• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18 
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44 
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/of_device.h>
61 #include <linux/pagemap.h>
62 #include <linux/platform_device.h>
63 #include <linux/pm_qos.h>
64 #include <linux/pm_runtime.h>
65 #include <linux/sh_dma.h>
66 #include <linux/spinlock.h>
67 #include <linux/module.h>
68 
69 #define DRIVER_NAME	"sh_mmcif"
70 #define DRIVER_VERSION	"2010-04-28"
71 
72 /* CE_CMD_SET */
73 #define CMD_MASK		0x3f000000
74 #define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
75 #define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76 #define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
77 #define CMD_SET_RBSY		(1 << 21) /* R1b */
78 #define CMD_SET_CCSEN		(1 << 20)
79 #define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
80 #define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
81 #define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
82 #define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
83 #define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
84 #define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
85 #define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
86 #define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
87 #define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
88 #define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89 #define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
90 #define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
91 #define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
92 #define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
93 #define CMD_SET_CCSH		(1 << 5)
94 #define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
95 #define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
96 #define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
97 #define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
98 
99 /* CE_CMD_CTRL */
100 #define CMD_CTRL_BREAK		(1 << 0)
101 
102 /* CE_BLOCK_SET */
103 #define BLOCK_SIZE_MASK		0x0000ffff
104 
105 /* CE_INT */
106 #define INT_CCSDE		(1 << 29)
107 #define INT_CMD12DRE		(1 << 26)
108 #define INT_CMD12RBE		(1 << 25)
109 #define INT_CMD12CRE		(1 << 24)
110 #define INT_DTRANE		(1 << 23)
111 #define INT_BUFRE		(1 << 22)
112 #define INT_BUFWEN		(1 << 21)
113 #define INT_BUFREN		(1 << 20)
114 #define INT_CCSRCV		(1 << 19)
115 #define INT_RBSYE		(1 << 17)
116 #define INT_CRSPE		(1 << 16)
117 #define INT_CMDVIO		(1 << 15)
118 #define INT_BUFVIO		(1 << 14)
119 #define INT_WDATERR		(1 << 11)
120 #define INT_RDATERR		(1 << 10)
121 #define INT_RIDXERR		(1 << 9)
122 #define INT_RSPERR		(1 << 8)
123 #define INT_CCSTO		(1 << 5)
124 #define INT_CRCSTO		(1 << 4)
125 #define INT_WDATTO		(1 << 3)
126 #define INT_RDATTO		(1 << 2)
127 #define INT_RBSYTO		(1 << 1)
128 #define INT_RSPTO		(1 << 0)
129 #define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
130 				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
132 				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133 
134 #define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
135 				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137 
138 #define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139 
140 /* CE_INT_MASK */
141 #define MASK_ALL		0x00000000
142 #define MASK_MCCSDE		(1 << 29)
143 #define MASK_MCMD12DRE		(1 << 26)
144 #define MASK_MCMD12RBE		(1 << 25)
145 #define MASK_MCMD12CRE		(1 << 24)
146 #define MASK_MDTRANE		(1 << 23)
147 #define MASK_MBUFRE		(1 << 22)
148 #define MASK_MBUFWEN		(1 << 21)
149 #define MASK_MBUFREN		(1 << 20)
150 #define MASK_MCCSRCV		(1 << 19)
151 #define MASK_MRBSYE		(1 << 17)
152 #define MASK_MCRSPE		(1 << 16)
153 #define MASK_MCMDVIO		(1 << 15)
154 #define MASK_MBUFVIO		(1 << 14)
155 #define MASK_MWDATERR		(1 << 11)
156 #define MASK_MRDATERR		(1 << 10)
157 #define MASK_MRIDXERR		(1 << 9)
158 #define MASK_MRSPERR		(1 << 8)
159 #define MASK_MCCSTO		(1 << 5)
160 #define MASK_MCRCSTO		(1 << 4)
161 #define MASK_MWDATTO		(1 << 3)
162 #define MASK_MRDATTO		(1 << 2)
163 #define MASK_MRBSYTO		(1 << 1)
164 #define MASK_MRSPTO		(1 << 0)
165 
166 #define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 				 MASK_MCRCSTO | MASK_MWDATTO | \
169 				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170 
171 #define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
172 				 MASK_MBUFREN | MASK_MBUFWEN |			\
173 				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
174 				 MASK_MCMD12RBE | MASK_MCMD12CRE)
175 
176 /* CE_HOST_STS1 */
177 #define STS1_CMDSEQ		(1 << 31)
178 
179 /* CE_HOST_STS2 */
180 #define STS2_CRCSTE		(1 << 31)
181 #define STS2_CRC16E		(1 << 30)
182 #define STS2_AC12CRCE		(1 << 29)
183 #define STS2_RSPCRC7E		(1 << 28)
184 #define STS2_CRCSTEBE		(1 << 27)
185 #define STS2_RDATEBE		(1 << 26)
186 #define STS2_AC12REBE		(1 << 25)
187 #define STS2_RSPEBE		(1 << 24)
188 #define STS2_AC12IDXE		(1 << 23)
189 #define STS2_RSPIDXE		(1 << 22)
190 #define STS2_CCSTO		(1 << 15)
191 #define STS2_RDATTO		(1 << 14)
192 #define STS2_DATBSYTO		(1 << 13)
193 #define STS2_CRCSTTO		(1 << 12)
194 #define STS2_AC12BSYTO		(1 << 11)
195 #define STS2_RSPBSYTO		(1 << 10)
196 #define STS2_AC12RSPTO		(1 << 9)
197 #define STS2_RSPTO		(1 << 8)
198 #define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
199 				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200 #define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
201 				 STS2_DATBSYTO | STS2_CRCSTTO |		\
202 				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
203 				 STS2_AC12RSPTO | STS2_RSPTO)
204 
205 #define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
206 #define CLKDEV_MMC_DATA		20000000 /* 20MHz */
207 #define CLKDEV_INIT		400000   /* 400 KHz */
208 
209 enum sh_mmcif_state {
210 	STATE_IDLE,
211 	STATE_REQUEST,
212 	STATE_IOS,
213 	STATE_TIMEOUT,
214 };
215 
216 enum sh_mmcif_wait_for {
217 	MMCIF_WAIT_FOR_REQUEST,
218 	MMCIF_WAIT_FOR_CMD,
219 	MMCIF_WAIT_FOR_MREAD,
220 	MMCIF_WAIT_FOR_MWRITE,
221 	MMCIF_WAIT_FOR_READ,
222 	MMCIF_WAIT_FOR_WRITE,
223 	MMCIF_WAIT_FOR_READ_END,
224 	MMCIF_WAIT_FOR_WRITE_END,
225 	MMCIF_WAIT_FOR_STOP,
226 };
227 
228 /*
229  * difference for each SoC
230  */
231 struct sh_mmcif_host {
232 	struct mmc_host *mmc;
233 	struct mmc_request *mrq;
234 	struct platform_device *pd;
235 	struct clk *clk;
236 	int bus_width;
237 	unsigned char timing;
238 	bool sd_error;
239 	bool dying;
240 	long timeout;
241 	void __iomem *addr;
242 	u32 *pio_ptr;
243 	spinlock_t lock;		/* protect sh_mmcif_host::state */
