• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/mm.h>
2 #include <linux/gfp.h>
3 #include <linux/hugetlb.h>
4 #include <asm/pgalloc.h>
5 #include <asm/pgtable.h>
6 #include <asm/tlb.h>
7 #include <asm/fixmap.h>
8 #include <asm/mtrr.h>
9 
10 #define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO)
11 
12 #ifdef CONFIG_HIGHPTE
13 #define PGALLOC_USER_GFP __GFP_HIGHMEM
14 #else
15 #define PGALLOC_USER_GFP 0
16 #endif
17 
18 gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
19 
pte_alloc_one_kernel(struct mm_struct * mm,unsigned long address)20 pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
21 {
22 	return (pte_t *)__get_free_page(PGALLOC_GFP);
23 }
24 
pte_alloc_one(struct mm_struct * mm,unsigned long address)25 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
26 {
27 	struct page *pte;
28 
29 	pte = alloc_pages(__userpte_alloc_gfp, 0);
30 	if (!pte)
31 		return NULL;
32 	if (!pgtable_page_ctor(pte)) {
33 		__free_page(pte);
34 		return NULL;
35 	}
36 	return pte;
37 }
38 
setup_userpte(char * arg)39 static int __init setup_userpte(char *arg)
40 {
41 	if (!arg)
42 		return -EINVAL;
43 
44 	/*
45 	 * "userpte=nohigh" disables allocation of user pagetables in
46 	 * high memory.
47 	 */
48 	if (strcmp(arg, "nohigh") == 0)
49 		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
50 	else
51 		return -EINVAL;
52 	return 0;
53 }
54 early_param("userpte", setup_userpte);
55 
___pte_free_tlb(struct mmu_gather * tlb,struct page * pte)56 void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
57 {
58 	pgtable_page_dtor(pte);
59 	paravirt_release_pte(page_to_pfn(pte));
60 	tlb_remove_page(tlb, pte);
61 }
62 
63 #if CONFIG_PGTABLE_LEVELS > 2
___pmd_free_tlb(struct mmu_gather * tlb,pmd_t * pmd)64 void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
65 {
66 	struct page *page = virt_to_page(pmd);
67 	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
68 	/*
69 	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
70 	 * entries need a full cr3 reload to flush.
71 	 */
72 #ifdef CONFIG_X86_PAE
73 	tlb->need_flush_all = 1;
74 #endif
75 	pgtable_pmd_page_dtor(page);
76 	tlb_remove_page(tlb, page);
77 }
78 
79 #if CONFIG_PGTABLE_LEVELS > 3
___pud_free_tlb(struct mmu_gather * tlb,pud_t * pud)80 void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
81 {
82 	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
83 	tlb_remove_page(tlb, virt_to_page(pud));
84 }
85 #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
86 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
87 
pgd_list_add(pgd_t * pgd)88 static inline void pgd_list_add(pgd_t *pgd)
89 {
90 	struct page *page = virt_to_page(pgd);
91 
92 	list_add(&page->lru, &pgd_list);
93 }
94 
pgd_list_del(pgd_t * pgd)95 static inline void pgd_list_del(pgd_t *pgd)
96 {
97 	struct page *page = virt_to_page(pgd);
98 
99 	list_del(&page->lru);
100 }
101 
102 #define UNSHARED_PTRS_PER_PGD				\
103 	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
104 
105 
pgd_set_mm(pgd_t * pgd,struct mm_struct * mm)106 static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
107 {
108 	BUILD_BUG_ON(sizeof(virt_to_page(pgd)->index) < sizeof(mm));
109 	virt_to_page(pgd)->index = (pgoff_t)mm;
110 }
111 
pgd_page_get_mm(struct page * page)112 struct mm_struct *pgd_page_get_mm(struct page *page)
113 {
114 	return (struct mm_struct *)page->index;
115 }
116 
pgd_ctor(struct mm_struct * mm,pgd_t * pgd)117 static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
118 {
119 	/* If the pgd points to a shared pagetable level (either the
120 	   ptes in non-PAE, or shared PMD in PAE), then just copy the
121 	   references from swapper_pg_dir. */
122 	if (CONFIG_PGTABLE_LEVELS == 2 ||
123 	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
124 	    CONFIG_PGTABLE_LEVELS == 4) {
125 		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
126 				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
127 				KERNEL_PGD_PTRS);
128 	}
129 
130 	/* list required to sync kernel mapping updates */
131 	if (!SHARED_KERNEL_PMD) {
132 		pgd_set_mm(pgd, mm);
133 		pgd_list_add(pgd);
134 	}
135 }
136 
pgd_dtor(pgd_t * pgd)137 static void pgd_dtor(pgd_t *pgd)
138 {
139 	if (SHARED_KERNEL_PMD)
140 		return;
141 
142 	spin_lock(&pgd_lock);
143 	pgd_list_del(pgd);
144 	spin_unlock(&pgd_lock);
145 }
146 
147 /*
148  * List of all pgd's needed for non-PAE so it can invalidate entries
149  * in both cached and uncached pgd's; not needed for PAE since the
150  * kernel pmd is shared. If PAE were not to share the pmd a similar
151  * tactic would be needed. This is essentially codepath-based locking
152  * against pageattr.c; it is the unique case in which a valid change
153  * of kernel pagetables can't be lazily synchronized by vmalloc faults.
