• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Primary bucket allocation code
3  *
4  * Copyright 2012 Google, Inc.
5  *
6  * Allocation in bcache is done in terms of buckets:
7  *
8  * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
9  * btree pointers - they must match for the pointer to be considered valid.
10  *
11  * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
12  * bucket simply by incrementing its gen.
13  *
14  * The gens (along with the priorities; it's really the gens are important but
15  * the code is named as if it's the priorities) are written in an arbitrary list
16  * of buckets on disk, with a pointer to them in the journal header.
17  *
18  * When we invalidate a bucket, we have to write its new gen to disk and wait
19  * for that write to complete before we use it - otherwise after a crash we
20  * could have pointers that appeared to be good but pointed to data that had
21  * been overwritten.
22  *
23  * Since the gens and priorities are all stored contiguously on disk, we can
24  * batch this up: We fill up the free_inc list with freshly invalidated buckets,
25  * call prio_write(), and when prio_write() finishes we pull buckets off the
26  * free_inc list and optionally discard them.
27  *
28  * free_inc isn't the only freelist - if it was, we'd often to sleep while
29  * priorities and gens were being written before we could allocate. c->free is a
30  * smaller freelist, and buckets on that list are always ready to be used.
31  *
32  * If we've got discards enabled, that happens when a bucket moves from the
33  * free_inc list to the free list.
34  *
35  * There is another freelist, because sometimes we have buckets that we know
36  * have nothing pointing into them - these we can reuse without waiting for
37  * priorities to be rewritten. These come from freed btree nodes and buckets
38  * that garbage collection discovered no longer had valid keys pointing into
39  * them (because they were overwritten). That's the unused list - buckets on the
40  * unused list move to the free list, optionally being discarded in the process.
41  *
42  * It's also important to ensure that gens don't wrap around - with respect to
43  * either the oldest gen in the btree or the gen on disk. This is quite
44  * difficult to do in practice, but we explicitly guard against it anyways - if
45  * a bucket is in danger of wrapping around we simply skip invalidating it that
46  * time around, and we garbage collect or rewrite the priorities sooner than we
47  * would have otherwise.
48  *
49  * bch_bucket_alloc() allocates a single bucket from a specific cache.
50  *
51  * bch_bucket_alloc_set() allocates one or more buckets from different caches
52  * out of a cache set.
53  *
54  * free_some_buckets() drives all the processes described above. It's called
55  * from bch_bucket_alloc() and a few other places that need to make sure free
56  * buckets are ready.
57  *
58  * invalidate_buckets_(lru|fifo)() find buckets that are available to be
59  * invalidated, and then invalidate them and stick them on the free_inc list -
60  * in either lru or fifo order.
61  */
62 
63 #include "bcache.h"
64 #include "btree.h"
65 
66 #include <linux/blkdev.h>
67 #include <linux/freezer.h>
68 #include <linux/kthread.h>
69 #include <linux/random.h>
70 #include <trace/events/bcache.h>
71 
72 /* Bucket heap / gen */
73 
bch_inc_gen(struct cache * ca,struct bucket * b)74 uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
75 {
76 	uint8_t ret = ++b->gen;
77 
78 	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
79 	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
80 
81 	return ret;
82 }
83 
bch_rescale_priorities(struct cache_set * c,int sectors)84 void bch_rescale_priorities(struct cache_set *c, int sectors)
85 {
86 	struct cache *ca;
87 	struct bucket *b;
88 	unsigned next = c->nbuckets * c->sb.bucket_size / 1024;
89 	unsigned i;
90 	int r;
91 
92 	atomic_sub(sectors, &c->rescale);
93 
94 	do {
95 		r = atomic_read(&c->rescale);
96 
97 		if (r >= 0)
98 			return;
99 	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
100 
101 	mutex_lock(&c->bucket_lock);
102 
103 	c->min_prio = USHRT_MAX;
104 
105 	for_each_cache(ca, c, i)
106 		for_each_bucket(b, ca)
107 			if (b->prio &&
108 			    b->prio != BTREE_PRIO &&
109 			    !atomic_read(&b->pin)) {
110 				b->prio--;
111 				c->min_prio = min(c->min_prio, b->prio);
112 			}
113 
114 	mutex_unlock(&c->bucket_lock);
115 }
116 
117 /*
118  * Background allocation thread: scans for buckets to be invalidated,
119  * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
120  * then optionally issues discard commands to the newly free buckets, then puts
121  * them on the various freelists.
