• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19  *
20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21  * CA 95054 USA or visit www.sun.com if you need additional information or
22  * have any questions.
23  *
24  * GPL HEADER END
25  */
26 /*
27  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28  * Use is subject to license terms.
29  *
30  * Copyright (c) 2011, 2012, Intel Corporation.
31  */
32 /*
33  * This file is part of Lustre, http://www.lustre.org/
34  * Lustre is a trademark of Sun Microsystems, Inc.
35  */
36 #ifndef _LUSTRE_CL_OBJECT_H
37 #define _LUSTRE_CL_OBJECT_H
38 
39 /** \defgroup clio clio
40  *
41  * Client objects implement io operations and cache pages.
42  *
43  * Examples: lov and osc are implementations of cl interface.
44  *
45  * Big Theory Statement.
46  *
47  * Layered objects.
48  *
49  * Client implementation is based on the following data-types:
50  *
51  *   - cl_object
52  *
53  *   - cl_page
54  *
55  *   - cl_lock     represents an extent lock on an object.
56  *
57  *   - cl_io       represents high-level i/o activity such as whole read/write
58  *		 system call, or write-out of pages from under the lock being
59  *		 canceled. cl_io has sub-ios that can be stopped and resumed
60  *		 independently, thus achieving high degree of transfer
61  *		 parallelism. Single cl_io can be advanced forward by
62  *		 the multiple threads (although in the most usual case of
63  *		 read/write system call it is associated with the single user
64  *		 thread, that issued the system call).
65  *
66  *   - cl_req      represents a collection of pages for a transfer. cl_req is
67  *		 constructed by req-forming engine that tries to saturate
68  *		 transport with large and continuous transfers.
69  *
70  * Terminology
71  *
72  *     - to avoid confusion high-level I/O operation like read or write system
73  *     call is referred to as "an io", whereas low-level I/O operation, like
74  *     RPC, is referred to as "a transfer"
75  *
76  *     - "generic code" means generic (not file system specific) code in the
77  *     hosting environment. "cl-code" means code (mostly in cl_*.c files) that
78  *     is not layer specific.
79  *
80  * Locking.
81  *
82  *  - i_mutex
83  *      - PG_locked
84  *	  - cl_object_header::coh_page_guard
85  *	  - cl_object_header::coh_lock_guard
86  *	  - lu_site::ls_guard
87  *
88  * See the top comment in cl_object.c for the description of overall locking and
89  * reference-counting design.
90  *
91  * See comments below for the description of i/o, page, and dlm-locking
92  * design.
93  *
94  * @{
95  */
96 
97 /*
98  * super-class definitions.
99  */
100 #include "lu_object.h"
101 #include "linux/lustre_compat25.h"
102 #include <linux/mutex.h>
103 #include <linux/radix-tree.h>
104 
105 struct inode;
106 
107 struct cl_device;
108 struct cl_device_operations;
109 
110 struct cl_object;
111 struct cl_object_page_operations;
112 struct cl_object_lock_operations;
113 
114 struct cl_page;
115 struct cl_page_slice;
116 struct cl_lock;
117 struct cl_lock_slice;
118 
119 struct cl_lock_operations;
120 struct cl_page_operations;
121 
122 struct cl_io;
123 struct cl_io_slice;
124 
125 struct cl_req;
126 struct cl_req_slice;
127 
128 /**
129  * Operations for each data device in the client stack.
130  *
131  * \see vvp_cl_ops, lov_cl_ops, lovsub_cl_ops, osc_cl_ops
132  */
133 struct cl_device_operations {
134 	/**
135 	 * Initialize cl_req. This method is called top-to-bottom on all
136 	 * devices in the stack to get them a chance to allocate layer-private
137 	 * data, and to attach them to the cl_req by calling
138 	 * cl_req_slice_add().
139 	 *
140 	 * \see osc_req_init(), lov_req_init(), lovsub_req_init()
141 	 * \see ccc_req_init()
142 	 */
143 	int (*cdo_req_init)(const struct lu_env *env, struct cl_device *dev,
144 			    struct cl_req *req);
145 };
146 
147 /**
148  * Device in the client stack.
149  *
150  * \see ccc_device, lov_device, lovsub_device, osc_device
151  */
152 struct cl_device {
153 	/** Super-class. */
154 	struct lu_device		   cd_lu_dev;
155 	/** Per-layer operation vector. */
156 	const struct cl_device_operations *cd_ops;
157 };
158 
159 /** \addtogroup cl_object cl_object
160  * @{ */
161 /**
162  * "Data attributes" of cl_object. Data attributes can be updated
163  * independently for a sub-object, and top-object's attributes are calculated
164  * from sub-objects' ones.
165  */
166 struct cl_attr {
167 	/** Object size, in bytes */
168 	loff_t cat_size;
169 	/**
170 	 * Known minimal size, in bytes.
171 	 *
172 	 * This is only valid when at least one DLM lock is held.
173 	 */
174 	loff_t cat_kms;
175 	/** Modification time. Measured in seconds since epoch. */
176 	time64_t cat_mtime;
177 	/** Access time. Measured in seconds since epoch. */
178 	time64_t cat_atime;
179 	/** Change time. Measured in seconds since epoch. */
180 	time64_t cat_ctime;
181 	/**
182 	 * Blocks allocated to this cl_object on the server file system.
183 	 *
184 	 * \todo XXX An interface for block size is needed.
185 	 */
186 	__u64  cat_blocks;
187 	/**
188 	 * User identifier for quota purposes.
189 	 */
190 	uid_t  cat_uid;
191 	/**
192 	 * Group identifier for quota purposes.
193 	 */
194 	gid_t  cat_gid;
195 };
196 
197 /**
198  * Fields in cl_attr that are being set.
199  */
200 enum cl_attr_valid {
201 	CAT_SIZE   = 1 << 0,
202 	CAT_KMS    = 1 << 1,
203 	CAT_MTIME  = 1 << 3,
204 	CAT_ATIME  = 1 << 4,
205 	CAT_CTIME  = 1 << 5,
206 	CAT_BLOCKS = 1 << 6,
207 	CAT_UID    = 1 << 7,
208 	CAT_GID    = 1 << 8
209 };
210 
211 /**
212  * Sub-class of lu_object with methods common for objects on the client
213  * stacks.
214  *
215  * cl_object: represents a regular file system object, both a file and a
216  *    stripe. cl_object is based on lu_object: it is identified by a fid,
217  *    layered, cached, hashed, and lrued. Important distinction with the server
218  *    side, where md_object and dt_object are used, is that cl_object "fans out"
219  *    at the lov/sns level: depending on the file layout, single file is
220  *    represented as a set of "sub-objects" (stripes). At the implementation
221  *    level, struct lov_object contains an array of cl_objects. Each sub-object
222  *    is a full-fledged cl_object, having its fid, living in the lru and hash
223  *    table.
224  *
225  *    This leads to the next important difference with the server side: on the
226  *    client, it's quite usual to have objects with the different sequence of
227  *    layers. For example, typical top-object is composed of the following
228  *    layers:
229  *
230  *	- vvp
231  *	- lov
232  *
233  *    whereas its sub-objects are composed of
234  *
235  *	- lovsub
236  *	- osc
237  *
238  *    layers. Here "lovsub" is a mostly dummy layer, whose purpose is to keep
239  *    track of the object-subobject relationship.
240  *
241  *    Sub-objects are not cached independently: when top-object is about to
242  *    be discarded from the memory, all its sub-objects are torn-down and
243  *    destroyed too.
244  *
245  * \see ccc_object, lov_object, lovsub_object, osc_object
246  */
247 struct cl_object {
248 	/** super class */
249 	struct lu_object		   co_lu;
250 	/** per-object-layer operations */
251 	const struct cl_object_operations *co_ops;
252 	/** offset of page slice in cl_page buffer */
253 	int				   co_slice_off;
254 };
255 
256 /**
257  * Description of the client object configuration. This is used for the
258  * creation of a new client object that is identified by a more state than
259  * fid.
260  */
261 struct cl_object_conf {
262 	/** Super-class. */
263 	struct lu_object_conf     coc_lu;
264 	union {
265 		/**
266 		 * Object layout. This is consumed by lov.
267 		 */
268 		struct lustre_md *coc_md;
269 		/**
270 		 * Description of particular stripe location in the
271 		 * cluster. This is consumed by osc.
272 		 */
273 		struct lov_oinfo *coc_oinfo;
274 	} u;
275 	/**
276 	 * VFS inode. This is consumed by vvp.
277 	 */
278 	struct inode	     *coc_inode;
279 	/**
280 	 * Layout lock handle.
281 	 */
282 	struct ldlm_lock	 *coc_lock;
283 	/**
284 	 * Operation to handle layout, OBJECT_CONF_XYZ.
285 	 */
286 	int			  coc_opc;
287 };
288 
289 enum {
290 	/** configure layout, set up a new stripe, must be called while
291 	 * holding layout lock. */
292 	OBJECT_CONF_SET = 0,
293 	/** invalidate the current stripe configuration due to losing
294 	 * layout lock. */
295 	OBJECT_CONF_INVALIDATE = 1,
296 	/** wait for old layout to go away so that new layout can be
297 	 * set up. */
298 	OBJECT_CONF_WAIT = 2
299 };
300 
301 /**
302  * Operations implemented for each cl object layer.
303  *
304  * \see vvp_ops, lov_ops, lovsub_ops, osc_ops
305  */
306 struct cl_object_operations {
307 	/**
308 	 * Initialize page slice for this layer. Called top-to-bottom through
309 	 * every object layer when a new cl_page is instantiated. Layer
310 	 * keeping private per-page data, or requiring its own page operations
311 	 * vector should allocate these data here, and attach then to the page
312 	 * by calling cl_page_slice_add(). \a vmpage is locked (in the VM
313 	 * sense). Optional.
314 	 *
315 	 * \retval NULL success.
316 	 *
317 	 * \retval ERR_PTR(errno) failure code.
318 	 *
319 	 * \retval valid-pointer pointer to already existing referenced page
320 	 *	 to be used instead of newly created.
321 	 */
322 	int  (*coo_page_init)(const struct lu_env *env, struct cl_object *obj,
323 				struct cl_page *page, struct page *vmpage);
324 	/**
325 	 * Initialize lock slice for this layer. Called top-to-bottom through
326 	 * every object layer when a new cl_lock is instantiated. Layer
327 	 * keeping private per-lock data, or requiring its own lock operations
328 	 * vector should allocate these data here, and attach then to the lock
329 	 * by calling cl_lock_slice_add(). Mandatory.
330 	 */
331 	int  (*coo_lock_init)(const struct lu_env *env,
332 			      struct cl_object *obj, struct cl_lock *lock,
333 			      const struct cl_io *io);
334 	/**
335 	 * Initialize io state for a given layer.
336 	 *
337 	 * called top-to-bottom once per io existence to initialize io
338 	 * state. If layer wants to keep some state for this type of io, it
339 	 * has to embed struct cl_io_slice in lu_env::le_ses, and register
340 	 * slice with cl_io_slice_add(). It is guaranteed that all threads
341 	 * participating in this io share the same session.
342 	 */
343 	int  (*coo_io_init)(const struct lu_env *env,
344 			    struct cl_object *obj, struct cl_io *io);
345 	/**
346 	 * Fill portion of \a attr that this layer controls. This method is
347 	 * called top-to-bottom through all object layers.
348 	 *
349 	 * \pre cl_object_header::coh_attr_guard of the top-object is locked.
350 	 *
351 	 * \return   0: to continue
352 	 * \return +ve: to stop iterating through layers (but 0 is returned
353 	 * from enclosing cl_object_attr_get())
354 	 * \return -ve: to signal error
355 	 */
356 	int (*coo_attr_get)(const struct lu_env *env, struct cl_object *obj,
357 			    struct cl_attr *attr);
358 	/**
359 	 * Update attributes.
360 	 *
361 	 * \a valid is a bitmask composed from enum #cl_attr_valid, and
362 	 * indicating what attributes are to be set.
363 	 *
364 	 * \pre cl_object_header::coh_attr_guard of the top-object is locked.
365 	 *
366 	 * \return the same convention as for
367 	 * cl_object_operations::coo_attr_get() is used.
368 	 */
369 	int (*coo_attr_set)(const struct lu_env *env, struct cl_object *obj,
370 			    const struct cl_attr *attr, unsigned valid);
371 	/**
372 	 * Update object configuration. Called top-to-bottom to modify object
373 	 * configuration.
374 	 *
375 	 * XXX error conditions and handling.
376 	 */
377 	int (*coo_conf_set)(const struct lu_env *env, struct cl_object *obj,
378 			    const struct cl_object_conf *conf);
379 	/**
380 	 * Glimpse ast. Executed when glimpse ast arrives for a lock on this
381 	 * object. Layers are supposed to fill parts of \a lvb that will be
382 	 * shipped to the glimpse originator as a glimpse result.
383 	 *
384 	 * \see ccc_object_glimpse(), lovsub_object_glimpse(),
385 	 * \see osc_object_glimpse()
386 	 */
387 	int (*coo_glimpse)(const struct lu_env *env,
388 			   const struct cl_object *obj, struct ost_lvb *lvb);
389 };
390 
391 /**
392  * Extended header for client object.
393  */
394 struct cl_object_header {
395 	/** Standard lu_object_header. cl_object::co_lu::lo_header points
396 	 * here. */
397 	struct lu_object_header  coh_lu;
398 	/** \name locks
399 	 * \todo XXX move locks below to the separate cache-lines, they are
400 	 * mostly useless otherwise.
401 	 */
402 	/** @{ */
403 	/** Lock protecting page tree. */
404 	spinlock_t		 coh_page_guard;
405 	/** Lock protecting lock list. */
406 	spinlock_t		 coh_lock_guard;
407 	/** @} locks */
408 	/** Radix tree of cl_page's, cached for this object. */
409 	struct radix_tree_root   coh_tree;
410 	/** # of pages in radix tree. */
411 	unsigned long	    coh_pages;
412 	/** List of cl_lock's granted for this object. */
413 	struct list_head	       coh_locks;
414 
415 	/**
416 	 * Parent object. It is assumed that an object has a well-defined
417 	 * parent, but not a well-defined child (there may be multiple
418 	 * sub-objects, for the same top-object). cl_object_header::coh_parent
419 	 * field allows certain code to be written generically, without
420 	 * limiting possible cl_object layouts unduly.
421 	 */
422 	struct cl_object_header *coh_parent;
423 	/**
424 	 * Protects consistency between cl_attr of parent object and
425 	 * attributes of sub-objects, that the former is calculated ("merged")
426 	 * from.
427 	 *
428 	 * \todo XXX this can be read/write lock if needed.
429 	 */
430 	spinlock_t		 coh_attr_guard;
431 	/**
432 	 * Size of cl_page + page slices
433 	 */
434 	unsigned short		 coh_page_bufsize;
435 	/**
436 	 * Number of objects above this one: 0 for a top-object, 1 for its
437 	 * sub-object, etc.
438 	 */
439 	unsigned char		 coh_nesting;
440 };
441 
442 /**
443  * Helper macro: iterate over all layers of the object \a obj, assigning every
444  * layer top-to-bottom to \a slice.
445  */
446 #define cl_object_for_each(slice, obj)				      \
447 	list_for_each_entry((slice),				    \
448 				&(obj)->co_lu.lo_header->loh_layers,	\
449 				co_lu.lo_linkage)
450 /**
451  * Helper macro: iterate over all layers of the object \a obj, assigning every
452  * layer bottom-to-top to \a slice.
453  */
454 #define cl_object_for_each_reverse(slice, obj)			       \
455 	list_for_each_entry_reverse((slice),			     \
456 					&(obj)->co_lu.lo_header->loh_layers, \
457 					co_lu.lo_linkage)
458 /** @} cl_object */
459 
460 #ifndef pgoff_t
461 #define pgoff_t unsigned long
462 #endif
463 
464 #define CL_PAGE_EOF ((pgoff_t)~0ull)
465 
466 /** \addtogroup cl_page cl_page
467  * @{ */
468 
469 /** \struct cl_page
470  * Layered client page.
471  *
472  * cl_page: represents a portion of a file, cached in the memory. All pages
473  *    of the given file are of the same size, and are kept in the radix tree
474  *    hanging off the cl_object. cl_page doesn't fan out, but as sub-objects
475  *    of the top-level file object are first class cl_objects, they have their
476  *    own radix trees of pages and hence page is implemented as a sequence of
477  *    struct cl_pages's, linked into double-linked list through
478  *    cl_page::cp_parent and cl_page::cp_child pointers, each residing in the
479  *    corresponding radix tree at the corresponding logical offset.
480  *
481  * cl_page is associated with VM page of the hosting environment (struct
482  *    page in Linux kernel, for example), struct page. It is assumed, that this
483  *    association is implemented by one of cl_page layers (top layer in the
484  *    current design) that
485  *
486  *	- intercepts per-VM-page call-backs made by the environment (e.g.,
487  *	  memory pressure),
488  *
489  *	- translates state (page flag bits) and locking between lustre and
490  *	  environment.
491  *
492  *    The association between cl_page and struct page is immutable and
493  *    established when cl_page is created.
