1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <linux/hugetlb.h>
4 #include <asm/pgalloc.h>
5 #include <asm/pgtable.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
9
10 #define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO)
11
12 #ifdef CONFIG_HIGHPTE
13 #define PGALLOC_USER_GFP __GFP_HIGHMEM
14 #else
15 #define PGALLOC_USER_GFP 0
16 #endif
17
18 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
19
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)20 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
21 {
22 return (pte_t *)__get_free_page(PGALLOC_GFP);
23 }
24
pte_alloc_one(struct mm_struct * mm,unsigned long address)25 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
26 {
27 struct page *pte;
28
29 pte = alloc_pages(__userpte_alloc_gfp, 0);
30 if (!pte)
31 return NULL;
32 if (!pgtable_page_ctor(pte)) {
33 __free_page(pte);
34 return NULL;
35 }
36 return pte;
37 }
38
setup_userpte(char * arg)39 static int __init setup_userpte(char *arg)
40 {
41 if (!arg)
42 return -EINVAL;
43
44 /*
45 * "userpte=nohigh" disables allocation of user pagetables in
46 * high memory.
47 */
48 if (strcmp(arg, "nohigh") == 0)
49 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
50 else
51 return -EINVAL;
52 return 0;
53 }
54 early_param("userpte", setup_userpte);
55
___pte_free_tlb(struct mmu_gather * tlb,struct page * pte)56 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
57 {
58 pgtable_page_dtor(pte);
59 paravirt_release_pte(page_to_pfn(pte));
60 tlb_remove_page(tlb, pte);
61 }
62
63 #if CONFIG_PGTABLE_LEVELS > 2
___pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd)64 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
65 {
66 struct page *page = virt_to_page(pmd);
67 paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
68 /*
69 * NOTE! For PAE, any changes to the top page-directory-pointer-table
70 * entries need a full cr3 reload to flush.
71 */
72 #ifdef CONFIG_X86_PAE
73 tlb->need_flush_all = 1;
74 #endif
75 pgtable_pmd_page_dtor(page);
76 tlb_remove_page(tlb, page);
77 }
78
79 #if CONFIG_PGTABLE_LEVELS > 3
___pud_free_tlb(struct mmu_gather * tlb,pud_t * pud)80 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
81 {
82 paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
83 tlb_remove_page(tlb, virt_to_page(pud));
84 }
85 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
86 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
87
pgd_list_add(pgd_t * pgd)88 static inline void pgd_list_add(pgd_t *pgd)
89 {
90 struct page *page = virt_to_page(pgd);
91
92 list_add(&page->lru, &pgd_list);
93 }
94
pgd_list_del(pgd_t * pgd)95 static inline void pgd_list_del(pgd_t *pgd)
96 {
97 struct page *page = virt_to_page(pgd);
98
99 list_del(&page->lru);
100 }
101
102 #define UNSHARED_PTRS_PER_PGD \
103 (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
104
105
pgd_set_mm(pgd_t * pgd,struct mm_struct * mm)106 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
107 {
108 BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
109 virt_to_page(pgd)->index = (pgoff_t)mm;
110 }
111
pgd_page_get_mm(struct page * page)112 struct mm_struct *pgd_page_get_mm(struct page *page)
113 {
114 return (struct mm_struct *)page->index;
115 }
116
pgd_ctor(struct mm_struct * mm,pgd_t * pgd)117 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
118 {
119 /* If the pgd points to a shared pagetable level (either the
120 ptes in non-PAE, or shared PMD in PAE), then just copy the
121 references from swapper_pg_dir. */
122 if (CONFIG_PGTABLE_LEVELS == 2 ||
123 (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
124 CONFIG_PGTABLE_LEVELS == 4) {
125 clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
126 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
127 KERNEL_PGD_PTRS);
128 }
129
130 /* list required to sync kernel mapping updates */
131 if (!SHARED_KERNEL_PMD) {
132 pgd_set_mm(pgd, mm);
133 pgd_list_add(pgd);
134 }
135 }
136
pgd_dtor(pgd_t * pgd)137 static void pgd_dtor(pgd_t *pgd)
138 {
139 if (SHARED_KERNEL_PMD)
140 return;
141
142 spin_lock(&pgd_lock);
143 pgd_list_del(pgd);
144 spin_unlock(&pgd_lock);
145 }
146
147 /*
148 * List of all pgd's needed for non-PAE so it can invalidate entries
149 * in both cached and uncached pgd's; not needed for PAE since the
150 * kernel pmd is shared. If PAE were not to share the pmd a similar
151 * tactic would be needed. This is essentially codepath-based locking
152 * against pageattr.c; it is the unique case in which a valid change
153 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
154 * vmalloc faults work because attached pagetables are never freed.
