when disabled
7391  	 * on an upper device (think: bonding master or bridge)
7392  	 */
7393  	netdev_for_each_lower_dev(dev, lower, iter)
7394  		netdev_sync_lower_features(dev, lower, features);
7395  
7396  	if (!err) {
7397  		netdev_features_t diff = features ^ dev->features;
7398  
7399  		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7400  			/* udp_tunnel_{get,drop}_rx_info both need
7401  			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7402  			 * device, or they won't do anything.
7403  			 * Thus we need to update dev->features
7404  			 * *before* calling udp_tunnel_get_rx_info,
7405  			 * but *after* calling udp_tunnel_drop_rx_info.
7406  			 */
7407  			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7408  				dev->features = features;
7409  				udp_tunnel_get_rx_info(dev);
7410  			} else {
7411  				udp_tunnel_drop_rx_info(dev);
7412  			}
7413  		}
7414  
7415  		dev->features = features;
7416  	}
7417  
7418  	return err < 0 ? 0 : 1;
7419  }
7420  
7421  /**
7422   *	netdev_update_features - recalculate device features
7423   *	@dev: the device to check
7424   *
7425   *	Recalculate dev->features set and send notifications if it
7426   *	has changed. Should be called after driver or hardware dependent
7427   *	conditions might have changed that influence the features.
7428   */
netdev_update_features(struct net_device * dev)7429  void netdev_update_features(struct net_device *dev)
7430  {
7431  	if (__netdev_update_features(dev))
7432  		netdev_features_change(dev);
7433  }
7434  EXPORT_SYMBOL(netdev_update_features);
7435  
7436  /**
7437   *	netdev_change_features - recalculate device features
7438   *	@dev: the device to check
7439   *
7440   *	Recalculate dev->features set and send notifications even
7441   *	if they have not changed. Should be called instead of
7442   *	netdev_update_features() if also dev->vlan_features might
7443   *	have changed to allow the changes to be propagated to stacked
7444   *	VLAN devices.
7445   */
netdev_change_features(struct net_device * dev)7446  void netdev_change_features(struct net_device *dev)
7447  {
7448  	__netdev_update_features(dev);
7449  	netdev_features_change(dev);
7450  }
7451  EXPORT_SYMBOL(netdev_change_features);
7452  
7453  /**
7454   *	netif_stacked_transfer_operstate -	transfer operstate
7455   *	@rootdev: the root or lower level device to transfer state from
7456   *	@dev: the device to transfer operstate to
7457   *
7458   *	Transfer operational state from root to device. This is normally
7459   *	called when a stacking relationship exists between the root
7460   *	device and the device(a leaf device).
7461   */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)7462  void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7463  					struct net_device *dev)
7464  {
7465  	if (rootdev->operstate == IF_OPER_DORMANT)
7466  		netif_dormant_on(dev);
7467  	else
7468  		netif_dormant_off(dev);
7469  
7470  	if (netif_carrier_ok(rootdev))
7471  		netif_carrier_on(dev);
7472  	else
7473  		netif_carrier_off(dev);
7474  }
7475  EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7476  
7477  #ifdef CONFIG_SYSFS
netif_alloc_rx_queues(struct net_device * dev)7478  static int netif_alloc_rx_queues(struct net_device *dev)
7479  {
7480  	unsigned int i, count = dev->num_rx_queues;
7481  	struct netdev_rx_queue *rx;
7482  	size_t sz = count * sizeof(*rx);
7483  
7484  	BUG_ON(count < 1);
7485  
7486  	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7487  	if (!rx)
7488  		return -ENOMEM;
7489  
7490  	dev->_rx = rx;
7491  
7492  	for (i = 0; i < count; i++)
7493  		rx[i].dev = dev;
7494  	return 0;
7495  }
7496  #endif
7497  
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)7498  static void netdev_init_one_queue(struct net_device *dev,
7499  				  struct netdev_queue *queue, void *_unused)
7500  {
7501  	/* Initialize queue lock */
7502  	spin_lock_init(&queue->_xmit_lock);
7503  	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7504  	queue->xmit_lock_owner = -1;
7505  	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7506  	queue->dev = dev;
7507  #ifdef CONFIG_BQL
7508  	dql_init(&queue->dql, HZ);
7509  #endif
7510  }
7511  
netif_free_tx_queues(struct net_device * dev)7512  static void netif_free_tx_queues(struct net_device *dev)
7513  {
7514  	kvfree(dev->_tx);
7515  }
7516  
netif_alloc_netdev_queues(struct net_device * dev)7517  static int netif_alloc_netdev_queues(struct net_device *dev)
7518  {
7519  	unsigned int count = dev->num_tx_queues;
7520  	struct netdev_queue *tx;
7521  	size_t sz = count * sizeof(*tx);
7522  
7523  	if (count < 1 || count > 0xffff)
7524  		return -EINVAL;
7525  
7526  	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7527  	if (!tx)
7528  		return -ENOMEM;
7529  
7530  	dev->_tx = tx;
7531  
7532  	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7533  	spin_lock_init(&dev->tx_global_lock);
7534  
7535  	return 0;
7536  }
7537  
netif_tx_stop_all_queues(struct net_device * dev)7538  void netif_tx_stop_all_queues(struct net_device *dev)
7539  {
7540  	unsigned int i;
7541  
7542  	for (i = 0; i < dev->num_tx_queues; i++) {
7543  		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7544  
7545  		netif_tx_stop_queue(txq);
7546  	}
7547  }
7548  EXPORT_SYMBOL(netif_tx_stop_all_queues);
7549  
7550  /**
7551   *	register_netdevice	- register a network device
7552   *	@dev: device to register
7553   *
7554   *	Take a completed network device structure and add it to the kernel
7555   *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7556   *	chain. 0 is returned on success. A negative errno code is returned
7557   *	on a failure to set up the device, or if the name is a duplicate.
7558   *
7559   *	Callers must hold the rtnl semaphore. You may want
7560   *	register_netdev() instead of this.
7561   *
7562   *	BUGS:
7563   *	The locking appears insufficient to guarantee two parallel registers
7564   *	will not get the same name.
