1 /*
2 * NUMA support for s390
3 *
4 * NUMA emulation (aka fake NUMA) distributes the available memory to nodes
5 * without using real topology information about the physical memory of the
6 * machine.
7 *
8 * It distributes the available CPUs to nodes while respecting the original
9 * machine topology information. This is done by trying to avoid to separate
10 * CPUs which reside on the same book or even on the same MC.
11 *
12 * Because the current Linux scheduler code requires a stable cpu to node
13 * mapping, cores are pinned to nodes when the first CPU thread is set online.
14 *
15 * Copyright IBM Corp. 2015
16 */
17
18 #define KMSG_COMPONENT "numa_emu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/cpumask.h>
23 #include <linux/memblock.h>
24 #include <linux/node.h>
25 #include <linux/memory.h>
26 #include <linux/slab.h>
27 #include <asm/smp.h>
28 #include <asm/topology.h>
29 #include "numa_mode.h"
30 #include "toptree.h"
31
32 /* Distances between the different system components */
33 #define DIST_EMPTY 0
34 #define DIST_CORE 1
35 #define DIST_MC 2
36 #define DIST_BOOK 3
37 #define DIST_MAX 4
38
39 /* Node distance reported to common code */
40 #define EMU_NODE_DIST 10
41
42 /* Node ID for free (not yet pinned) cores */
43 #define NODE_ID_FREE -1
44
45 /* Different levels of toptree */
46 enum toptree_level {CORE, MC, BOOK, NODE, TOPOLOGY};
47
48 /* The two toptree IDs */
49 enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA};
50
51 /* Number of NUMA nodes */
52 static int emu_nodes = 1;
53 /* NUMA stripe size */
54 static unsigned long emu_size;
55
56 /*
57 * Node to core pinning information updates are protected by
58 * "sched_domains_mutex".
59 */
60 static struct {
61 s32 to_node_id[CONFIG_NR_CPUS]; /* Pinned core to node mapping */
62 int total; /* Total number of pinned cores */
63 int per_node_target; /* Cores per node without extra cores */
64 int per_node[MAX_NUMNODES]; /* Number of cores pinned to node */
65 } *emu_cores;
66
67 /*
68 * Pin a core to a node
69 */
pin_core_to_node(int core_id,int node_id)70 static void pin_core_to_node(int core_id, int node_id)
71 {
72 if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) {
73 emu_cores->per_node[node_id]++;
74 emu_cores->to_node_id[core_id] = node_id;
75 emu_cores->total++;
76 } else {
77 WARN_ON(emu_cores->to_node_id[core_id] != node_id);
78 }
79 }
80
81 /*
82 * Number of pinned cores of a node
83 */
cores_pinned(struct toptree * node)84 static int cores_pinned(struct toptree *node)
85 {
86 return emu_cores->per_node[node->id];
87 }
88
89 /*
90 * ID of the node where the core is pinned (or NODE_ID_FREE)
91 */
core_pinned_to_node_id(struct toptree * core)92 static int core_pinned_to_node_id(struct toptree *core)
93 {
94 return emu_cores->to_node_id[core->id];
95 }
96
97 /*
98 * Number of cores in the tree that are not yet pinned
99 */
cores_free(struct toptree * tree)100 static int cores_free(struct toptree *tree)
101 {
102 struct toptree *core;
103 int count = 0;
104
105 toptree_for_each(core, tree, CORE) {
106 if (core_pinned_to_node_id(core) == NODE_ID_FREE)
107 count++;
108 }
109 return count;
110 }
111
112 /*
113 * Return node of core
114 */
core_node(struct toptree * core)115 static struct toptree *core_node(struct toptree *core)
116 {
117 return core->parent->parent->parent;
118 }
119
120 /*
121 * Return book of core
122 */
core_book(struct toptree * core)123 static struct toptree *core_book(struct toptree *core)
124 {
125 return core->parent->parent;
126 }
127
128 /*
129 * Return mc of core
130 */
core_mc(struct toptree * core)131 static struct toptree *core_mc(struct toptree *core)
132 {
133 return core->parent;
134 }
135
136 /*
137 * Distance between two cores
138 */
dist_core_to_core(struct toptree * core1,struct toptree * core2)139 static int dist_core_to_core(struct toptree *core1, struct toptree *core2)
140 {
141 if (core_book(core1)->id != core_book(core2)->id)
142 return DIST_BOOK;
143 if (core_mc(core1)->id != core_mc(core2)->id)
144 return DIST_MC;
145 /* Same core or sibling on same MC */
146 return DIST_CORE;
147 }
148
149 /*
150 * Distance of a node to a core
151 */
dist_node_to_core(struct toptree * node,struct toptree * core)152 static int dist_node_to_core(struct toptree *node, struct toptree *core)
153 {
154 struct toptree *core_node;
155 int dist_min = DIST_MAX;
156
157 toptree_for_each(core_node, node, CORE)
158 dist_min = min(dist_min, dist_core_to_core(core_node, core));
159 return dist_min == DIST_MAX ? DIST_EMPTY : dist_min;
160 }
161
162 /*
163 * Unify will delete empty nodes, therefore recreate nodes.