494  *
495  * cl_page can be "owned" by a particular cl_io (see below), guaranteeing
496  *    this io an exclusive access to this page w.r.t. other io attempts and
497  *    various events changing page state (such as transfer completion, or
498  *    eviction of the page from the memory). Note, that in general cl_io
499  *    cannot be identified with a particular thread, and page ownership is not
500  *    exactly equal to the current thread holding a lock on the page. Layer
501  *    implementing association between cl_page and struct page has to implement
502  *    ownership on top of available synchronization mechanisms.
503  *
504  *    While lustre client maintains the notion of an page ownership by io,
505  *    hosting MM/VM usually has its own page concurrency control
506  *    mechanisms. For example, in Linux, page access is synchronized by the
507  *    per-page PG_locked bit-lock, and generic kernel code (generic_file_*())
508  *    takes care to acquire and release such locks as necessary around the
509  *    calls to the file system methods (->readpage(), ->prepare_write(),
510  *    ->commit_write(), etc.). This leads to the situation when there are two
511  *    different ways to own a page in the client:
512  *
513  *	- client code explicitly and voluntary owns the page (cl_page_own());
514  *
515  *	- VM locks a page and then calls the client, that has "to assume"
516  *	  the ownership from the VM (cl_page_assume()).
517  *
518  *    Dual methods to release ownership are cl_page_disown() and
519  *    cl_page_unassume().
520  *
521  * cl_page is reference counted (cl_page::cp_ref). When reference counter
522  *    drops to 0, the page is returned to the cache, unless it is in
523  *    cl_page_state::CPS_FREEING state, in which case it is immediately
524  *    destroyed.
525  *
526  *    The general logic guaranteeing the absence of "existential races" for
527  *    pages is the following:
528  *
529  *	- there are fixed known ways for a thread to obtain a new reference
530  *	  to a page:
531  *
532  *	    - by doing a lookup in the cl_object radix tree, protected by the
533  *	      spin-lock;
534  *
535  *	    - by starting from VM-locked struct page and following some
536  *	      hosting environment method (e.g., following ->private pointer in
537  *	      the case of Linux kernel), see cl_vmpage_page();
538  *
539  *	- when the page enters cl_page_state::CPS_FREEING state, all these
540  *	  ways are severed with the proper synchronization
541  *	  (cl_page_delete());
542  *
543  *	- entry into cl_page_state::CPS_FREEING is serialized by the VM page
544  *	  lock;
545  *
546  *	- no new references to the page in cl_page_state::CPS_FREEING state
547  *	  are allowed (checked in cl_page_get()).
548  *
549  *    Together this guarantees that when last reference to a
550  *    cl_page_state::CPS_FREEING page is released, it is safe to destroy the
551  *    page, as neither references to it can be acquired at that point, nor
552  *    ones exist.
553  *
554  * cl_page is a state machine. States are enumerated in enum
555  *    cl_page_state. Possible state transitions are enumerated in
556  *    cl_page_state_set(). State transition process (i.e., actual changing of
557  *    cl_page::cp_state field) is protected by the lock on the underlying VM
558  *    page.
559  *
560  * Linux Kernel implementation.
561  *
562  *    Binding between cl_page and struct page (which is a typedef for
563  *    struct page) is implemented in the vvp layer. cl_page is attached to the
564  *    ->private pointer of the struct page, together with the setting of
565  *    PG_private bit in page->flags, and acquiring additional reference on the
566  *    struct page (much like struct buffer_head, or any similar file system
567  *    private data structures).
568  *
569  *    PG_locked lock is used to implement both ownership and transfer
570  *    synchronization, that is, page is VM-locked in CPS_{OWNED,PAGE{IN,OUT}}
571  *    states. No additional references are acquired for the duration of the
572  *    transfer.
573  *
574  * \warning *THIS IS NOT* the behavior expected by the Linux kernel, where
575  *	  write-out is "protected" by the special PG_writeback bit.
576  */
577 
578 /**
579  * States of cl_page. cl_page.c assumes particular order here.
580  *
581  * The page state machine is rather crude, as it doesn't recognize finer page
582  * states like "dirty" or "up to date". This is because such states are not
583  * always well defined for the whole stack (see, for example, the
584  * implementation of the read-ahead, that hides page up-to-dateness to track
585  * cache hits accurately). Such sub-states are maintained by the layers that
586  * are interested in them.
587  */
588 enum cl_page_state {
589 	/**
590 	 * Page is in the cache, un-owned. Page leaves cached state in the
591 	 * following cases:
592 	 *
593 	 *     - [cl_page_state::CPS_OWNED] io comes across the page and
594 	 *     owns it;
595 	 *
596 	 *     - [cl_page_state::CPS_PAGEOUT] page is dirty, the
597 	 *     req-formation engine decides that it wants to include this page
598 	 *     into an cl_req being constructed, and yanks it from the cache;
599 	 *
600 	 *     - [cl_page_state::CPS_FREEING] VM callback is executed to
601 	 *     evict the page form the memory;
602 	 *
603 	 * \invariant cl_page::cp_owner == NULL && cl_page::cp_req == NULL
604 	 */
605 	CPS_CACHED,
606 	/**
607 	 * Page is exclusively owned by some cl_io. Page may end up in this
608 	 * state as a result of
609 	 *
610 	 *     - io creating new page and immediately owning it;
611 	 *
612 	 *     - [cl_page_state::CPS_CACHED] io finding existing cached page
613 	 *     and owning it;
614 	 *
615 	 *     - [cl_page_state::CPS_OWNED] io finding existing owned page
616 	 *     and waiting for owner to release the page;
617 	 *
618 	 * Page leaves owned state in the following cases:
619 	 *
620 	 *     - [cl_page_state::CPS_CACHED] io decides to leave the page in
621 	 *     the cache, doing nothing;
622 	 *
623 	 *     - [cl_page_state::CPS_PAGEIN] io starts read transfer for
624 	 *     this page;
625 	 *
626 	 *     - [cl_page_state::CPS_PAGEOUT] io starts immediate write
627 	 *     transfer for this page;
628 	 *
629 	 *     - [cl_page_state::CPS_FREEING] io decides to destroy this
630 	 *     page (e.g., as part of truncate or extent lock cancellation).
631 	 *
632 	 * \invariant cl_page::cp_owner != NULL && cl_page::cp_req == NULL
633 	 */
634 	CPS_OWNED,
635 	/**
636 	 * Page is being written out, as a part of a transfer. This state is
637 	 * entered when req-formation logic decided that it wants this page to
638 	 * be sent through the wire _now_. Specifically, it means that once
639 	 * this state is achieved, transfer completion handler (with either
640 	 * success or failure indication) is guaranteed to be executed against
641 	 * this page independently of any locks and any scheduling decisions
642 	 * made by the hosting environment (that effectively means that the
643 	 * page is never put into cl_page_state::CPS_PAGEOUT state "in
644 	 * advance". This property is mentioned, because it is important when
645 	 * reasoning about possible dead-locks in the system). The page can
646 	 * enter this state as a result of
647 	 *
648 	 *     - [cl_page_state::CPS_OWNED] an io requesting an immediate
649 	 *     write-out of this page, or
650 	 *
651 	 *     - [cl_page_state::CPS_CACHED] req-forming engine deciding
652 	 *     that it has enough dirty pages cached to issue a "good"
653 	 *     transfer.
654 	 *
655 	 * The page leaves cl_page_state::CPS_PAGEOUT state when the transfer
656 	 * is completed---it is moved into cl_page_state::CPS_CACHED state.
657 	 *
658 	 * Underlying VM page is locked for the duration of transfer.
659 	 *
660 	 * \invariant: cl_page::cp_owner == NULL && cl_page::cp_req != NULL
661 	 */
662 	CPS_PAGEOUT,
663 	/**
664 	 * Page is being read in, as a part of a transfer. This is quite
665 	 * similar to the cl_page_state::CPS_PAGEOUT state, except that
666 	 * read-in is always "immediate"---there is no such thing a sudden
667 	 * construction of read cl_req from cached, presumably not up to date,
668 	 * pages.
669 	 *
670 	 * Underlying VM page is locked for the duration of transfer.
671 	 *
672 	 * \invariant: cl_page::cp_owner == NULL && cl_page::cp_req != NULL
673 	 */
674 	CPS_PAGEIN,
675 	/**
676 	 * Page is being destroyed. This state is entered when client decides
677 	 * that page has to be deleted from its host object, as, e.g., a part
678 	 * of truncate.
679 	 *
680 	 * Once this state is reached, there is no way to escape it.
681 	 *
682 	 * \invariant: cl_page::cp_owner == NULL && cl_page::cp_req == NULL
683 	 */
684 	CPS_FREEING,
685 	CPS_NR
686 };
687 
688 enum cl_page_type {
689 	/** Host page, the page is from the host inode which the cl_page
690 	 * belongs to. */
691 	CPT_CACHEABLE = 1,
692 
693 	/** Transient page, the transient cl_page is used to bind a cl_page
694 	 *  to vmpage which is not belonging to the same object of cl_page.
695 	 *  it is used in DirectIO, lockless IO and liblustre. */
696 	CPT_TRANSIENT,
697 };
698 
699 /**
700  * Flags maintained for every cl_page.
701  */
702 enum cl_page_flags {
703 	/**
704 	 * Set when pagein completes. Used for debugging (read completes at
705 	 * most once for a page).
706 	 */
707 	CPF_READ_COMPLETED = 1 << 0
708 };
709 
710 /**
711  * Fields are protected by the lock on struct page, except for atomics and
712  * immutables.
713  *
714  * \invariant Data type invariants are in cl_page_invariant(). Basically:
715  * cl_page::cp_parent and cl_page::cp_child are a well-formed double-linked
716  * list, consistent with the parent/child pointers in the cl_page::cp_obj and
717  * cl_page::cp_owner (when set).
718  */
719 struct cl_page {
720 	/** Reference counter. */
721 	atomic_t	     cp_ref;
722 	/** An object this page is a part of. Immutable after creation. */
723 	struct cl_object	*cp_obj;
724 	/** Logical page index within the object. Immutable after creation. */
725 	pgoff_t		  cp_index;
726 	/** List of slices. Immutable after creation. */
727 	struct list_head	       cp_layers;
728 	/** Parent page, NULL for top-level page. Immutable after creation. */
729 	struct cl_page	  *cp_parent;
730 	/** Lower-layer page. NULL for bottommost page. Immutable after
731 	 * creation. */
732 	struct cl_page	  *cp_child;
733 	/**
734 	 * Page state. This field is const to avoid accidental update, it is
735 	 * modified only internally within cl_page.c. Protected by a VM lock.
736 	 */
737 	const enum cl_page_state cp_state;
738 	/** Linkage of pages within group. Protected by cl_page::cp_mutex. */
739 	struct list_head		cp_batch;
740 	/** Mutex serializing membership of a page in a batch. */
741 	struct mutex		cp_mutex;
742 	/** Linkage of pages within cl_req. */
743 	struct list_head	       cp_flight;
744 	/** Transfer error. */
745 	int		      cp_error;
746 
747 	/**
748 	 * Page type. Only CPT_TRANSIENT is used so far. Immutable after
749 	 * creation.
750 	 */
751 	enum cl_page_type	cp_type;
752 
753 	/**
754 	 * Owning IO in cl_page_state::CPS_OWNED state. Sub-page can be owned
755 	 * by sub-io. Protected by a VM lock.
756 	 */
757 	struct cl_io	    *cp_owner;
758 	/**
759 	 * Debug information, the task is owning the page.
760 	 */
761 	struct task_struct	*cp_task;
762 	/**
763 	 * Owning IO request in cl_page_state::CPS_PAGEOUT and
764 	 * cl_page_state::CPS_PAGEIN states. This field is maintained only in
765 	 * the top-level pages. Protected by a VM lock.
766 	 */
767 	struct cl_req	   *cp_req;
768 	/** List of references to this page, for debugging. */
769 	struct lu_ref	    cp_reference;
770 	/** Link to an object, for debugging. */
771 	struct lu_ref_link       cp_obj_ref;
772 	/** Link to a queue, for debugging. */
773 	struct lu_ref_link       cp_queue_ref;
774 	/** Per-page flags from enum cl_page_flags. Protected by a VM lock. */
775 	unsigned                 cp_flags;
776 	/** Assigned if doing a sync_io */
777 	struct cl_sync_io       *cp_sync_io;
778 };
779 
780 /**
781  * Per-layer part of cl_page.
782  *
783  * \see ccc_page, lov_page, osc_page
784  */
785 struct cl_page_slice {
786 	struct cl_page		  *cpl_page;
787 	/**
788 	 * Object slice corresponding to this page slice. Immutable after
789 	 * creation.
790 	 */
791 	struct cl_object		*cpl_obj;
792 	const struct cl_page_operations *cpl_ops;
793 	/** Linkage into cl_page::cp_layers. Immutable after creation. */
794 	struct list_head		       cpl_linkage;
795 };
796 
797 /**
798  * Lock mode. For the client extent locks.
799  *
800  * \warning: cl_lock_mode_match() assumes particular ordering here.
801  * \ingroup cl_lock
802  */
803 enum cl_lock_mode {
804 	/**
805 	 * Mode of a lock that protects no data, and exists only as a
806 	 * placeholder. This is used for `glimpse' requests. A phantom lock
807 	 * might get promoted to real lock at some point.
808 	 */
809 	CLM_PHANTOM,
810 	CLM_READ,
811 	CLM_WRITE,
812 	CLM_GROUP
813 };
814 
815 /**
816  * Requested transfer type.
817  * \ingroup cl_req
818  */
819 enum cl_req_type {
820 	CRT_READ,
821 	CRT_WRITE,
822 	CRT_NR
823 };
824 
825 /**
826  * Per-layer page operations.
827  *
828  * Methods taking an \a io argument are for the activity happening in the
829  * context of given \a io. Page is assumed to be owned by that io, except for
830  * the obvious cases (like cl_page_operations::cpo_own()).
831  *
832  * \see vvp_page_ops, lov_page_ops, osc_page_ops
833  */
834 struct cl_page_operations {
835 	/**
836 	 * cl_page<->struct page methods. Only one layer in the stack has to
837 	 * implement these. Current code assumes that this functionality is
838 	 * provided by the topmost layer, see cl_page_disown0() as an example.
839 	 */
840 
841 	/**
842 	 * \return the underlying VM page. Optional.
843 	 */
844 	struct page *(*cpo_vmpage)(const struct lu_env *env,
845 				  const struct cl_page_slice *slice);
846 	/**
847 	 * Called when \a io acquires this page into the exclusive
848 	 * ownership. When this method returns, it is guaranteed that the is
849 	 * not owned by other io, and no transfer is going on against
850 	 * it. Optional.
851 	 *
852 	 * \see cl_page_own()
853 	 * \see vvp_page_own(), lov_page_own()
854 	 */
855 	int  (*cpo_own)(const struct lu_env *env,
856 			const struct cl_page_slice *slice,
857 			struct cl_io *io, int nonblock);
858 	/** Called when ownership it yielded. Optional.
859 	 *
860 	 * \see cl_page_disown()
861 	 * \see vvp_page_disown()
862 	 */
863 	void (*cpo_disown)(const struct lu_env *env,
864 			   const struct cl_page_slice *slice, struct cl_io *io);
865 	/**
866 	 * Called for a page that is already "owned" by \a io from VM point of
867 	 * view. Optional.
868 	 *
869 	 * \see cl_page_assume()
870 	 * \see vvp_page_assume(), lov_page_assume()
871 	 */
872 	void (*cpo_assume)(const struct lu_env *env,
873 			   const struct cl_page_slice *slice, struct cl_io *io);
874 	/** Dual to cl_page_operations::cpo_assume(). Optional. Called
875 	 * bottom-to-top when IO releases a page without actually unlocking
876 	 * it.
877 	 *
878 	 * \see cl_page_unassume()
879 	 * \see vvp_page_unassume()
880 	 */
881 	void (*cpo_unassume)(const struct lu_env *env,
882 			     const struct cl_page_slice *slice,
883 			     struct cl_io *io);
884 	/**
885 	 * Announces whether the page contains valid data or not by \a uptodate.
886 	 *
887 	 * \see cl_page_export()
888 	 * \see vvp_page_export()
889 	 */
890 	void  (*cpo_export)(const struct lu_env *env,
891 			    const struct cl_page_slice *slice, int uptodate);
892 	/**
893 	 * Unmaps page from the user space (if it is mapped).
894 	 *
895 	 * \see cl_page_unmap()
896 	 * \see vvp_page_unmap()
897 	 */
898 	int (*cpo_unmap)(const struct lu_env *env,
899 			 const struct cl_page_slice *slice, struct cl_io *io);
900 	/**
901 	 * Checks whether underlying VM page is locked (in the suitable
902 	 * sense). Used for assertions.
903 	 *
904 	 * \retval    -EBUSY: page is protected by a lock of a given mode;
905 	 * \retval  -ENODATA: page is not protected by a lock;
906 	 * \retval	 0: this layer cannot decide. (Should never happen.)
907 	 */
908 	int (*cpo_is_vmlocked)(const struct lu_env *env,
909 			       const struct cl_page_slice *slice);
910 	/**
911 	 * Page destruction.
912 	 */
913 
914 	/**
915 	 * Called when page is truncated from the object. Optional.