7565   */
7566  
register_netdevice(struct net_device * dev)7567  int register_netdevice(struct net_device *dev)
7568  {
7569  	int ret;
7570  	struct net *net = dev_net(dev);
7571  
7572  	BUG_ON(dev_boot_phase);
7573  	ASSERT_RTNL();
7574  
7575  	might_sleep();
7576  
7577  	/* When net_device's are persistent, this will be fatal. */
7578  	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7579  	BUG_ON(!net);
7580  
7581  	spin_lock_init(&dev->addr_list_lock);
7582  	netdev_set_addr_lockdep_class(dev);
7583  
7584  	ret = dev_get_valid_name(net, dev, dev->name);
7585  	if (ret < 0)
7586  		goto out;
7587  
7588  	/* Init, if this function is available */
7589  	if (dev->netdev_ops->ndo_init) {
7590  		ret = dev->netdev_ops->ndo_init(dev);
7591  		if (ret) {
7592  			if (ret > 0)
7593  				ret = -EIO;
7594  			goto out;
7595  		}
7596  	}
7597  
7598  	if (((dev->hw_features | dev->features) &
7599  	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7600  	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7601  	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7602  		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7603  		ret = -EINVAL;
7604  		goto err_uninit;
7605  	}
7606  
7607  	ret = -EBUSY;
7608  	if (!dev->ifindex)
7609  		dev->ifindex = dev_new_index(net);
7610  	else if (__dev_get_by_index(net, dev->ifindex))
7611  		goto err_uninit;
7612  
7613  	/* Transfer changeable features to wanted_features and enable
7614  	 * software offloads (GSO and GRO).
7615  	 */
7616  	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7617  	dev->features |= NETIF_F_SOFT_FEATURES;
7618  
7619  	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7620  		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7621  		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7622  	}
7623  
7624  	dev->wanted_features = dev->features & dev->hw_features;
7625  
7626  	if (!(dev->flags & IFF_LOOPBACK))
7627  		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7628  
7629  	/* If IPv4 TCP segmentation offload is supported we should also
7630  	 * allow the device to enable segmenting the frame with the option
7631  	 * of ignoring a static IP ID value.  This doesn't enable the
7632  	 * feature itself but allows the user to enable it later.
7633  	 */
7634  	if (dev->hw_features & NETIF_F_TSO)
7635  		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7636  	if (dev->vlan_features & NETIF_F_TSO)
7637  		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7638  	if (dev->mpls_features & NETIF_F_TSO)
7639  		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7640  	if (dev->hw_enc_features & NETIF_F_TSO)
7641  		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7642  
7643  	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7644  	 */
7645  	dev->vlan_features |= NETIF_F_HIGHDMA;
7646  
7647  	/* Make NETIF_F_SG inheritable to tunnel devices.
7648  	 */
7649  	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7650  
7651  	/* Make NETIF_F_SG inheritable to MPLS.
7652  	 */
7653  	dev->mpls_features |= NETIF_F_SG;
7654  
7655  	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7656  	ret = notifier_to_errno(ret);
7657  	if (ret)
7658  		goto err_uninit;
7659  
7660  	ret = netdev_register_kobject(dev);
7661  	if (ret) {
7662  		dev->reg_state = NETREG_UNREGISTERED;
7663  		goto err_uninit;
7664  	}
7665  	dev->reg_state = NETREG_REGISTERED;
7666  
7667  	__netdev_update_features(dev);
7668  
7669  	/*
7670  	 *	Default initial state at registry is that the
7671  	 *	device is present.
7672  	 */
7673  
7674  	set_bit(__LINK_STATE_PRESENT, &dev->state);
7675  
7676  	linkwatch_init_dev(dev);
7677  
7678  	dev_init_scheduler(dev);
7679  	dev_hold(dev);
7680  	list_netdevice(dev);
7681  	add_device_randomness(dev->dev_addr, dev->addr_len);
7682  
7683  	/* If the device has permanent device address, driver should
7684  	 * set dev_addr and also addr_assign_type should be set to
7685  	 * NET_ADDR_PERM (default value).
7686  	 */
7687  	if (dev->addr_assign_type == NET_ADDR_PERM)
7688  		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7689  
7690  	/* Notify protocols, that a new device appeared. */
7691  	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7692  	ret = notifier_to_errno(ret);
7693  	if (ret) {
7694  		rollback_registered(dev);
7695  		rcu_barrier();
7696  
7697  		dev->reg_state = NETREG_UNREGISTERED;
7698  	}
7699  	/*
7700  	 *	Prevent userspace races by waiting until the network
7701  	 *	device is fully setup before sending notifications.
7702  	 */
7703  	if (!dev->rtnl_link_ops ||
7704  	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7705  		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7706  
7707  out:
7708  	return ret;
7709  
7710  err_uninit:
7711  	if (dev->netdev_ops->ndo_uninit)
7712  		dev->netdev_ops->ndo_uninit(dev);
7713  	if (dev->priv_destructor)
7714  		dev->priv_destructor(dev);
7715  	goto out;
7716  }
7717  EXPORT_SYMBOL(register_netdevice);
7718  
7719  /**
7720   *	init_dummy_netdev	- init a dummy network device for NAPI
7721   *	@dev: device to init
7722   *
7723   *	This takes a network device structure and initialize the minimum
7724   *	amount of fields so it can be used to schedule NAPI polls without
7725   *	registering a full blown interface. This is to be used by drivers
7726   *	that need to tie several hardware interfaces to a single NAPI
7727   *	poll scheduler due to HW limitations.
7728   */
init_dummy_netdev(struct net_device * dev)7729  int init_dummy_netdev(struct net_device *dev)
7730  {
7731  	/* Clear everything. Note we don't initialize spinlocks
7732  	 * are they aren't supposed to be taken by any of the
7733  	 * NAPI code and this dummy netdev is supposed to be
7734  	 * only ever used for NAPI polls
7735  	 */
7736  	memset(dev, 0, sizeof(struct net_device));
7737  
7738  	/* make sure we BUG if trying to hit standard
7739  	 * register/unregister code path
7740  	 */
7741  	dev->reg_state = NETREG_DUMMY;
7742  
7743  	/* NAPI wants this */
7744  	INIT_LIST_HEAD(&dev->napi_list);
7745  
7746  	/* a dummy interface is started by default */
7747  	set_bit(__LINK_STATE_PRESENT, &dev->state);
7748  	set_bit(__LINK_STATE_START, &dev->state);
7749  
7750  	/* napi_busy_loop stats accounting wants this */
7751  	dev_net_set(dev, &init_net);
7752  
7753  	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7754  	 * because users of this 'device' dont need to change
7755  	 * its refcount.
