• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
3  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * Standard functionality for the common clock API.  See Documentation/clk.txt
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/clk-provider.h>
14 #include <linux/clk/clk-conf.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/spinlock.h>
18 #include <linux/err.h>
19 #include <linux/list.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/sched.h>
25 #include <linux/clkdev.h>
26 
27 #include "clk.h"
28 
29 static DEFINE_SPINLOCK(enable_lock);
30 static DEFINE_MUTEX(prepare_lock);
31 
32 static struct task_struct *prepare_owner;
33 static struct task_struct *enable_owner;
34 
35 static int prepare_refcnt;
36 static int enable_refcnt;
37 
38 static HLIST_HEAD(clk_root_list);
39 static HLIST_HEAD(clk_orphan_list);
40 static LIST_HEAD(clk_notifier_list);
41 
42 /***    private data structures    ***/
43 
44 struct clk_core {
45 	const char		*name;
46 	const struct clk_ops	*ops;
47 	struct clk_hw		*hw;
48 	struct module		*owner;
49 	struct clk_core		*parent;
50 	const char		**parent_names;
51 	struct clk_core		**parents;
52 	u8			num_parents;
53 	u8			new_parent_index;
54 	unsigned long		rate;
55 	unsigned long		req_rate;
56 	unsigned long		new_rate;
57 	struct clk_core		*new_parent;
58 	struct clk_core		*new_child;
59 	unsigned long		flags;
60 	bool			orphan;
61 	unsigned int		enable_count;
62 	unsigned int		prepare_count;
63 	unsigned long		min_rate;
64 	unsigned long		max_rate;
65 	unsigned long		accuracy;
66 	int			phase;
67 	struct hlist_head	children;
68 	struct hlist_node	child_node;
69 	struct hlist_head	clks;
70 	unsigned int		notifier_count;
71 #ifdef CONFIG_DEBUG_FS
72 	struct dentry		*dentry;
73 	struct hlist_node	debug_node;
74 #endif
75 	struct kref		ref;
76 };
77 
78 #define CREATE_TRACE_POINTS
79 #include <trace/events/clk.h>
80 
81 struct clk {
82 	struct clk_core	*core;
83 	const char *dev_id;
84 	const char *con_id;
85 	unsigned long min_rate;
86 	unsigned long max_rate;
87 	struct hlist_node clks_node;
88 };
89 
90 /***           locking             ***/
clk_prepare_lock(void)91 static void clk_prepare_lock(void)
92 {
93 	if (!mutex_trylock(&prepare_lock)) {
94 		if (prepare_owner == current) {
95 			prepare_refcnt++;
96 			return;
97 		}
98 		mutex_lock(&prepare_lock);
99 	}
100 	WARN_ON_ONCE(prepare_owner != NULL);
101 	WARN_ON_ONCE(prepare_refcnt != 0);
102 	prepare_owner = current;
103 	prepare_refcnt = 1;
104 }
105 
clk_prepare_unlock(void)106 static void clk_prepare_unlock(void)
107 {
108 	WARN_ON_ONCE(prepare_owner != current);
109 	WARN_ON_ONCE(prepare_refcnt == 0);
110 
111 	if (--prepare_refcnt)
112 		return;
113 	prepare_owner = NULL;
114 	mutex_unlock(&prepare_lock);
115 }
116 
clk_enable_lock(void)117 static unsigned long clk_enable_lock(void)
118 	__acquires(enable_lock)
119 {
120 	unsigned long flags;
121 
122 	if (!spin_trylock_irqsave(&enable_lock, flags)) {
123 		if (enable_owner == current) {
124 			enable_refcnt++;
125 			__acquire(enable_lock);
126 			return flags;
127 		}
128 		spin_lock_irqsave(&enable_lock, flags);
129 	}
130 	WARN_ON_ONCE(enable_owner != NULL);
131 	WARN_ON_ONCE(enable_refcnt != 0);
132 	enable_owner = current;
133 	enable_refcnt = 1;
134 	return flags;
135 }
136 
clk_enable_unlock(unsigned long flags)137 static void clk_enable_unlock(unsigned long flags)
138 	__releases(enable_lock)
139 {
140 	WARN_ON_ONCE(enable_owner != current);
141 	WARN_ON_ONCE(enable_refcnt == 0);
142 
143 	if (--enable_refcnt) {
144 		__release(enable_lock);
145 		return;
146 	}
147 	enable_owner = NULL;
148 	spin_unlock_irqrestore(&enable_lock, flags);
149 }
150 
clk_core_is_prepared(struct clk_core * core)151 static bool clk_core_is_prepared(struct clk_core *core)
