• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*!**************************************************************************
2 *!
3 *! FILE NAME  : kgdb.c
4 *!
5 *! DESCRIPTION: Implementation of the gdb stub with respect to ETRAX 100.
6 *!              It is a mix of arch/m68k/kernel/kgdb.c and cris_stub.c.
7 *!
8 *!---------------------------------------------------------------------------
9 *! HISTORY
10 *!
11 *! DATE         NAME            CHANGES
12 *! ----         ----            -------
13 *! Apr 26 1999  Hendrik Ruijter Initial version.
14 *! May  6 1999  Hendrik Ruijter Removed call to strlen in libc and removed
15 *!                              struct assignment as it generates calls to
16 *!                              memcpy in libc.
17 *! Jun 17 1999  Hendrik Ruijter Added gdb 4.18 support. 'X', 'qC' and 'qL'.
18 *! Jul 21 1999  Bjorn Wesen     eLinux port
19 *!
20 *!---------------------------------------------------------------------------
21 *!
22 *! (C) Copyright 1999, Axis Communications AB, LUND, SWEDEN
23 *!
24 *!**************************************************************************/
25 /* @(#) cris_stub.c 1.3 06/17/99 */
26 
27 /*
28  *  kgdb usage notes:
29  *  -----------------
30  *
31  * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
32  * built with different gcc flags: "-g" is added to get debug infos, and
33  * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
34  * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
35  * before compresion. Such a kernel will behave just as usually, except if
36  * given a "debug=<device>" command line option. (Only serial devices are
37  * allowed for <device>, i.e. no printers or the like; possible values are
38  * machine depedend and are the same as for the usual debug device, the one
39  * for logging kernel messages.) If that option is given and the device can be
40  * initialized, the kernel will connect to the remote gdb in trap_init(). The
41  * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
42  * implementation.
43  *
44  * To start a debugging session, start that gdb with the debugging kernel
45  * image (the one with the symbols, vmlinux.debug) named on the command line.
46  * This file will be used by gdb to get symbol and debugging infos about the
47  * kernel. Next, select remote debug mode by
48  *    target remote <device>
49  * where <device> is the name of the serial device over which the debugged
50  * machine is connected. Maybe you have to adjust the baud rate by
51  *    set remotebaud <rate>
52  * or also other parameters with stty:
53  *    shell stty ... </dev/...
54  * If the kernel to debug has already booted, it waited for gdb and now
55  * connects, and you'll see a breakpoint being reported. If the kernel isn't
56  * running yet, start it now. The order of gdb and the kernel doesn't matter.
57  * Another thing worth knowing about in the getting-started phase is how to
58  * debug the remote protocol itself. This is activated with
59  *    set remotedebug 1
60  * gdb will then print out each packet sent or received. You'll also get some
61  * messages about the gdb stub on the console of the debugged machine.
62  *
63  * If all that works, you can use lots of the usual debugging techniques on
64  * the kernel, e.g. inspecting and changing variables/memory, setting
65  * breakpoints, single stepping and so on. It's also possible to interrupt the
66  * debugged kernel by pressing C-c in gdb. Have fun! :-)
67  *
68  * The gdb stub is entered (and thus the remote gdb gets control) in the
69  * following situations:
70  *
71  *  - If breakpoint() is called. This is just after kgdb initialization, or if
72  *    a breakpoint() call has been put somewhere into the kernel source.
73  *    (Breakpoints can of course also be set the usual way in gdb.)
74  *    In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
75  *
76  *  - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
77  *    are entered. All the CPU exceptions are mapped to (more or less..., see
78  *    the hard_trap_info array below) appropriate signal, which are reported
79  *    to gdb. die_if_kernel() is usually called after some kind of access
80  *    error and thus is reported as SIGSEGV.
81  *
82  *  - When panic() is called. This is reported as SIGABRT.
83  *
84  *  - If C-c is received over the serial line, which is treated as
85  *    SIGINT.
86  *
87  * Of course, all these signals are just faked for gdb, since there is no
88  * signal concept as such for the kernel. It also isn't possible --obviously--
89  * to set signal handlers from inside gdb, or restart the kernel with a
90  * signal.
91  *
92  * Current limitations:
93  *
94  *  - While the kernel is stopped, interrupts are disabled for safety reasons
95  *    (i.e., variables not changing magically or the like). But this also
96  *    means that the clock isn't running anymore, and that interrupts from the
97  *    hardware may get lost/not be served in time. This can cause some device
98  *    errors...
99  *
100  *  - When single-stepping, only one instruction of the current thread is
101  *    executed, but interrupts are allowed for that time and will be serviced
102  *    if pending. Be prepared for that.
103  *
104  *  - All debugging happens in kernel virtual address space. There's no way to
105  *    access physical memory not mapped in kernel space, or to access user
106  *    space. A way to work around this is using get_user_long & Co. in gdb
107  *    expressions, but only for the current process.
108  *
109  *  - Interrupting the kernel only works if interrupts are currently allowed,
110  *    and the interrupt of the serial line isn't blocked by some other means
111  *    (IPL too high, disabled, ...)
112  *
113  *  - The gdb stub is currently not reentrant, i.e. errors that happen therein
114  *    (e.g. accessing invalid memory) may not be caught correctly. This could
115  *    be removed in future by introducing a stack of struct registers.
116  *
117  */
118 
119 /*
120  *  To enable debugger support, two things need to happen.  One, a
121  *  call to kgdb_init() is necessary in order to allow any breakpoints
122  *  or error conditions to be properly intercepted and reported to gdb.
123  *  Two, a breakpoint needs to be generated to begin communication.  This
124  *  is most easily accomplished by a call to breakpoint().
