• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * include/asm-xtensa/pgtable.h
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * Copyright (C) 2001 - 2013 Tensilica Inc.
9  */
10 
11 #ifndef _XTENSA_PGTABLE_H
12 #define _XTENSA_PGTABLE_H
13 
14 #include <asm-generic/pgtable-nopmd.h>
15 #include <asm/page.h>
16 
17 /*
18  * We only use two ring levels, user and kernel space.
19  */
20 
21 #ifdef CONFIG_MMU
22 #define USER_RING		1	/* user ring level */
23 #else
24 #define USER_RING		0
25 #endif
26 #define KERNEL_RING		0	/* kernel ring level */
27 
28 /*
29  * The Xtensa architecture port of Linux has a two-level page table system,
30  * i.e. the logical three-level Linux page table layout is folded.
31  * Each task has the following memory page tables:
32  *
33  *   PGD table (page directory), ie. 3rd-level page table:
34  *	One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
35  *	(Architectures that don't have the PMD folded point to the PMD tables)
36  *
37  *	The pointer to the PGD table for a given task can be retrieved from
38  *	the task structure (struct task_struct*) t, e.g. current():
39  *	  (t->mm ? t->mm : t->active_mm)->pgd
40  *
41  *   PMD tables (page middle-directory), ie. 2nd-level page tables:
42  *	Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
43  *
44  *   PTE tables (page table entry), ie. 1st-level page tables:
45  *	One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
46  *	invalid_pte_table for absent mappings.
47  *
48  * The individual pages are 4 kB big with special pages for the empty_zero_page.
49  */
50 
51 #define PGDIR_SHIFT	22
52 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
53 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
54 
55 /*
56  * Entries per page directory level: we use two-level, so
57  * we don't really have any PMD directory physically.
58  */
59 #define PTRS_PER_PTE		1024
60 #define PTRS_PER_PTE_SHIFT	10
61 #define PTRS_PER_PGD		1024
62 #define PGD_ORDER		0
63 #define USER_PTRS_PER_PGD	(TASK_SIZE/PGDIR_SIZE)
64 #define FIRST_USER_ADDRESS	0UL
65 #define FIRST_USER_PGD_NR	(FIRST_USER_ADDRESS >> PGDIR_SHIFT)
66 
67 /*
68  * Virtual memory area. We keep a distance to other memory regions to be
69  * on the safe side. We also use this area for cache aliasing.
70  */
71 #define VMALLOC_START		0xC0000000
72 #define VMALLOC_END		0xC7FEFFFF
73 #define TLBTEMP_BASE_1		0xC7FF0000
74 #define TLBTEMP_BASE_2		(TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
75 #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
76 #define TLBTEMP_SIZE		(2 * DCACHE_WAY_SIZE)
77 #else
78 #define TLBTEMP_SIZE		ICACHE_WAY_SIZE
79 #endif
80 
81 /*
82  * For the Xtensa architecture, the PTE layout is as follows:
83  *
84  *		31------12  11  10-9   8-6  5-4  3-2  1-0
85  *		+-----------------------------------------+
86  *		|           |   Software   |   HARDWARE   |
87  *		|    PPN    |          ADW | RI |Attribute|
88  *		+-----------------------------------------+
89  *   pte_none	|             MBZ          | 01 | 11 | 00 |
90  *		+-----------------------------------------+
91  *   present	|    PPN    | 0 | 00 | ADW | RI | CA | wx |
92  *		+- - - - - - - - - - - - - - - - - - - - -+
93  *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 11 | 11 |
94  *		+-----------------------------------------+
95  *   swap	|     index     |   type   | 01 | 11 | 00 |
96  *		+-----------------------------------------+
97  *
98  * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
99  *		+-----------------------------------------+
100  *   present	|    PPN    | 0 | 00 | ADW | RI | CA | w1 |
101  *		+-----------------------------------------+
102  *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 01 | 00 |
103  *		+-----------------------------------------+
104  *
105  *  Legend:
106  *   PPN        Physical Page Number
107  *   ADW	software: accessed (young) / dirty / writable
108  *   RI         ring (0=privileged, 1=user, 2 and 3 are unused)
109  *   CA		cache attribute: 00 bypass, 01 writeback, 10 writethrough
110  *		(11 is invalid and used to mark pages that are not present)
111  *   w		page is writable (hw)
112  *   x		page is executable (hw)
113  *   index      swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
114  *		(note that the index is always non-zero)
115  *   type       swap type (5 bits -> 32 types)
116  *
117  *  Notes:
118  *   - (PROT_NONE) is a special case of 'present' but causes an exception for
119  *     any access (read, write, and execute).