164 */
toptree_unify_tree(struct toptree * tree)165 static void toptree_unify_tree(struct toptree *tree)
166 {
167 int nid;
168
169 toptree_unify(tree);
170 for (nid = 0; nid < emu_nodes; nid++)
171 toptree_get_child(tree, nid);
172 }
173
174 /*
175 * Find the best/nearest node for a given core and ensure that no node
176 * gets more than "emu_cores->per_node_target + extra" cores.
177 */
node_for_core(struct toptree * numa,struct toptree * core,int extra)178 static struct toptree *node_for_core(struct toptree *numa, struct toptree *core,
179 int extra)
180 {
181 struct toptree *node, *node_best = NULL;
182 int dist_cur, dist_best, cores_target;
183
184 cores_target = emu_cores->per_node_target + extra;
185 dist_best = DIST_MAX;
186 node_best = NULL;
187 toptree_for_each(node, numa, NODE) {
188 /* Already pinned cores must use their nodes */
189 if (core_pinned_to_node_id(core) == node->id) {
190 node_best = node;
191 break;
192 }
193 /* Skip nodes that already have enough cores */
194 if (cores_pinned(node) >= cores_target)
195 continue;
196 dist_cur = dist_node_to_core(node, core);
197 if (dist_cur < dist_best) {
198 dist_best = dist_cur;
199 node_best = node;
200 }
201 }
202 return node_best;
203 }
204
205 /*
206 * Find the best node for each core with respect to "extra" core count
207 */
toptree_to_numa_single(struct toptree * numa,struct toptree * phys,int extra)208 static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys,
209 int extra)
210 {
211 struct toptree *node, *core, *tmp;
212
213 toptree_for_each_safe(core, tmp, phys, CORE) {
214 node = node_for_core(numa, core, extra);
215 if (!node)
216 return;
217 toptree_move(core, node);
218 pin_core_to_node(core->id, node->id);
219 }
220 }
221
222 /*
223 * Move structures of given level to specified NUMA node
224 */
move_level_to_numa_node(struct toptree * node,struct toptree * phys,enum toptree_level level,bool perfect)225 static void move_level_to_numa_node(struct toptree *node, struct toptree *phys,
226 enum toptree_level level, bool perfect)
227 {
228 int cores_free, cores_target = emu_cores->per_node_target;
229 struct toptree *cur, *tmp;
230
231 toptree_for_each_safe(cur, tmp, phys, level) {
232 cores_free = cores_target - toptree_count(node, CORE);
233 if (perfect) {
234 if (cores_free == toptree_count(cur, CORE))
235 toptree_move(cur, node);
236 } else {
237 if (cores_free >= toptree_count(cur, CORE))
238 toptree_move(cur, node);
239 }
240 }
241 }
242
243 /*
244 * Move structures of a given level to NUMA nodes. If "perfect" is specified
245 * move only perfectly fitting structures. Otherwise move also smaller
246 * than needed structures.