122  */
123 
can_inc_bucket_gen(struct bucket * b)124 static inline bool can_inc_bucket_gen(struct bucket *b)
125 {
126 	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
127 }
128 
bch_can_invalidate_bucket(struct cache * ca,struct bucket * b)129 bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
130 {
131 	BUG_ON(!ca->set->gc_mark_valid);
132 
133 	return (!GC_MARK(b) ||
134 		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
135 		!atomic_read(&b->pin) &&
136 		can_inc_bucket_gen(b);
137 }
138 
__bch_invalidate_one_bucket(struct cache * ca,struct bucket * b)139 void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
140 {
141 	lockdep_assert_held(&ca->set->bucket_lock);
142 	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
143 
144 	if (GC_SECTORS_USED(b))
145 		trace_bcache_invalidate(ca, b - ca->buckets);
146 
147 	bch_inc_gen(ca, b);
148 	b->prio = INITIAL_PRIO;
149 	atomic_inc(&b->pin);
150 }
151 
bch_invalidate_one_bucket(struct cache * ca,struct bucket * b)152 static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
153 {
154 	__bch_invalidate_one_bucket(ca, b);
155 
156 	fifo_push(&ca->free_inc, b - ca->buckets);
157 }
158 
159 /*
160  * Determines what order we're going to reuse buckets, smallest bucket_prio()
161  * first: we also take into account the number of sectors of live data in that
162  * bucket, and in order for that multiply to make sense we have to scale bucket
163  *
164  * Thus, we scale the bucket priorities so that the bucket with the smallest
165  * prio is worth 1/8th of what INITIAL_PRIO is worth.
166  */
167 
168 #define bucket_prio(b)							\
169 ({									\
170 	unsigned min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
171 									\
172 	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
173 })
174 
175 #define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
176 #define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
177 
invalidate_buckets_lru(struct cache * ca)178 static void invalidate_buckets_lru(struct cache *ca)
179 {
180 	struct bucket *b;
181 	ssize_t i;
182 
183 	ca->heap.used = 0;
184 
185 	for_each_bucket(b, ca) {
186 		if (!bch_can_invalidate_bucket(ca, b))
187 			continue;
188 
189 		if (!heap_full(&ca->heap))
190 			heap_add(&ca->heap, b, bucket_max_cmp);
191 		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
192 			ca->heap.data[0] = b;
193 			heap_sift(&ca->heap, 0, bucket_max_cmp);
194 		}
195 	}
196 
197 	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
198 		heap_sift(&ca->heap, i, bucket_min_cmp);
199 
200 	while (!fifo_full(&ca->free_inc)) {
201 		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
202 			/*
203 			 * We don't want to be calling invalidate_buckets()
204 			 * multiple times when it can't do anything
205 			 */
206 			ca->invalidate_needs_gc = 1;
207 			wake_up_gc(ca->set);
208 			return;
209 		}
210 
211 		bch_invalidate_one_bucket(ca, b);
212 	}
213 }
214 
invalidate_buckets_fifo(struct cache * ca)215 static void invalidate_buckets_fifo(struct cache *ca)
216 {
217 	struct bucket *b;
218 	size_t checked = 0;
219 
220 	while (!fifo_full(&ca->free_inc)) {
221 		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
222 		    ca->fifo_last_bucket >= ca->sb.nbuckets)
223 			ca->fifo_last_bucket = ca->sb.first_bucket;
224 
225 		b = ca->buckets + ca->fifo_last_bucket++;
226 
227 		if (bch_can_invalidate_bucket(ca, b))
228 			bch_invalidate_one_bucket(ca, b);
229 
230 		if (++checked >= ca->sb.nbuckets) {
231 			ca->invalidate_needs_gc = 1;
232 			wake_up_gc(ca->set);
233 			return;
234 		}
235 	}
236 }
237 
invalidate_buckets_random(struct cache * ca)238 static void invalidate_buckets_random(struct cache *ca)
