• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001  Dave Engebretsen & Todd Inglett IBM Corporation.
3  * Copyright 2001-2012 IBM Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 #ifndef _POWERPC_EEH_H
21 #define _POWERPC_EEH_H
22 #ifdef __KERNEL__
23 
24 #include <linux/init.h>
25 #include <linux/list.h>
26 #include <linux/string.h>
27 #include <linux/time.h>
28 #include <linux/atomic.h>
29 
30 #include <uapi/asm/eeh.h>
31 
32 struct pci_dev;
33 struct pci_bus;
34 struct pci_dn;
35 
36 #ifdef CONFIG_EEH
37 
38 /* EEH subsystem flags */
39 #define EEH_ENABLED		0x01	/* EEH enabled		*/
40 #define EEH_FORCE_DISABLED	0x02	/* EEH disabled		*/
41 #define EEH_PROBE_MODE_DEV	0x04	/* From PCI device	*/
42 #define EEH_PROBE_MODE_DEVTREE	0x08	/* From device tree	*/
43 #define EEH_VALID_PE_ZERO	0x10	/* PE#0 is valid	*/
44 #define EEH_ENABLE_IO_FOR_LOG	0x20	/* Enable IO for log	*/
45 #define EEH_EARLY_DUMP_LOG	0x40	/* Dump log immediately	*/
46 
47 /*
48  * Delay for PE reset, all in ms
49  *
50  * PCI specification has reset hold time of 100 milliseconds.
51  * We have 250 milliseconds here. The PCI bus settlement time
52  * is specified as 1.5 seconds and we have 1.8 seconds.
53  */
54 #define EEH_PE_RST_HOLD_TIME		250
55 #define EEH_PE_RST_SETTLE_TIME		1800
56 
57 /*
58  * The struct is used to trace PE related EEH functionality.
59  * In theory, there will have one instance of the struct to
60  * be created against particular PE. In nature, PEs corelate
61  * to each other. the struct has to reflect that hierarchy in
62  * order to easily pick up those affected PEs when one particular
63  * PE has EEH errors.
64  *
65  * Also, one particular PE might be composed of PCI device, PCI
66  * bus and its subordinate components. The struct also need ship
67  * the information. Further more, one particular PE is only meaingful
68  * in the corresponding PHB. Therefore, the root PEs should be created
69  * against existing PHBs in on-to-one fashion.
70  */
71 #define EEH_PE_INVALID	(1 << 0)	/* Invalid   */
72 #define EEH_PE_PHB	(1 << 1)	/* PHB PE    */
73 #define EEH_PE_DEVICE 	(1 << 2)	/* Device PE */
74 #define EEH_PE_BUS	(1 << 3)	/* Bus PE    */
75 
76 #define EEH_PE_ISOLATED		(1 << 0)	/* Isolated PE		*/
77 #define EEH_PE_RECOVERING	(1 << 1)	/* Recovering PE	*/
78 #define EEH_PE_CFG_BLOCKED	(1 << 2)	/* Block config access	*/
79 #define EEH_PE_RESET		(1 << 3)	/* PE reset in progress */
80 
81 #define EEH_PE_KEEP		(1 << 8)	/* Keep PE on hotplug	*/
82 #define EEH_PE_CFG_RESTRICTED	(1 << 9)	/* Block config on error */
83 #define EEH_PE_REMOVED		(1 << 10)	/* Removed permanently	*/
84 #define EEH_PE_PRI_BUS		(1 << 11)	/* Cached primary bus   */
85 
86 struct eeh_pe {
87 	int type;			/* PE type: PHB/Bus/Device	*/
88 	int state;			/* PE EEH dependent mode	*/
89 	int config_addr;		/* Traditional PCI address	*/
90 	int addr;			/* PE configuration address	*/
91 	struct pci_controller *phb;	/* Associated PHB		*/
92 	struct pci_bus *bus;		/* Top PCI bus for bus PE	*/
93 	int check_count;		/* Times of ignored error	*/
94 	int freeze_count;		/* Times of froze up		*/
95 	struct timeval tstamp;		/* Time on first-time freeze	*/
96 	int false_positives;		/* Times of reported #ff's	*/