244 	enum sh_mmcif_state state;
245 	enum sh_mmcif_wait_for wait_for;
246 	struct delayed_work timeout_work;
247 	size_t blocksize;
248 	int sg_idx;
249 	int sg_blkidx;
250 	bool power;
251 	bool card_present;
252 	bool ccs_enable;		/* Command Completion Signal support */
253 	bool clk_ctrl2_enable;
254 	struct mutex thread_lock;
255 	u32 clkdiv_map;         /* see CE_CLK_CTRL::CLKDIV */
256 
257 	/* DMA support */
258 	struct dma_chan		*chan_rx;
259 	struct dma_chan		*chan_tx;
260 	struct completion	dma_complete;
261 	bool			dma_active;
262 };
263 
264 static const struct of_device_id sh_mmcif_of_match[] = {
265 	{ .compatible = "renesas,sh-mmcif" },
266 	{ }
267 };
268 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
269 
270 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
271 
sh_mmcif_bitset(struct sh_mmcif_host * host,unsigned int reg,u32 val)272 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
273 					unsigned int reg, u32 val)
274 {
275 	writel(val | readl(host->addr + reg), host->addr + reg);
276 }
277 
sh_mmcif_bitclr(struct sh_mmcif_host * host,unsigned int reg,u32 val)278 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
279 					unsigned int reg, u32 val)
280 {
281 	writel(~val & readl(host->addr + reg), host->addr + reg);
282 }
283 
sh_mmcif_dma_complete(void * arg)284 static void sh_mmcif_dma_complete(void *arg)
285 {
286 	struct sh_mmcif_host *host = arg;
287 	struct mmc_request *mrq = host->mrq;
288 	struct device *dev = sh_mmcif_host_to_dev(host);
289 
290 	dev_dbg(dev, "Command completed\n");
291 
292 	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
293 		 dev_name(dev)))
294 		return;
295 
296 	complete(&host->dma_complete);
297 }
298 
sh_mmcif_start_dma_rx(struct sh_mmcif_host * host)299 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
300 {
301 	struct mmc_data *data = host->mrq->data;
302 	struct scatterlist *sg = data->sg;
303 	struct dma_async_tx_descriptor *desc = NULL;
304 	struct dma_chan *chan = host->chan_rx;
305 	struct device *dev = sh_mmcif_host_to_dev(host);
306 	dma_cookie_t cookie = -EINVAL;
307 	int ret;
308 
309 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
310 			 DMA_FROM_DEVICE);
311 	if (ret > 0) {
312 		host->dma_active = true;
313 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
314 			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
315 	}
316 
317 	if (desc) {
318 		desc->callback = sh_mmcif_dma_complete;
319 		desc->callback_param = host;
320 		cookie = dmaengine_submit(desc);
321 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
322 		dma_async_issue_pending(chan);
323 	}
324 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
325 		__func__, data->sg_len, ret, cookie);
326 
327 	if (!desc) {
328 		/* DMA failed, fall back to PIO */
329 		if (ret >= 0)
330 			ret = -EIO;
331 		host->chan_rx = NULL;
332 		host->dma_active = false;
333 		dma_release_channel(chan);
334 		/* Free the Tx channel too */
335 		chan = host->chan_tx;
336 		if (chan) {
337 			host->chan_tx = NULL;
338 			dma_release_channel(chan);
339 		}
340 		dev_warn(dev,
341 			 "DMA failed: %d, falling back to PIO\n", ret);
342 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
343 	}
344 
345 	dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
346 		desc, cookie, data->sg_len);
347 }
348 
sh_mmcif_start_dma_tx(struct sh_mmcif_host * host)349 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
350 {
351 	struct mmc_data *data = host->mrq->data;
352 	struct scatterlist *sg = data->sg;
353 	struct dma_async_tx_descriptor *desc = NULL;
354 	struct dma_chan *chan = host->chan_tx;
355 	struct device *dev = sh_mmcif_host_to_dev(host);
356 	dma_cookie_t cookie = -EINVAL;
357 	int ret;
358 
359 	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
360 			 DMA_TO_DEVICE);
361 	if (ret > 0) {
362 		host->dma_active = true;
363 		desc = dmaengine_prep_slave_sg(chan, sg, ret,
364 			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
365 	}
366 
367 	if (desc) {
368 		desc->callback = sh_mmcif_dma_complete;
369 		desc->callback_param = host;
370 		cookie = dmaengine_submit(desc);
371 		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
372 		dma_async_issue_pending(chan);
373 	}
374 	dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
375 		__func__, data->sg_len, ret, cookie);
376 
377 	if (!desc) {
378 		/* DMA failed, fall back to PIO */
379 		if (ret >= 0)
380 			ret = -EIO;
381 		host->chan_tx = NULL;
382 		host->dma_active = false;
383 		dma_release_channel(chan);
384 		/* Free the Rx channel too */
385 		chan = host->chan_rx;
386 		if (chan) {
387 			host->chan_rx = NULL;
388 			dma_release_channel(chan);
389 		}
390 		dev_warn(dev,
391 			 "DMA failed: %d, falling back to PIO\n", ret);
392 		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
393 	}
394 
395 	dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
396 		desc, cookie);
397 }
398 
399 static struct dma_chan *
sh_mmcif_request_dma_pdata(struct sh_mmcif_host * host,uintptr_t slave_id)400 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
401 {
402 	dma_cap_mask_t mask;
403 
404 	dma_cap_zero(mask);
405 	dma_cap_set(DMA_SLAVE, mask);
406 	if (slave_id <= 0)
407 		return NULL;
408 
409 	return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
410 }
411 
sh_mmcif_dma_slave_config(struct sh_mmcif_host * host,struct dma_chan * chan,enum dma_transfer_direction direction)412 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
413 				     struct dma_chan *chan,
414 				     enum dma_transfer_direction direction)
415 {
416 	struct resource *res;
417 	struct dma_slave_config cfg = { 0, };
418 
419 	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
420 	cfg.direction = direction;
421 
422 	if (direction == DMA_DEV_TO_MEM) {
423 		cfg.src_addr = res->start + MMCIF_CE_DATA;
424 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
425 	} else {
426 		cfg.dst_addr = res->start + MMCIF_CE_DATA;
427 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
428 	}
429 
430 	return dmaengine_slave_config(chan, &cfg);
431 }
432 
sh_mmcif_request_dma(struct sh_mmcif_host * host)433 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
434 {
435 	struct device *dev = sh_mmcif_host_to_dev(host);
436 	host->dma_active = false;
437 
438 	/* We can only either use DMA for both Tx and Rx or not use it at all */
439 	if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
440 		struct sh_mmcif_plat_data *pdata = dev->platform_data;
441 
442 		host->chan_tx = sh_mmcif_request_dma_pdata(host,
443 							pdata->slave_id_tx);