239 {
240 	struct bucket *b;
241 	size_t checked = 0;
242 
243 	while (!fifo_full(&ca->free_inc)) {
244 		size_t n;
245 		get_random_bytes(&n, sizeof(n));
246 
247 		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
248 		n += ca->sb.first_bucket;
249 
250 		b = ca->buckets + n;
251 
252 		if (bch_can_invalidate_bucket(ca, b))
253 			bch_invalidate_one_bucket(ca, b);
254 
255 		if (++checked >= ca->sb.nbuckets / 2) {
256 			ca->invalidate_needs_gc = 1;
257 			wake_up_gc(ca->set);
258 			return;
259 		}
260 	}
261 }
262 
invalidate_buckets(struct cache * ca)263 static void invalidate_buckets(struct cache *ca)
264 {
265 	BUG_ON(ca->invalidate_needs_gc);
266 
267 	switch (CACHE_REPLACEMENT(&ca->sb)) {
268 	case CACHE_REPLACEMENT_LRU:
269 		invalidate_buckets_lru(ca);
270 		break;
271 	case CACHE_REPLACEMENT_FIFO:
272 		invalidate_buckets_fifo(ca);
273 		break;
274 	case CACHE_REPLACEMENT_RANDOM:
275 		invalidate_buckets_random(ca);
276 		break;
277 	}
278 }
279 
280 #define allocator_wait(ca, cond)					\
281 do {									\
282 	while (1) {							\
283 		set_current_state(TASK_INTERRUPTIBLE);			\
284 		if (cond)						\
285 			break;						\
286 									\
287 		mutex_unlock(&(ca)->set->bucket_lock);			\
288 		if (kthread_should_stop()) {				\
289 			set_current_state(TASK_RUNNING);		\
290 			return 0;					\
291 		}							\
292 									\
293 		try_to_freeze();					\
294 		schedule();						\
295 		mutex_lock(&(ca)->set->bucket_lock);			\
296 	}								\
297 	__set_current_state(TASK_RUNNING);				\
298 } while (0)
299 
bch_allocator_push(struct cache * ca,long bucket)300 static int bch_allocator_push(struct cache *ca, long bucket)
301 {
302 	unsigned i;
303 
304 	/* Prios/gens are actually the most important reserve */
305 	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
306 		return true;
307 
308 	for (i = 0; i < RESERVE_NR; i++)
309 		if (fifo_push(&ca->free[i], bucket))
310 			return true;
311 
312 	return false;
313 }
314 
bch_allocator_thread(void * arg)315 static int bch_allocator_thread(void *arg)
316 {
317 	struct cache *ca = arg;
318 
319 	mutex_lock(&ca->set->bucket_lock);
320 
321 	while (1) {
322 		/*
323 		 * First, we pull buckets off of the unused and free_inc lists,
324 		 * possibly issue discards to them, then we add the bucket to
325 		 * the free list:
326 		 */
327 		while (1) {
328 			long bucket;
329 
330 			if (!fifo_pop(&ca->free_inc, bucket))
331 				break;
332 
333 			if (ca->discard) {
334 				mutex_unlock(&ca->set->bucket_lock);
335 				blkdev_issue_discard(ca->bdev,
336 					bucket_to_sector(ca->set, bucket),
337 					ca->sb.bucket_size, GFP_KERNEL, 0);
338 				mutex_lock(&ca->set->bucket_lock);
339 			}
340 
341 			allocator_wait(ca, bch_allocator_push(ca, bucket));
342 			wake_up(&ca->set->btree_cache_wait);
343 			wake_up(&ca->set->bucket_wait);
344 		}
345 
346 		/*
347 		 * We've run out of free buckets, we need to find some buckets
348 		 * we can invalidate. First, invalidate them in memory and add
349 		 * them to the free_inc list:
350 		 */
351 
352 retry_invalidate:
353 		allocator_wait(ca, ca->set->gc_mark_valid &&
354 			       !ca->invalidate_needs_gc);
355 		invalidate_buckets(ca);
356 
357 		/*
358 		 * Now, we write their new gens to disk so we can start writing
359 		 * new stuff to them:
360 		 */
361 		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
362 		if (CACHE_SYNC(&ca->set->sb)) {
363 			/*
364 			 * This could deadlock if an allocation with a btree
365 			 * node locked ever blocked - having the btree node
366 			 * locked would block garbage collection, but here we're
367 			 * waiting on garbage collection before we invalidate
368 			 * and free anything.