7756  	 */
7757  
7758  	return 0;
7759  }
7760  EXPORT_SYMBOL_GPL(init_dummy_netdev);
7761  
7762  
dev_validate_mtu(struct net_device * dev,int new_mtu)7763  int dev_validate_mtu(struct net_device *dev, int new_mtu)
7764  {
7765  	/* MTU must be positive, and in range */
7766  	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7767  		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7768  				    dev->name, new_mtu, dev->min_mtu);
7769  		return -EINVAL;
7770  	}
7771  
7772  	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7773  		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7774  				    dev->name, new_mtu, dev->max_mtu);
7775  		return -EINVAL;
7776  	}
7777  	return 0;
7778  }
7779  
7780  /**
7781   *	register_netdev	- register a network device
7782   *	@dev: device to register
7783   *
7784   *	Take a completed network device structure and add it to the kernel
7785   *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7786   *	chain. 0 is returned on success. A negative errno code is returned
7787   *	on a failure to set up the device, or if the name is a duplicate.
7788   *
7789   *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7790   *	and expands the device name if you passed a format string to
7791   *	alloc_netdev.
7792   */
register_netdev(struct net_device * dev)7793  int register_netdev(struct net_device *dev)
7794  {
7795  	int err;
7796  
7797  	rtnl_lock();
7798  	err = register_netdevice(dev);
7799  	rtnl_unlock();
7800  	return err;
7801  }
7802  EXPORT_SYMBOL(register_netdev);
7803  
netdev_refcnt_read(const struct net_device * dev)7804  int netdev_refcnt_read(const struct net_device *dev)
7805  {
7806  	int i, refcnt = 0;
7807  
7808  	for_each_possible_cpu(i)
7809  		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7810  	return refcnt;
7811  }
7812  EXPORT_SYMBOL(netdev_refcnt_read);
7813  
7814  /**
7815   * netdev_wait_allrefs - wait until all references are gone.
7816   * @dev: target net_device
7817   *
7818   * This is called when unregistering network devices.
7819   *
7820   * Any protocol or device that holds a reference should register
7821   * for netdevice notification, and cleanup and put back the
7822   * reference if they receive an UNREGISTER event.
7823   * We can get stuck here if buggy protocols don't correctly
7824   * call dev_put.
7825   */
netdev_wait_allrefs(struct net_device * dev)7826  static void netdev_wait_allrefs(struct net_device *dev)
7827  {
7828  	unsigned long rebroadcast_time, warning_time;
7829  	int refcnt;
7830  
7831  	linkwatch_forget_dev(dev);
7832  
7833  	rebroadcast_time = warning_time = jiffies;
7834  	refcnt = netdev_refcnt_read(dev);
7835  
7836  	while (refcnt != 0) {
7837  		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7838  			rtnl_lock();
7839  
7840  			/* Rebroadcast unregister notification */
7841  			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7842  
7843  			__rtnl_unlock();
7844  			rcu_barrier();
7845  			rtnl_lock();
7846  
7847  			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7848  			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7849  				     &dev->state)) {
7850  				/* We must not have linkwatch events
7851  				 * pending on unregister. If this
7852  				 * happens, we simply run the queue
7853  				 * unscheduled, resulting in a noop
7854  				 * for this device.
7855  				 */
7856  				linkwatch_run_queue();
7857  			}
7858  
7859  			__rtnl_unlock();
7860  
7861  			rebroadcast_time = jiffies;
7862  		}
7863  
7864  		msleep(250);
7865  
7866  		refcnt = netdev_refcnt_read(dev);
7867  
7868  		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
7869  			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7870  				 dev->name, refcnt);
7871  			warning_time = jiffies;
7872  		}
7873  	}
7874  }
7875  
7876  /* The sequence is:
7877   *
7878   *	rtnl_lock();
7879   *	...
7880   *	register_netdevice(x1);
7881   *	register_netdevice(x2);
7882   *	...
7883   *	unregister_netdevice(y1);
7884   *	unregister_netdevice(y2);
7885   *      ...
7886   *	rtnl_unlock();
7887   *	free_netdev(y1);
7888   *	free_netdev(y2);
7889   *
7890   * We are invoked by rtnl_unlock().
7891   * This allows us to deal with problems:
7892   * 1) We can delete sysfs objects which invoke hotplug
7893   *    without deadlocking with linkwatch via keventd.
7894   * 2) Since we run with the RTNL semaphore not held, we can sleep
7895   *    safely in order to wait for the netdev refcnt to drop to zero.
7896   *
7897   * We must not return until all unregister events added during
7898   * the interval the lock was held have been completed.
7899   */
netdev_run_todo(void)7900  void netdev_run_todo(void)
7901  {
7902  	struct list_head list;
7903  
7904  	/* Snapshot list, allow later requests */
7905  	list_replace_init(&net_todo_list, &list);
7906  
7907  	__rtnl_unlock();
7908  
7909  
7910  	/* Wait for rcu callbacks to finish before next phase */
7911  	if (!list_empty(&list))
7912  		rcu_barrier();
7913  
7914  	while (!list_empty(&list)) {
7915  		struct net_device *dev
7916  			= list_first_entry(&list, struct net_device, todo_list);
7917  		list_del(&dev->todo_list);
7918  
7919  		rtnl_lock();
7920  		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7921  		__rtnl_unlock();
7922  
7923  		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7924  			pr_err("network todo '%s' but state %d\n",
7925  			       dev->name, dev->reg_state);
7926  			dump_stack();
7927  			continue;
7928  		}
7929  
7930  		dev->reg_state = NETREG_UNREGISTERED;
7931  
7932  		netdev_wait_allrefs(dev);
7933  
7934  		/* paranoia */
7935  		BUG_ON(netdev_refcnt_read(dev));
7936  		BUG_ON(!list_empty(&dev->ptype_all));
7937  		BUG_ON(!list_empty(&dev->ptype_specific));
7938  		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7939  		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7940  		WARN_ON(dev->dn_ptr);
7941  
7942  		if (dev->priv_destructor)
7943  			dev->priv_destructor(dev);
7944  		if (dev->needs_free_netdev)
7945  			free_netdev(dev);
7946  
7947  		/* Report a network device has been unregistered */
7948  		rtnl_lock();
7949  		dev_net(dev)->dev_unreg_count--;
7950  		__rtnl_unlock();
7951  		wake_up(&netdev_unregistering_wq);
7952  
7953  		/* Free network device */
7954  		kobject_put(&dev->dev.kobj);
7955  	}
7956  }
7957  
7958  /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7959   * all the same fields in the same order as net_device_stats, with only
7960   * the type differing, but rtnl_link_stats64 may have additional fields
7961   * at the end for newer counters.
