1 /*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26 /*
27 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32 /*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * lustre/include/lustre/lustre_idl.h
37 *
38 * Lustre wire protocol definitions.
39 */
40
41 /** \defgroup lustreidl lustreidl
42 *
43 * Lustre wire protocol definitions.
44 *
45 * ALL structs passing over the wire should be declared here. Structs
46 * that are used in interfaces with userspace should go in lustre_user.h.
47 *
48 * All structs being declared here should be built from simple fixed-size
49 * types (__u8, __u16, __u32, __u64) or be built from other types or
50 * structs also declared in this file. Similarly, all flags and magic
51 * values in those structs should also be declared here. This ensures
52 * that the Lustre wire protocol is not influenced by external dependencies.
53 *
54 * The only other acceptable items in this file are VERY SIMPLE accessor
55 * functions to avoid callers grubbing inside the structures, and the
56 * prototypes of the swabber functions for each struct. Nothing that
57 * depends on external functions or definitions should be in here.
58 *
59 * Structs must be properly aligned to put 64-bit values on an 8-byte
60 * boundary. Any structs being added here must also be added to
61 * utils/wirecheck.c and "make newwiretest" run to regenerate the
62 * utils/wiretest.c sources. This allows us to verify that wire structs
63 * have the proper alignment/size on all architectures.
64 *
65 * DO NOT CHANGE any of the structs, flags, values declared here and used
66 * in released Lustre versions. Some structs may have padding fields that
67 * can be used. Some structs might allow addition at the end (verify this
68 * in the code to ensure that new/old clients that see this larger struct
69 * do not fail, otherwise you need to implement protocol compatibility).
70 *
71 * We assume all nodes are either little-endian or big-endian, and we
72 * always send messages in the sender's native format. The receiver
73 * detects the message format by checking the 'magic' field of the message
74 * (see lustre_msg_swabbed() below).
75 *
76 * Each wire type has corresponding 'lustre_swab_xxxtypexxx()' routines,
77 * implemented either here, inline (trivial implementations) or in
78 * ptlrpc/pack_generic.c. These 'swabbers' convert the type from "other"
79 * endian, in-place in the message buffer.
80 *
81 * A swabber takes a single pointer argument. The caller must already have
82 * verified that the length of the message buffer >= sizeof (type).
83 *
84 * For variable length types, a second 'lustre_swab_v_xxxtypexxx()' routine
85 * may be defined that swabs just the variable part, after the caller has
86 * verified that the message buffer is large enough.
87 *
88 * @{
89 */
90
91 #ifndef _LUSTRE_IDL_H_
92 #define _LUSTRE_IDL_H_
93
94 #include "../../../include/linux/libcfs/libcfs.h"
95 #include "../../../include/linux/lnet/types.h"
96
97 /* Defn's shared with user-space. */
98 #include "lustre_user.h"
99 #include "lustre_errno.h"
100
101 /*
102 * GENERAL STUFF
103 */
104 /* FOO_REQUEST_PORTAL is for incoming requests on the FOO
105 * FOO_REPLY_PORTAL is for incoming replies on the FOO
106 * FOO_BULK_PORTAL is for incoming bulk on the FOO
107 */
108
109 /* Lustre service names are following the format
110 * service name + MDT + seq name
111 */
112 #define LUSTRE_MDT_MAXNAMELEN 80
113
114 #define CONNMGR_REQUEST_PORTAL 1
115 #define CONNMGR_REPLY_PORTAL 2
116 //#define OSC_REQUEST_PORTAL 3
117 #define OSC_REPLY_PORTAL 4
118 //#define OSC_BULK_PORTAL 5
119 #define OST_IO_PORTAL 6
120 #define OST_CREATE_PORTAL 7
121 #define OST_BULK_PORTAL 8
122 //#define MDC_REQUEST_PORTAL 9
123 #define MDC_REPLY_PORTAL 10
124 //#define MDC_BULK_PORTAL 11
125 #define MDS_REQUEST_PORTAL 12
126 //#define MDS_REPLY_PORTAL 13
127 #define MDS_BULK_PORTAL 14
128 #define LDLM_CB_REQUEST_PORTAL 15
129 #define LDLM_CB_REPLY_PORTAL 16
130 #define LDLM_CANCEL_REQUEST_PORTAL 17
131 #define LDLM_CANCEL_REPLY_PORTAL 18
132 //#define PTLBD_REQUEST_PORTAL 19
133 //#define PTLBD_REPLY_PORTAL 20
134 //#define PTLBD_BULK_PORTAL 21
135 #define MDS_SETATTR_PORTAL 22
136 #define MDS_READPAGE_PORTAL 23
137 #define OUT_PORTAL 24
138
139 #define MGC_REPLY_PORTAL 25
140 #define MGS_REQUEST_PORTAL 26
141 #define MGS_REPLY_PORTAL 27
142 #define OST_REQUEST_PORTAL 28
143 #define FLD_REQUEST_PORTAL 29
144 #define SEQ_METADATA_PORTAL 30
145 #define SEQ_DATA_PORTAL 31
146 #define SEQ_CONTROLLER_PORTAL 32
147 #define MGS_BULK_PORTAL 33
148
149 /* Portal 63 is reserved for the Cray Inc DVS - nic@cray.com, roe@cray.com, n8851@cray.com */
150
151 /* packet types */
152 #define PTL_RPC_MSG_REQUEST 4711
153 #define PTL_RPC_MSG_ERR 4712
154 #define PTL_RPC_MSG_REPLY 4713
155
156 /* DON'T use swabbed values of MAGIC as magic! */
157 #define LUSTRE_MSG_MAGIC_V2 0x0BD00BD3
158 #define LUSTRE_MSG_MAGIC_V2_SWABBED 0xD30BD00B
159
160 #define LUSTRE_MSG_MAGIC LUSTRE_MSG_MAGIC_V2
161
162 #define PTLRPC_MSG_VERSION 0x00000003
163 #define LUSTRE_VERSION_MASK 0xffff0000
164 #define LUSTRE_OBD_VERSION 0x00010000
165 #define LUSTRE_MDS_VERSION 0x00020000
166 #define LUSTRE_OST_VERSION 0x00030000
167 #define LUSTRE_DLM_VERSION 0x00040000
168 #define LUSTRE_LOG_VERSION 0x00050000
169 #define LUSTRE_MGS_VERSION 0x00060000
170
171 /**
172 * Describes a range of sequence, lsr_start is included but lsr_end is
173 * not in the range.
174 * Same structure is used in fld module where lsr_index field holds mdt id
175 * of the home mdt.
176 */
177 struct lu_seq_range {
178 __u64 lsr_start;
179 __u64 lsr_end;
180 __u32 lsr_index;
181 __u32 lsr_flags;
182 };
183
184 #define LU_SEQ_RANGE_MDT 0x0
185 #define LU_SEQ_RANGE_OST 0x1
186 #define LU_SEQ_RANGE_ANY 0x3
187
188 #define LU_SEQ_RANGE_MASK 0x3
189
fld_range_type(const struct lu_seq_range * range)190 static inline unsigned fld_range_type(const struct lu_seq_range *range)
191 {
192 return range->lsr_flags & LU_SEQ_RANGE_MASK;
193 }
194
fld_range_is_ost(const struct lu_seq_range * range)195 static inline int fld_range_is_ost(const struct lu_seq_range *range)
196 {
197 return fld_range_type(range) == LU_SEQ_RANGE_OST;
198 }
199
fld_range_is_mdt(const struct lu_seq_range * range)200 static inline int fld_range_is_mdt(const struct lu_seq_range *range)
201 {
202 return fld_range_type(range) == LU_SEQ_RANGE_MDT;
203 }
204
205 /**
206 * This all range is only being used when fld client sends fld query request,
207 * but it does not know whether the seq is MDT or OST, so it will send req
208 * with ALL type, which means either seq type gotten from lookup can be
209 * expected.
210 */
fld_range_is_any(const struct lu_seq_range * range)211 static inline unsigned fld_range_is_any(const struct lu_seq_range *range)
212 {
213 return fld_range_type(range) == LU_SEQ_RANGE_ANY;
214 }
215
fld_range_set_type(struct lu_seq_range * range,unsigned flags)216 static inline void fld_range_set_type(struct lu_seq_range *range,
217 unsigned flags)
218 {
219 range->lsr_flags |= flags;
220 }
221
fld_range_set_mdt(struct lu_seq_range * range)222 static inline void fld_range_set_mdt(struct lu_seq_range *range)
223 {
224 fld_range_set_type(range, LU_SEQ_RANGE_MDT);
225 }
226
fld_range_set_ost(struct lu_seq_range * range)227 static inline void fld_range_set_ost(struct lu_seq_range *range)
228 {
229 fld_range_set_type(range, LU_SEQ_RANGE_OST);
230 }
231
fld_range_set_any(struct lu_seq_range * range)232 static inline void fld_range_set_any(struct lu_seq_range *range)
233 {
234 fld_range_set_type(range, LU_SEQ_RANGE_ANY);
235 }
236
237 /**
238 * returns width of given range \a r
239 */
240
range_space(const struct lu_seq_range * range)241 static inline __u64 range_space(const struct lu_seq_range *range)
242 {
243 return range->lsr_end - range->lsr_start;
244 }
245
246 /**
247 * initialize range to zero
248 */
249
range_init(struct lu_seq_range * range)250 static inline void range_init(struct lu_seq_range *range)
251 {
252 memset(range, 0, sizeof(*range));
253 }
254
255 /**
256 * check if given seq id \a s is within given range \a r
257 */
258
range_within(const struct lu_seq_range * range,__u64 s)259 static inline int range_within(const struct lu_seq_range *range,
260 __u64 s)
261 {
262 return s >= range->lsr_start && s < range->lsr_end;
263 }
264
range_is_sane(const struct lu_seq_range * range)265 static inline int range_is_sane(const struct lu_seq_range *range)
266 {
267 return (range->lsr_end >= range->lsr_start);
268 }
269
range_is_zero(const struct lu_seq_range * range)270 static inline int range_is_zero(const struct lu_seq_range *range)
271 {
272 return (range->lsr_start == 0 && range->lsr_end == 0);
273 }
274
range_is_exhausted(const struct lu_seq_range * range)275 static inline int range_is_exhausted(const struct lu_seq_range *range)
276
277 {
278 return range_space(range) == 0;
279 }
280
281 /* return 0 if two range have the same location */
range_compare_loc(const struct lu_seq_range * r1,const struct lu_seq_range * r2)282 static inline int range_compare_loc(const struct lu_seq_range *r1,
283 const struct lu_seq_range *r2)
284 {
285 return r1->lsr_index != r2->lsr_index ||
286 r1->lsr_flags != r2->lsr_flags;
287 }
288
289 #define DRANGE "[%#16.16Lx-%#16.16Lx):%x:%s"
290
291 #define PRANGE(range) \
292 (range)->lsr_start, \
293 (range)->lsr_end, \
294 (range)->lsr_index, \
295 fld_range_is_mdt(range) ? "mdt" : "ost"
296
297 /** \defgroup lu_fid lu_fid
298 * @{ */
299
300 /**
301 * Flags for lustre_mdt_attrs::lma_compat and lustre_mdt_attrs::lma_incompat.
302 * Deprecated since HSM and SOM attributes are now stored in separate on-disk
303 * xattr.
304 */
305 enum lma_compat {
306 LMAC_HSM = 0x00000001,
307 LMAC_SOM = 0x00000002,
308 LMAC_NOT_IN_OI = 0x00000004, /* the object does NOT need OI mapping */
309 LMAC_FID_ON_OST = 0x00000008, /* For OST-object, its OI mapping is
310 * under /O/<seq>/d<x>. */
311 };
312
313 /**
314 * Masks for all features that should be supported by a Lustre version to
315 * access a specific file.
316 * This information is stored in lustre_mdt_attrs::lma_incompat.
317 */
318 enum lma_incompat {
319 LMAI_RELEASED = 0x00000001, /* file is released */
320 LMAI_AGENT = 0x00000002, /* agent inode */
321 LMAI_REMOTE_PARENT = 0x00000004, /* the parent of the object
322 is on the remote MDT */
323 };
324
325 #define LMA_INCOMPAT_SUPP (LMAI_AGENT | LMAI_REMOTE_PARENT)
326
327 /**
328 * fid constants
329 */
330 enum {
331 /** LASTID file has zero OID */
332 LUSTRE_FID_LASTID_OID = 0UL,
333 /** initial fid id value */
334 LUSTRE_FID_INIT_OID = 1UL
335 };
336
337 /** returns fid object sequence */
fid_seq(const struct lu_fid * fid)338 static inline __u64 fid_seq(const struct lu_fid *fid)
339 {
340 return fid->f_seq;
341 }
342
343 /** returns fid object id */
fid_oid(const struct lu_fid * fid)344 static inline __u32 fid_oid(const struct lu_fid *fid)
345 {
346 return fid->f_oid;
347 }
348
349 /** returns fid object version */
fid_ver(const struct lu_fid * fid)350 static inline __u32 fid_ver(const struct lu_fid *fid)
351 {
352 return fid->f_ver;
353 }
354
fid_zero(struct lu_fid * fid)355 static inline void fid_zero(struct lu_fid *fid)
356 {
357 memset(fid, 0, sizeof(*fid));
358 }
359
fid_ver_oid(const struct lu_fid * fid)360 static inline __u64 fid_ver_oid(const struct lu_fid *fid)
361 {
362 return ((__u64)fid_ver(fid) << 32 | fid_oid(fid));
363 }
364
365 /* copytool uses a 32b bitmask field to encode archive-Ids during register
366 * with MDT thru kuc.
367 * archive num = 0 => all
368 * archive num from 1 to 32
369 */
370 #define LL_HSM_MAX_ARCHIVE (sizeof(__u32) * 8)
371
372 /**
373 * Note that reserved SEQ numbers below 12 will conflict with ldiskfs
374 * inodes in the IGIF namespace, so these reserved SEQ numbers can be
375 * used for other purposes and not risk collisions with existing inodes.
376 *
377 * Different FID Format
378 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs#NEW.0
379 */
380 enum fid_seq {
381 FID_SEQ_OST_MDT0 = 0,
382 FID_SEQ_LLOG = 1, /* unnamed llogs */
383 FID_SEQ_ECHO = 2,
384 FID_SEQ_OST_MDT1 = 3,
385 FID_SEQ_OST_MAX = 9, /* Max MDT count before OST_on_FID */
386 FID_SEQ_LLOG_NAME = 10, /* named llogs */
387 FID_SEQ_RSVD = 11,
388 FID_SEQ_IGIF = 12,
389 FID_SEQ_IGIF_MAX = 0x0ffffffffULL,
390 FID_SEQ_IDIF = 0x100000000ULL,
391 FID_SEQ_IDIF_MAX = 0x1ffffffffULL,
392 /* Normal FID sequence starts from this value, i.e. 1<<33 */
393 FID_SEQ_START = 0x200000000ULL,
394 /* sequence for local pre-defined FIDs listed in local_oid */
395 FID_SEQ_LOCAL_FILE = 0x200000001ULL,
396 FID_SEQ_DOT_LUSTRE = 0x200000002ULL,
397 /* sequence is used for local named objects FIDs generated
398 * by local_object_storage library */
399 FID_SEQ_LOCAL_NAME = 0x200000003ULL,
400 /* Because current FLD will only cache the fid sequence, instead
401 * of oid on the client side, if the FID needs to be exposed to
402 * clients sides, it needs to make sure all of fids under one
403 * sequence will be located in one MDT. */
404 FID_SEQ_SPECIAL = 0x200000004ULL,
405 FID_SEQ_QUOTA = 0x200000005ULL,
406 FID_SEQ_QUOTA_GLB = 0x200000006ULL,
407 FID_SEQ_ROOT = 0x200000007ULL, /* Located on MDT0 */
408 FID_SEQ_NORMAL = 0x200000400ULL,
409 FID_SEQ_LOV_DEFAULT = 0xffffffffffffffffULL
410 };
411
412 #define OBIF_OID_MAX_BITS 32
413 #define OBIF_MAX_OID (1ULL << OBIF_OID_MAX_BITS)
414 #define OBIF_OID_MASK ((1ULL << OBIF_OID_MAX_BITS) - 1)
415 #define IDIF_OID_MAX_BITS 48
416 #define IDIF_MAX_OID (1ULL << IDIF_OID_MAX_BITS)
417 #define IDIF_OID_MASK ((1ULL << IDIF_OID_MAX_BITS) - 1)
418
419 /** OID for FID_SEQ_SPECIAL */
420 enum special_oid {
421 /* Big Filesystem Lock to serialize rename operations */
422 FID_OID_SPECIAL_BFL = 1UL,
423 };
424
425 /** OID for FID_SEQ_DOT_LUSTRE */
426 enum dot_lustre_oid {
427 FID_OID_DOT_LUSTRE = 1UL,
428 FID_OID_DOT_LUSTRE_OBF = 2UL,
429 };
430
fid_seq_is_mdt0(__u64 seq)431 static inline int fid_seq_is_mdt0(__u64 seq)
432 {
433 return (seq == FID_SEQ_OST_MDT0);
434 }
435
fid_seq_is_mdt(const __u64 seq)436 static inline int fid_seq_is_mdt(const __u64 seq)
437 {
438 return seq == FID_SEQ_OST_MDT0 || seq >= FID_SEQ_NORMAL;
439 };
440
fid_seq_is_echo(__u64 seq)441 static inline int fid_seq_is_echo(__u64 seq)
442 {
443 return (seq == FID_SEQ_ECHO);
444 }
445
fid_is_echo(const struct lu_fid * fid)446 static inline int fid_is_echo(const struct lu_fid *fid)
447 {
448 return fid_seq_is_echo(fid_seq(fid));
449 }
450
fid_seq_is_llog(__u64 seq)451 static inline int fid_seq_is_llog(__u64 seq)
452 {
453 return (seq == FID_SEQ_LLOG);
454 }
455
fid_is_llog(const struct lu_fid * fid)456 static inline int fid_is_llog(const struct lu_fid *fid)
457 {
458 /* file with OID == 0 is not llog but contains last oid */
459 return fid_seq_is_llog(fid_seq(fid)) && fid_oid(fid) > 0;
460 }
461
fid_seq_is_rsvd(const __u64 seq)462 static inline int fid_seq_is_rsvd(const __u64 seq)
463 {
464 return (seq > FID_SEQ_OST_MDT0 && seq <= FID_SEQ_RSVD);
465 };
466
fid_seq_is_special(const __u64 seq)467 static inline int fid_seq_is_special(const __u64 seq)
468 {
469 return seq == FID_SEQ_SPECIAL;
470 };
471
fid_seq_is_local_file(const __u64 seq)472 static inline int fid_seq_is_local_file(const __u64 seq)
473 {
474 return seq == FID_SEQ_LOCAL_FILE ||
475 seq == FID_SEQ_LOCAL_NAME;
476 };
477
fid_seq_is_root(const __u64 seq)478 static inline int fid_seq_is_root(const __u64 seq)
479 {
480 return seq == FID_SEQ_ROOT;
481 }
482
fid_seq_is_dot(const __u64 seq)483 static inline int fid_seq_is_dot(const __u64 seq)
484 {
485 return seq == FID_SEQ_DOT_LUSTRE;
486 }
487
fid_seq_is_default(const __u64 seq)488 static inline int fid_seq_is_default(const __u64 seq)
489 {
490 return seq == FID_SEQ_LOV_DEFAULT;
491 }
492
fid_is_mdt0(const struct lu_fid * fid)493 static inline int fid_is_mdt0(const struct lu_fid *fid)
494 {
495 return fid_seq_is_mdt0(fid_seq(fid));
496 }
497
lu_root_fid(struct lu_fid * fid)498 static inline void lu_root_fid(struct lu_fid *fid)
499 {
500 fid->f_seq = FID_SEQ_ROOT;
501 fid->f_oid = 1;
502 fid->f_ver = 0;
503 }
504
505 /**
506 * Check if a fid is igif or not.
507 * \param fid the fid to be tested.
508 * \return true if the fid is a igif; otherwise false.
509 */
fid_seq_is_igif(const __u64 seq)510 static inline int fid_seq_is_igif(const __u64 seq)
511 {
512 return seq >= FID_SEQ_IGIF && seq <= FID_SEQ_IGIF_MAX;
513 }
514
fid_is_igif(const struct lu_fid * fid)515 static inline int fid_is_igif(const struct lu_fid *fid)
516 {
517 return fid_seq_is_igif(fid_seq(fid));
518 }
519
520 /**
521 * Check if a fid is idif or not.
522 * \param fid the fid to be tested.
523 * \return true if the fid is a idif; otherwise false.