155 * -- nyc
156 */
157
158 #ifdef CONFIG_X86_PAE
159 /*
160 * In PAE mode, we need to do a cr3 reload (=tlb flush) when
161 * updating the top-level pagetable entries to guarantee the
162 * processor notices the update. Since this is expensive, and
163 * all 4 top-level entries are used almost immediately in a
164 * new process's life, we just pre-populate them here.
165 *
166 * Also, if we're in a paravirt environment where the kernel pmd is
167 * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
168 * and initialize the kernel pmds here.
169 */
170 #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
171
pud_populate(struct mm_struct * mm,pud_t * pudp,pmd_t * pmd)172 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
173 {
174 paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
175
176 /* Note: almost everything apart from _PAGE_PRESENT is
177 reserved at the pmd (PDPT) level. */
178 set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
179
180 /*
181 * According to Intel App note "TLBs, Paging-Structure Caches,
182 * and Their Invalidation", April 2007, document 317080-001,
183 * section 8.1: in PAE mode we explicitly have to flush the
184 * TLB via cr3 if the top-level pgd is changed...
185 */
186 flush_tlb_mm(mm);
187 }
188 #else /* !CONFIG_X86_PAE */
189
190 /* No need to prepopulate any pagetable entries in non-PAE modes. */
191 #define PREALLOCATED_PMDS 0
192
193 #endif /* CONFIG_X86_PAE */
194
free_pmds(struct mm_struct * mm,pmd_t * pmds[])195 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
196 {
197 int i;
198
199 for(i = 0; i < PREALLOCATED_PMDS; i++)
200 if (pmds[i]) {
201 pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
202 free_page((unsigned long)pmds[i]);
203 mm_dec_nr_pmds(mm);
204 }
205 }
206
preallocate_pmds(struct mm_struct * mm,pmd_t * pmds[])207 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
208 {
209 int i;
210 bool failed = false;
211
212 for(i = 0; i < PREALLOCATED_PMDS; i++) {
213 pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
214 if (!pmd)
215 failed = true;
216 if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
217 free_page((unsigned long)pmd);
218 pmd = NULL;
219 failed = true;
220 }
221 if (pmd)
222 mm_inc_nr_pmds(mm);
223 pmds[i] = pmd;
224 }
225
226 if (failed) {
227 free_pmds(mm, pmds);
228 return -ENOMEM;
229 }
230
231 return 0;
232 }
233
234 /*
235 * Mop up any pmd pages which may still be attached to the pgd.
236 * Normally they will be freed by munmap/exit_mmap, but any pmd we
237 * preallocate which never got a corresponding vma will need to be
238 * freed manually.