7962   */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)7963  void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7964  			     const struct net_device_stats *netdev_stats)
7965  {
7966  #if BITS_PER_LONG == 64
7967  	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7968  	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7969  	/* zero out counters that only exist in rtnl_link_stats64 */
7970  	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7971  	       sizeof(*stats64) - sizeof(*netdev_stats));
7972  #else
7973  	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7974  	const unsigned long *src = (const unsigned long *)netdev_stats;
7975  	u64 *dst = (u64 *)stats64;
7976  
7977  	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7978  	for (i = 0; i < n; i++)
7979  		dst[i] = src[i];
7980  	/* zero out counters that only exist in rtnl_link_stats64 */
7981  	memset((char *)stats64 + n * sizeof(u64), 0,
7982  	       sizeof(*stats64) - n * sizeof(u64));
7983  #endif
7984  }
7985  EXPORT_SYMBOL(netdev_stats_to_stats64);
7986  
7987  /**
7988   *	dev_get_stats	- get network device statistics
7989   *	@dev: device to get statistics from
7990   *	@storage: place to store stats
7991   *
7992   *	Get network statistics from device. Return @storage.
7993   *	The device driver may provide its own method by setting
7994   *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7995   *	otherwise the internal statistics structure is used.
7996   */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)7997  struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7998  					struct rtnl_link_stats64 *storage)
7999  {
8000  	const struct net_device_ops *ops = dev->netdev_ops;
8001  
8002  	if (ops->ndo_get_stats64) {
8003  		memset(storage, 0, sizeof(*storage));
8004  		ops->ndo_get_stats64(dev, storage);
8005  	} else if (ops->ndo_get_stats) {
8006  		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8007  	} else {
8008  		netdev_stats_to_stats64(storage, &dev->stats);
8009  	}
8010  	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8011  	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8012  	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8013  	return storage;
8014  }
8015  EXPORT_SYMBOL(dev_get_stats);
8016  
dev_ingress_queue_create(struct net_device * dev)8017  struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8018  {
8019  	struct netdev_queue *queue = dev_ingress_queue(dev);
8020  
8021  #ifdef CONFIG_NET_CLS_ACT
8022  	if (queue)
8023  		return queue;
8024  	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8025  	if (!queue)
8026  		return NULL;
8027  	netdev_init_one_queue(dev, queue, NULL);
8028  	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8029  	queue->qdisc_sleeping = &noop_qdisc;
8030  	rcu_assign_pointer(dev->ingress_queue, queue);
8031  #endif
8032  	return queue;
8033  }
8034  
8035  static const struct ethtool_ops default_ethtool_ops;
8036  
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)8037  void netdev_set_default_ethtool_ops(struct net_device *dev,
8038  				    const struct ethtool_ops *ops)
8039  {
8040  	if (dev->ethtool_ops == &default_ethtool_ops)
8041  		dev->ethtool_ops = ops;
8042  }
8043  EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8044  
netdev_freemem(struct net_device * dev)8045  void netdev_freemem(struct net_device *dev)
8046  {
8047  	char *addr = (char *)dev - dev->padded;
8048  
8049  	kvfree(addr);
8050  }
8051  
8052  /**
8053   * alloc_netdev_mqs - allocate network device
8054   * @sizeof_priv: size of private data to allocate space for
8055   * @name: device name format string
8056   * @name_assign_type: origin of device name
8057   * @setup: callback to initialize device
8058   * @txqs: the number of TX subqueues to allocate
8059   * @rxqs: the number of RX subqueues to allocate
8060   *
8061   * Allocates a struct net_device with private data area for driver use
8062   * and performs basic initialization.  Also allocates subqueue structs
8063   * for each queue on the device.
