• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* MN10300 Kernel probes implementation
2  *
3  * Copyright (C) 2005 Red Hat, Inc. All Rights Reserved.
4  * Written by Mark Salter (msalter@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public Licence as published by
8  * the Free Software Foundation; either version 2 of the Licence, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public Licence for more details.
15  *
16  * You should have received a copy of the GNU General Public Licence
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 #include <linux/kprobes.h>
21 #include <linux/ptrace.h>
22 #include <linux/spinlock.h>
23 #include <linux/preempt.h>
24 #include <linux/kdebug.h>
25 #include <asm/cacheflush.h>
26 
27 struct kretprobe_blackpoint kretprobe_blacklist[] = { { NULL, NULL } };
28 const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
29 
30 /* kprobe_status settings */
31 #define KPROBE_HIT_ACTIVE	0x00000001
32 #define KPROBE_HIT_SS		0x00000002
33 
34 static struct kprobe *cur_kprobe;
35 static unsigned long cur_kprobe_orig_pc;
36 static unsigned long cur_kprobe_next_pc;
37 static int cur_kprobe_ss_flags;
38 static unsigned long kprobe_status;
39 static kprobe_opcode_t cur_kprobe_ss_buf[MAX_INSN_SIZE + 2];
40 static unsigned long cur_kprobe_bp_addr;
41 
42 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
43 
44 
45 /* singlestep flag bits */
46 #define SINGLESTEP_BRANCH 1
47 #define SINGLESTEP_PCREL  2
48 
49 #define READ_BYTE(p, valp) \
50 	do { *(u8 *)(valp) = *(u8 *)(p); } while (0)
51 
52 #define READ_WORD16(p, valp)					\
53 	do {							\
54 		READ_BYTE((p), (valp));				\
55 		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
56 	} while (0)
57 
58 #define READ_WORD32(p, valp)					\
59 	do {							\
60 		READ_BYTE((p), (valp));				\
61 		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
62 		READ_BYTE((u8 *)(p) + 2, (u8 *)(valp) + 2);	\
63 		READ_BYTE((u8 *)(p) + 3, (u8 *)(valp) + 3);	\
64 	} while (0)
65 
66 
67 static const u8 mn10300_insn_sizes[256] =
68 {
69 	/* 1  2  3  4  5  6  7  8  9  a  b  c  d  e  f */
70 	1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3,	/* 0 */
71 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */
72 	2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */
73 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */
74 	1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */
75 	1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */
76 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */
77 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */
78 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */
79 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */
80 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */
81 	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */
82 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */
83 	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */
84 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */
85 	0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1  /* f */
86 };
87 
88 #define LT (1 << 0)
89 #define GT (1 << 1)
90 #define GE (1 << 2)
91 #define LE (1 << 3)