239 */
pgd_mop_up_pmds(struct mm_struct * mm,pgd_t * pgdp)240 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
241 {
242 int i;
243
244 for(i = 0; i < PREALLOCATED_PMDS; i++) {
245 pgd_t pgd = pgdp[i];
246
247 if (pgd_val(pgd) != 0) {
248 pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
249
250 pgd_clear(&pgdp[i]);
251
252 paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
253 pmd_free(mm, pmd);
254 mm_dec_nr_pmds(mm);
255 }
256 }
257 }
258
pgd_prepopulate_pmd(struct mm_struct * mm,pgd_t * pgd,pmd_t * pmds[])259 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
260 {
261 pud_t *pud;
262 int i;
263
264 if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
265 return;
266
267 pud = pud_offset(pgd, 0);
268
269 for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
270 pmd_t *pmd = pmds[i];
271
272 if (i >= KERNEL_PGD_BOUNDARY)
273 memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
274 sizeof(pmd_t) * PTRS_PER_PMD);
275
276 pud_populate(mm, pud, pmd);
277 }
278 }
279
280 /*
281 * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
282 * assumes that pgd should be in one page.
283 *
284 * But kernel with PAE paging that is not running as a Xen domain
285 * only needs to allocate 32 bytes for pgd instead of one page.
286 */
287 #ifdef CONFIG_X86_PAE
288
289 #include <linux/slab.h>
290
291 #define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
292 #define PGD_ALIGN 32
293
294 static struct kmem_cache *pgd_cache;
295
pgd_cache_init(void)296 static int __init pgd_cache_init(void)
297 {
298 /*
299 * When PAE kernel is running as a Xen domain, it does not use
300 * shared kernel pmd. And this requires a whole page for pgd.
301 */
302 if (!SHARED_KERNEL_PMD)
303 return 0;
304
305 /*
306 * when PAE kernel is not running as a Xen domain, it uses
307 * shared kernel pmd. Shared kernel pmd does not require a whole
308 * page for pgd. We are able to just allocate a 32-byte for pgd.
309 * During boot time, we create a 32-byte slab for pgd table allocation.
310 */
311 pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
312 SLAB_PANIC, NULL);
313 if (!pgd_cache)
314 return -ENOMEM;
315
316 return 0;
317 }
318 core_initcall(pgd_cache_init);
319
_pgd_alloc(void)320 static inline pgd_t *_pgd_alloc(void)
321 {
322 /*
323 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
324 * We allocate one page for pgd.
325 */
326 if (!SHARED_KERNEL_PMD)
327 return (pgd_t *)__get_free_page(PGALLOC_GFP);
328
329 /*
330 * Now PAE kernel is not running as a Xen domain. We can allocate
331 * a 32-byte slab for pgd to save memory space.
332 */
333 return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
334 }
335
_pgd_free(pgd_t * pgd)336 static inline void _pgd_free(pgd_t *pgd)
337 {
338 if (!SHARED_KERNEL_PMD)
339 free_page((unsigned long)pgd);
340 else
341 kmem_cache_free(pgd_cache, pgd);
342 }
343 #else
344
345 /*
346 * Instead of one pgd, Kaiser acquires two pgds. Being order-1, it is
347 * both 8k in size and 8k-aligned. That lets us just flip bit 12
348 * in a pointer to swap between the two 4k halves.
349 */
350 #define PGD_ALLOCATION_ORDER kaiser_enabled
351
_pgd_alloc(void)352 static inline pgd_t *_pgd_alloc(void)
353 {
354 /* No __GFP_REPEAT: to avoid page allocation stalls in order-1 case */
355 return (pgd_t *)__get_free_pages(PGALLOC_GFP & ~__GFP_REPEAT,
356 PGD_ALLOCATION_ORDER);
357 }
358
_pgd_free(pgd_t * pgd)359 static inline void _pgd_free(pgd_t *pgd)
360 {
361 free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
362 }
363 #endif /* CONFIG_X86_PAE */
364
pgd_alloc(struct mm_struct * mm)365 pgd_t *pgd_alloc(struct mm_struct *mm)
366 {
367 pgd_t *pgd;
368 pmd_t *pmds[PREALLOCATED_PMDS];
369
370 pgd = _pgd_alloc();
371
372 if (pgd == NULL)
373 goto out;
374
375 mm->pgd = pgd;
376
377 if (preallocate_pmds(mm, pmds) != 0)
378 goto out_free_pgd;
379
380 if (paravirt_pgd_alloc(mm) != 0)
381 goto out_free_pmds;
382
383 /*
384 * Make sure that pre-populating the pmds is atomic with
385 * respect to anything walking the pgd_list, so that they
386 * never see a partially populated pgd.