8064   */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)8065  struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8066  		unsigned char name_assign_type,
8067  		void (*setup)(struct net_device *),
8068  		unsigned int txqs, unsigned int rxqs)
8069  {
8070  	struct net_device *dev;
8071  	size_t alloc_size;
8072  	struct net_device *p;
8073  
8074  	BUG_ON(strlen(name) >= sizeof(dev->name));
8075  
8076  	if (txqs < 1) {
8077  		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8078  		return NULL;
8079  	}
8080  
8081  #ifdef CONFIG_SYSFS
8082  	if (rxqs < 1) {
8083  		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8084  		return NULL;
8085  	}
8086  #endif
8087  
8088  	alloc_size = sizeof(struct net_device);
8089  	if (sizeof_priv) {
8090  		/* ensure 32-byte alignment of private area */
8091  		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8092  		alloc_size += sizeof_priv;
8093  	}
8094  	/* ensure 32-byte alignment of whole construct */
8095  	alloc_size += NETDEV_ALIGN - 1;
8096  
8097  	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8098  	if (!p)
8099  		return NULL;
8100  
8101  	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8102  	dev->padded = (char *)dev - (char *)p;
8103  
8104  	dev->pcpu_refcnt = alloc_percpu(int);
8105  	if (!dev->pcpu_refcnt)
8106  		goto free_dev;
8107  
8108  	if (dev_addr_init(dev))
8109  		goto free_pcpu;
8110  
8111  	dev_mc_init(dev);
8112  	dev_uc_init(dev);
8113  
8114  	dev_net_set(dev, &init_net);
8115  
8116  	dev->gso_max_size = GSO_MAX_SIZE;
8117  	dev->gso_max_segs = GSO_MAX_SEGS;
8118  
8119  	INIT_LIST_HEAD(&dev->napi_list);
8120  	INIT_LIST_HEAD(&dev->unreg_list);
8121  	INIT_LIST_HEAD(&dev->close_list);
8122  	INIT_LIST_HEAD(&dev->link_watch_list);
8123  	INIT_LIST_HEAD(&dev->adj_list.upper);
8124  	INIT_LIST_HEAD(&dev->adj_list.lower);
8125  	INIT_LIST_HEAD(&dev->ptype_all);
8126  	INIT_LIST_HEAD(&dev->ptype_specific);
8127  #ifdef CONFIG_NET_SCHED
8128  	hash_init(dev->qdisc_hash);
8129  #endif
8130  	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8131  	setup(dev);
8132  
8133  	if (!dev->tx_queue_len) {
8134  		dev->priv_flags |= IFF_NO_QUEUE;
8135  		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8136  	}
8137  
8138  	dev->num_tx_queues = txqs;
8139  	dev->real_num_tx_queues = txqs;
8140  	if (netif_alloc_netdev_queues(dev))
8141  		goto free_all;
8142  
8143  #ifdef CONFIG_SYSFS
8144  	dev->num_rx_queues = rxqs;
8145  	dev->real_num_rx_queues = rxqs;
8146  	if (netif_alloc_rx_queues(dev))
8147  		goto free_all;
8148  #endif
8149  
8150  	strcpy(dev->name, name);
8151  	dev->name_assign_type = name_assign_type;
8152  	dev->group = INIT_NETDEV_GROUP;
8153  	if (!dev->ethtool_ops)
8154  		dev->ethtool_ops = &default_ethtool_ops;
8155  
8156  	nf_hook_ingress_init(dev);
8157  
8158  	return dev;
8159  
8160  free_all:
8161  	free_netdev(dev);
8162  	return NULL;
8163  
8164  free_pcpu:
8165  	free_percpu(dev->pcpu_refcnt);
8166  free_dev:
8167  	netdev_freemem(dev);
8168  	return NULL;
8169  }
8170  EXPORT_SYMBOL(alloc_netdev_mqs);
8171  
8172  /**
8173   * free_netdev - free network device
8174   * @dev: device
8175   *
8176   * This function does the last stage of destroying an allocated device
8177   * interface. The reference to the device object is released. If this
8178   * is the last reference then it will be freed.Must be called in process
8179   * context.
8180   */
free_netdev(struct net_device * dev)8181  void free_netdev(struct net_device *dev)
8182  {
8183  	struct napi_struct *p, *n;
8184  	struct bpf_prog *prog;
8185  
8186  	might_sleep();
8187  	netif_free_tx_queues(dev);
8188  #ifdef CONFIG_SYSFS
8189  	kvfree(dev->_rx);
8190  #endif
8191  
8192  	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8193  
8194  	/* Flush device addresses */
8195  	dev_addr_flush(dev);
8196  
8197  	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8198  		netif_napi_del(p);
8199  
8200  	free_percpu(dev->pcpu_refcnt);
8201  	dev->pcpu_refcnt = NULL;
8202  
8203  	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8204  	if (prog) {
8205  		bpf_prog_put(prog);
8206  		static_key_slow_dec(&generic_xdp_needed);
8207  	}
8208  
8209  	/*  Compatibility with error handling in drivers */
8210  	if (dev->reg_state == NETREG_UNINITIALIZED) {
8211  		netdev_freemem(dev);
8212  		return;
8213  	}
8214  
8215  	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8216  	dev->reg_state = NETREG_RELEASED;
8217  
8218  	/* will free via device release */
8219  	put_device(&dev->dev);
8220  }
8221  EXPORT_SYMBOL(free_netdev);
8222  
8223  /**
8224   *	synchronize_net -  Synchronize with packet receive processing
8225   *
8226   *	Wait for packets currently being received to be done.
8227   *	Does not block later packets from starting.
8228   */
synchronize_net(void)8229  void synchronize_net(void)
8230  {
8231  	might_sleep();
8232  	if (rtnl_is_locked())
8233  		synchronize_rcu_expedited();
8234  	else
8235  		synchronize_rcu();
8236  }
8237  EXPORT_SYMBOL(synchronize_net);
8238  
8239  /**
8240   *	unregister_netdevice_queue - remove device from the kernel
8241   *	@dev: device
8242   *	@head: list
8243   *
8244   *	This function shuts down a device interface and removes it
8245   *	from the kernel tables.
8246   *	If head not NULL, device is queued to be unregistered later.
8247   *
8248   *	Callers must hold the rtnl semaphore.  You may want
8249   *	unregister_netdev() instead of this.
8250   */
8251  
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)8252  void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8253  {
8254  	ASSERT_RTNL();
8255  
8256  	if (head) {
8257  		list_move_tail(&dev->unreg_list, head);
8258  	} else {
8259  		rollback_registered(dev);
8260  		/* Finish processing unregister after unlock */
8261  		net_set_todo(dev);
8262  	}
8263  }
8264  EXPORT_SYMBOL(unregister_netdevice_queue);
8265  
8266  /**
8267   *	unregister_netdevice_many - unregister many devices
8268   *	@head: list of devices
8269   *
8270   *  Note: As most callers use a stack allocated list_head,
8271   *  we force a list_del() to make sure stack wont be corrupted later.
8272   */
unregister_netdevice_many(struct list_head * head)8273  void unregister_netdevice_many(struct list_head *head)
8274  {
8275  	struct net_device *dev;
8276  
8277  	if (!list_empty(head)) {
8278  		rollback_registered_many(head);
8279  		list_for_each_entry(dev, head, unreg_list)
8280  			net_set_todo(dev);
8281  		list_del(head);
8282  	}
8283  }
8284  EXPORT_SYMBOL(unregister_netdevice_many);
8285  
8286  /**
8287   *	unregister_netdev - remove device from the kernel
8288   *	@dev: device
8289   *
8290   *	This function shuts down a device interface and removes it
8291   *	from the kernel tables.
8292   *
8293   *	This is just a wrapper for unregister_netdevice that takes
8294   *	the rtnl semaphore.  In general you want to use this and not
8295   *	unregister_netdevice.