92 #define CS (1 << 4)
93 #define HI (1 << 5)
94 #define CC (1 << 6)
95 #define LS (1 << 7)
96 #define EQ (1 << 8)
97 #define NE (1 << 9)
98 #define RA (1 << 10)
99 #define VC (1 << 11)
100 #define VS (1 << 12)
101 #define NC (1 << 13)
102 #define NS (1 << 14)
103 
104 static const u16 cond_table[] = {
105 	/*  V  C  N  Z  */
106 	/*  0  0  0  0  */ (NE | NC | CC | VC | GE | GT | HI),
107 	/*  0  0  0  1  */ (EQ | NC | CC | VC | GE | LE | LS),
108 	/*  0  0  1  0  */ (NE | NS | CC | VC | LT | LE | HI),
109 	/*  0  0  1  1  */ (EQ | NS | CC | VC | LT | LE | LS),
110 	/*  0  1  0  0  */ (NE | NC | CS | VC | GE | GT | LS),
111 	/*  0  1  0  1  */ (EQ | NC | CS | VC | GE | LE | LS),
112 	/*  0  1  1  0  */ (NE | NS | CS | VC | LT | LE | LS),
113 	/*  0  1  1  1  */ (EQ | NS | CS | VC | LT | LE | LS),
114 	/*  1  0  0  0  */ (NE | NC | CC | VS | LT | LE | HI),
115 	/*  1  0  0  1  */ (EQ | NC | CC | VS | LT | LE | LS),
116 	/*  1  0  1  0  */ (NE | NS | CC | VS | GE | GT | HI),
117 	/*  1  0  1  1  */ (EQ | NS | CC | VS | GE | LE | LS),
118 	/*  1  1  0  0  */ (NE | NC | CS | VS | LT | LE | LS),
119 	/*  1  1  0  1  */ (EQ | NC | CS | VS | LT | LE | LS),
120 	/*  1  1  1  0  */ (NE | NS | CS | VS | GE | GT | LS),
121 	/*  1  1  1  1  */ (EQ | NS | CS | VS | GE | LE | LS),
122 };
123 
124 /*
125  * Calculate what the PC will be after executing next instruction
126  */
find_nextpc(struct pt_regs * regs,int * flags)127 static unsigned find_nextpc(struct pt_regs *regs, int *flags)
128 {
129 	unsigned size;
130 	s8  x8;
131 	s16 x16;
132 	s32 x32;
133 	u8 opc, *pc, *sp, *next;
134 
135 	next = 0;
136 	*flags = SINGLESTEP_PCREL;
137 
138 	pc = (u8 *) regs->pc;
139 	sp = (u8 *) (regs + 1);
140 	opc = *pc;
141 
142 	size = mn10300_insn_sizes[opc];
143 	if (size > 0) {
144 		next = pc + size;
145 	} else {
146 		switch (opc) {
147 			/* Bxx (d8,PC) */
148 		case 0xc0 ... 0xca:
149 			x8 = 2;
150 			if (cond_table[regs->epsw & 0xf] & (1 << (opc & 0xf)))
151 				x8 = (s8)pc[1];
152 			next = pc + x8;
153 			*flags |= SINGLESTEP_BRANCH;
154 			break;
155 
156 			/* JMP (d16,PC) or CALL (d16,PC) */
157 		case 0xcc:
158 		case 0xcd:
159 			READ_WORD16(pc + 1, &x16);
160 			next = pc + x16;
161 			*flags |= SINGLESTEP_BRANCH;
162 			break;
163 
164 			/* JMP (d32,PC) or CALL (d32,PC) */
165 		case 0xdc:
166 		case 0xdd:
167 			READ_WORD32(pc + 1, &x32);
168 			next = pc + x32;
169 			*flags |= SINGLESTEP_BRANCH;
170 			break;
171 
172 			/* RETF */
173 		case 0xde:
174 			next = (u8 *)regs->mdr;
175 			*flags &= ~SINGLESTEP_PCREL;
176 			*flags |= SINGLESTEP_BRANCH;
177 			break;
178 
179 			/* RET */
180 		case 0xdf:
181 			sp += pc[2];
182 			READ_WORD32(sp, &x32);
183 			next = (u8 *)x32;
184 			*flags &= ~SINGLESTEP_PCREL;
185 			*flags |= SINGLESTEP_BRANCH;
186 			break;
187 
188 		case 0xf0:
189 			next = pc + 2;
190 			opc = pc[1];
191 			if (opc >= 0xf0 && opc <= 0xf7) {
192 				/* JMP (An) / CALLS (An) */
193 				switch (opc & 3) {
194 				case 0:
195 					next = (u8 *)regs->a0;
196 					break;
197 				case 1:
198 					next = (u8 *)regs->a1;
199 					break;
200 				case 2:
201 					next = (u8 *)regs->a2;
202 					break;
