1 /*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19 /*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/of_device.h>
61 #include <linux/pagemap.h>
62 #include <linux/platform_device.h>
63 #include <linux/pm_qos.h>
64 #include <linux/pm_runtime.h>
65 #include <linux/sh_dma.h>
66 #include <linux/spinlock.h>
67 #include <linux/module.h>
68
69 #define DRIVER_NAME "sh_mmcif"
70 #define DRIVER_VERSION "2010-04-28"
71
72 /* CE_CMD_SET */
73 #define CMD_MASK 0x3f000000
74 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
75 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
77 #define CMD_SET_RBSY (1 << 21) /* R1b */
78 #define CMD_SET_CCSEN (1 << 20)
79 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
80 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
81 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
82 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
83 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
84 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
85 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
86 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
87 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
88 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
90 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
91 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
92 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
93 #define CMD_SET_CCSH (1 << 5)
94 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
95 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
96 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
97 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
98
99 /* CE_CMD_CTRL */
100 #define CMD_CTRL_BREAK (1 << 0)
101
102 /* CE_BLOCK_SET */
103 #define BLOCK_SIZE_MASK 0x0000ffff
104
105 /* CE_INT */
106 #define INT_CCSDE (1 << 29)
107 #define INT_CMD12DRE (1 << 26)
108 #define INT_CMD12RBE (1 << 25)
109 #define INT_CMD12CRE (1 << 24)
110 #define INT_DTRANE (1 << 23)
111 #define INT_BUFRE (1 << 22)
112 #define INT_BUFWEN (1 << 21)
113 #define INT_BUFREN (1 << 20)
114 #define INT_CCSRCV (1 << 19)
115 #define INT_RBSYE (1 << 17)
116 #define INT_CRSPE (1 << 16)
117 #define INT_CMDVIO (1 << 15)
118 #define INT_BUFVIO (1 << 14)
119 #define INT_WDATERR (1 << 11)
120 #define INT_RDATERR (1 << 10)
121 #define INT_RIDXERR (1 << 9)
122 #define INT_RSPERR (1 << 8)
123 #define INT_CCSTO (1 << 5)
124 #define INT_CRCSTO (1 << 4)
125 #define INT_WDATTO (1 << 3)
126 #define INT_RDATTO (1 << 2)
127 #define INT_RBSYTO (1 << 1)
128 #define INT_RSPTO (1 << 0)
129 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
132 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133
134 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137
138 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139
140 /* CE_INT_MASK */
141 #define MASK_ALL 0x00000000
142 #define MASK_MCCSDE (1 << 29)
143 #define MASK_MCMD12DRE (1 << 26)
144 #define MASK_MCMD12RBE (1 << 25)
145 #define MASK_MCMD12CRE (1 << 24)
146 #define MASK_MDTRANE (1 << 23)
147 #define MASK_MBUFRE (1 << 22)
148 #define MASK_MBUFWEN (1 << 21)
149 #define MASK_MBUFREN (1 << 20)
150 #define MASK_MCCSRCV (1 << 19)
151 #define MASK_MRBSYE (1 << 17)
152 #define MASK_MCRSPE (1 << 16)
153 #define MASK_MCMDVIO (1 << 15)
154 #define MASK_MBUFVIO (1 << 14)
155 #define MASK_MWDATERR (1 << 11)
156 #define MASK_MRDATERR (1 << 10)
157 #define MASK_MRIDXERR (1 << 9)
158 #define MASK_MRSPERR (1 << 8)
159 #define MASK_MCCSTO (1 << 5)
160 #define MASK_MCRCSTO (1 << 4)
161 #define MASK_MWDATTO (1 << 3)
162 #define MASK_MRDATTO (1 << 2)
163 #define MASK_MRBSYTO (1 << 1)
164 #define MASK_MRSPTO (1 << 0)
165
166 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 MASK_MCRCSTO | MASK_MWDATTO | \
169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170
171 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
172 MASK_MBUFREN | MASK_MBUFWEN | \
173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
174 MASK_MCMD12RBE | MASK_MCMD12CRE)
175
176 /* CE_HOST_STS1 */
177 #define STS1_CMDSEQ (1 << 31)
178
179 /* CE_HOST_STS2 */
180 #define STS2_CRCSTE (1 << 31)
181 #define STS2_CRC16E (1 << 30)
182 #define STS2_AC12CRCE (1 << 29)
183 #define STS2_RSPCRC7E (1 << 28)
184 #define STS2_CRCSTEBE (1 << 27)
185 #define STS2_RDATEBE (1 << 26)
186 #define STS2_AC12REBE (1 << 25)
187 #define STS2_RSPEBE (1 << 24)
188 #define STS2_AC12IDXE (1 << 23)
189 #define STS2_RSPIDXE (1 << 22)
190 #define STS2_CCSTO (1 << 15)
191 #define STS2_RDATTO (1 << 14)
192 #define STS2_DATBSYTO (1 << 13)
193 #define STS2_CRCSTTO (1 << 12)
194 #define STS2_AC12BSYTO (1 << 11)
195 #define STS2_RSPBSYTO (1 << 10)
196 #define STS2_AC12RSPTO (1 << 9)
197 #define STS2_RSPTO (1 << 8)
198 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
201 STS2_DATBSYTO | STS2_CRCSTTO | \
202 STS2_AC12BSYTO | STS2_RSPBSYTO | \
203 STS2_AC12RSPTO | STS2_RSPTO)
204
205 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
206 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
207 #define CLKDEV_INIT 400000 /* 400 KHz */
208
209 enum sh_mmcif_state {
210 STATE_IDLE,
211 STATE_REQUEST,
212 STATE_IOS,
213 STATE_TIMEOUT,
214 };
215
216 enum sh_mmcif_wait_for {
217 MMCIF_WAIT_FOR_REQUEST,
218 MMCIF_WAIT_FOR_CMD,
219 MMCIF_WAIT_FOR_MREAD,
220 MMCIF_WAIT_FOR_MWRITE,
221 MMCIF_WAIT_FOR_READ,
222 MMCIF_WAIT_FOR_WRITE,
223 MMCIF_WAIT_FOR_READ_END,
224 MMCIF_WAIT_FOR_WRITE_END,
225 MMCIF_WAIT_FOR_STOP,
226 };
227
228 /*
229 * difference for each SoC
230 */
231 struct sh_mmcif_host {
232 struct mmc_host *mmc;
233 struct mmc_request *mrq;
234 struct platform_device *pd;
235 struct clk *clk;
236 int bus_width;
237 unsigned char timing;
238 bool sd_error;
239 bool dying;
240 long timeout;
241 void __iomem *addr;
242 u32 *pio_ptr;
243 spinlock_t lock; /* protect sh_mmcif_host::state */
244 enum sh_mmcif_state state;
245 enum sh_mmcif_wait_for wait_for;
246 struct delayed_work timeout_work;
247 size_t blocksize;
248 int sg_idx;
249 int sg_blkidx;
250 bool power;
251 bool card_present;
252 bool ccs_enable; /* Command Completion Signal support */
253 bool clk_ctrl2_enable;
254 struct mutex thread_lock;
255 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