916 	 *
917 	 * \see cl_page_discard()
918 	 * \see vvp_page_discard(), osc_page_discard()
919 	 */
920 	void (*cpo_discard)(const struct lu_env *env,
921 			    const struct cl_page_slice *slice,
922 			    struct cl_io *io);
923 	/**
924 	 * Called when page is removed from the cache, and is about to being
925 	 * destroyed. Optional.
926 	 *
927 	 * \see cl_page_delete()
928 	 * \see vvp_page_delete(), osc_page_delete()
929 	 */
930 	void (*cpo_delete)(const struct lu_env *env,
931 			   const struct cl_page_slice *slice);
932 	/** Destructor. Frees resources and slice itself. */
933 	void (*cpo_fini)(const struct lu_env *env,
934 			 struct cl_page_slice *slice);
935 
936 	/**
937 	 * Checks whether the page is protected by a cl_lock. This is a
938 	 * per-layer method, because certain layers have ways to check for the
939 	 * lock much more efficiently than through the generic locks scan, or
940 	 * implement locking mechanisms separate from cl_lock, e.g.,
941 	 * LL_FILE_GROUP_LOCKED in vvp. If \a pending is true, check for locks
942 	 * being canceled, or scheduled for cancellation as soon as the last
943 	 * user goes away, too.
944 	 *
945 	 * \retval    -EBUSY: page is protected by a lock of a given mode;
946 	 * \retval  -ENODATA: page is not protected by a lock;
947 	 * \retval	 0: this layer cannot decide.
948 	 *
949 	 * \see cl_page_is_under_lock()
950 	 */
951 	int (*cpo_is_under_lock)(const struct lu_env *env,
952 				 const struct cl_page_slice *slice,
953 				 struct cl_io *io);
954 
955 	/**
956 	 * Optional debugging helper. Prints given page slice.
957 	 *
958 	 * \see cl_page_print()
959 	 */
960 	int (*cpo_print)(const struct lu_env *env,
961 			 const struct cl_page_slice *slice,
962 			 void *cookie, lu_printer_t p);
963 	/**
964 	 * \name transfer
965 	 *
966 	 * Transfer methods. See comment on cl_req for a description of
967 	 * transfer formation and life-cycle.
968 	 *
969 	 * @{
970 	 */
971 	/**
972 	 * Request type dependent vector of operations.
973 	 *
974 	 * Transfer operations depend on transfer mode (cl_req_type). To avoid
975 	 * passing transfer mode to each and every of these methods, and to
976 	 * avoid branching on request type inside of the methods, separate
977 	 * methods for cl_req_type:CRT_READ and cl_req_type:CRT_WRITE are
978 	 * provided. That is, method invocation usually looks like
979 	 *
980 	 *	 slice->cp_ops.io[req->crq_type].cpo_method(env, slice, ...);
981 	 */
982 	struct {
983 		/**
984 		 * Called when a page is submitted for a transfer as a part of
985 		 * cl_page_list.
986 		 *
987 		 * \return    0	 : page is eligible for submission;
988 		 * \return    -EALREADY : skip this page;
989 		 * \return    -ve       : error.
990 		 *
991 		 * \see cl_page_prep()
992 		 */
993 		int  (*cpo_prep)(const struct lu_env *env,
994 				 const struct cl_page_slice *slice,
995 				 struct cl_io *io);
996 		/**
997 		 * Completion handler. This is guaranteed to be eventually
998 		 * fired after cl_page_operations::cpo_prep() or
999 		 * cl_page_operations::cpo_make_ready() call.
1000 		 *
1001 		 * This method can be called in a non-blocking context. It is
1002 		 * guaranteed however, that the page involved and its object
1003 		 * are pinned in memory (and, hence, calling cl_page_put() is
1004 		 * safe).
1005 		 *
1006 		 * \see cl_page_completion()
1007 		 */
1008 		void (*cpo_completion)(const struct lu_env *env,
1009 				       const struct cl_page_slice *slice,
1010 				       int ioret);
1011 		/**
1012 		 * Called when cached page is about to be added to the
1013 		 * cl_req as a part of req formation.
1014 		 *
1015 		 * \return    0       : proceed with this page;
1016 		 * \return    -EAGAIN : skip this page;
1017 		 * \return    -ve     : error.
1018 		 *
1019 		 * \see cl_page_make_ready()
1020 		 */
1021 		int  (*cpo_make_ready)(const struct lu_env *env,
1022 				       const struct cl_page_slice *slice);
1023 		/**
1024 		 * Announce that this page is to be written out
1025 		 * opportunistically, that is, page is dirty, it is not
1026 		 * necessary to start write-out transfer right now, but
1027 		 * eventually page has to be written out.
1028 		 *
1029 		 * Main caller of this is the write path (see
1030 		 * vvp_io_commit_write()), using this method to build a
1031 		 * "transfer cache" from which large transfers are then
1032 		 * constructed by the req-formation engine.
1033 		 *
1034 		 * \todo XXX it would make sense to add page-age tracking
1035 		 * semantics here, and to oblige the req-formation engine to
1036 		 * send the page out not later than it is too old.
1037 		 *
1038 		 * \see cl_page_cache_add()
1039 		 */
1040 		int  (*cpo_cache_add)(const struct lu_env *env,
1041 				      const struct cl_page_slice *slice,
1042 				      struct cl_io *io);
1043 	} io[CRT_NR];
1044 	/**
1045 	 * Tell transfer engine that only [to, from] part of a page should be
1046 	 * transmitted.
1047 	 *
1048 	 * This is used for immediate transfers.
1049 	 *
1050 	 * \todo XXX this is not very good interface. It would be much better
1051 	 * if all transfer parameters were supplied as arguments to
1052 	 * cl_io_operations::cio_submit() call, but it is not clear how to do
1053 	 * this for page queues.
1054 	 *
1055 	 * \see cl_page_clip()
1056 	 */
1057 	void (*cpo_clip)(const struct lu_env *env,
1058 			 const struct cl_page_slice *slice,
1059 			 int from, int to);
1060 	/**
1061 	 * \pre  the page was queued for transferring.
1062 	 * \post page is removed from client's pending list, or -EBUSY
1063 	 *       is returned if it has already been in transferring.
1064 	 *
1065 	 * This is one of seldom page operation which is:
1066 	 * 0. called from top level;
1067 	 * 1. don't have vmpage locked;
1068 	 * 2. every layer should synchronize execution of its ->cpo_cancel()
1069 	 *    with completion handlers. Osc uses client obd lock for this
1070 	 *    purpose. Based on there is no vvp_page_cancel and
1071 	 *    lov_page_cancel(), cpo_cancel is defacto protected by client lock.
1072 	 *
1073 	 * \see osc_page_cancel().
1074 	 */
1075 	int (*cpo_cancel)(const struct lu_env *env,
1076 			  const struct cl_page_slice *slice);
1077 	/**
1078 	 * Write out a page by kernel. This is only called by ll_writepage
1079 	 * right now.
1080 	 *
1081 	 * \see cl_page_flush()
1082 	 */
1083 	int (*cpo_flush)(const struct lu_env *env,
1084 			 const struct cl_page_slice *slice,
1085 			 struct cl_io *io);
1086 	/** @} transfer */
1087 };
1088 
1089 /**
1090  * Helper macro, dumping detailed information about \a page into a log.
1091  */
1092 #define CL_PAGE_DEBUG(mask, env, page, format, ...)		     \
1093 do {								    \
1094 	LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL);		\
1095 									\
1096 	if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) {		   \
1097 		cl_page_print(env, &msgdata, lu_cdebug_printer, page);  \
1098 		CDEBUG(mask, format, ## __VA_ARGS__);		  \
1099 	}							       \
1100 } while (0)
1101 
1102 /**
1103  * Helper macro, dumping shorter information about \a page into a log.
1104  */
1105 #define CL_PAGE_HEADER(mask, env, page, format, ...)			  \
1106 do {									  \
1107 	LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL);		      \
1108 									      \
1109 	if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) {			 \
1110 		cl_page_header_print(env, &msgdata, lu_cdebug_printer, page); \
1111 		CDEBUG(mask, format, ## __VA_ARGS__);			\
1112 	}								     \
1113 } while (0)
1114 
__page_in_use(const struct cl_page * page,int refc)1115 static inline int __page_in_use(const struct cl_page *page, int refc)
1116 {
1117 	if (page->cp_type == CPT_CACHEABLE)
1118 		++refc;
1119 	LASSERT(atomic_read(&page->cp_ref) > 0);
1120 	return (atomic_read(&page->cp_ref) > refc);
1121 }
1122 
1123 #define cl_page_in_use(pg)       __page_in_use(pg, 1)
1124 #define cl_page_in_use_noref(pg) __page_in_use(pg, 0)
1125 
1126 /** @} cl_page */
1127 
1128 /** \addtogroup cl_lock cl_lock
1129  * @{ */
1130 /** \struct cl_lock
1131  *
1132  * Extent locking on the client.
1133  *
1134  * LAYERING
1135  *
1136  * The locking model of the new client code is built around
1137  *
1138  *	struct cl_lock
1139  *
1140  * data-type representing an extent lock on a regular file. cl_lock is a
1141  * layered object (much like cl_object and cl_page), it consists of a header
1142  * (struct cl_lock) and a list of layers (struct cl_lock_slice), linked to
1143  * cl_lock::cll_layers list through cl_lock_slice::cls_linkage.
1144  *
1145  * All locks for a given object are linked into cl_object_header::coh_locks
1146  * list (protected by cl_object_header::coh_lock_guard spin-lock) through
1147  * cl_lock::cll_linkage. Currently this list is not sorted in any way. We can
1148  * sort it in starting lock offset, or use altogether different data structure
1149  * like a tree.
1150  *
1151  * Typical cl_lock consists of the two layers:
1152  *
1153  *     - vvp_lock (vvp specific data), and
1154  *     - lov_lock (lov specific data).
1155  *
1156  * lov_lock contains an array of sub-locks. Each of these sub-locks is a
1157  * normal cl_lock: it has a header (struct cl_lock) and a list of layers:
1158  *
1159  *     - lovsub_lock, and
1160  *     - osc_lock
1161  *
1162  * Each sub-lock is associated with a cl_object (representing stripe
1163  * sub-object or the file to which top-level cl_lock is associated to), and is
1164  * linked into that cl_object::coh_locks. In this respect cl_lock is similar to
1165  * cl_object (that at lov layer also fans out into multiple sub-objects), and
1166  * is different from cl_page, that doesn't fan out (there is usually exactly
1167  * one osc_page for every vvp_page). We shall call vvp-lov portion of the lock
1168  * a "top-lock" and its lovsub-osc portion a "sub-lock".
1169  *
1170  * LIFE CYCLE
1171  *
1172  * cl_lock is reference counted. When reference counter drops to 0, lock is
1173  * placed in the cache, except when lock is in CLS_FREEING state. CLS_FREEING
1174  * lock is destroyed when last reference is released. Referencing between
1175  * top-lock and its sub-locks is described in the lov documentation module.
1176  *
1177  * STATE MACHINE
1178  *
1179  * Also, cl_lock is a state machine. This requires some clarification. One of
1180  * the goals of client IO re-write was to make IO path non-blocking, or at
1181  * least to make it easier to make it non-blocking in the future. Here
1182  * `non-blocking' means that when a system call (read, write, truncate)
1183  * reaches a situation where it has to wait for a communication with the
1184  * server, it should --instead of waiting-- remember its current state and
1185  * switch to some other work.  E.g,. instead of waiting for a lock enqueue,
1186  * client should proceed doing IO on the next stripe, etc. Obviously this is
1187  * rather radical redesign, and it is not planned to be fully implemented at
1188  * this time, instead we are putting some infrastructure in place, that would
1189  * make it easier to do asynchronous non-blocking IO easier in the
1190  * future. Specifically, where old locking code goes to sleep (waiting for
1191  * enqueue, for example), new code returns cl_lock_transition::CLO_WAIT. When
1192  * enqueue reply comes, its completion handler signals that lock state-machine
1193  * is ready to transit to the next state. There is some generic code in
1194  * cl_lock.c that sleeps, waiting for these signals. As a result, for users of
1195  * this cl_lock.c code, it looks like locking is done in normal blocking
1196  * fashion, and it the same time it is possible to switch to the non-blocking
1197  * locking (simply by returning cl_lock_transition::CLO_WAIT from cl_lock.c
1198  * functions).
1199  *
1200  * For a description of state machine states and transitions see enum
1201  * cl_lock_state.
1202  *
1203  * There are two ways to restrict a set of states which lock might move to:
1204  *
1205  *     - placing a "hold" on a lock guarantees that lock will not be moved
1206  *       into cl_lock_state::CLS_FREEING state until hold is released. Hold
1207  *       can be only acquired on a lock that is not in
1208  *       cl_lock_state::CLS_FREEING. All holds on a lock are counted in
1209  *       cl_lock::cll_holds. Hold protects lock from cancellation and
1210  *       destruction. Requests to cancel and destroy a lock on hold will be
1211  *       recorded, but only honored when last hold on a lock is released;
1212  *
1213  *     - placing a "user" on a lock guarantees that lock will not leave
1214  *       cl_lock_state::CLS_NEW, cl_lock_state::CLS_QUEUING,
1215  *       cl_lock_state::CLS_ENQUEUED and cl_lock_state::CLS_HELD set of
1216  *       states, once it enters this set. That is, if a user is added onto a
1217  *       lock in a state not from this set, it doesn't immediately enforce
1218  *       lock to move to this set, but once lock enters this set it will
1219  *       remain there until all users are removed. Lock users are counted in
1220  *       cl_lock::cll_users.
1221  *
1222  *       User is used to assure that lock is not canceled or destroyed while
1223  *       it is being enqueued, or actively used by some IO.
1224  *
1225  *       Currently, a user always comes with a hold (cl_lock_invariant()
1226  *       checks that a number of holds is not less than a number of users).
1227  *
1228  * CONCURRENCY
1229  *
1230  * This is how lock state-machine operates. struct cl_lock contains a mutex
1231  * cl_lock::cll_guard that protects struct fields.
1232  *
1233  *     - mutex is taken, and cl_lock::cll_state is examined.
1234  *
1235  *     - for every state there are possible target states where lock can move
1236  *       into. They are tried in order. Attempts to move into next state are
1237  *       done by _try() functions in cl_lock.c:cl_{enqueue,unlock,wait}_try().
1238  *
1239  *     - if the transition can be performed immediately, state is changed,
1240  *       and mutex is released.
1241  *
1242  *     - if the transition requires blocking, _try() function returns
1243  *       cl_lock_transition::CLO_WAIT. Caller unlocks mutex and goes to
1244  *       sleep, waiting for possibility of lock state change. It is woken
1245  *       up when some event occurs, that makes lock state change possible
1246  *       (e.g., the reception of the reply from the server), and repeats
1247  *       the loop.
1248  *
1249  * Top-lock and sub-lock has separate mutexes and the latter has to be taken
1250  * first to avoid dead-lock.
1251  *
1252  * To see an example of interaction of all these issues, take a look at the
1253  * lov_cl.c:lov_lock_enqueue() function. It is called as a part of
1254  * cl_enqueue_try(), and tries to advance top-lock to ENQUEUED state, by
1255  * advancing state-machines of its sub-locks (lov_lock_enqueue_one()). Note
1256  * also, that it uses trylock to grab sub-lock mutex to avoid dead-lock. It
1257  * also has to handle CEF_ASYNC enqueue, when sub-locks enqueues have to be
1258  * done in parallel, rather than one after another (this is used for glimpse
1259  * locks, that cannot dead-lock).
1260  *
1261  * INTERFACE AND USAGE
1262  *
1263  * struct cl_lock_operations provide a number of call-backs that are invoked
1264  * when events of interest occurs. Layers can intercept and handle glimpse,
1265  * blocking, cancel ASTs and a reception of the reply from the server.
1266  *
1267  * One important difference with the old client locking model is that new
1268  * client has a representation for the top-lock, whereas in the old code only
1269  * sub-locks existed as real data structures and file-level locks are
1270  * represented by "request sets" that are created and destroyed on each and
1271  * every lock creation.
1272  *
1273  * Top-locks are cached, and can be found in the cache by the system calls. It
1274  * is possible that top-lock is in cache, but some of its sub-locks were
1275  * canceled and destroyed. In that case top-lock has to be enqueued again
1276  * before it can be used.
1277  *
1278  * Overall process of the locking during IO operation is as following:
1279  *
1280  *     - once parameters for IO are setup in cl_io, cl_io_operations::cio_lock()
1281  *       is called on each layer. Responsibility of this method is to add locks,
1282  *       needed by a given layer into cl_io.ci_lockset.
1283  *
1284  *     - once locks for all layers were collected, they are sorted to avoid
1285  *       dead-locks (cl_io_locks_sort()), and enqueued.
1286  *
1287  *     - when all locks are acquired, IO is performed;
1288  *
1289  *     - locks are released into cache.
1290  *
1291  * Striping introduces major additional complexity into locking. The
1292  * fundamental problem is that it is generally unsafe to actively use (hold)
1293  * two locks on the different OST servers at the same time, as this introduces
1294  * inter-server dependency and can lead to cascading evictions.
1295  *
1296  * Basic solution is to sub-divide large read/write IOs into smaller pieces so
1297  * that no multi-stripe locks are taken (note that this design abandons POSIX
1298  * read/write semantics). Such pieces ideally can be executed concurrently. At
1299  * the same time, certain types of IO cannot be sub-divived, without
1300  * sacrificing correctness. This includes:
1301  *
1302  *  - O_APPEND write, where [0, EOF] lock has to be taken, to guarantee
1303  *  atomicity;
1304  *
1305  *  - ftruncate(fd, offset), where [offset, EOF] lock has to be taken.