97 	atomic_t pass_dev_cnt;		/* Count of passed through devs	*/
98 	struct eeh_pe *parent;		/* Parent PE			*/
99 	void *data;			/* PE auxillary data		*/
100 	struct list_head child_list;	/* Link PE to the child list	*/
101 	struct list_head edevs;		/* Link list of EEH devices	*/
102 	struct list_head child;		/* Child PEs			*/
103 };
104 
105 #define eeh_pe_for_each_dev(pe, edev, tmp) \
106 		list_for_each_entry_safe(edev, tmp, &pe->edevs, list)
107 
eeh_pe_passed(struct eeh_pe * pe)108 static inline bool eeh_pe_passed(struct eeh_pe *pe)
109 {
110 	return pe ? !!atomic_read(&pe->pass_dev_cnt) : false;
111 }
112 
113 /*
114  * The struct is used to trace EEH state for the associated
115  * PCI device node or PCI device. In future, it might
116  * represent PE as well so that the EEH device to form
117  * another tree except the currently existing tree of PCI
118  * buses and PCI devices
119  */
120 #define EEH_DEV_BRIDGE		(1 << 0)	/* PCI bridge		*/
121 #define EEH_DEV_ROOT_PORT	(1 << 1)	/* PCIe root port	*/
122 #define EEH_DEV_DS_PORT		(1 << 2)	/* Downstream port	*/
123 #define EEH_DEV_IRQ_DISABLED	(1 << 3)	/* Interrupt disabled	*/
124 #define EEH_DEV_DISCONNECTED	(1 << 4)	/* Removing from PE	*/
125 
126 #define EEH_DEV_NO_HANDLER	(1 << 8)	/* No error handler	*/
127 #define EEH_DEV_SYSFS		(1 << 9)	/* Sysfs created	*/
128 #define EEH_DEV_REMOVED		(1 << 10)	/* Removed permanently	*/
129 
130 struct eeh_dev {
131 	int mode;			/* EEH mode			*/
132 	int class_code;			/* Class code of the device	*/
133 	int config_addr;		/* Config address		*/
134 	int pe_config_addr;		/* PE config address		*/
135 	u32 config_space[16];		/* Saved PCI config space	*/
136 	int pcix_cap;			/* Saved PCIx capability	*/
137 	int pcie_cap;			/* Saved PCIe capability	*/
138 	int aer_cap;			/* Saved AER capability		*/
139 	struct eeh_pe *pe;		/* Associated PE		*/
140 	struct list_head list;		/* Form link list in the PE	*/
141 	struct pci_controller *phb;	/* Associated PHB		*/
142 	struct pci_dn *pdn;		/* Associated PCI device node	*/
143 	struct pci_dev *pdev;		/* Associated PCI device	*/
144 	struct pci_bus *bus;		/* PCI bus for partial hotplug	*/
145 };
146 
eeh_dev_to_pdn(struct eeh_dev * edev)147 static inline struct pci_dn *eeh_dev_to_pdn(struct eeh_dev *edev)
148 {
149 	return edev ? edev->pdn : NULL;
150 }
151 
eeh_dev_to_pci_dev(struct eeh_dev * edev)152 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
153 {
154 	return edev ? edev->pdev : NULL;
155 }
156 
eeh_dev_to_pe(struct eeh_dev * edev)157 static inline struct eeh_pe *eeh_dev_to_pe(struct eeh_dev* edev)
158 {
159 	return edev ? edev->pe : NULL;
160 }
161 
162 /* Return values from eeh_ops::next_error */
163 enum {
164 	EEH_NEXT_ERR_NONE = 0,
165 	EEH_NEXT_ERR_INF,
166 	EEH_NEXT_ERR_FROZEN_PE,
167 	EEH_NEXT_ERR_FENCED_PHB,
168 	EEH_NEXT_ERR_DEAD_PHB,
169 	EEH_NEXT_ERR_DEAD_IOC
170 };
171 
172 /*
173  * The struct is used to trace the registered EEH operation
174  * callback functions. Actually, those operation callback
175  * functions are heavily platform dependent. That means the
176  * platform should register its own EEH operation callback
177  * functions before any EEH further operations.