444 		host->chan_rx = sh_mmcif_request_dma_pdata(host,
445 							pdata->slave_id_rx);
446 	} else {
447 		host->chan_tx = dma_request_slave_channel(dev, "tx");
448 		host->chan_rx = dma_request_slave_channel(dev, "rx");
449 	}
450 	dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
451 		host->chan_rx);
452 
453 	if (!host->chan_tx || !host->chan_rx ||
454 	    sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
455 	    sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
456 		goto error;
457 
458 	return;
459 
460 error:
461 	if (host->chan_tx)
462 		dma_release_channel(host->chan_tx);
463 	if (host->chan_rx)
464 		dma_release_channel(host->chan_rx);
465 	host->chan_tx = host->chan_rx = NULL;
466 }
467 
sh_mmcif_release_dma(struct sh_mmcif_host * host)468 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
469 {
470 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
471 	/* Descriptors are freed automatically */
472 	if (host->chan_tx) {
473 		struct dma_chan *chan = host->chan_tx;
474 		host->chan_tx = NULL;
475 		dma_release_channel(chan);
476 	}
477 	if (host->chan_rx) {
478 		struct dma_chan *chan = host->chan_rx;
479 		host->chan_rx = NULL;
480 		dma_release_channel(chan);
481 	}
482 
483 	host->dma_active = false;
484 }
485 
sh_mmcif_clock_control(struct sh_mmcif_host * host,unsigned int clk)486 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
487 {
488 	struct device *dev = sh_mmcif_host_to_dev(host);
489 	struct sh_mmcif_plat_data *p = dev->platform_data;
490 	bool sup_pclk = p ? p->sup_pclk : false;
491 	unsigned int current_clk = clk_get_rate(host->clk);
492 	unsigned int clkdiv;
493 
494 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
495 	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
496 
497 	if (!clk)
498 		return;
499 
500 	if (host->clkdiv_map) {
501 		unsigned int freq, best_freq, myclk, div, diff_min, diff;
502 		int i;
503 
504 		clkdiv = 0;
505 		diff_min = ~0;
506 		best_freq = 0;
507 		for (i = 31; i >= 0; i--) {
508 			if (!((1 << i) & host->clkdiv_map))
509 				continue;
510 
511 			/*
512 			 * clk = parent_freq / div
513 			 * -> parent_freq = clk x div
514 			 */
515 
516 			div = 1 << (i + 1);
517 			freq = clk_round_rate(host->clk, clk * div);
518 			myclk = freq / div;
519 			diff = (myclk > clk) ? myclk - clk : clk - myclk;
520 
521 			if (diff <= diff_min) {
522 				best_freq = freq;
523 				clkdiv = i;
524 				diff_min = diff;
525 			}
526 		}
527 
528 		dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
529 			(best_freq / (1 << (clkdiv + 1))), clk,
530 			best_freq, clkdiv);
531 
532 		clk_set_rate(host->clk, best_freq);
533 		clkdiv = clkdiv << 16;
534 	} else if (sup_pclk && clk == current_clk) {
535 		clkdiv = CLK_SUP_PCLK;
536 	} else {
537 		clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
538 	}
539 
540 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
541 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
542 }
543 
sh_mmcif_sync_reset(struct sh_mmcif_host * host)544 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
545 {
546 	u32 tmp;
547 
548 	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
549 
550 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
551 	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
552 	if (host->ccs_enable)
553 		tmp |= SCCSTO_29;
554 	if (host->clk_ctrl2_enable)
555 		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
556 	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
557 		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
558 	/* byte swap on */
559 	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
560 }
561 
sh_mmcif_error_manage(struct sh_mmcif_host * host)562 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
563 {
564 	struct device *dev = sh_mmcif_host_to_dev(host);
565 	u32 state1, state2;
566 	int ret, timeout;
567 
568 	host->sd_error = false;
569 
570 	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
571 	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
572 	dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
573 	dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
574 
575 	if (state1 & STS1_CMDSEQ) {
576 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
577 		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
578 		for (timeout = 10000000; timeout; timeout--) {
579 			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
580 			      & STS1_CMDSEQ))
581 				break;
582 			mdelay(1);
583 		}
584 		if (!timeout) {
585 			dev_err(dev,
586 				"Forced end of command sequence timeout err\n");
587 			return -EIO;
588 		}
589 		sh_mmcif_sync_reset(host);
590 		dev_dbg(dev, "Forced end of command sequence\n");
591 		return -EIO;
592 	}
593 
594 	if (state2 & STS2_CRC_ERR) {
595 		dev_err(dev, " CRC error: state %u, wait %u\n",
596 			host->state, host->wait_for);
597 		ret = -EIO;
598 	} else if (state2 & STS2_TIMEOUT_ERR) {
599 		dev_err(dev, " Timeout: state %u, wait %u\n",
600 			host->state, host->wait_for);
601 		ret = -ETIMEDOUT;
602 	} else {
603 		dev_dbg(dev, " End/Index error: state %u, wait %u\n",
604 			host->state, host->wait_for);
605 		ret = -EIO;
606 	}
607 	return ret;
608 }
609 
sh_mmcif_next_block(struct sh_mmcif_host * host,u32 * p)610 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
611 {
612 	struct mmc_data *data = host->mrq->data;
613 
614 	host->sg_blkidx += host->blocksize;
615 
616 	/* data->sg->length must be a multiple of host->blocksize? */
617 	BUG_ON(host->sg_blkidx > data->sg->length);
618 
619 	if (host->sg_blkidx == data->sg->length) {
620 		host->sg_blkidx = 0;
621 		if (++host->sg_idx < data->sg_len)
622 			host->pio_ptr = sg_virt(++data->sg);
623 	} else {
624 		host->pio_ptr = p;
625 	}
626 
627 	return host->sg_idx != data->sg_len;
628 }
629 
sh_mmcif_single_read(struct sh_mmcif_host * host,struct mmc_request * mrq)630 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
631 				 struct mmc_request *mrq)
632 {
633 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
634 			   BLOCK_SIZE_MASK) + 3;
635 
636 	host->wait_for = MMCIF_WAIT_FOR_READ;
637 
638 	/* buf read enable */
639 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
640 }
641 
sh_mmcif_read_block(struct sh_mmcif_host * host)642 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
643 {
644 	struct device *dev = sh_mmcif_host_to_dev(host);
645 	struct mmc_data *data = host->mrq->data;
646 	u32 *p = sg_virt(data->sg);
647 	int i;
648 
649 	if (host->sd_error) {
650 		data->error = sh_mmcif_error_manage(host);
651 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