1306  *
1307  * Also, in the case of read(fd, buf, count) or write(fd, buf, count), where
1308  * buf is a part of memory mapped Lustre file, a lock or locks protecting buf
1309  * has to be held together with the usual lock on [offset, offset + count].
1310  *
1311  * As multi-stripe locks have to be allowed, it makes sense to cache them, so
1312  * that, for example, a sequence of O_APPEND writes can proceed quickly
1313  * without going down to the individual stripes to do lock matching. On the
1314  * other hand, multi-stripe locks shouldn't be used by normal read/write
1315  * calls. To achieve this, every layer can implement ->clo_fits_into() method,
1316  * that is called by lock matching code (cl_lock_lookup()), and that can be
1317  * used to selectively disable matching of certain locks for certain IOs. For
1318  * example, lov layer implements lov_lock_fits_into() that allow multi-stripe
1319  * locks to be matched only for truncates and O_APPEND writes.
1320  *
1321  * Interaction with DLM
1322  *
1323  * In the expected setup, cl_lock is ultimately backed up by a collection of
1324  * DLM locks (struct ldlm_lock). Association between cl_lock and DLM lock is
1325  * implemented in osc layer, that also matches DLM events (ASTs, cancellation,
1326  * etc.) into cl_lock_operation calls. See struct osc_lock for a more detailed
1327  * description of interaction with DLM.
1328  */
1329 
1330 /**
1331  * Lock description.
1332  */
1333 struct cl_lock_descr {
1334 	/** Object this lock is granted for. */
1335 	struct cl_object *cld_obj;
1336 	/** Index of the first page protected by this lock. */
1337 	pgoff_t	   cld_start;
1338 	/** Index of the last page (inclusive) protected by this lock. */
1339 	pgoff_t	   cld_end;
1340 	/** Group ID, for group lock */
1341 	__u64	     cld_gid;
1342 	/** Lock mode. */
1343 	enum cl_lock_mode cld_mode;
1344 	/**
1345 	 * flags to enqueue lock. A combination of bit-flags from
1346 	 * enum cl_enq_flags.
1347 	 */
1348 	__u32	     cld_enq_flags;
1349 };
1350 
1351 #define DDESCR "%s(%d):[%lu, %lu]"
1352 #define PDESCR(descr)						   \
1353 	cl_lock_mode_name((descr)->cld_mode), (descr)->cld_mode,	\
1354 	(descr)->cld_start, (descr)->cld_end
1355 
1356 const char *cl_lock_mode_name(const enum cl_lock_mode mode);
1357 
1358 /**
1359  * Lock state-machine states.
1360  *
1361  * \htmlonly
1362  * <pre>
1363  *
1364  * Possible state transitions:
1365  *
1366  *	      +------------------>NEW
1367  *	      |		    |
1368  *	      |		    | cl_enqueue_try()
1369  *	      |		    |
1370  *	      |    cl_unuse_try()  V
1371  *	      |  +--------------QUEUING (*)
1372  *	      |  |		 |
1373  *	      |  |		 | cl_enqueue_try()
1374  *	      |  |		 |
1375  *	      |  | cl_unuse_try()  V
1376  *    sub-lock  |  +-------------ENQUEUED (*)
1377  *    canceled  |  |		 |
1378  *	      |  |		 | cl_wait_try()
1379  *	      |  |		 |
1380  *	      |  |		(R)
1381  *	      |  |		 |
1382  *	      |  |		 V
1383  *	      |  |		HELD<---------+
1384  *	      |  |		 |	    |
1385  *	      |  |		 |	    | cl_use_try()
1386  *	      |  |  cl_unuse_try() |	    |
1387  *	      |  |		 |	    |
1388  *	      |  |		 V	 ---+
1389  *	      |  +------------>INTRANSIT (D) <--+
1390  *	      |		    |	    |
1391  *	      |     cl_unuse_try() |	    | cached lock found
1392  *	      |		    |	    | cl_use_try()
1393  *	      |		    |	    |
1394  *	      |		    V	    |
1395  *	      +------------------CACHED---------+
1396  *				   |
1397  *				  (C)
1398  *				   |
1399  *				   V
1400  *				FREEING
1401  *
1402  * Legend:
1403  *
1404  *	 In states marked with (*) transition to the same state (i.e., a loop
1405  *	 in the diagram) is possible.
1406  *
1407  *	 (R) is the point where Receive call-back is invoked: it allows layers
1408  *	 to handle arrival of lock reply.
1409  *
1410  *	 (C) is the point where Cancellation call-back is invoked.
1411  *
1412  *	 (D) is the transit state which means the lock is changing.
1413  *
1414  *	 Transition to FREEING state is possible from any other state in the
1415  *	 diagram in case of unrecoverable error.
1416  * </pre>
1417  * \endhtmlonly
1418  *
1419  * These states are for individual cl_lock object. Top-lock and its sub-locks
1420  * can be in the different states. Another way to say this is that we have
1421  * nested state-machines.
1422  *
1423  * Separate QUEUING and ENQUEUED states are needed to support non-blocking
1424  * operation for locks with multiple sub-locks. Imagine lock on a file F, that
1425  * intersects 3 stripes S0, S1, and S2. To enqueue F client has to send
1426  * enqueue to S0, wait for its completion, then send enqueue for S1, wait for
1427  * its completion and at last enqueue lock for S2, and wait for its
1428  * completion. In that case, top-lock is in QUEUING state while S0, S1 are
1429  * handled, and is in ENQUEUED state after enqueue to S2 has been sent (note
1430  * that in this case, sub-locks move from state to state, and top-lock remains
1431  * in the same state).
1432  */
1433 enum cl_lock_state {
1434 	/**
1435 	 * Lock that wasn't yet enqueued
1436 	 */
1437 	CLS_NEW,
1438 	/**
1439 	 * Enqueue is in progress, blocking for some intermediate interaction
1440 	 * with the other side.
1441 	 */
1442 	CLS_QUEUING,
1443 	/**
1444 	 * Lock is fully enqueued, waiting for server to reply when it is
1445 	 * granted.
1446 	 */
1447 	CLS_ENQUEUED,
1448 	/**
1449 	 * Lock granted, actively used by some IO.
1450 	 */
1451 	CLS_HELD,
1452 	/**
1453 	 * This state is used to mark the lock is being used, or unused.
1454 	 * We need this state because the lock may have several sublocks,
1455 	 * so it's impossible to have an atomic way to bring all sublocks
1456 	 * into CLS_HELD state at use case, or all sublocks to CLS_CACHED
1457 	 * at unuse case.
1458 	 * If a thread is referring to a lock, and it sees the lock is in this
1459 	 * state, it must wait for the lock.
1460 	 * See state diagram for details.
1461 	 */
1462 	CLS_INTRANSIT,
1463 	/**
1464 	 * Lock granted, not used.
1465 	 */
1466 	CLS_CACHED,
1467 	/**
1468 	 * Lock is being destroyed.
1469 	 */
1470 	CLS_FREEING,
1471 	CLS_NR
1472 };
1473 
1474 enum cl_lock_flags {
1475 	/**
1476 	 * lock has been cancelled. This flag is never cleared once set (by
1477 	 * cl_lock_cancel0()).
1478 	 */
1479 	CLF_CANCELLED	= 1 << 0,
1480 	/** cancellation is pending for this lock. */
1481 	CLF_CANCELPEND	= 1 << 1,
1482 	/** destruction is pending for this lock. */
1483 	CLF_DOOMED	= 1 << 2,
1484 	/** from enqueue RPC reply upcall. */
1485 	CLF_FROM_UPCALL	= 1 << 3,
1486 };
1487 
1488 /**
1489  * Lock closure.
1490  *
1491  * Lock closure is a collection of locks (both top-locks and sub-locks) that
1492  * might be updated in a result of an operation on a certain lock (which lock
1493  * this is a closure of).
1494  *
1495  * Closures are needed to guarantee dead-lock freedom in the presence of
1496  *
1497  *     - nested state-machines (top-lock state-machine composed of sub-lock
1498  *       state-machines), and
1499  *
1500  *     - shared sub-locks.
1501  *
1502  * Specifically, many operations, such as lock enqueue, wait, unlock,
1503  * etc. start from a top-lock, and then operate on a sub-locks of this
1504  * top-lock, holding a top-lock mutex. When sub-lock state changes as a result
1505  * of such operation, this change has to be propagated to all top-locks that
1506  * share this sub-lock. Obviously, no natural lock ordering (e.g.,
1507  * top-to-bottom or bottom-to-top) captures this scenario, so try-locking has
1508  * to be used. Lock closure systematizes this try-and-repeat logic.
1509  */
1510 struct cl_lock_closure {
1511 	/**
1512 	 * Lock that is mutexed when closure construction is started. When
1513 	 * closure in is `wait' mode (cl_lock_closure::clc_wait), mutex on
1514 	 * origin is released before waiting.
1515 	 */
1516 	struct cl_lock   *clc_origin;
1517 	/**
1518 	 * List of enclosed locks, so far. Locks are linked here through
1519 	 * cl_lock::cll_inclosure.
1520 	 */
1521 	struct list_head	clc_list;
1522 	/**
1523 	 * True iff closure is in a `wait' mode. This determines what
1524 	 * cl_lock_enclosure() does when a lock L to be added to the closure
1525 	 * is currently mutexed by some other thread.
1526 	 *
1527 	 * If cl_lock_closure::clc_wait is not set, then closure construction
1528 	 * fails with CLO_REPEAT immediately.
1529 	 *
1530 	 * In wait mode, cl_lock_enclosure() waits until next attempt to build
1531 	 * a closure might succeed. To this end it releases an origin mutex
1532 	 * (cl_lock_closure::clc_origin), that has to be the only lock mutex
1533 	 * owned by the current thread, and then waits on L mutex (by grabbing
1534 	 * it and immediately releasing), before returning CLO_REPEAT to the
1535 	 * caller.
1536 	 */
1537 	int	       clc_wait;
1538 	/** Number of locks in the closure. */
1539 	int	       clc_nr;
1540 };
1541 
1542 /**
1543  * Layered client lock.
1544  */
1545 struct cl_lock {
1546 	/** Reference counter. */
1547 	atomic_t	  cll_ref;
1548 	/** List of slices. Immutable after creation. */
1549 	struct list_head	    cll_layers;
1550 	/**
1551 	 * Linkage into cl_lock::cll_descr::cld_obj::coh_locks list. Protected
1552 	 * by cl_lock::cll_descr::cld_obj::coh_lock_guard.
1553 	 */
1554 	struct list_head	    cll_linkage;
1555 	/**
1556 	 * Parameters of this lock. Protected by
1557 	 * cl_lock::cll_descr::cld_obj::coh_lock_guard nested within
1558 	 * cl_lock::cll_guard. Modified only on lock creation and in
1559 	 * cl_lock_modify().
1560 	 */
1561 	struct cl_lock_descr  cll_descr;
1562 	/** Protected by cl_lock::cll_guard. */
1563 	enum cl_lock_state    cll_state;
1564 	/** signals state changes. */
1565 	wait_queue_head_t	   cll_wq;
1566 	/**
1567 	 * Recursive lock, most fields in cl_lock{} are protected by this.
1568 	 *
1569 	 * Locking rules: this mutex is never held across network
1570 	 * communication, except when lock is being canceled.
1571 	 *
1572 	 * Lock ordering: a mutex of a sub-lock is taken first, then a mutex
1573 	 * on a top-lock. Other direction is implemented through a
1574 	 * try-lock-repeat loop. Mutices of unrelated locks can be taken only
1575 	 * by try-locking.
1576 	 *
1577 	 * \see osc_lock_enqueue_wait(), lov_lock_cancel(), lov_sublock_wait().
1578 	 */
1579 	struct mutex		cll_guard;
1580 	struct task_struct	*cll_guarder;
1581 	int		   cll_depth;
1582 
1583 	/**
1584 	 * the owner for INTRANSIT state
1585 	 */
1586 	struct task_struct	*cll_intransit_owner;
1587 	int		   cll_error;
1588 	/**
1589 	 * Number of holds on a lock. A hold prevents a lock from being
1590 	 * canceled and destroyed. Protected by cl_lock::cll_guard.
1591 	 *
1592 	 * \see cl_lock_hold(), cl_lock_unhold(), cl_lock_release()
1593 	 */
1594 	int		   cll_holds;
1595 	 /**
1596 	  * Number of lock users. Valid in cl_lock_state::CLS_HELD state
1597 	  * only. Lock user pins lock in CLS_HELD state. Protected by
1598 	  * cl_lock::cll_guard.
1599 	  *
1600 	  * \see cl_wait(), cl_unuse().
1601 	  */
1602 	int		   cll_users;
1603 	/**
1604 	 * Flag bit-mask. Values from enum cl_lock_flags. Updates are
1605 	 * protected by cl_lock::cll_guard.
1606 	 */
1607 	unsigned long	 cll_flags;
1608 	/**
1609 	 * A linkage into a list of locks in a closure.
1610 	 *
1611 	 * \see cl_lock_closure
1612 	 */
1613 	struct list_head	    cll_inclosure;
1614 	/**
1615 	 * Confict lock at queuing time.
1616 	 */
1617 	struct cl_lock       *cll_conflict;
1618 	/**
1619 	 * A list of references to this lock, for debugging.
1620 	 */
1621 	struct lu_ref	 cll_reference;
1622 	/**
1623 	 * A list of holds on this lock, for debugging.
1624 	 */
1625 	struct lu_ref	 cll_holders;
1626 	/**
1627 	 * A reference for cl_lock::cll_descr::cld_obj. For debugging.
1628 	 */
1629 	struct lu_ref_link    cll_obj_ref;
1630 #ifdef CONFIG_LOCKDEP
1631 	/* "dep_map" name is assumed by lockdep.h macros. */
1632 	struct lockdep_map    dep_map;
1633 #endif
1634 };
1635 
1636 /**
1637  * Per-layer part of cl_lock
1638  *
1639  * \see ccc_lock, lov_lock, lovsub_lock, osc_lock
1640  */
1641 struct cl_lock_slice {
1642 	struct cl_lock		  *cls_lock;
1643 	/** Object slice corresponding to this lock slice. Immutable after
1644 	 * creation. */
1645 	struct cl_object		*cls_obj;
1646 	const struct cl_lock_operations *cls_ops;
1647 	/** Linkage into cl_lock::cll_layers. Immutable after creation. */
1648 	struct list_head		       cls_linkage;
1649 };
1650 
1651 /**
1652  * Possible (non-error) return values of ->clo_{enqueue,wait,unlock}().
1653  *
1654  * NOTE: lov_subresult() depends on ordering here.
1655  */
1656 enum cl_lock_transition {
1657 	/** operation cannot be completed immediately. Wait for state change. */
1658 	CLO_WAIT	= 1,
1659 	/** operation had to release lock mutex, restart. */
1660 	CLO_REPEAT      = 2,
1661 	/** lower layer re-enqueued. */
1662 	CLO_REENQUEUED  = 3,
1663 };
1664 
1665 /**
1666  *
1667  * \see vvp_lock_ops, lov_lock_ops, lovsub_lock_ops, osc_lock_ops
1668  */
1669 struct cl_lock_operations {
1670 	/**
1671 	 * \name statemachine
1672 	 *
1673 	 * State machine transitions. These 3 methods are called to transfer
1674 	 * lock from one state to another, as described in the commentary
1675 	 * above enum #cl_lock_state.
1676 	 *
1677 	 * \retval 0	  this layer has nothing more to do to before
1678 	 *		       transition to the target state happens;
1679 	 *
1680 	 * \retval CLO_REPEAT method had to release and re-acquire cl_lock
1681 	 *		    mutex, repeat invocation of transition method
1682 	 *		    across all layers;
1683 	 *
1684 	 * \retval CLO_WAIT   this layer cannot move to the target state
1685 	 *		    immediately, as it has to wait for certain event
1686 	 *		    (e.g., the communication with the server). It
1687 	 *		    is guaranteed, that when the state transfer
1688 	 *		    becomes possible, cl_lock::cll_wq wait-queue
1689 	 *		    is signaled. Caller can wait for this event by
1690 	 *		    calling cl_lock_state_wait();
1691 	 *
1692 	 * \retval -ve	failure, abort state transition, move the lock
1693 	 *		    into cl_lock_state::CLS_FREEING state, and set
1694 	 *		    cl_lock::cll_error.
1695 	 *
1696 	 * Once all layers voted to agree to transition (by returning 0), lock
1697 	 * is moved into corresponding target state. All state transition
1698 	 * methods are optional.
1699 	 */
1700 	/** @{ */
1701 	/**
1702 	 * Attempts to enqueue the lock. Called top-to-bottom.
1703 	 *
1704 	 * \see ccc_lock_enqueue(), lov_lock_enqueue(), lovsub_lock_enqueue(),
1705 	 * \see osc_lock_enqueue()
1706 	 */
1707 	int  (*clo_enqueue)(const struct lu_env *env,
1708 			    const struct cl_lock_slice *slice,
1709 			    struct cl_io *io, __u32 enqflags);
1710 	/**
1711 	 * Attempts to wait for enqueue result. Called top-to-bottom.