178  */
179 #define EEH_OPT_DISABLE		0	/* EEH disable	*/
180 #define EEH_OPT_ENABLE		1	/* EEH enable	*/
181 #define EEH_OPT_THAW_MMIO	2	/* MMIO enable	*/
182 #define EEH_OPT_THAW_DMA	3	/* DMA enable	*/
183 #define EEH_OPT_FREEZE_PE	4	/* Freeze PE	*/
184 #define EEH_STATE_UNAVAILABLE	(1 << 0)	/* State unavailable	*/
185 #define EEH_STATE_NOT_SUPPORT	(1 << 1)	/* EEH not supported	*/
186 #define EEH_STATE_RESET_ACTIVE	(1 << 2)	/* Active reset		*/
187 #define EEH_STATE_MMIO_ACTIVE	(1 << 3)	/* Active MMIO		*/
188 #define EEH_STATE_DMA_ACTIVE	(1 << 4)	/* Active DMA		*/
189 #define EEH_STATE_MMIO_ENABLED	(1 << 5)	/* MMIO enabled		*/
190 #define EEH_STATE_DMA_ENABLED	(1 << 6)	/* DMA enabled		*/
191 #define EEH_RESET_DEACTIVATE	0	/* Deactivate the PE reset	*/
192 #define EEH_RESET_HOT		1	/* Hot reset			*/
193 #define EEH_RESET_FUNDAMENTAL	3	/* Fundamental reset		*/
194 #define EEH_LOG_TEMP		1	/* EEH temporary error log	*/
195 #define EEH_LOG_PERM		2	/* EEH permanent error log	*/
196 
197 struct eeh_ops {
198 	char *name;
199 	int (*init)(void);
200 	int (*post_init)(void);
201 	void* (*probe)(struct pci_dn *pdn, void *data);
202 	int (*set_option)(struct eeh_pe *pe, int option);
203 	int (*get_pe_addr)(struct eeh_pe *pe);
204 	int (*get_state)(struct eeh_pe *pe, int *state);
205 	int (*reset)(struct eeh_pe *pe, int option);
206 	int (*wait_state)(struct eeh_pe *pe, int max_wait);
207 	int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
208 	int (*configure_bridge)(struct eeh_pe *pe);
209 	int (*err_inject)(struct eeh_pe *pe, int type, int func,
210 			  unsigned long addr, unsigned long mask);
211 	int (*read_config)(struct pci_dn *pdn, int where, int size, u32 *val);
212 	int (*write_config)(struct pci_dn *pdn, int where, int size, u32 val);
213 	int (*next_error)(struct eeh_pe **pe);
214 	int (*restore_config)(struct pci_dn *pdn);
215 };
216 
217 extern int eeh_subsystem_flags;
218 extern int eeh_max_freezes;
219 extern struct eeh_ops *eeh_ops;
220 extern raw_spinlock_t confirm_error_lock;
221 
eeh_add_flag(int flag)222 static inline void eeh_add_flag(int flag)
223 {
224 	eeh_subsystem_flags |= flag;
225 }
226 
eeh_clear_flag(int flag)227 static inline void eeh_clear_flag(int flag)
228 {
229 	eeh_subsystem_flags &= ~flag;
230 }
231 
eeh_has_flag(int flag)232 static inline bool eeh_has_flag(int flag)
233 {
234         return !!(eeh_subsystem_flags & flag);
235 }
236 
eeh_enabled(void)237 static inline bool eeh_enabled(void)
238 {
239 	if (eeh_has_flag(EEH_FORCE_DISABLED) ||
240 	    !eeh_has_flag(EEH_ENABLED))
241 		return false;
242 
243 	return true;
244 }
245 
eeh_serialize_lock(unsigned long * flags)246 static inline void eeh_serialize_lock(unsigned long *flags)
247 {
248 	raw_spin_lock_irqsave(&confirm_error_lock, *flags);
249 }
250 
eeh_serialize_unlock(unsigned long flags)251 static inline void eeh_serialize_unlock(unsigned long flags)
252 {
253 	raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
254 }
255 
256 typedef void *(*eeh_traverse_func)(void *data, void *flag);
257 void eeh_set_pe_aux_size(int size);
258 int eeh_phb_pe_create(struct pci_controller *phb);
259 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
260 struct eeh_pe *eeh_pe_get(struct eeh_dev *edev);
261 int eeh_add_to_parent_pe(struct eeh_dev *edev);
262 int eeh_rmv_from_parent_pe(struct eeh_dev *edev);
263 void eeh_pe_update_time_stamp(struct eeh_pe *pe);
264 void *eeh_pe_traverse(struct eeh_pe *root,
265 		eeh_traverse_func fn, void *flag);
266 void *eeh_pe_dev_traverse(struct eeh_pe *root,
267 		eeh_traverse_func fn, void *flag);
268 void eeh_pe_restore_bars(struct eeh_pe *pe);