125  *
126  *    The following gdb commands are supported:
127  *
128  * command          function                               Return value
129  *
130  *    g             return the value of the CPU registers  hex data or ENN
131  *    G             set the value of the CPU registers     OK or ENN
132  *
133  *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
134  *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
135  *
136  *    c             Resume at current address              SNN   ( signal NN)
137  *    cAA..AA       Continue at address AA..AA             SNN
138  *
139  *    s             Step one instruction                   SNN
140  *    sAA..AA       Step one instruction from AA..AA       SNN
141  *
142  *    k             kill
143  *
144  *    ?             What was the last sigval ?             SNN   (signal NN)
145  *
146  *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
147  *							   baud rate
148  *
149  * All commands and responses are sent with a packet which includes a
150  * checksum.  A packet consists of
151  *
152  * $<packet info>#<checksum>.
153  *
154  * where
155  * <packet info> :: <characters representing the command or response>
156  * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
157  *
158  * When a packet is received, it is first acknowledged with either '+' or '-'.
159  * '+' indicates a successful transfer.  '-' indicates a failed transfer.
160  *
161  * Example:
162  *
163  * Host:                  Reply:
164  * $m0,10#2a               +$00010203040506070809101112131415#42
165  *
166  */
167 
168 
169 #include <linux/string.h>
170 #include <linux/signal.h>
171 #include <linux/kernel.h>
172 #include <linux/delay.h>
173 #include <linux/linkage.h>
174 #include <linux/reboot.h>
175 
176 #include <asm/setup.h>
177 #include <asm/ptrace.h>
178 
179 #include <arch/svinto.h>
180 #include <asm/irq.h>
181 
182 static int kgdb_started = 0;
183 
184 /********************************* Register image ****************************/
185 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
186    Reference", p. 1-1, with the additional register definitions of the
187    ETRAX 100LX in cris-opc.h.
188    There are 16 general 32-bit registers, R0-R15, where R14 is the stack
189    pointer, SP, and R15 is the program counter, PC.
190    There are 16 special registers, P0-P15, where three of the unimplemented
191    registers, P0, P4 and P8, are reserved as zero-registers. A read from
192    any of these registers returns zero and a write has no effect. */
193 
194 typedef
195 struct register_image
196 {
197 	/* Offset */
198 	unsigned int     r0;   /* 0x00 */
199 	unsigned int     r1;   /* 0x04 */
200 	unsigned int     r2;   /* 0x08 */
201 	unsigned int     r3;   /* 0x0C */
202 	unsigned int     r4;   /* 0x10 */
203 	unsigned int     r5;   /* 0x14 */
204 	unsigned int     r6;   /* 0x18 */
205 	unsigned int     r7;   /* 0x1C */
206 	unsigned int     r8;   /* 0x20 Frame pointer */
207 	unsigned int     r9;   /* 0x24 */
208 	unsigned int    r10;   /* 0x28 */
209 	unsigned int    r11;   /* 0x2C */
210 	unsigned int    r12;   /* 0x30 */
211 	unsigned int    r13;   /* 0x34 */
212 	unsigned int     sp;   /* 0x38 Stack pointer */
213 	unsigned int     pc;   /* 0x3C Program counter */
214 
215         unsigned char    p0;   /* 0x40 8-bit zero-register */
216 	unsigned char    vr;   /* 0x41 Version register */
217 
218         unsigned short   p4;   /* 0x42 16-bit zero-register */
219 	unsigned short  ccr;   /* 0x44 Condition code register */
220 
221 	unsigned int    mof;   /* 0x46 Multiply overflow register */
222 
223         unsigned int     p8;   /* 0x4A 32-bit zero-register */
224 	unsigned int    ibr;   /* 0x4E Interrupt base register */
225 	unsigned int    irp;   /* 0x52 Interrupt return pointer */
226 	unsigned int    srp;   /* 0x56 Subroutine return pointer */
227 	unsigned int    bar;   /* 0x5A Breakpoint address register */
228 	unsigned int   dccr;   /* 0x5E Double condition code register */
229 	unsigned int    brp;   /* 0x62 Breakpoint return pointer (pc in caller) */
230 	unsigned int    usp;   /* 0x66 User mode stack pointer */
231 } registers;
232 
233 /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
234 int getDebugChar (void);
235 
236 /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
237 void putDebugChar (int val);
238 
239 void enableDebugIRQ (void);
240 
241 /******************** Prototypes for global functions. ***********************/
242 
243 /* The string str is prepended with the GDB printout token and sent. */
244 void putDebugString (const unsigned char *str, int length); /* used by etrax100ser.c */
245 
246 /* The hook for both static (compiled) and dynamic breakpoints set by GDB.
247    ETRAX 100 specific. */
248 void handle_breakpoint (void);                          /* used by irq.c */
249 
250 /* The hook for an interrupt generated by GDB. ETRAX 100 specific. */
251 void handle_interrupt (void);                           /* used by irq.c */
252 
253 /* A static breakpoint to be used at startup. */
254 void breakpoint (void);                                 /* called by init/main.c */
255 
256 /* From osys_int.c, executing_task contains the number of the current
257    executing task in osys. Does not know of object-oriented threads. */
258 extern unsigned char executing_task;
259 
260 /* The number of characters used for a 64 bit thread identifier. */
261 #define HEXCHARS_IN_THREAD_ID 16
262 
263 /********************************** Packet I/O ******************************/
264 /* BUFMAX defines the maximum number of characters in
265    inbound/outbound buffers */
266 #define BUFMAX 512
267 
268 /* Run-length encoding maximum length. Send 64 at most. */
269 #define RUNLENMAX 64
270 
271 /* The inbound/outbound buffers used in packet I/O */
272 static char remcomInBuffer[BUFMAX];
273 static char remcomOutBuffer[BUFMAX];
274 
275 /* Error and warning messages. */
276 enum error_type
277 {
278 	SUCCESS, E01, E02, E03, E04, E05, E06, E07, E08
279 };
280 static char *error_message[] =
281 {
282 	"",
283 	"E01 Set current or general thread - H[c,g] - internal error.",
284 	"E02 Change register content - P - cannot change read-only register.",
285 	"E03 Thread is not alive.", /* T, not used. */
286 	"E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
287 	"E05 Change register content - P - the register is not implemented..",
288 	"E06 Change memory content - M - internal error.",
289 	"E07 Change register content - P - the register is not stored on the stack",
290 	"E08 Invalid parameter"
291 };
292 /********************************* Register image ****************************/
293 /* Use the order of registers as defined in "AXIS ETRAX CRIS Programmer's
294    Reference", p. 1-1, with the additional register definitions of the
295    ETRAX 100LX in cris-opc.h.
296    There are 16 general 32-bit registers, R0-R15, where R14 is the stack
297    pointer, SP, and R15 is the program counter, PC.