1712 	 *
1713 	 * \see ccc_lock_wait(), lov_lock_wait(), osc_lock_wait()
1714 	 */
1715 	int  (*clo_wait)(const struct lu_env *env,
1716 			 const struct cl_lock_slice *slice);
1717 	/**
1718 	 * Attempts to unlock the lock. Called bottom-to-top. In addition to
1719 	 * usual return values of lock state-machine methods, this can return
1720 	 * -ESTALE to indicate that lock cannot be returned to the cache, and
1721 	 * has to be re-initialized.
1722 	 * unuse is a one-shot operation, so it must NOT return CLO_WAIT.
1723 	 *
1724 	 * \see ccc_lock_unuse(), lov_lock_unuse(), osc_lock_unuse()
1725 	 */
1726 	int  (*clo_unuse)(const struct lu_env *env,
1727 			  const struct cl_lock_slice *slice);
1728 	/**
1729 	 * Notifies layer that cached lock is started being used.
1730 	 *
1731 	 * \pre lock->cll_state == CLS_CACHED
1732 	 *
1733 	 * \see lov_lock_use(), osc_lock_use()
1734 	 */
1735 	int  (*clo_use)(const struct lu_env *env,
1736 			const struct cl_lock_slice *slice);
1737 	/** @} statemachine */
1738 	/**
1739 	 * A method invoked when lock state is changed (as a result of state
1740 	 * transition). This is used, for example, to track when the state of
1741 	 * a sub-lock changes, to propagate this change to the corresponding
1742 	 * top-lock. Optional
1743 	 *
1744 	 * \see lovsub_lock_state()
1745 	 */
1746 	void (*clo_state)(const struct lu_env *env,
1747 			  const struct cl_lock_slice *slice,
1748 			  enum cl_lock_state st);
1749 	/**
1750 	 * Returns true, iff given lock is suitable for the given io, idea
1751 	 * being, that there are certain "unsafe" locks, e.g., ones acquired
1752 	 * for O_APPEND writes, that we don't want to re-use for a normal
1753 	 * write, to avoid the danger of cascading evictions. Optional. Runs
1754 	 * under cl_object_header::coh_lock_guard.
1755 	 *
1756 	 * XXX this should take more information about lock needed by
1757 	 * io. Probably lock description or something similar.
1758 	 *
1759 	 * \see lov_fits_into()
1760 	 */
1761 	int (*clo_fits_into)(const struct lu_env *env,
1762 			     const struct cl_lock_slice *slice,
1763 			     const struct cl_lock_descr *need,
1764 			     const struct cl_io *io);
1765 	/**
1766 	 * \name ast
1767 	 * Asynchronous System Traps. All of then are optional, all are
1768 	 * executed bottom-to-top.
1769 	 */
1770 	/** @{ */
1771 
1772 	/**
1773 	 * Cancellation callback. Cancel a lock voluntarily, or under
1774 	 * the request of server.
1775 	 */
1776 	void (*clo_cancel)(const struct lu_env *env,
1777 			   const struct cl_lock_slice *slice);
1778 	/**
1779 	 * Lock weighting ast. Executed to estimate how precious this lock
1780 	 * is. The sum of results across all layers is used to determine
1781 	 * whether lock worth keeping in cache given present memory usage.
1782 	 *
1783 	 * \see osc_lock_weigh(), vvp_lock_weigh(), lovsub_lock_weigh().
1784 	 */
1785 	unsigned long (*clo_weigh)(const struct lu_env *env,
1786 				   const struct cl_lock_slice *slice);
1787 	/** @} ast */
1788 
1789 	/**
1790 	 * \see lovsub_lock_closure()
1791 	 */
1792 	int (*clo_closure)(const struct lu_env *env,
1793 			   const struct cl_lock_slice *slice,
1794 			   struct cl_lock_closure *closure);
1795 	/**
1796 	 * Executed bottom-to-top when lock description changes (e.g., as a
1797 	 * result of server granting more generous lock than was requested).
1798 	 *
1799 	 * \see lovsub_lock_modify()
1800 	 */
1801 	int (*clo_modify)(const struct lu_env *env,
1802 			  const struct cl_lock_slice *slice,
1803 			  const struct cl_lock_descr *updated);
1804 	/**
1805 	 * Notifies layers (bottom-to-top) that lock is going to be
1806 	 * destroyed. Responsibility of layers is to prevent new references on
1807 	 * this lock from being acquired once this method returns.
1808 	 *
1809 	 * This can be called multiple times due to the races.
1810 	 *
1811 	 * \see cl_lock_delete()
1812 	 * \see osc_lock_delete(), lovsub_lock_delete()
1813 	 */
1814 	void (*clo_delete)(const struct lu_env *env,
1815 			   const struct cl_lock_slice *slice);
1816 	/**
1817 	 * Destructor. Frees resources and the slice.
1818 	 *
1819 	 * \see ccc_lock_fini(), lov_lock_fini(), lovsub_lock_fini(),
1820 	 * \see osc_lock_fini()
1821 	 */
1822 	void (*clo_fini)(const struct lu_env *env, struct cl_lock_slice *slice);
1823 	/**
1824 	 * Optional debugging helper. Prints given lock slice.
1825 	 */
1826 	int (*clo_print)(const struct lu_env *env,
1827 			 void *cookie, lu_printer_t p,
1828 			 const struct cl_lock_slice *slice);
1829 };
1830 
1831 #define CL_LOCK_DEBUG(mask, env, lock, format, ...)		     \
1832 do {								    \
1833 	LIBCFS_DEBUG_MSG_DATA_DECL(msgdata, mask, NULL);		\
1834 									\
1835 	if (cfs_cdebug_show(mask, DEBUG_SUBSYSTEM)) {		   \
1836 		cl_lock_print(env, &msgdata, lu_cdebug_printer, lock);  \
1837 		CDEBUG(mask, format, ## __VA_ARGS__);		  \
1838 	}							       \
1839 } while (0)
1840 
1841 #define CL_LOCK_ASSERT(expr, env, lock) do {			    \
1842 	if (likely(expr))					       \
1843 		break;						  \
1844 									\
1845 	CL_LOCK_DEBUG(D_ERROR, env, lock, "failed at %s.\n", #expr);    \
1846 	LBUG();							 \
1847 } while (0)
1848 
1849 /** @} cl_lock */
1850 
1851 /** \addtogroup cl_page_list cl_page_list
1852  * Page list used to perform collective operations on a group of pages.
1853  *
1854  * Pages are added to the list one by one. cl_page_list acquires a reference
1855  * for every page in it. Page list is used to perform collective operations on
1856  * pages:
1857  *
1858  *     - submit pages for an immediate transfer,
1859  *
1860  *     - own pages on behalf of certain io (waiting for each page in turn),
1861  *
1862  *     - discard pages.
1863  *
1864  * When list is finalized, it releases references on all pages it still has.
1865  *
1866  * \todo XXX concurrency control.
1867  *
1868  * @{
1869  */
1870 struct cl_page_list {
1871 	unsigned	     pl_nr;
1872 	struct list_head	   pl_pages;
1873 	struct task_struct	*pl_owner;
1874 };
1875 
1876 /**
1877  * A 2-queue of pages. A convenience data-type for common use case, 2-queue
1878  * contains an incoming page list and an outgoing page list.
1879  */
1880 struct cl_2queue {
1881 	struct cl_page_list c2_qin;
1882 	struct cl_page_list c2_qout;
1883 };
1884 
1885 /** @} cl_page_list */
1886 
1887 /** \addtogroup cl_io cl_io
1888  * @{ */
1889 /** \struct cl_io
1890  * I/O
1891  *
1892  * cl_io represents a high level I/O activity like
1893  * read(2)/write(2)/truncate(2) system call, or cancellation of an extent
1894  * lock.
1895  *
1896  * cl_io is a layered object, much like cl_{object,page,lock} but with one
1897  * important distinction. We want to minimize number of calls to the allocator
1898  * in the fast path, e.g., in the case of read(2) when everything is cached:
1899  * client already owns the lock over region being read, and data are cached
1900  * due to read-ahead. To avoid allocation of cl_io layers in such situations,
1901  * per-layer io state is stored in the session, associated with the io, see
1902  * struct {vvp,lov,osc}_io for example. Sessions allocation is amortized
1903  * by using free-lists, see cl_env_get().
1904  *
1905  * There is a small predefined number of possible io types, enumerated in enum
1906  * cl_io_type.
1907  *
1908  * cl_io is a state machine, that can be advanced concurrently by the multiple
1909  * threads. It is up to these threads to control the concurrency and,
1910  * specifically, to detect when io is done, and its state can be safely
1911  * released.
1912  *
1913  * For read/write io overall execution plan is as following:
1914  *
1915  *     (0) initialize io state through all layers;
1916  *
1917  *     (1) loop: prepare chunk of work to do
1918  *
1919  *     (2) call all layers to collect locks they need to process current chunk
1920  *
1921  *     (3) sort all locks to avoid dead-locks, and acquire them
1922  *
1923  *     (4) process the chunk: call per-page methods
1924  *	 (cl_io_operations::cio_read_page() for read,
1925  *	 cl_io_operations::cio_prepare_write(),
1926  *	 cl_io_operations::cio_commit_write() for write)
1927  *
1928  *     (5) release locks
1929  *
1930  *     (6) repeat loop.
1931  *
1932  * To implement the "parallel IO mode", lov layer creates sub-io's (lazily to
1933  * address allocation efficiency issues mentioned above), and returns with the
1934  * special error condition from per-page method when current sub-io has to
1935  * block. This causes io loop to be repeated, and lov switches to the next
1936  * sub-io in its cl_io_operations::cio_iter_init() implementation.
1937  */
1938 
1939 /** IO types */
1940 enum cl_io_type {
1941 	/** read system call */
1942 	CIT_READ,
1943 	/** write system call */
1944 	CIT_WRITE,
1945 	/** truncate, utime system calls */
1946 	CIT_SETATTR,
1947 	/**
1948 	 * page fault handling
1949 	 */
1950 	CIT_FAULT,
1951 	/**
1952 	 * fsync system call handling
1953 	 * To write out a range of file
1954 	 */
1955 	CIT_FSYNC,
1956 	/**
1957 	 * Miscellaneous io. This is used for occasional io activity that
1958 	 * doesn't fit into other types. Currently this is used for:
1959 	 *
1960 	 *     - cancellation of an extent lock. This io exists as a context
1961 	 *     to write dirty pages from under the lock being canceled back
1962 	 *     to the server;
1963 	 *
1964 	 *     - VM induced page write-out. An io context for writing page out
1965 	 *     for memory cleansing;
1966 	 *
1967 	 *     - glimpse. An io context to acquire glimpse lock.
1968 	 *
1969 	 *     - grouplock. An io context to acquire group lock.
1970 	 *
1971 	 * CIT_MISC io is used simply as a context in which locks and pages
1972 	 * are manipulated. Such io has no internal "process", that is,
1973 	 * cl_io_loop() is never called for it.
1974 	 */
1975 	CIT_MISC,
1976 	CIT_OP_NR
1977 };
1978 
1979 /**
1980  * States of cl_io state machine
1981  */
1982 enum cl_io_state {
1983 	/** Not initialized. */
1984 	CIS_ZERO,
1985 	/** Initialized. */
1986 	CIS_INIT,
1987 	/** IO iteration started. */
1988 	CIS_IT_STARTED,
1989 	/** Locks taken. */
1990 	CIS_LOCKED,
1991 	/** Actual IO is in progress. */
1992 	CIS_IO_GOING,
1993 	/** IO for the current iteration finished. */
1994 	CIS_IO_FINISHED,
1995 	/** Locks released. */
1996 	CIS_UNLOCKED,
1997 	/** Iteration completed. */
1998 	CIS_IT_ENDED,
1999 	/** cl_io finalized. */
2000 	CIS_FINI
2001 };
2002 
2003 /**
2004  * IO state private for a layer.
2005  *
2006  * This is usually embedded into layer session data, rather than allocated
2007  * dynamically.
2008  *
2009  * \see vvp_io, lov_io, osc_io, ccc_io
2010  */
2011 struct cl_io_slice {
2012 	struct cl_io		  *cis_io;
2013 	/** corresponding object slice. Immutable after creation. */
2014 	struct cl_object	      *cis_obj;
2015 	/** io operations. Immutable after creation. */
2016 	const struct cl_io_operations *cis_iop;
2017 	/**
2018 	 * linkage into a list of all slices for a given cl_io, hanging off
2019 	 * cl_io::ci_layers. Immutable after creation.
2020 	 */
2021 	struct list_head		     cis_linkage;
2022 };
2023 
2024 /**
2025  * Per-layer io operations.
2026  * \see vvp_io_ops, lov_io_ops, lovsub_io_ops, osc_io_ops
2027  */
2028 struct cl_io_operations {
2029 	/**
2030 	 * Vector of io state transition methods for every io type.
2031 	 *
2032 	 * \see cl_page_operations::io
2033 	 */
2034 	struct {
2035 		/**
2036 		 * Prepare io iteration at a given layer.
2037 		 *
2038 		 * Called top-to-bottom at the beginning of each iteration of
2039 		 * "io loop" (if it makes sense for this type of io). Here
2040 		 * layer selects what work it will do during this iteration.
2041 		 *
2042 		 * \see cl_io_operations::cio_iter_fini()
2043 		 */
2044 		int (*cio_iter_init) (const struct lu_env *env,
2045 				      const struct cl_io_slice *slice);
2046 		/**
2047 		 * Finalize io iteration.
2048 		 *
2049 		 * Called bottom-to-top at the end of each iteration of "io
2050 		 * loop". Here layers can decide whether IO has to be
2051 		 * continued.
2052 		 *
2053 		 * \see cl_io_operations::cio_iter_init()
2054 		 */
2055 		void (*cio_iter_fini) (const struct lu_env *env,
2056 				       const struct cl_io_slice *slice);
2057 		/**
2058 		 * Collect locks for the current iteration of io.
2059 		 *
2060 		 * Called top-to-bottom to collect all locks necessary for
2061 		 * this iteration. This methods shouldn't actually enqueue
2062 		 * anything, instead it should post a lock through
2063 		 * cl_io_lock_add(). Once all locks are collected, they are
2064 		 * sorted and enqueued in the proper order.
2065 		 */
2066 		int  (*cio_lock) (const struct lu_env *env,
2067 				  const struct cl_io_slice *slice);
2068 		/**
2069 		 * Finalize unlocking.
2070 		 *
2071 		 * Called bottom-to-top to finish layer specific unlocking
2072 		 * functionality, after generic code released all locks
2073 		 * acquired by cl_io_operations::cio_lock().
2074 		 */
2075 		void  (*cio_unlock)(const struct lu_env *env,
2076 				    const struct cl_io_slice *slice);
2077 		/**
2078 		 * Start io iteration.
2079 		 *
2080 		 * Once all locks are acquired, called top-to-bottom to
2081 		 * commence actual IO. In the current implementation,
2082 		 * top-level vvp_io_{read,write}_start() does all the work
2083 		 * synchronously by calling generic_file_*(), so other layers
2084 		 * are called when everything is done.
2085 		 */
2086 		int  (*cio_start)(const struct lu_env *env,
2087 				  const struct cl_io_slice *slice);
2088 		/**
2089 		 * Called top-to-bottom at the end of io loop. Here layer
2090 		 * might wait for an unfinished asynchronous io.
2091 		 */
2092 		void (*cio_end)  (const struct lu_env *env,
2093 				  const struct cl_io_slice *slice);
2094 		/**
2095 		 * Called bottom-to-top to notify layers that read/write IO
2096 		 * iteration finished, with \a nob bytes transferred.
2097 		 */
2098 		void (*cio_advance)(const struct lu_env *env,
2099 				    const struct cl_io_slice *slice,
2100 				    size_t nob);
2101 		/**
2102 		 * Called once per io, bottom-to-top to release io resources.
2103 		 */
2104 		void (*cio_fini) (const struct lu_env *env,
2105 				  const struct cl_io_slice *slice);
2106 	} op[CIT_OP_NR];
2107 	struct {
2108 		/**
2109 		 * Submit pages from \a queue->c2_qin for IO, and move
2110 		 * successfully submitted pages into \a queue->c2_qout. Return
2111 		 * non-zero if failed to submit even the single page. If
2112 		 * submission failed after some pages were moved into \a
2113 		 * queue->c2_qout, completion callback with non-zero ioret is
2114 		 * executed on them.
2115 		 */
2116 		int  (*cio_submit)(const struct lu_env *env,
2117 				   const struct cl_io_slice *slice,
2118 				   enum cl_req_type crt,
2119 				   struct cl_2queue *queue);
2120 	} req_op[CRT_NR];
2121 	/**
2122 	 * Read missing page.
2123 	 *
2124 	 * Called by a top-level cl_io_operations::op[CIT_READ]::cio_start()
2125 	 * method, when it hits not-up-to-date page in the range. Optional.
2126 	 *
2127 	 * \pre io->ci_type == CIT_READ
2128 	 */
2129 	int (*cio_read_page)(const struct lu_env *env,
2130 			     const struct cl_io_slice *slice,
2131 			     const struct cl_page_slice *page);
2132 	/**
2133 	 * Prepare write of a \a page. Called bottom-to-top by a top-level
2134 	 * cl_io_operations::op[CIT_WRITE]::cio_start() to prepare page for
2135 	 * get data from user-level buffer.
