• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11 
12 #include <linux/module.h>
13 
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22 
23 #include <linux/sunrpc/clnt.h>
24 
25 #include "sunrpc.h"
26 
27 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
28 #define RPCDBG_FACILITY		RPCDBG_SCHED
29 #endif
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33 
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE	(2048)
38 #define RPC_BUFFER_POOLSIZE	(8)
39 #define RPC_TASK_POOLSIZE	(8)
40 static struct kmem_cache	*rpc_task_slabp __read_mostly;
41 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
42 static mempool_t	*rpc_task_mempool __read_mostly;
43 static mempool_t	*rpc_buffer_mempool __read_mostly;
44 
45 static void			rpc_async_schedule(struct work_struct *);
46 static void			 rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48 
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53 
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue __read_mostly;
58 struct workqueue_struct *xprtiod_workqueue __read_mostly;
59 
60 /*
61  * Disable the timer for a given RPC task. Should be called with
62  * queue->lock and bh_disabled in order to avoid races within
63  * rpc_run_timer().
64  */
65 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)66 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 {
68 	if (task->tk_timeout == 0)
69 		return;
70 	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71 	task->tk_timeout = 0;
72 	list_del(&task->u.tk_wait.timer_list);
73 	if (list_empty(&queue->timer_list.list))
74 		del_timer(&queue->timer_list.timer);
75 }
76 
77 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)78 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 {
80 	queue->timer_list.expires = expires;
81 	mod_timer(&queue->timer_list.timer, expires);
82 }
83 
84 /*
85  * Set up a timer for the current task.
86  */
87 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task)88 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 {
90 	if (!task->tk_timeout)
91 		return;
92 
93 	dprintk("RPC: %5u setting alarm for %u ms\n",
94 		task->tk_pid, jiffies_to_msecs(task->tk_timeout));
95 
96 	task->u.tk_wait.expires = jiffies + task->tk_timeout;
97 	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
98 		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
99 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
100 }
101 
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)102 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
103 {
104 	if (queue->priority != priority) {
105 		queue->priority = priority;
106 		queue->nr = 1U << priority;
107 	}
108 }
109 
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)110 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
111 {
112 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
113 }
114 
115 /*
116  * Add a request to a queue list
117  */
118 static void
__rpc_list_enqueue_task(struct list_head * q,struct rpc_task * task)119 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
120 {
121 	struct rpc_task *t;
122 
123 	list_for_each_entry(t, q, u.tk_wait.list) {
124 		if (t->tk_owner == task->tk_owner) {
125 			list_add_tail(&task->u.tk_wait.links,
126 					&t->u.tk_wait.links);
127 			/* Cache the queue head in task->u.tk_wait.list */
128 			task->u.tk_wait.list.next = q;
129 			task->u.tk_wait.list.prev = NULL;
130 			return;
131 		}
132 	}
133 	INIT_LIST_HEAD(&task->u.tk_wait.links);
134 	list_add_tail(&task->u.tk_wait.list, q);
135 }
136 
137 /*
138  * Remove request from a queue list
139  */
140 static void
__rpc_list_dequeue_task(struct rpc_task * task)141 __rpc_list_dequeue_task(struct rpc_task *task)
142 {
143 	struct list_head *q;
144 	struct rpc_task *t;
145 
146 	if (task->u.tk_wait.list.prev == NULL) {
147 		list_del(&task->u.tk_wait.links);
148 		return;
149 	}
150 	if (!list_empty(&task->u.tk_wait.links)) {
151 		t = list_first_entry(&task->u.tk_wait.links,
152 				struct rpc_task,
153 				u.tk_wait.links);
154 		/* Assume __rpc_list_enqueue_task() cached the queue head */
155 		q = t->u.tk_wait.list.next;
156 		list_add_tail(&t->u.tk_wait.list, q);
157 		list_del(&task->u.tk_wait.links);
158 	}
159 	list_del(&task->u.tk_wait.list);
160 }
161 
162 /*
163  * Add new request to a priority queue.
164  */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)165 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
166 		struct rpc_task *task,
167 		unsigned char queue_priority)
168 {
169 	if (unlikely(queue_priority > queue->maxpriority))
170 		queue_priority = queue->maxpriority;
171 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
172 }
173 
174 /*
175  * Add new request to wait queue.
176  *
177  * Swapper tasks always get inserted at the head of the queue.
178  * This should avoid many nasty memory deadlocks and hopefully
179  * improve overall performance.