298    There are 16 special registers, P0-P15, where three of the unimplemented
299    registers, P0, P4 and P8, are reserved as zero-registers. A read from
300    any of these registers returns zero and a write has no effect. */
301 enum register_name
302 {
303 	R0,  R1,   R2,  R3,
304 	R4,  R5,   R6,  R7,
305 	R8,  R9,   R10, R11,
306 	R12, R13,  SP,  PC,
307 	P0,  VR,   P2,  P3,
308 	P4,  CCR,  P6,  MOF,
309 	P8,  IBR,  IRP, SRP,
310 	BAR, DCCR, BRP, USP
311 };
312 
313 /* The register sizes of the registers in register_name. An unimplemented register
314    is designated by size 0 in this array. */
315 static int register_size[] =
316 {
317 	4, 4, 4, 4,
318 	4, 4, 4, 4,
319 	4, 4, 4, 4,
320 	4, 4, 4, 4,
321 	1, 1, 0, 0,
322 	2, 2, 0, 4,
323 	4, 4, 4, 4,
324 	4, 4, 4, 4
325 };
326 
327 /* Contains the register image of the executing thread in the assembler
328    part of the code in order to avoid horrible addressing modes. */
329 registers cris_reg;
330 
331 /* FIXME: Should this be used? Delete otherwise. */
332 /* Contains the assumed consistency state of the register image. Uses the
333    enum error_type for state information. */
334 static int consistency_status = SUCCESS;
335 
336 /********************************** Handle exceptions ************************/
337 /* The variable cris_reg contains the register image associated with the
338    current_thread_c variable. It is a complete register image created at
339    entry. The reg_g contains a register image of a task where the general
340    registers are taken from the stack and all special registers are taken
341    from the executing task. It is associated with current_thread_g and used
342    in order to provide access mainly for 'g', 'G' and 'P'.
343 */
344 
345 /********************************** Breakpoint *******************************/
346 /* Use an internal stack in the breakpoint and interrupt response routines */
347 #define INTERNAL_STACK_SIZE 1024
348 char internal_stack[INTERNAL_STACK_SIZE];
349 
350 /* Due to the breakpoint return pointer, a state variable is needed to keep
351    track of whether it is a static (compiled) or dynamic (gdb-invoked)
352    breakpoint to be handled. A static breakpoint uses the content of register
353    BRP as it is whereas a dynamic breakpoint requires subtraction with 2
354    in order to execute the instruction. The first breakpoint is static. */
355 static unsigned char __used is_dyn_brkp;
356 
357 /********************************* String library ****************************/
358 /* Single-step over library functions creates trap loops. */
359 
360 /* Copy char s2[] to s1[]. */
361 static char*
gdb_cris_strcpy(char * s1,const char * s2)362 gdb_cris_strcpy (char *s1, const char *s2)
363 {
364 	char *s = s1;
365 
366 	for (s = s1; (*s++ = *s2++) != '\0'; )
367 		;
368 	return (s1);
369 }
370 
371 /* Find length of s[]. */
372 static int
gdb_cris_strlen(const char * s)373 gdb_cris_strlen (const char *s)
374 {
375 	const char *sc;
376 
377 	for (sc = s; *sc != '\0'; sc++)
378 		;
379 	return (sc - s);
380 }
381 
382 /* Find first occurrence of c in s[n]. */
383 static void*
gdb_cris_memchr(const void * s,int c,int n)384 gdb_cris_memchr (const void *s, int c, int n)
385 {
386 	const unsigned char uc = c;
387 	const unsigned char *su;
388 
389 	for (su = s; 0 < n; ++su, --n)
390 		if (*su == uc)
391 			return ((void *)su);
392 	return (NULL);
393 }
394 /******************************* Standard library ****************************/
395 /* Single-step over library functions creates trap loops. */
396 /* Convert string to long. */
397 static int
gdb_cris_strtol(const char * s,char ** endptr,int base)398 gdb_cris_strtol (const char *s, char **endptr, int base)
399 {
400 	char *s1;
401 	char *sd;
402 	int x = 0;
403 
404 	for (s1 = (char*)s; (sd = gdb_cris_memchr(hex_asc, *s1, base)) != NULL; ++s1)
405 		x = x * base + (sd - hex_asc);
406 
407         if (endptr)
408         {
409                 /* Unconverted suffix is stored in endptr unless endptr is NULL. */
410                 *endptr = s1;
411         }
412 
413 	return x;
414 }
415 
416 /********************************** Packet I/O ******************************/
417 
418 /* Convert the memory, pointed to by mem into hexadecimal representation.
419    Put the result in buf, and return a pointer to the last character
420    in buf (null). */
421 
422 static char *
mem2hex(char * buf,unsigned char * mem,int count)423 mem2hex(char *buf, unsigned char *mem, int count)
424 {
425 	int i;
426 	int ch;
427 
428         if (mem == NULL) {
429                 /* Bogus read from m0. FIXME: What constitutes a valid address? */
430                 for (i = 0; i < count; i++) {
431                         *buf++ = '0';
432                         *buf++ = '0';
433                 }
434         } else {
435                 /* Valid mem address. */
436                 for (i = 0; i < count; i++) {
437                         ch = *mem++;
438 			buf = hex_byte_pack(buf, ch);
439                 }
440         }
441 
442         /* Terminate properly. */
443 	*buf = '\0';
444 	return (buf);
445 }
446 
447 /* Put the content of the array, in binary representation, pointed to by buf
448    into memory pointed to by mem, and return a pointer to the character after
449    the last byte written.