2136 	 *
2137 	 * \pre io->ci_type == CIT_WRITE
2138 	 *
2139 	 * \see vvp_io_prepare_write(), lov_io_prepare_write(),
2140 	 * osc_io_prepare_write().
2141 	 */
2142 	int (*cio_prepare_write)(const struct lu_env *env,
2143 				 const struct cl_io_slice *slice,
2144 				 const struct cl_page_slice *page,
2145 				 unsigned from, unsigned to);
2146 	/**
2147 	 *
2148 	 * \pre io->ci_type == CIT_WRITE
2149 	 *
2150 	 * \see vvp_io_commit_write(), lov_io_commit_write(),
2151 	 * osc_io_commit_write().
2152 	 */
2153 	int (*cio_commit_write)(const struct lu_env *env,
2154 				const struct cl_io_slice *slice,
2155 				const struct cl_page_slice *page,
2156 				unsigned from, unsigned to);
2157 	/**
2158 	 * Optional debugging helper. Print given io slice.
2159 	 */
2160 	int (*cio_print)(const struct lu_env *env, void *cookie,
2161 			 lu_printer_t p, const struct cl_io_slice *slice);
2162 };
2163 
2164 /**
2165  * Flags to lock enqueue procedure.
2166  * \ingroup cl_lock
2167  */
2168 enum cl_enq_flags {
2169 	/**
2170 	 * instruct server to not block, if conflicting lock is found. Instead
2171 	 * -EWOULDBLOCK is returned immediately.
2172 	 */
2173 	CEF_NONBLOCK     = 0x00000001,
2174 	/**
2175 	 * take lock asynchronously (out of order), as it cannot
2176 	 * deadlock. This is for LDLM_FL_HAS_INTENT locks used for glimpsing.
2177 	 */
2178 	CEF_ASYNC	= 0x00000002,
2179 	/**
2180 	 * tell the server to instruct (though a flag in the blocking ast) an
2181 	 * owner of the conflicting lock, that it can drop dirty pages
2182 	 * protected by this lock, without sending them to the server.
2183 	 */
2184 	CEF_DISCARD_DATA = 0x00000004,
2185 	/**
2186 	 * tell the sub layers that it must be a `real' lock. This is used for
2187 	 * mmapped-buffer locks and glimpse locks that must be never converted
2188 	 * into lockless mode.
2189 	 *
2190 	 * \see vvp_mmap_locks(), cl_glimpse_lock().
2191 	 */
2192 	CEF_MUST	 = 0x00000008,
2193 	/**
2194 	 * tell the sub layers that never request a `real' lock. This flag is
2195 	 * not used currently.
2196 	 *
2197 	 * cl_io::ci_lockreq and CEF_{MUST,NEVER} flags specify lockless
2198 	 * conversion policy: ci_lockreq describes generic information of lock
2199 	 * requirement for this IO, especially for locks which belong to the
2200 	 * object doing IO; however, lock itself may have precise requirements
2201 	 * that are described by the enqueue flags.
2202 	 */
2203 	CEF_NEVER	= 0x00000010,
2204 	/**
2205 	 * for async glimpse lock.
2206 	 */
2207 	CEF_AGL	  = 0x00000020,
2208 	/**
2209 	 * mask of enq_flags.
2210 	 */
2211 	CEF_MASK	 = 0x0000003f,
2212 };
2213 
2214 /**
2215  * Link between lock and io. Intermediate structure is needed, because the
2216  * same lock can be part of multiple io's simultaneously.
2217  */
2218 struct cl_io_lock_link {
2219 	/** linkage into one of cl_lockset lists. */
2220 	struct list_head	   cill_linkage;
2221 	struct cl_lock_descr cill_descr;
2222 	struct cl_lock      *cill_lock;
2223 	/** optional destructor */
2224 	void	       (*cill_fini)(const struct lu_env *env,
2225 					struct cl_io_lock_link *link);
2226 };
2227 
2228 /**
2229  * Lock-set represents a collection of locks, that io needs at a
2230  * time. Generally speaking, client tries to avoid holding multiple locks when
2231  * possible, because
2232  *
2233  *      - holding extent locks over multiple ost's introduces the danger of
2234  *	"cascading timeouts";
2235  *
2236  *      - holding multiple locks over the same ost is still dead-lock prone,
2237  *	see comment in osc_lock_enqueue(),
2238  *
2239  * but there are certain situations where this is unavoidable:
2240  *
2241  *      - O_APPEND writes have to take [0, EOF] lock for correctness;
2242  *
2243  *      - truncate has to take [new-size, EOF] lock for correctness;
2244  *
2245  *      - SNS has to take locks across full stripe for correctness;
2246  *
2247  *      - in the case when user level buffer, supplied to {read,write}(file0),
2248  *	is a part of a memory mapped lustre file, client has to take a dlm
2249  *	locks on file0, and all files that back up the buffer (or a part of
2250  *	the buffer, that is being processed in the current chunk, in any
2251  *	case, there are situations where at least 2 locks are necessary).
2252  *
2253  * In such cases we at least try to take locks in the same consistent
2254  * order. To this end, all locks are first collected, then sorted, and then
2255  * enqueued.
2256  */
2257 struct cl_lockset {
2258 	/** locks to be acquired. */
2259 	struct list_head  cls_todo;
2260 	/** locks currently being processed. */
2261 	struct list_head  cls_curr;
2262 	/** locks acquired. */
2263 	struct list_head  cls_done;
2264 };
2265 
2266 /**
2267  * Lock requirements(demand) for IO. It should be cl_io_lock_req,
2268  * but 'req' is always to be thought as 'request' :-)
2269  */
2270 enum cl_io_lock_dmd {
2271 	/** Always lock data (e.g., O_APPEND). */
2272 	CILR_MANDATORY = 0,
2273 	/** Layers are free to decide between local and global locking. */
2274 	CILR_MAYBE,
2275 	/** Never lock: there is no cache (e.g., liblustre). */
2276 	CILR_NEVER
2277 };
2278 
2279 enum cl_fsync_mode {
2280 	/** start writeback, do not wait for them to finish */
2281 	CL_FSYNC_NONE  = 0,
2282 	/** start writeback and wait for them to finish */
2283 	CL_FSYNC_LOCAL = 1,
2284 	/** discard all of dirty pages in a specific file range */
2285 	CL_FSYNC_DISCARD = 2,
2286 	/** start writeback and make sure they have reached storage before
2287 	 * return. OST_SYNC RPC must be issued and finished */
2288 	CL_FSYNC_ALL   = 3
2289 };
2290 
2291 struct cl_io_rw_common {
2292 	loff_t      crw_pos;
2293 	size_t      crw_count;
2294 	int	 crw_nonblock;
2295 };
2296 
2297 /**
2298  * State for io.
2299  *
2300  * cl_io is shared by all threads participating in this IO (in current
2301  * implementation only one thread advances IO, but parallel IO design and
2302  * concurrent copy_*_user() require multiple threads acting on the same IO. It
2303  * is up to these threads to serialize their activities, including updates to
2304  * mutable cl_io fields.
2305  */
2306 struct cl_io {
2307 	/** type of this IO. Immutable after creation. */
2308 	enum cl_io_type		ci_type;
2309 	/** current state of cl_io state machine. */
2310 	enum cl_io_state	       ci_state;
2311 	/** main object this io is against. Immutable after creation. */
2312 	struct cl_object	      *ci_obj;
2313 	/**
2314 	 * Upper layer io, of which this io is a part of. Immutable after
2315 	 * creation.
2316 	 */
2317 	struct cl_io		  *ci_parent;
2318 	/** List of slices. Immutable after creation. */
2319 	struct list_head		     ci_layers;
2320 	/** list of locks (to be) acquired by this io. */
2321 	struct cl_lockset	      ci_lockset;
2322 	/** lock requirements, this is just a help info for sublayers. */
2323 	enum cl_io_lock_dmd	    ci_lockreq;
2324 	union {
2325 		struct cl_rd_io {
2326 			struct cl_io_rw_common rd;
2327 		} ci_rd;
2328 		struct cl_wr_io {
2329 			struct cl_io_rw_common wr;
2330 			int		    wr_append;
2331 			int		    wr_sync;
2332 		} ci_wr;
2333 		struct cl_io_rw_common ci_rw;
2334 		struct cl_setattr_io {
2335 			struct ost_lvb   sa_attr;
2336 			unsigned int     sa_valid;
2337 		} ci_setattr;
2338 		struct cl_fault_io {
2339 			/** page index within file. */
2340 			pgoff_t	 ft_index;
2341 			/** bytes valid byte on a faulted page. */
2342 			int	     ft_nob;
2343 			/** writable page? for nopage() only */
2344 			int	     ft_writable;
2345 			/** page of an executable? */
2346 			int	     ft_executable;
2347 			/** page_mkwrite() */
2348 			int	     ft_mkwrite;
2349 			/** resulting page */
2350 			struct cl_page *ft_page;
2351 		} ci_fault;
2352 		struct cl_fsync_io {
2353 			loff_t	     fi_start;
2354 			loff_t	     fi_end;
2355 			/** file system level fid */
2356 			struct lu_fid     *fi_fid;
2357 			enum cl_fsync_mode fi_mode;
2358 			/* how many pages were written/discarded */
2359 			unsigned int       fi_nr_written;
2360 		} ci_fsync;
2361 	} u;
2362 	struct cl_2queue     ci_queue;
2363 	size_t	       ci_nob;
2364 	int		  ci_result;
2365 	unsigned int	 ci_continue:1,
2366 	/**
2367 	 * This io has held grouplock, to inform sublayers that
2368 	 * don't do lockless i/o.
2369 	 */
2370 			     ci_no_srvlock:1,
2371 	/**
2372 	 * The whole IO need to be restarted because layout has been changed
2373 	 */
2374 			     ci_need_restart:1,
2375 	/**
2376 	 * to not refresh layout - the IO issuer knows that the layout won't
2377 	 * change(page operations, layout change causes all page to be
2378 	 * discarded), or it doesn't matter if it changes(sync).
2379 	 */
2380 			     ci_ignore_layout:1,
2381 	/**
2382 	 * Check if layout changed after the IO finishes. Mainly for HSM
2383 	 * requirement. If IO occurs to openning files, it doesn't need to
2384 	 * verify layout because HSM won't release openning files.
2385 	 * Right now, only two operations need to verify layout: glimpse
2386 	 * and setattr.
2387 	 */
2388 			     ci_verify_layout:1,
2389 	/**
2390 	 * file is released, restore has to to be triggered by vvp layer
2391 	 */
2392 			     ci_restore_needed:1,
2393 	/**
2394 	 * O_NOATIME
2395 	 */
2396 			     ci_noatime:1;
2397 	/**
2398 	 * Number of pages owned by this IO. For invariant checking.
2399 	 */
2400 	unsigned	     ci_owned_nr;
2401 };
2402 
2403 /** @} cl_io */
2404 
2405 /** \addtogroup cl_req cl_req
2406  * @{ */
2407 /** \struct cl_req
2408  * Transfer.
2409  *
2410  * There are two possible modes of transfer initiation on the client:
2411  *
2412  *     - immediate transfer: this is started when a high level io wants a page
2413  *       or a collection of pages to be transferred right away. Examples:
2414  *       read-ahead, synchronous read in the case of non-page aligned write,
2415  *       page write-out as a part of extent lock cancellation, page write-out
2416  *       as a part of memory cleansing. Immediate transfer can be both
2417  *       cl_req_type::CRT_READ and cl_req_type::CRT_WRITE;
2418  *
2419  *     - opportunistic transfer (cl_req_type::CRT_WRITE only), that happens
2420  *       when io wants to transfer a page to the server some time later, when
2421  *       it can be done efficiently. Example: pages dirtied by the write(2)
2422  *       path.
2423  *
2424  * In any case, transfer takes place in the form of a cl_req, which is a
2425  * representation for a network RPC.
2426  *
2427  * Pages queued for an opportunistic transfer are cached until it is decided
2428  * that efficient RPC can be composed of them. This decision is made by "a
2429  * req-formation engine", currently implemented as a part of osc
2430  * layer. Req-formation depends on many factors: the size of the resulting
2431  * RPC, whether or not multi-object RPCs are supported by the server,
2432  * max-rpc-in-flight limitations, size of the dirty cache, etc.
2433  *
2434  * For the immediate transfer io submits a cl_page_list, that req-formation
2435  * engine slices into cl_req's, possibly adding cached pages to some of
2436  * the resulting req's.
2437  *
2438  * Whenever a page from cl_page_list is added to a newly constructed req, its
2439  * cl_page_operations::cpo_prep() layer methods are called. At that moment,
2440  * page state is atomically changed from cl_page_state::CPS_OWNED to
2441  * cl_page_state::CPS_PAGEOUT or cl_page_state::CPS_PAGEIN, cl_page::cp_owner
2442  * is zeroed, and cl_page::cp_req is set to the
2443  * req. cl_page_operations::cpo_prep() method at the particular layer might
2444  * return -EALREADY to indicate that it does not need to submit this page
2445  * at all. This is possible, for example, if page, submitted for read,
2446  * became up-to-date in the meantime; and for write, the page don't have
2447  * dirty bit marked. \see cl_io_submit_rw()
2448  *
2449  * Whenever a cached page is added to a newly constructed req, its
2450  * cl_page_operations::cpo_make_ready() layer methods are called. At that
2451  * moment, page state is atomically changed from cl_page_state::CPS_CACHED to
2452  * cl_page_state::CPS_PAGEOUT, and cl_page::cp_req is set to
2453  * req. cl_page_operations::cpo_make_ready() method at the particular layer
2454  * might return -EAGAIN to indicate that this page is not eligible for the
2455  * transfer right now.
2456  *
2457  * FUTURE
2458  *
2459  * Plan is to divide transfers into "priority bands" (indicated when
2460  * submitting cl_page_list, and queuing a page for the opportunistic transfer)
2461  * and allow glueing of cached pages to immediate transfers only within single
2462  * band. This would make high priority transfers (like lock cancellation or
2463  * memory pressure induced write-out) really high priority.
2464  *
2465  */
2466 
2467 /**
2468  * Per-transfer attributes.
2469  */
2470 struct cl_req_attr {
2471 	/** Generic attributes for the server consumption. */
2472 	struct obdo	*cra_oa;
2473 	/** Jobid */
2474 	char		 cra_jobid[JOBSTATS_JOBID_SIZE];
2475 };
2476 
2477 /**
2478  * Transfer request operations definable at every layer.
2479  *
2480  * Concurrency: transfer formation engine synchronizes calls to all transfer
2481  * methods.
2482  */
2483 struct cl_req_operations {
2484 	/**
2485 	 * Invoked top-to-bottom by cl_req_prep() when transfer formation is
2486 	 * complete (all pages are added).
2487 	 *
2488 	 * \see osc_req_prep()
2489 	 */
2490 	int  (*cro_prep)(const struct lu_env *env,
2491 			 const struct cl_req_slice *slice);
2492 	/**
2493 	 * Called top-to-bottom to fill in \a oa fields. This is called twice
2494 	 * with different flags, see bug 10150 and osc_build_req().
2495 	 *
2496 	 * \param obj an object from cl_req which attributes are to be set in
2497 	 *	    \a oa.
2498 	 *
2499 	 * \param oa struct obdo where attributes are placed
2500 	 *
2501 	 * \param flags \a oa fields to be filled.
2502 	 */
2503 	void (*cro_attr_set)(const struct lu_env *env,
2504 			     const struct cl_req_slice *slice,
2505 			     const struct cl_object *obj,
2506 			     struct cl_req_attr *attr, u64 flags);
2507 	/**
2508 	 * Called top-to-bottom from cl_req_completion() to notify layers that
2509 	 * transfer completed. Has to free all state allocated by
2510 	 * cl_device_operations::cdo_req_init().
2511 	 */
2512 	void (*cro_completion)(const struct lu_env *env,
2513 			       const struct cl_req_slice *slice, int ioret);
2514 };
2515 
2516 /**
2517  * A per-object state that (potentially multi-object) transfer request keeps.
2518  */
2519 struct cl_req_obj {
2520 	/** object itself */
2521 	struct cl_object   *ro_obj;
2522 	/** reference to cl_req_obj::ro_obj. For debugging. */
2523 	struct lu_ref_link  ro_obj_ref;
2524 	/* something else? Number of pages for a given object? */
2525 };
2526 
2527 /**
2528  * Transfer request.
2529  *
2530  * Transfer requests are not reference counted, because IO sub-system owns
2531  * them exclusively and knows when to free them.
2532  *
2533  * Life cycle.
2534  *
2535  * cl_req is created by cl_req_alloc() that calls
2536  * cl_device_operations::cdo_req_init() device methods to allocate per-req
2537  * state in every layer.
2538  *
2539  * Then pages are added (cl_req_page_add()), req keeps track of all objects it
2540  * contains pages for.
2541  *
2542  * Once all pages were collected, cl_page_operations::cpo_prep() method is
2543  * called top-to-bottom. At that point layers can modify req, let it pass, or
2544  * deny it completely. This is to support things like SNS that have transfer
2545  * ordering requirements invisible to the individual req-formation engine.