256
257 /* DMA support */
258 struct dma_chan *chan_rx;
259 struct dma_chan *chan_tx;
260 struct completion dma_complete;
261 bool dma_active;
262 };
263
264 static const struct of_device_id sh_mmcif_of_match[] = {
265 { .compatible = "renesas,sh-mmcif" },
266 { }
267 };
268 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
269
270 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
271
sh_mmcif_bitset(struct sh_mmcif_host * host,unsigned int reg,u32 val)272 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
273 unsigned int reg, u32 val)
274 {
275 writel(val | readl(host->addr + reg), host->addr + reg);
276 }
277
sh_mmcif_bitclr(struct sh_mmcif_host * host,unsigned int reg,u32 val)278 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
279 unsigned int reg, u32 val)
280 {
281 writel(~val & readl(host->addr + reg), host->addr + reg);
282 }
283
sh_mmcif_dma_complete(void * arg)284 static void sh_mmcif_dma_complete(void *arg)
285 {
286 struct sh_mmcif_host *host = arg;
287 struct mmc_request *mrq = host->mrq;
288 struct device *dev = sh_mmcif_host_to_dev(host);
289
290 dev_dbg(dev, "Command completed\n");
291
292 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
293 dev_name(dev)))
294 return;
295
296 complete(&host->dma_complete);
297 }
298
sh_mmcif_start_dma_rx(struct sh_mmcif_host * host)299 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
300 {
301 struct mmc_data *data = host->mrq->data;
302 struct scatterlist *sg = data->sg;
303 struct dma_async_tx_descriptor *desc = NULL;
304 struct dma_chan *chan = host->chan_rx;
305 struct device *dev = sh_mmcif_host_to_dev(host);
306 dma_cookie_t cookie = -EINVAL;
307 int ret;
308
309 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
310 DMA_FROM_DEVICE);
311 if (ret > 0) {
312 host->dma_active = true;
313 desc = dmaengine_prep_slave_sg(chan, sg, ret,
314 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
315 }
316
317 if (desc) {
318 desc->callback = sh_mmcif_dma_complete;
319 desc->callback_param = host;
320 cookie = dmaengine_submit(desc);
321 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
322 dma_async_issue_pending(chan);
323 }
324 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
325 __func__, data->sg_len, ret, cookie);
326
327 if (!desc) {
328 /* DMA failed, fall back to PIO */
329 if (ret >= 0)
330 ret = -EIO;
331 host->chan_rx = NULL;
332 host->dma_active = false;
333 dma_release_channel(chan);
334 /* Free the Tx channel too */
335 chan = host->chan_tx;
336 if (chan) {
337 host->chan_tx = NULL;
338 dma_release_channel(chan);
339 }
340 dev_warn(dev,
341 "DMA failed: %d, falling back to PIO\n", ret);
342 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
343 }
344
345 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
346 desc, cookie, data->sg_len);
347 }
348
sh_mmcif_start_dma_tx(struct sh_mmcif_host * host)349 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
350 {
351 struct mmc_data *data = host->mrq->data;
352 struct scatterlist *sg = data->sg;
353 struct dma_async_tx_descriptor *desc = NULL;
354 struct dma_chan *chan = host->chan_tx;
355 struct device *dev = sh_mmcif_host_to_dev(host);
356 dma_cookie_t cookie = -EINVAL;
357 int ret;
358
359 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
360 DMA_TO_DEVICE);
361 if (ret > 0) {
362 host->dma_active = true;
363 desc = dmaengine_prep_slave_sg(chan, sg, ret,
364 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
365 }
366
367 if (desc) {
368 desc->callback = sh_mmcif_dma_complete;
369 desc->callback_param = host;
370 cookie = dmaengine_submit(desc);
371 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
372 dma_async_issue_pending(chan);
373 }
374 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
375 __func__, data->sg_len, ret, cookie);
376
377 if (!desc) {
378 /* DMA failed, fall back to PIO */
379 if (ret >= 0)
380 ret = -EIO;
381 host->chan_tx = NULL;
382 host->dma_active = false;
383 dma_release_channel(chan);
384 /* Free the Rx channel too */
385 chan = host->chan_rx;
386 if (chan) {
387 host->chan_rx = NULL;
388 dma_release_channel(chan);
389 }
390 dev_warn(dev,
391 "DMA failed: %d, falling back to PIO\n", ret);
392 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
393 }
394
395 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
396 desc, cookie);
397 }
398
399 static struct dma_chan *
sh_mmcif_request_dma_pdata(struct sh_mmcif_host * host,uintptr_t slave_id)400 sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id)
401 {
402 dma_cap_mask_t mask;
403
404 dma_cap_zero(mask);
405 dma_cap_set(DMA_SLAVE, mask);
406 if (slave_id <= 0)
407 return NULL;
408
409 return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id);
410 }
411
sh_mmcif_dma_slave_config(struct sh_mmcif_host * host,struct dma_chan * chan,enum dma_transfer_direction direction)412 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host,
413 struct dma_chan *chan,
414 enum dma_transfer_direction direction)
415 {
416 struct resource *res;
417 struct dma_slave_config cfg = { 0, };
418
419 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
420 cfg.direction = direction;
421
422 if (direction == DMA_DEV_TO_MEM) {
423 cfg.src_addr = res->start + MMCIF_CE_DATA;
424 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
425 } else {
426 cfg.dst_addr = res->start + MMCIF_CE_DATA;
427 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
428 }
429
430 return dmaengine_slave_config(chan, &cfg);
431 }
432
sh_mmcif_request_dma(struct sh_mmcif_host * host)433 static void sh_mmcif_request_dma(struct sh_mmcif_host *host)
434 {
435 struct device *dev = sh_mmcif_host_to_dev(host);
436 host->dma_active = false;
437
438 /* We can only either use DMA for both Tx and Rx or not use it at all */
439 if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) {
440 struct sh_mmcif_plat_data *pdata = dev->platform_data;
441
442 host->chan_tx = sh_mmcif_request_dma_pdata(host,
443 pdata->slave_id_tx);
444 host->chan_rx = sh_mmcif_request_dma_pdata(host,
445 pdata->slave_id_rx);
446 } else {
447 host->chan_tx = dma_request_slave_channel(dev, "tx");
448 host->chan_rx = dma_request_slave_channel(dev, "rx");
449 }
