1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright SUSE Linux Products GmbH 2010
16 *
17 * Authors: Alexander Graf <agraf@suse.de>
18 */
19
20 #ifndef __ASM_KVM_BOOK3S_64_H__
21 #define __ASM_KVM_BOOK3S_64_H__
22
23 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
svcpu_get(struct kvm_vcpu * vcpu)24 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
25 {
26 preempt_disable();
27 return &get_paca()->shadow_vcpu;
28 }
29
svcpu_put(struct kvmppc_book3s_shadow_vcpu * svcpu)30 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
31 {
32 preempt_enable();
33 }
34 #endif
35
36 #define SPAPR_TCE_SHIFT 12
37
38 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
39 #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
40 #endif
41
42 #define VRMA_VSID 0x1ffffffUL /* 1TB VSID reserved for VRMA */
43
44 /*
45 * We use a lock bit in HPTE dword 0 to synchronize updates and
46 * accesses to each HPTE, and another bit to indicate non-present
47 * HPTEs.
48 */
49 #define HPTE_V_HVLOCK 0x40UL
50 #define HPTE_V_ABSENT 0x20UL
51
52 /*
53 * We use this bit in the guest_rpte field of the revmap entry
54 * to indicate a modified HPTE.
55 */
56 #define HPTE_GR_MODIFIED (1ul << 62)
57
58 /* These bits are reserved in the guest view of the HPTE */
59 #define HPTE_GR_RESERVED HPTE_GR_MODIFIED
60
try_lock_hpte(__be64 * hpte,unsigned long bits)61 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
62 {
63 unsigned long tmp, old;
64 __be64 be_lockbit, be_bits;
65
66 /*
67 * We load/store in native endian, but the HTAB is in big endian. If
68 * we byte swap all data we apply on the PTE we're implicitly correct
69 * again.
70 */
71 be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
72 be_bits = cpu_to_be64(bits);
73
74 asm volatile(" ldarx %0,0,%2\n"
75 " and. %1,%0,%3\n"
76 " bne 2f\n"
77 " or %0,%0,%4\n"
78 " stdcx. %0,0,%2\n"
79 " beq+ 2f\n"
80 " mr %1,%3\n"
81 "2: isync"
82 : "=&r" (tmp), "=&r" (old)
83 : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
84 : "cc", "memory");
85 return old == 0;
86 }
87
unlock_hpte(__be64 * hpte,unsigned long hpte_v)88 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
89 {
90 hpte_v &= ~HPTE_V_HVLOCK;
91 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
92 hpte[0] = cpu_to_be64(hpte_v);
93 }
94
95 /* Without barrier */
__unlock_hpte(__be64 * hpte,unsigned long hpte_v)96 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
97 {
98 hpte_v &= ~HPTE_V_HVLOCK;
99 hpte[0] = cpu_to_be64(hpte_v);
100 }
101
__hpte_actual_psize(unsigned int lp,int psize)102 static inline int __hpte_actual_psize(unsigned int lp, int psize)
103 {
104 int i, shift;
105 unsigned int mask;
106
107 /* start from 1 ignoring MMU_PAGE_4K */
108 for (i = 1; i < MMU_PAGE_COUNT; i++) {
109
110 /* invalid penc */
111 if (mmu_psize_defs[psize].penc[i] == -1)
112 continue;
113 /*
114 * encoding bits per actual page size
115 * PTE LP actual page size
116 * rrrr rrrz >=8KB
117 * rrrr rrzz >=16KB
118 * rrrr rzzz >=32KB
119 * rrrr zzzz >=64KB
120 * .......
121 */
122 shift = mmu_psize_defs[i].shift - LP_SHIFT;
123 if (shift > LP_BITS)
124 shift = LP_BITS;
125 mask = (1 << shift) - 1;
126 if ((lp & mask) == mmu_psize_defs[psize].penc[i])
127 return i;
128 }
129 return -1;
130 }
131
compute_tlbie_rb(unsigned long v,unsigned long r,unsigned long pte_index)132 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
133 unsigned long pte_index)
134 {
135 int b_psize = MMU_PAGE_4K, a_psize = MMU_PAGE_4K;
136 unsigned int penc;
137 unsigned long rb = 0, va_low, sllp;
138 unsigned int lp = (r >> LP_SHIFT) & ((1 << LP_BITS) - 1);
139
140 if (v & HPTE_V_LARGE) {
141 for (b_psize = 0; b_psize < MMU_PAGE_COUNT; b_psize++) {
142
143 /* valid entries have a shift value */
144 if (!mmu_psize_defs[b_psize].shift)
145 continue;
146
147 a_psize = __hpte_actual_psize(lp, b_psize);
148 if (a_psize != -1)
149 break;
150 }
151 }
152 /*
153 * Ignore the top 14 bits of va
154 * v have top two bits covering segment size, hence move
155 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
156 * AVA field in v also have the lower 23 bits ignored.