120  *   - 'multihit-exception' has the highest priority of all MMU exceptions,
121  *     so the ring must be set to 'RING_USER' even for 'non-present' pages.
122  *   - on older hardware, the exectuable flag was not supported and
123  *     used as a 'valid' flag, so it needs to be always set.
124  *   - we need to keep track of certain flags in software (dirty and young)
125  *     to do this, we use write exceptions and have a separate software w-flag.
126  *   - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
127  */
128 
129 #define _PAGE_ATTRIB_MASK	0xf
130 
131 #define _PAGE_HW_EXEC		(1<<0)	/* hardware: page is executable */
132 #define _PAGE_HW_WRITE		(1<<1)	/* hardware: page is writable */
133 
134 #define _PAGE_CA_BYPASS		(0<<2)	/* bypass, non-speculative */
135 #define _PAGE_CA_WB		(1<<2)	/* write-back */
136 #define _PAGE_CA_WT		(2<<2)	/* write-through */
137 #define _PAGE_CA_MASK		(3<<2)
138 #define _PAGE_CA_INVALID	(3<<2)
139 
140 /* We use invalid attribute values to distinguish special pte entries */
141 #if XCHAL_HW_VERSION_MAJOR < 2000
142 #define _PAGE_HW_VALID		0x01	/* older HW needed this bit set */
143 #define _PAGE_NONE		0x04
144 #else
145 #define _PAGE_HW_VALID		0x00
146 #define _PAGE_NONE		0x0f
147 #endif
148 
149 #define _PAGE_USER		(1<<4)	/* user access (ring=1) */
150 
151 /* Software */
152 #define _PAGE_WRITABLE_BIT	6
153 #define _PAGE_WRITABLE		(1<<6)	/* software: page writable */
154 #define _PAGE_DIRTY		(1<<7)	/* software: page dirty */
155 #define _PAGE_ACCESSED		(1<<8)	/* software: page accessed (read) */
156 
157 #ifdef CONFIG_MMU
158 
159 #define _PAGE_CHG_MASK	   (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
160 #define _PAGE_PRESENT	   (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
161 
162 #define PAGE_NONE	   __pgprot(_PAGE_NONE | _PAGE_USER)
163 #define PAGE_COPY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
164 #define PAGE_COPY_EXEC	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
165 #define PAGE_READONLY	   __pgprot(_PAGE_PRESENT | _PAGE_USER)
166 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
167 #define PAGE_SHARED	   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
168 #define PAGE_SHARED_EXEC \
169 	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
170 #define PAGE_KERNEL	   __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
171 #define PAGE_KERNEL_EXEC   __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
172 
173 #if (DCACHE_WAY_SIZE > PAGE_SIZE)
174 # define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
175 #else
176 # define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
177 #endif
178 
179 #else /* no mmu */
180 
181 # define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
182 # define PAGE_NONE       __pgprot(0)
183 # define PAGE_SHARED     __pgprot(0)
184 # define PAGE_COPY       __pgprot(0)
185 # define PAGE_READONLY   __pgprot(0)
186 # define PAGE_KERNEL     __pgprot(0)
187 
188 #endif
189 
190 /*
191  * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
192  * the MMU can't do page protection for execute, and considers that the same as
193  * read.  Also, write permissions may imply read permissions.
194  * What follows is the closest we can get by reasonable means..