652 		return false;
653 	}
654 
655 	for (i = 0; i < host->blocksize / 4; i++)
656 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
657 
658 	/* buffer read end */
659 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
660 	host->wait_for = MMCIF_WAIT_FOR_READ_END;
661 
662 	return true;
663 }
664 
sh_mmcif_multi_read(struct sh_mmcif_host * host,struct mmc_request * mrq)665 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
666 				struct mmc_request *mrq)
667 {
668 	struct mmc_data *data = mrq->data;
669 
670 	if (!data->sg_len || !data->sg->length)
671 		return;
672 
673 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
674 		BLOCK_SIZE_MASK;
675 
676 	host->wait_for = MMCIF_WAIT_FOR_MREAD;
677 	host->sg_idx = 0;
678 	host->sg_blkidx = 0;
679 	host->pio_ptr = sg_virt(data->sg);
680 
681 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
682 }
683 
sh_mmcif_mread_block(struct sh_mmcif_host * host)684 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
685 {
686 	struct device *dev = sh_mmcif_host_to_dev(host);
687 	struct mmc_data *data = host->mrq->data;
688 	u32 *p = host->pio_ptr;
689 	int i;
690 
691 	if (host->sd_error) {
692 		data->error = sh_mmcif_error_manage(host);
693 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
694 		return false;
695 	}
696 
697 	BUG_ON(!data->sg->length);
698 
699 	for (i = 0; i < host->blocksize / 4; i++)
700 		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
701 
702 	if (!sh_mmcif_next_block(host, p))
703 		return false;
704 
705 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
706 
707 	return true;
708 }
709 
sh_mmcif_single_write(struct sh_mmcif_host * host,struct mmc_request * mrq)710 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
711 					struct mmc_request *mrq)
712 {
713 	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
714 			   BLOCK_SIZE_MASK) + 3;
715 
716 	host->wait_for = MMCIF_WAIT_FOR_WRITE;
717 
718 	/* buf write enable */
719 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
720 }
721 
sh_mmcif_write_block(struct sh_mmcif_host * host)722 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
723 {
724 	struct device *dev = sh_mmcif_host_to_dev(host);
725 	struct mmc_data *data = host->mrq->data;
726 	u32 *p = sg_virt(data->sg);
727 	int i;
728 
729 	if (host->sd_error) {
730 		data->error = sh_mmcif_error_manage(host);
731 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
732 		return false;
733 	}
734 
735 	for (i = 0; i < host->blocksize / 4; i++)
736 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
737 
738 	/* buffer write end */
739 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
740 	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
741 
742 	return true;
743 }
744 
sh_mmcif_multi_write(struct sh_mmcif_host * host,struct mmc_request * mrq)745 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
746 				struct mmc_request *mrq)
747 {
748 	struct mmc_data *data = mrq->data;
749 
750 	if (!data->sg_len || !data->sg->length)
751 		return;
752 
753 	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
754 		BLOCK_SIZE_MASK;
755 
756 	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
757 	host->sg_idx = 0;
758 	host->sg_blkidx = 0;
759 	host->pio_ptr = sg_virt(data->sg);
760 
761 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
762 }
763 
sh_mmcif_mwrite_block(struct sh_mmcif_host * host)764 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
765 {
766 	struct device *dev = sh_mmcif_host_to_dev(host);
767 	struct mmc_data *data = host->mrq->data;
768 	u32 *p = host->pio_ptr;
769 	int i;
770 
771 	if (host->sd_error) {
772 		data->error = sh_mmcif_error_manage(host);
773 		dev_dbg(dev, "%s(): %d\n", __func__, data->error);
774 		return false;
775 	}
776 
777 	BUG_ON(!data->sg->length);
778 
779 	for (i = 0; i < host->blocksize / 4; i++)
780 		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
781 
782 	if (!sh_mmcif_next_block(host, p))
783 		return false;
784 
785 	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
786 
787 	return true;
788 }
789 
sh_mmcif_get_response(struct sh_mmcif_host * host,struct mmc_command * cmd)790 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
791 						struct mmc_command *cmd)
792 {
793 	if (cmd->flags & MMC_RSP_136) {
794 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
795 		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
796 		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
797 		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
798 	} else
799 		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
800 }
801 
sh_mmcif_get_cmd12response(struct sh_mmcif_host * host,struct mmc_command * cmd)802 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
803 						struct mmc_command *cmd)
804 {
805 	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
806 }
807 
sh_mmcif_set_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)808 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
809 			    struct mmc_request *mrq)
810 {
811 	struct device *dev = sh_mmcif_host_to_dev(host);
812 	struct mmc_data *data = mrq->data;
813 	struct mmc_command *cmd = mrq->cmd;
814 	u32 opc = cmd->opcode;
815 	u32 tmp = 0;
816 
817 	/* Response Type check */
818 	switch (mmc_resp_type(cmd)) {
819 	case MMC_RSP_NONE:
820 		tmp |= CMD_SET_RTYP_NO;
821 		break;
822 	case MMC_RSP_R1:
823 	case MMC_RSP_R1B:
824 	case MMC_RSP_R3:
825 		tmp |= CMD_SET_RTYP_6B;
826 		break;
827 	case MMC_RSP_R2:
828 		tmp |= CMD_SET_RTYP_17B;
829 		break;
830 	default:
831 		dev_err(dev, "Unsupported response type.\n");
832 		break;
833 	}
834 	switch (opc) {
835 	/* RBSY */
836 	case MMC_SLEEP_AWAKE:
837 	case MMC_SWITCH:
838 	case MMC_STOP_TRANSMISSION:
839 	case MMC_SET_WRITE_PROT:
840 	case MMC_CLR_WRITE_PROT:
841 	case MMC_ERASE:
842 		tmp |= CMD_SET_RBSY;
843 		break;
844 	}
845 	/* WDAT / DATW */
846 	if (data) {
847 		tmp |= CMD_SET_WDAT;
848 		switch (host->bus_width) {
849 		case MMC_BUS_WIDTH_1:
850 			tmp |= CMD_SET_DATW_1;
851 			break;
852 		case MMC_BUS_WIDTH_4:
853 			tmp |= CMD_SET_DATW_4;
854 			break;
855 		case MMC_BUS_WIDTH_8:
856 			tmp |= CMD_SET_DATW_8;
857 			break;
858 		default:
859 			dev_err(dev, "Unsupported bus width.\n");
860 			break;
861 		}
862 		switch (host->timing) {
863 		case MMC_TIMING_MMC_DDR52:
864 			/*
865 			 * MMC core will only set this timing, if the host
866 			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
867 			 * capability. MMCIF implementations with this
868 			 * capability, e.g. sh73a0, will have to set it
869 			 * in their platform data.