450    Gdb will escape $, #, and the escape char (0x7d). */
451 static unsigned char*
bin2mem(unsigned char * mem,unsigned char * buf,int count)452 bin2mem (unsigned char *mem, unsigned char *buf, int count)
453 {
454 	int i;
455 	unsigned char *next;
456 	for (i = 0; i < count; i++) {
457 		/* Check for any escaped characters. Be paranoid and
458 		   only unescape chars that should be escaped. */
459 		if (*buf == 0x7d) {
460 			next = buf + 1;
461 			if (*next == 0x3 || *next == 0x4 || *next == 0x5D) /* #, $, ESC */
462 				{
463 					buf++;
464 					*buf += 0x20;
465 				}
466 		}
467 		*mem++ = *buf++;
468 	}
469 	return (mem);
470 }
471 
472 /* Await the sequence $<data>#<checksum> and store <data> in the array buffer
473    returned. */
474 static void
getpacket(char * buffer)475 getpacket (char *buffer)
476 {
477 	unsigned char checksum;
478 	unsigned char xmitcsum;
479 	int i;
480 	int count;
481 	char ch;
482 	do {
483 		while ((ch = getDebugChar ()) != '$')
484 			/* Wait for the start character $ and ignore all other characters */;
485 		checksum = 0;
486 		xmitcsum = -1;
487 		count = 0;
488 		/* Read until a # or the end of the buffer is reached */
489 		while (count < BUFMAX - 1) {
490 			ch = getDebugChar ();
491 			if (ch == '#')
492 				break;
493 			checksum = checksum + ch;
494 			buffer[count] = ch;
495 			count = count + 1;
496 		}
497 		buffer[count] = '\0';
498 
499 		if (ch == '#') {
500 			xmitcsum = hex_to_bin(getDebugChar()) << 4;
501 			xmitcsum += hex_to_bin(getDebugChar());
502 			if (checksum != xmitcsum) {
503 				/* Wrong checksum */
504 				putDebugChar ('-');
505 			}
506 			else {
507 				/* Correct checksum */
508 				putDebugChar ('+');
509 				/* If sequence characters are received, reply with them */
510 				if (buffer[2] == ':') {
511 					putDebugChar (buffer[0]);
512 					putDebugChar (buffer[1]);
513 					/* Remove the sequence characters from the buffer */
514 					count = gdb_cris_strlen (buffer);
515 					for (i = 3; i <= count; i++)
516 						buffer[i - 3] = buffer[i];
517 				}
518 			}
519 		}
520 	} while (checksum != xmitcsum);
521 }
522 
523 /* Send $<data>#<checksum> from the <data> in the array buffer. */
524 
525 static void
putpacket(char * buffer)526 putpacket(char *buffer)
527 {
528 	int checksum;
529 	int runlen;
530 	int encode;
531 
532 	do {
533 		char *src = buffer;
534 		putDebugChar ('$');
535 		checksum = 0;
536 		while (*src) {
537 			/* Do run length encoding */
538 			putDebugChar (*src);
539 			checksum += *src;
540 			runlen = 0;
541 			while (runlen < RUNLENMAX && *src == src[runlen]) {
542 				runlen++;
543 			}
544 			if (runlen > 3) {
545 				/* Got a useful amount */
546 				putDebugChar ('*');
547 				checksum += '*';
548 				encode = runlen + ' ' - 4;
549 				putDebugChar (encode);
550 				checksum += encode;
551 				src += runlen;
552 			}
553 			else {
554 				src++;
555 			}
556 		}
557 		putDebugChar('#');
558 		putDebugChar(hex_asc_hi(checksum));
559 		putDebugChar(hex_asc_lo(checksum));
560 	} while(kgdb_started && (getDebugChar() != '+'));
561 }
562 
563 /* The string str is prepended with the GDB printout token and sent. Required
564    in traditional implementations. */
565 void
putDebugString(const unsigned char * str,int length)566 putDebugString (const unsigned char *str, int length)
567 {
568         remcomOutBuffer[0] = 'O';
569         mem2hex(&remcomOutBuffer[1], (unsigned char *)str, length);
570         putpacket(remcomOutBuffer);
571 }
572 
573 /********************************* Register image ****************************/
574 /* Write a value to a specified register in the register image of the current
575    thread. Returns status code SUCCESS, E02, E05 or E08. */
576 static int
write_register(int regno,char * val)577 write_register (int regno, char *val)
578 {
579 	int status = SUCCESS;
580 	registers *current_reg = &cris_reg;
581 
582         if (regno >= R0 && regno <= PC) {
583 		/* 32-bit register with simple offset. */
584 		if (hex2bin((unsigned char *)current_reg + regno * sizeof(unsigned int),
585 			    val, sizeof(unsigned int)))
586 			status = E08;
587 	}
588         else if (regno == P0 || regno == VR || regno == P4 || regno == P8) {
589 		/* Do not support read-only registers. */
590 		status = E02;
591 	}
592         else if (regno == CCR) {
593 		/* 16 bit register with complex offset. (P4 is read-only, P6 is not implemented,
594                    and P7 (MOF) is 32 bits in ETRAX 100LX. */
595 		if (hex2bin((unsigned char *)&(current_reg->ccr) + (regno-CCR) * sizeof(unsigned short),
596 			    val, sizeof(unsigned short)))
597 			status = E08;
598 	}
599 	else if (regno >= MOF && regno <= USP) {
600 		/* 32 bit register with complex offset.  (P8 has been taken care of.) */
601 		if (hex2bin((unsigned char *)&(current_reg->ibr) + (regno-IBR) * sizeof(unsigned int),
602 			    val, sizeof(unsigned int)))
603 			status = E08;
604 	}
605         else {
606 		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
607 		status = E05;
608 	}
609 	return status;
610 }
611 
612 /* Read a value from a specified register in the register image. Returns the
613    value in the register or -1 for non-implemented registers.