369 			 *
370 			 * But this should be safe since the btree code always
371 			 * uses btree_check_reserve() before allocating now, and
372 			 * if it fails it blocks without btree nodes locked.
373 			 */
374 			if (!fifo_full(&ca->free_inc))
375 				goto retry_invalidate;
376 
377 			bch_prio_write(ca);
378 		}
379 	}
380 }
381 
382 /* Allocation */
383 
bch_bucket_alloc(struct cache * ca,unsigned reserve,bool wait)384 long bch_bucket_alloc(struct cache *ca, unsigned reserve, bool wait)
385 {
386 	DEFINE_WAIT(w);
387 	struct bucket *b;
388 	long r;
389 
390 	/* fastpath */
391 	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
392 	    fifo_pop(&ca->free[reserve], r))
393 		goto out;
394 
395 	if (!wait) {
396 		trace_bcache_alloc_fail(ca, reserve);
397 		return -1;
398 	}
399 
400 	do {
401 		prepare_to_wait(&ca->set->bucket_wait, &w,
402 				TASK_UNINTERRUPTIBLE);
403 
404 		mutex_unlock(&ca->set->bucket_lock);
405 		schedule();
406 		mutex_lock(&ca->set->bucket_lock);
407 	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
408 		 !fifo_pop(&ca->free[reserve], r));
409 
410 	finish_wait(&ca->set->bucket_wait, &w);
411 out:
412 	if (ca->alloc_thread)
413 		wake_up_process(ca->alloc_thread);
414 
415 	trace_bcache_alloc(ca, reserve);
416 
417 	if (expensive_debug_checks(ca->set)) {
418 		size_t iter;
419 		long i;
420 		unsigned j;
421 
422 		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
423 			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
424 
425 		for (j = 0; j < RESERVE_NR; j++)
426 			fifo_for_each(i, &ca->free[j], iter)
427 				BUG_ON(i == r);
428 		fifo_for_each(i, &ca->free_inc, iter)
429 			BUG_ON(i == r);
430 	}
431 
432 	b = ca->buckets + r;
433 
434 	BUG_ON(atomic_read(&b->pin) != 1);
435 
436 	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
437 
438 	if (reserve <= RESERVE_PRIO) {
439 		SET_GC_MARK(b, GC_MARK_METADATA);
440 		SET_GC_MOVE(b, 0);
441 		b->prio = BTREE_PRIO;
442 	} else {
443 		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
444 		SET_GC_MOVE(b, 0);
445 		b->prio = INITIAL_PRIO;
446 	}
447 
448 	return r;
449 }
450 
__bch_bucket_free(struct cache * ca,struct bucket * b)451 void __bch_bucket_free(struct cache *ca, struct bucket *b)
452 {
453 	SET_GC_MARK(b, 0);
454 	SET_GC_SECTORS_USED(b, 0);
455 }
456 
bch_bucket_free(struct cache_set * c,struct bkey * k)457 void bch_bucket_free(struct cache_set *c, struct bkey *k)
458 {
459 	unsigned i;
460 
461 	for (i = 0; i < KEY_PTRS(k); i++)
462 		__bch_bucket_free(PTR_CACHE(c, k, i),
463 				  PTR_BUCKET(c, k, i));
464 }
465 
__bch_bucket_alloc_set(struct cache_set * c,unsigned reserve,struct bkey * k,int n,bool wait)466 int __bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
467 			   struct bkey *k, int n, bool wait)
468 {
469 	int i;
470 
471 	lockdep_assert_held(&c->bucket_lock);
472 	BUG_ON(!n || n > c->caches_loaded || n > 8);
473 
474 	bkey_init(k);
475 
476 	/* sort by free space/prio of oldest data in caches */
477 
478 	for (i = 0; i < n; i++) {
479 		struct cache *ca = c->cache_by_alloc[i];
480 		long b = bch_bucket_alloc(ca, reserve, wait);
481 
482 		if (b == -1)
483 			goto err;
484 
485 		k->ptr[i] = MAKE_PTR(ca->buckets[b].gen,
486 				bucket_to_sector(c, b),
487 				ca->sb.nr_this_dev);
488 
489 		SET_KEY_PTRS(k, i + 1);
490 	}
491 
492 	return 0;
493 err:
494 	bch_bucket_free(c, k);
495 	bkey_put(c, k);
496 	return -1;
497 }