870 			 */
871 			tmp |= CMD_SET_DARS;
872 			break;
873 		}
874 	}
875 	/* DWEN */
876 	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
877 		tmp |= CMD_SET_DWEN;
878 	/* CMLTE/CMD12EN */
879 	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
880 		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
881 		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
882 				data->blocks << 16);
883 	}
884 	/* RIDXC[1:0] check bits */
885 	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
886 	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
887 		tmp |= CMD_SET_RIDXC_BITS;
888 	/* RCRC7C[1:0] check bits */
889 	if (opc == MMC_SEND_OP_COND)
890 		tmp |= CMD_SET_CRC7C_BITS;
891 	/* RCRC7C[1:0] internal CRC7 */
892 	if (opc == MMC_ALL_SEND_CID ||
893 		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
894 		tmp |= CMD_SET_CRC7C_INTERNAL;
895 
896 	return (opc << 24) | tmp;
897 }
898 
sh_mmcif_data_trans(struct sh_mmcif_host * host,struct mmc_request * mrq,u32 opc)899 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
900 			       struct mmc_request *mrq, u32 opc)
901 {
902 	struct device *dev = sh_mmcif_host_to_dev(host);
903 
904 	switch (opc) {
905 	case MMC_READ_MULTIPLE_BLOCK:
906 		sh_mmcif_multi_read(host, mrq);
907 		return 0;
908 	case MMC_WRITE_MULTIPLE_BLOCK:
909 		sh_mmcif_multi_write(host, mrq);
910 		return 0;
911 	case MMC_WRITE_BLOCK:
912 		sh_mmcif_single_write(host, mrq);
913 		return 0;
914 	case MMC_READ_SINGLE_BLOCK:
915 	case MMC_SEND_EXT_CSD:
916 		sh_mmcif_single_read(host, mrq);
917 		return 0;
918 	default:
919 		dev_err(dev, "Unsupported CMD%d\n", opc);
920 		return -EINVAL;
921 	}
922 }
923 
sh_mmcif_start_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)924 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
925 			       struct mmc_request *mrq)
926 {
927 	struct mmc_command *cmd = mrq->cmd;
928 	u32 opc = cmd->opcode;
929 	u32 mask;
930 	unsigned long flags;
931 
932 	switch (opc) {
933 	/* response busy check */
934 	case MMC_SLEEP_AWAKE:
935 	case MMC_SWITCH:
936 	case MMC_STOP_TRANSMISSION:
937 	case MMC_SET_WRITE_PROT:
938 	case MMC_CLR_WRITE_PROT:
939 	case MMC_ERASE:
940 		mask = MASK_START_CMD | MASK_MRBSYE;
941 		break;
942 	default:
943 		mask = MASK_START_CMD | MASK_MCRSPE;
944 		break;
945 	}
946 
947 	if (host->ccs_enable)
948 		mask |= MASK_MCCSTO;
949 
950 	if (mrq->data) {
951 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
952 		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
953 				mrq->data->blksz);
954 	}
955 	opc = sh_mmcif_set_cmd(host, mrq);
956 
957 	if (host->ccs_enable)
958 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
959 	else
960 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
961 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
962 	/* set arg */
963 	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
964 	/* set cmd */
965 	spin_lock_irqsave(&host->lock, flags);
966 	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
967 
968 	host->wait_for = MMCIF_WAIT_FOR_CMD;
969 	schedule_delayed_work(&host->timeout_work, host->timeout);
970 	spin_unlock_irqrestore(&host->lock, flags);
971 }
972 
sh_mmcif_stop_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)973 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
974 			      struct mmc_request *mrq)
975 {
976 	struct device *dev = sh_mmcif_host_to_dev(host);
977 
978 	switch (mrq->cmd->opcode) {
979 	case MMC_READ_MULTIPLE_BLOCK:
980 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
981 		break;
982 	case MMC_WRITE_MULTIPLE_BLOCK:
983 		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
984 		break;
985 	default:
986 		dev_err(dev, "unsupported stop cmd\n");
987 		mrq->stop->error = sh_mmcif_error_manage(host);
988 		return;
989 	}
990 
991 	host->wait_for = MMCIF_WAIT_FOR_STOP;
992 }
993 
sh_mmcif_request(struct mmc_host * mmc,struct mmc_request * mrq)994 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
995 {
996 	struct sh_mmcif_host *host = mmc_priv(mmc);
997 	struct device *dev = sh_mmcif_host_to_dev(host);
998 	unsigned long flags;
999 
1000 	spin_lock_irqsave(&host->lock, flags);
1001 	if (host->state != STATE_IDLE) {
1002 		dev_dbg(dev, "%s() rejected, state %u\n",
1003 			__func__, host->state);
1004 		spin_unlock_irqrestore(&host->lock, flags);
1005 		mrq->cmd->error = -EAGAIN;
1006 		mmc_request_done(mmc, mrq);
1007 		return;
1008 	}
1009 
1010 	host->state = STATE_REQUEST;
1011 	spin_unlock_irqrestore(&host->lock, flags);
1012 
1013 	switch (mrq->cmd->opcode) {
1014 	/* MMCIF does not support SD/SDIO command */
1015 	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
1016 	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
1017 		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
1018 			break;
1019 	case MMC_APP_CMD:
1020 	case SD_IO_RW_DIRECT:
1021 		host->state = STATE_IDLE;
1022 		mrq->cmd->error = -ETIMEDOUT;
1023 		mmc_request_done(mmc, mrq);
1024 		return;
1025 	default:
1026 		break;
1027 	}
1028 
1029 	host->mrq = mrq;
1030 
1031 	sh_mmcif_start_cmd(host, mrq);
1032 }
1033 
sh_mmcif_clk_setup(struct sh_mmcif_host * host)1034 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1035 {
1036 	struct device *dev = sh_mmcif_host_to_dev(host);
1037 
1038 	if (host->mmc->f_max) {
1039 		unsigned int f_max, f_min = 0, f_min_old;
1040 
1041 		f_max = host->mmc->f_max;
1042 		for (f_min_old = f_max; f_min_old > 2;) {
1043 			f_min = clk_round_rate(host->clk, f_min_old / 2);
1044 			if (f_min == f_min_old)
1045 				break;
1046 			f_min_old = f_min;
1047 		}
1048 
1049 		/*
1050 		 * This driver assumes this SoC is R-Car Gen2 or later
1051 		 */
1052 		host->clkdiv_map = 0x3ff;
1053 
1054 		host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1055 		host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1056 	} else {
1057 		unsigned int clk = clk_get_rate(host->clk);
1058 
1059 		host->mmc->f_max = clk / 2;
1060 		host->mmc->f_min = clk / 512;
1061 	}
1062 