524 */
fid_seq_is_idif(const __u64 seq)525 static inline int fid_seq_is_idif(const __u64 seq)
526 {
527 return seq >= FID_SEQ_IDIF && seq <= FID_SEQ_IDIF_MAX;
528 }
529
fid_is_idif(const struct lu_fid * fid)530 static inline int fid_is_idif(const struct lu_fid *fid)
531 {
532 return fid_seq_is_idif(fid_seq(fid));
533 }
534
fid_is_local_file(const struct lu_fid * fid)535 static inline int fid_is_local_file(const struct lu_fid *fid)
536 {
537 return fid_seq_is_local_file(fid_seq(fid));
538 }
539
fid_seq_is_norm(const __u64 seq)540 static inline int fid_seq_is_norm(const __u64 seq)
541 {
542 return (seq >= FID_SEQ_NORMAL);
543 }
544
fid_is_norm(const struct lu_fid * fid)545 static inline int fid_is_norm(const struct lu_fid *fid)
546 {
547 return fid_seq_is_norm(fid_seq(fid));
548 }
549
550 /* convert an OST objid into an IDIF FID SEQ number */
fid_idif_seq(__u64 id,__u32 ost_idx)551 static inline __u64 fid_idif_seq(__u64 id, __u32 ost_idx)
552 {
553 return FID_SEQ_IDIF | (ost_idx << 16) | ((id >> 32) & 0xffff);
554 }
555
556 /* convert a packed IDIF FID into an OST objid */
fid_idif_id(__u64 seq,__u32 oid,__u32 ver)557 static inline __u64 fid_idif_id(__u64 seq, __u32 oid, __u32 ver)
558 {
559 return ((__u64)ver << 48) | ((seq & 0xffff) << 32) | oid;
560 }
561
562 /* extract ost index from IDIF FID */
fid_idif_ost_idx(const struct lu_fid * fid)563 static inline __u32 fid_idif_ost_idx(const struct lu_fid *fid)
564 {
565 return (fid_seq(fid) >> 16) & 0xffff;
566 }
567
568 /* extract OST sequence (group) from a wire ost_id (id/seq) pair */
ostid_seq(const struct ost_id * ostid)569 static inline __u64 ostid_seq(const struct ost_id *ostid)
570 {
571 if (fid_seq_is_mdt0(ostid->oi.oi_seq))
572 return FID_SEQ_OST_MDT0;
573
574 if (fid_seq_is_default(ostid->oi.oi_seq))
575 return FID_SEQ_LOV_DEFAULT;
576
577 if (fid_is_idif(&ostid->oi_fid))
578 return FID_SEQ_OST_MDT0;
579
580 return fid_seq(&ostid->oi_fid);
581 }
582
583 /* extract OST objid from a wire ost_id (id/seq) pair */
ostid_id(const struct ost_id * ostid)584 static inline __u64 ostid_id(const struct ost_id *ostid)
585 {
586 if (fid_seq_is_mdt0(ostid_seq(ostid)))
587 return ostid->oi.oi_id & IDIF_OID_MASK;
588
589 if (fid_is_idif(&ostid->oi_fid))
590 return fid_idif_id(fid_seq(&ostid->oi_fid),
591 fid_oid(&ostid->oi_fid), 0);
592
593 return fid_oid(&ostid->oi_fid);
594 }
595
ostid_set_seq(struct ost_id * oi,__u64 seq)596 static inline void ostid_set_seq(struct ost_id *oi, __u64 seq)
597 {
598 if (fid_seq_is_mdt0(seq) || fid_seq_is_default(seq)) {
599 oi->oi.oi_seq = seq;
600 } else {
601 oi->oi_fid.f_seq = seq;
602 /* Note: if f_oid + f_ver is zero, we need init it
603 * to be 1, otherwise, ostid_seq will treat this
604 * as old ostid (oi_seq == 0) */
605 if (oi->oi_fid.f_oid == 0 && oi->oi_fid.f_ver == 0)
606 oi->oi_fid.f_oid = LUSTRE_FID_INIT_OID;
607 }
608 }
609
ostid_set_seq_mdt0(struct ost_id * oi)610 static inline void ostid_set_seq_mdt0(struct ost_id *oi)
611 {
612 ostid_set_seq(oi, FID_SEQ_OST_MDT0);
613 }
614
ostid_set_seq_echo(struct ost_id * oi)615 static inline void ostid_set_seq_echo(struct ost_id *oi)
616 {
617 ostid_set_seq(oi, FID_SEQ_ECHO);
618 }
619
ostid_set_seq_llog(struct ost_id * oi)620 static inline void ostid_set_seq_llog(struct ost_id *oi)
621 {
622 ostid_set_seq(oi, FID_SEQ_LLOG);
623 }
624
625 /**
626 * Note: we need check oi_seq to decide where to set oi_id,
627 * so oi_seq should always be set ahead of oi_id.
628 */
ostid_set_id(struct ost_id * oi,__u64 oid)629 static inline void ostid_set_id(struct ost_id *oi, __u64 oid)
630 {
631 if (fid_seq_is_mdt0(ostid_seq(oi))) {
632 if (oid >= IDIF_MAX_OID) {
633 CERROR("Bad %llu to set "DOSTID"\n",
634 oid, POSTID(oi));
635 return;
636 }
637 oi->oi.oi_id = oid;
638 } else {
639 if (oid > OBIF_MAX_OID) {
640 CERROR("Bad %llu to set "DOSTID"\n",
641 oid, POSTID(oi));
642 return;
643 }
644 oi->oi_fid.f_oid = oid;
645 }
646 }
647
ostid_inc_id(struct ost_id * oi)648 static inline void ostid_inc_id(struct ost_id *oi)
649 {
650 if (fid_seq_is_mdt0(ostid_seq(oi))) {
651 if (unlikely(ostid_id(oi) + 1 > IDIF_MAX_OID)) {
652 CERROR("Bad inc "DOSTID"\n", POSTID(oi));
653 return;
654 }
655 oi->oi.oi_id++;
656 } else {
657 oi->oi_fid.f_oid++;
658 }
659 }
660
ostid_dec_id(struct ost_id * oi)661 static inline void ostid_dec_id(struct ost_id *oi)
662 {
663 if (fid_seq_is_mdt0(ostid_seq(oi)))
664 oi->oi.oi_id--;
665 else
666 oi->oi_fid.f_oid--;
667 }
668
669 /**
670 * Unpack an OST object id/seq (group) into a FID. This is needed for
671 * converting all obdo, lmm, lsm, etc. 64-bit id/seq pairs into proper
672 * FIDs. Note that if an id/seq is already in FID/IDIF format it will
673 * be passed through unchanged. Only legacy OST objects in "group 0"
674 * will be mapped into the IDIF namespace so that they can fit into the
675 * struct lu_fid fields without loss. For reference see:
676 * http://arch.lustre.org/index.php?title=Interoperability_fids_zfs
677 */
ostid_to_fid(struct lu_fid * fid,struct ost_id * ostid,__u32 ost_idx)678 static inline int ostid_to_fid(struct lu_fid *fid, struct ost_id *ostid,
679 __u32 ost_idx)
680 {
681 if (ost_idx > 0xffff) {
682 CERROR("bad ost_idx, "DOSTID" ost_idx:%u\n", POSTID(ostid),
683 ost_idx);
684 return -EBADF;
685 }
686
687 if (fid_seq_is_mdt0(ostid_seq(ostid))) {
688 /* This is a "legacy" (old 1.x/2.early) OST object in "group 0"
689 * that we map into the IDIF namespace. It allows up to 2^48
690 * objects per OST, as this is the object namespace that has
691 * been in production for years. This can handle create rates
692 * of 1M objects/s/OST for 9 years, or combinations thereof. */
693 if (ostid_id(ostid) >= IDIF_MAX_OID) {
694 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
695 POSTID(ostid), ost_idx);
696 return -EBADF;
697 }
698 fid->f_seq = fid_idif_seq(ostid_id(ostid), ost_idx);
699 /* truncate to 32 bits by assignment */
700 fid->f_oid = ostid_id(ostid);
701 /* in theory, not currently used */
702 fid->f_ver = ostid_id(ostid) >> 48;
703 } else /* if (fid_seq_is_idif(seq) || fid_seq_is_norm(seq)) */ {
704 /* This is either an IDIF object, which identifies objects across
705 * all OSTs, or a regular FID. The IDIF namespace maps legacy
706 * OST objects into the FID namespace. In both cases, we just
707 * pass the FID through, no conversion needed. */
708 if (ostid->oi_fid.f_ver != 0) {
709 CERROR("bad MDT0 id, "DOSTID" ost_idx:%u\n",
710 POSTID(ostid), ost_idx);
711 return -EBADF;
712 }
713 *fid = ostid->oi_fid;
714 }
715
716 return 0;
717 }
718
719 /* pack any OST FID into an ostid (id/seq) for the wire/disk */
fid_to_ostid(const struct lu_fid * fid,struct ost_id * ostid)720 static inline int fid_to_ostid(const struct lu_fid *fid, struct ost_id *ostid)
721 {
722 if (unlikely(fid_seq_is_igif(fid->f_seq))) {
723 CERROR("bad IGIF, "DFID"\n", PFID(fid));
724 return -EBADF;
725 }
726
727 if (fid_is_idif(fid)) {
728 ostid_set_seq_mdt0(ostid);
729 ostid_set_id(ostid, fid_idif_id(fid_seq(fid), fid_oid(fid),
730 fid_ver(fid)));
731 } else {
732 ostid->oi_fid = *fid;
733 }
734
735 return 0;
736 }
737
738 /* Check whether the fid is for LAST_ID */
fid_is_last_id(const struct lu_fid * fid)739 static inline int fid_is_last_id(const struct lu_fid *fid)
740 {
741 return (fid_oid(fid) == 0);
742 }
743
744 /**
745 * Get inode number from a igif.
746 * \param fid a igif to get inode number from.
747 * \return inode number for the igif.
748 */
lu_igif_ino(const struct lu_fid * fid)749 static inline ino_t lu_igif_ino(const struct lu_fid *fid)
750 {
751 return fid_seq(fid);
752 }
753
754 void lustre_swab_ost_id(struct ost_id *oid);
755
756 /**
757 * Get inode generation from a igif.
758 * \param fid a igif to get inode generation from.
759 * \return inode generation for the igif.
760 */
lu_igif_gen(const struct lu_fid * fid)761 static inline __u32 lu_igif_gen(const struct lu_fid *fid)
762 {
763 return fid_oid(fid);
764 }
765
766 /**
767 * Build igif from the inode number/generation.
768 */
lu_igif_build(struct lu_fid * fid,__u32 ino,__u32 gen)769 static inline void lu_igif_build(struct lu_fid *fid, __u32 ino, __u32 gen)
770 {
771 fid->f_seq = ino;
772 fid->f_oid = gen;
773 fid->f_ver = 0;
774 }
775
776 /*
777 * Fids are transmitted across network (in the sender byte-ordering),
778 * and stored on disk in big-endian order.
779 */
fid_cpu_to_le(struct lu_fid * dst,const struct lu_fid * src)780 static inline void fid_cpu_to_le(struct lu_fid *dst, const struct lu_fid *src)
781 {
782 dst->f_seq = cpu_to_le64(fid_seq(src));
783 dst->f_oid = cpu_to_le32(fid_oid(src));
784 dst->f_ver = cpu_to_le32(fid_ver(src));
785 }
786
fid_le_to_cpu(struct lu_fid * dst,const struct lu_fid * src)787 static inline void fid_le_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
788 {
789 dst->f_seq = le64_to_cpu(fid_seq(src));
790 dst->f_oid = le32_to_cpu(fid_oid(src));
791 dst->f_ver = le32_to_cpu(fid_ver(src));
792 }
793
fid_cpu_to_be(struct lu_fid * dst,const struct lu_fid * src)794 static inline void fid_cpu_to_be(struct lu_fid *dst, const struct lu_fid *src)
795 {
796 dst->f_seq = cpu_to_be64(fid_seq(src));
797 dst->f_oid = cpu_to_be32(fid_oid(src));
798 dst->f_ver = cpu_to_be32(fid_ver(src));
799 }
800
fid_be_to_cpu(struct lu_fid * dst,const struct lu_fid * src)801 static inline void fid_be_to_cpu(struct lu_fid *dst, const struct lu_fid *src)
802 {
803 dst->f_seq = be64_to_cpu(fid_seq(src));
804 dst->f_oid = be32_to_cpu(fid_oid(src));
805 dst->f_ver = be32_to_cpu(fid_ver(src));
806 }
807
fid_is_sane(const struct lu_fid * fid)808 static inline int fid_is_sane(const struct lu_fid *fid)
809 {
810 return fid != NULL &&
811 ((fid_seq(fid) >= FID_SEQ_START && fid_ver(fid) == 0) ||
812 fid_is_igif(fid) || fid_is_idif(fid) ||
813 fid_seq_is_rsvd(fid_seq(fid)));
814 }
815
fid_is_zero(const struct lu_fid * fid)816 static inline int fid_is_zero(const struct lu_fid *fid)
817 {
818 return fid_seq(fid) == 0 && fid_oid(fid) == 0;
819 }
820
821 void lustre_swab_lu_fid(struct lu_fid *fid);
822 void lustre_swab_lu_seq_range(struct lu_seq_range *range);
823
lu_fid_eq(const struct lu_fid * f0,const struct lu_fid * f1)824 static inline int lu_fid_eq(const struct lu_fid *f0, const struct lu_fid *f1)
825 {
826 return memcmp(f0, f1, sizeof(*f0)) == 0;
827 }
828
829 #define __diff_normalize(val0, val1) \
830 ({ \
831 typeof(val0) __val0 = (val0); \
832 typeof(val1) __val1 = (val1); \
833 \
834 (__val0 == __val1 ? 0 : __val0 > __val1 ? 1 : -1); \
835 })
836
lu_fid_cmp(const struct lu_fid * f0,const struct lu_fid * f1)837 static inline int lu_fid_cmp(const struct lu_fid *f0,
838 const struct lu_fid *f1)
839 {
840 return
841 __diff_normalize(fid_seq(f0), fid_seq(f1)) ?:
842 __diff_normalize(fid_oid(f0), fid_oid(f1)) ?:
843 __diff_normalize(fid_ver(f0), fid_ver(f1));
844 }
845
ostid_cpu_to_le(const struct ost_id * src_oi,struct ost_id * dst_oi)846 static inline void ostid_cpu_to_le(const struct ost_id *src_oi,
847 struct ost_id *dst_oi)
848 {
849 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
850 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
851 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
852 } else {
853 fid_cpu_to_le(&dst_oi->oi_fid, &src_oi->oi_fid);
854 }
855 }
856
ostid_le_to_cpu(const struct ost_id * src_oi,struct ost_id * dst_oi)857 static inline void ostid_le_to_cpu(const struct ost_id *src_oi,
858 struct ost_id *dst_oi)
859 {
860 if (fid_seq_is_mdt0(ostid_seq(src_oi))) {
861 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
862 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
863 } else {
864 fid_le_to_cpu(&dst_oi->oi_fid, &src_oi->oi_fid);
865 }
866 }
867
868 /** @} lu_fid */
869
870 /** \defgroup lu_dir lu_dir
871 * @{ */
872
873 /**
874 * Enumeration of possible directory entry attributes.
875 *
876 * Attributes follow directory entry header in the order they appear in this
877 * enumeration.
878 */
879 enum lu_dirent_attrs {
880 LUDA_FID = 0x0001,
881 LUDA_TYPE = 0x0002,
882 LUDA_64BITHASH = 0x0004,
883
884 /* The following attrs are used for MDT internal only,
885 * not visible to client */
886
887 /* Verify the dirent consistency */
888 LUDA_VERIFY = 0x8000,
889 /* Only check but not repair the dirent inconsistency */
890 LUDA_VERIFY_DRYRUN = 0x4000,
891 /* The dirent has been repaired, or to be repaired (dryrun). */
892 LUDA_REPAIR = 0x2000,
893 /* The system is upgraded, has beed or to be repaired (dryrun). */
894 LUDA_UPGRADE = 0x1000,
895 /* Ignore this record, go to next directly. */
896 LUDA_IGNORE = 0x0800,
897 };
898
899 #define LU_DIRENT_ATTRS_MASK 0xf800
900
901 /**
902 * Layout of readdir pages, as transmitted on wire.
903 */
904 struct lu_dirent {
905 /** valid if LUDA_FID is set. */
906 struct lu_fid lde_fid;
907 /** a unique entry identifier: a hash or an offset. */
908 __u64 lde_hash;
909 /** total record length, including all attributes. */
910 __u16 lde_reclen;
911 /** name length */
912 __u16 lde_namelen;
913 /** optional variable size attributes following this entry.
914 * taken from enum lu_dirent_attrs.
915 */
916 __u32 lde_attrs;
917 /** name is followed by the attributes indicated in ->ldp_attrs, in
918 * their natural order. After the last attribute, padding bytes are
919 * added to make ->lde_reclen a multiple of 8.
920 */
921 char lde_name[0];
922 };
923
924 /*
925 * Definitions of optional directory entry attributes formats.
926 *
927 * Individual attributes do not have their length encoded in a generic way. It
928 * is assumed that consumer of an attribute knows its format. This means that
929 * it is impossible to skip over an unknown attribute, except by skipping over all
930 * remaining attributes (by using ->lde_reclen), which is not too
931 * constraining, because new server versions will append new attributes at
932 * the end of an entry.
933 */
934
935 /**
936 * Fid directory attribute: a fid of an object referenced by the entry. This
937 * will be almost always requested by the client and supplied by the server.
938 *
939 * Aligned to 8 bytes.
940 */
941 /* To have compatibility with 1.8, lets have fid in lu_dirent struct. */
942
943 /**
944 * File type.
945 *
946 * Aligned to 2 bytes.
947 */
948 struct luda_type {
949 __u16 lt_type;
950 };
951
952 #ifndef IFSHIFT
953 #define IFSHIFT 12
954 #endif
955
956 #ifndef IFTODT
957 #define IFTODT(type) (((type) & S_IFMT) >> IFSHIFT)
958 #endif
959 #ifndef DTTOIF
960 #define DTTOIF(dirtype) ((dirtype) << IFSHIFT)
961 #endif
962
963 struct lu_dirpage {
964 __u64 ldp_hash_start;
965 __u64 ldp_hash_end;
966 __u32 ldp_flags;
967 __u32 ldp_pad0;
968 struct lu_dirent ldp_entries[0];
969 };
970
971 enum lu_dirpage_flags {
972 /**
973 * dirpage contains no entry.
974 */
975 LDF_EMPTY = 1 << 0,
976 /**
977 * last entry's lde_hash equals ldp_hash_end.
978 */
979 LDF_COLLIDE = 1 << 1
980 };
981
lu_dirent_start(struct lu_dirpage * dp)982 static inline struct lu_dirent *lu_dirent_start(struct lu_dirpage *dp)
983 {
984 if (le32_to_cpu(dp->ldp_flags) & LDF_EMPTY)
985 return NULL;
986 else
987 return dp->ldp_entries;
988 }
989
lu_dirent_next(struct lu_dirent * ent)990 static inline struct lu_dirent *lu_dirent_next(struct lu_dirent *ent)
991 {
992 struct lu_dirent *next;
993
994 if (le16_to_cpu(ent->lde_reclen) != 0)
995 next = ((void *)ent) + le16_to_cpu(ent->lde_reclen);
996 else
997 next = NULL;
998
999 return next;
1000 }
1001
lu_dirent_calc_size(int namelen,__u16 attr)1002 static inline int lu_dirent_calc_size(int namelen, __u16 attr)
1003 {
1004 int size;
1005
1006 if (attr & LUDA_TYPE) {
1007 const unsigned align = sizeof(struct luda_type) - 1;
1008
1009 size = (sizeof(struct lu_dirent) + namelen + align) & ~align;
1010 size += sizeof(struct luda_type);
1011 } else
1012 size = sizeof(struct lu_dirent) + namelen;
1013
1014 return (size + 7) & ~7;
1015 }
1016
lu_dirent_size(struct lu_dirent * ent)1017 static inline int lu_dirent_size(struct lu_dirent *ent)
1018 {
1019 if (le16_to_cpu(ent->lde_reclen) == 0) {
1020 return lu_dirent_calc_size(le16_to_cpu(ent->lde_namelen),
1021 le32_to_cpu(ent->lde_attrs));
1022 }
1023 return le16_to_cpu(ent->lde_reclen);
1024 }
1025
1026 #define MDS_DIR_END_OFF 0xfffffffffffffffeULL
1027
1028 /**
1029 * MDS_READPAGE page size
1030 *
1031 * This is the directory page size packed in MDS_READPAGE RPC.
1032 * It's different than PAGE_CACHE_SIZE because the client needs to
1033 * access the struct lu_dirpage header packed at the beginning of
1034 * the "page" and without this there isn't any way to know find the
1035 * lu_dirpage header is if client and server PAGE_CACHE_SIZE differ.