450 dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx,
451 host->chan_rx);
452
453 if (!host->chan_tx || !host->chan_rx ||
454 sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) ||
455 sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM))
456 goto error;
457
458 return;
459
460 error:
461 if (host->chan_tx)
462 dma_release_channel(host->chan_tx);
463 if (host->chan_rx)
464 dma_release_channel(host->chan_rx);
465 host->chan_tx = host->chan_rx = NULL;
466 }
467
sh_mmcif_release_dma(struct sh_mmcif_host * host)468 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
469 {
470 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
471 /* Descriptors are freed automatically */
472 if (host->chan_tx) {
473 struct dma_chan *chan = host->chan_tx;
474 host->chan_tx = NULL;
475 dma_release_channel(chan);
476 }
477 if (host->chan_rx) {
478 struct dma_chan *chan = host->chan_rx;
479 host->chan_rx = NULL;
480 dma_release_channel(chan);
481 }
482
483 host->dma_active = false;
484 }
485
sh_mmcif_clock_control(struct sh_mmcif_host * host,unsigned int clk)486 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
487 {
488 struct device *dev = sh_mmcif_host_to_dev(host);
489 struct sh_mmcif_plat_data *p = dev->platform_data;
490 bool sup_pclk = p ? p->sup_pclk : false;
491 unsigned int current_clk = clk_get_rate(host->clk);
492 unsigned int clkdiv;
493
494 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
495 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
496
497 if (!clk)
498 return;
499
500 if (host->clkdiv_map) {
501 unsigned int freq, best_freq, myclk, div, diff_min, diff;
502 int i;
503
504 clkdiv = 0;
505 diff_min = ~0;
506 best_freq = 0;
507 for (i = 31; i >= 0; i--) {
508 if (!((1 << i) & host->clkdiv_map))
509 continue;
510
511 /*
512 * clk = parent_freq / div
513 * -> parent_freq = clk x div
514 */
515
516 div = 1 << (i + 1);
517 freq = clk_round_rate(host->clk, clk * div);
518 myclk = freq / div;
519 diff = (myclk > clk) ? myclk - clk : clk - myclk;
520
521 if (diff <= diff_min) {
522 best_freq = freq;
523 clkdiv = i;
524 diff_min = diff;
525 }
526 }
527
528 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
529 (best_freq / (1 << (clkdiv + 1))), clk,
530 best_freq, clkdiv);
531
532 clk_set_rate(host->clk, best_freq);
533 clkdiv = clkdiv << 16;
534 } else if (sup_pclk && clk == current_clk) {
535 clkdiv = CLK_SUP_PCLK;
536 } else {
537 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
538 }
539
540 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
541 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
542 }
543
sh_mmcif_sync_reset(struct sh_mmcif_host * host)544 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
545 {
546 u32 tmp;
547
548 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
549
550 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
551 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
552 if (host->ccs_enable)
553 tmp |= SCCSTO_29;
554 if (host->clk_ctrl2_enable)
555 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
556 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
557 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
558 /* byte swap on */
559 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
560 }
561
sh_mmcif_error_manage(struct sh_mmcif_host * host)562 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
563 {
564 struct device *dev = sh_mmcif_host_to_dev(host);
565 u32 state1, state2;
566 int ret, timeout;
567
568 host->sd_error = false;
569
570 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
571 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
572 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
573 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
574
575 if (state1 & STS1_CMDSEQ) {
576 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
577 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
578 for (timeout = 10000000; timeout; timeout--) {
579 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
580 & STS1_CMDSEQ))
581 break;
582 mdelay(1);
583 }
584 if (!timeout) {
585 dev_err(dev,
586 "Forced end of command sequence timeout err\n");
587 return -EIO;
588 }
589 sh_mmcif_sync_reset(host);
590 dev_dbg(dev, "Forced end of command sequence\n");
591 return -EIO;
592 }
593
594 if (state2 & STS2_CRC_ERR) {
595 dev_err(dev, " CRC error: state %u, wait %u\n",
596 host->state, host->wait_for);
597 ret = -EIO;
598 } else if (state2 & STS2_TIMEOUT_ERR) {
599 dev_err(dev, " Timeout: state %u, wait %u\n",
600 host->state, host->wait_for);
601 ret = -ETIMEDOUT;
602 } else {
603 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
604 host->state, host->wait_for);
605 ret = -EIO;
606 }
607 return ret;
608 }
609
sh_mmcif_next_block(struct sh_mmcif_host * host,u32 * p)610 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
611 {
612 struct mmc_data *data = host->mrq->data;
613
614 host->sg_blkidx += host->blocksize;
615
616 /* data->sg->length must be a multiple of host->blocksize? */
617 BUG_ON(host->sg_blkidx > data->sg->length);
618
619 if (host->sg_blkidx == data->sg->length) {
620 host->sg_blkidx = 0;
621 if (++host->sg_idx < data->sg_len)
622 host->pio_ptr = sg_virt(++data->sg);
623 } else {
624 host->pio_ptr = p;
625 }
626
627 return host->sg_idx != data->sg_len;
628 }
629
sh_mmcif_single_read(struct sh_mmcif_host * host,struct mmc_request * mrq)630 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
631 struct mmc_request *mrq)
632 {
633 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
634 BLOCK_SIZE_MASK) + 3;
635
636 host->wait_for = MMCIF_WAIT_FOR_READ;
637
638 /* buf read enable */
639 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
640 }
641
sh_mmcif_read_block(struct sh_mmcif_host * host)642 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
643 {
644 struct device *dev = sh_mmcif_host_to_dev(host);
645 struct mmc_data *data = host->mrq->data;
646 u32 *p = sg_virt(data->sg);
647 int i;
648
649 if (host->sd_error) {
650 data->error = sh_mmcif_error_manage(host);
651 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
652 return false;
653 }
654
655 for (i = 0; i < host->blocksize / 4; i++)
656 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