614    Should check consistency_status after a call which may be E05 after changes
615    in the implementation. */
616 static int
read_register(char regno,unsigned int * valptr)617 read_register (char regno, unsigned int *valptr)
618 {
619 	registers *current_reg = &cris_reg;
620 
621 	if (regno >= R0 && regno <= PC) {
622 		/* 32-bit register with simple offset. */
623 		*valptr = *(unsigned int *)((char *)current_reg + regno * sizeof(unsigned int));
624                 return SUCCESS;
625 	}
626 	else if (regno == P0 || regno == VR) {
627 		/* 8 bit register with complex offset. */
628 		*valptr = (unsigned int)(*(unsigned char *)
629                                          ((char *)&(current_reg->p0) + (regno-P0) * sizeof(char)));
630                 return SUCCESS;
631 	}
632 	else if (regno == P4 || regno == CCR) {
633 		/* 16 bit register with complex offset. */
634 		*valptr = (unsigned int)(*(unsigned short *)
635                                          ((char *)&(current_reg->p4) + (regno-P4) * sizeof(unsigned short)));
636                 return SUCCESS;
637 	}
638 	else if (regno >= MOF && regno <= USP) {
639 		/* 32 bit register with complex offset. */
640 		*valptr = *(unsigned int *)((char *)&(current_reg->p8)
641                                             + (regno-P8) * sizeof(unsigned int));
642                 return SUCCESS;
643 	}
644 	else {
645 		/* Do not support nonexisting or unimplemented registers (P2, P3, and P6). */
646 		consistency_status = E05;
647 		return E05;
648 	}
649 }
650 
651 /********************************** Handle exceptions ************************/
652 /* Build and send a response packet in order to inform the host the
653    stub is stopped. TAAn...:r...;n...:r...;n...:r...;
654                     AA = signal number
655                     n... = register number (hex)
656                     r... = register contents
657                     n... = `thread'
658                     r... = thread process ID.  This is a hex integer.
659                     n... = other string not starting with valid hex digit.
660                     gdb should ignore this n,r pair and go on to the next.
661                     This way we can extend the protocol. */
662 static void
stub_is_stopped(int sigval)663 stub_is_stopped(int sigval)
664 {
665 	char *ptr = remcomOutBuffer;
666 	int regno;
667 
668 	unsigned int reg_cont;
669 	int status;
670 
671 	/* Send trap type (converted to signal) */
672 
673 	*ptr++ = 'T';
674 	ptr = hex_byte_pack(ptr, sigval);
675 
676 	/* Send register contents. We probably only need to send the
677 	 * PC, frame pointer and stack pointer here. Other registers will be
678 	 * explicitly asked for. But for now, send all.
679 	 */
680 
681 	for (regno = R0; regno <= USP; regno++) {
682 		/* Store n...:r...; for the registers in the buffer. */
683 
684                 status = read_register (regno, &reg_cont);
685 
686 		if (status == SUCCESS) {
687 			ptr = hex_byte_pack(ptr, regno);
688                         *ptr++ = ':';
689 
690                         ptr = mem2hex(ptr, (unsigned char *)&reg_cont,
691                                       register_size[regno]);
692                         *ptr++ = ';';
693                 }
694 
695 	}
696 
697 	/* null-terminate and send it off */
698 
699 	*ptr = 0;
700 
701 	putpacket (remcomOutBuffer);
702 }
703 
704 /* Performs a complete re-start from scratch. */
705 static void
kill_restart(void)706 kill_restart (void)
707 {
708 	machine_restart("");
709 }
710 
711 /* All expected commands are sent from remote.c. Send a response according
712    to the description in remote.c. */
713 void
handle_exception(int sigval)714 handle_exception (int sigval)
715 {
716 	/* Send response. */
717 
718 	stub_is_stopped (sigval);
719 
720 	for (;;) {
721 		remcomOutBuffer[0] = '\0';
722 		getpacket (remcomInBuffer);
723 		switch (remcomInBuffer[0]) {
724 			case 'g':
725 				/* Read registers: g
726 				   Success: Each byte of register data is described by two hex digits.
727 				   Registers are in the internal order for GDB, and the bytes
728 				   in a register  are in the same order the machine uses.
729 				   Failure: void. */
730 
731 				mem2hex(remcomOutBuffer, (char *)&cris_reg, sizeof(registers));
732 				break;
733 
734 			case 'G':
735 				/* Write registers. GXX..XX
736 				   Each byte of register data  is described by two hex digits.
737 				   Success: OK
738 				   Failure: E08. */
739 				if (hex2bin((char *)&cris_reg, &remcomInBuffer[1], sizeof(registers)))
740 					gdb_cris_strcpy (remcomOutBuffer, error_message[E08]);
741 				else
742 					gdb_cris_strcpy (remcomOutBuffer, "OK");
743 				break;
744 
745 			case 'P':
746 				/* Write register. Pn...=r...
747 				   Write register n..., hex value without 0x, with value r...,
748 				   which contains a hex value without 0x and two hex digits
749 				   for each byte in the register (target byte order). P1f=11223344 means
750 				   set register 31 to 44332211.
751 				   Success: OK
752 				   Failure: E02, E05, E08 */
753 				{
754 					char *suffix;
755 					int regno = gdb_cris_strtol (&remcomInBuffer[1], &suffix, 16);
756 					int status;
757 					status = write_register (regno, suffix+1);
758 
759 					switch (status) {
760 						case E02:
761 							/* Do not support read-only registers. */
762 							gdb_cris_strcpy (remcomOutBuffer, error_message[E02]);
763 							break;
764 						case E05:
765 							/* Do not support non-existing registers. */
766 							gdb_cris_strcpy (remcomOutBuffer, error_message[E05]);
767 							break;
768 						case E07:
769 							/* Do not support non-existing registers on the stack. */
770 							gdb_cris_strcpy (remcomOutBuffer, error_message[E07]);
771 							break;
772 						case E08:
773 							/* Invalid parameter. */
774 							gdb_cris_strcpy (remcomOutBuffer, error_message[E08]);
775 							break;
776 						default:
777 							/* Valid register number. */
778 							gdb_cris_strcpy (remcomOutBuffer, "OK");
779 							break;
780 					}
781 				}
782 				break;
783 
784 			case 'm':
785 				/* Read from memory. mAA..AA,LLLL
786 				   AA..AA is the address and LLLL is the length.
787 				   Success: XX..XX is the memory content.  Can be fewer bytes than
788 				   requested if only part of the data may be read. m6000120a,6c means
789 				   retrieve 108 byte from base address 6000120a.