387 */
388 spin_lock(&pgd_lock);
389
390 pgd_ctor(mm, pgd);
391 pgd_prepopulate_pmd(mm, pgd, pmds);
392
393 spin_unlock(&pgd_lock);
394
395 return pgd;
396
397 out_free_pmds:
398 free_pmds(mm, pmds);
399 out_free_pgd:
400 _pgd_free(pgd);
401 out:
402 return NULL;
403 }
404
pgd_free(struct mm_struct * mm,pgd_t * pgd)405 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
406 {
407 pgd_mop_up_pmds(mm, pgd);
408 pgd_dtor(pgd);
409 paravirt_pgd_free(mm, pgd);
410 _pgd_free(pgd);
411 }
412
413 /*
414 * Used to set accessed or dirty bits in the page table entries
415 * on other architectures. On x86, the accessed and dirty bits
416 * are tracked by hardware. However, do_wp_page calls this function
417 * to also make the pte writeable at the same time the dirty bit is
418 * set. In that case we do actually need to write the PTE.
419 */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)420 int ptep_set_access_flags(struct vm_area_struct *vma,
421 unsigned long address, pte_t *ptep,
422 pte_t entry, int dirty)
423 {
424 int changed = !pte_same(*ptep, entry);
425
426 if (changed && dirty) {
427 set_pte(ptep, entry);
428 pte_update_defer(vma->vm_mm, address, ptep);
429 }
430
431 return changed;
432 }
433
434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)435 int pmdp_set_access_flags(struct vm_area_struct *vma,
436 unsigned long address, pmd_t *pmdp,
437 pmd_t entry, int dirty)
438 {
439 int changed = !pmd_same(*pmdp, entry);
440
441 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
442
443 if (changed && dirty) {
444 set_pmd(pmdp, entry);
445 pmd_update_defer(vma->vm_mm, address, pmdp);
446 /*
447 * We had a write-protection fault here and changed the pmd
448 * to to more permissive. No need to flush the TLB for that,
449 * #PF is architecturally guaranteed to do that and in the
450 * worst-case we'll generate a spurious fault.
451 */
452 }
453
454 return changed;
455 }
456 #endif
457
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)458 int ptep_test_and_clear_young(struct vm_area_struct *vma,
459 unsigned long addr, pte_t *ptep)
460 {
461 int ret = 0;
462
463 if (pte_young(*ptep))
464 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
465 (unsigned long *) &ptep->pte);
466
467 if (ret)
468 pte_update(vma->vm_mm, addr, ptep);
469
470 return ret;
471 }
472
473 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)474 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
475 unsigned long addr, pmd_t *pmdp)
476 {
477 int ret = 0;
478
479 if (pmd_young(*pmdp))
480 ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
481 (unsigned long *)pmdp);
482
483 if (ret)
484 pmd_update(vma->vm_mm, addr, pmdp);
485
486 return ret;
487 }
488 #endif
489
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)490 int ptep_clear_flush_young(struct vm_area_struct *vma,
491 unsigned long address, pte_t *ptep)
492 {
493 /*
494 * On x86 CPUs, clearing the accessed bit without a TLB flush
495 * doesn't cause data corruption. [ It could cause incorrect
496 * page aging and the (mistaken) reclaim of hot pages, but the
497 * chance of that should be relatively low. ]
498 *
499 * So as a performance optimization don't flush the TLB when
500 * clearing the accessed bit, it will eventually be flushed by
501 * a context switch or a VM operation anyway. [ In the rare
502 * event of it not getting flushed for a long time the delay
503 * shouldn't really matter because there's no real memory
504 * pressure for swapout to react to. ]
505 */
506 return ptep_test_and_clear_young(vma, address, ptep);
507 }
508
509 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)510 int pmdp_clear_flush_young(struct vm_area_struct *vma,
511 unsigned long address, pmd_t *pmdp)
512 {
513 int young;
514
515 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
516
517 young = pmdp_test_and_clear_young(vma, address, pmdp);
518 if (young)
519 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
520
521 return young;
522 }
523