180  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
181  */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)182 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
183 		struct rpc_task *task,
184 		unsigned char queue_priority)
185 {
186 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
187 	if (RPC_IS_QUEUED(task))
188 		return;
189 
190 	if (RPC_IS_PRIORITY(queue))
191 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
192 	else if (RPC_IS_SWAPPER(task))
193 		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
194 	else
195 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
196 	task->tk_waitqueue = queue;
197 	queue->qlen++;
198 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
199 	smp_wmb();
200 	rpc_set_queued(task);
201 
202 	dprintk("RPC: %5u added to queue %p \"%s\"\n",
203 			task->tk_pid, queue, rpc_qname(queue));
204 }
205 
206 /*
207  * Remove request from a priority queue.
208  */
__rpc_remove_wait_queue_priority(struct rpc_task * task)209 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
210 {
211 	__rpc_list_dequeue_task(task);
212 }
213 
214 /*
215  * Remove request from queue.
216  * Note: must be called with spin lock held.
217  */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)218 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
219 {
220 	__rpc_disable_timer(queue, task);
221 	if (RPC_IS_PRIORITY(queue))
222 		__rpc_remove_wait_queue_priority(task);
223 	else
224 		list_del(&task->u.tk_wait.list);
225 	queue->qlen--;
226 	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
227 			task->tk_pid, queue, rpc_qname(queue));
228 }
229 
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)230 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
231 {
232 	int i;
233 
234 	spin_lock_init(&queue->lock);
235 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
236 		INIT_LIST_HEAD(&queue->tasks[i]);
237 	queue->maxpriority = nr_queues - 1;
238 	rpc_reset_waitqueue_priority(queue);
239 	queue->qlen = 0;
240 	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
241 	INIT_LIST_HEAD(&queue->timer_list.list);
242 	rpc_assign_waitqueue_name(queue, qname);
243 }
244 
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)245 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
246 {
247 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
248 }
249 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
250 
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)251 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253 	__rpc_init_priority_wait_queue(queue, qname, 1);
254 }
255 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
256 
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)257 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
258 {
259 	del_timer_sync(&queue->timer_list.timer);
260 }
261 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
262 
rpc_wait_bit_killable(struct wait_bit_key * key,int mode)263 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
264 {
265 	freezable_schedule_unsafe();
266 	if (signal_pending_state(mode, current))
267 		return -ERESTARTSYS;
268 	return 0;
269 }
270 
271 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
rpc_task_set_debuginfo(struct rpc_task * task)272 static void rpc_task_set_debuginfo(struct rpc_task *task)
273 {
274 	static atomic_t rpc_pid;
275 
276 	task->tk_pid = atomic_inc_return(&rpc_pid);
277 }
278 #else
rpc_task_set_debuginfo(struct rpc_task * task)279 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
280 {
281 }
282 #endif
283 
rpc_set_active(struct rpc_task * task)284 static void rpc_set_active(struct rpc_task *task)
285 {
286 	rpc_task_set_debuginfo(task);
287 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
288 	trace_rpc_task_begin(task->tk_client, task, NULL);
289 }
290 
291 /*
292  * Mark an RPC call as having completed by clearing the 'active' bit
293  * and then waking up all tasks that were sleeping.
294  */
rpc_complete_task(struct rpc_task * task)295 static int rpc_complete_task(struct rpc_task *task)
296 {
297 	void *m = &task->tk_runstate;
298 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
299 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
300 	unsigned long flags;
301 	int ret;
302 
303 	trace_rpc_task_complete(task->tk_client, task, NULL);
304 
305 	spin_lock_irqsave(&wq->lock, flags);
306 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
307 	ret = atomic_dec_and_test(&task->tk_count);
308 	if (waitqueue_active(wq))
309 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
310 	spin_unlock_irqrestore(&wq->lock, flags);
311 	return ret;
312 }
313 
314 /*
315  * Allow callers to wait for completion of an RPC call
316  *
317  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
318  * to enforce taking of the wq->lock and hence avoid races with
319  * rpc_complete_task().
320  */
__rpc_wait_for_completion_task(struct rpc_task * task,wait_bit_action_f * action)321 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
322 {
323 	if (action == NULL)
324 		action = rpc_wait_bit_killable;
325 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
326 			action, TASK_KILLABLE);
327 }
328 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
329 
330 /*
331  * Make an RPC task runnable.
332  *
333  * Note: If the task is ASYNC, and is being made runnable after sitting on an
334  * rpc_wait_queue, this must be called with the queue spinlock held to protect
335  * the wait queue operation.
336  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
337  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
338  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
339  * the RPC_TASK_RUNNING flag.