2546  *
2547  * On transfer completion (or transfer timeout, or failure to initiate the
2548  * transfer of an allocated req), cl_req_operations::cro_completion() method
2549  * is called, after execution of cl_page_operations::cpo_completion() of all
2550  * req's pages.
2551  */
2552 struct cl_req {
2553 	enum cl_req_type      crq_type;
2554 	/** A list of pages being transferred */
2555 	struct list_head	    crq_pages;
2556 	/** Number of pages in cl_req::crq_pages */
2557 	unsigned	      crq_nrpages;
2558 	/** An array of objects which pages are in ->crq_pages */
2559 	struct cl_req_obj    *crq_o;
2560 	/** Number of elements in cl_req::crq_objs[] */
2561 	unsigned	      crq_nrobjs;
2562 	struct list_head	    crq_layers;
2563 };
2564 
2565 /**
2566  * Per-layer state for request.
2567  */
2568 struct cl_req_slice {
2569 	struct cl_req    *crs_req;
2570 	struct cl_device *crs_dev;
2571 	struct list_head	crs_linkage;
2572 	const struct cl_req_operations *crs_ops;
2573 };
2574 
2575 /* @} cl_req */
2576 
2577 enum cache_stats_item {
2578 	/** how many cache lookups were performed */
2579 	CS_lookup = 0,
2580 	/** how many times cache lookup resulted in a hit */
2581 	CS_hit,
2582 	/** how many entities are in the cache right now */
2583 	CS_total,
2584 	/** how many entities in the cache are actively used (and cannot be
2585 	 * evicted) right now */
2586 	CS_busy,
2587 	/** how many entities were created at all */
2588 	CS_create,
2589 	CS_NR
2590 };
2591 
2592 #define CS_NAMES { "lookup", "hit", "total", "busy", "create" }
2593 
2594 /**
2595  * Stats for a generic cache (similar to inode, lu_object, etc. caches).
2596  */
2597 struct cache_stats {
2598 	const char    *cs_name;
2599 	atomic_t   cs_stats[CS_NR];
2600 };
2601 
2602 /** These are not exported so far */
2603 void cache_stats_init (struct cache_stats *cs, const char *name);
2604 
2605 /**
2606  * Client-side site. This represents particular client stack. "Global"
2607  * variables should (directly or indirectly) be added here to allow multiple
2608  * clients to co-exist in the single address space.
2609  */
2610 struct cl_site {
2611 	struct lu_site	cs_lu;
2612 	/**
2613 	 * Statistical counters. Atomics do not scale, something better like
2614 	 * per-cpu counters is needed.
2615 	 *
2616 	 * These are exported as /proc/fs/lustre/llite/.../site
2617 	 *
2618 	 * When interpreting keep in mind that both sub-locks (and sub-pages)
2619 	 * and top-locks (and top-pages) are accounted here.
2620 	 */
2621 	struct cache_stats    cs_pages;
2622 	struct cache_stats    cs_locks;
2623 	atomic_t	  cs_pages_state[CPS_NR];
2624 	atomic_t	  cs_locks_state[CLS_NR];
2625 };
2626 
2627 int  cl_site_init (struct cl_site *s, struct cl_device *top);
2628 void cl_site_fini (struct cl_site *s);
2629 void cl_stack_fini(const struct lu_env *env, struct cl_device *cl);
2630 
2631 /**
2632  * Output client site statistical counters into a buffer. Suitable for
2633  * ll_rd_*()-style functions.
2634  */
2635 int cl_site_stats_print(const struct cl_site *site, struct seq_file *m);
2636 
2637 /**
2638  * \name helpers
2639  *
2640  * Type conversion and accessory functions.
2641  */
2642 /** @{ */
2643 
lu2cl_site(const struct lu_site * site)2644 static inline struct cl_site *lu2cl_site(const struct lu_site *site)
2645 {
2646 	return container_of(site, struct cl_site, cs_lu);
2647 }
2648 
lu_device_is_cl(const struct lu_device * d)2649 static inline int lu_device_is_cl(const struct lu_device *d)
2650 {
2651 	return d->ld_type->ldt_tags & LU_DEVICE_CL;
2652 }
2653 
lu2cl_dev(const struct lu_device * d)2654 static inline struct cl_device *lu2cl_dev(const struct lu_device *d)
2655 {
2656 	LASSERT(d == NULL || IS_ERR(d) || lu_device_is_cl(d));
2657 	return container_of0(d, struct cl_device, cd_lu_dev);
2658 }
2659 
cl2lu_dev(struct cl_device * d)2660 static inline struct lu_device *cl2lu_dev(struct cl_device *d)
2661 {
2662 	return &d->cd_lu_dev;
2663 }
2664 
lu2cl(const struct lu_object * o)2665 static inline struct cl_object *lu2cl(const struct lu_object *o)
2666 {
2667 	LASSERT(o == NULL || IS_ERR(o) || lu_device_is_cl(o->lo_dev));
2668 	return container_of0(o, struct cl_object, co_lu);
2669 }
2670 
2671 static inline const struct cl_object_conf *
lu2cl_conf(const struct lu_object_conf * conf)2672 lu2cl_conf(const struct lu_object_conf *conf)
2673 {
2674 	return container_of0(conf, struct cl_object_conf, coc_lu);
2675 }
2676 
cl_object_next(const struct cl_object * obj)2677 static inline struct cl_object *cl_object_next(const struct cl_object *obj)
2678 {
2679 	return obj ? lu2cl(lu_object_next(&obj->co_lu)) : NULL;
2680 }
2681 
cl_object_device(const struct cl_object * o)2682 static inline struct cl_device *cl_object_device(const struct cl_object *o)
2683 {
2684 	LASSERT(o == NULL || IS_ERR(o) || lu_device_is_cl(o->co_lu.lo_dev));
2685 	return container_of0(o->co_lu.lo_dev, struct cl_device, cd_lu_dev);
2686 }
2687 
luh2coh(const struct lu_object_header * h)2688 static inline struct cl_object_header *luh2coh(const struct lu_object_header *h)
2689 {
2690 	return container_of0(h, struct cl_object_header, coh_lu);
2691 }
2692 
cl_object_site(const struct cl_object * obj)2693 static inline struct cl_site *cl_object_site(const struct cl_object *obj)
2694 {
2695 	return lu2cl_site(obj->co_lu.lo_dev->ld_site);
2696 }
2697 
2698 static inline
cl_object_header(const struct cl_object * obj)2699 struct cl_object_header *cl_object_header(const struct cl_object *obj)
2700 {
2701 	return luh2coh(obj->co_lu.lo_header);
2702 }
2703 
cl_device_init(struct cl_device * d,struct lu_device_type * t)2704 static inline int cl_device_init(struct cl_device *d, struct lu_device_type *t)
2705 {
2706 	return lu_device_init(&d->cd_lu_dev, t);
2707 }
2708 
cl_device_fini(struct cl_device * d)2709 static inline void cl_device_fini(struct cl_device *d)
2710 {
2711 	lu_device_fini(&d->cd_lu_dev);
2712 }
2713 
2714 void cl_page_slice_add(struct cl_page *page, struct cl_page_slice *slice,
2715 		       struct cl_object *obj,
2716 		       const struct cl_page_operations *ops);
2717 void cl_lock_slice_add(struct cl_lock *lock, struct cl_lock_slice *slice,
2718 		       struct cl_object *obj,
2719 		       const struct cl_lock_operations *ops);
2720 void cl_io_slice_add(struct cl_io *io, struct cl_io_slice *slice,
2721 		     struct cl_object *obj, const struct cl_io_operations *ops);
2722 void cl_req_slice_add(struct cl_req *req, struct cl_req_slice *slice,
2723 		      struct cl_device *dev,
2724 		      const struct cl_req_operations *ops);
2725 /** @} helpers */
2726 
2727 /** \defgroup cl_object cl_object
2728  * @{ */
2729 struct cl_object *cl_object_top (struct cl_object *o);
2730 struct cl_object *cl_object_find(const struct lu_env *env, struct cl_device *cd,
2731 				 const struct lu_fid *fid,
2732 				 const struct cl_object_conf *c);
2733 
2734 int  cl_object_header_init(struct cl_object_header *h);
2735 void cl_object_put	(const struct lu_env *env, struct cl_object *o);
2736 void cl_object_get	(struct cl_object *o);
2737 void cl_object_attr_lock  (struct cl_object *o);
2738 void cl_object_attr_unlock(struct cl_object *o);
2739 int  cl_object_attr_get   (const struct lu_env *env, struct cl_object *obj,
2740 			   struct cl_attr *attr);
2741 int  cl_object_attr_set   (const struct lu_env *env, struct cl_object *obj,
2742 			   const struct cl_attr *attr, unsigned valid);
2743 int  cl_object_glimpse    (const struct lu_env *env, struct cl_object *obj,
2744 			   struct ost_lvb *lvb);
2745 int  cl_conf_set	  (const struct lu_env *env, struct cl_object *obj,
2746 			   const struct cl_object_conf *conf);
2747 void cl_object_prune      (const struct lu_env *env, struct cl_object *obj);
2748 void cl_object_kill       (const struct lu_env *env, struct cl_object *obj);
2749 
2750 /**
2751  * Returns true, iff \a o0 and \a o1 are slices of the same object.
2752  */
cl_object_same(struct cl_object * o0,struct cl_object * o1)2753 static inline int cl_object_same(struct cl_object *o0, struct cl_object *o1)
2754 {
2755 	return cl_object_header(o0) == cl_object_header(o1);
2756 }
2757 
cl_object_page_init(struct cl_object * clob,int size)2758 static inline void cl_object_page_init(struct cl_object *clob, int size)
2759 {
2760 	clob->co_slice_off = cl_object_header(clob)->coh_page_bufsize;
2761 	cl_object_header(clob)->coh_page_bufsize += ALIGN(size, 8);
2762 }
2763 
cl_object_page_slice(struct cl_object * clob,struct cl_page * page)2764 static inline void *cl_object_page_slice(struct cl_object *clob,
2765 					 struct cl_page *page)
2766 {
2767 	return (void *)((char *)page + clob->co_slice_off);
2768 }
2769 
2770 /** @} cl_object */
2771 
2772 /** \defgroup cl_page cl_page
2773  * @{ */
2774 enum {
2775 	CLP_GANG_OKAY = 0,
2776 	CLP_GANG_RESCHED,
2777 	CLP_GANG_AGAIN,
2778 	CLP_GANG_ABORT
2779 };
2780 
2781 /* callback of cl_page_gang_lookup() */
2782 typedef int   (*cl_page_gang_cb_t)  (const struct lu_env *, struct cl_io *,
2783 				     struct cl_page *, void *);
2784 int	     cl_page_gang_lookup (const struct lu_env *env,
2785 				     struct cl_object *obj,
2786 				     struct cl_io *io,
2787 				     pgoff_t start, pgoff_t end,
2788 				     cl_page_gang_cb_t cb, void *cbdata);
2789 struct cl_page *cl_page_lookup      (struct cl_object_header *hdr,
2790 				     pgoff_t index);
2791 struct cl_page *cl_page_find	(const struct lu_env *env,
2792 				     struct cl_object *obj,
2793 				     pgoff_t idx, struct page *vmpage,
2794 				     enum cl_page_type type);
2795 struct cl_page *cl_page_find_sub    (const struct lu_env *env,
2796 				     struct cl_object *obj,
2797 				     pgoff_t idx, struct page *vmpage,
2798 				     struct cl_page *parent);
2799 void	    cl_page_get	 (struct cl_page *page);
2800 void	    cl_page_put	 (const struct lu_env *env,
2801 				     struct cl_page *page);
2802 void	    cl_page_print       (const struct lu_env *env, void *cookie,
2803 				     lu_printer_t printer,
2804 				     const struct cl_page *pg);
2805 void	    cl_page_header_print(const struct lu_env *env, void *cookie,
2806 				     lu_printer_t printer,
2807 				     const struct cl_page *pg);
2808 struct page     *cl_page_vmpage      (const struct lu_env *env,
2809 				     struct cl_page *page);
2810 struct cl_page *cl_vmpage_page      (struct page *vmpage, struct cl_object *obj);
2811 struct cl_page *cl_page_top	 (struct cl_page *page);
2812 
2813 const struct cl_page_slice *cl_page_at(const struct cl_page *page,
2814 				       const struct lu_device_type *dtype);
2815 
2816 /**
2817  * \name ownership
2818  *
2819  * Functions dealing with the ownership of page by io.
2820  */
2821 /** @{ */
2822 
2823 int  cl_page_own	(const struct lu_env *env,
2824 			 struct cl_io *io, struct cl_page *page);
2825 int  cl_page_own_try    (const struct lu_env *env,
2826 			 struct cl_io *io, struct cl_page *page);
2827 void cl_page_assume     (const struct lu_env *env,
2828 			 struct cl_io *io, struct cl_page *page);
2829 void cl_page_unassume   (const struct lu_env *env,
2830 			 struct cl_io *io, struct cl_page *pg);
2831 void cl_page_disown     (const struct lu_env *env,
2832 			 struct cl_io *io, struct cl_page *page);
2833 int  cl_page_is_owned   (const struct cl_page *pg, const struct cl_io *io);
2834 
2835 /** @} ownership */
2836 
2837 /**
2838  * \name transfer
2839  *
2840  * Functions dealing with the preparation of a page for a transfer, and
2841  * tracking transfer state.
2842  */
2843 /** @{ */
2844 int  cl_page_prep       (const struct lu_env *env, struct cl_io *io,
2845 			 struct cl_page *pg, enum cl_req_type crt);
2846 void cl_page_completion (const struct lu_env *env,
2847 			 struct cl_page *pg, enum cl_req_type crt, int ioret);
2848 int  cl_page_make_ready (const struct lu_env *env, struct cl_page *pg,
2849 			 enum cl_req_type crt);
2850 int  cl_page_cache_add  (const struct lu_env *env, struct cl_io *io,
2851 			 struct cl_page *pg, enum cl_req_type crt);
2852 void cl_page_clip       (const struct lu_env *env, struct cl_page *pg,
2853 			 int from, int to);
2854 int  cl_page_cancel     (const struct lu_env *env, struct cl_page *page);
2855 int  cl_page_flush      (const struct lu_env *env, struct cl_io *io,
2856 			 struct cl_page *pg);
2857 
2858 /** @} transfer */
2859 
2860 /**
2861  * \name helper routines
2862  * Functions to discard, delete and export a cl_page.
2863  */
2864 /** @{ */
2865 void    cl_page_discard      (const struct lu_env *env, struct cl_io *io,
2866 			      struct cl_page *pg);
2867 void    cl_page_delete       (const struct lu_env *env, struct cl_page *pg);
2868 int     cl_page_unmap	(const struct lu_env *env, struct cl_io *io,
2869 			      struct cl_page *pg);
2870 int     cl_page_is_vmlocked  (const struct lu_env *env,
2871 			      const struct cl_page *pg);
2872 void    cl_page_export       (const struct lu_env *env,
2873 			      struct cl_page *pg, int uptodate);
2874 int     cl_page_is_under_lock(const struct lu_env *env, struct cl_io *io,
2875 			      struct cl_page *page);
2876 loff_t  cl_offset	    (const struct cl_object *obj, pgoff_t idx);
2877 pgoff_t cl_index	     (const struct cl_object *obj, loff_t offset);
2878 int     cl_page_size	 (const struct cl_object *obj);
2879 int     cl_pages_prune       (const struct lu_env *env, struct cl_object *obj);
2880 
2881 void cl_lock_print      (const struct lu_env *env, void *cookie,
2882 			 lu_printer_t printer, const struct cl_lock *lock);
2883 void cl_lock_descr_print(const struct lu_env *env, void *cookie,
2884 			 lu_printer_t printer,
2885 			 const struct cl_lock_descr *descr);
2886 /* @} helper */
2887 
2888 /** @} cl_page */
2889 
2890 /** \defgroup cl_lock cl_lock
2891  * @{ */
2892 
2893 struct cl_lock *cl_lock_hold(const struct lu_env *env, const struct cl_io *io,
2894 			     const struct cl_lock_descr *need,
2895 			     const char *scope, const void *source);
2896 struct cl_lock *cl_lock_peek(const struct lu_env *env, const struct cl_io *io,
2897 			     const struct cl_lock_descr *need,
2898 			     const char *scope, const void *source);
2899 struct cl_lock *cl_lock_request(const struct lu_env *env, struct cl_io *io,
2900 				const struct cl_lock_descr *need,
2901 				const char *scope, const void *source);
2902 struct cl_lock *cl_lock_at_pgoff(const struct lu_env *env,
2903 				 struct cl_object *obj, pgoff_t index,
2904 				 struct cl_lock *except, int pending,
2905 				 int canceld);
cl_lock_at_page(const struct lu_env * env,struct cl_object * obj,struct cl_page * page,struct cl_lock * except,int pending,int canceld)2906 static inline struct cl_lock *cl_lock_at_page(const struct lu_env *env,
2907 					      struct cl_object *obj,
2908 					      struct cl_page *page,
2909 					      struct cl_lock *except,
2910 					      int pending, int canceld)
2911 {
2912 	LASSERT(cl_object_header(obj) == cl_object_header(page->cp_obj));
2913 	return cl_lock_at_pgoff(env, obj, page->cp_index, except,
2914 				pending, canceld);
2915 }
2916 
2917 const struct cl_lock_slice *cl_lock_at(const struct cl_lock *lock,
2918 				       const struct lu_device_type *dtype);
2919 
2920 void  cl_lock_get       (struct cl_lock *lock);
2921 void  cl_lock_get_trust (struct cl_lock *lock);
2922 void  cl_lock_put       (const struct lu_env *env, struct cl_lock *lock);
2923 void  cl_lock_hold_add  (const struct lu_env *env, struct cl_lock *lock,
2924 			 const char *scope, const void *source);
2925 void cl_lock_hold_release(const struct lu_env *env, struct cl_lock *lock,
2926 			  const char *scope, const void *source);
2927 void  cl_lock_unhold    (const struct lu_env *env, struct cl_lock *lock,
2928 			 const char *scope, const void *source);
2929 void  cl_lock_release   (const struct lu_env *env, struct cl_lock *lock,
2930 			 const char *scope, const void *source);
2931 void  cl_lock_user_add  (const struct lu_env *env, struct cl_lock *lock);
2932 void  cl_lock_user_del  (const struct lu_env *env, struct cl_lock *lock);
2933 
2934 int cl_lock_is_intransit(struct cl_lock *lock);
2935 
2936 int cl_lock_enqueue_wait(const struct lu_env *env, struct cl_lock *lock,
2937 			 int keep_mutex);
2938 
2939 /** \name statemachine statemachine
2940  * Interface to lock state machine consists of 3 parts:
2941  *
2942  *     - "try" functions that attempt to effect a state transition. If state
2943  *     transition is not possible right now (e.g., if it has to wait for some
2944  *     asynchronous event to occur), these functions return
2945  *     cl_lock_transition::CLO_WAIT.