1036 */
1037 #define LU_PAGE_SHIFT 12
1038 #define LU_PAGE_SIZE (1UL << LU_PAGE_SHIFT)
1039 #define LU_PAGE_MASK (~(LU_PAGE_SIZE - 1))
1040
1041 #define LU_PAGE_COUNT (1 << (PAGE_CACHE_SHIFT - LU_PAGE_SHIFT))
1042
1043 /** @} lu_dir */
1044
1045 struct lustre_handle {
1046 __u64 cookie;
1047 };
1048
1049 #define DEAD_HANDLE_MAGIC 0xdeadbeefcafebabeULL
1050
lustre_handle_is_used(struct lustre_handle * lh)1051 static inline int lustre_handle_is_used(struct lustre_handle *lh)
1052 {
1053 return lh->cookie != 0ull;
1054 }
1055
lustre_handle_equal(const struct lustre_handle * lh1,const struct lustre_handle * lh2)1056 static inline int lustre_handle_equal(const struct lustre_handle *lh1,
1057 const struct lustre_handle *lh2)
1058 {
1059 return lh1->cookie == lh2->cookie;
1060 }
1061
lustre_handle_copy(struct lustre_handle * tgt,struct lustre_handle * src)1062 static inline void lustre_handle_copy(struct lustre_handle *tgt,
1063 struct lustre_handle *src)
1064 {
1065 tgt->cookie = src->cookie;
1066 }
1067
1068 /* flags for lm_flags */
1069 #define MSGHDR_AT_SUPPORT 0x1
1070 #define MSGHDR_CKSUM_INCOMPAT18 0x2
1071
1072 #define lustre_msg lustre_msg_v2
1073 /* we depend on this structure to be 8-byte aligned */
1074 /* this type is only endian-adjusted in lustre_unpack_msg() */
1075 struct lustre_msg_v2 {
1076 __u32 lm_bufcount;
1077 __u32 lm_secflvr;
1078 __u32 lm_magic;
1079 __u32 lm_repsize;
1080 __u32 lm_cksum;
1081 __u32 lm_flags;
1082 __u32 lm_padding_2;
1083 __u32 lm_padding_3;
1084 __u32 lm_buflens[0];
1085 };
1086
1087 /* without gss, ptlrpc_body is put at the first buffer. */
1088 #define PTLRPC_NUM_VERSIONS 4
1089 #define JOBSTATS_JOBID_SIZE 32 /* 32 bytes string */
1090 struct ptlrpc_body_v3 {
1091 struct lustre_handle pb_handle;
1092 __u32 pb_type;
1093 __u32 pb_version;
1094 __u32 pb_opc;
1095 __u32 pb_status;
1096 __u64 pb_last_xid;
1097 __u64 pb_last_seen;
1098 __u64 pb_last_committed;
1099 __u64 pb_transno;
1100 __u32 pb_flags;
1101 __u32 pb_op_flags;
1102 __u32 pb_conn_cnt;
1103 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1104 __u32 pb_service_time; /* for rep, actual service time */
1105 __u32 pb_limit;
1106 __u64 pb_slv;
1107 /* VBR: pre-versions */
1108 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1109 /* padding for future needs */
1110 __u64 pb_padding[4];
1111 char pb_jobid[JOBSTATS_JOBID_SIZE];
1112 };
1113
1114 #define ptlrpc_body ptlrpc_body_v3
1115
1116 struct ptlrpc_body_v2 {
1117 struct lustre_handle pb_handle;
1118 __u32 pb_type;
1119 __u32 pb_version;
1120 __u32 pb_opc;
1121 __u32 pb_status;
1122 __u64 pb_last_xid;
1123 __u64 pb_last_seen;
1124 __u64 pb_last_committed;
1125 __u64 pb_transno;
1126 __u32 pb_flags;
1127 __u32 pb_op_flags;
1128 __u32 pb_conn_cnt;
1129 __u32 pb_timeout; /* for req, the deadline, for rep, the service est */
1130 __u32 pb_service_time; /* for rep, actual service time, also used for
1131 net_latency of req */
1132 __u32 pb_limit;
1133 __u64 pb_slv;
1134 /* VBR: pre-versions */
1135 __u64 pb_pre_versions[PTLRPC_NUM_VERSIONS];
1136 /* padding for future needs */
1137 __u64 pb_padding[4];
1138 };
1139
1140 void lustre_swab_ptlrpc_body(struct ptlrpc_body *pb);
1141
1142 /* message body offset for lustre_msg_v2 */
1143 /* ptlrpc body offset in all request/reply messages */
1144 #define MSG_PTLRPC_BODY_OFF 0
1145
1146 /* normal request/reply message record offset */
1147 #define REQ_REC_OFF 1
1148 #define REPLY_REC_OFF 1
1149
1150 /* ldlm request message body offset */
1151 #define DLM_LOCKREQ_OFF 1 /* lockreq offset */
1152 #define DLM_REQ_REC_OFF 2 /* normal dlm request record offset */
1153
1154 /* ldlm intent lock message body offset */
1155 #define DLM_INTENT_IT_OFF 2 /* intent lock it offset */
1156 #define DLM_INTENT_REC_OFF 3 /* intent lock record offset */
1157
1158 /* ldlm reply message body offset */
1159 #define DLM_LOCKREPLY_OFF 1 /* lockrep offset */
1160 #define DLM_REPLY_REC_OFF 2 /* reply record offset */
1161
1162 /** only use in req->rq_{req,rep}_swab_mask */
1163 #define MSG_PTLRPC_HEADER_OFF 31
1164
1165 /* Flags that are operation-specific go in the top 16 bits. */
1166 #define MSG_OP_FLAG_MASK 0xffff0000
1167 #define MSG_OP_FLAG_SHIFT 16
1168
1169 /* Flags that apply to all requests are in the bottom 16 bits */
1170 #define MSG_GEN_FLAG_MASK 0x0000ffff
1171 #define MSG_LAST_REPLAY 0x0001
1172 #define MSG_RESENT 0x0002
1173 #define MSG_REPLAY 0x0004
1174 /* #define MSG_AT_SUPPORT 0x0008
1175 * This was used in early prototypes of adaptive timeouts, and while there
1176 * shouldn't be any users of that code there also isn't a need for using this
1177 * bits. Defer usage until at least 1.10 to avoid potential conflict. */
1178 #define MSG_DELAY_REPLAY 0x0010
1179 #define MSG_VERSION_REPLAY 0x0020
1180 #define MSG_REQ_REPLAY_DONE 0x0040
1181 #define MSG_LOCK_REPLAY_DONE 0x0080
1182
1183 /*
1184 * Flags for all connect opcodes (MDS_CONNECT, OST_CONNECT)
1185 */
1186
1187 #define MSG_CONNECT_RECOVERING 0x00000001
1188 #define MSG_CONNECT_RECONNECT 0x00000002
1189 #define MSG_CONNECT_REPLAYABLE 0x00000004
1190 //#define MSG_CONNECT_PEER 0x8
1191 #define MSG_CONNECT_LIBCLIENT 0x00000010
1192 #define MSG_CONNECT_INITIAL 0x00000020
1193 #define MSG_CONNECT_ASYNC 0x00000040
1194 #define MSG_CONNECT_NEXT_VER 0x00000080 /* use next version of lustre_msg */
1195 #define MSG_CONNECT_TRANSNO 0x00000100 /* report transno */
1196
1197 /* Connect flags */
1198 #define OBD_CONNECT_RDONLY 0x1ULL /*client has read-only access*/
1199 #define OBD_CONNECT_INDEX 0x2ULL /*connect specific LOV idx */
1200 #define OBD_CONNECT_MDS 0x4ULL /*connect from MDT to OST */
1201 #define OBD_CONNECT_GRANT 0x8ULL /*OSC gets grant at connect */
1202 #define OBD_CONNECT_SRVLOCK 0x10ULL /*server takes locks for cli */
1203 #define OBD_CONNECT_VERSION 0x20ULL /*Lustre versions in ocd */
1204 #define OBD_CONNECT_REQPORTAL 0x40ULL /*Separate non-IO req portal */
1205 #define OBD_CONNECT_ACL 0x80ULL /*access control lists */
1206 #define OBD_CONNECT_XATTR 0x100ULL /*client use extended attr */
1207 #define OBD_CONNECT_CROW 0x200ULL /*MDS+OST create obj on write*/
1208 #define OBD_CONNECT_TRUNCLOCK 0x400ULL /*locks on server for punch */
1209 #define OBD_CONNECT_TRANSNO 0x800ULL /*replay sends init transno */
1210 #define OBD_CONNECT_IBITS 0x1000ULL /*support for inodebits locks*/
1211 #define OBD_CONNECT_JOIN 0x2000ULL /*files can be concatenated.
1212 *We do not support JOIN FILE
1213 *anymore, reserve this flags
1214 *just for preventing such bit
1215 *to be reused.*/
1216 #define OBD_CONNECT_ATTRFID 0x4000ULL /*Server can GetAttr By Fid*/
1217 #define OBD_CONNECT_NODEVOH 0x8000ULL /*No open hndl on specl nodes*/
1218 #define OBD_CONNECT_RMT_CLIENT 0x10000ULL /*Remote client */
1219 #define OBD_CONNECT_RMT_CLIENT_FORCE 0x20000ULL /*Remote client by force */
1220 #define OBD_CONNECT_BRW_SIZE 0x40000ULL /*Max bytes per rpc */
1221 #define OBD_CONNECT_QUOTA64 0x80000ULL /*Not used since 2.4 */
1222 #define OBD_CONNECT_MDS_CAPA 0x100000ULL /*MDS capability */
1223 #define OBD_CONNECT_OSS_CAPA 0x200000ULL /*OSS capability */
1224 #define OBD_CONNECT_CANCELSET 0x400000ULL /*Early batched cancels. */
1225 #define OBD_CONNECT_SOM 0x800000ULL /*Size on MDS */
1226 #define OBD_CONNECT_AT 0x1000000ULL /*client uses AT */
1227 #define OBD_CONNECT_LRU_RESIZE 0x2000000ULL /*LRU resize feature. */
1228 #define OBD_CONNECT_MDS_MDS 0x4000000ULL /*MDS-MDS connection */
1229 #define OBD_CONNECT_REAL 0x8000000ULL /*real connection */
1230 #define OBD_CONNECT_CHANGE_QS 0x10000000ULL /*Not used since 2.4 */
1231 #define OBD_CONNECT_CKSUM 0x20000000ULL /*support several cksum algos*/
1232 #define OBD_CONNECT_FID 0x40000000ULL /*FID is supported by server */
1233 #define OBD_CONNECT_VBR 0x80000000ULL /*version based recovery */
1234 #define OBD_CONNECT_LOV_V3 0x100000000ULL /*client supports LOV v3 EA */
1235 #define OBD_CONNECT_GRANT_SHRINK 0x200000000ULL /* support grant shrink */
1236 #define OBD_CONNECT_SKIP_ORPHAN 0x400000000ULL /* don't reuse orphan objids */
1237 #define OBD_CONNECT_MAX_EASIZE 0x800000000ULL /* preserved for large EA */
1238 #define OBD_CONNECT_FULL20 0x1000000000ULL /* it is 2.0 client */
1239 #define OBD_CONNECT_LAYOUTLOCK 0x2000000000ULL /* client uses layout lock */
1240 #define OBD_CONNECT_64BITHASH 0x4000000000ULL /* client supports 64-bits
1241 * directory hash */
1242 #define OBD_CONNECT_MAXBYTES 0x8000000000ULL /* max stripe size */
1243 #define OBD_CONNECT_IMP_RECOV 0x10000000000ULL /* imp recovery support */
1244 #define OBD_CONNECT_JOBSTATS 0x20000000000ULL /* jobid in ptlrpc_body */
1245 #define OBD_CONNECT_UMASK 0x40000000000ULL /* create uses client umask */
1246 #define OBD_CONNECT_EINPROGRESS 0x80000000000ULL /* client handles -EINPROGRESS
1247 * RPC error properly */
1248 #define OBD_CONNECT_GRANT_PARAM 0x100000000000ULL/* extra grant params used for
1249 * finer space reservation */
1250 #define OBD_CONNECT_FLOCK_OWNER 0x200000000000ULL /* for the fixed 1.8
1251 * policy and 2.x server */
1252 #define OBD_CONNECT_LVB_TYPE 0x400000000000ULL /* variable type of LVB */
1253 #define OBD_CONNECT_NANOSEC_TIME 0x800000000000ULL /* nanosecond timestamps */
1254 #define OBD_CONNECT_LIGHTWEIGHT 0x1000000000000ULL/* lightweight connection */
1255 #define OBD_CONNECT_SHORTIO 0x2000000000000ULL/* short io */
1256 #define OBD_CONNECT_PINGLESS 0x4000000000000ULL/* pings not required */
1257 #define OBD_CONNECT_FLOCK_DEAD 0x8000000000000ULL/* flock deadlock detection */
1258 #define OBD_CONNECT_DISP_STRIPE 0x10000000000000ULL/*create stripe disposition*/
1259
1260 /* XXX README XXX:
1261 * Please DO NOT add flag values here before first ensuring that this same
1262 * flag value is not in use on some other branch. Please clear any such
1263 * changes with senior engineers before starting to use a new flag. Then,
1264 * submit a small patch against EVERY branch that ONLY adds the new flag,
1265 * updates obd_connect_names[] for lprocfs_rd_connect_flags(), adds the
1266 * flag to check_obd_connect_data(), and updates wiretests accordingly, so it
1267 * can be approved and landed easily to reserve the flag for future use. */
1268
1269 /* The MNE_SWAB flag is overloading the MDS_MDS bit only for the MGS
1270 * connection. It is a temporary bug fix for Imperative Recovery interop
1271 * between 2.2 and 2.3 x86/ppc nodes, and can be removed when interop for
1272 * 2.2 clients/servers is no longer needed. LU-1252/LU-1644. */
1273 #define OBD_CONNECT_MNE_SWAB OBD_CONNECT_MDS_MDS
1274
1275 #define OCD_HAS_FLAG(ocd, flg) \
1276 (!!((ocd)->ocd_connect_flags & OBD_CONNECT_##flg))
1277
1278 #define LRU_RESIZE_CONNECT_FLAG OBD_CONNECT_LRU_RESIZE
1279
1280 #define MDT_CONNECT_SUPPORTED (OBD_CONNECT_RDONLY | OBD_CONNECT_VERSION | \
1281 OBD_CONNECT_ACL | OBD_CONNECT_XATTR | \
1282 OBD_CONNECT_IBITS | \
1283 OBD_CONNECT_NODEVOH | OBD_CONNECT_ATTRFID | \
1284 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1285 OBD_CONNECT_RMT_CLIENT | \
1286 OBD_CONNECT_RMT_CLIENT_FORCE | \
1287 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_MDS_CAPA | \
1288 OBD_CONNECT_OSS_CAPA | OBD_CONNECT_MDS_MDS | \
1289 OBD_CONNECT_FID | LRU_RESIZE_CONNECT_FLAG | \
1290 OBD_CONNECT_VBR | OBD_CONNECT_LOV_V3 | \
1291 OBD_CONNECT_SOM | OBD_CONNECT_FULL20 | \
1292 OBD_CONNECT_64BITHASH | OBD_CONNECT_JOBSTATS | \
1293 OBD_CONNECT_EINPROGRESS | \
1294 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_UMASK | \
1295 OBD_CONNECT_LVB_TYPE | OBD_CONNECT_LAYOUTLOCK |\
1296 OBD_CONNECT_PINGLESS | OBD_CONNECT_MAX_EASIZE |\
1297 OBD_CONNECT_FLOCK_DEAD | \
1298 OBD_CONNECT_DISP_STRIPE)
1299
1300 #define OST_CONNECT_SUPPORTED (OBD_CONNECT_SRVLOCK | OBD_CONNECT_GRANT | \
1301 OBD_CONNECT_REQPORTAL | OBD_CONNECT_VERSION | \
1302 OBD_CONNECT_TRUNCLOCK | OBD_CONNECT_INDEX | \
1303 OBD_CONNECT_BRW_SIZE | OBD_CONNECT_OSS_CAPA | \
1304 OBD_CONNECT_CANCELSET | OBD_CONNECT_AT | \
1305 LRU_RESIZE_CONNECT_FLAG | OBD_CONNECT_CKSUM | \
1306 OBD_CONNECT_RMT_CLIENT | \
1307 OBD_CONNECT_RMT_CLIENT_FORCE | OBD_CONNECT_VBR | \
1308 OBD_CONNECT_MDS | OBD_CONNECT_SKIP_ORPHAN | \
1309 OBD_CONNECT_GRANT_SHRINK | OBD_CONNECT_FULL20 | \
1310 OBD_CONNECT_64BITHASH | OBD_CONNECT_MAXBYTES | \
1311 OBD_CONNECT_MAX_EASIZE | \
1312 OBD_CONNECT_EINPROGRESS | \
1313 OBD_CONNECT_JOBSTATS | \
1314 OBD_CONNECT_LIGHTWEIGHT | OBD_CONNECT_LVB_TYPE|\
1315 OBD_CONNECT_LAYOUTLOCK | OBD_CONNECT_FID | \
1316 OBD_CONNECT_PINGLESS)
1317 #define ECHO_CONNECT_SUPPORTED (0)
1318 #define MGS_CONNECT_SUPPORTED (OBD_CONNECT_VERSION | OBD_CONNECT_AT | \
1319 OBD_CONNECT_FULL20 | OBD_CONNECT_IMP_RECOV | \
1320 OBD_CONNECT_MNE_SWAB | OBD_CONNECT_PINGLESS)
1321
1322 /* Features required for this version of the client to work with server */
1323 #define CLIENT_CONNECT_MDT_REQD (OBD_CONNECT_IBITS | OBD_CONNECT_FID | \
1324 OBD_CONNECT_FULL20)
1325
1326 #define OBD_OCD_VERSION(major, minor, patch, fix) (((major)<<24) + \
1327 ((minor)<<16) + \
1328 ((patch)<<8) + (fix))
1329 #define OBD_OCD_VERSION_MAJOR(version) ((int)((version)>>24)&255)
1330 #define OBD_OCD_VERSION_MINOR(version) ((int)((version)>>16)&255)
1331 #define OBD_OCD_VERSION_PATCH(version) ((int)((version)>>8)&255)
1332 #define OBD_OCD_VERSION_FIX(version) ((int)(version)&255)
1333
1334 /* This structure is used for both request and reply.
1335 *
1336 * If we eventually have separate connect data for different types, which we
1337 * almost certainly will, then perhaps we stick a union in here. */
1338 struct obd_connect_data_v1 {
1339 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1340 __u32 ocd_version; /* lustre release version number */
1341 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1342 __u32 ocd_index; /* LOV index to connect to */
1343 __u32 ocd_brw_size; /* Maximum BRW size in bytes, must be 2^n */
1344 __u64 ocd_ibits_known; /* inode bits this client understands */
1345 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1346 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1347 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1348 __u32 ocd_unused; /* also fix lustre_swab_connect */
1349 __u64 ocd_transno; /* first transno from client to be replayed */
1350 __u32 ocd_group; /* MDS group on OST */
1351 __u32 ocd_cksum_types; /* supported checksum algorithms */
1352 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1353 __u32 ocd_instance; /* also fix lustre_swab_connect */
1354 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1355 };
1356
1357 struct obd_connect_data {
1358 __u64 ocd_connect_flags; /* OBD_CONNECT_* per above */
1359 __u32 ocd_version; /* lustre release version number */
1360 __u32 ocd_grant; /* initial cache grant amount (bytes) */
1361 __u32 ocd_index; /* LOV index to connect to */
1362 __u32 ocd_brw_size; /* Maximum BRW size in bytes */
1363 __u64 ocd_ibits_known; /* inode bits this client understands */
1364 __u8 ocd_blocksize; /* log2 of the backend filesystem blocksize */
1365 __u8 ocd_inodespace; /* log2 of the per-inode space consumption */
1366 __u16 ocd_grant_extent; /* per-extent grant overhead, in 1K blocks */
1367 __u32 ocd_unused; /* also fix lustre_swab_connect */
1368 __u64 ocd_transno; /* first transno from client to be replayed */
1369 __u32 ocd_group; /* MDS group on OST */
1370 __u32 ocd_cksum_types; /* supported checksum algorithms */
1371 __u32 ocd_max_easize; /* How big LOV EA can be on MDS */
1372 __u32 ocd_instance; /* instance # of this target */
1373 __u64 ocd_maxbytes; /* Maximum stripe size in bytes */
1374 /* Fields after ocd_maxbytes are only accessible by the receiver
1375 * if the corresponding flag in ocd_connect_flags is set. Accessing
1376 * any field after ocd_maxbytes on the receiver without a valid flag
1377 * may result in out-of-bound memory access and kernel oops. */
1378 __u64 padding1; /* added 2.1.0. also fix lustre_swab_connect */
1379 __u64 padding2; /* added 2.1.0. also fix lustre_swab_connect */
1380 __u64 padding3; /* added 2.1.0. also fix lustre_swab_connect */
1381 __u64 padding4; /* added 2.1.0. also fix lustre_swab_connect */
1382 __u64 padding5; /* added 2.1.0. also fix lustre_swab_connect */
1383 __u64 padding6; /* added 2.1.0. also fix lustre_swab_connect */
1384 __u64 padding7; /* added 2.1.0. also fix lustre_swab_connect */
1385 __u64 padding8; /* added 2.1.0. also fix lustre_swab_connect */
1386 __u64 padding9; /* added 2.1.0. also fix lustre_swab_connect */
1387 __u64 paddingA; /* added 2.1.0. also fix lustre_swab_connect */
1388 __u64 paddingB; /* added 2.1.0. also fix lustre_swab_connect */
1389 __u64 paddingC; /* added 2.1.0. also fix lustre_swab_connect */
1390 __u64 paddingD; /* added 2.1.0. also fix lustre_swab_connect */
1391 __u64 paddingE; /* added 2.1.0. also fix lustre_swab_connect */
1392 __u64 paddingF; /* added 2.1.0. also fix lustre_swab_connect */
1393 };
1394
1395 /* XXX README XXX:
1396 * Please DO NOT use any fields here before first ensuring that this same
1397 * field is not in use on some other branch. Please clear any such changes
1398 * with senior engineers before starting to use a new field. Then, submit
1399 * a small patch against EVERY branch that ONLY adds the new field along with
1400 * the matching OBD_CONNECT flag, so that can be approved and landed easily to
1401 * reserve the flag for future use. */
1402
1403 void lustre_swab_connect(struct obd_connect_data *ocd);
1404
1405 /*
1406 * Supported checksum algorithms. Up to 32 checksum types are supported.
1407 * (32-bit mask stored in obd_connect_data::ocd_cksum_types)
1408 * Please update DECLARE_CKSUM_NAME/OBD_CKSUM_ALL in obd.h when adding a new
1409 * algorithm and also the OBD_FL_CKSUM* flags.