pmdp_splitting_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)524 void pmdp_splitting_flush(struct vm_area_struct *vma,
525 unsigned long address, pmd_t *pmdp)
526 {
527 int set;
528 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
529 set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
530 (unsigned long *)pmdp);
531 if (set) {
532 pmd_update(vma->vm_mm, address, pmdp);
533 /* need tlb flush only to serialize against gup-fast */
534 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
535 }
536 }
537 #endif
538
539 /**
540 * reserve_top_address - reserves a hole in the top of kernel address space
541 * @reserve - size of hole to reserve
542 *
543 * Can be used to relocate the fixmap area and poke a hole in the top
544 * of kernel address space to make room for a hypervisor.
545 */
reserve_top_address(unsigned long reserve)546 void __init reserve_top_address(unsigned long reserve)
547 {
548 #ifdef CONFIG_X86_32
549 BUG_ON(fixmaps_set > 0);
550 __FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
551 printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
552 -reserve, __FIXADDR_TOP + PAGE_SIZE);
553 #endif
554 }
555
556 int fixmaps_set;
557
__native_set_fixmap(enum fixed_addresses idx,pte_t pte)558 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
559 {
560 unsigned long address = __fix_to_virt(idx);
561
562 if (idx >= __end_of_fixed_addresses) {
563 BUG();
564 return;
565 }
566 set_pte_vaddr(address, pte);
567 fixmaps_set++;
568 }
569
native_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t flags)570 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
571 phys_addr_t phys, pgprot_t flags)
572 {
573 __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
574 }
575
576 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
577 /**
578 * pud_set_huge - setup kernel PUD mapping
579 *
580 * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
581 * function sets up a huge page only if any of the following conditions are met:
582 *
583 * - MTRRs are disabled, or
584 *
585 * - MTRRs are enabled and the range is completely covered by a single MTRR, or
586 *
587 * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
588 * has no effect on the requested PAT memory type.
589 *
590 * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
591 * page mapping attempt fails.
592 *
593 * Returns 1 on success and 0 on failure.
594 */
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)595 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
596 {
597 u8 mtrr, uniform;
598
599 mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
600 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
601 (mtrr != MTRR_TYPE_WRBACK))
602 return 0;
603
604 /* Bail out if we are we on a populated non-leaf entry: */
605 if (pud_present(*pud) && !pud_huge(*pud))
606 return 0;
607
608 prot = pgprot_4k_2_large(prot);
609
610 set_pte((pte_t *)pud, pfn_pte(
611 (u64)addr >> PAGE_SHIFT,
612 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
613
614 return 1;
615 }
616
617 /**
618 * pmd_set_huge - setup kernel PMD mapping
619 *
620 * See text over pud_set_huge() above.
621 *
622 * Returns 1 on success and 0 on failure.
623 */
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)624 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
625 {
626 u8 mtrr, uniform;
627
628 mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
629 if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
630 (mtrr != MTRR_TYPE_WRBACK)) {
631 pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
632 __func__, addr, addr + PMD_SIZE);
633 return 0;
634 }
635
636 /* Bail out if we are we on a populated non-leaf entry: */
637 if (pmd_present(*pmd) && !pmd_huge(*pmd))
638 return 0;
639
640 prot = pgprot_4k_2_large(prot);
641
642 set_pte((pte_t *)pmd, pfn_pte(
643 (u64)addr >> PAGE_SHIFT,
644 __pgprot(pgprot_val(prot) | _PAGE_PSE)));
645
646 return 1;
647 }
648
649 /**
650 * pud_clear_huge - clear kernel PUD mapping when it is set
651 *
652 * Returns 1 on success and 0 on failure (no PUD map is found).