203 				case 3:
204 					next = (u8 *)regs->a3;
205 					break;
206 				}
207 				*flags &= ~SINGLESTEP_PCREL;
208 				*flags |= SINGLESTEP_BRANCH;
209 			} else if (opc == 0xfc) {
210 				/* RETS */
211 				READ_WORD32(sp, &x32);
212 				next = (u8 *)x32;
213 				*flags &= ~SINGLESTEP_PCREL;
214 				*flags |= SINGLESTEP_BRANCH;
215 			} else if (opc == 0xfd) {
216 				/* RTI */
217 				READ_WORD32(sp + 4, &x32);
218 				next = (u8 *)x32;
219 				*flags &= ~SINGLESTEP_PCREL;
220 				*flags |= SINGLESTEP_BRANCH;
221 			}
222 			break;
223 
224 			/* potential 3-byte conditional branches */
225 		case 0xf8:
226 			next = pc + 3;
227 			opc = pc[1];
228 			if (opc >= 0xe8 && opc <= 0xeb &&
229 			    (cond_table[regs->epsw & 0xf] &
230 			     (1 << ((opc & 0xf) + 3)))
231 			    ) {
232 				READ_BYTE(pc+2, &x8);
233 				next = pc + x8;
234 				*flags |= SINGLESTEP_BRANCH;
235 			}
236 			break;
237 
238 		case 0xfa:
239 			if (pc[1] == 0xff) {
240 				/* CALLS (d16,PC) */
241 				READ_WORD16(pc + 2, &x16);
242 				next = pc + x16;
243 			} else
244 				next = pc + 4;
245 			*flags |= SINGLESTEP_BRANCH;
246 			break;
247 
248 		case 0xfc:
249 			x32 = 6;
250 			if (pc[1] == 0xff) {
251 				/* CALLS (d32,PC) */
252 				READ_WORD32(pc + 2, &x32);
253 			}
254 			next = pc + x32;
255 			*flags |= SINGLESTEP_BRANCH;
256 			break;
257 			/* LXX (d8,PC) */
258 			/* SETLB - loads the next four bytes into the LIR reg */
259 		case 0xd0 ... 0xda:
260 		case 0xdb:
261 			panic("Can't singlestep Lxx/SETLB\n");
262 			break;
263 		}
264 	}
265 	return (unsigned)next;
266 
267 }
268 
269 /*
270  * set up out of place singlestep of some branching instructions
271  */
singlestep_branch_setup(struct pt_regs * regs)272 static unsigned __kprobes singlestep_branch_setup(struct pt_regs *regs)
273 {
274 	u8 opc, *pc, *sp, *next;
275 
276 	next = NULL;
277 	pc = (u8 *) regs->pc;
278 	sp = (u8 *) (regs + 1);
279 
280 	switch (pc[0]) {
281 	case 0xc0 ... 0xca:	/* Bxx (d8,PC) */
282 	case 0xcc:		/* JMP (d16,PC) */
283 	case 0xdc:		/* JMP (d32,PC) */
284 	case 0xf8:              /* Bxx (d8,PC)  3-byte version */
285 		/* don't really need to do anything except cause trap  */
286 		next = pc;
287 		break;
288 
289 	case 0xcd:		/* CALL (d16,PC) */
290 		pc[1] = 5;
291 		pc[2] = 0;
292 		next = pc + 5;
293 		break;
294 
295 	case 0xdd:		/* CALL (d32,PC) */
296 		pc[1] = 7;
297 		pc[2] = 0;
298 		pc[3] = 0;
299 		pc[4] = 0;
300 		next = pc + 7;
301 		break;
302 
303 	case 0xde:		/* RETF */
304 		next = pc + 3;
305 		regs->mdr = (unsigned) next;
306 		break;
307 
308 	case 0xdf:		/* RET */
309 		sp += pc[2];
310 		next = pc + 3;
311 		*(unsigned *)sp = (unsigned) next;
312 		break;
313 
314 	case 0xf0:
315 		next = pc + 2;
316 		opc = pc[1];
317 		if (opc >= 0xf0 && opc <= 0xf3) {
318 			/* CALLS (An) */
319 			/* use CALLS (d16,PC) to avoid mucking with An */
320 			pc[0] = 0xfa;
321 			pc[1] = 0xff;
322 			pc[2] = 4;
323 			pc[3] = 0;
324 			next = pc + 4;
325 		} else if (opc >= 0xf4 && opc <= 0xf7) {
326 			/* JMP (An) */
327 			next = pc;
328 		} else if (opc == 0xfc) {
329 			/* RETS */
330 			next = pc + 2;
331 			*(unsigned *) sp = (unsigned) next;