154  * vmalloc faults work because attached pagetables are never freed.
155  * -- nyc
156  */
157 
158 #ifdef CONFIG_X86_PAE
159 /*
160  * In PAE mode, we need to do a cr3 reload (=tlb flush) when
161  * updating the top-level pagetable entries to guarantee the
162  * processor notices the update.  Since this is expensive, and
163  * all 4 top-level entries are used almost immediately in a
164  * new process's life, we just pre-populate them here.
165  *
166  * Also, if we're in a paravirt environment where the kernel pmd is
167  * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
168  * and initialize the kernel pmds here.
169  */
170 #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
171 
pud_populate(struct mm_struct * mm,pud_t * pudp,pmd_t * pmd)172 void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
173 {
174 	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
175 
176 	/* Note: almost everything apart from _PAGE_PRESENT is
177 	   reserved at the pmd (PDPT) level. */
178 	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
179 
180 	/*
181 	 * According to Intel App note "TLBs, Paging-Structure Caches,
182 	 * and Their Invalidation", April 2007, document 317080-001,
183 	 * section 8.1: in PAE mode we explicitly have to flush the
184 	 * TLB via cr3 if the top-level pgd is changed...
185 	 */
186 	flush_tlb_mm(mm);
187 }
188 #else  /* !CONFIG_X86_PAE */
189 
190 /* No need to prepopulate any pagetable entries in non-PAE modes. */
191 #define PREALLOCATED_PMDS	0
192 
193 #endif	/* CONFIG_X86_PAE */
194 
free_pmds(struct mm_struct * mm,pmd_t * pmds[])195 static void free_pmds(struct mm_struct *mm, pmd_t *pmds[])
196 {
197 	int i;
198 
199 	for(i = 0; i < PREALLOCATED_PMDS; i++)
200 		if (pmds[i]) {
201 			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
202 			free_page((unsigned long)pmds[i]);
203 			mm_dec_nr_pmds(mm);
204 		}
205 }
206 
preallocate_pmds(struct mm_struct * mm,pmd_t * pmds[])207 static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[])
208 {
209 	int i;
210 	bool failed = false;
211 
212 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
213 		pmd_t *pmd = (pmd_t *)__get_free_page(PGALLOC_GFP);
214 		if (!pmd)
215 			failed = true;
216 		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
217 			free_page((unsigned long)pmd);
218 			pmd = NULL;
219 			failed = true;
220 		}
221 		if (pmd)
222 			mm_inc_nr_pmds(mm);
223 		pmds[i] = pmd;
224 	}
225 
226 	if (failed) {
227 		free_pmds(mm, pmds);
228 		return -ENOMEM;
229 	}
230 
231 	return 0;
232 }
233 
234 /*
235  * Mop up any pmd pages which may still be attached to the pgd.
236  * Normally they will be freed by munmap/exit_mmap, but any pmd we
237  * preallocate which never got a corresponding vma will need to be
238  * freed manually.