657
658 /* buffer read end */
659 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
660 host->wait_for = MMCIF_WAIT_FOR_READ_END;
661
662 return true;
663 }
664
sh_mmcif_multi_read(struct sh_mmcif_host * host,struct mmc_request * mrq)665 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
666 struct mmc_request *mrq)
667 {
668 struct mmc_data *data = mrq->data;
669
670 if (!data->sg_len || !data->sg->length)
671 return;
672
673 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
674 BLOCK_SIZE_MASK;
675
676 host->wait_for = MMCIF_WAIT_FOR_MREAD;
677 host->sg_idx = 0;
678 host->sg_blkidx = 0;
679 host->pio_ptr = sg_virt(data->sg);
680
681 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
682 }
683
sh_mmcif_mread_block(struct sh_mmcif_host * host)684 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
685 {
686 struct device *dev = sh_mmcif_host_to_dev(host);
687 struct mmc_data *data = host->mrq->data;
688 u32 *p = host->pio_ptr;
689 int i;
690
691 if (host->sd_error) {
692 data->error = sh_mmcif_error_manage(host);
693 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
694 return false;
695 }
696
697 BUG_ON(!data->sg->length);
698
699 for (i = 0; i < host->blocksize / 4; i++)
700 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
701
702 if (!sh_mmcif_next_block(host, p))
703 return false;
704
705 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
706
707 return true;
708 }
709
sh_mmcif_single_write(struct sh_mmcif_host * host,struct mmc_request * mrq)710 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
711 struct mmc_request *mrq)
712 {
713 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
714 BLOCK_SIZE_MASK) + 3;
715
716 host->wait_for = MMCIF_WAIT_FOR_WRITE;
717
718 /* buf write enable */
719 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
720 }
721
sh_mmcif_write_block(struct sh_mmcif_host * host)722 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
723 {
724 struct device *dev = sh_mmcif_host_to_dev(host);
725 struct mmc_data *data = host->mrq->data;
726 u32 *p = sg_virt(data->sg);
727 int i;
728
729 if (host->sd_error) {
730 data->error = sh_mmcif_error_manage(host);
731 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
732 return false;
733 }
734
735 for (i = 0; i < host->blocksize / 4; i++)
736 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
737
738 /* buffer write end */
739 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
740 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
741
742 return true;
743 }
744
sh_mmcif_multi_write(struct sh_mmcif_host * host,struct mmc_request * mrq)745 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
746 struct mmc_request *mrq)
747 {
748 struct mmc_data *data = mrq->data;
749
750 if (!data->sg_len || !data->sg->length)
751 return;
752
753 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
754 BLOCK_SIZE_MASK;
755
756 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
757 host->sg_idx = 0;
758 host->sg_blkidx = 0;
759 host->pio_ptr = sg_virt(data->sg);
760
761 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
762 }
763
sh_mmcif_mwrite_block(struct sh_mmcif_host * host)764 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
765 {
766 struct device *dev = sh_mmcif_host_to_dev(host);
767 struct mmc_data *data = host->mrq->data;
768 u32 *p = host->pio_ptr;
769 int i;
770
771 if (host->sd_error) {
772 data->error = sh_mmcif_error_manage(host);
773 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
774 return false;
775 }
776
777 BUG_ON(!data->sg->length);
778
779 for (i = 0; i < host->blocksize / 4; i++)
780 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
781
782 if (!sh_mmcif_next_block(host, p))
783 return false;
784
785 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
786
787 return true;
788 }
789
sh_mmcif_get_response(struct sh_mmcif_host * host,struct mmc_command * cmd)790 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
791 struct mmc_command *cmd)
792 {
793 if (cmd->flags & MMC_RSP_136) {
794 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
795 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
796 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
797 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
798 } else
799 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
800 }
801
sh_mmcif_get_cmd12response(struct sh_mmcif_host * host,struct mmc_command * cmd)802 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
803 struct mmc_command *cmd)
804 {
805 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
806 }
807
sh_mmcif_set_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)808 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
809 struct mmc_request *mrq)
810 {
811 struct device *dev = sh_mmcif_host_to_dev(host);
812 struct mmc_data *data = mrq->data;
813 struct mmc_command *cmd = mrq->cmd;
814 u32 opc = cmd->opcode;
815 u32 tmp = 0;
816
817 /* Response Type check */
818 switch (mmc_resp_type(cmd)) {
819 case MMC_RSP_NONE:
820 tmp |= CMD_SET_RTYP_NO;
821 break;
822 case MMC_RSP_R1:
823 case MMC_RSP_R1B:
824 case MMC_RSP_R3:
825 tmp |= CMD_SET_RTYP_6B;
826 break;
827 case MMC_RSP_R2:
828 tmp |= CMD_SET_RTYP_17B;
829 break;
830 default:
831 dev_err(dev, "Unsupported response type.\n");
832 break;
833 }
834 switch (opc) {
835 /* RBSY */
836 case MMC_SLEEP_AWAKE:
837 case MMC_SWITCH:
838 case MMC_STOP_TRANSMISSION:
839 case MMC_SET_WRITE_PROT:
840 case MMC_CLR_WRITE_PROT:
841 case MMC_ERASE:
842 tmp |= CMD_SET_RBSY;
843 break;
844 }
845 /* WDAT / DATW */
846 if (data) {
847 tmp |= CMD_SET_WDAT;
848 switch (host->bus_width) {
849 case MMC_BUS_WIDTH_1:
850 tmp |= CMD_SET_DATW_1;
851 break;
852 case MMC_BUS_WIDTH_4:
853 tmp |= CMD_SET_DATW_4;
854 break;
855 case MMC_BUS_WIDTH_8:
856 tmp |= CMD_SET_DATW_8;
857 break;
858 default:
859 dev_err(dev, "Unsupported bus width.\n");
860 break;
861 }
862 switch (host->timing) {
863 case MMC_TIMING_MMC_DDR52:
864 /*
865 * MMC core will only set this timing, if the host
866 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
867 * capability. MMCIF implementations with this
868 * capability, e.g. sh73a0, will have to set it
869 * in their platform data.