8296   */
unregister_netdev(struct net_device * dev)8297  void unregister_netdev(struct net_device *dev)
8298  {
8299  	rtnl_lock();
8300  	unregister_netdevice(dev);
8301  	rtnl_unlock();
8302  }
8303  EXPORT_SYMBOL(unregister_netdev);
8304  
8305  /**
8306   *	dev_change_net_namespace - move device to different nethost namespace
8307   *	@dev: device
8308   *	@net: network namespace
8309   *	@pat: If not NULL name pattern to try if the current device name
8310   *	      is already taken in the destination network namespace.
8311   *
8312   *	This function shuts down a device interface and moves it
8313   *	to a new network namespace. On success 0 is returned, on
8314   *	a failure a netagive errno code is returned.
8315   *
8316   *	Callers must hold the rtnl semaphore.
8317   */
8318  
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)8319  int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8320  {
8321  	int err;
8322  
8323  	ASSERT_RTNL();
8324  
8325  	/* Don't allow namespace local devices to be moved. */
8326  	err = -EINVAL;
8327  	if (dev->features & NETIF_F_NETNS_LOCAL)
8328  		goto out;
8329  
8330  	/* Ensure the device has been registrered */
8331  	if (dev->reg_state != NETREG_REGISTERED)
8332  		goto out;
8333  
8334  	/* Get out if there is nothing todo */
8335  	err = 0;
8336  	if (net_eq(dev_net(dev), net))
8337  		goto out;
8338  
8339  	/* Pick the destination device name, and ensure
8340  	 * we can use it in the destination network namespace.
8341  	 */
8342  	err = -EEXIST;
8343  	if (__dev_get_by_name(net, dev->name)) {
8344  		/* We get here if we can't use the current device name */
8345  		if (!pat)
8346  			goto out;
8347  		err = dev_get_valid_name(net, dev, pat);
8348  		if (err < 0)
8349  			goto out;
8350  	}
8351  
8352  	/*
8353  	 * And now a mini version of register_netdevice unregister_netdevice.
8354  	 */
8355  
8356  	/* If device is running close it first. */
8357  	dev_close(dev);
8358  
8359  	/* And unlink it from device chain */
8360  	unlist_netdevice(dev);
8361  
8362  	synchronize_net();
8363  
8364  	/* Shutdown queueing discipline. */
8365  	dev_shutdown(dev);
8366  
8367  	/* Notify protocols, that we are about to destroy
8368  	 * this device. They should clean all the things.
8369  	 *
8370  	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8371  	 * This is wanted because this way 8021q and macvlan know
8372  	 * the device is just moving and can keep their slaves up.
8373  	 */
8374  	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8375  	rcu_barrier();
8376  	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8377  	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8378  
8379  	/*
8380  	 *	Flush the unicast and multicast chains
8381  	 */
8382  	dev_uc_flush(dev);
8383  	dev_mc_flush(dev);
8384  
8385  	/* Send a netdev-removed uevent to the old namespace */
8386  	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8387  	netdev_adjacent_del_links(dev);
8388  
8389  	/* Actually switch the network namespace */
8390  	dev_net_set(dev, net);
8391  
8392  	/* If there is an ifindex conflict assign a new one */
8393  	if (__dev_get_by_index(net, dev->ifindex))
8394  		dev->ifindex = dev_new_index(net);
8395  
8396  	/* Send a netdev-add uevent to the new namespace */
8397  	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8398  	netdev_adjacent_add_links(dev);
8399  
8400  	/* Fixup kobjects */
8401  	err = device_rename(&dev->dev, dev->name);
8402  	WARN_ON(err);
8403  
8404  	/* Add the device back in the hashes */
8405  	list_netdevice(dev);
8406  
8407  	/* Notify protocols, that a new device appeared. */
8408  	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8409  
8410  	/*
8411  	 *	Prevent userspace races by waiting until the network
8412  	 *	device is fully setup before sending notifications.
8413  	 */
8414  	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8415  
8416  	synchronize_net();
8417  	err = 0;
8418  out:
8419  	return err;
8420  }
8421  EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8422  
dev_cpu_dead(unsigned int oldcpu)8423  static int dev_cpu_dead(unsigned int oldcpu)
8424  {
8425  	struct sk_buff **list_skb;
8426  	struct sk_buff *skb;
8427  	unsigned int cpu;
8428  	struct softnet_data *sd, *oldsd, *remsd = NULL;
8429  
8430  	local_irq_disable();
8431  	cpu = smp_processor_id();
8432  	sd = &per_cpu(softnet_data, cpu);
8433  	oldsd = &per_cpu(softnet_data, oldcpu);
8434  
8435  	/* Find end of our completion_queue. */
8436  	list_skb = &sd->completion_queue;
8437  	while (*list_skb)
8438  		list_skb = &(*list_skb)->next;
8439  	/* Append completion queue from offline CPU. */
8440  	*list_skb = oldsd->completion_queue;
8441  	oldsd->completion_queue = NULL;
8442  
8443  	/* Append output queue from offline CPU. */
8444  	if (oldsd->output_queue) {
8445  		*sd->output_queue_tailp = oldsd->output_queue;
8446  		sd->output_queue_tailp = oldsd->output_queue_tailp;
8447  		oldsd->output_queue = NULL;
8448  		oldsd->output_queue_tailp = &oldsd->output_queue;
8449  	}
8450  	/* Append NAPI poll list from offline CPU, with one exception :
8451  	 * process_backlog() must be called by cpu owning percpu backlog.
8452  	 * We properly handle process_queue & input_pkt_queue later.
8453  	 */
8454  	while (!list_empty(&oldsd->poll_list)) {
8455  		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8456  							    struct napi_struct,
8457  							    poll_list);
8458  
8459  		list_del_init(&napi->poll_list);
8460  		if (napi->poll == process_backlog)
8461  			napi->state = 0;
8462  		else
8463  			____napi_schedule(sd, napi);
8464  	}
8465  
8466  	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8467  	local_irq_enable();
8468  
8469  #ifdef CONFIG_RPS
8470  	remsd = oldsd->rps_ipi_list;
8471  	oldsd->rps_ipi_list = NULL;
8472  #endif
8473  	/* send out pending IPI's on offline CPU */
8474  	net_rps_send_ipi(remsd);
8475  
8476  	/* Process offline CPU's input_pkt_queue */
8477  	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8478  		netif_rx_ni(skb);
8479  		input_queue_head_incr(oldsd);
8480  	}
8481  	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8482  		netif_rx_ni(skb);
8483  		input_queue_head_incr(oldsd);
8484  	}
8485  
8486  	return 0;
8487  }
8488  
8489  /**
8490   *	netdev_increment_features - increment feature set by one
8491   *	@all: current feature set
8492   *	@one: new feature set
8493   *	@mask: mask feature set
8494   *
8495   *	Computes a new feature set after adding a device with feature set
8496   *	@one to the master device with current feature set @all.  Will not
8497   *	enable anything that is off in @mask. Returns the new feature set.