247 */
move_level_to_numa(struct toptree * numa,struct toptree * phys,enum toptree_level level,bool perfect)248 static void move_level_to_numa(struct toptree *numa, struct toptree *phys,
249 enum toptree_level level, bool perfect)
250 {
251 struct toptree *node;
252
253 toptree_for_each(node, numa, NODE)
254 move_level_to_numa_node(node, phys, level, perfect);
255 }
256
257 /*
258 * For the first run try to move the big structures
259 */
toptree_to_numa_first(struct toptree * numa,struct toptree * phys)260 static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys)
261 {
262 struct toptree *core;
263
264 /* Always try to move perfectly fitting structures first */
265 move_level_to_numa(numa, phys, BOOK, true);
266 move_level_to_numa(numa, phys, BOOK, false);
267 move_level_to_numa(numa, phys, MC, true);
268 move_level_to_numa(numa, phys, MC, false);
269 /* Now pin all the moved cores */
270 toptree_for_each(core, numa, CORE)
271 pin_core_to_node(core->id, core_node(core)->id);
272 }
273
274 /*
275 * Allocate new topology and create required nodes
276 */
toptree_new(int id,int nodes)277 static struct toptree *toptree_new(int id, int nodes)
278 {
279 struct toptree *tree;
280 int nid;
281
282 tree = toptree_alloc(TOPOLOGY, id);
283 if (!tree)
284 goto fail;
285 for (nid = 0; nid < nodes; nid++) {
286 if (!toptree_get_child(tree, nid))
287 goto fail;
288 }
289 return tree;
290 fail:
291 panic("NUMA emulation could not allocate topology");
292 }
293
294 /*
295 * Allocate and initialize core to node mapping
296 */
create_core_to_node_map(void)297 static void create_core_to_node_map(void)
298 {
299 int i;
300
301 emu_cores = kzalloc(sizeof(*emu_cores), GFP_KERNEL);
302 if (emu_cores == NULL)
303 panic("Could not allocate cores to node memory");
304 for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++)
305 emu_cores->to_node_id[i] = NODE_ID_FREE;
306 }
307
308 /*
309 * Move cores from physical topology into NUMA target topology
310 * and try to keep as much of the physical topology as possible.
311 */
toptree_to_numa(struct toptree * phys)312 static struct toptree *toptree_to_numa(struct toptree *phys)
313 {
314 static int first = 1;
315 struct toptree *numa;
316 int cores_total;
317
318 cores_total = emu_cores->total + cores_free(phys);
319 emu_cores->per_node_target = cores_total / emu_nodes;
320 numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes);
321 if (first) {
322 toptree_to_numa_first(numa, phys);
323 first = 0;
324 }
325 toptree_to_numa_single(numa, phys, 0);
326 toptree_to_numa_single(numa, phys, 1);
327 toptree_unify_tree(numa);
328
329 WARN_ON(cpumask_weight(&phys->mask));
330 return numa;
331 }
332
333 /*
334 * Create a toptree out of the physical topology that we got from the hypervisor
335 */
toptree_from_topology(void)336 static struct toptree *toptree_from_topology(void)
337 {
338 struct toptree *phys, *node, *book, *mc, *core;
339 struct cpu_topology_s390 *top;
340 int cpu;
341
342 phys = toptree_new(TOPTREE_ID_PHYS, 1);
343
344 for_each_online_cpu(cpu) {
345 top = &per_cpu(cpu_topology, cpu);
346 node = toptree_get_child(phys, 0);
347 book = toptree_get_child(node, top->book_id);
348 mc = toptree_get_child(book, top->socket_id);
349 core = toptree_get_child(mc, top->core_id);
350 if (!book || !mc || !core)
351 panic("NUMA emulation could not allocate memory");
352 cpumask_set_cpu(cpu, &core->mask);
353 toptree_update_mask(mc);
354 }
355 return phys;
356 }
357
358 /*
359 * Add toptree core to topology and create correct CPU masks
360 */
topology_add_core(struct toptree * core)361 static void topology_add_core(struct toptree *core)
362 {
363 struct cpu_topology_s390 *top;
364 int cpu;
365
366 for_each_cpu(cpu, &core->mask) {
367 top = &per_cpu(cpu_topology, cpu);
368 cpumask_copy(&top->thread_mask, &core->mask);
369 cpumask_copy(&top->core_mask, &core_mc(core)->mask);
370 cpumask_copy(&top->book_mask, &core_book(core)->mask);
371 cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]);
372 top->node_id = core_node(core)->id;
373 }
374 }
375
376 /*
377 * Apply toptree to topology and create CPU masks
378 */
toptree_to_topology(struct toptree * numa)379 static void toptree_to_topology(struct toptree *numa)
380 {
381 struct toptree *core;
382 int i;
383
384 /* Clear all node masks */
385 for (i = 0; i < MAX_NUMNODES; i++)
386 cpumask_clear(&node_to_cpumask_map[i]);
387
388 /* Rebuild all masks */
389 toptree_for_each(core, numa, CORE)
390 topology_add_core(core);
391 }
392
393 /*
394 * Show the node to core mapping
395 */
print_node_to_core_map(void)396 static void print_node_to_core_map(void)
397 {
398 int nid, cid;
399
400 if (!numa_debug_enabled)
401 return;
402 printk(KERN_DEBUG "NUMA node to core mapping\n");
403 for (nid = 0; nid < emu_nodes; nid++) {
404 printk(KERN_DEBUG " node %3d: ", nid);
405 for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) {
406 if (emu_cores->to_node_id[cid] == nid)
407 printk(KERN_CONT "%d ", cid);
408 }
409 printk(KERN_CONT "\n");
410 }
411 }
412
413 /*
414 * Transfer physical topology into a NUMA topology and modify CPU masks
415 * according to the NUMA topology.