1410 */
1411 typedef enum {
1412 OBD_CKSUM_CRC32 = 0x00000001,
1413 OBD_CKSUM_ADLER = 0x00000002,
1414 OBD_CKSUM_CRC32C = 0x00000004,
1415 } cksum_type_t;
1416
1417 /*
1418 * OST requests: OBDO & OBD request records
1419 */
1420
1421 /* opcodes */
1422 typedef enum {
1423 OST_REPLY = 0, /* reply ? */
1424 OST_GETATTR = 1,
1425 OST_SETATTR = 2,
1426 OST_READ = 3,
1427 OST_WRITE = 4,
1428 OST_CREATE = 5,
1429 OST_DESTROY = 6,
1430 OST_GET_INFO = 7,
1431 OST_CONNECT = 8,
1432 OST_DISCONNECT = 9,
1433 OST_PUNCH = 10,
1434 OST_OPEN = 11,
1435 OST_CLOSE = 12,
1436 OST_STATFS = 13,
1437 OST_SYNC = 16,
1438 OST_SET_INFO = 17,
1439 OST_QUOTACHECK = 18,
1440 OST_QUOTACTL = 19,
1441 OST_QUOTA_ADJUST_QUNIT = 20, /* not used since 2.4 */
1442 OST_LAST_OPC
1443 } ost_cmd_t;
1444 #define OST_FIRST_OPC OST_REPLY
1445
1446 enum obdo_flags {
1447 OBD_FL_INLINEDATA = 0x00000001,
1448 OBD_FL_OBDMDEXISTS = 0x00000002,
1449 OBD_FL_DELORPHAN = 0x00000004, /* if set in o_flags delete orphans */
1450 OBD_FL_NORPC = 0x00000008, /* set in o_flags do in OSC not OST */
1451 OBD_FL_IDONLY = 0x00000010, /* set in o_flags only adjust obj id*/
1452 OBD_FL_RECREATE_OBJS = 0x00000020, /* recreate missing obj */
1453 OBD_FL_DEBUG_CHECK = 0x00000040, /* echo client/server debug check */
1454 OBD_FL_NO_USRQUOTA = 0x00000100, /* the object's owner is over quota */
1455 OBD_FL_NO_GRPQUOTA = 0x00000200, /* the object's group is over quota */
1456 OBD_FL_CREATE_CROW = 0x00000400, /* object should be create on write */
1457 OBD_FL_SRVLOCK = 0x00000800, /* delegate DLM locking to server */
1458 OBD_FL_CKSUM_CRC32 = 0x00001000, /* CRC32 checksum type */
1459 OBD_FL_CKSUM_ADLER = 0x00002000, /* ADLER checksum type */
1460 OBD_FL_CKSUM_CRC32C = 0x00004000, /* CRC32C checksum type */
1461 OBD_FL_CKSUM_RSVD2 = 0x00008000, /* for future cksum types */
1462 OBD_FL_CKSUM_RSVD3 = 0x00010000, /* for future cksum types */
1463 OBD_FL_SHRINK_GRANT = 0x00020000, /* object shrink the grant */
1464 OBD_FL_MMAP = 0x00040000, /* object is mmapped on the client.
1465 * XXX: obsoleted - reserved for old
1466 * clients prior than 2.2 */
1467 OBD_FL_RECOV_RESEND = 0x00080000, /* recoverable resent */
1468 OBD_FL_NOSPC_BLK = 0x00100000, /* no more block space on OST */
1469
1470 /* Note that while these checksum values are currently separate bits,
1471 * in 2.x we can actually allow all values from 1-31 if we wanted. */
1472 OBD_FL_CKSUM_ALL = OBD_FL_CKSUM_CRC32 | OBD_FL_CKSUM_ADLER |
1473 OBD_FL_CKSUM_CRC32C,
1474
1475 /* mask for local-only flag, which won't be sent over network */
1476 OBD_FL_LOCAL_MASK = 0xF0000000,
1477 };
1478
1479 #define LOV_MAGIC_V1 0x0BD10BD0
1480 #define LOV_MAGIC LOV_MAGIC_V1
1481 #define LOV_MAGIC_JOIN_V1 0x0BD20BD0
1482 #define LOV_MAGIC_V3 0x0BD30BD0
1483
1484 /*
1485 * magic for fully defined striping
1486 * the idea is that we should have different magics for striping "hints"
1487 * (struct lov_user_md_v[13]) and defined ready-to-use striping (struct
1488 * lov_mds_md_v[13]). at the moment the magics are used in wire protocol,
1489 * we can't just change it w/o long way preparation, but we still need a
1490 * mechanism to allow LOD to differentiate hint versus ready striping.
1491 * so, at the moment we do a trick: MDT knows what to expect from request
1492 * depending on the case (replay uses ready striping, non-replay req uses
1493 * hints), so MDT replaces magic with appropriate one and now LOD can
1494 * easily understand what's inside -bzzz
1495 */
1496 #define LOV_MAGIC_V1_DEF 0x0CD10BD0
1497 #define LOV_MAGIC_V3_DEF 0x0CD30BD0
1498
1499 #define LOV_PATTERN_RAID0 0x001 /* stripes are used round-robin */
1500 #define LOV_PATTERN_RAID1 0x002 /* stripes are mirrors of each other */
1501 #define LOV_PATTERN_FIRST 0x100 /* first stripe is not in round-robin */
1502 #define LOV_PATTERN_CMOBD 0x200
1503
1504 #define LOV_PATTERN_F_MASK 0xffff0000
1505 #define LOV_PATTERN_F_RELEASED 0x80000000 /* HSM released file */
1506
1507 #define lov_pattern(pattern) (pattern & ~LOV_PATTERN_F_MASK)
1508 #define lov_pattern_flags(pattern) (pattern & LOV_PATTERN_F_MASK)
1509
1510 #define lov_ost_data lov_ost_data_v1
1511 struct lov_ost_data_v1 { /* per-stripe data structure (little-endian)*/
1512 struct ost_id l_ost_oi; /* OST object ID */
1513 __u32 l_ost_gen; /* generation of this l_ost_idx */
1514 __u32 l_ost_idx; /* OST index in LOV (lov_tgt_desc->tgts) */
1515 };
1516
1517 #define lov_mds_md lov_mds_md_v1
1518 struct lov_mds_md_v1 { /* LOV EA mds/wire data (little-endian) */
1519 __u32 lmm_magic; /* magic number = LOV_MAGIC_V1 */
1520 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1521 struct ost_id lmm_oi; /* LOV object ID */
1522 __u32 lmm_stripe_size; /* size of stripe in bytes */
1523 /* lmm_stripe_count used to be __u32 */
1524 __u16 lmm_stripe_count; /* num stripes in use for this object */
1525 __u16 lmm_layout_gen; /* layout generation number */
1526 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1527 };
1528
1529 /**
1530 * Sigh, because pre-2.4 uses
1531 * struct lov_mds_md_v1 {
1532 * ........
1533 * __u64 lmm_object_id;
1534 * __u64 lmm_object_seq;
1535 * ......
1536 * }
1537 * to identify the LOV(MDT) object, and lmm_object_seq will
1538 * be normal_fid, which make it hard to combine these conversion
1539 * to ostid_to FID. so we will do lmm_oi/fid conversion separately
1540 *
1541 * We can tell the lmm_oi by this way,
1542 * 1.8: lmm_object_id = {inode}, lmm_object_gr = 0
1543 * 2.1: lmm_object_id = {oid < 128k}, lmm_object_seq = FID_SEQ_NORMAL
1544 * 2.4: lmm_oi.f_seq = FID_SEQ_NORMAL, lmm_oi.f_oid = {oid < 128k},
1545 * lmm_oi.f_ver = 0
1546 *
1547 * But currently lmm_oi/lsm_oi does not have any "real" usages,
1548 * except for printing some information, and the user can always
1549 * get the real FID from LMA, besides this multiple case check might
1550 * make swab more complicate. So we will keep using id/seq for lmm_oi.
1551 */
1552
fid_to_lmm_oi(const struct lu_fid * fid,struct ost_id * oi)1553 static inline void fid_to_lmm_oi(const struct lu_fid *fid,
1554 struct ost_id *oi)
1555 {
1556 oi->oi.oi_id = fid_oid(fid);
1557 oi->oi.oi_seq = fid_seq(fid);
1558 }
1559
lmm_oi_set_seq(struct ost_id * oi,__u64 seq)1560 static inline void lmm_oi_set_seq(struct ost_id *oi, __u64 seq)
1561 {
1562 oi->oi.oi_seq = seq;
1563 }
1564
lmm_oi_id(struct ost_id * oi)1565 static inline __u64 lmm_oi_id(struct ost_id *oi)
1566 {
1567 return oi->oi.oi_id;
1568 }
1569
lmm_oi_seq(struct ost_id * oi)1570 static inline __u64 lmm_oi_seq(struct ost_id *oi)
1571 {
1572 return oi->oi.oi_seq;
1573 }
1574
lmm_oi_le_to_cpu(struct ost_id * dst_oi,struct ost_id * src_oi)1575 static inline void lmm_oi_le_to_cpu(struct ost_id *dst_oi,
1576 struct ost_id *src_oi)
1577 {
1578 dst_oi->oi.oi_id = le64_to_cpu(src_oi->oi.oi_id);
1579 dst_oi->oi.oi_seq = le64_to_cpu(src_oi->oi.oi_seq);
1580 }
1581
lmm_oi_cpu_to_le(struct ost_id * dst_oi,struct ost_id * src_oi)1582 static inline void lmm_oi_cpu_to_le(struct ost_id *dst_oi,
1583 struct ost_id *src_oi)
1584 {
1585 dst_oi->oi.oi_id = cpu_to_le64(src_oi->oi.oi_id);
1586 dst_oi->oi.oi_seq = cpu_to_le64(src_oi->oi.oi_seq);
1587 }
1588
1589 /* extern void lustre_swab_lov_mds_md(struct lov_mds_md *llm); */
1590
1591 #define MAX_MD_SIZE \
1592 (sizeof(struct lov_mds_md) + 4 * sizeof(struct lov_ost_data))
1593 #define MIN_MD_SIZE \
1594 (sizeof(struct lov_mds_md) + 1 * sizeof(struct lov_ost_data))
1595
1596 #define XATTR_NAME_ACL_ACCESS "system.posix_acl_access"
1597 #define XATTR_NAME_ACL_DEFAULT "system.posix_acl_default"
1598 #define XATTR_USER_PREFIX "user."
1599 #define XATTR_TRUSTED_PREFIX "trusted."
1600 #define XATTR_SECURITY_PREFIX "security."
1601 #define XATTR_LUSTRE_PREFIX "lustre."
1602
1603 #define XATTR_NAME_LOV "trusted.lov"
1604 #define XATTR_NAME_LMA "trusted.lma"
1605 #define XATTR_NAME_LMV "trusted.lmv"
1606 #define XATTR_NAME_LINK "trusted.link"
1607 #define XATTR_NAME_FID "trusted.fid"
1608 #define XATTR_NAME_VERSION "trusted.version"
1609 #define XATTR_NAME_SOM "trusted.som"
1610 #define XATTR_NAME_HSM "trusted.hsm"
1611 #define XATTR_NAME_LFSCK_NAMESPACE "trusted.lfsck_namespace"
1612
1613 struct lov_mds_md_v3 { /* LOV EA mds/wire data (little-endian) */
1614 __u32 lmm_magic; /* magic number = LOV_MAGIC_V3 */
1615 __u32 lmm_pattern; /* LOV_PATTERN_RAID0, LOV_PATTERN_RAID1 */
1616 struct ost_id lmm_oi; /* LOV object ID */
1617 __u32 lmm_stripe_size; /* size of stripe in bytes */
1618 /* lmm_stripe_count used to be __u32 */
1619 __u16 lmm_stripe_count; /* num stripes in use for this object */
1620 __u16 lmm_layout_gen; /* layout generation number */
1621 char lmm_pool_name[LOV_MAXPOOLNAME]; /* must be 32bit aligned */
1622 struct lov_ost_data_v1 lmm_objects[0]; /* per-stripe data */
1623 };
1624
lov_mds_md_size(__u16 stripes,__u32 lmm_magic)1625 static inline __u32 lov_mds_md_size(__u16 stripes, __u32 lmm_magic)
1626 {
1627 if (lmm_magic == LOV_MAGIC_V3)
1628 return sizeof(struct lov_mds_md_v3) +
1629 stripes * sizeof(struct lov_ost_data_v1);
1630 else
1631 return sizeof(struct lov_mds_md_v1) +
1632 stripes * sizeof(struct lov_ost_data_v1);
1633 }
1634
1635 static inline __u32
lov_mds_md_max_stripe_count(size_t buf_size,__u32 lmm_magic)1636 lov_mds_md_max_stripe_count(size_t buf_size, __u32 lmm_magic)
1637 {
1638 switch (lmm_magic) {
1639 case LOV_MAGIC_V1: {
1640 struct lov_mds_md_v1 lmm;
1641
1642 if (buf_size < sizeof(lmm))
1643 return 0;
1644
1645 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1646 }
1647 case LOV_MAGIC_V3: {
1648 struct lov_mds_md_v3 lmm;
1649
1650 if (buf_size < sizeof(lmm))
1651 return 0;
1652
1653 return (buf_size - sizeof(lmm)) / sizeof(lmm.lmm_objects[0]);
1654 }
1655 default:
1656 return 0;
1657 }
1658 }
1659
1660 #define OBD_MD_FLID (0x00000001ULL) /* object ID */
1661 #define OBD_MD_FLATIME (0x00000002ULL) /* access time */
1662 #define OBD_MD_FLMTIME (0x00000004ULL) /* data modification time */
1663 #define OBD_MD_FLCTIME (0x00000008ULL) /* change time */
1664 #define OBD_MD_FLSIZE (0x00000010ULL) /* size */
1665 #define OBD_MD_FLBLOCKS (0x00000020ULL) /* allocated blocks count */
1666 #define OBD_MD_FLBLKSZ (0x00000040ULL) /* block size */
1667 #define OBD_MD_FLMODE (0x00000080ULL) /* access bits (mode & ~S_IFMT) */
1668 #define OBD_MD_FLTYPE (0x00000100ULL) /* object type (mode & S_IFMT) */
1669 #define OBD_MD_FLUID (0x00000200ULL) /* user ID */
1670 #define OBD_MD_FLGID (0x00000400ULL) /* group ID */
1671 #define OBD_MD_FLFLAGS (0x00000800ULL) /* flags word */
1672 #define OBD_MD_FLNLINK (0x00002000ULL) /* link count */
1673 #define OBD_MD_FLGENER (0x00004000ULL) /* generation number */
1674 /*#define OBD_MD_FLINLINE (0x00008000ULL) inline data. used until 1.6.5 */
1675 #define OBD_MD_FLRDEV (0x00010000ULL) /* device number */
1676 #define OBD_MD_FLEASIZE (0x00020000ULL) /* extended attribute data */
1677 #define OBD_MD_LINKNAME (0x00040000ULL) /* symbolic link target */
1678 #define OBD_MD_FLHANDLE (0x00080000ULL) /* file/lock handle */
1679 #define OBD_MD_FLCKSUM (0x00100000ULL) /* bulk data checksum */
1680 #define OBD_MD_FLQOS (0x00200000ULL) /* quality of service stats */
1681 /*#define OBD_MD_FLOSCOPQ (0x00400000ULL) osc opaque data, never used */
1682 #define OBD_MD_FLCOOKIE (0x00800000ULL) /* log cancellation cookie */
1683 #define OBD_MD_FLGROUP (0x01000000ULL) /* group */
1684 #define OBD_MD_FLFID (0x02000000ULL) /* ->ost write inline fid */
1685 #define OBD_MD_FLEPOCH (0x04000000ULL) /* ->ost write with ioepoch */
1686 /* ->mds if epoch opens or closes */
1687 #define OBD_MD_FLGRANT (0x08000000ULL) /* ost preallocation space grant */
1688 #define OBD_MD_FLDIREA (0x10000000ULL) /* dir's extended attribute data */
1689 #define OBD_MD_FLUSRQUOTA (0x20000000ULL) /* over quota flags sent from ost */
1690 #define OBD_MD_FLGRPQUOTA (0x40000000ULL) /* over quota flags sent from ost */
1691 #define OBD_MD_FLMODEASIZE (0x80000000ULL) /* EA size will be changed */
1692
1693 #define OBD_MD_MDS (0x0000000100000000ULL) /* where an inode lives on */
1694 #define OBD_MD_REINT (0x0000000200000000ULL) /* reintegrate oa */
1695 #define OBD_MD_MEA (0x0000000400000000ULL) /* CMD split EA */
1696 #define OBD_MD_TSTATE (0x0000000800000000ULL) /* transient state field */
1697
1698 #define OBD_MD_FLXATTR (0x0000001000000000ULL) /* xattr */
1699 #define OBD_MD_FLXATTRLS (0x0000002000000000ULL) /* xattr list */
1700 #define OBD_MD_FLXATTRRM (0x0000004000000000ULL) /* xattr remove */
1701 #define OBD_MD_FLACL (0x0000008000000000ULL) /* ACL */
1702 #define OBD_MD_FLRMTPERM (0x0000010000000000ULL) /* remote permission */
1703 #define OBD_MD_FLMDSCAPA (0x0000020000000000ULL) /* MDS capability */
1704 #define OBD_MD_FLOSSCAPA (0x0000040000000000ULL) /* OSS capability */
1705 #define OBD_MD_FLCKSPLIT (0x0000080000000000ULL) /* Check split on server */
1706 #define OBD_MD_FLCROSSREF (0x0000100000000000ULL) /* Cross-ref case */
1707 #define OBD_MD_FLGETATTRLOCK (0x0000200000000000ULL) /* Get IOEpoch attributes
1708 * under lock; for xattr
1709 * requests means the
1710 * client holds the lock */
1711 #define OBD_MD_FLOBJCOUNT (0x0000400000000000ULL) /* for multiple destroy */
1712
1713 #define OBD_MD_FLRMTLSETFACL (0x0001000000000000ULL) /* lfs lsetfacl case */
1714 #define OBD_MD_FLRMTLGETFACL (0x0002000000000000ULL) /* lfs lgetfacl case */
1715 #define OBD_MD_FLRMTRSETFACL (0x0004000000000000ULL) /* lfs rsetfacl case */
1716 #define OBD_MD_FLRMTRGETFACL (0x0008000000000000ULL) /* lfs rgetfacl case */
1717
1718 #define OBD_MD_FLDATAVERSION (0x0010000000000000ULL) /* iversion sum */
1719 #define OBD_MD_FLRELEASED (0x0020000000000000ULL) /* file released */
1720
1721 #define OBD_MD_FLGETATTR (OBD_MD_FLID | OBD_MD_FLATIME | OBD_MD_FLMTIME | \
1722 OBD_MD_FLCTIME | OBD_MD_FLSIZE | OBD_MD_FLBLKSZ | \
1723 OBD_MD_FLMODE | OBD_MD_FLTYPE | OBD_MD_FLUID | \
1724 OBD_MD_FLGID | OBD_MD_FLFLAGS | OBD_MD_FLNLINK | \
1725 OBD_MD_FLGENER | OBD_MD_FLRDEV | OBD_MD_FLGROUP)
1726
1727 #define OBD_MD_FLXATTRALL (OBD_MD_FLXATTR | OBD_MD_FLXATTRLS)
1728
1729 /* don't forget obdo_fid which is way down at the bottom so it can
1730 * come after the definition of llog_cookie */
1731
1732 enum hss_valid {
1733 HSS_SETMASK = 0x01,
1734 HSS_CLEARMASK = 0x02,
1735 HSS_ARCHIVE_ID = 0x04,
1736 };
1737
1738 struct hsm_state_set {
1739 __u32 hss_valid;
1740 __u32 hss_archive_id;
1741 __u64 hss_setmask;
1742 __u64 hss_clearmask;
1743 };
1744
1745 void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
1746 void lustre_swab_hsm_state_set(struct hsm_state_set *hss);
1747
1748 void lustre_swab_obd_statfs(struct obd_statfs *os);
1749
1750 /* ost_body.data values for OST_BRW */
1751
1752 #define OBD_BRW_READ 0x01
1753 #define OBD_BRW_WRITE 0x02