2946  *
2947  *     - "non-try" functions that implement synchronous blocking interface on
2948  *     top of non-blocking "try" functions. These functions repeatedly call
2949  *     corresponding "try" versions, and if state transition is not possible
2950  *     immediately, wait for lock state change.
2951  *
2952  *     - methods from cl_lock_operations, called by "try" functions. Lock can
2953  *     be advanced to the target state only when all layers voted that they
2954  *     are ready for this transition. "Try" functions call methods under lock
2955  *     mutex. If a layer had to release a mutex, it re-acquires it and returns
2956  *     cl_lock_transition::CLO_REPEAT, causing "try" function to call all
2957  *     layers again.
2958  *
2959  * TRY	      NON-TRY      METHOD			    FINAL STATE
2960  *
2961  * cl_enqueue_try() cl_enqueue() cl_lock_operations::clo_enqueue() CLS_ENQUEUED
2962  *
2963  * cl_wait_try()    cl_wait()    cl_lock_operations::clo_wait()    CLS_HELD
2964  *
2965  * cl_unuse_try()   cl_unuse()   cl_lock_operations::clo_unuse()   CLS_CACHED
2966  *
2967  * cl_use_try()     NONE	 cl_lock_operations::clo_use()     CLS_HELD
2968  *
2969  * @{ */
2970 
2971 int   cl_wait       (const struct lu_env *env, struct cl_lock *lock);
2972 void  cl_unuse      (const struct lu_env *env, struct cl_lock *lock);
2973 int   cl_enqueue_try(const struct lu_env *env, struct cl_lock *lock,
2974 		     struct cl_io *io, __u32 flags);
2975 int   cl_unuse_try  (const struct lu_env *env, struct cl_lock *lock);
2976 int   cl_wait_try   (const struct lu_env *env, struct cl_lock *lock);
2977 int   cl_use_try    (const struct lu_env *env, struct cl_lock *lock, int atomic);
2978 
2979 /** @} statemachine */
2980 
2981 void cl_lock_signal      (const struct lu_env *env, struct cl_lock *lock);
2982 int  cl_lock_state_wait  (const struct lu_env *env, struct cl_lock *lock);
2983 void cl_lock_state_set   (const struct lu_env *env, struct cl_lock *lock,
2984 			  enum cl_lock_state state);
2985 int  cl_queue_match      (const struct list_head *queue,
2986 			  const struct cl_lock_descr *need);
2987 
2988 void cl_lock_mutex_get  (const struct lu_env *env, struct cl_lock *lock);
2989 void cl_lock_mutex_put  (const struct lu_env *env, struct cl_lock *lock);
2990 int  cl_lock_is_mutexed (struct cl_lock *lock);
2991 int  cl_lock_nr_mutexed (const struct lu_env *env);
2992 int  cl_lock_discard_pages(const struct lu_env *env, struct cl_lock *lock);
2993 int  cl_lock_ext_match  (const struct cl_lock_descr *has,
2994 			 const struct cl_lock_descr *need);
2995 int  cl_lock_descr_match(const struct cl_lock_descr *has,
2996 			 const struct cl_lock_descr *need);
2997 int  cl_lock_mode_match (enum cl_lock_mode has, enum cl_lock_mode need);
2998 int  cl_lock_modify     (const struct lu_env *env, struct cl_lock *lock,
2999 			 const struct cl_lock_descr *desc);
3000 
3001 void cl_lock_closure_init (const struct lu_env *env,
3002 			   struct cl_lock_closure *closure,
3003 			   struct cl_lock *origin, int wait);
3004 void cl_lock_closure_fini (struct cl_lock_closure *closure);
3005 int  cl_lock_closure_build(const struct lu_env *env, struct cl_lock *lock,
3006 			   struct cl_lock_closure *closure);
3007 void cl_lock_disclosure   (const struct lu_env *env,
3008 			   struct cl_lock_closure *closure);
3009 int  cl_lock_enclosure    (const struct lu_env *env, struct cl_lock *lock,
3010 			   struct cl_lock_closure *closure);
3011 
3012 void cl_lock_cancel(const struct lu_env *env, struct cl_lock *lock);
3013 void cl_lock_delete(const struct lu_env *env, struct cl_lock *lock);
3014 void cl_lock_error (const struct lu_env *env, struct cl_lock *lock, int error);
3015 void cl_locks_prune(const struct lu_env *env, struct cl_object *obj, int wait);
3016 
3017 unsigned long cl_lock_weigh(const struct lu_env *env, struct cl_lock *lock);
3018 
3019 /** @} cl_lock */
3020 
3021 /** \defgroup cl_io cl_io
3022  * @{ */
3023 
3024 int   cl_io_init	 (const struct lu_env *env, struct cl_io *io,
3025 			  enum cl_io_type iot, struct cl_object *obj);
3026 int   cl_io_sub_init     (const struct lu_env *env, struct cl_io *io,
3027 			  enum cl_io_type iot, struct cl_object *obj);
3028 int   cl_io_rw_init      (const struct lu_env *env, struct cl_io *io,
3029 			  enum cl_io_type iot, loff_t pos, size_t count);
3030 int   cl_io_loop	 (const struct lu_env *env, struct cl_io *io);
3031 
3032 void  cl_io_fini	 (const struct lu_env *env, struct cl_io *io);
3033 int   cl_io_iter_init    (const struct lu_env *env, struct cl_io *io);
3034 void  cl_io_iter_fini    (const struct lu_env *env, struct cl_io *io);
3035 int   cl_io_lock	 (const struct lu_env *env, struct cl_io *io);
3036 void  cl_io_unlock       (const struct lu_env *env, struct cl_io *io);
3037 int   cl_io_start	(const struct lu_env *env, struct cl_io *io);
3038 void  cl_io_end	  (const struct lu_env *env, struct cl_io *io);
3039 int   cl_io_lock_add     (const struct lu_env *env, struct cl_io *io,
3040 			  struct cl_io_lock_link *link);
3041 int   cl_io_lock_alloc_add(const struct lu_env *env, struct cl_io *io,
3042 			   struct cl_lock_descr *descr);
3043 int   cl_io_read_page    (const struct lu_env *env, struct cl_io *io,
3044 			  struct cl_page *page);
3045 int   cl_io_prepare_write(const struct lu_env *env, struct cl_io *io,
3046 			  struct cl_page *page, unsigned from, unsigned to);
3047 int   cl_io_commit_write (const struct lu_env *env, struct cl_io *io,
3048 			  struct cl_page *page, unsigned from, unsigned to);
3049 int   cl_io_submit_rw    (const struct lu_env *env, struct cl_io *io,
3050 			  enum cl_req_type iot, struct cl_2queue *queue);
3051 int   cl_io_submit_sync  (const struct lu_env *env, struct cl_io *io,
3052 			  enum cl_req_type iot, struct cl_2queue *queue,
3053 			  long timeout);
3054 int   cl_io_is_going     (const struct lu_env *env);
3055 
3056 /**
3057  * True, iff \a io is an O_APPEND write(2).
3058  */
cl_io_is_append(const struct cl_io * io)3059 static inline int cl_io_is_append(const struct cl_io *io)
3060 {
3061 	return io->ci_type == CIT_WRITE && io->u.ci_wr.wr_append;
3062 }
3063 
cl_io_is_sync_write(const struct cl_io * io)3064 static inline int cl_io_is_sync_write(const struct cl_io *io)
3065 {
3066 	return io->ci_type == CIT_WRITE && io->u.ci_wr.wr_sync;
3067 }
3068 
cl_io_is_mkwrite(const struct cl_io * io)3069 static inline int cl_io_is_mkwrite(const struct cl_io *io)
3070 {
3071 	return io->ci_type == CIT_FAULT && io->u.ci_fault.ft_mkwrite;
3072 }
3073 
3074 /**
3075  * True, iff \a io is a truncate(2).
3076  */
cl_io_is_trunc(const struct cl_io * io)3077 static inline int cl_io_is_trunc(const struct cl_io *io)
3078 {
3079 	return io->ci_type == CIT_SETATTR &&
3080 		(io->u.ci_setattr.sa_valid & ATTR_SIZE);
3081 }
3082 
3083 struct cl_io *cl_io_top(struct cl_io *io);
3084 
3085 #define CL_IO_SLICE_CLEAN(foo_io, base)					\
3086 do {									\
3087 	typeof(foo_io) __foo_io = (foo_io);				\
3088 									\
3089 	CLASSERT(offsetof(typeof(*__foo_io), base) == 0);		\
3090 	memset(&__foo_io->base + 1, 0,					\
3091 	       sizeof(*__foo_io) - sizeof(__foo_io->base));		\
3092 } while (0)
3093 
3094 /** @} cl_io */
3095 
3096 /** \defgroup cl_page_list cl_page_list
3097  * @{ */
3098 
3099 /**
3100  * Last page in the page list.
3101  */
cl_page_list_last(struct cl_page_list * plist)3102 static inline struct cl_page *cl_page_list_last(struct cl_page_list *plist)
3103 {
3104 	LASSERT(plist->pl_nr > 0);
3105 	return list_entry(plist->pl_pages.prev, struct cl_page, cp_batch);
3106 }
3107 
3108 /**
3109  * Iterate over pages in a page list.
3110  */
3111 #define cl_page_list_for_each(page, list)			       \
3112 	list_for_each_entry((page), &(list)->pl_pages, cp_batch)
3113 
3114 /**
3115  * Iterate over pages in a page list, taking possible removals into account.
3116  */
3117 #define cl_page_list_for_each_safe(page, temp, list)		    \
3118 	list_for_each_entry_safe((page), (temp), &(list)->pl_pages, cp_batch)
3119 
3120 void cl_page_list_init   (struct cl_page_list *plist);
3121 void cl_page_list_add    (struct cl_page_list *plist, struct cl_page *page);
3122 void cl_page_list_move   (struct cl_page_list *dst, struct cl_page_list *src,
3123 			  struct cl_page *page);
3124 void cl_page_list_splice (struct cl_page_list *list,
3125 			  struct cl_page_list *head);
3126 void cl_page_list_disown (const struct lu_env *env,
3127 			  struct cl_io *io, struct cl_page_list *plist);
3128 
3129 void cl_2queue_init     (struct cl_2queue *queue);
3130 void cl_2queue_add      (struct cl_2queue *queue, struct cl_page *page);
3131 void cl_2queue_disown   (const struct lu_env *env,
3132 			 struct cl_io *io, struct cl_2queue *queue);
3133 void cl_2queue_discard  (const struct lu_env *env,
3134 			 struct cl_io *io, struct cl_2queue *queue);
3135 void cl_2queue_fini     (const struct lu_env *env, struct cl_2queue *queue);
3136 void cl_2queue_init_page(struct cl_2queue *queue, struct cl_page *page);
3137 
3138 /** @} cl_page_list */
3139 
3140 /** \defgroup cl_req cl_req
3141  * @{ */
3142 struct cl_req *cl_req_alloc(const struct lu_env *env, struct cl_page *page,
3143 			    enum cl_req_type crt, int nr_objects);
3144 
3145 void cl_req_page_add  (const struct lu_env *env, struct cl_req *req,
3146 		       struct cl_page *page);
3147 void cl_req_page_done (const struct lu_env *env, struct cl_page *page);
3148 int  cl_req_prep      (const struct lu_env *env, struct cl_req *req);
3149 void cl_req_attr_set  (const struct lu_env *env, struct cl_req *req,
3150 		       struct cl_req_attr *attr, u64 flags);
3151 void cl_req_completion(const struct lu_env *env, struct cl_req *req, int ioret);
3152 
3153 /** \defgroup cl_sync_io cl_sync_io
3154  * @{ */
3155 
3156 /**
3157  * Anchor for synchronous transfer. This is allocated on a stack by thread
3158  * doing synchronous transfer, and a pointer to this structure is set up in
3159  * every page submitted for transfer. Transfer completion routine updates
3160  * anchor and wakes up waiting thread when transfer is complete.
3161  */
3162 struct cl_sync_io {
3163 	/** number of pages yet to be transferred. */
3164 	atomic_t		csi_sync_nr;
3165 	/** error code. */
3166 	int			csi_sync_rc;
3167 	/** barrier of destroy this structure */
3168 	atomic_t		csi_barrier;
3169 	/** completion to be signaled when transfer is complete. */
3170 	wait_queue_head_t		csi_waitq;
3171 };
3172 
3173 void cl_sync_io_init(struct cl_sync_io *anchor, int nrpages);
3174 int  cl_sync_io_wait(const struct lu_env *env, struct cl_io *io,
3175 		     struct cl_page_list *queue, struct cl_sync_io *anchor,
3176 		     long timeout);
3177 void cl_sync_io_note(struct cl_sync_io *anchor, int ioret);
3178 
3179 /** @} cl_sync_io */
3180 
3181 /** @} cl_req */
3182 
3183 /** \defgroup cl_env cl_env
3184  *
3185  * lu_env handling for a client.
3186  *
3187  * lu_env is an environment within which lustre code executes. Its major part
3188  * is lu_context---a fast memory allocation mechanism that is used to conserve
3189  * precious kernel stack space. Originally lu_env was designed for a server,
3190  * where
3191  *
3192  *     - there is a (mostly) fixed number of threads, and
3193  *
3194  *     - call chains have no non-lustre portions inserted between lustre code.
3195  *
3196  * On a client both these assumption fails, because every user thread can
3197  * potentially execute lustre code as part of a system call, and lustre calls
3198  * into VFS or MM that call back into lustre.
3199  *
3200  * To deal with that, cl_env wrapper functions implement the following
3201  * optimizations:
3202  *
3203  *     - allocation and destruction of environment is amortized by caching no
3204  *     longer used environments instead of destroying them;
3205  *
3206  *     - there is a notion of "current" environment, attached to the kernel
3207  *     data structure representing current thread Top-level lustre code
3208  *     allocates an environment and makes it current, then calls into
3209  *     non-lustre code, that in turn calls lustre back. Low-level lustre
3210  *     code thus called can fetch environment created by the top-level code
3211  *     and reuse it, avoiding additional environment allocation.
3212  *       Right now, three interfaces can attach the cl_env to running thread:
3213  *       - cl_env_get
3214  *       - cl_env_implant
3215  *       - cl_env_reexit(cl_env_reenter had to be called priorly)
3216  *
3217  * \see lu_env, lu_context, lu_context_key
3218  * @{ */
3219 
3220 struct cl_env_nest {
3221 	int   cen_refcheck;
3222 	void *cen_cookie;
3223 };
3224 
3225 struct lu_env *cl_env_get	(int *refcheck);
3226 struct lu_env *cl_env_alloc      (int *refcheck, __u32 tags);
3227 struct lu_env *cl_env_nested_get (struct cl_env_nest *nest);
3228 void	   cl_env_put	(struct lu_env *env, int *refcheck);
3229 void	   cl_env_nested_put (struct cl_env_nest *nest, struct lu_env *env);
3230 void	  *cl_env_reenter    (void);
3231 void	   cl_env_reexit     (void *cookie);
3232 void	   cl_env_implant    (struct lu_env *env, int *refcheck);
3233 void	   cl_env_unplant    (struct lu_env *env, int *refcheck);
3234 
3235 /** @} cl_env */
3236 
3237 /*
3238  * Misc
3239  */
3240 void cl_lvb2attr(struct cl_attr *attr, const struct ost_lvb *lvb);
3241 
3242 struct cl_device *cl_type_setup(const struct lu_env *env, struct lu_site *site,
3243 				struct lu_device_type *ldt,
3244 				struct lu_device *next);
3245 /** @} clio */
3246 
3247 int cl_global_init(void);
3248 void cl_global_fini(void);
3249 
3250 #endif /* _LINUX_CL_OBJECT_H */
3251