870 */
871 tmp |= CMD_SET_DARS;
872 break;
873 }
874 }
875 /* DWEN */
876 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
877 tmp |= CMD_SET_DWEN;
878 /* CMLTE/CMD12EN */
879 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
880 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
881 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
882 data->blocks << 16);
883 }
884 /* RIDXC[1:0] check bits */
885 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
886 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
887 tmp |= CMD_SET_RIDXC_BITS;
888 /* RCRC7C[1:0] check bits */
889 if (opc == MMC_SEND_OP_COND)
890 tmp |= CMD_SET_CRC7C_BITS;
891 /* RCRC7C[1:0] internal CRC7 */
892 if (opc == MMC_ALL_SEND_CID ||
893 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
894 tmp |= CMD_SET_CRC7C_INTERNAL;
895
896 return (opc << 24) | tmp;
897 }
898
sh_mmcif_data_trans(struct sh_mmcif_host * host,struct mmc_request * mrq,u32 opc)899 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
900 struct mmc_request *mrq, u32 opc)
901 {
902 struct device *dev = sh_mmcif_host_to_dev(host);
903
904 switch (opc) {
905 case MMC_READ_MULTIPLE_BLOCK:
906 sh_mmcif_multi_read(host, mrq);
907 return 0;
908 case MMC_WRITE_MULTIPLE_BLOCK:
909 sh_mmcif_multi_write(host, mrq);
910 return 0;
911 case MMC_WRITE_BLOCK:
912 sh_mmcif_single_write(host, mrq);
913 return 0;
914 case MMC_READ_SINGLE_BLOCK:
915 case MMC_SEND_EXT_CSD:
916 sh_mmcif_single_read(host, mrq);
917 return 0;
918 default:
919 dev_err(dev, "Unsupported CMD%d\n", opc);
920 return -EINVAL;
921 }
922 }
923
sh_mmcif_start_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)924 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
925 struct mmc_request *mrq)
926 {
927 struct mmc_command *cmd = mrq->cmd;
928 u32 opc = cmd->opcode;
929 u32 mask;
930 unsigned long flags;
931
932 switch (opc) {
933 /* response busy check */
934 case MMC_SLEEP_AWAKE:
935 case MMC_SWITCH:
936 case MMC_STOP_TRANSMISSION:
937 case MMC_SET_WRITE_PROT:
938 case MMC_CLR_WRITE_PROT:
939 case MMC_ERASE:
940 mask = MASK_START_CMD | MASK_MRBSYE;
941 break;
942 default:
943 mask = MASK_START_CMD | MASK_MCRSPE;
944 break;
945 }
946
947 if (host->ccs_enable)
948 mask |= MASK_MCCSTO;
949
950 if (mrq->data) {
951 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
952 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
953 mrq->data->blksz);
954 }
955 opc = sh_mmcif_set_cmd(host, mrq);
956
957 if (host->ccs_enable)
958 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
959 else
960 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
961 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
962 /* set arg */
963 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
964 /* set cmd */
965 spin_lock_irqsave(&host->lock, flags);
966 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
967
968 host->wait_for = MMCIF_WAIT_FOR_CMD;
969 schedule_delayed_work(&host->timeout_work, host->timeout);
970 spin_unlock_irqrestore(&host->lock, flags);
971 }
972
sh_mmcif_stop_cmd(struct sh_mmcif_host * host,struct mmc_request * mrq)973 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
974 struct mmc_request *mrq)
975 {
976 struct device *dev = sh_mmcif_host_to_dev(host);
977
978 switch (mrq->cmd->opcode) {
979 case MMC_READ_MULTIPLE_BLOCK:
980 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
981 break;
982 case MMC_WRITE_MULTIPLE_BLOCK:
983 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
984 break;
985 default:
986 dev_err(dev, "unsupported stop cmd\n");
987 mrq->stop->error = sh_mmcif_error_manage(host);
988 return;
989 }
990
991 host->wait_for = MMCIF_WAIT_FOR_STOP;
992 }
993
sh_mmcif_request(struct mmc_host * mmc,struct mmc_request * mrq)994 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
995 {
996 struct sh_mmcif_host *host = mmc_priv(mmc);
997 struct device *dev = sh_mmcif_host_to_dev(host);
998 unsigned long flags;
999
1000 spin_lock_irqsave(&host->lock, flags);
1001 if (host->state != STATE_IDLE) {
1002 dev_dbg(dev, "%s() rejected, state %u\n",
1003 __func__, host->state);
1004 spin_unlock_irqrestore(&host->lock, flags);
1005 mrq->cmd->error = -EAGAIN;
1006 mmc_request_done(mmc, mrq);
1007 return;
1008 }
1009
1010 host->state = STATE_REQUEST;
1011 spin_unlock_irqrestore(&host->lock, flags);
1012
1013 switch (mrq->cmd->opcode) {
1014 /* MMCIF does not support SD/SDIO command */
1015 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
1016 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
1017 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
1018 break;
1019 case MMC_APP_CMD:
1020 case SD_IO_RW_DIRECT:
1021 host->state = STATE_IDLE;
1022 mrq->cmd->error = -ETIMEDOUT;
1023 mmc_request_done(mmc, mrq);
1024 return;
1025 default:
1026 break;
1027 }
1028
1029 host->mrq = mrq;
1030
1031 sh_mmcif_start_cmd(host, mrq);
1032 }
1033
sh_mmcif_clk_setup(struct sh_mmcif_host * host)1034 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1035 {
1036 struct device *dev = sh_mmcif_host_to_dev(host);
1037
1038 if (host->mmc->f_max) {
1039 unsigned int f_max, f_min = 0, f_min_old;
1040
1041 f_max = host->mmc->f_max;
1042 for (f_min_old = f_max; f_min_old > 2;) {
1043 f_min = clk_round_rate(host->clk, f_min_old / 2);
1044 if (f_min == f_min_old)
1045 break;
1046 f_min_old = f_min;
1047 }
1048
1049 /*
1050 * This driver assumes this SoC is R-Car Gen2 or later
1051 */
1052 host->clkdiv_map = 0x3ff;
1053
1054 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1055 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1056 } else {
1057 unsigned int clk = clk_get_rate(host->clk);
1058
1059 host->mmc->f_max = clk / 2;
1060 host->mmc->f_min = clk / 512;
1061 }
1062