1754 #define OBD_BRW_RWMASK (OBD_BRW_READ | OBD_BRW_WRITE)
1755 #define OBD_BRW_SYNC 0x08 /* this page is a part of synchronous
1756 * transfer and is not accounted in
1757 * the grant. */
1758 #define OBD_BRW_CHECK 0x10
1759 #define OBD_BRW_FROM_GRANT 0x20 /* the osc manages this under llite */
1760 #define OBD_BRW_GRANTED 0x40 /* the ost manages this */
1761 #define OBD_BRW_NOCACHE 0x80 /* this page is a part of non-cached IO */
1762 #define OBD_BRW_NOQUOTA 0x100
1763 #define OBD_BRW_SRVLOCK 0x200 /* Client holds no lock over this page */
1764 #define OBD_BRW_ASYNC 0x400 /* Server may delay commit to disk */
1765 #define OBD_BRW_MEMALLOC 0x800 /* Client runs in the "kswapd" context */
1766 #define OBD_BRW_OVER_USRQUOTA 0x1000 /* Running out of user quota */
1767 #define OBD_BRW_OVER_GRPQUOTA 0x2000 /* Running out of group quota */
1768
1769 #define OBD_OBJECT_EOF 0xffffffffffffffffULL
1770
1771 #define OST_MIN_PRECREATE 32
1772 #define OST_MAX_PRECREATE 20000
1773
1774 struct obd_ioobj {
1775 struct ost_id ioo_oid; /* object ID, if multi-obj BRW */
1776 __u32 ioo_max_brw; /* low 16 bits were o_mode before 2.4,
1777 * now (PTLRPC_BULK_OPS_COUNT - 1) in
1778 * high 16 bits in 2.4 and later */
1779 __u32 ioo_bufcnt; /* number of niobufs for this object */
1780 };
1781
1782 #define IOOBJ_MAX_BRW_BITS 16
1783 #define IOOBJ_TYPE_MASK ((1U << IOOBJ_MAX_BRW_BITS) - 1)
1784 #define ioobj_max_brw_get(ioo) (((ioo)->ioo_max_brw >> IOOBJ_MAX_BRW_BITS) + 1)
1785 #define ioobj_max_brw_set(ioo, num) \
1786 do { (ioo)->ioo_max_brw = ((num) - 1) << IOOBJ_MAX_BRW_BITS; } while (0)
1787
1788 void lustre_swab_obd_ioobj(struct obd_ioobj *ioo);
1789
1790 /* multiple of 8 bytes => can array */
1791 struct niobuf_remote {
1792 __u64 offset;
1793 __u32 len;
1794 __u32 flags;
1795 };
1796
1797 void lustre_swab_niobuf_remote(struct niobuf_remote *nbr);
1798
1799 /* lock value block communicated between the filter and llite */
1800
1801 /* OST_LVB_ERR_INIT is needed because the return code in rc is
1802 * negative, i.e. because ((MASK + rc) & MASK) != MASK. */
1803 #define OST_LVB_ERR_INIT 0xffbadbad80000000ULL
1804 #define OST_LVB_ERR_MASK 0xffbadbad00000000ULL
1805 #define OST_LVB_IS_ERR(blocks) \
1806 ((blocks & OST_LVB_ERR_MASK) == OST_LVB_ERR_MASK)
1807 #define OST_LVB_SET_ERR(blocks, rc) \
1808 do { blocks = OST_LVB_ERR_INIT + rc; } while (0)
1809 #define OST_LVB_GET_ERR(blocks) (int)(blocks - OST_LVB_ERR_INIT)
1810
1811 struct ost_lvb_v1 {
1812 __u64 lvb_size;
1813 __s64 lvb_mtime;
1814 __s64 lvb_atime;
1815 __s64 lvb_ctime;
1816 __u64 lvb_blocks;
1817 };
1818
1819 void lustre_swab_ost_lvb_v1(struct ost_lvb_v1 *lvb);
1820
1821 struct ost_lvb {
1822 __u64 lvb_size;
1823 __s64 lvb_mtime;
1824 __s64 lvb_atime;
1825 __s64 lvb_ctime;
1826 __u64 lvb_blocks;
1827 __u32 lvb_mtime_ns;
1828 __u32 lvb_atime_ns;
1829 __u32 lvb_ctime_ns;
1830 __u32 lvb_padding;
1831 };
1832
1833 void lustre_swab_ost_lvb(struct ost_lvb *lvb);
1834
1835 /*
1836 * lquota data structures
1837 */
1838
1839 #ifndef QUOTABLOCK_BITS
1840 #define QUOTABLOCK_BITS 10
1841 #endif
1842
1843 #ifndef QUOTABLOCK_SIZE
1844 #define QUOTABLOCK_SIZE (1 << QUOTABLOCK_BITS)
1845 #endif
1846
1847 #ifndef toqb
1848 #define toqb(x) (((x) + QUOTABLOCK_SIZE - 1) >> QUOTABLOCK_BITS)
1849 #endif
1850
1851 /* The lquota_id structure is an union of all the possible identifier types that
1852 * can be used with quota, this includes:
1853 * - 64-bit user ID
1854 * - 64-bit group ID
1855 * - a FID which can be used for per-directory quota in the future */
1856 union lquota_id {
1857 struct lu_fid qid_fid; /* FID for per-directory quota */
1858 __u64 qid_uid; /* user identifier */
1859 __u64 qid_gid; /* group identifier */
1860 };
1861
1862 /* quotactl management */
1863 struct obd_quotactl {
1864 __u32 qc_cmd;
1865 __u32 qc_type; /* see Q_* flag below */
1866 __u32 qc_id;
1867 __u32 qc_stat;
1868 struct obd_dqinfo qc_dqinfo;
1869 struct obd_dqblk qc_dqblk;
1870 };
1871
1872 void lustre_swab_obd_quotactl(struct obd_quotactl *q);
1873
1874 #define Q_QUOTACHECK 0x800100 /* deprecated as of 2.4 */
1875 #define Q_INITQUOTA 0x800101 /* deprecated as of 2.4 */
1876 #define Q_GETOINFO 0x800102 /* get obd quota info */
1877 #define Q_GETOQUOTA 0x800103 /* get obd quotas */
1878 #define Q_FINVALIDATE 0x800104 /* deprecated as of 2.4 */
1879
1880 #define Q_COPY(out, in, member) (out)->member = (in)->member
1881
1882 #define QCTL_COPY(out, in) \
1883 do { \
1884 Q_COPY(out, in, qc_cmd); \
1885 Q_COPY(out, in, qc_type); \
1886 Q_COPY(out, in, qc_id); \
1887 Q_COPY(out, in, qc_stat); \
1888 Q_COPY(out, in, qc_dqinfo); \
1889 Q_COPY(out, in, qc_dqblk); \
1890 } while (0)
1891
1892 /* Body of quota request used for quota acquire/release RPCs between quota
1893 * master (aka QMT) and slaves (ak QSD). */
1894 struct quota_body {
1895 struct lu_fid qb_fid; /* FID of global index packing the pool ID
1896 * and type (data or metadata) as well as
1897 * the quota type (user or group). */
1898 union lquota_id qb_id; /* uid or gid or directory FID */
1899 __u32 qb_flags; /* see below */
1900 __u32 qb_padding;
1901 __u64 qb_count; /* acquire/release count (kbytes/inodes) */
1902 __u64 qb_usage; /* current slave usage (kbytes/inodes) */
1903 __u64 qb_slv_ver; /* slave index file version */
1904 struct lustre_handle qb_lockh; /* per-ID lock handle */
1905 struct lustre_handle qb_glb_lockh; /* global lock handle */
1906 __u64 qb_padding1[4];
1907 };
1908
1909 /* When the quota_body is used in the reply of quota global intent
1910 * lock (IT_QUOTA_CONN) reply, qb_fid contains slave index file FID. */
1911 #define qb_slv_fid qb_fid
1912 /* qb_usage is the current qunit (in kbytes/inodes) when quota_body is used in
1913 * quota reply */
1914 #define qb_qunit qb_usage
1915
1916 #define QUOTA_DQACQ_FL_ACQ 0x1 /* acquire quota */
1917 #define QUOTA_DQACQ_FL_PREACQ 0x2 /* pre-acquire */
1918 #define QUOTA_DQACQ_FL_REL 0x4 /* release quota */
1919 #define QUOTA_DQACQ_FL_REPORT 0x8 /* report usage */
1920
1921 void lustre_swab_quota_body(struct quota_body *b);
1922
1923 /* Quota types currently supported */
1924 enum {
1925 LQUOTA_TYPE_USR = 0x00, /* maps to USRQUOTA */
1926 LQUOTA_TYPE_GRP = 0x01, /* maps to GRPQUOTA */
1927 LQUOTA_TYPE_MAX
1928 };
1929
1930 /* There are 2 different resource types on which a quota limit can be enforced:
1931 * - inodes on the MDTs
1932 * - blocks on the OSTs */
1933 enum {
1934 LQUOTA_RES_MD = 0x01, /* skip 0 to avoid null oid in FID */
1935 LQUOTA_RES_DT = 0x02,
1936 LQUOTA_LAST_RES,
1937 LQUOTA_FIRST_RES = LQUOTA_RES_MD
1938 };
1939
1940 #define LQUOTA_NR_RES (LQUOTA_LAST_RES - LQUOTA_FIRST_RES + 1)
1941
1942 /*
1943 * Space accounting support
1944 * Format of an accounting record, providing disk usage information for a given
1945 * user or group
1946 */
1947 struct lquota_acct_rec { /* 16 bytes */
1948 __u64 bspace; /* current space in use */
1949 __u64 ispace; /* current # inodes in use */
1950 };
1951
1952 /*
1953 * Global quota index support
1954 * Format of a global record, providing global quota settings for a given quota
1955 * identifier
1956 */
1957 struct lquota_glb_rec { /* 32 bytes */
1958 __u64 qbr_hardlimit; /* quota hard limit, in #inodes or kbytes */
1959 __u64 qbr_softlimit; /* quota soft limit, in #inodes or kbytes */
1960 __u64 qbr_time; /* grace time, in seconds */
1961 __u64 qbr_granted; /* how much is granted to slaves, in #inodes or
1962 * kbytes */
1963 };
1964
1965 /*
1966 * Slave index support
1967 * Format of a slave record, recording how much space is granted to a given
1968 * slave
1969 */
1970 struct lquota_slv_rec { /* 8 bytes */
1971 __u64 qsr_granted; /* space granted to the slave for the key=ID,
1972 * in #inodes or kbytes */
1973 };
1974
1975 /* Data structures associated with the quota locks */
1976
1977 /* Glimpse descriptor used for the index & per-ID quota locks */
1978 struct ldlm_gl_lquota_desc {
1979 union lquota_id gl_id; /* quota ID subject to the glimpse */
1980 __u64 gl_flags; /* see LQUOTA_FL* below */
1981 __u64 gl_ver; /* new index version */
1982 __u64 gl_hardlimit; /* new hardlimit or qunit value */
1983 __u64 gl_softlimit; /* new softlimit */
1984 __u64 gl_time;
1985 __u64 gl_pad2;
1986 };
1987
1988 #define gl_qunit gl_hardlimit /* current qunit value used when
1989 * glimpsing per-ID quota locks */
1990
1991 /* quota glimpse flags */
1992 #define LQUOTA_FL_EDQUOT 0x1 /* user/group out of quota space on QMT */
1993
1994 /* LVB used with quota (global and per-ID) locks */
1995 struct lquota_lvb {
1996 __u64 lvb_flags; /* see LQUOTA_FL* above */
1997 __u64 lvb_id_may_rel; /* space that might be released later */
1998 __u64 lvb_id_rel; /* space released by the slave for this ID */
1999 __u64 lvb_id_qunit; /* current qunit value */
2000 __u64 lvb_pad1;
2001 };
2002
2003 void lustre_swab_lquota_lvb(struct lquota_lvb *lvb);
2004
2005 /* LVB used with global quota lock */
2006 #define lvb_glb_ver lvb_id_may_rel /* current version of the global index */
2007
2008 /* op codes */
2009 typedef enum {
2010 QUOTA_DQACQ = 601,
2011 QUOTA_DQREL = 602,
2012 QUOTA_LAST_OPC
2013 } quota_cmd_t;
2014 #define QUOTA_FIRST_OPC QUOTA_DQACQ
2015
2016 /*
2017 * MDS REQ RECORDS
2018 */
2019
2020 /* opcodes */
2021 typedef enum {
2022 MDS_GETATTR = 33,
2023 MDS_GETATTR_NAME = 34,
2024 MDS_CLOSE = 35,
2025 MDS_REINT = 36,
2026 MDS_READPAGE = 37,
2027 MDS_CONNECT = 38,
2028 MDS_DISCONNECT = 39,
2029 MDS_GETSTATUS = 40,
2030 MDS_STATFS = 41,
2031 MDS_PIN = 42,
2032 MDS_UNPIN = 43,
2033 MDS_SYNC = 44,
2034 MDS_DONE_WRITING = 45,
2035 MDS_SET_INFO = 46,
2036 MDS_QUOTACHECK = 47,
2037 MDS_QUOTACTL = 48,
2038 MDS_GETXATTR = 49,
2039 MDS_SETXATTR = 50, /* obsolete, now it's MDS_REINT op */
2040 MDS_WRITEPAGE = 51,
2041 MDS_IS_SUBDIR = 52,
2042 MDS_GET_INFO = 53,
2043 MDS_HSM_STATE_GET = 54,
2044 MDS_HSM_STATE_SET = 55,
2045 MDS_HSM_ACTION = 56,
2046 MDS_HSM_PROGRESS = 57,
2047 MDS_HSM_REQUEST = 58,
2048 MDS_HSM_CT_REGISTER = 59,
2049 MDS_HSM_CT_UNREGISTER = 60,
2050 MDS_SWAP_LAYOUTS = 61,
2051 MDS_LAST_OPC
2052 } mds_cmd_t;
2053
2054 #define MDS_FIRST_OPC MDS_GETATTR
2055
2056 /* opcodes for object update */
2057 typedef enum {
2058 UPDATE_OBJ = 1000,
2059 UPDATE_LAST_OPC
2060 } update_cmd_t;
2061
2062 #define UPDATE_FIRST_OPC UPDATE_OBJ
2063
2064 /*
2065 * Do not exceed 63
2066 */
2067
2068 typedef enum {
2069 REINT_SETATTR = 1,
2070 REINT_CREATE = 2,
2071 REINT_LINK = 3,
2072 REINT_UNLINK = 4,
2073 REINT_RENAME = 5,
2074 REINT_OPEN = 6,
2075 REINT_SETXATTR = 7,
2076 REINT_RMENTRY = 8,
2077 // REINT_WRITE = 9,
2078 REINT_MAX
2079 } mds_reint_t, mdt_reint_t;
2080
2081 void lustre_swab_generic_32s(__u32 *val);
2082
2083 /* the disposition of the intent outlines what was executed */
2084 #define DISP_IT_EXECD 0x00000001
2085 #define DISP_LOOKUP_EXECD 0x00000002
2086 #define DISP_LOOKUP_NEG 0x00000004
2087 #define DISP_LOOKUP_POS 0x00000008
2088 #define DISP_OPEN_CREATE 0x00000010
2089 #define DISP_OPEN_OPEN 0x00000020
2090 #define DISP_ENQ_COMPLETE 0x00400000 /* obsolete and unused */
2091 #define DISP_ENQ_OPEN_REF 0x00800000
2092 #define DISP_ENQ_CREATE_REF 0x01000000
2093 #define DISP_OPEN_LOCK 0x02000000
2094 #define DISP_OPEN_LEASE 0x04000000
2095 #define DISP_OPEN_STRIPE 0x08000000
2096
2097 /* INODE LOCK PARTS */
2098 #define MDS_INODELOCK_LOOKUP 0x000001 /* For namespace, dentry etc, and also
2099 * was used to protect permission (mode,
2100 * owner, group etc) before 2.4. */
2101 #define MDS_INODELOCK_UPDATE 0x000002 /* size, links, timestamps */
2102 #define MDS_INODELOCK_OPEN 0x000004 /* For opened files */
2103 #define MDS_INODELOCK_LAYOUT 0x000008 /* for layout */
2104
2105 /* The PERM bit is added int 2.4, and it is used to protect permission(mode,
2106 * owner, group, acl etc), so to separate the permission from LOOKUP lock.
2107 * Because for remote directories(in DNE), these locks will be granted by
2108 * different MDTs(different ldlm namespace).
2109 *
2110 * For local directory, MDT will always grant UPDATE_LOCK|PERM_LOCK together.
2111 * For Remote directory, the master MDT, where the remote directory is, will
2112 * grant UPDATE_LOCK|PERM_LOCK, and the remote MDT, where the name entry is,
2113 * will grant LOOKUP_LOCK. */
2114 #define MDS_INODELOCK_PERM 0x000010
2115 #define MDS_INODELOCK_XATTR 0x000020 /* extended attributes */
2116
2117 #define MDS_INODELOCK_MAXSHIFT 5
2118 /* This FULL lock is useful to take on unlink sort of operations */
2119 #define MDS_INODELOCK_FULL ((1<<(MDS_INODELOCK_MAXSHIFT+1))-1)
2120
2121 /* NOTE: until Lustre 1.8.7/2.1.1 the fid_ver() was packed into name[2],
2122 * but was moved into name[1] along with the OID to avoid consuming the
2123 * name[2,3] fields that need to be used for the quota id (also a FID). */
2124 enum {
2125 LUSTRE_RES_ID_SEQ_OFF = 0,
2126 LUSTRE_RES_ID_VER_OID_OFF = 1,
2127 LUSTRE_RES_ID_WAS_VER_OFF = 2, /* see note above */
2128 LUSTRE_RES_ID_QUOTA_SEQ_OFF = 2,
2129 LUSTRE_RES_ID_QUOTA_VER_OID_OFF = 3,
2130 LUSTRE_RES_ID_HSH_OFF = 3
2131 };
2132
2133 #define MDS_STATUS_CONN 1
2134 #define MDS_STATUS_LOV 2
2135
2136 /* mdt_thread_info.mti_flags. */
2137 enum md_op_flags {
2138 /* The flag indicates Size-on-MDS attributes are changed. */
2139 MF_SOM_CHANGE = (1 << 0),
2140 /* Flags indicates an epoch opens or closes. */
2141 MF_EPOCH_OPEN = (1 << 1),
2142 MF_EPOCH_CLOSE = (1 << 2),
2143 MF_MDC_CANCEL_FID1 = (1 << 3),
2144 MF_MDC_CANCEL_FID2 = (1 << 4),
2145 MF_MDC_CANCEL_FID3 = (1 << 5),
2146 MF_MDC_CANCEL_FID4 = (1 << 6),
2147 /* There is a pending attribute update. */
2148 MF_SOM_AU = (1 << 7),
2149 /* Cancel OST locks while getattr OST attributes. */
2150 MF_GETATTR_LOCK = (1 << 8),
2151 MF_GET_MDT_IDX = (1 << 9),
2152 };
2153
2154 #define MF_SOM_LOCAL_FLAGS (MF_SOM_CHANGE | MF_EPOCH_OPEN | MF_EPOCH_CLOSE)
2155
2156 #define LUSTRE_BFLAG_UNCOMMITTED_WRITES 0x1
2157
2158 /* these should be identical to their EXT4_*_FL counterparts, they are
2159 * redefined here only to avoid dragging in fs/ext4/ext4.h */
2160 #define LUSTRE_SYNC_FL 0x00000008 /* Synchronous updates */
2161 #define LUSTRE_IMMUTABLE_FL 0x00000010 /* Immutable file */
2162 #define LUSTRE_APPEND_FL 0x00000020 /* writes to file may only append */
2163 #define LUSTRE_NOATIME_FL 0x00000080 /* do not update atime */
2164 #define LUSTRE_DIRSYNC_FL 0x00010000 /* dirsync behaviour (dir only) */
2165
2166 /* Convert wire LUSTRE_*_FL to corresponding client local VFS S_* values
2167 * for the client inode i_flags. The LUSTRE_*_FL are the Lustre wire
2168 * protocol equivalents of LDISKFS_*_FL values stored on disk, while
2169 * the S_* flags are kernel-internal values that change between kernel
2170 * versions. These flags are set/cleared via FSFILT_IOC_{GET,SET}_FLAGS.