498 
bch_bucket_alloc_set(struct cache_set * c,unsigned reserve,struct bkey * k,int n,bool wait)499 int bch_bucket_alloc_set(struct cache_set *c, unsigned reserve,
500 			 struct bkey *k, int n, bool wait)
501 {
502 	int ret;
503 	mutex_lock(&c->bucket_lock);
504 	ret = __bch_bucket_alloc_set(c, reserve, k, n, wait);
505 	mutex_unlock(&c->bucket_lock);
506 	return ret;
507 }
508 
509 /* Sector allocator */
510 
511 struct open_bucket {
512 	struct list_head	list;
513 	unsigned		last_write_point;
514 	unsigned		sectors_free;
515 	BKEY_PADDED(key);
516 };
517 
518 /*
519  * We keep multiple buckets open for writes, and try to segregate different
520  * write streams for better cache utilization: first we try to segregate flash
521  * only volume write streams from cached devices, secondly we look for a bucket
522  * where the last write to it was sequential with the current write, and
523  * failing that we look for a bucket that was last used by the same task.
524  *
525  * The ideas is if you've got multiple tasks pulling data into the cache at the
526  * same time, you'll get better cache utilization if you try to segregate their
527  * data and preserve locality.
528  *
529  * For example, dirty sectors of flash only volume is not reclaimable, if their
530  * dirty sectors mixed with dirty sectors of cached device, such buckets will
531  * be marked as dirty and won't be reclaimed, though the dirty data of cached
532  * device have been written back to backend device.
533  *
534  * And say you've starting Firefox at the same time you're copying a
535  * bunch of files. Firefox will likely end up being fairly hot and stay in the
536  * cache awhile, but the data you copied might not be; if you wrote all that
537  * data to the same buckets it'd get invalidated at the same time.
538  *
539  * Both of those tasks will be doing fairly random IO so we can't rely on
540  * detecting sequential IO to segregate their data, but going off of the task
541  * should be a sane heuristic.
542  */
pick_data_bucket(struct cache_set * c,const struct bkey * search,unsigned write_point,struct bkey * alloc)543 static struct open_bucket *pick_data_bucket(struct cache_set *c,
544 					    const struct bkey *search,
545 					    unsigned write_point,
546 					    struct bkey *alloc)
547 {
548 	struct open_bucket *ret, *ret_task = NULL;
549 
550 	list_for_each_entry_reverse(ret, &c->data_buckets, list)
551 		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
552 		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
553 			continue;
554 		else if (!bkey_cmp(&ret->key, search))
555 			goto found;
556 		else if (ret->last_write_point == write_point)
557 			ret_task = ret;
558 
559 	ret = ret_task ?: list_first_entry(&c->data_buckets,
560 					   struct open_bucket, list);
561 found:
562 	if (!ret->sectors_free && KEY_PTRS(alloc)) {
563 		ret->sectors_free = c->sb.bucket_size;
564 		bkey_copy(&ret->key, alloc);
565 		bkey_init(alloc);
566 	}
567 
568 	if (!ret->sectors_free)
569 		ret = NULL;
570 
571 	return ret;
572 }
573 
574 /*
575  * Allocates some space in the cache to write to, and k to point to the newly
576  * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
577  * end of the newly allocated space).
578  *
579  * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
580  * sectors were actually allocated.
581  *
582  * If s->writeback is true, will not fail.