1063 dev_dbg(dev, "clk max/min = %d/%d\n",
1064 host->mmc->f_max, host->mmc->f_min);
1065 }
1066
sh_mmcif_set_power(struct sh_mmcif_host * host,struct mmc_ios * ios)1067 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
1068 {
1069 struct mmc_host *mmc = host->mmc;
1070
1071 if (!IS_ERR(mmc->supply.vmmc))
1072 /* Errors ignored... */
1073 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1074 ios->power_mode ? ios->vdd : 0);
1075 }
1076
sh_mmcif_set_ios(struct mmc_host * mmc,struct mmc_ios * ios)1077 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1078 {
1079 struct sh_mmcif_host *host = mmc_priv(mmc);
1080 struct device *dev = sh_mmcif_host_to_dev(host);
1081 unsigned long flags;
1082
1083 spin_lock_irqsave(&host->lock, flags);
1084 if (host->state != STATE_IDLE) {
1085 dev_dbg(dev, "%s() rejected, state %u\n",
1086 __func__, host->state);
1087 spin_unlock_irqrestore(&host->lock, flags);
1088 return;
1089 }
1090
1091 host->state = STATE_IOS;
1092 spin_unlock_irqrestore(&host->lock, flags);
1093
1094 if (ios->power_mode == MMC_POWER_UP) {
1095 if (!host->card_present) {
1096 /* See if we also get DMA */
1097 sh_mmcif_request_dma(host);
1098 host->card_present = true;
1099 }
1100 sh_mmcif_set_power(host, ios);
1101 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1102 /* clock stop */
1103 sh_mmcif_clock_control(host, 0);
1104 if (ios->power_mode == MMC_POWER_OFF) {
1105 if (host->card_present) {
1106 sh_mmcif_release_dma(host);
1107 host->card_present = false;
1108 }
1109 }
1110 if (host->power) {
1111 pm_runtime_put_sync(dev);
1112 clk_disable_unprepare(host->clk);
1113 host->power = false;
1114 if (ios->power_mode == MMC_POWER_OFF)
1115 sh_mmcif_set_power(host, ios);
1116 }
1117 host->state = STATE_IDLE;
1118 return;
1119 }
1120
1121 if (ios->clock) {
1122 if (!host->power) {
1123 clk_prepare_enable(host->clk);
1124
1125 pm_runtime_get_sync(dev);
1126 host->power = true;
1127 sh_mmcif_sync_reset(host);
1128 }
1129 sh_mmcif_clock_control(host, ios->clock);
1130 }
1131
1132 host->timing = ios->timing;
1133 host->bus_width = ios->bus_width;
1134 host->state = STATE_IDLE;
1135 }
1136
sh_mmcif_get_cd(struct mmc_host * mmc)1137 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1138 {
1139 struct sh_mmcif_host *host = mmc_priv(mmc);
1140 struct device *dev = sh_mmcif_host_to_dev(host);
1141 struct sh_mmcif_plat_data *p = dev->platform_data;
1142 int ret = mmc_gpio_get_cd(mmc);
1143
1144 if (ret >= 0)
1145 return ret;
1146
1147 if (!p || !p->get_cd)
1148 return -ENOSYS;
1149 else
1150 return p->get_cd(host->pd);
1151 }
1152
1153 static struct mmc_host_ops sh_mmcif_ops = {
1154 .request = sh_mmcif_request,
1155 .set_ios = sh_mmcif_set_ios,
1156 .get_cd = sh_mmcif_get_cd,
1157 };
1158
sh_mmcif_end_cmd(struct sh_mmcif_host * host)1159 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1160 {
1161 struct mmc_command *cmd = host->mrq->cmd;
1162 struct mmc_data *data = host->mrq->data;
1163 struct device *dev = sh_mmcif_host_to_dev(host);
1164 long time;
1165
1166 if (host->sd_error) {
1167 switch (cmd->opcode) {
1168 case MMC_ALL_SEND_CID:
1169 case MMC_SELECT_CARD:
1170 case MMC_APP_CMD:
1171 cmd->error = -ETIMEDOUT;
1172 break;
1173 default:
1174 cmd->error = sh_mmcif_error_manage(host);
1175 break;
1176 }
1177 dev_dbg(dev, "CMD%d error %d\n",
1178 cmd->opcode, cmd->error);
1179 host->sd_error = false;
1180 return false;
1181 }
1182 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1183 cmd->error = 0;
1184 return false;
1185 }
1186
1187 sh_mmcif_get_response(host, cmd);
1188
1189 if (!data)
1190 return false;
1191
1192 /*
1193 * Completion can be signalled from DMA callback and error, so, have to
1194 * reset here, before setting .dma_active
1195 */
1196 init_completion(&host->dma_complete);
1197
1198 if (data->flags & MMC_DATA_READ) {
1199 if (host->chan_rx)
1200 sh_mmcif_start_dma_rx(host);
1201 } else {
1202 if (host->chan_tx)
1203 sh_mmcif_start_dma_tx(host);
1204 }
1205
1206 if (!host->dma_active) {
1207 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1208 return !data->error;
1209 }
1210
1211 /* Running in the IRQ thread, can sleep */
1212 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1213 host->timeout);
1214
1215 if (data->flags & MMC_DATA_READ)
1216 dma_unmap_sg(host->chan_rx->device->dev,
1217 data->sg, data->sg_len,
1218 DMA_FROM_DEVICE);
1219 else
1220 dma_unmap_sg(host->chan_tx->device->dev,
1221 data->sg, data->sg_len,
1222 DMA_TO_DEVICE);
1223
1224 if (host->sd_error) {
1225 dev_err(host->mmc->parent,
1226 "Error IRQ while waiting for DMA completion!\n");
1227 /* Woken up by an error IRQ: abort DMA */
1228 data->error = sh_mmcif_error_manage(host);
1229 } else if (!time) {
1230 dev_err(host->mmc->parent, "DMA timeout!\n");
1231 data->error = -ETIMEDOUT;
1232 } else if (time < 0) {
1233 dev_err(host->mmc->parent,
1234 "wait_for_completion_...() error %ld!\n", time);
1235 data->error = time;
1236 }
1237 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1238 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1239 host->dma_active = false;
1240
1241 if (data->error) {
1242 data->bytes_xfered = 0;
1243 /* Abort DMA */
1244 if (data->flags & MMC_DATA_READ)
1245 dmaengine_terminate_all(host->chan_rx);
1246 else
1247 dmaengine_terminate_all(host->chan_tx);
1248 }
1249
1250 return false;
1251 }
1252
sh_mmcif_irqt(int irq,void * dev_id)1253 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1254 {
1255 struct sh_mmcif_host *host = dev_id;
1256 struct mmc_request *mrq;
1257 struct device *dev = sh_mmcif_host_to_dev(host);
1258 bool wait = false;
1259 unsigned long flags;
1260 int wait_work;
1261
1262 spin_lock_irqsave(&host->lock, flags);
1263 wait_work = host->wait_for;