239  */
pgd_mop_up_pmds(struct mm_struct * mm,pgd_t * pgdp)240 static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
241 {
242 	int i;
243 
244 	for(i = 0; i < PREALLOCATED_PMDS; i++) {
245 		pgd_t pgd = pgdp[i];
246 
247 		if (pgd_val(pgd) != 0) {
248 			pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
249 
250 			pgd_clear(&pgdp[i]);
251 
252 			paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
253 			pmd_free(mm, pmd);
254 			mm_dec_nr_pmds(mm);
255 		}
256 	}
257 }
258 
pgd_prepopulate_pmd(struct mm_struct * mm,pgd_t * pgd,pmd_t * pmds[])259 static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
260 {
261 	pud_t *pud;
262 	int i;
263 
264 	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
265 		return;
266 
267 	pud = pud_offset(pgd, 0);
268 
269 	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
270 		pmd_t *pmd = pmds[i];
271 
272 		if (i >= KERNEL_PGD_BOUNDARY)
273 			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
274 			       sizeof(pmd_t) * PTRS_PER_PMD);
275 
276 		pud_populate(mm, pud, pmd);
277 	}
278 }
279 
280 /*
281  * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
282  * assumes that pgd should be in one page.
283  *
284  * But kernel with PAE paging that is not running as a Xen domain
285  * only needs to allocate 32 bytes for pgd instead of one page.
286  */
287 #ifdef CONFIG_X86_PAE
288 
289 #include <linux/slab.h>
290 
291 #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
292 #define PGD_ALIGN	32
293 
294 static struct kmem_cache *pgd_cache;
295 
pgd_cache_init(void)296 static int __init pgd_cache_init(void)
297 {
298 	/*
299 	 * When PAE kernel is running as a Xen domain, it does not use
300 	 * shared kernel pmd. And this requires a whole page for pgd.
301 	 */
302 	if (!SHARED_KERNEL_PMD)
303 		return 0;
304 
305 	/*
306 	 * when PAE kernel is not running as a Xen domain, it uses
307 	 * shared kernel pmd. Shared kernel pmd does not require a whole
308 	 * page for pgd. We are able to just allocate a 32-byte for pgd.
309 	 * During boot time, we create a 32-byte slab for pgd table allocation.
310 	 */
311 	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
312 				      SLAB_PANIC, NULL);
313 	if (!pgd_cache)
314 		return -ENOMEM;
315 
316 	return 0;
317 }
318 core_initcall(pgd_cache_init);
319 
_pgd_alloc(void)320 static inline pgd_t *_pgd_alloc(void)
321 {
322 	/*
323 	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
324 	 * We allocate one page for pgd.
325 	 */
326 	if (!SHARED_KERNEL_PMD)
327 		return (pgd_t *)__get_free_page(PGALLOC_GFP);
328 
329 	/*
330 	 * Now PAE kernel is not running as a Xen domain. We can allocate
331 	 * a 32-byte slab for pgd to save memory space.
332 	 */
333 	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
334 }
335 
_pgd_free(pgd_t * pgd)336 static inline void _pgd_free(pgd_t *pgd)
337 {
338 	if (!SHARED_KERNEL_PMD)
339 		free_page((unsigned long)pgd);
340 	else
341 		kmem_cache_free(pgd_cache, pgd);
342 }
343 #else
344 
345 /*
346  * Instead of one pgd, Kaiser acquires two pgds.  Being order-1, it is
347  * both 8k in size and 8k-aligned.  That lets us just flip bit 12
348  * in a pointer to swap between the two 4k halves.