583  */
bch_alloc_sectors(struct cache_set * c,struct bkey * k,unsigned sectors,unsigned write_point,unsigned write_prio,bool wait)584 bool bch_alloc_sectors(struct cache_set *c, struct bkey *k, unsigned sectors,
585 		       unsigned write_point, unsigned write_prio, bool wait)
586 {
587 	struct open_bucket *b;
588 	BKEY_PADDED(key) alloc;
589 	unsigned i;
590 
591 	/*
592 	 * We might have to allocate a new bucket, which we can't do with a
593 	 * spinlock held. So if we have to allocate, we drop the lock, allocate
594 	 * and then retry. KEY_PTRS() indicates whether alloc points to
595 	 * allocated bucket(s).
596 	 */
597 
598 	bkey_init(&alloc.key);
599 	spin_lock(&c->data_bucket_lock);
600 
601 	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
602 		unsigned watermark = write_prio
603 			? RESERVE_MOVINGGC
604 			: RESERVE_NONE;
605 
606 		spin_unlock(&c->data_bucket_lock);
607 
608 		if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, wait))
609 			return false;
610 
611 		spin_lock(&c->data_bucket_lock);
612 	}
613 
614 	/*
615 	 * If we had to allocate, we might race and not need to allocate the
616 	 * second time we call find_data_bucket(). If we allocated a bucket but
617 	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
618 	 */
619 	if (KEY_PTRS(&alloc.key))
620 		bkey_put(c, &alloc.key);
621 
622 	for (i = 0; i < KEY_PTRS(&b->key); i++)
623 		EBUG_ON(ptr_stale(c, &b->key, i));
624 
625 	/* Set up the pointer to the space we're allocating: */
626 
627 	for (i = 0; i < KEY_PTRS(&b->key); i++)
628 		k->ptr[i] = b->key.ptr[i];
629 
630 	sectors = min(sectors, b->sectors_free);
631 
632 	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
633 	SET_KEY_SIZE(k, sectors);
634 	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
635 
636 	/*
637 	 * Move b to the end of the lru, and keep track of what this bucket was
638 	 * last used for:
639 	 */
640 	list_move_tail(&b->list, &c->data_buckets);
641 	bkey_copy_key(&b->key, k);
642 	b->last_write_point = write_point;
643 
644 	b->sectors_free	-= sectors;
645 
646 	for (i = 0; i < KEY_PTRS(&b->key); i++) {
647 		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
648 
649 		atomic_long_add(sectors,
650 				&PTR_CACHE(c, &b->key, i)->sectors_written);
651 	}
652 
653 	if (b->sectors_free < c->sb.block_size)
654 		b->sectors_free = 0;
655 
656 	/*
657 	 * k takes refcounts on the buckets it points to until it's inserted
658 	 * into the btree, but if we're done with this bucket we just transfer
659 	 * get_data_bucket()'s refcount.
660 	 */
661 	if (b->sectors_free)
662 		for (i = 0; i < KEY_PTRS(&b->key); i++)
663 			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
664 
665 	spin_unlock(&c->data_bucket_lock);
666 	return true;
667 }
668 
669 /* Init */
670 
bch_open_buckets_free(struct cache_set * c)671 void bch_open_buckets_free(struct cache_set *c)
672 {
673 	struct open_bucket *b;
674 
675 	while (!list_empty(&c->data_buckets)) {
676 		b = list_first_entry(&c->data_buckets,
677 				     struct open_bucket, list);
678 		list_del(&b->list);
679 		kfree(b);
680 	}
681 }
682 
bch_open_buckets_alloc(struct cache_set * c)683 int bch_open_buckets_alloc(struct cache_set *c)
684 {
685 	int i;
686 
687 	spin_lock_init(&c->data_bucket_lock);
688 
689 	for (i = 0; i < 6; i++) {
690 		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
691 		if (!b)
692 			return -ENOMEM;
693 
694 		list_add(&b->list, &c->data_buckets);
695 	}
696 
697 	return 0;
698 }
699 
bch_cache_allocator_start(struct cache * ca)700 int bch_cache_allocator_start(struct cache *ca)
701 {
702 	struct task_struct *k = kthread_run(bch_allocator_thread,
703 					    ca, "bcache_allocator");
704 	if (IS_ERR(k))
705 		return PTR_ERR(k);
706 
707 	ca->alloc_thread = k;
708 	return 0;
709 }
710