• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * vineetg: May 2011
9  *  -Refactored get_new_mmu_context( ) to only handle live-mm.
10  *   retiring-mm handled in other hooks
11  *
12  * Vineetg: March 25th, 2008: Bug #92690
13  *  -Major rewrite of Core ASID allocation routine get_new_mmu_context
14  *
15  * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
16  */
17 
18 #ifndef _ASM_ARC_MMU_CONTEXT_H
19 #define _ASM_ARC_MMU_CONTEXT_H
20 
21 #include <asm/arcregs.h>
22 #include <asm/tlb.h>
23 
24 #include <asm-generic/mm_hooks.h>
25 
26 /*		ARC700 ASID Management
27  *
28  * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
29  * with same vaddr (different tasks) to co-exit. This provides for
30  * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
31  *
32  * Linux assigns each task a unique ASID. A simple round-robin allocation
33  * of H/w ASID is done using software tracker @asid_cpu.
34  * When it reaches max 255, the allocation cycle starts afresh by flushing
35  * the entire TLB and wrapping ASID back to zero.
36  *
37  * A new allocation cycle, post rollover, could potentially reassign an ASID
38  * to a different task. Thus the rule is to refresh the ASID in a new cycle.
39  * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
40  * serve as cycle/generation indicator and natural 32 bit unsigned math
41  * automagically increments the generation when lower 8 bits rollover.
42  */
43 
44 #define MM_CTXT_ASID_MASK	0x000000ff /* MMU PID reg :8 bit PID */
45 #define MM_CTXT_CYCLE_MASK	(~MM_CTXT_ASID_MASK)
46 
47 #define MM_CTXT_FIRST_CYCLE	(MM_CTXT_ASID_MASK + 1)
48 #define MM_CTXT_NO_ASID		0UL
49 
50 #define asid_mm(mm, cpu)	mm->context.asid[cpu]
51 #define hw_pid(mm, cpu)		(asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
52 
53 DECLARE_PER_CPU(unsigned int, asid_cache);
54 #define asid_cpu(cpu)		per_cpu(asid_cache, cpu)
55 
56 /*
57  * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
58  * Also set the MMU PID register to existing/updated ASID
59  */
get_new_mmu_context(struct mm_struct * mm)60 static inline void get_new_mmu_context(struct mm_struct *mm)
61 {
62 	const unsigned int cpu = smp_processor_id();
63 	unsigned long flags;
64 
65 	local_irq_save(flags);
66 
67 	/*
68 	 * Move to new ASID if it was not from current alloc-cycle/generation.
69 	 * This is done by ensuring that the generation bits in both mm->ASID
70 	 * and cpu's ASID counter are exactly same.
71 	 *
72 	 * Note: Callers needing new ASID unconditionally, independent of
73 	 * 	 generation, e.g. local_flush_tlb_mm() for forking  parent,
74 	 * 	 first need to destroy the context, setting it to invalid
75 	 * 	 value.
76 	 */
77 	if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
78 		goto set_hw;
79 
80 	/* move to new ASID and handle rollover */
81 	if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
82 
83 		local_flush_tlb_all();
84 
85 		/*
86 		 * Above checke for rollover of 8 bit ASID in 32 bit container.
87 		 * If the container itself wrapped around, set it to a non zero
88 		 * "generation" to distinguish from no context
89 		 */
90 		if (!asid_cpu(cpu))
91 			asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
92 	}
93 
94 	/* Assign new ASID to tsk */
95 	asid_mm(mm, cpu) = asid_cpu(cpu);
96 
97 set_hw:
98 	write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
99 
100 	local_irq_restore(flags);
101 }
102 
103 /*
104  * Initialize the context related info for a new mm_struct
105  * instance.
106  */
107 static inline int
init_new_context(struct task_struct * tsk,struct mm_struct * mm)108 init_new_context(struct task_struct *tsk, struct mm_struct *mm)
109 {
110 	int i;
111 
112 	for_each_possible_cpu(i)
113 		asid_mm(mm, i) = MM_CTXT_NO_ASID;
114 
115 	return 0;
116 }
117 
destroy_context(struct mm_struct * mm)118 static inline void destroy_context(struct mm_struct *mm)
119 {
120 	unsigned long flags;
121 
122 	/* Needed to elide CONFIG_DEBUG_PREEMPT warning */
123 	local_irq_save(flags);
124 	asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
125 	local_irq_restore(flags);
126 }
127 
128 /* Prepare the MMU for task: setup PID reg with allocated ASID
129     If task doesn't have an ASID (never alloc or stolen, get a new ASID)
130 */
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)131 static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
132 			     struct task_struct *tsk)
133 {
134 	const int cpu = smp_processor_id();
135 
136 	/*
137 	 * Note that the mm_cpumask is "aggregating" only, we don't clear it
138 	 * for the switched-out task, unlike some other arches.
139 	 * It is used to enlist cpus for sending TLB flush IPIs and not sending
140 	 * it to CPUs where a task once ran-on, could cause stale TLB entry
141 	 * re-use, specially for a multi-threaded task.
142 	 * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
143 	 *      For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
144 	 *      were to re-migrate to C1, it could access the unmapped region
145 	 *      via any existing stale TLB entries.
146 	 */
147 	cpumask_set_cpu(cpu, mm_cpumask(next));
148 
149 #ifndef CONFIG_SMP
150 	/* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
151 	write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
152 #endif
153 
154 	get_new_mmu_context(next);
155 }
156 
157 /*
158  * Called at the time of execve() to get a new ASID
159  * Note the subtlety here: get_new_mmu_context() behaves differently here
160  * vs. in switch_mm(). Here it always returns a new ASID, because mm has
161  * an unallocated "initial" value, while in latter, it moves to a new ASID,
162  * only if it was unallocated
163  */
164 #define activate_mm(prev, next)		switch_mm(prev, next, NULL)
165 
166 /* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
167  * for retiring-mm. However destroy_context( ) still needs to do that because
168  * between mm_release( ) = >deactive_mm( ) and
169  * mmput => .. => __mmdrop( ) => destroy_context( )
170  * there is a good chance that task gets sched-out/in, making it's ASID valid
171  * again (this teased me for a whole day).
172  */
173 #define deactivate_mm(tsk, mm)   do { } while (0)
174 
175 #define enter_lazy_tlb(mm, tsk)
176 
177 #endif /* __ASM_ARC_MMU_CONTEXT_H */
178