1264 spin_unlock_irqrestore(&host->lock, flags);
1265
1266 cancel_delayed_work_sync(&host->timeout_work);
1267
1268 mutex_lock(&host->thread_lock);
1269
1270 mrq = host->mrq;
1271 if (!mrq) {
1272 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1273 host->state, host->wait_for);
1274 mutex_unlock(&host->thread_lock);
1275 return IRQ_HANDLED;
1276 }
1277
1278 /*
1279 * All handlers return true, if processing continues, and false, if the
1280 * request has to be completed - successfully or not
1281 */
1282 switch (wait_work) {
1283 case MMCIF_WAIT_FOR_REQUEST:
1284 /* We're too late, the timeout has already kicked in */
1285 mutex_unlock(&host->thread_lock);
1286 return IRQ_HANDLED;
1287 case MMCIF_WAIT_FOR_CMD:
1288 /* Wait for data? */
1289 wait = sh_mmcif_end_cmd(host);
1290 break;
1291 case MMCIF_WAIT_FOR_MREAD:
1292 /* Wait for more data? */
1293 wait = sh_mmcif_mread_block(host);
1294 break;
1295 case MMCIF_WAIT_FOR_READ:
1296 /* Wait for data end? */
1297 wait = sh_mmcif_read_block(host);
1298 break;
1299 case MMCIF_WAIT_FOR_MWRITE:
1300 /* Wait data to write? */
1301 wait = sh_mmcif_mwrite_block(host);
1302 break;
1303 case MMCIF_WAIT_FOR_WRITE:
1304 /* Wait for data end? */
1305 wait = sh_mmcif_write_block(host);
1306 break;
1307 case MMCIF_WAIT_FOR_STOP:
1308 if (host->sd_error) {
1309 mrq->stop->error = sh_mmcif_error_manage(host);
1310 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1311 break;
1312 }
1313 sh_mmcif_get_cmd12response(host, mrq->stop);
1314 mrq->stop->error = 0;
1315 break;
1316 case MMCIF_WAIT_FOR_READ_END:
1317 case MMCIF_WAIT_FOR_WRITE_END:
1318 if (host->sd_error) {
1319 mrq->data->error = sh_mmcif_error_manage(host);
1320 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1321 }
1322 break;
1323 default:
1324 BUG();
1325 }
1326
1327 if (wait) {
1328 schedule_delayed_work(&host->timeout_work, host->timeout);
1329 /* Wait for more data */
1330 mutex_unlock(&host->thread_lock);
1331 return IRQ_HANDLED;
1332 }
1333
1334 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1335 struct mmc_data *data = mrq->data;
1336 if (!mrq->cmd->error && data && !data->error)
1337 data->bytes_xfered =
1338 data->blocks * data->blksz;
1339
1340 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1341 sh_mmcif_stop_cmd(host, mrq);
1342 if (!mrq->stop->error) {
1343 schedule_delayed_work(&host->timeout_work, host->timeout);
1344 mutex_unlock(&host->thread_lock);
1345 return IRQ_HANDLED;
1346 }
1347 }
1348 }
1349
1350 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1351 host->state = STATE_IDLE;
1352 host->mrq = NULL;
1353 mmc_request_done(host->mmc, mrq);
1354
1355 mutex_unlock(&host->thread_lock);
1356
1357 return IRQ_HANDLED;
1358 }
1359
sh_mmcif_intr(int irq,void * dev_id)1360 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1361 {
1362 struct sh_mmcif_host *host = dev_id;
1363 struct device *dev = sh_mmcif_host_to_dev(host);
1364 u32 state, mask;
1365
1366 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1367 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1368 if (host->ccs_enable)
1369 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1370 else
1371 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1372 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1373
1374 if (state & ~MASK_CLEAN)
1375 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1376 state);
1377
1378 if (state & INT_ERR_STS || state & ~INT_ALL) {
1379 host->sd_error = true;
1380 dev_dbg(dev, "int err state = 0x%08x\n", state);
1381 }
1382 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1383 if (!host->mrq)
1384 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1385 if (!host->dma_active)
1386 return IRQ_WAKE_THREAD;
1387 else if (host->sd_error)
1388 sh_mmcif_dma_complete(host);
1389 } else {
1390 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1391 }
1392
1393 return IRQ_HANDLED;
1394 }
1395
sh_mmcif_timeout_work(struct work_struct * work)1396 static void sh_mmcif_timeout_work(struct work_struct *work)
1397 {
1398 struct delayed_work *d = container_of(work, struct delayed_work, work);
1399 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1400 struct mmc_request *mrq = host->mrq;
1401 struct device *dev = sh_mmcif_host_to_dev(host);
1402 unsigned long flags;
1403
1404 if (host->dying)
1405 /* Don't run after mmc_remove_host() */
1406 return;
1407
1408 spin_lock_irqsave(&host->lock, flags);
1409 if (host->state == STATE_IDLE) {
1410 spin_unlock_irqrestore(&host->lock, flags);
1411 return;
1412 }
1413
1414 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1415 host->wait_for, mrq->cmd->opcode);
1416
1417 host->state = STATE_TIMEOUT;
1418 spin_unlock_irqrestore(&host->lock, flags);
1419
1420 /*
1421 * Handle races with cancel_delayed_work(), unless
1422 * cancel_delayed_work_sync() is used
1423 */
1424 switch (host->wait_for) {
1425 case MMCIF_WAIT_FOR_CMD:
1426 mrq->cmd->error = sh_mmcif_error_manage(host);
1427 break;
1428 case MMCIF_WAIT_FOR_STOP:
1429 mrq->stop->error = sh_mmcif_error_manage(host);
1430 break;
1431 case MMCIF_WAIT_FOR_MREAD:
1432 case MMCIF_WAIT_FOR_MWRITE:
1433 case MMCIF_WAIT_FOR_READ:
1434 case MMCIF_WAIT_FOR_WRITE:
1435 case MMCIF_WAIT_FOR_READ_END:
1436 case MMCIF_WAIT_FOR_WRITE_END:
1437 mrq->data->error = sh_mmcif_error_manage(host);
1438 break;
1439 default:
1440 BUG();
1441 }
1442
1443 host->state = STATE_IDLE;
1444 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1445 host->mrq = NULL;
1446 mmc_request_done(host->mmc, mrq);
1447 }
1448
sh_mmcif_init_ocr(struct sh_mmcif_host * host)1449 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1450 {
1451 struct device *dev = sh_mmcif_host_to_dev(host);