2171 * See b=16526 for a full history. */
ll_ext_to_inode_flags(int flags)2172 static inline int ll_ext_to_inode_flags(int flags)
2173 {
2174 return (((flags & LUSTRE_SYNC_FL) ? S_SYNC : 0) |
2175 ((flags & LUSTRE_NOATIME_FL) ? S_NOATIME : 0) |
2176 ((flags & LUSTRE_APPEND_FL) ? S_APPEND : 0) |
2177 #if defined(S_DIRSYNC)
2178 ((flags & LUSTRE_DIRSYNC_FL) ? S_DIRSYNC : 0) |
2179 #endif
2180 ((flags & LUSTRE_IMMUTABLE_FL) ? S_IMMUTABLE : 0));
2181 }
2182
ll_inode_to_ext_flags(int iflags)2183 static inline int ll_inode_to_ext_flags(int iflags)
2184 {
2185 return (((iflags & S_SYNC) ? LUSTRE_SYNC_FL : 0) |
2186 ((iflags & S_NOATIME) ? LUSTRE_NOATIME_FL : 0) |
2187 ((iflags & S_APPEND) ? LUSTRE_APPEND_FL : 0) |
2188 #if defined(S_DIRSYNC)
2189 ((iflags & S_DIRSYNC) ? LUSTRE_DIRSYNC_FL : 0) |
2190 #endif
2191 ((iflags & S_IMMUTABLE) ? LUSTRE_IMMUTABLE_FL : 0));
2192 }
2193
2194 /* 64 possible states */
2195 enum md_transient_state {
2196 MS_RESTORE = (1 << 0), /* restore is running */
2197 };
2198
2199 struct mdt_body {
2200 struct lu_fid fid1;
2201 struct lu_fid fid2;
2202 struct lustre_handle handle;
2203 __u64 valid;
2204 __u64 size; /* Offset, in the case of MDS_READPAGE */
2205 __s64 mtime;
2206 __s64 atime;
2207 __s64 ctime;
2208 __u64 blocks; /* XID, in the case of MDS_READPAGE */
2209 __u64 ioepoch;
2210 __u64 t_state; /* transient file state defined in
2211 * enum md_transient_state
2212 * was "ino" until 2.4.0 */
2213 __u32 fsuid;
2214 __u32 fsgid;
2215 __u32 capability;
2216 __u32 mode;
2217 __u32 uid;
2218 __u32 gid;
2219 __u32 flags; /* from vfs for pin/unpin, LUSTRE_BFLAG close */
2220 __u32 rdev;
2221 __u32 nlink; /* #bytes to read in the case of MDS_READPAGE */
2222 __u32 unused2; /* was "generation" until 2.4.0 */
2223 __u32 suppgid;
2224 __u32 eadatasize;
2225 __u32 aclsize;
2226 __u32 max_mdsize;
2227 __u32 max_cookiesize;
2228 __u32 uid_h; /* high 32-bits of uid, for FUID */
2229 __u32 gid_h; /* high 32-bits of gid, for FUID */
2230 __u32 padding_5; /* also fix lustre_swab_mdt_body */
2231 __u64 padding_6;
2232 __u64 padding_7;
2233 __u64 padding_8;
2234 __u64 padding_9;
2235 __u64 padding_10;
2236 }; /* 216 */
2237
2238 void lustre_swab_mdt_body(struct mdt_body *b);
2239
2240 struct mdt_ioepoch {
2241 struct lustre_handle handle;
2242 __u64 ioepoch;
2243 __u32 flags;
2244 __u32 padding;
2245 };
2246
2247 void lustre_swab_mdt_ioepoch(struct mdt_ioepoch *b);
2248
2249 /* permissions for md_perm.mp_perm */
2250 enum {
2251 CFS_SETUID_PERM = 0x01,
2252 CFS_SETGID_PERM = 0x02,
2253 CFS_SETGRP_PERM = 0x04,
2254 CFS_RMTACL_PERM = 0x08,
2255 CFS_RMTOWN_PERM = 0x10
2256 };
2257
2258 /* inode access permission for remote user, the inode info are omitted,
2259 * for client knows them. */
2260 struct mdt_remote_perm {
2261 __u32 rp_uid;
2262 __u32 rp_gid;
2263 __u32 rp_fsuid;
2264 __u32 rp_fsuid_h;
2265 __u32 rp_fsgid;
2266 __u32 rp_fsgid_h;
2267 __u32 rp_access_perm; /* MAY_READ/WRITE/EXEC */
2268 __u32 rp_padding;
2269 };
2270
2271 void lustre_swab_mdt_remote_perm(struct mdt_remote_perm *p);
2272
2273 struct mdt_rec_setattr {
2274 __u32 sa_opcode;
2275 __u32 sa_cap;
2276 __u32 sa_fsuid;
2277 __u32 sa_fsuid_h;
2278 __u32 sa_fsgid;
2279 __u32 sa_fsgid_h;
2280 __u32 sa_suppgid;
2281 __u32 sa_suppgid_h;
2282 __u32 sa_padding_1;
2283 __u32 sa_padding_1_h;
2284 struct lu_fid sa_fid;
2285 __u64 sa_valid;
2286 __u32 sa_uid;
2287 __u32 sa_gid;
2288 __u64 sa_size;
2289 __u64 sa_blocks;
2290 __s64 sa_mtime;
2291 __s64 sa_atime;
2292 __s64 sa_ctime;
2293 __u32 sa_attr_flags;
2294 __u32 sa_mode;
2295 __u32 sa_bias; /* some operation flags */
2296 __u32 sa_padding_3;
2297 __u32 sa_padding_4;
2298 __u32 sa_padding_5;
2299 };
2300
2301 void lustre_swab_mdt_rec_setattr(struct mdt_rec_setattr *sa);
2302
2303 /*
2304 * Attribute flags used in mdt_rec_setattr::sa_valid.
2305 * The kernel's #defines for ATTR_* should not be used over the network
2306 * since the client and MDS may run different kernels (see bug 13828)
2307 * Therefore, we should only use MDS_ATTR_* attributes for sa_valid.
2308 */
2309 #define MDS_ATTR_MODE 0x1ULL /* = 1 */
2310 #define MDS_ATTR_UID 0x2ULL /* = 2 */
2311 #define MDS_ATTR_GID 0x4ULL /* = 4 */
2312 #define MDS_ATTR_SIZE 0x8ULL /* = 8 */
2313 #define MDS_ATTR_ATIME 0x10ULL /* = 16 */
2314 #define MDS_ATTR_MTIME 0x20ULL /* = 32 */
2315 #define MDS_ATTR_CTIME 0x40ULL /* = 64 */
2316 #define MDS_ATTR_ATIME_SET 0x80ULL /* = 128 */
2317 #define MDS_ATTR_MTIME_SET 0x100ULL /* = 256 */
2318 #define MDS_ATTR_FORCE 0x200ULL /* = 512, Not a change, but a change it */
2319 #define MDS_ATTR_ATTR_FLAG 0x400ULL /* = 1024 */
2320 #define MDS_ATTR_KILL_SUID 0x800ULL /* = 2048 */
2321 #define MDS_ATTR_KILL_SGID 0x1000ULL /* = 4096 */
2322 #define MDS_ATTR_CTIME_SET 0x2000ULL /* = 8192 */
2323 #define MDS_ATTR_FROM_OPEN 0x4000ULL /* = 16384, called from open path, ie O_TRUNC */
2324 #define MDS_ATTR_BLOCKS 0x8000ULL /* = 32768 */
2325
2326 #ifndef FMODE_READ
2327 #define FMODE_READ 00000001
2328 #define FMODE_WRITE 00000002
2329 #endif
2330
2331 #define MDS_FMODE_CLOSED 00000000
2332 #define MDS_FMODE_EXEC 00000004
2333 /* IO Epoch is opened on a closed file. */
2334 #define MDS_FMODE_EPOCH 01000000
2335 /* IO Epoch is opened on a file truncate. */
2336 #define MDS_FMODE_TRUNC 02000000
2337 /* Size-on-MDS Attribute Update is pending. */
2338 #define MDS_FMODE_SOM 04000000
2339
2340 #define MDS_OPEN_CREATED 00000010
2341 #define MDS_OPEN_CROSS 00000020
2342
2343 #define MDS_OPEN_CREAT 00000100
2344 #define MDS_OPEN_EXCL 00000200
2345 #define MDS_OPEN_TRUNC 00001000
2346 #define MDS_OPEN_APPEND 00002000
2347 #define MDS_OPEN_SYNC 00010000
2348 #define MDS_OPEN_DIRECTORY 00200000
2349
2350 #define MDS_OPEN_BY_FID 040000000 /* open_by_fid for known object */
2351 #define MDS_OPEN_DELAY_CREATE 0100000000 /* delay initial object create */
2352 #define MDS_OPEN_OWNEROVERRIDE 0200000000 /* NFSD rw-reopen ro file for owner */
2353 #define MDS_OPEN_JOIN_FILE 0400000000 /* open for join file.
2354 * We do not support JOIN FILE
2355 * anymore, reserve this flags
2356 * just for preventing such bit
2357 * to be reused. */
2358
2359 #define MDS_OPEN_LOCK 04000000000 /* This open requires open lock */
2360 #define MDS_OPEN_HAS_EA 010000000000 /* specify object create pattern */
2361 #define MDS_OPEN_HAS_OBJS 020000000000 /* Just set the EA the obj exist */
2362 #define MDS_OPEN_NORESTORE 0100000000000ULL /* Do not restore file at open */
2363 #define MDS_OPEN_NEWSTRIPE 0200000000000ULL /* New stripe needed (restripe or
2364 * hsm restore) */
2365 #define MDS_OPEN_VOLATILE 0400000000000ULL /* File is volatile = created
2366 unlinked */
2367 #define MDS_OPEN_LEASE 01000000000000ULL /* Open the file and grant lease
2368 * delegation, succeed if it's not
2369 * being opened with conflict mode.
2370 */
2371 #define MDS_OPEN_RELEASE 02000000000000ULL /* Open the file for HSM release */
2372
2373 enum mds_op_bias {
2374 MDS_CHECK_SPLIT = 1 << 0,
2375 MDS_CROSS_REF = 1 << 1,
2376 MDS_VTX_BYPASS = 1 << 2,
2377 MDS_PERM_BYPASS = 1 << 3,
2378 MDS_SOM = 1 << 4,
2379 MDS_QUOTA_IGNORE = 1 << 5,
2380 MDS_CLOSE_CLEANUP = 1 << 6,
2381 MDS_KEEP_ORPHAN = 1 << 7,
2382 MDS_RECOV_OPEN = 1 << 8,
2383 MDS_DATA_MODIFIED = 1 << 9,
2384 MDS_CREATE_VOLATILE = 1 << 10,
2385 MDS_OWNEROVERRIDE = 1 << 11,
2386 MDS_HSM_RELEASE = 1 << 12,
2387 };
2388
2389 /* instance of mdt_reint_rec */
2390 struct mdt_rec_create {
2391 __u32 cr_opcode;
2392 __u32 cr_cap;
2393 __u32 cr_fsuid;
2394 __u32 cr_fsuid_h;
2395 __u32 cr_fsgid;
2396 __u32 cr_fsgid_h;
2397 __u32 cr_suppgid1;
2398 __u32 cr_suppgid1_h;
2399 __u32 cr_suppgid2;
2400 __u32 cr_suppgid2_h;
2401 struct lu_fid cr_fid1;
2402 struct lu_fid cr_fid2;
2403 struct lustre_handle cr_old_handle; /* handle in case of open replay */
2404 __s64 cr_time;
2405 __u64 cr_rdev;
2406 __u64 cr_ioepoch;
2407 __u64 cr_padding_1; /* rr_blocks */
2408 __u32 cr_mode;
2409 __u32 cr_bias;
2410 /* use of helpers set/get_mrc_cr_flags() is needed to access
2411 * 64 bits cr_flags [cr_flags_l, cr_flags_h], this is done to
2412 * extend cr_flags size without breaking 1.8 compat */
2413 __u32 cr_flags_l; /* for use with open, low 32 bits */
2414 __u32 cr_flags_h; /* for use with open, high 32 bits */
2415 __u32 cr_umask; /* umask for create */
2416 __u32 cr_padding_4; /* rr_padding_4 */
2417 };
2418
set_mrc_cr_flags(struct mdt_rec_create * mrc,__u64 flags)2419 static inline void set_mrc_cr_flags(struct mdt_rec_create *mrc, __u64 flags)
2420 {
2421 mrc->cr_flags_l = (__u32)(flags & 0xFFFFFFFFUll);
2422 mrc->cr_flags_h = (__u32)(flags >> 32);
2423 }
2424
get_mrc_cr_flags(struct mdt_rec_create * mrc)2425 static inline __u64 get_mrc_cr_flags(struct mdt_rec_create *mrc)
2426 {
2427 return ((__u64)(mrc->cr_flags_l) | ((__u64)mrc->cr_flags_h << 32));
2428 }
2429
2430 /* instance of mdt_reint_rec */
2431 struct mdt_rec_link {
2432 __u32 lk_opcode;
2433 __u32 lk_cap;
2434 __u32 lk_fsuid;
2435 __u32 lk_fsuid_h;
2436 __u32 lk_fsgid;
2437 __u32 lk_fsgid_h;
2438 __u32 lk_suppgid1;
2439 __u32 lk_suppgid1_h;
2440 __u32 lk_suppgid2;
2441 __u32 lk_suppgid2_h;
2442 struct lu_fid lk_fid1;
2443 struct lu_fid lk_fid2;
2444 __s64 lk_time;
2445 __u64 lk_padding_1; /* rr_atime */
2446 __u64 lk_padding_2; /* rr_ctime */
2447 __u64 lk_padding_3; /* rr_size */
2448 __u64 lk_padding_4; /* rr_blocks */
2449 __u32 lk_bias;
2450 __u32 lk_padding_5; /* rr_mode */
2451 __u32 lk_padding_6; /* rr_flags */
2452 __u32 lk_padding_7; /* rr_padding_2 */
2453 __u32 lk_padding_8; /* rr_padding_3 */
2454 __u32 lk_padding_9; /* rr_padding_4 */
2455 };
2456
2457 /* instance of mdt_reint_rec */
2458 struct mdt_rec_unlink {
2459 __u32 ul_opcode;
2460 __u32 ul_cap;
2461 __u32 ul_fsuid;
2462 __u32 ul_fsuid_h;
2463 __u32 ul_fsgid;
2464 __u32 ul_fsgid_h;
2465 __u32 ul_suppgid1;
2466 __u32 ul_suppgid1_h;
2467 __u32 ul_suppgid2;
2468 __u32 ul_suppgid2_h;
2469 struct lu_fid ul_fid1;
2470 struct lu_fid ul_fid2;
2471 __s64 ul_time;
2472 __u64 ul_padding_2; /* rr_atime */
2473 __u64 ul_padding_3; /* rr_ctime */
2474 __u64 ul_padding_4; /* rr_size */
2475 __u64 ul_padding_5; /* rr_blocks */
2476 __u32 ul_bias;
2477 __u32 ul_mode;
2478 __u32 ul_padding_6; /* rr_flags */
2479 __u32 ul_padding_7; /* rr_padding_2 */
2480 __u32 ul_padding_8; /* rr_padding_3 */
2481 __u32 ul_padding_9; /* rr_padding_4 */
2482 };
2483
2484 /* instance of mdt_reint_rec */
2485 struct mdt_rec_rename {
2486 __u32 rn_opcode;
2487 __u32 rn_cap;
2488 __u32 rn_fsuid;
2489 __u32 rn_fsuid_h;
2490 __u32 rn_fsgid;
2491 __u32 rn_fsgid_h;
2492 __u32 rn_suppgid1;
2493 __u32 rn_suppgid1_h;
2494 __u32 rn_suppgid2;
2495 __u32 rn_suppgid2_h;
2496 struct lu_fid rn_fid1;
2497 struct lu_fid rn_fid2;
2498 __s64 rn_time;
2499 __u64 rn_padding_1; /* rr_atime */
2500 __u64 rn_padding_2; /* rr_ctime */
2501 __u64 rn_padding_3; /* rr_size */
2502 __u64 rn_padding_4; /* rr_blocks */
2503 __u32 rn_bias; /* some operation flags */
2504 __u32 rn_mode; /* cross-ref rename has mode */
2505 __u32 rn_padding_5; /* rr_flags */
2506 __u32 rn_padding_6; /* rr_padding_2 */
2507 __u32 rn_padding_7; /* rr_padding_3 */
2508 __u32 rn_padding_8; /* rr_padding_4 */
2509 };
2510
2511 /* instance of mdt_reint_rec */
2512 struct mdt_rec_setxattr {
2513 __u32 sx_opcode;
2514 __u32 sx_cap;
2515 __u32 sx_fsuid;
2516 __u32 sx_fsuid_h;
2517 __u32 sx_fsgid;
2518 __u32 sx_fsgid_h;
2519 __u32 sx_suppgid1;
2520 __u32 sx_suppgid1_h;
2521 __u32 sx_suppgid2;
2522 __u32 sx_suppgid2_h;
2523 struct lu_fid sx_fid;
2524 __u64 sx_padding_1; /* These three are rr_fid2 */
2525 __u32 sx_padding_2;
2526 __u32 sx_padding_3;
2527 __u64 sx_valid;
2528 __s64 sx_time;
2529 __u64 sx_padding_5; /* rr_ctime */
2530 __u64 sx_padding_6; /* rr_size */
2531 __u64 sx_padding_7; /* rr_blocks */
2532 __u32 sx_size;
2533 __u32 sx_flags;
2534 __u32 sx_padding_8; /* rr_flags */
2535 __u32 sx_padding_9; /* rr_padding_2 */
2536 __u32 sx_padding_10; /* rr_padding_3 */
2537 __u32 sx_padding_11; /* rr_padding_4 */
2538 };
2539
2540 /*
2541 * mdt_rec_reint is the template for all mdt_reint_xxx structures.
2542 * Do NOT change the size of various members, otherwise the value
2543 * will be broken in lustre_swab_mdt_rec_reint().
2544 *
2545 * If you add new members in other mdt_reint_xxx structures and need to use the
2546 * rr_padding_x fields, then update lustre_swab_mdt_rec_reint() also.
2547 */
2548 struct mdt_rec_reint {
2549 __u32 rr_opcode;
2550 __u32 rr_cap;
2551 __u32 rr_fsuid;
2552 __u32 rr_fsuid_h;
2553 __u32 rr_fsgid;
2554 __u32 rr_fsgid_h;
2555 __u32 rr_suppgid1;
2556 __u32 rr_suppgid1_h;
2557 __u32 rr_suppgid2;
2558 __u32 rr_suppgid2_h;
2559 struct lu_fid rr_fid1;
2560 struct lu_fid rr_fid2;
2561 __s64 rr_mtime;
2562 __s64 rr_atime;
2563 __s64 rr_ctime;
2564 __u64 rr_size;
2565 __u64 rr_blocks;
2566 __u32 rr_bias;
2567 __u32 rr_mode;
2568 __u32 rr_flags;
2569 __u32 rr_flags_h;
2570 __u32 rr_umask;
2571 __u32 rr_padding_4; /* also fix lustre_swab_mdt_rec_reint */
2572 };
2573
2574 void lustre_swab_mdt_rec_reint(struct mdt_rec_reint *rr);
2575
2576 struct lmv_desc {
2577 __u32 ld_tgt_count; /* how many MDS's */
2578 __u32 ld_active_tgt_count; /* how many active */
2579 __u32 ld_default_stripe_count; /* how many objects are used */
2580 __u32 ld_pattern; /* default MEA_MAGIC_* */
2581 __u64 ld_default_hash_size;
2582 __u64 ld_padding_1; /* also fix lustre_swab_lmv_desc */
2583 __u32 ld_padding_2; /* also fix lustre_swab_lmv_desc */
2584 __u32 ld_qos_maxage; /* in second */
2585 __u32 ld_padding_3; /* also fix lustre_swab_lmv_desc */
2586 __u32 ld_padding_4; /* also fix lustre_swab_lmv_desc */
2587 struct obd_uuid ld_uuid;
2588 };
2589
2590 /* TODO: lmv_stripe_md should contain mds capabilities for all slave fids */
2591 struct lmv_stripe_md {
2592 __u32 mea_magic;
2593 __u32 mea_count;
2594 __u32 mea_master;
2595 __u32 mea_padding;
2596 char mea_pool_name[LOV_MAXPOOLNAME];
2597 struct lu_fid mea_ids[0];
2598 };
2599
2600 /* lmv structures */
2601 #define MEA_MAGIC_LAST_CHAR 0xb2221ca1
2602 #define MEA_MAGIC_ALL_CHARS 0xb222a11c
2603 #define MEA_MAGIC_HASH_SEGMENT 0xb222a11b
2604
2605 #define MAX_HASH_SIZE_32 0x7fffffffUL
2606 #define MAX_HASH_SIZE 0x7fffffffffffffffULL
2607 #define MAX_HASH_HIGHEST_BIT 0x1000000000000000ULL
2608
2609 enum fld_rpc_opc {
2610 FLD_QUERY = 900,
2611 FLD_LAST_OPC,
2612 FLD_FIRST_OPC = FLD_QUERY
2613 };
2614
2615 enum seq_rpc_opc {
2616 SEQ_QUERY = 700,
2617 SEQ_LAST_OPC,
2618 SEQ_FIRST_OPC = SEQ_QUERY
2619 };
2620
2621 enum seq_op {
2622 SEQ_ALLOC_SUPER = 0,
2623 SEQ_ALLOC_META = 1
2624 };
2625
2626 /*
2627 * LOV data structures
2628 */
2629
2630 #define LOV_MAX_UUID_BUFFER_SIZE 8192
2631 /* The size of the buffer the lov/mdc reserves for the
2632 * array of UUIDs returned by the MDS. With the current
2633 * protocol, this will limit the max number of OSTs per LOV */
2634
2635 #define LOV_DESC_MAGIC 0xB0CCDE5C
2636 #define LOV_DESC_QOS_MAXAGE_DEFAULT 5 /* Seconds */
2637 #define LOV_DESC_STRIPE_SIZE_DEFAULT (1 << LNET_MTU_BITS)
2638
2639 /* LOV settings descriptor (should only contain static info) */
2640 struct lov_desc {
2641 __u32 ld_tgt_count; /* how many OBD's */
2642 __u32 ld_active_tgt_count; /* how many active */
2643 __u32 ld_default_stripe_count; /* how many objects are used */
2644 __u32 ld_pattern; /* default PATTERN_RAID0 */
2645 __u64 ld_default_stripe_size; /* in bytes */
2646 __u64 ld_default_stripe_offset; /* in bytes */
2647 __u32 ld_padding_0; /* unused */
2648 __u32 ld_qos_maxage; /* in second */
2649 __u32 ld_padding_1; /* also fix lustre_swab_lov_desc */
2650 __u32 ld_padding_2; /* also fix lustre_swab_lov_desc */
2651 struct obd_uuid ld_uuid;
2652 };
2653
2654 #define ld_magic ld_active_tgt_count /* for swabbing from llogs */
2655
2656 void lustre_swab_lov_desc(struct lov_desc *ld);
2657
2658 /*
2659 * LDLM requests:
2660 */
2661 /* opcodes -- MUST be distinct from OST/MDS opcodes */
2662 typedef enum {
2663 LDLM_ENQUEUE = 101,
2664 LDLM_CONVERT = 102,
2665 LDLM_CANCEL = 103,
2666 LDLM_BL_CALLBACK = 104,
2667 LDLM_CP_CALLBACK = 105,
2668 LDLM_GL_CALLBACK = 106,
2669 LDLM_SET_INFO = 107,
2670 LDLM_LAST_OPC
2671 } ldlm_cmd_t;
2672 #define LDLM_FIRST_OPC LDLM_ENQUEUE
2673
2674 #define RES_NAME_SIZE 4
2675 struct ldlm_res_id {
2676 __u64 name[RES_NAME_SIZE];
2677 };
2678
2679 #define DLDLMRES "[%#llx:%#llx:%#llx].%llx"
2680 #define PLDLMRES(res) (res)->lr_name.name[0], (res)->lr_name.name[1], \
2681 (res)->lr_name.name[2], (res)->lr_name.name[3]
2682
ldlm_res_eq(const struct ldlm_res_id * res0,const struct ldlm_res_id * res1)2683 static inline int ldlm_res_eq(const struct ldlm_res_id *res0,
2684 const struct ldlm_res_id *res1)
2685 {
2686 return !memcmp(res0, res1, sizeof(*res0));
2687 }
2688
2689 /* lock types */
2690 typedef enum {
2691 LCK_MINMODE = 0,
2692 LCK_EX = 1,
2693 LCK_PW = 2,
2694 LCK_PR = 4,
2695 LCK_CW = 8,
2696 LCK_CR = 16,
2697 LCK_NL = 32,
2698 LCK_GROUP = 64,
2699 LCK_COS = 128,
2700 LCK_MAXMODE
2701 } ldlm_mode_t;
2702
2703 #define LCK_MODE_NUM 8
2704
2705 typedef enum {
2706 LDLM_PLAIN = 10,
2707 LDLM_EXTENT = 11,
2708 LDLM_FLOCK = 12,
2709 LDLM_IBITS = 13,
2710 LDLM_MAX_TYPE
2711 } ldlm_type_t;
2712
2713 #define LDLM_MIN_TYPE LDLM_PLAIN
2714
2715 struct ldlm_extent {
2716 __u64 start;
2717 __u64 end;
2718 __u64 gid;
2719 };
2720
ldlm_extent_overlap(struct ldlm_extent * ex1,struct ldlm_extent * ex2)2721 static inline int ldlm_extent_overlap(struct ldlm_extent *ex1,
2722 struct ldlm_extent *ex2)
2723 {
2724 return (ex1->start <= ex2->end) && (ex2->start <= ex1->end);
2725 }
2726
2727 /* check if @ex1 contains @ex2 */
ldlm_extent_contain(struct ldlm_extent * ex1,struct ldlm_extent * ex2)2728 static inline int ldlm_extent_contain(struct ldlm_extent *ex1,
2729 struct ldlm_extent *ex2)
2730 {
2731 return (ex1->start <= ex2->start) && (ex1->end >= ex2->end);
2732 }
2733
2734 struct ldlm_inodebits {
2735 __u64 bits;
2736 };
2737
2738 struct ldlm_flock_wire {
2739 __u64 lfw_start;
2740 __u64 lfw_end;
2741 __u64 lfw_owner;
2742 __u32 lfw_padding;
2743 __u32 lfw_pid;
2744 };
2745
2746 /* it's important that the fields of the ldlm_extent structure match
2747 * the first fields of the ldlm_flock structure because there is only
2748 * one ldlm_swab routine to process the ldlm_policy_data_t union. if
2749 * this ever changes we will need to swab the union differently based
2750 * on the resource type. */
2751
2752 typedef union {
2753 struct ldlm_extent l_extent;
2754 struct ldlm_flock_wire l_flock;
2755 struct ldlm_inodebits l_inodebits;
2756 } ldlm_wire_policy_data_t;
2757
2758 union ldlm_gl_desc {
2759 struct ldlm_gl_lquota_desc lquota_desc;
2760 };
2761
2762 void lustre_swab_gl_desc(union ldlm_gl_desc *);
2763
2764 struct ldlm_intent {
2765 __u64 opc;
2766 };
2767
2768 void lustre_swab_ldlm_intent(struct ldlm_intent *i);
2769
2770 struct ldlm_resource_desc {
2771 ldlm_type_t lr_type;
2772 __u32 lr_padding; /* also fix lustre_swab_ldlm_resource_desc */
2773 struct ldlm_res_id lr_name;
2774 };
2775
2776 struct ldlm_lock_desc {
2777 struct ldlm_resource_desc l_resource;
2778 ldlm_mode_t l_req_mode;
2779 ldlm_mode_t l_granted_mode;
2780 ldlm_wire_policy_data_t l_policy_data;
2781 };
2782
2783 #define LDLM_LOCKREQ_HANDLES 2
2784 #define LDLM_ENQUEUE_CANCEL_OFF 1
2785
2786 struct ldlm_request {
2787 __u32 lock_flags;
2788 __u32 lock_count;
2789 struct ldlm_lock_desc lock_desc;
2790 struct lustre_handle lock_handle[LDLM_LOCKREQ_HANDLES];
2791 };
2792
2793 void lustre_swab_ldlm_request(struct ldlm_request *rq);
2794
2795 /* If LDLM_ENQUEUE, 1 slot is already occupied, 1 is available.