340  */
rpc_make_runnable(struct workqueue_struct * wq,struct rpc_task * task)341 static void rpc_make_runnable(struct workqueue_struct *wq,
342 		struct rpc_task *task)
343 {
344 	bool need_wakeup = !rpc_test_and_set_running(task);
345 
346 	rpc_clear_queued(task);
347 	if (!need_wakeup)
348 		return;
349 	if (RPC_IS_ASYNC(task)) {
350 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
351 		queue_work(wq, &task->u.tk_work);
352 	} else
353 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
354 }
355 
356 /*
357  * Prepare for sleeping on a wait queue.
358  * By always appending tasks to the list we ensure FIFO behavior.
359  * NB: An RPC task will only receive interrupt-driven events as long
360  * as it's on a wait queue.
361  */
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned char queue_priority)362 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
363 		struct rpc_task *task,
364 		rpc_action action,
365 		unsigned char queue_priority)
366 {
367 	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
368 			task->tk_pid, rpc_qname(q), jiffies);
369 
370 	trace_rpc_task_sleep(task->tk_client, task, q);
371 
372 	__rpc_add_wait_queue(q, task, queue_priority);
373 
374 	WARN_ON_ONCE(task->tk_callback != NULL);
375 	task->tk_callback = action;
376 	__rpc_add_timer(q, task);
377 }
378 
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)379 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
380 				rpc_action action)
381 {
382 	/* We shouldn't ever put an inactive task to sleep */
383 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
384 	if (!RPC_IS_ACTIVATED(task)) {
385 		task->tk_status = -EIO;
386 		rpc_put_task_async(task);
387 		return;
388 	}
389 
390 	/*
391 	 * Protect the queue operations.
392 	 */
393 	spin_lock_bh(&q->lock);
394 	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
395 	spin_unlock_bh(&q->lock);
396 }
397 EXPORT_SYMBOL_GPL(rpc_sleep_on);
398 
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,int priority)399 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
400 		rpc_action action, int priority)
401 {
402 	/* We shouldn't ever put an inactive task to sleep */
403 	WARN_ON_ONCE(!RPC_IS_ACTIVATED(task));
404 	if (!RPC_IS_ACTIVATED(task)) {
405 		task->tk_status = -EIO;
406 		rpc_put_task_async(task);
407 		return;
408 	}
409 
410 	/*
411 	 * Protect the queue operations.
412 	 */
413 	spin_lock_bh(&q->lock);
414 	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
415 	spin_unlock_bh(&q->lock);
416 }
417 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
418 
419 /**
420  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
421  * @wq: workqueue on which to run task
422  * @queue: wait queue
423  * @task: task to be woken up
424  *
425  * Caller must hold queue->lock, and have cleared the task queued flag.
426  */
__rpc_do_wake_up_task_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task)427 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
428 		struct rpc_wait_queue *queue,
429 		struct rpc_task *task)
430 {
431 	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
432 			task->tk_pid, jiffies);
433 
434 	/* Has the task been executed yet? If not, we cannot wake it up! */
435 	if (!RPC_IS_ACTIVATED(task)) {
436 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
437 		return;
438 	}
439 
440 	trace_rpc_task_wakeup(task->tk_client, task, queue);
441 
442 	__rpc_remove_wait_queue(queue, task);
443 
444 	rpc_make_runnable(wq, task);
445 
446 	dprintk("RPC:       __rpc_wake_up_task done\n");
447 }
448 
449 /*
450  * Wake up a queued task while the queue lock is being held
451  */
rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task)452 static void rpc_wake_up_task_on_wq_queue_locked(struct workqueue_struct *wq,
453 		struct rpc_wait_queue *queue, struct rpc_task *task)
454 {
455 	if (RPC_IS_QUEUED(task)) {
456 		smp_rmb();
457 		if (task->tk_waitqueue == queue)
458 			__rpc_do_wake_up_task_on_wq(wq, queue, task);
459 	}
460 }
461 
462 /*
463  * Wake up a queued task while the queue lock is being held
464  */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)465 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
466 {
467 	rpc_wake_up_task_on_wq_queue_locked(rpciod_workqueue, queue, task);
468 }
469 
470 /*
471  * Wake up a task on a specific queue
472  */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)473 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
474 {
475 	spin_lock_bh(&queue->lock);
476 	rpc_wake_up_task_queue_locked(queue, task);
477 	spin_unlock_bh(&queue->lock);
478 }
479 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
480 
481 /*
482  * Wake up the next task on a priority queue.
483  */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)484 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
485 {
486 	struct list_head *q;
487 	struct rpc_task *task;
488 
489 	/*
490 	 * Service a batch of tasks from a single owner.