1452 struct sh_mmcif_plat_data *pd = dev->platform_data;
1453 struct mmc_host *mmc = host->mmc;
1454
1455 mmc_regulator_get_supply(mmc);
1456
1457 if (!pd)
1458 return;
1459
1460 if (!mmc->ocr_avail)
1461 mmc->ocr_avail = pd->ocr;
1462 else if (pd->ocr)
1463 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1464 }
1465
sh_mmcif_probe(struct platform_device * pdev)1466 static int sh_mmcif_probe(struct platform_device *pdev)
1467 {
1468 int ret = 0, irq[2];
1469 struct mmc_host *mmc;
1470 struct sh_mmcif_host *host;
1471 struct device *dev = &pdev->dev;
1472 struct sh_mmcif_plat_data *pd = dev->platform_data;
1473 struct resource *res;
1474 void __iomem *reg;
1475 const char *name;
1476
1477 irq[0] = platform_get_irq(pdev, 0);
1478 irq[1] = platform_get_irq(pdev, 1);
1479 if (irq[0] < 0) {
1480 dev_err(dev, "Get irq error\n");
1481 return -ENXIO;
1482 }
1483
1484 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1485 reg = devm_ioremap_resource(dev, res);
1486 if (IS_ERR(reg))
1487 return PTR_ERR(reg);
1488
1489 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1490 if (!mmc)
1491 return -ENOMEM;
1492
1493 ret = mmc_of_parse(mmc);
1494 if (ret < 0)
1495 goto err_host;
1496
1497 host = mmc_priv(mmc);
1498 host->mmc = mmc;
1499 host->addr = reg;
1500 host->timeout = msecs_to_jiffies(10000);
1501 host->ccs_enable = !pd || !pd->ccs_unsupported;
1502 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1503
1504 host->pd = pdev;
1505
1506 spin_lock_init(&host->lock);
1507
1508 mmc->ops = &sh_mmcif_ops;
1509 sh_mmcif_init_ocr(host);
1510
1511 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1512 if (pd && pd->caps)
1513 mmc->caps |= pd->caps;
1514 mmc->max_segs = 32;
1515 mmc->max_blk_size = 512;
1516 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1517 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1518 mmc->max_seg_size = mmc->max_req_size;
1519
1520 platform_set_drvdata(pdev, host);
1521
1522 pm_runtime_enable(dev);
1523 host->power = false;
1524
1525 host->clk = devm_clk_get(dev, NULL);
1526 if (IS_ERR(host->clk)) {
1527 ret = PTR_ERR(host->clk);
1528 dev_err(dev, "cannot get clock: %d\n", ret);
1529 goto err_pm;
1530 }
1531
1532 ret = clk_prepare_enable(host->clk);
1533 if (ret < 0)
1534 goto err_pm;
1535
1536 sh_mmcif_clk_setup(host);
1537
1538 ret = pm_runtime_resume(dev);
1539 if (ret < 0)
1540 goto err_clk;
1541
1542 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1543
1544 sh_mmcif_sync_reset(host);
1545 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1546
1547 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1548 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1549 sh_mmcif_irqt, 0, name, host);
1550 if (ret) {
1551 dev_err(dev, "request_irq error (%s)\n", name);
1552 goto err_clk;
1553 }
1554 if (irq[1] >= 0) {
1555 ret = devm_request_threaded_irq(dev, irq[1],
1556 sh_mmcif_intr, sh_mmcif_irqt,
1557 0, "sh_mmc:int", host);
1558 if (ret) {
1559 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1560 goto err_clk;
1561 }
1562 }
1563
1564 if (pd && pd->use_cd_gpio) {
1565 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1566 if (ret < 0)
1567 goto err_clk;
1568 }
1569
1570 mutex_init(&host->thread_lock);
1571
1572 ret = mmc_add_host(mmc);
1573 if (ret < 0)
1574 goto err_clk;
1575
1576 dev_pm_qos_expose_latency_limit(dev, 100);
1577
1578 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1579 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1580 clk_get_rate(host->clk) / 1000000UL);
1581
1582 clk_disable_unprepare(host->clk);
1583 return ret;
1584
1585 err_clk:
1586 clk_disable_unprepare(host->clk);
1587 err_pm:
1588 pm_runtime_disable(dev);
1589 err_host:
1590 mmc_free_host(mmc);
1591 return ret;
1592 }
1593
sh_mmcif_remove(struct platform_device * pdev)1594 static int sh_mmcif_remove(struct platform_device *pdev)
1595 {
1596 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1597
1598 host->dying = true;
1599 clk_prepare_enable(host->clk);
1600 pm_runtime_get_sync(&pdev->dev);
1601
1602 dev_pm_qos_hide_latency_limit(&pdev->dev);
1603
1604 mmc_remove_host(host->mmc);
1605 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1606
1607 /*
1608 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1609 * mmc_remove_host() call above. But swapping order doesn't help either
1610 * (a query on the linux-mmc mailing list didn't bring any replies).
1611 */
1612 cancel_delayed_work_sync(&host->timeout_work);
1613
1614 clk_disable_unprepare(host->clk);
1615 mmc_free_host(host->mmc);
1616 pm_runtime_put_sync(&pdev->dev);
1617 pm_runtime_disable(&pdev->dev);
1618
1619 return 0;
1620 }
1621
1622 #ifdef CONFIG_PM_SLEEP
sh_mmcif_suspend(struct device * dev)1623 static int sh_mmcif_suspend(struct device *dev)
1624 {
1625 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1626
1627 pm_runtime_get_sync(dev);
1628 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1629 pm_runtime_put(dev);
1630
1631 return 0;
1632 }
1633
sh_mmcif_resume(struct device * dev)1634 static int sh_mmcif_resume(struct device *dev)
1635 {
1636 return 0;
1637 }
1638 #endif
1639
1640 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1641 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1642 };
1643
1644 static struct platform_driver sh_mmcif_driver = {
1645 .probe = sh_mmcif_probe,
1646 .remove = sh_mmcif_remove,
1647 .driver = {
1648 .name = DRIVER_NAME,
1649 .pm = &sh_mmcif_dev_pm_ops,
1650 .of_match_table = sh_mmcif_of_match,
1651 },
1652 };
1653
1654 module_platform_driver(sh_mmcif_driver);
1655
1656 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1657 MODULE_LICENSE("GPL");
1658 MODULE_ALIAS("platform:" DRIVER_NAME);
1659 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1660