2796 * Otherwise, 2 are available. */
2797 #define ldlm_request_bufsize(count, type) \
2798 ({ \
2799 int _avail = LDLM_LOCKREQ_HANDLES; \
2800 _avail -= (type == LDLM_ENQUEUE ? LDLM_ENQUEUE_CANCEL_OFF : 0); \
2801 sizeof(struct ldlm_request) + \
2802 (count > _avail ? count - _avail : 0) * \
2803 sizeof(struct lustre_handle); \
2804 })
2805
2806 struct ldlm_reply {
2807 __u32 lock_flags;
2808 __u32 lock_padding; /* also fix lustre_swab_ldlm_reply */
2809 struct ldlm_lock_desc lock_desc;
2810 struct lustre_handle lock_handle;
2811 __u64 lock_policy_res1;
2812 __u64 lock_policy_res2;
2813 };
2814
2815 void lustre_swab_ldlm_reply(struct ldlm_reply *r);
2816
2817 #define ldlm_flags_to_wire(flags) ((__u32)(flags))
2818 #define ldlm_flags_from_wire(flags) ((__u64)(flags))
2819
2820 /*
2821 * Opcodes for mountconf (mgs and mgc)
2822 */
2823 typedef enum {
2824 MGS_CONNECT = 250,
2825 MGS_DISCONNECT,
2826 MGS_EXCEPTION, /* node died, etc. */
2827 MGS_TARGET_REG, /* whenever target starts up */
2828 MGS_TARGET_DEL,
2829 MGS_SET_INFO,
2830 MGS_CONFIG_READ,
2831 MGS_LAST_OPC
2832 } mgs_cmd_t;
2833 #define MGS_FIRST_OPC MGS_CONNECT
2834
2835 #define MGS_PARAM_MAXLEN 1024
2836 #define KEY_SET_INFO "set_info"
2837
2838 struct mgs_send_param {
2839 char mgs_param[MGS_PARAM_MAXLEN];
2840 };
2841
2842 /* We pass this info to the MGS so it can write config logs */
2843 #define MTI_NAME_MAXLEN 64
2844 #define MTI_PARAM_MAXLEN 4096
2845 #define MTI_NIDS_MAX 32
2846 struct mgs_target_info {
2847 __u32 mti_lustre_ver;
2848 __u32 mti_stripe_index;
2849 __u32 mti_config_ver;
2850 __u32 mti_flags;
2851 __u32 mti_nid_count;
2852 __u32 mti_instance; /* Running instance of target */
2853 char mti_fsname[MTI_NAME_MAXLEN];
2854 char mti_svname[MTI_NAME_MAXLEN];
2855 char mti_uuid[sizeof(struct obd_uuid)];
2856 __u64 mti_nids[MTI_NIDS_MAX]; /* host nids (lnet_nid_t)*/
2857 char mti_params[MTI_PARAM_MAXLEN];
2858 };
2859
2860 void lustre_swab_mgs_target_info(struct mgs_target_info *oinfo);
2861
2862 struct mgs_nidtbl_entry {
2863 __u64 mne_version; /* table version of this entry */
2864 __u32 mne_instance; /* target instance # */
2865 __u32 mne_index; /* target index */
2866 __u32 mne_length; /* length of this entry - by bytes */
2867 __u8 mne_type; /* target type LDD_F_SV_TYPE_OST/MDT */
2868 __u8 mne_nid_type; /* type of nid(mbz). for ipv6. */
2869 __u8 mne_nid_size; /* size of each NID, by bytes */
2870 __u8 mne_nid_count; /* # of NIDs in buffer */
2871 union {
2872 lnet_nid_t nids[0]; /* variable size buffer for NIDs. */
2873 } u;
2874 };
2875
2876 void lustre_swab_mgs_nidtbl_entry(struct mgs_nidtbl_entry *oinfo);
2877
2878 struct mgs_config_body {
2879 char mcb_name[MTI_NAME_MAXLEN]; /* logname */
2880 __u64 mcb_offset; /* next index of config log to request */
2881 __u16 mcb_type; /* type of log: CONFIG_T_[CONFIG|RECOVER] */
2882 __u8 mcb_reserved;
2883 __u8 mcb_bits; /* bits unit size of config log */
2884 __u32 mcb_units; /* # of units for bulk transfer */
2885 };
2886
2887 void lustre_swab_mgs_config_body(struct mgs_config_body *body);
2888
2889 struct mgs_config_res {
2890 __u64 mcr_offset; /* index of last config log */
2891 __u64 mcr_size; /* size of the log */
2892 };
2893
2894 void lustre_swab_mgs_config_res(struct mgs_config_res *body);
2895
2896 /* Config marker flags (in config log) */
2897 #define CM_START 0x01
2898 #define CM_END 0x02
2899 #define CM_SKIP 0x04
2900 #define CM_UPGRADE146 0x08
2901 #define CM_EXCLUDE 0x10
2902 #define CM_START_SKIP (CM_START | CM_SKIP)
2903
2904 struct cfg_marker {
2905 __u32 cm_step; /* aka config version */
2906 __u32 cm_flags;
2907 __u32 cm_vers; /* lustre release version number */
2908 __u32 cm_padding; /* 64 bit align */
2909 __s64 cm_createtime; /*when this record was first created */
2910 __s64 cm_canceltime; /*when this record is no longer valid*/
2911 char cm_tgtname[MTI_NAME_MAXLEN];
2912 char cm_comment[MTI_NAME_MAXLEN];
2913 };
2914
2915 void lustre_swab_cfg_marker(struct cfg_marker *marker, int swab, int size);
2916
2917 /*
2918 * Opcodes for multiple servers.
2919 */
2920
2921 typedef enum {
2922 OBD_PING = 400,
2923 OBD_LOG_CANCEL,
2924 OBD_QC_CALLBACK,
2925 OBD_IDX_READ,
2926 OBD_LAST_OPC
2927 } obd_cmd_t;
2928 #define OBD_FIRST_OPC OBD_PING
2929
2930 /* catalog of log objects */
2931
2932 /** Identifier for a single log object */
2933 struct llog_logid {
2934 struct ost_id lgl_oi;
2935 __u32 lgl_ogen;
2936 } __attribute__((packed));
2937
2938 /** Records written to the CATALOGS list */
2939 #define CATLIST "CATALOGS"
2940 struct llog_catid {
2941 struct llog_logid lci_logid;
2942 __u32 lci_padding1;
2943 __u32 lci_padding2;
2944 __u32 lci_padding3;
2945 } __attribute__((packed));
2946
2947 /* Log data record types - there is no specific reason that these need to
2948 * be related to the RPC opcodes, but no reason not to (may be handy later?)
2949 */
2950 #define LLOG_OP_MAGIC 0x10600000
2951 #define LLOG_OP_MASK 0xfff00000
2952
2953 typedef enum {
2954 LLOG_PAD_MAGIC = LLOG_OP_MAGIC | 0x00000,
2955 OST_SZ_REC = LLOG_OP_MAGIC | 0x00f00,
2956 /* OST_RAID1_REC = LLOG_OP_MAGIC | 0x01000, never used */
2957 MDS_UNLINK_REC = LLOG_OP_MAGIC | 0x10000 | (MDS_REINT << 8) |
2958 REINT_UNLINK, /* obsolete after 2.5.0 */
2959 MDS_UNLINK64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2960 REINT_UNLINK,
2961 /* MDS_SETATTR_REC = LLOG_OP_MAGIC | 0x12401, obsolete 1.8.0 */
2962 MDS_SETATTR64_REC = LLOG_OP_MAGIC | 0x90000 | (MDS_REINT << 8) |
2963 REINT_SETATTR,
2964 OBD_CFG_REC = LLOG_OP_MAGIC | 0x20000,
2965 /* PTL_CFG_REC = LLOG_OP_MAGIC | 0x30000, obsolete 1.4.0 */
2966 LLOG_GEN_REC = LLOG_OP_MAGIC | 0x40000,
2967 /* LLOG_JOIN_REC = LLOG_OP_MAGIC | 0x50000, obsolete 1.8.0 */
2968 CHANGELOG_REC = LLOG_OP_MAGIC | 0x60000,
2969 CHANGELOG_USER_REC = LLOG_OP_MAGIC | 0x70000,
2970 HSM_AGENT_REC = LLOG_OP_MAGIC | 0x80000,
2971 LLOG_HDR_MAGIC = LLOG_OP_MAGIC | 0x45539,
2972 LLOG_LOGID_MAGIC = LLOG_OP_MAGIC | 0x4553b,
2973 } llog_op_type;
2974
2975 #define LLOG_REC_HDR_NEEDS_SWABBING(r) \
2976 (((r)->lrh_type & __swab32(LLOG_OP_MASK)) == __swab32(LLOG_OP_MAGIC))
2977
2978 /** Log record header - stored in little endian order.
2979 * Each record must start with this struct, end with a llog_rec_tail,
2980 * and be a multiple of 256 bits in size.
2981 */
2982 struct llog_rec_hdr {
2983 __u32 lrh_len;
2984 __u32 lrh_index;
2985 __u32 lrh_type;
2986 __u32 lrh_id;
2987 };
2988
2989 struct llog_rec_tail {
2990 __u32 lrt_len;
2991 __u32 lrt_index;
2992 };
2993
2994 /* Where data follow just after header */
2995 #define REC_DATA(ptr) \
2996 ((void *)((char *)ptr + sizeof(struct llog_rec_hdr)))
2997
2998 #define REC_DATA_LEN(rec) \
2999 (rec->lrh_len - sizeof(struct llog_rec_hdr) - \
3000 sizeof(struct llog_rec_tail))
3001
3002 struct llog_logid_rec {
3003 struct llog_rec_hdr lid_hdr;
3004 struct llog_logid lid_id;
3005 __u32 lid_padding1;
3006 __u64 lid_padding2;
3007 __u64 lid_padding3;
3008 struct llog_rec_tail lid_tail;
3009 } __attribute__((packed));
3010
3011 struct llog_unlink_rec {
3012 struct llog_rec_hdr lur_hdr;
3013 __u64 lur_oid;
3014 __u32 lur_oseq;
3015 __u32 lur_count;
3016 struct llog_rec_tail lur_tail;
3017 } __attribute__((packed));
3018
3019 struct llog_unlink64_rec {
3020 struct llog_rec_hdr lur_hdr;
3021 struct lu_fid lur_fid;
3022 __u32 lur_count; /* to destroy the lost precreated */
3023 __u32 lur_padding1;
3024 __u64 lur_padding2;
3025 __u64 lur_padding3;
3026 struct llog_rec_tail lur_tail;
3027 } __attribute__((packed));
3028
3029 struct llog_setattr64_rec {
3030 struct llog_rec_hdr lsr_hdr;
3031 struct ost_id lsr_oi;
3032 __u32 lsr_uid;
3033 __u32 lsr_uid_h;
3034 __u32 lsr_gid;
3035 __u32 lsr_gid_h;
3036 __u64 lsr_padding;
3037 struct llog_rec_tail lsr_tail;
3038 } __attribute__((packed));
3039
3040 struct llog_size_change_rec {
3041 struct llog_rec_hdr lsc_hdr;
3042 struct ll_fid lsc_fid;
3043 __u32 lsc_ioepoch;
3044 __u32 lsc_padding1;
3045 __u64 lsc_padding2;
3046 __u64 lsc_padding3;
3047 struct llog_rec_tail lsc_tail;
3048 } __attribute__((packed));
3049
3050 #define CHANGELOG_MAGIC 0xca103000
3051
3052 /** \a changelog_rec_type's that can't be masked */
3053 #define CHANGELOG_MINMASK (1 << CL_MARK)
3054 /** bits covering all \a changelog_rec_type's */
3055 #define CHANGELOG_ALLMASK 0XFFFFFFFF
3056 /** default \a changelog_rec_type mask */
3057 #define CHANGELOG_DEFMASK CHANGELOG_ALLMASK & ~(1 << CL_ATIME | 1 << CL_CLOSE)
3058
3059 /* changelog llog name, needed by client replicators */
3060 #define CHANGELOG_CATALOG "changelog_catalog"
3061
3062 struct changelog_setinfo {
3063 __u64 cs_recno;
3064 __u32 cs_id;
3065 } __attribute__((packed));
3066
3067 /** changelog record */
3068 struct llog_changelog_rec {
3069 struct llog_rec_hdr cr_hdr;
3070 struct changelog_rec cr;
3071 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3072 } __attribute__((packed));
3073
3074 struct llog_changelog_ext_rec {
3075 struct llog_rec_hdr cr_hdr;
3076 struct changelog_ext_rec cr;
3077 struct llog_rec_tail cr_tail; /**< for_sizezof_only */
3078 } __attribute__((packed));
3079
3080 #define CHANGELOG_USER_PREFIX "cl"
3081
3082 struct llog_changelog_user_rec {
3083 struct llog_rec_hdr cur_hdr;
3084 __u32 cur_id;
3085 __u32 cur_padding;
3086 __u64 cur_endrec;
3087 struct llog_rec_tail cur_tail;
3088 } __attribute__((packed));
3089
3090 enum agent_req_status {
3091 ARS_WAITING,
3092 ARS_STARTED,
3093 ARS_FAILED,
3094 ARS_CANCELED,
3095 ARS_SUCCEED,
3096 };
3097
agent_req_status2name(enum agent_req_status ars)3098 static inline char *agent_req_status2name(enum agent_req_status ars)
3099 {
3100 switch (ars) {
3101 case ARS_WAITING:
3102 return "WAITING";
3103 case ARS_STARTED:
3104 return "STARTED";
3105 case ARS_FAILED:
3106 return "FAILED";
3107 case ARS_CANCELED:
3108 return "CANCELED";
3109 case ARS_SUCCEED:
3110 return "SUCCEED";
3111 default:
3112 return "UNKNOWN";
3113 }
3114 }
3115
agent_req_in_final_state(enum agent_req_status ars)3116 static inline bool agent_req_in_final_state(enum agent_req_status ars)
3117 {
3118 return ((ars == ARS_SUCCEED) || (ars == ARS_FAILED) ||
3119 (ars == ARS_CANCELED));
3120 }
3121
3122 struct llog_agent_req_rec {
3123 struct llog_rec_hdr arr_hdr; /**< record header */
3124 __u32 arr_status; /**< status of the request */
3125 /* must match enum
3126 * agent_req_status */
3127 __u32 arr_archive_id; /**< backend archive number */
3128 __u64 arr_flags; /**< req flags */
3129 __u64 arr_compound_id; /**< compound cookie */
3130 __u64 arr_req_create; /**< req. creation time */
3131 __u64 arr_req_change; /**< req. status change time */
3132 struct hsm_action_item arr_hai; /**< req. to the agent */
3133 struct llog_rec_tail arr_tail; /**< record tail for_sizezof_only */
3134 } __attribute__((packed));
3135
3136 /* Old llog gen for compatibility */
3137 struct llog_gen {
3138 __u64 mnt_cnt;
3139 __u64 conn_cnt;
3140 } __attribute__((packed));
3141
3142 struct llog_gen_rec {
3143 struct llog_rec_hdr lgr_hdr;
3144 struct llog_gen lgr_gen;
3145 __u64 padding1;
3146 __u64 padding2;
3147 __u64 padding3;
3148 struct llog_rec_tail lgr_tail;
3149 };
3150
3151 /* On-disk header structure of each log object, stored in little endian order */
3152 #define LLOG_CHUNK_SIZE 8192
3153 #define LLOG_HEADER_SIZE (96)
3154 #define LLOG_BITMAP_BYTES (LLOG_CHUNK_SIZE - LLOG_HEADER_SIZE)
3155
3156 #define LLOG_MIN_REC_SIZE (24) /* round(llog_rec_hdr + llog_rec_tail) */
3157
3158 /* flags for the logs */
3159 enum llog_flag {
3160 LLOG_F_ZAP_WHEN_EMPTY = 0x1,
3161 LLOG_F_IS_CAT = 0x2,
3162 LLOG_F_IS_PLAIN = 0x4,
3163 };
3164
3165 struct llog_log_hdr {
3166 struct llog_rec_hdr llh_hdr;
3167 __s64 llh_timestamp;
3168 __u32 llh_count;
3169 __u32 llh_bitmap_offset;
3170 __u32 llh_size;
3171 __u32 llh_flags;
3172 __u32 llh_cat_idx;
3173 /* for a catalog the first plain slot is next to it */
3174 struct obd_uuid llh_tgtuuid;
3175 __u32 llh_reserved[LLOG_HEADER_SIZE/sizeof(__u32) - 23];
3176 __u32 llh_bitmap[LLOG_BITMAP_BYTES/sizeof(__u32)];
3177 struct llog_rec_tail llh_tail;
3178 } __attribute__((packed));
3179
3180 #define LLOG_BITMAP_SIZE(llh) (__u32)((llh->llh_hdr.lrh_len - \
3181 llh->llh_bitmap_offset - \
3182 sizeof(llh->llh_tail)) * 8)
3183
3184 /** log cookies are used to reference a specific log file and a record therein */
3185 struct llog_cookie {
3186 struct llog_logid lgc_lgl;
3187 __u32 lgc_subsys;
3188 __u32 lgc_index;
3189 __u32 lgc_padding;
3190 } __attribute__((packed));
3191
3192 /** llog protocol */
3193 enum llogd_rpc_ops {
3194 LLOG_ORIGIN_HANDLE_CREATE = 501,
3195 LLOG_ORIGIN_HANDLE_NEXT_BLOCK = 502,
3196 LLOG_ORIGIN_HANDLE_READ_HEADER = 503,
3197 LLOG_ORIGIN_HANDLE_WRITE_REC = 504,
3198 LLOG_ORIGIN_HANDLE_CLOSE = 505,
3199 LLOG_ORIGIN_CONNECT = 506,
3200 LLOG_CATINFO = 507, /* deprecated */
3201 LLOG_ORIGIN_HANDLE_PREV_BLOCK = 508,
3202 LLOG_ORIGIN_HANDLE_DESTROY = 509, /* for destroy llog object*/
3203 LLOG_LAST_OPC,
3204 LLOG_FIRST_OPC = LLOG_ORIGIN_HANDLE_CREATE
3205 };
3206
3207 struct llogd_body {
3208 struct llog_logid lgd_logid;
3209 __u32 lgd_ctxt_idx;
3210 __u32 lgd_llh_flags;
3211 __u32 lgd_index;
3212 __u32 lgd_saved_index;
3213 __u32 lgd_len;
3214 __u64 lgd_cur_offset;
3215 } __attribute__((packed));
3216
3217 struct llogd_conn_body {
3218 struct llog_gen lgdc_gen;
3219 struct llog_logid lgdc_logid;
3220 __u32 lgdc_ctxt_idx;
3221 } __attribute__((packed));
3222
3223 /* Note: 64-bit types are 64-bit aligned in structure */
3224 struct obdo {
3225 __u64 o_valid; /* hot fields in this obdo */
3226 struct ost_id o_oi;
3227 __u64 o_parent_seq;
3228 __u64 o_size; /* o_size-o_blocks == ost_lvb */
3229 __s64 o_mtime;
3230 __s64 o_atime;
3231 __s64 o_ctime;
3232 __u64 o_blocks; /* brw: cli sent cached bytes */
3233 __u64 o_grant;
3234
3235 /* 32-bit fields start here: keep an even number of them via padding */
3236 __u32 o_blksize; /* optimal IO blocksize */
3237 __u32 o_mode; /* brw: cli sent cache remain */
3238 __u32 o_uid;
3239 __u32 o_gid;
3240 __u32 o_flags;
3241 __u32 o_nlink; /* brw: checksum */
3242 __u32 o_parent_oid;
3243 __u32 o_misc; /* brw: o_dropped */
3244
3245 __u64 o_ioepoch; /* epoch in ost writes */
3246 __u32 o_stripe_idx; /* holds stripe idx */
3247 __u32 o_parent_ver;
3248 struct lustre_handle o_handle; /* brw: lock handle to prolong
3249 * locks */
3250 struct llog_cookie o_lcookie; /* destroy: unlink cookie from
3251 * MDS */
3252 __u32 o_uid_h;
3253 __u32 o_gid_h;
3254
3255 __u64 o_data_version; /* getattr: sum of iversion for
3256 * each stripe.