8498   */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)8499  netdev_features_t netdev_increment_features(netdev_features_t all,
8500  	netdev_features_t one, netdev_features_t mask)
8501  {
8502  	if (mask & NETIF_F_HW_CSUM)
8503  		mask |= NETIF_F_CSUM_MASK;
8504  	mask |= NETIF_F_VLAN_CHALLENGED;
8505  
8506  	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8507  	all &= one | ~NETIF_F_ALL_FOR_ALL;
8508  
8509  	/* If one device supports hw checksumming, set for all. */
8510  	if (all & NETIF_F_HW_CSUM)
8511  		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8512  
8513  	return all;
8514  }
8515  EXPORT_SYMBOL(netdev_increment_features);
8516  
netdev_create_hash(void)8517  static struct hlist_head * __net_init netdev_create_hash(void)
8518  {
8519  	int i;
8520  	struct hlist_head *hash;
8521  
8522  	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8523  	if (hash != NULL)
8524  		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8525  			INIT_HLIST_HEAD(&hash[i]);
8526  
8527  	return hash;
8528  }
8529  
8530  /* Initialize per network namespace state */
netdev_init(struct net * net)8531  static int __net_init netdev_init(struct net *net)
8532  {
8533  	if (net != &init_net)
8534  		INIT_LIST_HEAD(&net->dev_base_head);
8535  
8536  	net->dev_name_head = netdev_create_hash();
8537  	if (net->dev_name_head == NULL)
8538  		goto err_name;
8539  
8540  	net->dev_index_head = netdev_create_hash();
8541  	if (net->dev_index_head == NULL)
8542  		goto err_idx;
8543  
8544  	return 0;
8545  
8546  err_idx:
8547  	kfree(net->dev_name_head);
8548  err_name:
8549  	return -ENOMEM;
8550  }
8551  
8552  /**
8553   *	netdev_drivername - network driver for the device
8554   *	@dev: network device
8555   *
8556   *	Determine network driver for device.
8557   */
netdev_drivername(const struct net_device * dev)8558  const char *netdev_drivername(const struct net_device *dev)
8559  {
8560  	const struct device_driver *driver;
8561  	const struct device *parent;
8562  	const char *empty = "";
8563  
8564  	parent = dev->dev.parent;
8565  	if (!parent)
8566  		return empty;
8567  
8568  	driver = parent->driver;
8569  	if (driver && driver->name)
8570  		return driver->name;
8571  	return empty;
8572  }
8573  
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)8574  static void __netdev_printk(const char *level, const struct net_device *dev,
8575  			    struct va_format *vaf)
8576  {
8577  	if (dev && dev->dev.parent) {
8578  		dev_printk_emit(level[1] - '0',
8579  				dev->dev.parent,
8580  				"%s %s %s%s: %pV",
8581  				dev_driver_string(dev->dev.parent),
8582  				dev_name(dev->dev.parent),
8583  				netdev_name(dev), netdev_reg_state(dev),
8584  				vaf);
8585  	} else if (dev) {
8586  		printk("%s%s%s: %pV",
8587  		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8588  	} else {
8589  		printk("%s(NULL net_device): %pV", level, vaf);
8590  	}
8591  }
8592  
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)8593  void netdev_printk(const char *level, const struct net_device *dev,
8594  		   const char *format, ...)
8595  {
8596  	struct va_format vaf;
8597  	va_list args;
8598  
8599  	va_start(args, format);
8600  
8601  	vaf.fmt = format;
8602  	vaf.va = &args;
8603  
8604  	__netdev_printk(level, dev, &vaf);
8605  
8606  	va_end(args);
8607  }
8608  EXPORT_SYMBOL(netdev_printk);
8609  
8610  #define define_netdev_printk_level(func, level)			\
8611  void func(const struct net_device *dev, const char *fmt, ...)	\
8612  {								\
8613  	struct va_format vaf;					\
8614  	va_list args;						\
8615  								\
8616  	va_start(args, fmt);					\
8617  								\
8618  	vaf.fmt = fmt;						\
8619  	vaf.va = &args;						\
8620  								\
8621  	__netdev_printk(level, dev, &vaf);			\
8622  								\
8623  	va_end(args);						\
8624  }								\
8625  EXPORT_SYMBOL(func);
8626  
8627  define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8628  define_netdev_printk_level(netdev_alert, KERN_ALERT);
8629  define_netdev_printk_level(netdev_crit, KERN_CRIT);
8630  define_netdev_printk_level(netdev_err, KERN_ERR);
8631  define_netdev_printk_level(netdev_warn, KERN_WARNING);
8632  define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8633  define_netdev_printk_level(netdev_info, KERN_INFO);
8634  
netdev_exit(struct net * net)8635  static void __net_exit netdev_exit(struct net *net)
8636  {
8637  	kfree(net->dev_name_head);
8638  	kfree(net->dev_index_head);
8639  }
8640  
8641  static struct pernet_operations __net_initdata netdev_net_ops = {
8642  	.init = netdev_init,
8643  	.exit = netdev_exit,
8644  };
8645  
default_device_exit(struct net * net)8646  static void __net_exit default_device_exit(struct net *net)
8647  {
8648  	struct net_device *dev, *aux;
8649  	/*
8650  	 * Push all migratable network devices back to the
8651  	 * initial network namespace
8652  	 */
8653  	rtnl_lock();
8654  	for_each_netdev_safe(net, dev, aux) {
8655  		int err;
8656  		char fb_name[IFNAMSIZ];
8657  
8658  		/* Ignore unmoveable devices (i.e. loopback) */
8659  		if (dev->features & NETIF_F_NETNS_LOCAL)
8660  			continue;
8661  
8662  		/* Leave virtual devices for the generic cleanup */
8663  		if (dev->rtnl_link_ops)
8664  			continue;
8665  
8666  		/* Push remaining network devices to init_net */
8667  		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8668  		if (__dev_get_by_name(&init_net, fb_name))
8669  			snprintf(fb_name, IFNAMSIZ, "dev%%d");
8670  		err = dev_change_net_namespace(dev, &init_net, fb_name);
8671  		if (err) {
8672  			pr_emerg("%s: failed to move %s to init_net: %d\n",
8673  				 __func__, dev->name, err);
8674  			BUG();
8675  		}
8676  	}
8677  	rtnl_unlock();
8678  }
8679  
rtnl_lock_unregistering(struct list_head * net_list)8680  static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8681  {
8682  	/* Return with the rtnl_lock held when there are no network
8683  	 * devices unregistering in any network namespace in net_list.