349  */
350 #define PGD_ALLOCATION_ORDER	kaiser_enabled
351 
_pgd_alloc(void)352 static inline pgd_t *_pgd_alloc(void)
353 {
354 	/* No __GFP_REPEAT: to avoid page allocation stalls in order-1 case */
355 	return (pgd_t *)__get_free_pages(PGALLOC_GFP & ~__GFP_REPEAT,
356 					 PGD_ALLOCATION_ORDER);
357 }
358 
_pgd_free(pgd_t * pgd)359 static inline void _pgd_free(pgd_t *pgd)
360 {
361 	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
362 }
363 #endif /* CONFIG_X86_PAE */
364 
pgd_alloc(struct mm_struct * mm)365 pgd_t *pgd_alloc(struct mm_struct *mm)
366 {
367 	pgd_t *pgd;
368 	pmd_t *pmds[PREALLOCATED_PMDS];
369 
370 	pgd = _pgd_alloc();
371 
372 	if (pgd == NULL)
373 		goto out;
374 
375 	mm->pgd = pgd;
376 
377 	if (preallocate_pmds(mm, pmds) != 0)
378 		goto out_free_pgd;
379 
380 	if (paravirt_pgd_alloc(mm) != 0)
381 		goto out_free_pmds;
382 
383 	/*
384 	 * Make sure that pre-populating the pmds is atomic with
385 	 * respect to anything walking the pgd_list, so that they
386 	 * never see a partially populated pgd.
387 	 */
388 	spin_lock(&pgd_lock);
389 
390 	pgd_ctor(mm, pgd);
391 	pgd_prepopulate_pmd(mm, pgd, pmds);
392 
393 	spin_unlock(&pgd_lock);
394 
395 	return pgd;
396 
397 out_free_pmds:
398 	free_pmds(mm, pmds);
399 out_free_pgd:
400 	_pgd_free(pgd);
401 out:
402 	return NULL;
403 }
404 
pgd_free(struct mm_struct * mm,pgd_t * pgd)405 void pgd_free(struct mm_struct *mm, pgd_t *pgd)
406 {
407 	pgd_mop_up_pmds(mm, pgd);
408 	pgd_dtor(pgd);
409 	paravirt_pgd_free(mm, pgd);
410 	_pgd_free(pgd);
411 }
412 
413 /*
414  * Used to set accessed or dirty bits in the page table entries
415  * on other architectures. On x86, the accessed and dirty bits
416  * are tracked by hardware. However, do_wp_page calls this function
417  * to also make the pte writeable at the same time the dirty bit is
418  * set. In that case we do actually need to write the PTE.
419  */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)420 int ptep_set_access_flags(struct vm_area_struct *vma,
421 			  unsigned long address, pte_t *ptep,
422 			  pte_t entry, int dirty)
423 {
424 	int changed = !pte_same(*ptep, entry);
425 
426 	if (changed && dirty) {
427 		set_pte(ptep, entry);
428 		pte_update_defer(vma->vm_mm, address, ptep);
429 	}
430 
431 	return changed;
432 }
433 
434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)435 int pmdp_set_access_flags(struct vm_area_struct *vma,
436 			  unsigned long address, pmd_t *pmdp,
437 			  pmd_t entry, int dirty)
438 {
439 	int changed = !pmd_same(*pmdp, entry);
440 
441 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
442 
443 	if (changed && dirty) {
444 		set_pmd(pmdp, entry);
445 		pmd_update_defer(vma->vm_mm, address, pmdp);
446 		/*
447 		 * We had a write-protection fault here and changed the pmd
448 		 * to to more permissive. No need to flush the TLB for that,
449 		 * #PF is architecturally guaranteed to do that and in the
450 		 * worst-case we'll generate a spurious fault.