269 const char *eeh_pe_loc_get(struct eeh_pe *pe);
270 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
271 
272 void *eeh_dev_init(struct pci_dn *pdn, void *data);
273 void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
274 int eeh_init(void);
275 int __init eeh_ops_register(struct eeh_ops *ops);
276 int __exit eeh_ops_unregister(const char *name);
277 int eeh_check_failure(const volatile void __iomem *token);
278 int eeh_dev_check_failure(struct eeh_dev *edev);
279 void eeh_addr_cache_build(void);
280 void eeh_add_device_early(struct pci_dn *);
281 void eeh_add_device_tree_early(struct pci_dn *);
282 void eeh_add_device_late(struct pci_dev *);
283 void eeh_add_device_tree_late(struct pci_bus *);
284 void eeh_add_sysfs_files(struct pci_bus *);
285 void eeh_remove_device(struct pci_dev *);
286 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state);
287 int eeh_pe_reset_and_recover(struct eeh_pe *pe);
288 int eeh_dev_open(struct pci_dev *pdev);
289 void eeh_dev_release(struct pci_dev *pdev);
290 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group);
291 int eeh_pe_set_option(struct eeh_pe *pe, int option);
292 int eeh_pe_get_state(struct eeh_pe *pe);
293 int eeh_pe_reset(struct eeh_pe *pe, int option);
294 int eeh_pe_configure(struct eeh_pe *pe);
295 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
296 		      unsigned long addr, unsigned long mask);
297 
298 /**
299  * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
300  *
301  * If this macro yields TRUE, the caller relays to eeh_check_failure()
302  * which does further tests out of line.
303  */
304 #define EEH_POSSIBLE_ERROR(val, type)	((val) == (type)~0 && eeh_enabled())
305 
306 /*
307  * Reads from a device which has been isolated by EEH will return
308  * all 1s.  This macro gives an all-1s value of the given size (in
309  * bytes: 1, 2, or 4) for comparing with the result of a read.
310  */
311 #define EEH_IO_ERROR_VALUE(size)	(~0U >> ((4 - (size)) * 8))
312 
313 #else /* !CONFIG_EEH */
314 
eeh_enabled(void)315 static inline bool eeh_enabled(void)
316 {
317         return false;
318 }
319 
eeh_init(void)320 static inline int eeh_init(void)
321 {
322 	return 0;
323 }
324 
eeh_dev_init(struct pci_dn * pdn,void * data)325 static inline void *eeh_dev_init(struct pci_dn *pdn, void *data)
326 {
327 	return NULL;
328 }
329 
eeh_dev_phb_init_dynamic(struct pci_controller * phb)330 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
331 
eeh_check_failure(const volatile void __iomem * token)332 static inline int eeh_check_failure(const volatile void __iomem *token)
333 {
334 	return 0;
335 }
336 
337 #define eeh_dev_check_failure(x) (0)
338 
eeh_addr_cache_build(void)339 static inline void eeh_addr_cache_build(void) { }
340 
eeh_add_device_early(struct pci_dn * pdn)341 static inline void eeh_add_device_early(struct pci_dn *pdn) { }
342 
eeh_add_device_tree_early(struct pci_dn * pdn)343 static inline void eeh_add_device_tree_early(struct pci_dn *pdn) { }
344 
eeh_add_device_late(struct pci_dev * dev)345 static inline void eeh_add_device_late(struct pci_dev *dev) { }
346 
eeh_add_device_tree_late(struct pci_bus * bus)347 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
348 
eeh_add_sysfs_files(struct pci_bus * bus)349 static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
350 
eeh_remove_device(struct pci_dev * dev)351 static inline void eeh_remove_device(struct pci_dev *dev) { }
352 
353 #define EEH_POSSIBLE_ERROR(val, type) (0)
354 #define EEH_IO_ERROR_VALUE(size) (-1UL)
355 #endif /* CONFIG_EEH */
356 
357 #ifdef CONFIG_PPC64
358 /*
359  * MMIO read/write operations with EEH support.