491 	 */
492 	q = &queue->tasks[queue->priority];
493 	if (!list_empty(q) && --queue->nr) {
494 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
495 		goto out;
496 	}
497 
498 	/*
499 	 * Service the next queue.
500 	 */
501 	do {
502 		if (q == &queue->tasks[0])
503 			q = &queue->tasks[queue->maxpriority];
504 		else
505 			q = q - 1;
506 		if (!list_empty(q)) {
507 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
508 			goto new_queue;
509 		}
510 	} while (q != &queue->tasks[queue->priority]);
511 
512 	rpc_reset_waitqueue_priority(queue);
513 	return NULL;
514 
515 new_queue:
516 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
517 out:
518 	return task;
519 }
520 
__rpc_find_next_queued(struct rpc_wait_queue * queue)521 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
522 {
523 	if (RPC_IS_PRIORITY(queue))
524 		return __rpc_find_next_queued_priority(queue);
525 	if (!list_empty(&queue->tasks[0]))
526 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
527 	return NULL;
528 }
529 
530 /*
531  * Wake up the first task on the wait queue.
532  */
rpc_wake_up_first_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)533 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
534 		struct rpc_wait_queue *queue,
535 		bool (*func)(struct rpc_task *, void *), void *data)
536 {
537 	struct rpc_task	*task = NULL;
538 
539 	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
540 			queue, rpc_qname(queue));
541 	spin_lock_bh(&queue->lock);
542 	task = __rpc_find_next_queued(queue);
543 	if (task != NULL) {
544 		if (func(task, data))
545 			rpc_wake_up_task_on_wq_queue_locked(wq, queue, task);
546 		else
547 			task = NULL;
548 	}
549 	spin_unlock_bh(&queue->lock);
550 
551 	return task;
552 }
553 
554 /*
555  * Wake up the first task on the wait queue.
556  */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)557 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
558 		bool (*func)(struct rpc_task *, void *), void *data)
559 {
560 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
561 }
562 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
563 
rpc_wake_up_next_func(struct rpc_task * task,void * data)564 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
565 {
566 	return true;
567 }
568 
569 /*
570  * Wake up the next task on the wait queue.
571 */
rpc_wake_up_next(struct rpc_wait_queue * queue)572 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
573 {
574 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
575 }
576 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
577 
578 /**
579  * rpc_wake_up - wake up all rpc_tasks
580  * @queue: rpc_wait_queue on which the tasks are sleeping
581  *
582  * Grabs queue->lock
583  */
rpc_wake_up(struct rpc_wait_queue * queue)584 void rpc_wake_up(struct rpc_wait_queue *queue)
585 {
586 	struct list_head *head;
587 
588 	spin_lock_bh(&queue->lock);
589 	head = &queue->tasks[queue->maxpriority];
590 	for (;;) {
591 		while (!list_empty(head)) {
592 			struct rpc_task *task;
593 			task = list_first_entry(head,
594 					struct rpc_task,
595 					u.tk_wait.list);
596 			rpc_wake_up_task_queue_locked(queue, task);
597 		}
598 		if (head == &queue->tasks[0])
599 			break;
600 		head--;
601 	}
602 	spin_unlock_bh(&queue->lock);
603 }
604 EXPORT_SYMBOL_GPL(rpc_wake_up);
605 
606 /**
607  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
608  * @queue: rpc_wait_queue on which the tasks are sleeping
609  * @status: status value to set
610  *
611  * Grabs queue->lock
612  */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)613 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
614 {
615 	struct list_head *head;
616 
617 	spin_lock_bh(&queue->lock);
618 	head = &queue->tasks[queue->maxpriority];
619 	for (;;) {
620 		while (!list_empty(head)) {
621 			struct rpc_task *task;
622 			task = list_first_entry(head,
623 					struct rpc_task,
624 					u.tk_wait.list);
625 			task->tk_status = status;
626 			rpc_wake_up_task_queue_locked(queue, task);
627 		}
628 		if (head == &queue->tasks[0])
629 			break;
630 		head--;
631 	}
632 	spin_unlock_bh(&queue->lock);
633 }
634 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
635 
__rpc_queue_timer_fn(unsigned long ptr)636 static void __rpc_queue_timer_fn(unsigned long ptr)
637 {
638 	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
639 	struct rpc_task *task, *n;
640 	unsigned long expires, now, timeo;
641 
642 	spin_lock(&queue->lock);
643 	expires = now = jiffies;