332 		} else if (opc == 0xfd) {
333 			/* RTI */
334 			next = pc + 2;
335 			*(unsigned *)(sp + 4) = (unsigned) next;
336 		}
337 		break;
338 
339 	case 0xfa:	/* CALLS (d16,PC) */
340 		pc[2] = 4;
341 		pc[3] = 0;
342 		next = pc + 4;
343 		break;
344 
345 	case 0xfc:	/* CALLS (d32,PC) */
346 		pc[2] = 6;
347 		pc[3] = 0;
348 		pc[4] = 0;
349 		pc[5] = 0;
350 		next = pc + 6;
351 		break;
352 
353 	case 0xd0 ... 0xda:	/* LXX (d8,PC) */
354 	case 0xdb:		/* SETLB */
355 		panic("Can't singlestep Lxx/SETLB\n");
356 	}
357 
358 	return (unsigned) next;
359 }
360 
arch_prepare_kprobe(struct kprobe * p)361 int __kprobes arch_prepare_kprobe(struct kprobe *p)
362 {
363 	return 0;
364 }
365 
arch_copy_kprobe(struct kprobe * p)366 void __kprobes arch_copy_kprobe(struct kprobe *p)
367 {
368 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
369 }
370 
arch_arm_kprobe(struct kprobe * p)371 void __kprobes arch_arm_kprobe(struct kprobe *p)
372 {
373 	*p->addr = BREAKPOINT_INSTRUCTION;
374 	flush_icache_range((unsigned long) p->addr,
375 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
376 }
377 
arch_disarm_kprobe(struct kprobe * p)378 void __kprobes arch_disarm_kprobe(struct kprobe *p)
379 {
380 #ifndef CONFIG_MN10300_CACHE_SNOOP
381 	mn10300_dcache_flush();
382 	mn10300_icache_inv();
383 #endif
384 }
385 
arch_remove_kprobe(struct kprobe * p)386 void arch_remove_kprobe(struct kprobe *p)
387 {
388 }
389 
390 static inline
disarm_kprobe(struct kprobe * p,struct pt_regs * regs)391 void __kprobes disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
392 {
393 	*p->addr = p->opcode;
394 	regs->pc = (unsigned long) p->addr;
395 #ifndef CONFIG_MN10300_CACHE_SNOOP
396 	mn10300_dcache_flush();
397 	mn10300_icache_inv();
398 #endif
399 }
400 
401 static inline
prepare_singlestep(struct kprobe * p,struct pt_regs * regs)402 void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
403 {
404 	unsigned long nextpc;
405 
406 	cur_kprobe_orig_pc = regs->pc;
407 	memcpy(cur_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE);
408 	regs->pc = (unsigned long) cur_kprobe_ss_buf;
409 
410 	nextpc = find_nextpc(regs, &cur_kprobe_ss_flags);
411 	if (cur_kprobe_ss_flags & SINGLESTEP_PCREL)
412 		cur_kprobe_next_pc = cur_kprobe_orig_pc + (nextpc - regs->pc);
413 	else
414 		cur_kprobe_next_pc = nextpc;
415 
416 	/* branching instructions need special handling */
417 	if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH)
418 		nextpc = singlestep_branch_setup(regs);
419 
420 	cur_kprobe_bp_addr = nextpc;
421 
422 	*(u8 *) nextpc = BREAKPOINT_INSTRUCTION;
423 	mn10300_dcache_flush_range2((unsigned) cur_kprobe_ss_buf,
424 				    sizeof(cur_kprobe_ss_buf));
425 	mn10300_icache_inv();
426 }
427 
kprobe_handler(struct pt_regs * regs)428 static inline int __kprobes kprobe_handler(struct pt_regs *regs)
429 {
430 	struct kprobe *p;
431 	int ret = 0;
432 	unsigned int *addr = (unsigned int *) regs->pc;
433 
434 	/* We're in an interrupt, but this is clear and BUG()-safe. */
435 	preempt_disable();
436 
437 	/* Check we're not actually recursing */
438 	if (kprobe_running()) {
439 		/* We *are* holding lock here, so this is safe.