1063 	dev_dbg(dev, "clk max/min = %d/%d\n",
1064 		host->mmc->f_max, host->mmc->f_min);
1065 }
1066 
sh_mmcif_set_power(struct sh_mmcif_host * host,struct mmc_ios * ios)1067 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
1068 {
1069 	struct mmc_host *mmc = host->mmc;
1070 
1071 	if (!IS_ERR(mmc->supply.vmmc))
1072 		/* Errors ignored... */
1073 		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1074 				      ios->power_mode ? ios->vdd : 0);
1075 }
1076 
sh_mmcif_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1077 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1078 {
1079 	struct sh_mmcif_host *host = mmc_priv(mmc);
1080 	struct device *dev = sh_mmcif_host_to_dev(host);
1081 	unsigned long flags;
1082 
1083 	spin_lock_irqsave(&host->lock, flags);
1084 	if (host->state != STATE_IDLE) {
1085 		dev_dbg(dev, "%s() rejected, state %u\n",
1086 			__func__, host->state);
1087 		spin_unlock_irqrestore(&host->lock, flags);
1088 		return;
1089 	}
1090 
1091 	host->state = STATE_IOS;
1092 	spin_unlock_irqrestore(&host->lock, flags);
1093 
1094 	if (ios->power_mode == MMC_POWER_UP) {
1095 		if (!host->card_present) {
1096 			/* See if we also get DMA */
1097 			sh_mmcif_request_dma(host);
1098 			host->card_present = true;
1099 		}
1100 		sh_mmcif_set_power(host, ios);
1101 	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1102 		/* clock stop */
1103 		sh_mmcif_clock_control(host, 0);
1104 		if (ios->power_mode == MMC_POWER_OFF) {
1105 			if (host->card_present) {
1106 				sh_mmcif_release_dma(host);
1107 				host->card_present = false;
1108 			}
1109 		}
1110 		if (host->power) {
1111 			pm_runtime_put_sync(dev);
1112 			clk_disable_unprepare(host->clk);
1113 			host->power = false;
1114 			if (ios->power_mode == MMC_POWER_OFF)
1115 				sh_mmcif_set_power(host, ios);
1116 		}
1117 		host->state = STATE_IDLE;
1118 		return;
1119 	}
1120 
1121 	if (ios->clock) {
1122 		if (!host->power) {
1123 			clk_prepare_enable(host->clk);
1124 
1125 			pm_runtime_get_sync(dev);
1126 			host->power = true;
1127 			sh_mmcif_sync_reset(host);
1128 		}
1129 		sh_mmcif_clock_control(host, ios->clock);
1130 	}
1131 
1132 	host->timing = ios->timing;
1133 	host->bus_width = ios->bus_width;
1134 	host->state = STATE_IDLE;
1135 }
1136 
sh_mmcif_get_cd(struct mmc_host * mmc)1137 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1138 {
1139 	struct sh_mmcif_host *host = mmc_priv(mmc);
1140 	struct device *dev = sh_mmcif_host_to_dev(host);
1141 	struct sh_mmcif_plat_data *p = dev->platform_data;
1142 	int ret = mmc_gpio_get_cd(mmc);
1143 
1144 	if (ret >= 0)
1145 		return ret;
1146 
1147 	if (!p || !p->get_cd)
1148 		return -ENOSYS;
1149 	else
1150 		return p->get_cd(host->pd);
1151 }
1152 
1153 static struct mmc_host_ops sh_mmcif_ops = {
1154 	.request	= sh_mmcif_request,
1155 	.set_ios	= sh_mmcif_set_ios,
1156 	.get_cd		= sh_mmcif_get_cd,
1157 };
1158 
sh_mmcif_end_cmd(struct sh_mmcif_host * host)1159 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1160 {
1161 	struct mmc_command *cmd = host->mrq->cmd;
1162 	struct mmc_data *data = host->mrq->data;
1163 	struct device *dev = sh_mmcif_host_to_dev(host);
1164 	long time;
1165 
1166 	if (host->sd_error) {
1167 		switch (cmd->opcode) {
1168 		case MMC_ALL_SEND_CID:
1169 		case MMC_SELECT_CARD:
1170 		case MMC_APP_CMD:
1171 			cmd->error = -ETIMEDOUT;
1172 			break;
1173 		default:
1174 			cmd->error = sh_mmcif_error_manage(host);
1175 			break;
1176 		}
1177 		dev_dbg(dev, "CMD%d error %d\n",
1178 			cmd->opcode, cmd->error);
1179 		host->sd_error = false;
1180 		return false;
1181 	}
1182 	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1183 		cmd->error = 0;
1184 		return false;
1185 	}
1186 
1187 	sh_mmcif_get_response(host, cmd);
1188 
1189 	if (!data)
1190 		return false;
1191 
1192 	/*
1193 	 * Completion can be signalled from DMA callback and error, so, have to
1194 	 * reset here, before setting .dma_active
1195 	 */
1196 	init_completion(&host->dma_complete);
1197 
1198 	if (data->flags & MMC_DATA_READ) {
1199 		if (host->chan_rx)
1200 			sh_mmcif_start_dma_rx(host);
1201 	} else {
1202 		if (host->chan_tx)
1203 			sh_mmcif_start_dma_tx(host);
1204 	}
1205 
1206 	if (!host->dma_active) {
1207 		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1208 		return !data->error;
1209 	}
1210 
1211 	/* Running in the IRQ thread, can sleep */
1212 	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1213 							 host->timeout);
1214 
1215 	if (data->flags & MMC_DATA_READ)
1216 		dma_unmap_sg(host->chan_rx->device->dev,
1217 			     data->sg, data->sg_len,
1218 			     DMA_FROM_DEVICE);
1219 	else
1220 		dma_unmap_sg(host->chan_tx->device->dev,
1221 			     data->sg, data->sg_len,
1222 			     DMA_TO_DEVICE);
1223 
1224 	if (host->sd_error) {
1225 		dev_err(host->mmc->parent,
1226 			"Error IRQ while waiting for DMA completion!\n");
1227 		/* Woken up by an error IRQ: abort DMA */
1228 		data->error = sh_mmcif_error_manage(host);
1229 	} else if (!time) {
1230 		dev_err(host->mmc->parent, "DMA timeout!\n");
1231 		data->error = -ETIMEDOUT;
1232 	} else if (time < 0) {
1233 		dev_err(host->mmc->parent,
1234 			"wait_for_completion_...() error %ld!\n", time);
1235 		data->error = time;
1236 	}
1237 	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1238 			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1239 	host->dma_active = false;
1240 
1241 	if (data->error) {
1242 		data->bytes_xfered = 0;
1243 		/* Abort DMA */
1244 		if (data->flags & MMC_DATA_READ)
1245 			dmaengine_terminate_all(host->chan_rx);
1246 		else
1247 			dmaengine_terminate_all(host->chan_tx);
1248 	}
1249 
1250 	return false;
1251 }
1252 
sh_mmcif_irqt(int irq,void * dev_id)1253 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1254 {
1255 	struct sh_mmcif_host *host = dev_id;
1256 	struct mmc_request *mrq;
1257 	struct device *dev = sh_mmcif_host_to_dev(host);
1258 	bool wait = false;
1259 	unsigned long flags;
1260 	int wait_work;
1261 