644 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
645 		timeo = task->u.tk_wait.expires;
646 		if (time_after_eq(now, timeo)) {
647 			dprintk("RPC: %5u timeout\n", task->tk_pid);
648 			task->tk_status = -ETIMEDOUT;
649 			rpc_wake_up_task_queue_locked(queue, task);
650 			continue;
651 		}
652 		if (expires == now || time_after(expires, timeo))
653 			expires = timeo;
654 	}
655 	if (!list_empty(&queue->timer_list.list))
656 		rpc_set_queue_timer(queue, expires);
657 	spin_unlock(&queue->lock);
658 }
659 
__rpc_atrun(struct rpc_task * task)660 static void __rpc_atrun(struct rpc_task *task)
661 {
662 	if (task->tk_status == -ETIMEDOUT)
663 		task->tk_status = 0;
664 }
665 
666 /*
667  * Run a task at a later time
668  */
rpc_delay(struct rpc_task * task,unsigned long delay)669 void rpc_delay(struct rpc_task *task, unsigned long delay)
670 {
671 	task->tk_timeout = delay;
672 	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
673 }
674 EXPORT_SYMBOL_GPL(rpc_delay);
675 
676 /*
677  * Helper to call task->tk_ops->rpc_call_prepare
678  */
rpc_prepare_task(struct rpc_task * task)679 void rpc_prepare_task(struct rpc_task *task)
680 {
681 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
682 }
683 
684 static void
rpc_init_task_statistics(struct rpc_task * task)685 rpc_init_task_statistics(struct rpc_task *task)
686 {
687 	/* Initialize retry counters */
688 	task->tk_garb_retry = 2;
689 	task->tk_cred_retry = 2;
690 	task->tk_rebind_retry = 2;
691 
692 	/* starting timestamp */
693 	task->tk_start = ktime_get();
694 }
695 
696 static void
rpc_reset_task_statistics(struct rpc_task * task)697 rpc_reset_task_statistics(struct rpc_task *task)
698 {
699 	task->tk_timeouts = 0;
700 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
701 
702 	rpc_init_task_statistics(task);
703 }
704 
705 /*
706  * Helper that calls task->tk_ops->rpc_call_done if it exists
707  */
rpc_exit_task(struct rpc_task * task)708 void rpc_exit_task(struct rpc_task *task)
709 {
710 	task->tk_action = NULL;
711 	if (task->tk_ops->rpc_call_done != NULL) {
712 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
713 		if (task->tk_action != NULL) {
714 			WARN_ON(RPC_ASSASSINATED(task));
715 			/* Always release the RPC slot and buffer memory */
716 			xprt_release(task);
717 			rpc_reset_task_statistics(task);
718 		}
719 	}
720 }
721 
rpc_exit(struct rpc_task * task,int status)722 void rpc_exit(struct rpc_task *task, int status)
723 {
724 	task->tk_status = status;
725 	task->tk_action = rpc_exit_task;
726 	if (RPC_IS_QUEUED(task))
727 		rpc_wake_up_queued_task(task->tk_waitqueue, task);
728 }
729 EXPORT_SYMBOL_GPL(rpc_exit);
730 
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)731 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
732 {
733 	if (ops->rpc_release != NULL)
734 		ops->rpc_release(calldata);
735 }
736 
737 /*
738  * This is the RPC `scheduler' (or rather, the finite state machine).
739  */
__rpc_execute(struct rpc_task * task)740 static void __rpc_execute(struct rpc_task *task)
741 {
742 	struct rpc_wait_queue *queue;
743 	int task_is_async = RPC_IS_ASYNC(task);
744 	int status = 0;
745 
746 	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
747 			task->tk_pid, task->tk_flags);
748 
749 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
750 	if (RPC_IS_QUEUED(task))
751 		return;
752 
753 	for (;;) {
754 		void (*do_action)(struct rpc_task *);
755 
756 		/*
757 		 * Execute any pending callback first.
758 		 */
759 		do_action = task->tk_callback;
760 		task->tk_callback = NULL;
761 		if (do_action == NULL) {
762 			/*
763 			 * Perform the next FSM step.
764 			 * tk_action may be NULL if the task has been killed.
765 			 * In particular, note that rpc_killall_tasks may
766 			 * do this at any time, so beware when dereferencing.
767 			 */
768 			do_action = task->tk_action;
769 			if (do_action == NULL)
770 				break;
771 		}
772 		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
773 		do_action(task);
774 
775 		/*
776 		 * Lockless check for whether task is sleeping or not.
777 		 */
778 		if (!RPC_IS_QUEUED(task))
779 			continue;
780 		/*
781 		 * The queue->lock protects against races with
782 		 * rpc_make_runnable().
783 		 *
784 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
785 		 * rpc_task, rpc_make_runnable() can assign it to a
786 		 * different workqueue. We therefore cannot assume that the
787 		 * rpc_task pointer may still be dereferenced.