360  */
eeh_readb(const volatile void __iomem * addr)361 static inline u8 eeh_readb(const volatile void __iomem *addr)
362 {
363 	u8 val = in_8(addr);
364 	if (EEH_POSSIBLE_ERROR(val, u8))
365 		eeh_check_failure(addr);
366 	return val;
367 }
368 
eeh_readw(const volatile void __iomem * addr)369 static inline u16 eeh_readw(const volatile void __iomem *addr)
370 {
371 	u16 val = in_le16(addr);
372 	if (EEH_POSSIBLE_ERROR(val, u16))
373 		eeh_check_failure(addr);
374 	return val;
375 }
376 
eeh_readl(const volatile void __iomem * addr)377 static inline u32 eeh_readl(const volatile void __iomem *addr)
378 {
379 	u32 val = in_le32(addr);
380 	if (EEH_POSSIBLE_ERROR(val, u32))
381 		eeh_check_failure(addr);
382 	return val;
383 }
384 
eeh_readq(const volatile void __iomem * addr)385 static inline u64 eeh_readq(const volatile void __iomem *addr)
386 {
387 	u64 val = in_le64(addr);
388 	if (EEH_POSSIBLE_ERROR(val, u64))
389 		eeh_check_failure(addr);
390 	return val;
391 }
392 
eeh_readw_be(const volatile void __iomem * addr)393 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
394 {
395 	u16 val = in_be16(addr);
396 	if (EEH_POSSIBLE_ERROR(val, u16))
397 		eeh_check_failure(addr);
398 	return val;
399 }
400 
eeh_readl_be(const volatile void __iomem * addr)401 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
402 {
403 	u32 val = in_be32(addr);
404 	if (EEH_POSSIBLE_ERROR(val, u32))
405 		eeh_check_failure(addr);
406 	return val;
407 }
408 
eeh_readq_be(const volatile void __iomem * addr)409 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
410 {
411 	u64 val = in_be64(addr);
412 	if (EEH_POSSIBLE_ERROR(val, u64))
413 		eeh_check_failure(addr);
414 	return val;
415 }
416 
eeh_memcpy_fromio(void * dest,const volatile void __iomem * src,unsigned long n)417 static inline void eeh_memcpy_fromio(void *dest, const
418 				     volatile void __iomem *src,
419 				     unsigned long n)
420 {
421 	_memcpy_fromio(dest, src, n);
422 
423 	/* Look for ffff's here at dest[n].  Assume that at least 4 bytes
424 	 * were copied. Check all four bytes.
425 	 */
426 	if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
427 		eeh_check_failure(src);
428 }
429 
430 /* in-string eeh macros */
eeh_readsb(const volatile void __iomem * addr,void * buf,int ns)431 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
432 			      int ns)
433 {
434 	_insb(addr, buf, ns);
435 	if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
436 		eeh_check_failure(addr);
437 }
438 
eeh_readsw(const volatile void __iomem * addr,void * buf,int ns)439 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
440 			      int ns)
441 {
442 	_insw(addr, buf, ns);
443 	if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
444 		eeh_check_failure(addr);
445 }
446 
eeh_readsl(const volatile void __iomem * addr,void * buf,int nl)447 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
448 			      int nl)
449 {
450 	_insl(addr, buf, nl);
451 	if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
452 		eeh_check_failure(addr);
453 }
454 
455 #endif /* CONFIG_PPC64 */
456 #endif /* __KERNEL__ */
457 #endif /* _POWERPC_EEH_H */
458