440 		   Disarm the probe we just hit, and ignore it. */
441 		p = get_kprobe(addr);
442 		if (p) {
443 			disarm_kprobe(p, regs);
444 			ret = 1;
445 		} else {
446 			p = cur_kprobe;
447 			if (p->break_handler && p->break_handler(p, regs))
448 				goto ss_probe;
449 		}
450 		/* If it's not ours, can't be delete race, (we hold lock). */
451 		goto no_kprobe;
452 	}
453 
454 	p = get_kprobe(addr);
455 	if (!p) {
456 		if (*addr != BREAKPOINT_INSTRUCTION) {
457 			/* The breakpoint instruction was removed right after
458 			 * we hit it.  Another cpu has removed either a
459 			 * probepoint or a debugger breakpoint at this address.
460 			 * In either case, no further handling of this
461 			 * interrupt is appropriate.
462 			 */
463 			ret = 1;
464 		}
465 		/* Not one of ours: let kernel handle it */
466 		goto no_kprobe;
467 	}
468 
469 	kprobe_status = KPROBE_HIT_ACTIVE;
470 	cur_kprobe = p;
471 	if (p->pre_handler(p, regs)) {
472 		/* handler has already set things up, so skip ss setup */
473 		return 1;
474 	}
475 
476 ss_probe:
477 	prepare_singlestep(p, regs);
478 	kprobe_status = KPROBE_HIT_SS;
479 	return 1;
480 
481 no_kprobe:
482 	preempt_enable_no_resched();
483 	return ret;
484 }
485 
486 /*
487  * Called after single-stepping.  p->addr is the address of the
488  * instruction whose first byte has been replaced by the "breakpoint"
489  * instruction.  To avoid the SMP problems that can occur when we
490  * temporarily put back the original opcode to single-step, we
491  * single-stepped a copy of the instruction.  The address of this
492  * copy is p->ainsn.insn.
493  */
resume_execution(struct kprobe * p,struct pt_regs * regs)494 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
495 {
496 	/* we may need to fixup regs/stack after singlestepping a call insn */
497 	if (cur_kprobe_ss_flags & SINGLESTEP_BRANCH) {
498 		regs->pc = cur_kprobe_orig_pc;
499 		switch (p->ainsn.insn[0]) {
500 		case 0xcd:	/* CALL (d16,PC) */
501 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 5;
502 			break;
503 		case 0xdd:	/* CALL (d32,PC) */
504 			/* fixup mdr and return address on stack */
505 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 7;
506 			break;
507 		case 0xf0:
508 			if (p->ainsn.insn[1] >= 0xf0 &&
509 			    p->ainsn.insn[1] <= 0xf3) {
510 				/* CALLS (An) */
511 				/* fixup MDR and return address on stack */
512 				regs->mdr = regs->pc + 2;
513 				*(unsigned *) regs->sp = regs->mdr;
514 			}
515 			break;
516 
517 		case 0xfa:	/* CALLS (d16,PC) */
518 			/* fixup MDR and return address on stack */
519 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 4;
520 			break;
521 
522 		case 0xfc:	/* CALLS (d32,PC) */
523 			/* fixup MDR and return address on stack */
524 			*(unsigned *) regs->sp = regs->mdr = regs->pc + 6;
525 			break;
526 		}
527 	}
528 
529 	regs->pc = cur_kprobe_next_pc;
530 	cur_kprobe_bp_addr = 0;
531 }
532 
post_kprobe_handler(struct pt_regs * regs)533 static inline int __kprobes post_kprobe_handler(struct pt_regs *regs)
534 {
535 	if (!kprobe_running())
536 		return 0;
537 
538 	if (cur_kprobe->post_handler)
539 		cur_kprobe->post_handler(cur_kprobe, regs, 0);
540 
541 	resume_execution(cur_kprobe, regs);
542 	reset_current_kprobe();
543 	preempt_enable_no_resched();
544 	return 1;
545 }
546 
547 /* Interrupts disabled, kprobe_lock held. */
548 static inline
kprobe_fault_handler(struct pt_regs * regs,int trapnr)549 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
550 {
551 	if (cur_kprobe->fault_handler &&
552 	    cur_kprobe->fault_handler(cur_kprobe, regs, trapnr))
553 		return 1;
554 
555 	if (kprobe_status & KPROBE_HIT_SS) {
556 		resume_execution(cur_kprobe, regs);
557 		reset_current_kprobe();
558 		preempt_enable_no_resched();
559 	}
560 	return 0;
561 }
562 
563 /*
564  * Wrapper routine to for handling exceptions.