3257 * brw: grant space consumed on
3258 * the client for the write */
3259 __u64 o_padding_4;
3260 __u64 o_padding_5;
3261 __u64 o_padding_6;
3262 };
3263
3264 #define o_dirty o_blocks
3265 #define o_undirty o_mode
3266 #define o_dropped o_misc
3267 #define o_cksum o_nlink
3268 #define o_grant_used o_data_version
3269
lustre_set_wire_obdo(struct obd_connect_data * ocd,struct obdo * wobdo,const struct obdo * lobdo)3270 static inline void lustre_set_wire_obdo(struct obd_connect_data *ocd,
3271 struct obdo *wobdo,
3272 const struct obdo *lobdo)
3273 {
3274 *wobdo = *lobdo;
3275 wobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3276 if (ocd == NULL)
3277 return;
3278
3279 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3280 fid_seq_is_echo(ostid_seq(&lobdo->o_oi))) {
3281 /* Currently OBD_FL_OSTID will only be used when 2.4 echo
3282 * client communicate with pre-2.4 server */
3283 wobdo->o_oi.oi.oi_id = fid_oid(&lobdo->o_oi.oi_fid);
3284 wobdo->o_oi.oi.oi_seq = fid_seq(&lobdo->o_oi.oi_fid);
3285 }
3286 }
3287
lustre_get_wire_obdo(struct obd_connect_data * ocd,struct obdo * lobdo,const struct obdo * wobdo)3288 static inline void lustre_get_wire_obdo(struct obd_connect_data *ocd,
3289 struct obdo *lobdo,
3290 const struct obdo *wobdo)
3291 {
3292 __u32 local_flags = 0;
3293
3294 if (lobdo->o_valid & OBD_MD_FLFLAGS)
3295 local_flags = lobdo->o_flags & OBD_FL_LOCAL_MASK;
3296
3297 *lobdo = *wobdo;
3298 if (local_flags != 0) {
3299 lobdo->o_valid |= OBD_MD_FLFLAGS;
3300 lobdo->o_flags &= ~OBD_FL_LOCAL_MASK;
3301 lobdo->o_flags |= local_flags;
3302 }
3303 if (ocd == NULL)
3304 return;
3305
3306 if (unlikely(!(ocd->ocd_connect_flags & OBD_CONNECT_FID)) &&
3307 fid_seq_is_echo(wobdo->o_oi.oi.oi_seq)) {
3308 /* see above */
3309 lobdo->o_oi.oi_fid.f_seq = wobdo->o_oi.oi.oi_seq;
3310 lobdo->o_oi.oi_fid.f_oid = wobdo->o_oi.oi.oi_id;
3311 lobdo->o_oi.oi_fid.f_ver = 0;
3312 }
3313 }
3314
3315 /* request structure for OST's */
3316 struct ost_body {
3317 struct obdo oa;
3318 };
3319
3320 /* Key for FIEMAP to be used in get_info calls */
3321 struct ll_fiemap_info_key {
3322 char name[8];
3323 struct obdo oa;
3324 struct ll_user_fiemap fiemap;
3325 };
3326
3327 void lustre_swab_ost_body(struct ost_body *b);
3328 void lustre_swab_ost_last_id(__u64 *id);
3329 void lustre_swab_fiemap(struct ll_user_fiemap *fiemap);
3330
3331 void lustre_swab_lov_user_md_v1(struct lov_user_md_v1 *lum);
3332 void lustre_swab_lov_user_md_v3(struct lov_user_md_v3 *lum);
3333 void lustre_swab_lov_user_md_objects(struct lov_user_ost_data *lod,
3334 int stripe_count);
3335 void lustre_swab_lov_mds_md(struct lov_mds_md *lmm);
3336
3337 /* llog_swab.c */
3338 void lustre_swab_llogd_body(struct llogd_body *d);
3339 void lustre_swab_llog_hdr(struct llog_log_hdr *h);
3340 void lustre_swab_llogd_conn_body(struct llogd_conn_body *d);
3341 void lustre_swab_llog_rec(struct llog_rec_hdr *rec);
3342
3343 struct lustre_cfg;
3344 void lustre_swab_lustre_cfg(struct lustre_cfg *lcfg);
3345
3346 /* Functions for dumping PTLRPC fields */
3347 void dump_rniobuf(struct niobuf_remote *rnb);
3348 void dump_ioo(struct obd_ioobj *nb);
3349 void dump_ost_body(struct ost_body *ob);
3350 void dump_rcs(__u32 *rc);
3351
3352 #define IDX_INFO_MAGIC 0x3D37CC37
3353
3354 /* Index file transfer through the network. The server serializes the index into
3355 * a byte stream which is sent to the client via a bulk transfer */
3356 struct idx_info {
3357 __u32 ii_magic;
3358
3359 /* reply: see idx_info_flags below */
3360 __u32 ii_flags;
3361
3362 /* request & reply: number of lu_idxpage (to be) transferred */
3363 __u16 ii_count;
3364 __u16 ii_pad0;
3365
3366 /* request: requested attributes passed down to the iterator API */
3367 __u32 ii_attrs;
3368
3369 /* request & reply: index file identifier (FID) */
3370 struct lu_fid ii_fid;
3371
3372 /* reply: version of the index file before starting to walk the index.
3373 * Please note that the version can be modified at any time during the
3374 * transfer */
3375 __u64 ii_version;
3376
3377 /* request: hash to start with:
3378 * reply: hash of the first entry of the first lu_idxpage and hash
3379 * of the entry to read next if any */
3380 __u64 ii_hash_start;
3381 __u64 ii_hash_end;
3382
3383 /* reply: size of keys in lu_idxpages, minimal one if II_FL_VARKEY is
3384 * set */
3385 __u16 ii_keysize;
3386
3387 /* reply: size of records in lu_idxpages, minimal one if II_FL_VARREC
3388 * is set */
3389 __u16 ii_recsize;
3390
3391 __u32 ii_pad1;
3392 __u64 ii_pad2;
3393 __u64 ii_pad3;
3394 };
3395
3396 void lustre_swab_idx_info(struct idx_info *ii);
3397
3398 #define II_END_OFF MDS_DIR_END_OFF /* all entries have been read */
3399
3400 /* List of flags used in idx_info::ii_flags */
3401 enum idx_info_flags {
3402 II_FL_NOHASH = 1 << 0, /* client doesn't care about hash value */
3403 II_FL_VARKEY = 1 << 1, /* keys can be of variable size */
3404 II_FL_VARREC = 1 << 2, /* records can be of variable size */
3405 II_FL_NONUNQ = 1 << 3, /* index supports non-unique keys */
3406 };
3407
3408 #define LIP_MAGIC 0x8A6D6B6C
3409
3410 /* 4KB (= LU_PAGE_SIZE) container gathering key/record pairs */
3411 struct lu_idxpage {
3412 /* 16-byte header */
3413 __u32 lip_magic;
3414 __u16 lip_flags;
3415 __u16 lip_nr; /* number of entries in the container */
3416 __u64 lip_pad0; /* additional padding for future use */
3417
3418 /* key/record pairs are stored in the remaining 4080 bytes.
3419 * depending upon the flags in idx_info::ii_flags, each key/record
3420 * pair might be preceded by:
3421 * - a hash value
3422 * - the key size (II_FL_VARKEY is set)
3423 * - the record size (II_FL_VARREC is set)
3424 *
3425 * For the time being, we only support fixed-size key & record. */
3426 char lip_entries[0];
3427 };
3428
3429 #define LIP_HDR_SIZE (offsetof(struct lu_idxpage, lip_entries))
3430
3431 /* Gather all possible type associated with a 4KB container */
3432 union lu_page {
3433 struct lu_dirpage lp_dir; /* for MDS_READPAGE */
3434 struct lu_idxpage lp_idx; /* for OBD_IDX_READ */
3435 char lp_array[LU_PAGE_SIZE];
3436 };
3437
3438 /* security opcodes */
3439 typedef enum {
3440 SEC_CTX_INIT = 801,
3441 SEC_CTX_INIT_CONT = 802,
3442 SEC_CTX_FINI = 803,
3443 SEC_LAST_OPC,
3444 SEC_FIRST_OPC = SEC_CTX_INIT
3445 } sec_cmd_t;
3446
3447 /*
3448 * capa related definitions
3449 */
3450 #define CAPA_HMAC_MAX_LEN 64
3451 #define CAPA_HMAC_KEY_MAX_LEN 56
3452
3453 /* NB take care when changing the sequence of elements this struct,
3454 * because the offset info is used in find_capa() */
3455 struct lustre_capa {
3456 struct lu_fid lc_fid; /** fid */
3457 __u64 lc_opc; /** operations allowed */
3458 __u64 lc_uid; /** file owner */
3459 __u64 lc_gid; /** file group */
3460 __u32 lc_flags; /** HMAC algorithm & flags */
3461 __u32 lc_keyid; /** key# used for the capability */
3462 __u32 lc_timeout; /** capa timeout value (sec) */
3463 /* FIXME: y2038 time_t overflow: */
3464 __u32 lc_expiry; /** expiry time (sec) */
3465 __u8 lc_hmac[CAPA_HMAC_MAX_LEN]; /** HMAC */
3466 } __attribute__((packed));
3467
3468 void lustre_swab_lustre_capa(struct lustre_capa *c);
3469
3470 /** lustre_capa::lc_opc */
3471 enum {
3472 CAPA_OPC_BODY_WRITE = 1<<0, /**< write object data */
3473 CAPA_OPC_BODY_READ = 1<<1, /**< read object data */
3474 CAPA_OPC_INDEX_LOOKUP = 1<<2, /**< lookup object fid */
3475 CAPA_OPC_INDEX_INSERT = 1<<3, /**< insert object fid */
3476 CAPA_OPC_INDEX_DELETE = 1<<4, /**< delete object fid */
3477 CAPA_OPC_OSS_WRITE = 1<<5, /**< write oss object data */
3478 CAPA_OPC_OSS_READ = 1<<6, /**< read oss object data */
3479 CAPA_OPC_OSS_TRUNC = 1<<7, /**< truncate oss object */
3480 CAPA_OPC_OSS_DESTROY = 1<<8, /**< destroy oss object */
3481 CAPA_OPC_META_WRITE = 1<<9, /**< write object meta data */
3482 CAPA_OPC_META_READ = 1<<10, /**< read object meta data */
3483 };
3484
3485 #define CAPA_OPC_OSS_RW (CAPA_OPC_OSS_READ | CAPA_OPC_OSS_WRITE)
3486 #define CAPA_OPC_MDS_ONLY \
3487 (CAPA_OPC_BODY_WRITE | CAPA_OPC_BODY_READ | CAPA_OPC_INDEX_LOOKUP | \
3488 CAPA_OPC_INDEX_INSERT | CAPA_OPC_INDEX_DELETE)
3489 #define CAPA_OPC_OSS_ONLY \
3490 (CAPA_OPC_OSS_WRITE | CAPA_OPC_OSS_READ | CAPA_OPC_OSS_TRUNC | \
3491 CAPA_OPC_OSS_DESTROY)
3492 #define CAPA_OPC_MDS_DEFAULT ~CAPA_OPC_OSS_ONLY
3493 #define CAPA_OPC_OSS_DEFAULT ~(CAPA_OPC_MDS_ONLY | CAPA_OPC_OSS_ONLY)
3494
3495 struct lustre_capa_key {
3496 __u64 lk_seq; /**< mds# */
3497 __u32 lk_keyid; /**< key# */
3498 __u32 lk_padding;
3499 __u8 lk_key[CAPA_HMAC_KEY_MAX_LEN]; /**< key */
3500 } __attribute__((packed));
3501
3502 /** The link ea holds 1 \a link_ea_entry for each hardlink */
3503 #define LINK_EA_MAGIC 0x11EAF1DFUL
3504 struct link_ea_header {
3505 __u32 leh_magic;
3506 __u32 leh_reccount;
3507 __u64 leh_len; /* total size */
3508 /* future use */
3509 __u32 padding1;
3510 __u32 padding2;
3511 };
3512
3513 /** Hardlink data is name and parent fid.
3514 * Stored in this crazy struct for maximum packing and endian-neutrality
3515 */
3516 struct link_ea_entry {
3517 /** __u16 stored big-endian, unaligned */
3518 unsigned char lee_reclen[2];
3519 unsigned char lee_parent_fid[sizeof(struct lu_fid)];
3520 char lee_name[0];
3521 } __attribute__((packed));
3522
3523 /** fid2path request/reply structure */
3524 struct getinfo_fid2path {
3525 struct lu_fid gf_fid;
3526 __u64 gf_recno;
3527 __u32 gf_linkno;
3528 __u32 gf_pathlen;
3529 char gf_path[0];
3530 } __attribute__((packed));
3531
3532 void lustre_swab_fid2path (struct getinfo_fid2path *gf);
3533
3534 enum {
3535 LAYOUT_INTENT_ACCESS = 0,
3536 LAYOUT_INTENT_READ = 1,
3537 LAYOUT_INTENT_WRITE = 2,
3538 LAYOUT_INTENT_GLIMPSE = 3,
3539 LAYOUT_INTENT_TRUNC = 4,
3540 LAYOUT_INTENT_RELEASE = 5,
3541 LAYOUT_INTENT_RESTORE = 6
3542 };
3543
3544 /* enqueue layout lock with intent */
3545 struct layout_intent {
3546 __u32 li_opc; /* intent operation for enqueue, read, write etc */
3547 __u32 li_flags;
3548 __u64 li_start;
3549 __u64 li_end;
3550 };
3551
3552 void lustre_swab_layout_intent(struct layout_intent *li);
3553
3554 /**
3555 * On the wire version of hsm_progress structure.
3556 *
3557 * Contains the userspace hsm_progress and some internal fields.
3558 */
3559 struct hsm_progress_kernel {
3560 /* Field taken from struct hsm_progress */
3561 lustre_fid hpk_fid;
3562 __u64 hpk_cookie;
3563 struct hsm_extent hpk_extent;
3564 __u16 hpk_flags;
3565 __u16 hpk_errval; /* positive val */
3566 __u32 hpk_padding1;
3567 /* Additional fields */
3568 __u64 hpk_data_version;
3569 __u64 hpk_padding2;
3570 } __attribute__((packed));
3571
3572 void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3573 void lustre_swab_hsm_current_action(struct hsm_current_action *action);
3574 void lustre_swab_hsm_progress_kernel(struct hsm_progress_kernel *hpk);
3575 void lustre_swab_hsm_user_state(struct hsm_user_state *hus);
3576 void lustre_swab_hsm_user_item(struct hsm_user_item *hui);
3577 void lustre_swab_hsm_request(struct hsm_request *hr);
3578
3579 /**
3580 * These are object update opcode under UPDATE_OBJ, which is currently
3581 * being used by cross-ref operations between MDT.
3582 *
3583 * During the cross-ref operation, the Master MDT, which the client send the
3584 * request to, will disassembly the operation into object updates, then OSP
3585 * will send these updates to the remote MDT to be executed.
3586 *
3587 * Update request format
3588 * magic: UPDATE_BUFFER_MAGIC_V1
3589 * Count: How many updates in the req.
3590 * bufs[0] : following are packets of object.
3591 * update[0]:
3592 * type: object_update_op, the op code of update
3593 * fid: The object fid of the update.
3594 * lens/bufs: other parameters of the update.
3595 * update[1]:
3596 * type: object_update_op, the op code of update
3597 * fid: The object fid of the update.
3598 * lens/bufs: other parameters of the update.
3599 * ..........
3600 * update[7]: type: object_update_op, the op code of update
3601 * fid: The object fid of the update.
3602 * lens/bufs: other parameters of the update.
3603 * Current 8 maxim updates per object update request.
3604 *
3605 *******************************************************************
3606 * update reply format:
3607 *
3608 * ur_version: UPDATE_REPLY_V1
3609 * ur_count: The count of the reply, which is usually equal
3610 * to the number of updates in the request.
3611 * ur_lens: The reply lengths of each object update.
3612 *
3613 * replies: 1st update reply [4bytes_ret: other body]
3614 * 2nd update reply [4bytes_ret: other body]
3615 * .....
3616 * nth update reply [4bytes_ret: other body]
3617 *
3618 * For each reply of the update, the format would be
3619 * result(4 bytes):Other stuff
3620 */
3621
3622 #define UPDATE_MAX_OPS 10
3623 #define UPDATE_BUFFER_MAGIC_V1 0xBDDE0001
3624 #define UPDATE_BUFFER_MAGIC UPDATE_BUFFER_MAGIC_V1
3625 #define UPDATE_BUF_COUNT 8
3626 enum object_update_op {
3627 OBJ_CREATE = 1,
3628 OBJ_DESTROY = 2,
3629 OBJ_REF_ADD = 3,
3630 OBJ_REF_DEL = 4,
3631 OBJ_ATTR_SET = 5,
3632 OBJ_ATTR_GET = 6,
3633 OBJ_XATTR_SET = 7,
3634 OBJ_XATTR_GET = 8,
3635 OBJ_INDEX_LOOKUP = 9,
3636 OBJ_INDEX_INSERT = 10,
3637 OBJ_INDEX_DELETE = 11,
3638 OBJ_LAST
3639 };
3640
3641 struct update {
3642 __u32 u_type;
3643 __u32 u_batchid;
3644 struct lu_fid u_fid;
3645 __u32 u_lens[UPDATE_BUF_COUNT];
3646 __u32 u_bufs[0];
3647 };
3648
3649 struct update_buf {
3650 __u32 ub_magic;
3651 __u32 ub_count;
3652 __u32 ub_bufs[0];
3653 };
3654
3655 #define UPDATE_REPLY_V1 0x00BD0001
3656 struct update_reply {
3657 __u32 ur_version;
3658 __u32 ur_count;
3659 __u32 ur_lens[0];
3660 };
3661
3662 void lustre_swab_update_buf(struct update_buf *ub);
3663 void lustre_swab_update_reply_buf(struct update_reply *ur);
3664
3665 /** layout swap request structure
3666 * fid1 and fid2 are in mdt_body
3667 */
3668 struct mdc_swap_layouts {
3669 __u64 msl_flags;
3670 } __packed;
3671
3672 void lustre_swab_swap_layouts(struct mdc_swap_layouts *msl);
3673
3674 struct close_data {
3675 struct lustre_handle cd_handle;
3676 struct lu_fid cd_fid;
3677 __u64 cd_data_version;
3678 __u64 cd_reserved[8];
3679 };
3680
3681 void lustre_swab_close_data(struct close_data *data);
3682
3683 #endif
3684 /** @} lustreidl */
3685