451 		 */
452 	}
453 
454 	return changed;
455 }
456 #endif
457 
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)458 int ptep_test_and_clear_young(struct vm_area_struct *vma,
459 			      unsigned long addr, pte_t *ptep)
460 {
461 	int ret = 0;
462 
463 	if (pte_young(*ptep))
464 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
465 					 (unsigned long *) &ptep->pte);
466 
467 	if (ret)
468 		pte_update(vma->vm_mm, addr, ptep);
469 
470 	return ret;
471 }
472 
473 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)474 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
475 			      unsigned long addr, pmd_t *pmdp)
476 {
477 	int ret = 0;
478 
479 	if (pmd_young(*pmdp))
480 		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
481 					 (unsigned long *)pmdp);
482 
483 	if (ret)
484 		pmd_update(vma->vm_mm, addr, pmdp);
485 
486 	return ret;
487 }
488 #endif
489 
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)490 int ptep_clear_flush_young(struct vm_area_struct *vma,
491 			   unsigned long address, pte_t *ptep)
492 {
493 	/*
494 	 * On x86 CPUs, clearing the accessed bit without a TLB flush
495 	 * doesn't cause data corruption. [ It could cause incorrect
496 	 * page aging and the (mistaken) reclaim of hot pages, but the
497 	 * chance of that should be relatively low. ]
498 	 *
499 	 * So as a performance optimization don't flush the TLB when
500 	 * clearing the accessed bit, it will eventually be flushed by
501 	 * a context switch or a VM operation anyway. [ In the rare
502 	 * event of it not getting flushed for a long time the delay
503 	 * shouldn't really matter because there's no real memory
504 	 * pressure for swapout to react to. ]
505 	 */
506 	return ptep_test_and_clear_young(vma, address, ptep);
507 }
508 
509 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)510 int pmdp_clear_flush_young(struct vm_area_struct *vma,
511 			   unsigned long address, pmd_t *pmdp)
512 {
513 	int young;
514 
515 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
516 
517 	young = pmdp_test_and_clear_young(vma, address, pmdp);
518 	if (young)
519 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
520 
521 	return young;
522 }
523 
pmdp_splitting_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)524 void pmdp_splitting_flush(struct vm_area_struct *vma,
525 			  unsigned long address, pmd_t *pmdp)
526 {
527 	int set;
528 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
529 	set = !test_and_set_bit(_PAGE_BIT_SPLITTING,
530 				(unsigned long *)pmdp);
531 	if (set) {
532 		pmd_update(vma->vm_mm, address, pmdp);
533 		/* need tlb flush only to serialize against gup-fast */
534 		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
535 	}
536 }
537 #endif
538 
539 /**
540  * reserve_top_address - reserves a hole in the top of kernel address space
541  * @reserve - size of hole to reserve
542  *
543  * Can be used to relocate the fixmap area and poke a hole in the top
544  * of kernel address space to make room for a hypervisor.
545  */
reserve_top_address(unsigned long reserve)546 void __init reserve_top_address(unsigned long reserve)
547 {
548 #ifdef CONFIG_X86_32
549 	BUG_ON(fixmaps_set > 0);
550 	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
551 	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
552 	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
553 #endif
554 }
555 
556 int fixmaps_set;
557 
__native_set_fixmap(enum fixed_addresses idx,pte_t pte)558 void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
559 {
560 	unsigned long address = __fix_to_virt(idx);
561 
562 	if (idx >= __end_of_fixed_addresses) {
563 		BUG();
564 		return;
565 	}
566 	set_pte_vaddr(address, pte);
567 	fixmaps_set++;
568 }
569 
native_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t flags)570 void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
571 		       phys_addr_t phys, pgprot_t flags)
572 {
573 	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
574 }
575 
576 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
577 /**
578  * pud_set_huge - setup kernel PUD mapping
579  *
580  * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
581  * function sets up a huge page only if any of the following conditions are met:
582  *
583  * - MTRRs are disabled, or
584  *
585  * - MTRRs are enabled and the range is completely covered by a single MTRR, or
586  *
587  * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
588  *   has no effect on the requested PAT memory type.
589  *
590  * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
591  * page mapping attempt fails.
592  *
593  * Returns 1 on success and 0 on failure.
594  */
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)595 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
596 {
597 	u8 mtrr, uniform;
598 
599 	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
600 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
601 	    (mtrr != MTRR_TYPE_WRBACK))
602 		return 0;
603 
604 	/* Bail out if we are we on a populated non-leaf entry: */
605 	if (pud_present(*pud) && !pud_huge(*pud))
606 		return 0;
607 
608 	prot = pgprot_4k_2_large(prot);
609 
610 	set_pte((pte_t *)pud, pfn_pte(
611 		(u64)addr >> PAGE_SHIFT,
612 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
613 
614 	return 1;
615 }
616 
617 /**
618  * pmd_set_huge - setup kernel PMD mapping
619  *
620  * See text over pud_set_huge() above.
621  *
622  * Returns 1 on success and 0 on failure.