1262 	spin_lock_irqsave(&host->lock, flags);
1263 	wait_work = host->wait_for;
1264 	spin_unlock_irqrestore(&host->lock, flags);
1265 
1266 	cancel_delayed_work_sync(&host->timeout_work);
1267 
1268 	mutex_lock(&host->thread_lock);
1269 
1270 	mrq = host->mrq;
1271 	if (!mrq) {
1272 		dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1273 			host->state, host->wait_for);
1274 		mutex_unlock(&host->thread_lock);
1275 		return IRQ_HANDLED;
1276 	}
1277 
1278 	/*
1279 	 * All handlers return true, if processing continues, and false, if the
1280 	 * request has to be completed - successfully or not
1281 	 */
1282 	switch (wait_work) {
1283 	case MMCIF_WAIT_FOR_REQUEST:
1284 		/* We're too late, the timeout has already kicked in */
1285 		mutex_unlock(&host->thread_lock);
1286 		return IRQ_HANDLED;
1287 	case MMCIF_WAIT_FOR_CMD:
1288 		/* Wait for data? */
1289 		wait = sh_mmcif_end_cmd(host);
1290 		break;
1291 	case MMCIF_WAIT_FOR_MREAD:
1292 		/* Wait for more data? */
1293 		wait = sh_mmcif_mread_block(host);
1294 		break;
1295 	case MMCIF_WAIT_FOR_READ:
1296 		/* Wait for data end? */
1297 		wait = sh_mmcif_read_block(host);
1298 		break;
1299 	case MMCIF_WAIT_FOR_MWRITE:
1300 		/* Wait data to write? */
1301 		wait = sh_mmcif_mwrite_block(host);
1302 		break;
1303 	case MMCIF_WAIT_FOR_WRITE:
1304 		/* Wait for data end? */
1305 		wait = sh_mmcif_write_block(host);
1306 		break;
1307 	case MMCIF_WAIT_FOR_STOP:
1308 		if (host->sd_error) {
1309 			mrq->stop->error = sh_mmcif_error_manage(host);
1310 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1311 			break;
1312 		}
1313 		sh_mmcif_get_cmd12response(host, mrq->stop);
1314 		mrq->stop->error = 0;
1315 		break;
1316 	case MMCIF_WAIT_FOR_READ_END:
1317 	case MMCIF_WAIT_FOR_WRITE_END:
1318 		if (host->sd_error) {
1319 			mrq->data->error = sh_mmcif_error_manage(host);
1320 			dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1321 		}
1322 		break;
1323 	default:
1324 		BUG();
1325 	}
1326 
1327 	if (wait) {
1328 		schedule_delayed_work(&host->timeout_work, host->timeout);
1329 		/* Wait for more data */
1330 		mutex_unlock(&host->thread_lock);
1331 		return IRQ_HANDLED;
1332 	}
1333 
1334 	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1335 		struct mmc_data *data = mrq->data;
1336 		if (!mrq->cmd->error && data && !data->error)
1337 			data->bytes_xfered =
1338 				data->blocks * data->blksz;
1339 
1340 		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1341 			sh_mmcif_stop_cmd(host, mrq);
1342 			if (!mrq->stop->error) {
1343 				schedule_delayed_work(&host->timeout_work, host->timeout);
1344 				mutex_unlock(&host->thread_lock);
1345 				return IRQ_HANDLED;
1346 			}
1347 		}
1348 	}
1349 
1350 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1351 	host->state = STATE_IDLE;
1352 	host->mrq = NULL;
1353 	mmc_request_done(host->mmc, mrq);
1354 
1355 	mutex_unlock(&host->thread_lock);
1356 
1357 	return IRQ_HANDLED;
1358 }
1359 
sh_mmcif_intr(int irq,void * dev_id)1360 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1361 {
1362 	struct sh_mmcif_host *host = dev_id;
1363 	struct device *dev = sh_mmcif_host_to_dev(host);
1364 	u32 state, mask;
1365 
1366 	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1367 	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1368 	if (host->ccs_enable)
1369 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1370 	else
1371 		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1372 	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1373 
1374 	if (state & ~MASK_CLEAN)
1375 		dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1376 			state);
1377 
1378 	if (state & INT_ERR_STS || state & ~INT_ALL) {
1379 		host->sd_error = true;
1380 		dev_dbg(dev, "int err state = 0x%08x\n", state);
1381 	}
1382 	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1383 		if (!host->mrq)
1384 			dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1385 		if (!host->dma_active)
1386 			return IRQ_WAKE_THREAD;
1387 		else if (host->sd_error)
1388 			sh_mmcif_dma_complete(host);
1389 	} else {
1390 		dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1391 	}
1392 
1393 	return IRQ_HANDLED;
1394 }
1395 
sh_mmcif_timeout_work(struct work_struct * work)1396 static void sh_mmcif_timeout_work(struct work_struct *work)
1397 {
1398 	struct delayed_work *d = container_of(work, struct delayed_work, work);
1399 	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1400 	struct mmc_request *mrq = host->mrq;
1401 	struct device *dev = sh_mmcif_host_to_dev(host);
1402 	unsigned long flags;
1403 
1404 	if (host->dying)
1405 		/* Don't run after mmc_remove_host() */
1406 		return;
1407 
1408 	spin_lock_irqsave(&host->lock, flags);
1409 	if (host->state == STATE_IDLE) {
1410 		spin_unlock_irqrestore(&host->lock, flags);
1411 		return;
1412 	}
1413 
1414 	dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1415 		host->wait_for, mrq->cmd->opcode);
1416 
1417 	host->state = STATE_TIMEOUT;
1418 	spin_unlock_irqrestore(&host->lock, flags);
1419 
1420 	/*
1421 	 * Handle races with cancel_delayed_work(), unless
1422 	 * cancel_delayed_work_sync() is used
1423 	 */
1424 	switch (host->wait_for) {
1425 	case MMCIF_WAIT_FOR_CMD:
1426 		mrq->cmd->error = sh_mmcif_error_manage(host);
1427 		break;
1428 	case MMCIF_WAIT_FOR_STOP:
1429 		mrq->stop->error = sh_mmcif_error_manage(host);
1430 		break;
1431 	case MMCIF_WAIT_FOR_MREAD:
1432 	case MMCIF_WAIT_FOR_MWRITE:
1433 	case MMCIF_WAIT_FOR_READ:
1434 	case MMCIF_WAIT_FOR_WRITE:
1435 	case MMCIF_WAIT_FOR_READ_END:
1436 	case MMCIF_WAIT_FOR_WRITE_END:
1437 		mrq->data->error = sh_mmcif_error_manage(host);
1438 		break;
1439 	default:
1440 		BUG();
1441 	}
1442 
1443 	host->state = STATE_IDLE;
1444 	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1445 	host->mrq = NULL;
1446 	mmc_request_done(host->mmc, mrq);
1447 }
1448 
sh_mmcif_init_ocr(struct sh_mmcif_host * host)1449 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1450 {