788 		 */
789 		queue = task->tk_waitqueue;
790 		spin_lock_bh(&queue->lock);
791 		if (!RPC_IS_QUEUED(task)) {
792 			spin_unlock_bh(&queue->lock);
793 			continue;
794 		}
795 		rpc_clear_running(task);
796 		spin_unlock_bh(&queue->lock);
797 		if (task_is_async)
798 			return;
799 
800 		/* sync task: sleep here */
801 		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
802 		status = out_of_line_wait_on_bit(&task->tk_runstate,
803 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
804 				TASK_KILLABLE);
805 		if (status == -ERESTARTSYS) {
806 			/*
807 			 * When a sync task receives a signal, it exits with
808 			 * -ERESTARTSYS. In order to catch any callbacks that
809 			 * clean up after sleeping on some queue, we don't
810 			 * break the loop here, but go around once more.
811 			 */
812 			dprintk("RPC: %5u got signal\n", task->tk_pid);
813 			task->tk_flags |= RPC_TASK_KILLED;
814 			rpc_exit(task, -ERESTARTSYS);
815 		}
816 		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
817 	}
818 
819 	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
820 			task->tk_status);
821 	/* Release all resources associated with the task */
822 	rpc_release_task(task);
823 }
824 
825 /*
826  * User-visible entry point to the scheduler.
827  *
828  * This may be called recursively if e.g. an async NFS task updates
829  * the attributes and finds that dirty pages must be flushed.
830  * NOTE: Upon exit of this function the task is guaranteed to be
831  *	 released. In particular note that tk_release() will have
832  *	 been called, so your task memory may have been freed.
833  */
rpc_execute(struct rpc_task * task)834 void rpc_execute(struct rpc_task *task)
835 {
836 	bool is_async = RPC_IS_ASYNC(task);
837 
838 	rpc_set_active(task);
839 	rpc_make_runnable(rpciod_workqueue, task);
840 	if (!is_async)
841 		__rpc_execute(task);
842 }
843 
rpc_async_schedule(struct work_struct * work)844 static void rpc_async_schedule(struct work_struct *work)
845 {
846 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
847 }
848 
849 /**
850  * rpc_malloc - allocate RPC buffer resources
851  * @task: RPC task
852  *
853  * A single memory region is allocated, which is split between the
854  * RPC call and RPC reply that this task is being used for. When
855  * this RPC is retired, the memory is released by calling rpc_free.
856  *
857  * To prevent rpciod from hanging, this allocator never sleeps,
858  * returning -ENOMEM and suppressing warning if the request cannot
859  * be serviced immediately. The caller can arrange to sleep in a
860  * way that is safe for rpciod.
861  *
862  * Most requests are 'small' (under 2KiB) and can be serviced from a
863  * mempool, ensuring that NFS reads and writes can always proceed,
864  * and that there is good locality of reference for these buffers.
865  *
866  * In order to avoid memory starvation triggering more writebacks of
867  * NFS requests, we avoid using GFP_KERNEL.
868  */
rpc_malloc(struct rpc_task * task)869 int rpc_malloc(struct rpc_task *task)
870 {
871 	struct rpc_rqst *rqst = task->tk_rqstp;
872 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
873 	struct rpc_buffer *buf;
874 	gfp_t gfp = GFP_NOIO | __GFP_NOWARN;
875 
876 	if (RPC_IS_SWAPPER(task))
877 		gfp = __GFP_MEMALLOC | GFP_NOWAIT | __GFP_NOWARN;
878 
879 	size += sizeof(struct rpc_buffer);
880 	if (size <= RPC_BUFFER_MAXSIZE)
881 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
882 	else
883 		buf = kmalloc(size, gfp);
884 
885 	if (!buf)
886 		return -ENOMEM;
887 
888 	buf->len = size;
889 	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
890 			task->tk_pid, size, buf);
891 	rqst->rq_buffer = buf->data;
892 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
893 	return 0;
894 }
895 EXPORT_SYMBOL_GPL(rpc_malloc);
896 
897 /**
898  * rpc_free - free RPC buffer resources allocated via rpc_malloc
899  * @task: RPC task
900  *
901  */
rpc_free(struct rpc_task * task)902 void rpc_free(struct rpc_task *task)
903 {
904 	void *buffer = task->tk_rqstp->rq_buffer;
905 	size_t size;
906 	struct rpc_buffer *buf;
907 
908 	buf = container_of(buffer, struct rpc_buffer, data);
909 	size = buf->len;
910 
911 	dprintk("RPC:       freeing buffer of size %zu at %p\n",
912 			size, buf);
913 
914 	if (size <= RPC_BUFFER_MAXSIZE)
915 		mempool_free(buf, rpc_buffer_mempool);
916 	else
917 		kfree(buf);
918 }
919 EXPORT_SYMBOL_GPL(rpc_free);
920 
921 /*
922  * Creation and deletion of RPC task structures
923  */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)924 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
925 {
926 	memset(task, 0, sizeof(*task));