195  * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
196  */
197 #define __P000	PAGE_NONE		/* private --- */
198 #define __P001	PAGE_READONLY		/* private --r */
199 #define __P010	PAGE_COPY		/* private -w- */
200 #define __P011	PAGE_COPY		/* private -wr */
201 #define __P100	PAGE_READONLY_EXEC	/* private x-- */
202 #define __P101	PAGE_READONLY_EXEC	/* private x-r */
203 #define __P110	PAGE_COPY_EXEC		/* private xw- */
204 #define __P111	PAGE_COPY_EXEC		/* private xwr */
205 
206 #define __S000	PAGE_NONE		/* shared  --- */
207 #define __S001	PAGE_READONLY		/* shared  --r */
208 #define __S010	PAGE_SHARED		/* shared  -w- */
209 #define __S011	PAGE_SHARED		/* shared  -wr */
210 #define __S100	PAGE_READONLY_EXEC	/* shared  x-- */
211 #define __S101	PAGE_READONLY_EXEC	/* shared  x-r */
212 #define __S110	PAGE_SHARED_EXEC	/* shared  xw- */
213 #define __S111	PAGE_SHARED_EXEC	/* shared  xwr */
214 
215 #ifndef __ASSEMBLY__
216 
217 #define pte_ERROR(e) \
218 	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
219 #define pgd_ERROR(e) \
220 	printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
221 
222 extern unsigned long empty_zero_page[1024];
223 
224 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
225 
226 #ifdef CONFIG_MMU
227 extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
228 extern void paging_init(void);
229 #else
230 # define swapper_pg_dir NULL
paging_init(void)231 static inline void paging_init(void) { }
232 #endif
pgtable_cache_init(void)233 static inline void pgtable_cache_init(void) { }
234 
235 /*
236  * The pmd contains the kernel virtual address of the pte page.
237  */
238 #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
239 #define pmd_page(pmd) virt_to_page(pmd_val(pmd))
240 
241 /*
242  * pte status.
243  */
244 # define pte_none(pte)	 (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
245 #if XCHAL_HW_VERSION_MAJOR < 2000
246 # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
247 #else
248 # define pte_present(pte)						\
249 	(((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)		\
250 	 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
251 #endif
252 #define pte_clear(mm,addr,ptep)						\
253 	do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
254 
255 #define pmd_none(pmd)	 (!pmd_val(pmd))
256 #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
257 #define pmd_bad(pmd)	 (pmd_val(pmd) & ~PAGE_MASK)
258 #define pmd_clear(pmdp)	 do { set_pmd(pmdp, __pmd(0)); } while (0)
259 
pte_write(pte_t pte)260 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
pte_dirty(pte_t pte)261 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)262 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
pte_special(pte_t pte)263 static inline int pte_special(pte_t pte) { return 0; }
264 
pte_wrprotect(pte_t pte)265 static inline pte_t pte_wrprotect(pte_t pte)
266 	{ pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
pte_mkclean(pte_t pte)267 static inline pte_t pte_mkclean(pte_t pte)
268 	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
pte_mkold(pte_t pte)269 static inline pte_t pte_mkold(pte_t pte)
270 	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
pte_mkdirty(pte_t pte)271 static inline pte_t pte_mkdirty(pte_t pte)
272 	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)273 static inline pte_t pte_mkyoung(pte_t pte)
274 	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
pte_mkwrite(pte_t pte)275 static inline pte_t pte_mkwrite(pte_t pte)
276 	{ pte_val(pte) |= _PAGE_WRITABLE; return pte; }
pte_mkspecial(pte_t pte)277 static inline pte_t pte_mkspecial(pte_t pte)
278 	{ return pte; }
279 
280 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
281 
282 /*
283  * Conversion functions: convert a page and protection to a page entry,
284  * and a page entry and page directory to the page they refer to.
285  */
286 
287 #define pte_pfn(pte)		(pte_val(pte) >> PAGE_SHIFT)
288 #define pte_same(a,b)		(pte_val(a) == pte_val(b))
289 #define pte_page(x)		pfn_to_page(pte_pfn(x))
290 #define pfn_pte(pfn, prot)	__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
291 #define mk_pte(page, prot)	pfn_pte(page_to_pfn(page), prot)
292 
pte_modify(pte_t pte,pgprot_t newprot)293 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
294 {
295 	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
296 }
297 
298 /*
299  * Certain architectures need to do special things when pte's
300  * within a page table are directly modified.  Thus, the following
301  * hook is made available.