416 *
417 * Must be called with "sched_domains_mutex" lock held.
418 */
emu_update_cpu_topology(void)419 static void emu_update_cpu_topology(void)
420 {
421 struct toptree *phys, *numa;
422
423 if (emu_cores == NULL)
424 create_core_to_node_map();
425 phys = toptree_from_topology();
426 numa = toptree_to_numa(phys);
427 toptree_free(phys);
428 toptree_to_topology(numa);
429 toptree_free(numa);
430 print_node_to_core_map();
431 }
432
433 /*
434 * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum
435 * alignment (needed for memory hotplug).
436 */
emu_setup_size_adjust(unsigned long size)437 static unsigned long emu_setup_size_adjust(unsigned long size)
438 {
439 unsigned long size_new;
440
441 size = size ? : CONFIG_EMU_SIZE;
442 size_new = roundup(size, memory_block_size_bytes());
443 if (size_new == size)
444 return size;
445 pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n",
446 size >> 20, size_new >> 20);
447 return size_new;
448 }
449
450 /*
451 * If we have not enough memory for the specified nodes, reduce the node count.
452 */
emu_setup_nodes_adjust(int nodes)453 static int emu_setup_nodes_adjust(int nodes)
454 {
455 int nodes_max;
456
457 nodes_max = memblock.memory.total_size / emu_size;
458 nodes_max = max(nodes_max, 1);
459 if (nodes_max >= nodes)
460 return nodes;
461 pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes);
462 return nodes_max;
463 }
464
465 /*
466 * Early emu setup
467 */
emu_setup(void)468 static void emu_setup(void)
469 {
470 emu_size = emu_setup_size_adjust(emu_size);
471 emu_nodes = emu_setup_nodes_adjust(emu_nodes);
472 pr_info("Creating %d nodes with memory stripe size %ld MB\n",
473 emu_nodes, emu_size >> 20);
474 }
475
476 /*
477 * Return node id for given page number
478 */
emu_pfn_to_nid(unsigned long pfn)479 static int emu_pfn_to_nid(unsigned long pfn)
480 {
481 return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes;
482 }
483
484 /*
485 * Return stripe size
486 */
emu_align(void)487 static unsigned long emu_align(void)
488 {
489 return emu_size;
490 }
491
492 /*
493 * Return distance between two nodes
494 */
emu_distance(int node1,int node2)495 static int emu_distance(int node1, int node2)
496 {
497 return (node1 != node2) * EMU_NODE_DIST;
498 }
499
500 /*
501 * Define callbacks for generic s390 NUMA infrastructure
502 */
503 const struct numa_mode numa_mode_emu = {
504 .name = "emu",
505 .setup = emu_setup,
506 .update_cpu_topology = emu_update_cpu_topology,
507 .__pfn_to_nid = emu_pfn_to_nid,
508 .align = emu_align,
509 .distance = emu_distance,
510 };
511
512 /*
513 * Kernel parameter: emu_nodes=<n>
514 */
early_parse_emu_nodes(char * p)515 static int __init early_parse_emu_nodes(char *p)
516 {
517 int count;
518
519 if (kstrtoint(p, 0, &count) != 0 || count <= 0)
520 return 0;
521 if (count <= 0)
522 return 0;
523 emu_nodes = min(count, MAX_NUMNODES);
524 return 0;
525 }
526 early_param("emu_nodes", early_parse_emu_nodes);
527
528 /*
529 * Kernel parameter: emu_size=[<n>[k|M|G|T]]
530 */
early_parse_emu_size(char * p)531 static int __init early_parse_emu_size(char *p)
532 {
533 emu_size = memparse(p, NULL);
534 return 0;
535 }
536 early_param("emu_size", early_parse_emu_size);
537