157 * For base page size 4K we need 14 .. 65 bits (so need to
158 * collect extra 11 bits)
159 * For others we need 14..14+i
160 */
161 /* This covers 14..54 bits of va*/
162 rb = (v & ~0x7fUL) << 16; /* AVA field */
163
164 rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
165 /*
166 * AVA in v had cleared lower 23 bits. We need to derive
167 * that from pteg index
168 */
169 va_low = pte_index >> 3;
170 if (v & HPTE_V_SECONDARY)
171 va_low = ~va_low;
172 /*
173 * get the vpn bits from va_low using reverse of hashing.
174 * In v we have va with 23 bits dropped and then left shifted
175 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
176 * right shift it with (SID_SHIFT - (23 - 7))
177 */
178 if (!(v & HPTE_V_1TB_SEG))
179 va_low ^= v >> (SID_SHIFT - 16);
180 else
181 va_low ^= v >> (SID_SHIFT_1T - 16);
182 va_low &= 0x7ff;
183
184 switch (b_psize) {
185 case MMU_PAGE_4K:
186 sllp = ((mmu_psize_defs[a_psize].sllp & SLB_VSID_L) >> 6) |
187 ((mmu_psize_defs[a_psize].sllp & SLB_VSID_LP) >> 4);
188 rb |= sllp << 5; /* AP field */
189 rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
190 break;
191 default:
192 {
193 int aval_shift;
194 /*
195 * remaining bits of AVA/LP fields
196 * Also contain the rr bits of LP
197 */
198 rb |= (va_low << mmu_psize_defs[b_psize].shift) & 0x7ff000;
199 /*
200 * Now clear not needed LP bits based on actual psize
201 */
202 rb &= ~((1ul << mmu_psize_defs[a_psize].shift) - 1);
203 /*
204 * AVAL field 58..77 - base_page_shift bits of va
205 * we have space for 58..64 bits, Missing bits should
206 * be zero filled. +1 is to take care of L bit shift
207 */
208 aval_shift = 64 - (77 - mmu_psize_defs[b_psize].shift) + 1;
209 rb |= ((va_low << aval_shift) & 0xfe);
210
211 rb |= 1; /* L field */
212 penc = mmu_psize_defs[b_psize].penc[a_psize];
213 rb |= penc << 12; /* LP field */
214 break;
215 }
216 }
217 rb |= (v >> 54) & 0x300; /* B field */
218 return rb;
219 }
220
__hpte_page_size(unsigned long h,unsigned long l,bool is_base_size)221 static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
222 bool is_base_size)
223 {
224
225 int size, a_psize;
226 /* Look at the 8 bit LP value */
227 unsigned int lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
228
229 /* only handle 4k, 64k and 16M pages for now */
230 if (!(h & HPTE_V_LARGE))
231 return 1ul << 12;
232 else {
233 for (size = 0; size < MMU_PAGE_COUNT; size++) {
234 /* valid entries have a shift value */
235 if (!mmu_psize_defs[size].shift)
236 continue;
237
238 a_psize = __hpte_actual_psize(lp, size);
239 if (a_psize != -1) {
240 if (is_base_size)
241 return 1ul << mmu_psize_defs[size].shift;
242 return 1ul << mmu_psize_defs[a_psize].shift;
243 }
244 }
245
246 }
247 return 0;
248 }
249
hpte_page_size(unsigned long h,unsigned long l)250 static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
251 {
252 return __hpte_page_size(h, l, 0);
253 }
254
hpte_base_page_size(unsigned long h,unsigned long l)255 static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
256 {
257 return __hpte_page_size(h, l, 1);
258 }
259
hpte_rpn(unsigned long ptel,unsigned long psize)260 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
261 {
262 return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
263 }
264
hpte_is_writable(unsigned long ptel)265 static inline int hpte_is_writable(unsigned long ptel)
266 {
267 unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
268
269 return pp != PP_RXRX && pp != PP_RXXX;
270 }
271
hpte_make_readonly(unsigned long ptel)272 static inline unsigned long hpte_make_readonly(unsigned long ptel)
273 {
274 if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
275 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
276 else
277 ptel |= PP_RXRX;
278 return ptel;
279 }
280
hpte_cache_flags_ok(unsigned long ptel,unsigned long io_type)281 static inline int hpte_cache_flags_ok(unsigned long ptel, unsigned long io_type)
282 {
283 unsigned int wimg = ptel & HPTE_R_WIMG;
284
285 /* Handle SAO */
286 if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
287 cpu_has_feature(CPU_FTR_ARCH_206))
288 wimg = HPTE_R_M;
289
290 if (!io_type)
291 return wimg == HPTE_R_M;
292
293 return (wimg & (HPTE_R_W | HPTE_R_I)) == io_type;
294 }
295
296 /*
297 * If it's present and writable, atomically set dirty and referenced bits and
298 * return the PTE, otherwise return 0.