565  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)566 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
567 				       unsigned long val, void *data)
568 {
569 	struct die_args *args = data;
570 
571 	switch (val) {
572 	case DIE_BREAKPOINT:
573 		if (cur_kprobe_bp_addr != args->regs->pc) {
574 			if (kprobe_handler(args->regs))
575 				return NOTIFY_STOP;
576 		} else {
577 			if (post_kprobe_handler(args->regs))
578 				return NOTIFY_STOP;
579 		}
580 		break;
581 	case DIE_GPF:
582 		if (kprobe_running() &&
583 		    kprobe_fault_handler(args->regs, args->trapnr))
584 			return NOTIFY_STOP;
585 		break;
586 	default:
587 		break;
588 	}
589 	return NOTIFY_DONE;
590 }
591 
592 /* Jprobes support.  */
593 static struct pt_regs jprobe_saved_regs;
594 static struct pt_regs *jprobe_saved_regs_location;
595 static kprobe_opcode_t jprobe_saved_stack[MAX_STACK_SIZE];
596 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)597 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
598 {
599 	struct jprobe *jp = container_of(p, struct jprobe, kp);
600 
601 	jprobe_saved_regs_location = regs;
602 	memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs));
603 
604 	/* Save a whole stack frame, this gets arguments
605 	 * pushed onto the stack after using up all the
606 	 * arg registers.
607 	 */
608 	memcpy(&jprobe_saved_stack, regs + 1, sizeof(jprobe_saved_stack));
609 
610 	/* setup return addr to the jprobe handler routine */
611 	regs->pc = (unsigned long) jp->entry;
612 	return 1;
613 }
614 
jprobe_return(void)615 void __kprobes jprobe_return(void)
616 {
617 	void *orig_sp = jprobe_saved_regs_location + 1;
618 
619 	preempt_enable_no_resched();
620 	asm volatile("		mov	%0,sp\n"
621 		     ".globl	jprobe_return_bp_addr\n"
622 		     "jprobe_return_bp_addr:\n\t"
623 		     "		.byte	0xff\n"
624 		     : : "d" (orig_sp));
625 }
626 
627 extern void jprobe_return_bp_addr(void);
628 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)629 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
630 {
631 	u8 *addr = (u8 *) regs->pc;
632 
633 	if (addr == (u8 *) jprobe_return_bp_addr) {
634 		if (jprobe_saved_regs_location != regs) {
635 			printk(KERN_ERR"JPROBE:"
636 			       " Current regs (%p) does not match saved regs"
637 			       " (%p).\n",
638 			       regs, jprobe_saved_regs_location);
639 			BUG();
640 		}
641 
642 		/* Restore old register state.
643 		 */
644 		memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));
645 
646 		memcpy(regs + 1, &jprobe_saved_stack,
647 		       sizeof(jprobe_saved_stack));
648 		return 1;
649 	}
650 	return 0;
651 }
652 
arch_init_kprobes(void)653 int __init arch_init_kprobes(void)
654 {
655 	return 0;
656 }
657