1451 	struct device *dev = sh_mmcif_host_to_dev(host);
1452 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1453 	struct mmc_host *mmc = host->mmc;
1454 
1455 	mmc_regulator_get_supply(mmc);
1456 
1457 	if (!pd)
1458 		return;
1459 
1460 	if (!mmc->ocr_avail)
1461 		mmc->ocr_avail = pd->ocr;
1462 	else if (pd->ocr)
1463 		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1464 }
1465 
sh_mmcif_probe(struct platform_device * pdev)1466 static int sh_mmcif_probe(struct platform_device *pdev)
1467 {
1468 	int ret = 0, irq[2];
1469 	struct mmc_host *mmc;
1470 	struct sh_mmcif_host *host;
1471 	struct device *dev = &pdev->dev;
1472 	struct sh_mmcif_plat_data *pd = dev->platform_data;
1473 	struct resource *res;
1474 	void __iomem *reg;
1475 	const char *name;
1476 
1477 	irq[0] = platform_get_irq(pdev, 0);
1478 	irq[1] = platform_get_irq(pdev, 1);
1479 	if (irq[0] < 0) {
1480 		dev_err(dev, "Get irq error\n");
1481 		return -ENXIO;
1482 	}
1483 
1484 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1485 	reg = devm_ioremap_resource(dev, res);
1486 	if (IS_ERR(reg))
1487 		return PTR_ERR(reg);
1488 
1489 	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1490 	if (!mmc)
1491 		return -ENOMEM;
1492 
1493 	ret = mmc_of_parse(mmc);
1494 	if (ret < 0)
1495 		goto err_host;
1496 
1497 	host		= mmc_priv(mmc);
1498 	host->mmc	= mmc;
1499 	host->addr	= reg;
1500 	host->timeout	= msecs_to_jiffies(10000);
1501 	host->ccs_enable = !pd || !pd->ccs_unsupported;
1502 	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1503 
1504 	host->pd = pdev;
1505 
1506 	spin_lock_init(&host->lock);
1507 
1508 	mmc->ops = &sh_mmcif_ops;
1509 	sh_mmcif_init_ocr(host);
1510 
1511 	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1512 	if (pd && pd->caps)
1513 		mmc->caps |= pd->caps;
1514 	mmc->max_segs = 32;
1515 	mmc->max_blk_size = 512;
1516 	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1517 	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1518 	mmc->max_seg_size = mmc->max_req_size;
1519 
1520 	platform_set_drvdata(pdev, host);
1521 
1522 	pm_runtime_enable(dev);
1523 	host->power = false;
1524 
1525 	host->clk = devm_clk_get(dev, NULL);
1526 	if (IS_ERR(host->clk)) {
1527 		ret = PTR_ERR(host->clk);
1528 		dev_err(dev, "cannot get clock: %d\n", ret);
1529 		goto err_pm;
1530 	}
1531 
1532 	ret = clk_prepare_enable(host->clk);
1533 	if (ret < 0)
1534 		goto err_pm;
1535 
1536 	sh_mmcif_clk_setup(host);
1537 
1538 	ret = pm_runtime_resume(dev);
1539 	if (ret < 0)
1540 		goto err_clk;
1541 
1542 	INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1543 
1544 	sh_mmcif_sync_reset(host);
1545 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1546 
1547 	name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1548 	ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1549 					sh_mmcif_irqt, 0, name, host);
1550 	if (ret) {
1551 		dev_err(dev, "request_irq error (%s)\n", name);
1552 		goto err_clk;
1553 	}
1554 	if (irq[1] >= 0) {
1555 		ret = devm_request_threaded_irq(dev, irq[1],
1556 						sh_mmcif_intr, sh_mmcif_irqt,
1557 						0, "sh_mmc:int", host);
1558 		if (ret) {
1559 			dev_err(dev, "request_irq error (sh_mmc:int)\n");
1560 			goto err_clk;
1561 		}
1562 	}
1563 
1564 	if (pd && pd->use_cd_gpio) {
1565 		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1566 		if (ret < 0)
1567 			goto err_clk;
1568 	}
1569 
1570 	mutex_init(&host->thread_lock);
1571 
1572 	ret = mmc_add_host(mmc);
1573 	if (ret < 0)
1574 		goto err_clk;
1575 
1576 	dev_pm_qos_expose_latency_limit(dev, 100);
1577 
1578 	dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1579 		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1580 		 clk_get_rate(host->clk) / 1000000UL);
1581 
1582 	clk_disable_unprepare(host->clk);
1583 	return ret;
1584 
1585 err_clk:
1586 	clk_disable_unprepare(host->clk);
1587 err_pm:
1588 	pm_runtime_disable(dev);
1589 err_host:
1590 	mmc_free_host(mmc);
1591 	return ret;
1592 }
1593 
sh_mmcif_remove(struct platform_device * pdev)1594 static int sh_mmcif_remove(struct platform_device *pdev)
1595 {
1596 	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1597 
1598 	host->dying = true;
1599 	clk_prepare_enable(host->clk);
1600 	pm_runtime_get_sync(&pdev->dev);
1601 
1602 	dev_pm_qos_hide_latency_limit(&pdev->dev);
1603 
1604 	mmc_remove_host(host->mmc);
1605 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1606 
1607 	/*
1608 	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1609 	 * mmc_remove_host() call above. But swapping order doesn't help either
1610 	 * (a query on the linux-mmc mailing list didn't bring any replies).
1611 	 */
1612 	cancel_delayed_work_sync(&host->timeout_work);
1613 
1614 	clk_disable_unprepare(host->clk);
1615 	mmc_free_host(host->mmc);
1616 	pm_runtime_put_sync(&pdev->dev);
1617 	pm_runtime_disable(&pdev->dev);
1618 
1619 	return 0;
1620 }
1621 
1622 #ifdef CONFIG_PM_SLEEP
sh_mmcif_suspend(struct device * dev)1623 static int sh_mmcif_suspend(struct device *dev)
1624 {
1625 	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1626 
1627 	pm_runtime_get_sync(dev);
1628 	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1629 	pm_runtime_put(dev);
1630 
1631 	return 0;
1632 }
1633 
sh_mmcif_resume(struct device * dev)1634 static int sh_mmcif_resume(struct device *dev)
1635 {
1636 	return 0;
1637 }
1638 #endif
1639 
1640 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1641 	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1642 };
1643 
1644 static struct platform_driver sh_mmcif_driver = {
1645 	.probe		= sh_mmcif_probe,
1646 	.remove		= sh_mmcif_remove,
1647 	.driver		= {
1648 		.name	= DRIVER_NAME,
1649 		.pm	= &sh_mmcif_dev_pm_ops,
1650 		.of_match_table = sh_mmcif_of_match,
1651 	},
1652 };
1653 
1654 module_platform_driver(sh_mmcif_driver);
1655 
1656 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1657 MODULE_LICENSE("GPL");
1658 MODULE_ALIAS("platform:" DRIVER_NAME);
1659 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1660