299 */
kvmppc_read_update_linux_pte(pte_t * ptep,int writing)300 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
301 {
302 pte_t old_pte, new_pte = __pte(0);
303
304 while (1) {
305 /*
306 * Make sure we don't reload from ptep
307 */
308 old_pte = READ_ONCE(*ptep);
309 /*
310 * wait until _PAGE_BUSY is clear then set it atomically
311 */
312 if (unlikely(pte_val(old_pte) & _PAGE_BUSY)) {
313 cpu_relax();
314 continue;
315 }
316 /* If pte is not present return None */
317 if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
318 return __pte(0);
319
320 new_pte = pte_mkyoung(old_pte);
321 if (writing && pte_write(old_pte))
322 new_pte = pte_mkdirty(new_pte);
323
324 if (pte_val(old_pte) == __cmpxchg_u64((unsigned long *)ptep,
325 pte_val(old_pte),
326 pte_val(new_pte))) {
327 break;
328 }
329 }
330 return new_pte;
331 }
332
333
334 /* Return HPTE cache control bits corresponding to Linux pte bits */
hpte_cache_bits(unsigned long pte_val)335 static inline unsigned long hpte_cache_bits(unsigned long pte_val)
336 {
337 #if _PAGE_NO_CACHE == HPTE_R_I && _PAGE_WRITETHRU == HPTE_R_W
338 return pte_val & (HPTE_R_W | HPTE_R_I);
339 #else
340 return ((pte_val & _PAGE_NO_CACHE) ? HPTE_R_I : 0) +
341 ((pte_val & _PAGE_WRITETHRU) ? HPTE_R_W : 0);
342 #endif
343 }
344
hpte_read_permission(unsigned long pp,unsigned long key)345 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
346 {
347 if (key)
348 return PP_RWRX <= pp && pp <= PP_RXRX;
349 return true;
350 }
351
hpte_write_permission(unsigned long pp,unsigned long key)352 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
353 {
354 if (key)
355 return pp == PP_RWRW;
356 return pp <= PP_RWRW;
357 }
358
hpte_get_skey_perm(unsigned long hpte_r,unsigned long amr)359 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
360 {
361 unsigned long skey;
362
363 skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
364 ((hpte_r & HPTE_R_KEY_LO) >> 9);
365 return (amr >> (62 - 2 * skey)) & 3;
366 }
367
lock_rmap(unsigned long * rmap)368 static inline void lock_rmap(unsigned long *rmap)
369 {
370 do {
371 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
372 cpu_relax();
373 } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
374 }
375
unlock_rmap(unsigned long * rmap)376 static inline void unlock_rmap(unsigned long *rmap)
377 {
378 __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
379 }
380
slot_is_aligned(struct kvm_memory_slot * memslot,unsigned long pagesize)381 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
382 unsigned long pagesize)
383 {
384 unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
385
386 if (pagesize <= PAGE_SIZE)
387 return true;
388 return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
389 }
390
391 /*
392 * This works for 4k, 64k and 16M pages on POWER7,
393 * and 4k and 16M pages on PPC970.
394 */
slb_pgsize_encoding(unsigned long psize)395 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
396 {
397 unsigned long senc = 0;
398
399 if (psize > 0x1000) {
400 senc = SLB_VSID_L;
401 if (psize == 0x10000)
402 senc |= SLB_VSID_LP_01;
403 }
404 return senc;
405 }
406
is_vrma_hpte(unsigned long hpte_v)407 static inline int is_vrma_hpte(unsigned long hpte_v)
408 {
409 return (hpte_v & ~0xffffffUL) ==
410 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
411 }
412
413 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
414 /*
415 * Note modification of an HPTE; set the HPTE modified bit
416 * if anyone is interested.
417 */
note_hpte_modification(struct kvm * kvm,struct revmap_entry * rev)418 static inline void note_hpte_modification(struct kvm *kvm,
419 struct revmap_entry *rev)
420 {
421 if (atomic_read(&kvm->arch.hpte_mod_interest))
422 rev->guest_rpte |= HPTE_GR_MODIFIED;
423 }
424
425 /*
426 * Like kvm_memslots(), but for use in real mode when we can't do
427 * any RCU stuff (since the secondary threads are offline from the
428 * kernel's point of view), and we can't print anything.
429 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
430 */
kvm_memslots_raw(struct kvm * kvm)431 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
432 {
433 return rcu_dereference_raw_notrace(kvm->memslots[0]);
434 }
435
436 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
437
438 extern void kvmhv_rm_send_ipi(int cpu);
439
440 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
441
442 #endif /* __ASM_KVM_BOOK3S_64_H__ */
443