927 	atomic_set(&task->tk_count, 1);
928 	task->tk_flags  = task_setup_data->flags;
929 	task->tk_ops = task_setup_data->callback_ops;
930 	task->tk_calldata = task_setup_data->callback_data;
931 	INIT_LIST_HEAD(&task->tk_task);
932 
933 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
934 	task->tk_owner = current->tgid;
935 
936 	/* Initialize workqueue for async tasks */
937 	task->tk_workqueue = task_setup_data->workqueue;
938 
939 	task->tk_xprt = xprt_get(task_setup_data->rpc_xprt);
940 
941 	if (task->tk_ops->rpc_call_prepare != NULL)
942 		task->tk_action = rpc_prepare_task;
943 
944 	rpc_init_task_statistics(task);
945 
946 	dprintk("RPC:       new task initialized, procpid %u\n",
947 				task_pid_nr(current));
948 }
949 
950 static struct rpc_task *
rpc_alloc_task(void)951 rpc_alloc_task(void)
952 {
953 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
954 }
955 
956 /*
957  * Create a new task for the specified client.
958  */
rpc_new_task(const struct rpc_task_setup * setup_data)959 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
960 {
961 	struct rpc_task	*task = setup_data->task;
962 	unsigned short flags = 0;
963 
964 	if (task == NULL) {
965 		task = rpc_alloc_task();
966 		flags = RPC_TASK_DYNAMIC;
967 	}
968 
969 	rpc_init_task(task, setup_data);
970 	task->tk_flags |= flags;
971 	dprintk("RPC:       allocated task %p\n", task);
972 	return task;
973 }
974 
975 /*
976  * rpc_free_task - release rpc task and perform cleanups
977  *
978  * Note that we free up the rpc_task _after_ rpc_release_calldata()
979  * in order to work around a workqueue dependency issue.
980  *
981  * Tejun Heo states:
982  * "Workqueue currently considers two work items to be the same if they're
983  * on the same address and won't execute them concurrently - ie. it
984  * makes a work item which is queued again while being executed wait
985  * for the previous execution to complete.
986  *
987  * If a work function frees the work item, and then waits for an event
988  * which should be performed by another work item and *that* work item
989  * recycles the freed work item, it can create a false dependency loop.
990  * There really is no reliable way to detect this short of verifying
991  * every memory free."
992  *
993  */
rpc_free_task(struct rpc_task * task)994 static void rpc_free_task(struct rpc_task *task)
995 {
996 	unsigned short tk_flags = task->tk_flags;
997 
998 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
999 
1000 	if (tk_flags & RPC_TASK_DYNAMIC) {
1001 		dprintk("RPC: %5u freeing task\n", task->tk_pid);
1002 		mempool_free(task, rpc_task_mempool);
1003 	}
1004 }
1005 
rpc_async_release(struct work_struct * work)1006 static void rpc_async_release(struct work_struct *work)
1007 {
1008 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1009 }
1010 
rpc_release_resources_task(struct rpc_task * task)1011 static void rpc_release_resources_task(struct rpc_task *task)
1012 {
1013 	xprt_release(task);
1014 	if (task->tk_msg.rpc_cred) {
1015 		put_rpccred(task->tk_msg.rpc_cred);
1016 		task->tk_msg.rpc_cred = NULL;
1017 	}
1018 	rpc_task_release_client(task);
1019 }
1020 
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)1021 static void rpc_final_put_task(struct rpc_task *task,
1022 		struct workqueue_struct *q)
1023 {
1024 	if (q != NULL) {
1025 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1026 		queue_work(q, &task->u.tk_work);
1027 	} else
1028 		rpc_free_task(task);
1029 }
1030 
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1031 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1032 {
1033 	if (atomic_dec_and_test(&task->tk_count)) {
1034 		rpc_release_resources_task(task);
1035 		rpc_final_put_task(task, q);
1036 	}
1037 }
1038 
rpc_put_task(struct rpc_task * task)1039 void rpc_put_task(struct rpc_task *task)
1040 {
1041 	rpc_do_put_task(task, NULL);
1042 }
1043 EXPORT_SYMBOL_GPL(rpc_put_task);
1044 
rpc_put_task_async(struct rpc_task * task)1045 void rpc_put_task_async(struct rpc_task *task)
1046 {
1047 	rpc_do_put_task(task, task->tk_workqueue);
1048 }
1049 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1050 
rpc_release_task(struct rpc_task * task)1051 static void rpc_release_task(struct rpc_task *task)
1052 {
1053 	dprintk("RPC: %5u release task\n", task->tk_pid);
1054 
1055 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1056 
1057 	rpc_release_resources_task(task);
1058 
1059 	/*
1060 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1061 	 * so it should be safe to use task->tk_count as a test for whether
1062 	 * or not any other processes still hold references to our rpc_task.