8684  	 */
8685  	struct net *net;
8686  	bool unregistering;
8687  	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8688  
8689  	add_wait_queue(&netdev_unregistering_wq, &wait);
8690  	for (;;) {
8691  		unregistering = false;
8692  		rtnl_lock();
8693  		list_for_each_entry(net, net_list, exit_list) {
8694  			if (net->dev_unreg_count > 0) {
8695  				unregistering = true;
8696  				break;
8697  			}
8698  		}
8699  		if (!unregistering)
8700  			break;
8701  		__rtnl_unlock();
8702  
8703  		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8704  	}
8705  	remove_wait_queue(&netdev_unregistering_wq, &wait);
8706  }
8707  
default_device_exit_batch(struct list_head * net_list)8708  static void __net_exit default_device_exit_batch(struct list_head *net_list)
8709  {
8710  	/* At exit all network devices most be removed from a network
8711  	 * namespace.  Do this in the reverse order of registration.
8712  	 * Do this across as many network namespaces as possible to
8713  	 * improve batching efficiency.
8714  	 */
8715  	struct net_device *dev;
8716  	struct net *net;
8717  	LIST_HEAD(dev_kill_list);
8718  
8719  	/* To prevent network device cleanup code from dereferencing
8720  	 * loopback devices or network devices that have been freed
8721  	 * wait here for all pending unregistrations to complete,
8722  	 * before unregistring the loopback device and allowing the
8723  	 * network namespace be freed.
8724  	 *
8725  	 * The netdev todo list containing all network devices
8726  	 * unregistrations that happen in default_device_exit_batch
8727  	 * will run in the rtnl_unlock() at the end of
8728  	 * default_device_exit_batch.
8729  	 */
8730  	rtnl_lock_unregistering(net_list);
8731  	list_for_each_entry(net, net_list, exit_list) {
8732  		for_each_netdev_reverse(net, dev) {
8733  			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8734  				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8735  			else
8736  				unregister_netdevice_queue(dev, &dev_kill_list);
8737  		}
8738  	}
8739  	unregister_netdevice_many(&dev_kill_list);
8740  	rtnl_unlock();
8741  }
8742  
8743  static struct pernet_operations __net_initdata default_device_ops = {
8744  	.exit = default_device_exit,
8745  	.exit_batch = default_device_exit_batch,
8746  };
8747  
8748  /*
8749   *	Initialize the DEV module. At boot time this walks the device list and
8750   *	unhooks any devices that fail to initialise (normally hardware not
8751   *	present) and leaves us with a valid list of present and active devices.
8752   *
8753   */
8754  
8755  /*
8756   *       This is called single threaded during boot, so no need
8757   *       to take the rtnl semaphore.
8758   */
net_dev_init(void)8759  static int __init net_dev_init(void)
8760  {
8761  	int i, rc = -ENOMEM;
8762  
8763  	BUG_ON(!dev_boot_phase);
8764  
8765  	if (dev_proc_init())
8766  		goto out;
8767  
8768  	if (netdev_kobject_init())
8769  		goto out;
8770  
8771  	INIT_LIST_HEAD(&ptype_all);
8772  	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8773  		INIT_LIST_HEAD(&ptype_base[i]);
8774  
8775  	INIT_LIST_HEAD(&offload_base);
8776  
8777  	if (register_pernet_subsys(&netdev_net_ops))
8778  		goto out;
8779  
8780  	/*
8781  	 *	Initialise the packet receive queues.
8782  	 */
8783  
8784  	for_each_possible_cpu(i) {
8785  		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8786  		struct softnet_data *sd = &per_cpu(softnet_data, i);
8787  
8788  		INIT_WORK(flush, flush_backlog);
8789  
8790  		skb_queue_head_init(&sd->input_pkt_queue);
8791  		skb_queue_head_init(&sd->process_queue);
8792  		INIT_LIST_HEAD(&sd->poll_list);
8793  		sd->output_queue_tailp = &sd->output_queue;
8794  #ifdef CONFIG_RPS
8795  		sd->csd.func = rps_trigger_softirq;
8796  		sd->csd.info = sd;
8797  		sd->cpu = i;
8798  #endif
8799  
8800  		sd->backlog.poll = process_backlog;
8801  		sd->backlog.weight = weight_p;
8802  	}
8803  
8804  	dev_boot_phase = 0;
8805  
8806  	/* The loopback device is special if any other network devices
8807  	 * is present in a network namespace the loopback device must
8808  	 * be present. Since we now dynamically allocate and free the
8809  	 * loopback device ensure this invariant is maintained by
8810  	 * keeping the loopback device as the first device on the
8811  	 * list of network devices.  Ensuring the loopback devices
8812  	 * is the first device that appears and the last network device
8813  	 * that disappears.
8814  	 */
8815  	if (register_pernet_device(&loopback_net_ops))
8816  		goto out;
8817  
8818  	if (register_pernet_device(&default_device_ops))
8819  		goto out;
8820  
8821  	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8822  	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8823  
8824  	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8825  				       NULL, dev_cpu_dead);
8826  	WARN_ON(rc < 0);
8827  	rc = 0;
8828  out:
8829  	return rc;
8830  }
8831  
8832  subsys_initcall(net_dev_init);
8833