790 				   Failure: void. */
791 				{
792                                         char *suffix;
793 					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
794                                                                                                &suffix, 16);                                        int length = gdb_cris_strtol(suffix+1, 0, 16);
795 
796                                         mem2hex(remcomOutBuffer, addr, length);
797                                 }
798 				break;
799 
800 			case 'X':
801 				/* Write to memory. XAA..AA,LLLL:XX..XX
802 				   AA..AA is the start address,  LLLL is the number of bytes, and
803 				   XX..XX is the binary data.
804 				   Success: OK
805 				   Failure: void. */
806 			case 'M':
807 				/* Write to memory. MAA..AA,LLLL:XX..XX
808 				   AA..AA is the start address,  LLLL is the number of bytes, and
809 				   XX..XX is the hexadecimal data.
810 				   Success: OK
811 				   Failure: E08. */
812 				{
813 					char *lenptr;
814 					char *dataptr;
815 					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&remcomInBuffer[1],
816 										      &lenptr, 16);
817 					int length = gdb_cris_strtol(lenptr+1, &dataptr, 16);
818 					if (*lenptr == ',' && *dataptr == ':') {
819 						if (remcomInBuffer[0] == 'M') {
820 							if (hex2bin(addr, dataptr + 1, length))
821 								gdb_cris_strcpy (remcomOutBuffer, error_message[E08]);
822 							else
823 								gdb_cris_strcpy (remcomOutBuffer, "OK");
824 						} else /* X */ {
825 							bin2mem(addr, dataptr + 1, length);
826 							gdb_cris_strcpy (remcomOutBuffer, "OK");
827 						}
828 					} else {
829 						gdb_cris_strcpy (remcomOutBuffer, error_message[E06]);
830 					}
831 				}
832 				break;
833 
834 			case 'c':
835 				/* Continue execution. cAA..AA
836 				   AA..AA is the address where execution is resumed. If AA..AA is
837 				   omitted, resume at the present address.
838 				   Success: return to the executing thread.
839 				   Failure: will never know. */
840 				if (remcomInBuffer[1] != '\0') {
841 					cris_reg.pc = gdb_cris_strtol (&remcomInBuffer[1], 0, 16);
842 				}
843 				enableDebugIRQ();
844 				return;
845 
846 			case 's':
847 				/* Step. sAA..AA
848 				   AA..AA is the address where execution is resumed. If AA..AA is
849 				   omitted, resume at the present address. Success: return to the
850 				   executing thread. Failure: will never know.
851 
852 				   Should never be invoked. The single-step is implemented on
853 				   the host side. If ever invoked, it is an internal error E04. */
854 				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
855 				putpacket (remcomOutBuffer);
856 				return;
857 
858 			case '?':
859 				/* The last signal which caused a stop. ?
860 				   Success: SAA, where AA is the signal number.
861 				   Failure: void. */
862 				remcomOutBuffer[0] = 'S';
863 				remcomOutBuffer[1] = hex_asc_hi(sigval);
864 				remcomOutBuffer[2] = hex_asc_lo(sigval);
865 				remcomOutBuffer[3] = 0;
866 				break;
867 
868 			case 'D':
869 				/* Detach from host. D
870 				   Success: OK, and return to the executing thread.
871 				   Failure: will never know */
872 				putpacket ("OK");
873 				return;
874 
875 			case 'k':
876 			case 'r':
877 				/* kill request or reset request.
878 				   Success: restart of target.
879 				   Failure: will never know. */
880 				kill_restart ();
881 				break;
882 
883 			case 'C':
884 			case 'S':
885 			case '!':
886 			case 'R':
887 			case 'd':
888 				/* Continue with signal sig. Csig;AA..AA
889 				   Step with signal sig. Ssig;AA..AA
890 				   Use the extended remote protocol. !
891 				   Restart the target system. R0
892 				   Toggle debug flag. d
893 				   Search backwards. tAA:PP,MM
894 				   Not supported: E04 */
895 				gdb_cris_strcpy (remcomOutBuffer, error_message[E04]);
896 				break;
897 
898 			default:
899 				/* The stub should ignore other request and send an empty
900 				   response ($#<checksum>). This way we can extend the protocol and GDB
901 				   can tell whether the stub it is talking to uses the old or the new. */
902 				remcomOutBuffer[0] = 0;
903 				break;
904 		}
905 		putpacket(remcomOutBuffer);
906 	}
907 }
908 
909 /********************************** Breakpoint *******************************/
910 /* The hook for both a static (compiled) and a dynamic breakpoint set by GDB.
911    An internal stack is used by the stub. The register image of the caller is
912    stored in the structure register_image.