302  */
update_pte(pte_t * ptep,pte_t pteval)303 static inline void update_pte(pte_t *ptep, pte_t pteval)
304 {
305 	*ptep = pteval;
306 #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
307 	__asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
308 #endif
309 
310 }
311 
312 struct mm_struct;
313 
314 static inline void
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)315 set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
316 {
317 	update_pte(ptep, pteval);
318 }
319 
set_pte(pte_t * ptep,pte_t pteval)320 static inline void set_pte(pte_t *ptep, pte_t pteval)
321 {
322 	update_pte(ptep, pteval);
323 }
324 
325 static inline void
set_pmd(pmd_t * pmdp,pmd_t pmdval)326 set_pmd(pmd_t *pmdp, pmd_t pmdval)
327 {
328 	*pmdp = pmdval;
329 }
330 
331 struct vm_area_struct;
332 
333 static inline int
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)334 ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
335 			  pte_t *ptep)
336 {
337 	pte_t pte = *ptep;
338 	if (!pte_young(pte))
339 		return 0;
340 	update_pte(ptep, pte_mkold(pte));
341 	return 1;
342 }
343 
344 static inline pte_t
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)345 ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
346 {
347 	pte_t pte = *ptep;
348 	pte_clear(mm, addr, ptep);
349 	return pte;
350 }
351 
352 static inline void
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)353 ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
354 {
355 	pte_t pte = *ptep;
356 	update_pte(ptep, pte_wrprotect(pte));
357 }
358 
359 /* to find an entry in a kernel page-table-directory */
360 #define pgd_offset_k(address)	pgd_offset(&init_mm, address)
361 
362 /* to find an entry in a page-table-directory */
363 #define pgd_offset(mm,address)	((mm)->pgd + pgd_index(address))
364 
365 #define pgd_index(address)	((address) >> PGDIR_SHIFT)
366 
367 /* Find an entry in the second-level page table.. */
368 #define pmd_offset(dir,address) ((pmd_t*)(dir))
369 
370 /* Find an entry in the third-level page table.. */
371 #define pte_index(address)	(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
372 #define pte_offset_kernel(dir,addr) 					\
373 	((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
374 #define pte_offset_map(dir,addr)	pte_offset_kernel((dir),(addr))
375 #define pte_unmap(pte)		do { } while (0)
376 
377 
378 /*
379  * Encode and decode a swap and file entry.
380  */
381 #define SWP_TYPE_BITS		5
382 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
383 
384 #define __swp_type(entry)	(((entry).val >> 6) & 0x1f)
385 #define __swp_offset(entry)	((entry).val >> 11)
386 #define __swp_entry(type,offs)	\
387 	((swp_entry_t){((type) << 6) | ((offs) << 11) | \
388 	 _PAGE_CA_INVALID | _PAGE_USER})
389 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
390 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
391 
392 #endif /*  !defined (__ASSEMBLY__) */
393 
394 
395 #ifdef __ASSEMBLY__
396 
397 /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
398  *                _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
399  *                _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
400  *                _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
401  *
402  * Note: We require an additional temporary register which can be the same as
403  *       the register that holds the address.
404  *
405  * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
406  *
407  */
408 #define _PGD_INDEX(rt,rs)	extui	rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
409 #define _PTE_INDEX(rt,rs)	extui	rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
410 
411 #define _PGD_OFFSET(mm,adr,tmp)		l32i	mm, mm, MM_PGD;		\
412 					_PGD_INDEX(tmp, adr);		\
413 					addx4	mm, tmp, mm
414 
415 #define _PTE_OFFSET(pmd,adr,tmp)	_PTE_INDEX(tmp, adr);		\
416 					srli	pmd, pmd, PAGE_SHIFT;	\
417 					slli	pmd, pmd, PAGE_SHIFT;	\
418 					addx4	pmd, tmp, pmd
419 
420 #else
421 
422 #define kern_addr_valid(addr)	(1)
423 
424 extern  void update_mmu_cache(struct vm_area_struct * vma,
425 			      unsigned long address, pte_t *ptep);
426 
427 typedef pte_t *pte_addr_t;
428 
429 #endif /* !defined (__ASSEMBLY__) */
430 
431 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
432 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
433 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
434 #define __HAVE_ARCH_PTEP_MKDIRTY
435 #define __HAVE_ARCH_PTE_SAME
436 /* We provide our own get_unmapped_area to cope with
437  * SHM area cache aliasing for userland.
438  */
439 #define HAVE_ARCH_UNMAPPED_AREA
440 
441 #include <asm-generic/pgtable.h>
442 
443 #endif /* _XTENSA_PGTABLE_H */
444