623  */
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)624 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
625 {
626 	u8 mtrr, uniform;
627 
628 	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
629 	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
630 	    (mtrr != MTRR_TYPE_WRBACK)) {
631 		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
632 			     __func__, addr, addr + PMD_SIZE);
633 		return 0;
634 	}
635 
636 	/* Bail out if we are we on a populated non-leaf entry: */
637 	if (pmd_present(*pmd) && !pmd_huge(*pmd))
638 		return 0;
639 
640 	prot = pgprot_4k_2_large(prot);
641 
642 	set_pte((pte_t *)pmd, pfn_pte(
643 		(u64)addr >> PAGE_SHIFT,
644 		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
645 
646 	return 1;
647 }
648 
649 /**
650  * pud_clear_huge - clear kernel PUD mapping when it is set
651  *
652  * Returns 1 on success and 0 on failure (no PUD map is found).
653  */
pud_clear_huge(pud_t * pud)654 int pud_clear_huge(pud_t *pud)
655 {
656 	if (pud_large(*pud)) {
657 		pud_clear(pud);
658 		return 1;
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  * pmd_clear_huge - clear kernel PMD mapping when it is set
666  *
667  * Returns 1 on success and 0 on failure (no PMD map is found).
668  */
pmd_clear_huge(pmd_t * pmd)669 int pmd_clear_huge(pmd_t *pmd)
670 {
671 	if (pmd_large(*pmd)) {
672 		pmd_clear(pmd);
673 		return 1;
674 	}
675 
676 	return 0;
677 }
678 
679 #ifdef CONFIG_X86_64
680 /**
681  * pud_free_pmd_page - Clear pud entry and free pmd page.
682  * @pud: Pointer to a PUD.
683  * @addr: Virtual address associated with pud.
684  *
685  * Context: The pud range has been unmapped and TLB purged.
686  * Return: 1 if clearing the entry succeeded. 0 otherwise.
687  *
688  * NOTE: Callers must allow a single page allocation.
689  */
pud_free_pmd_page(pud_t * pud,unsigned long addr)690 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
691 {
692 	pmd_t *pmd, *pmd_sv;
693 	pte_t *pte;
694 	int i;
695 
696 	if (pud_none(*pud))
697 		return 1;
698 
699 	pmd = (pmd_t *)pud_page_vaddr(*pud);
700 	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
701 	if (!pmd_sv)
702 		return 0;
703 
704 	for (i = 0; i < PTRS_PER_PMD; i++) {
705 		pmd_sv[i] = pmd[i];
706 		if (!pmd_none(pmd[i]))
707 			pmd_clear(&pmd[i]);
708 	}
709 
710 	pud_clear(pud);
711 
712 	/* INVLPG to clear all paging-structure caches */
713 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
714 
715 	for (i = 0; i < PTRS_PER_PMD; i++) {
716 		if (!pmd_none(pmd_sv[i])) {
717 			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
718 			free_page((unsigned long)pte);
719 		}
720 	}
721 
722 	free_page((unsigned long)pmd_sv);
723 
724 	pgtable_pmd_page_dtor(virt_to_page(pmd));
725 	free_page((unsigned long)pmd);
726 
727 	return 1;
728 }
729 
730 /**
731  * pmd_free_pte_page - Clear pmd entry and free pte page.
732  * @pmd: Pointer to a PMD.
733  * @addr: Virtual address associated with pmd.
734  *
735  * Context: The pmd range has been unmapped and TLB purged.
736  * Return: 1 if clearing the entry succeeded. 0 otherwise.
737  */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)738 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
739 {
740 	pte_t *pte;
741 
742 	if (pmd_none(*pmd))
743 		return 1;
744 
745 	pte = (pte_t *)pmd_page_vaddr(*pmd);
746 	pmd_clear(pmd);
747 
748 	/* INVLPG to clear all paging-structure caches */
749 	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
750 
751 	free_page((unsigned long)pte);
752 
753 	return 1;
754 }
755 
756 #else /* !CONFIG_X86_64 */
757 
pud_free_pmd_page(pud_t * pud,unsigned long addr)758 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
759 {
760 	return pud_none(*pud);
761 }
762 
763 /*
764  * Disable free page handling on x86-PAE. This assures that ioremap()
765  * does not update sync'd pmd entries. See vmalloc_sync_one().
766  */
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)767 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
768 {
769 	return pmd_none(*pmd);
770 }
771 
772 #endif /* CONFIG_X86_64 */
773 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
774