913    Interactive communication with the host is handled by handle_exception and
914    finally the register image is restored. */
915 
916 void kgdb_handle_breakpoint(void);
917 
918 asm ("\n"
919 "  .global kgdb_handle_breakpoint\n"
920 "kgdb_handle_breakpoint:\n"
921 ";;\n"
922 ";; Response to the break-instruction\n"
923 ";;\n"
924 ";; Create a register image of the caller\n"
925 ";;\n"
926 "  move     $dccr,[cris_reg+0x5E] ; Save the flags in DCCR before disable interrupts\n"
927 "  di                        ; Disable interrupts\n"
928 "  move.d   $r0,[cris_reg]        ; Save R0\n"
929 "  move.d   $r1,[cris_reg+0x04]   ; Save R1\n"
930 "  move.d   $r2,[cris_reg+0x08]   ; Save R2\n"
931 "  move.d   $r3,[cris_reg+0x0C]   ; Save R3\n"
932 "  move.d   $r4,[cris_reg+0x10]   ; Save R4\n"
933 "  move.d   $r5,[cris_reg+0x14]   ; Save R5\n"
934 "  move.d   $r6,[cris_reg+0x18]   ; Save R6\n"
935 "  move.d   $r7,[cris_reg+0x1C]   ; Save R7\n"
936 "  move.d   $r8,[cris_reg+0x20]   ; Save R8\n"
937 "  move.d   $r9,[cris_reg+0x24]   ; Save R9\n"
938 "  move.d   $r10,[cris_reg+0x28]  ; Save R10\n"
939 "  move.d   $r11,[cris_reg+0x2C]  ; Save R11\n"
940 "  move.d   $r12,[cris_reg+0x30]  ; Save R12\n"
941 "  move.d   $r13,[cris_reg+0x34]  ; Save R13\n"
942 "  move.d   $sp,[cris_reg+0x38]   ; Save SP (R14)\n"
943 ";; Due to the old assembler-versions BRP might not be recognized\n"
944 "  .word 0xE670              ; move brp,$r0\n"
945 "  subq     2,$r0             ; Set to address of previous instruction.\n"
946 "  move.d   $r0,[cris_reg+0x3c]   ; Save the address in PC (R15)\n"
947 "  clear.b  [cris_reg+0x40]      ; Clear P0\n"
948 "  move     $vr,[cris_reg+0x41]   ; Save special register P1\n"
949 "  clear.w  [cris_reg+0x42]      ; Clear P4\n"
950 "  move     $ccr,[cris_reg+0x44]  ; Save special register CCR\n"
951 "  move     $mof,[cris_reg+0x46]  ; P7\n"
952 "  clear.d  [cris_reg+0x4A]      ; Clear P8\n"
953 "  move     $ibr,[cris_reg+0x4E]  ; P9,\n"
954 "  move     $irp,[cris_reg+0x52]  ; P10,\n"
955 "  move     $srp,[cris_reg+0x56]  ; P11,\n"
956 "  move     $bar,[cris_reg+0x5A]  ; P12,\n"
957 "                            ; P13, register DCCR already saved\n"
958 ";; Due to the old assembler-versions BRP might not be recognized\n"
959 "  .word 0xE670              ; move brp,r0\n"
960 ";; Static (compiled) breakpoints must return to the next instruction in order\n"
961 ";; to avoid infinite loops. Dynamic (gdb-invoked) must restore the instruction\n"
962 ";; in order to execute it when execution is continued.\n"
963 "  test.b   [is_dyn_brkp]    ; Is this a dynamic breakpoint?\n"
964 "  beq      is_static         ; No, a static breakpoint\n"
965 "  nop\n"
966 "  subq     2,$r0              ; rerun the instruction the break replaced\n"
967 "is_static:\n"
968 "  moveq    1,$r1\n"
969 "  move.b   $r1,[is_dyn_brkp] ; Set the state variable to dynamic breakpoint\n"
970 "  move.d   $r0,[cris_reg+0x62]    ; Save the return address in BRP\n"
971 "  move     $usp,[cris_reg+0x66]   ; USP\n"
972 ";;\n"
973 ";; Handle the communication\n"
974 ";;\n"
975 "  move.d   internal_stack+1020,$sp ; Use the internal stack which grows upward\n"
976 "  moveq    5,$r10                   ; SIGTRAP\n"
977 "  jsr      handle_exception       ; Interactive routine\n"
978 ";;\n"
979 ";; Return to the caller\n"
980 ";;\n"
981 "   move.d  [cris_reg],$r0         ; Restore R0\n"
982 "   move.d  [cris_reg+0x04],$r1    ; Restore R1\n"
983 "   move.d  [cris_reg+0x08],$r2    ; Restore R2\n"
984 "   move.d  [cris_reg+0x0C],$r3    ; Restore R3\n"
985 "   move.d  [cris_reg+0x10],$r4    ; Restore R4\n"
986 "   move.d  [cris_reg+0x14],$r5    ; Restore R5\n"
987 "   move.d  [cris_reg+0x18],$r6    ; Restore R6\n"
988 "   move.d  [cris_reg+0x1C],$r7    ; Restore R7\n"
989 "   move.d  [cris_reg+0x20],$r8    ; Restore R8\n"
990 "   move.d  [cris_reg+0x24],$r9    ; Restore R9\n"
991 "   move.d  [cris_reg+0x28],$r10   ; Restore R10\n"
992 "   move.d  [cris_reg+0x2C],$r11   ; Restore R11\n"
993 "   move.d  [cris_reg+0x30],$r12   ; Restore R12\n"
994 "   move.d  [cris_reg+0x34],$r13   ; Restore R13\n"
995 ";;\n"
996 ";; FIXME: Which registers should be restored?\n"
997 ";;\n"
998 "   move.d  [cris_reg+0x38],$sp    ; Restore SP (R14)\n"
999 "   move    [cris_reg+0x56],$srp   ; Restore the subroutine return pointer.\n"
1000 "   move    [cris_reg+0x5E],$dccr  ; Restore DCCR\n"
1001 "   move    [cris_reg+0x66],$usp   ; Restore USP\n"
1002 "   jump    [cris_reg+0x62]       ; A jump to the content in register BRP works.\n"
1003 "   nop                       ;\n"
1004 "\n");
1005 
1006 /* The hook for an interrupt generated by GDB. An internal stack is used
1007    by the stub. The register image of the caller is stored in the structure
1008    register_image. Interactive communication with the host is handled by
1009    handle_exception and finally the register image is restored. Due to the