653 */
pud_clear_huge(pud_t * pud)654 int pud_clear_huge(pud_t *pud)
655 {
656 if (pud_large(*pud)) {
657 pud_clear(pud);
658 return 1;
659 }
660
661 return 0;
662 }
663
664 /**
665 * pmd_clear_huge - clear kernel PMD mapping when it is set
666 *
667 * Returns 1 on success and 0 on failure (no PMD map is found).
668 */
pmd_clear_huge(pmd_t * pmd)669 int pmd_clear_huge(pmd_t *pmd)
670 {
671 if (pmd_large(*pmd)) {
672 pmd_clear(pmd);
673 return 1;
674 }
675
676 return 0;
677 }
678
679 #ifdef CONFIG_X86_64
680 /**
681 * pud_free_pmd_page - Clear pud entry and free pmd page.
682 * @pud: Pointer to a PUD.
683 * @addr: Virtual address associated with pud.
684 *
685 * Context: The pud range has been unmapped and TLB purged.
686 * Return: 1 if clearing the entry succeeded. 0 otherwise.
687 *
688 * NOTE: Callers must allow a single page allocation.
689 */
pud_free_pmd_page(pud_t * pud,unsigned long addr)690 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
691 {
692 pmd_t *pmd, *pmd_sv;
693 pte_t *pte;
694 int i;
695
696 if (pud_none(*pud))
697 return 1;
698
699 pmd = (pmd_t *)pud_page_vaddr(*pud);
700 pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
701 if (!pmd_sv)
702 return 0;
703
704 for (i = 0; i < PTRS_PER_PMD; i++) {
705 pmd_sv[i] = pmd[i];
706 if (!pmd_none(pmd[i]))
707 pmd_clear(&pmd[i]);
708 }
709
710 pud_clear(pud);
711
712 /* INVLPG to clear all paging-structure caches */
713 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
714
715 for (i = 0; i < PTRS_PER_PMD; i++) {
716 if (!pmd_none(pmd_sv[i])) {
717 pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
718 free_page((unsigned long)pte);
719 }
720 }
721
722 free_page((unsigned long)pmd_sv);
723
724 pgtable_pmd_page_dtor(virt_to_page(pmd));
725 free_page((unsigned long)pmd);
726
727 return 1;
728 }
729
730 /**
731 * pmd_free_pte_page - Clear pmd entry and free pte page.
732 * @pmd: Pointer to a PMD.
733 * @addr: Virtual address associated with pmd.
734 *
735 * Context: The pmd range has been unmapped and TLB purged.
736 * Return: 1 if clearing the entry succeeded. 0 otherwise.
737 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)738 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
739 {
740 pte_t *pte;
741
742 if (pmd_none(*pmd))
743 return 1;
744
745 pte = (pte_t *)pmd_page_vaddr(*pmd);
746 pmd_clear(pmd);
747
748 /* INVLPG to clear all paging-structure caches */
749 flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
750
751 free_page((unsigned long)pte);
752
753 return 1;
754 }
755
756 #else /* !CONFIG_X86_64 */
757
pud_free_pmd_page(pud_t * pud,unsigned long addr)758 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
759 {
760 return pud_none(*pud);
761 }
762
763 /*
764 * Disable free page handling on x86-PAE. This assures that ioremap()
765 * does not update sync'd pmd entries. See vmalloc_sync_one().
766 */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)767 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
768 {
769 return pmd_none(*pmd);
770 }
771
772 #endif /* CONFIG_X86_64 */
773 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
774