1063 	 */
1064 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1065 		/* Wake up anyone who may be waiting for task completion */
1066 		if (!rpc_complete_task(task))
1067 			return;
1068 	} else {
1069 		if (!atomic_dec_and_test(&task->tk_count))
1070 			return;
1071 	}
1072 	rpc_final_put_task(task, task->tk_workqueue);
1073 }
1074 
rpciod_up(void)1075 int rpciod_up(void)
1076 {
1077 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1078 }
1079 
rpciod_down(void)1080 void rpciod_down(void)
1081 {
1082 	module_put(THIS_MODULE);
1083 }
1084 
1085 /*
1086  * Start up the rpciod workqueue.
1087  */
rpciod_start(void)1088 static int rpciod_start(void)
1089 {
1090 	struct workqueue_struct *wq;
1091 
1092 	/*
1093 	 * Create the rpciod thread and wait for it to start.
1094 	 */
1095 	dprintk("RPC:       creating workqueue rpciod\n");
1096 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1097 	if (!wq)
1098 		goto out_failed;
1099 	rpciod_workqueue = wq;
1100 	/* Note: highpri because network receive is latency sensitive */
1101 	wq = alloc_workqueue("xprtiod", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1102 	if (!wq)
1103 		goto free_rpciod;
1104 	xprtiod_workqueue = wq;
1105 	return 1;
1106 free_rpciod:
1107 	wq = rpciod_workqueue;
1108 	rpciod_workqueue = NULL;
1109 	destroy_workqueue(wq);
1110 out_failed:
1111 	return 0;
1112 }
1113 
rpciod_stop(void)1114 static void rpciod_stop(void)
1115 {
1116 	struct workqueue_struct *wq = NULL;
1117 
1118 	if (rpciod_workqueue == NULL)
1119 		return;
1120 	dprintk("RPC:       destroying workqueue rpciod\n");
1121 
1122 	wq = rpciod_workqueue;
1123 	rpciod_workqueue = NULL;
1124 	destroy_workqueue(wq);
1125 	wq = xprtiod_workqueue;
1126 	xprtiod_workqueue = NULL;
1127 	destroy_workqueue(wq);
1128 }
1129 
1130 void
rpc_destroy_mempool(void)1131 rpc_destroy_mempool(void)
1132 {
1133 	rpciod_stop();
1134 	mempool_destroy(rpc_buffer_mempool);
1135 	mempool_destroy(rpc_task_mempool);
1136 	kmem_cache_destroy(rpc_task_slabp);
1137 	kmem_cache_destroy(rpc_buffer_slabp);
1138 	rpc_destroy_wait_queue(&delay_queue);
1139 }
1140 
1141 int
rpc_init_mempool(void)1142 rpc_init_mempool(void)
1143 {
1144 	/*
1145 	 * The following is not strictly a mempool initialisation,
1146 	 * but there is no harm in doing it here
1147 	 */
1148 	rpc_init_wait_queue(&delay_queue, "delayq");
1149 	if (!rpciod_start())
1150 		goto err_nomem;
1151 
1152 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1153 					     sizeof(struct rpc_task),
1154 					     0, SLAB_HWCACHE_ALIGN,
1155 					     NULL);
1156 	if (!rpc_task_slabp)
1157 		goto err_nomem;
1158 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1159 					     RPC_BUFFER_MAXSIZE,
1160 					     0, SLAB_HWCACHE_ALIGN,
1161 					     NULL);
1162 	if (!rpc_buffer_slabp)
1163 		goto err_nomem;
1164 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1165 						    rpc_task_slabp);
1166 	if (!rpc_task_mempool)
1167 		goto err_nomem;
1168 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1169 						      rpc_buffer_slabp);
1170 	if (!rpc_buffer_mempool)
1171 		goto err_nomem;
1172 	return 0;
1173 err_nomem:
1174 	rpc_destroy_mempool();
1175 	return -ENOMEM;
1176 }
1177