1010    old assembler which does not recognise the break instruction and the
1011    breakpoint return pointer hex-code is used. */
1012 
1013 void kgdb_handle_serial(void);
1014 
1015 asm ("\n"
1016 "  .global kgdb_handle_serial\n"
1017 "kgdb_handle_serial:\n"
1018 ";;\n"
1019 ";; Response to a serial interrupt\n"
1020 ";;\n"
1021 "\n"
1022 "  move     $dccr,[cris_reg+0x5E] ; Save the flags in DCCR\n"
1023 "  di                        ; Disable interrupts\n"
1024 "  move.d   $r0,[cris_reg]        ; Save R0\n"
1025 "  move.d   $r1,[cris_reg+0x04]   ; Save R1\n"
1026 "  move.d   $r2,[cris_reg+0x08]   ; Save R2\n"
1027 "  move.d   $r3,[cris_reg+0x0C]   ; Save R3\n"
1028 "  move.d   $r4,[cris_reg+0x10]   ; Save R4\n"
1029 "  move.d   $r5,[cris_reg+0x14]   ; Save R5\n"
1030 "  move.d   $r6,[cris_reg+0x18]   ; Save R6\n"
1031 "  move.d   $r7,[cris_reg+0x1C]   ; Save R7\n"
1032 "  move.d   $r8,[cris_reg+0x20]   ; Save R8\n"
1033 "  move.d   $r9,[cris_reg+0x24]   ; Save R9\n"
1034 "  move.d   $r10,[cris_reg+0x28]  ; Save R10\n"
1035 "  move.d   $r11,[cris_reg+0x2C]  ; Save R11\n"
1036 "  move.d   $r12,[cris_reg+0x30]  ; Save R12\n"
1037 "  move.d   $r13,[cris_reg+0x34]  ; Save R13\n"
1038 "  move.d   $sp,[cris_reg+0x38]   ; Save SP (R14)\n"
1039 "  move     $irp,[cris_reg+0x3c]  ; Save the address in PC (R15)\n"
1040 "  clear.b  [cris_reg+0x40]      ; Clear P0\n"
1041 "  move     $vr,[cris_reg+0x41]   ; Save special register P1,\n"
1042 "  clear.w  [cris_reg+0x42]      ; Clear P4\n"
1043 "  move     $ccr,[cris_reg+0x44]  ; Save special register CCR\n"
1044 "  move     $mof,[cris_reg+0x46]  ; P7\n"
1045 "  clear.d  [cris_reg+0x4A]      ; Clear P8\n"
1046 "  move     $ibr,[cris_reg+0x4E]  ; P9,\n"
1047 "  move     $irp,[cris_reg+0x52]  ; P10,\n"
1048 "  move     $srp,[cris_reg+0x56]  ; P11,\n"
1049 "  move     $bar,[cris_reg+0x5A]  ; P12,\n"
1050 "                            ; P13, register DCCR already saved\n"
1051 ";; Due to the old assembler-versions BRP might not be recognized\n"
1052 "  .word 0xE670              ; move brp,r0\n"
1053 "  move.d   $r0,[cris_reg+0x62]   ; Save the return address in BRP\n"
1054 "  move     $usp,[cris_reg+0x66]  ; USP\n"
1055 "\n"
1056 ";; get the serial character (from debugport.c) and check if it is a ctrl-c\n"
1057 "\n"
1058 "  jsr getDebugChar\n"
1059 "  cmp.b 3, $r10\n"
1060 "  bne goback\n"
1061 "  nop\n"
1062 "\n"
1063 "  move.d  [cris_reg+0x5E], $r10		; Get DCCR\n"
1064 "  btstq	   8, $r10			; Test the U-flag.\n"
1065 "  bmi	   goback\n"
1066 "  nop\n"
1067 "\n"
1068 ";;\n"
1069 ";; Handle the communication\n"
1070 ";;\n"
1071 "  move.d   internal_stack+1020,$sp ; Use the internal stack\n"
1072 "  moveq    2,$r10                   ; SIGINT\n"
1073 "  jsr      handle_exception       ; Interactive routine\n"
1074 "\n"
1075 "goback:\n"
1076 ";;\n"
1077 ";; Return to the caller\n"
1078 ";;\n"
1079 "   move.d  [cris_reg],$r0         ; Restore R0\n"
1080 "   move.d  [cris_reg+0x04],$r1    ; Restore R1\n"
1081 "   move.d  [cris_reg+0x08],$r2    ; Restore R2\n"
1082 "   move.d  [cris_reg+0x0C],$r3    ; Restore R3\n"
1083 "   move.d  [cris_reg+0x10],$r4    ; Restore R4\n"
1084 "   move.d  [cris_reg+0x14],$r5    ; Restore R5\n"
1085 "   move.d  [cris_reg+0x18],$r6    ; Restore R6\n"
1086 "   move.d  [cris_reg+0x1C],$r7    ; Restore R7\n"
1087 "   move.d  [cris_reg+0x20],$r8    ; Restore R8\n"
1088 "   move.d  [cris_reg+0x24],$r9    ; Restore R9\n"
1089 "   move.d  [cris_reg+0x28],$r10   ; Restore R10\n"
1090 "   move.d  [cris_reg+0x2C],$r11   ; Restore R11\n"
1091 "   move.d  [cris_reg+0x30],$r12   ; Restore R12\n"
1092 "   move.d  [cris_reg+0x34],$r13   ; Restore R13\n"
1093 ";;\n"
1094 ";; FIXME: Which registers should be restored?\n"
1095 ";;\n"
1096 "   move.d  [cris_reg+0x38],$sp    ; Restore SP (R14)\n"
1097 "   move    [cris_reg+0x56],$srp   ; Restore the subroutine return pointer.\n"
1098 "   move    [cris_reg+0x5E],$dccr  ; Restore DCCR\n"
1099 "   move    [cris_reg+0x66],$usp   ; Restore USP\n"
1100 "   reti                      ; Return from the interrupt routine\n"
1101 "   nop\n"
1102 "\n");
1103 
1104 /* Use this static breakpoint in the start-up only. */
1105 
1106 void
breakpoint(void)1107 breakpoint(void)
1108 {
1109 	kgdb_started = 1;
1110 	is_dyn_brkp = 0;     /* This is a static, not a dynamic breakpoint. */
1111 	__asm__ volatile ("break 8"); /* Jump to handle_breakpoint. */
1112 }
1113 
1114 /* initialize kgdb. doesn't break into the debugger, but sets up irq and ports */
1115 
1116 void
kgdb_init(void)1117 kgdb_init(void)
1118 {
1119 	/* could initialize debug port as well but it's done in head.S already... */
1120 
1121         /* breakpoint handler is now set in irq.c */
1122 	set_int_vector(8, kgdb_handle_serial);
1123 
1124 	enableDebugIRQ();
1125 }
1126 
1127 /****************************** End of file **********************************/
1128