152 {
153 	/*
154 	 * .is_prepared is optional for clocks that can prepare
155 	 * fall back to software usage counter if it is missing
156 	 */
157 	if (!core->ops->is_prepared)
158 		return core->prepare_count;
159 
160 	return core->ops->is_prepared(core->hw);
161 }
162 
clk_core_is_enabled(struct clk_core * core)163 static bool clk_core_is_enabled(struct clk_core *core)
164 {
165 	/*
166 	 * .is_enabled is only mandatory for clocks that gate
167 	 * fall back to software usage counter if .is_enabled is missing
168 	 */
169 	if (!core->ops->is_enabled)
170 		return core->enable_count;
171 
172 	return core->ops->is_enabled(core->hw);
173 }
174 
clk_unprepare_unused_subtree(struct clk_core * core)175 static void clk_unprepare_unused_subtree(struct clk_core *core)
176 {
177 	struct clk_core *child;
178 
179 	lockdep_assert_held(&prepare_lock);
180 
181 	hlist_for_each_entry(child, &core->children, child_node)
182 		clk_unprepare_unused_subtree(child);
183 
184 	if (core->prepare_count)
185 		return;
186 
187 	if (core->flags & CLK_IGNORE_UNUSED)
188 		return;
189 
190 	if (clk_core_is_prepared(core)) {
191 		trace_clk_unprepare(core);
192 		if (core->ops->unprepare_unused)
193 			core->ops->unprepare_unused(core->hw);
194 		else if (core->ops->unprepare)
195 			core->ops->unprepare(core->hw);
196 		trace_clk_unprepare_complete(core);
197 	}
198 }
199 
clk_disable_unused_subtree(struct clk_core * core)200 static void clk_disable_unused_subtree(struct clk_core *core)
201 {
202 	struct clk_core *child;
203 	unsigned long flags;
204 
205 	lockdep_assert_held(&prepare_lock);
206 
207 	hlist_for_each_entry(child, &core->children, child_node)
208 		clk_disable_unused_subtree(child);
209 
210 	flags = clk_enable_lock();
211 
212 	if (core->enable_count)
213 		goto unlock_out;
214 
215 	if (core->flags & CLK_IGNORE_UNUSED)
216 		goto unlock_out;
217 
218 	/*
219 	 * some gate clocks have special needs during the disable-unused
220 	 * sequence.  call .disable_unused if available, otherwise fall
221 	 * back to .disable
222 	 */
223 	if (clk_core_is_enabled(core)) {
224 		trace_clk_disable(core);
225 		if (core->ops->disable_unused)
226 			core->ops->disable_unused(core->hw);
227 		else if (core->ops->disable)
228 			core->ops->disable(core->hw);
229 		trace_clk_disable_complete(core);
230 	}
231 
232 unlock_out:
233 	clk_enable_unlock(flags);
234 }
235 
236 static bool clk_ignore_unused;
clk_ignore_unused_setup(char * __unused)237 static int __init clk_ignore_unused_setup(char *__unused)
238 {
239 	clk_ignore_unused = true;
240 	return 1;
241 }
242 __setup("clk_ignore_unused", clk_ignore_unused_setup);
243 
clk_disable_unused(void)244 static int clk_disable_unused(void)
245 {
246 	struct clk_core *core;
247 
248 	if (clk_ignore_unused) {
249 		pr_warn("clk: Not disabling unused clocks\n");
250 		return 0;
251 	}
252 
253 	clk_prepare_lock();
254 
255 	hlist_for_each_entry(core, &clk_root_list, child_node)
256 		clk_disable_unused_subtree(core);
257 
258 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
259 		clk_disable_unused_subtree(core);
260 
261 	hlist_for_each_entry(core, &clk_root_list, child_node)
262 		clk_unprepare_unused_subtree(core);
263 
264 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
265 		clk_unprepare_unused_subtree(core);
266 
267 	clk_prepare_unlock();
268 
269 	return 0;
270 }
271 late_initcall_sync(clk_disable_unused);
272 
273 /***    helper functions   ***/
274 
__clk_get_name(const struct clk * clk)275 const char *__clk_get_name(const struct clk *clk)
276 {
277 	return !clk ? NULL : clk->core->name;
278 }
279 EXPORT_SYMBOL_GPL(__clk_get_name);
280 
clk_hw_get_name(const struct clk_hw * hw)281 const char *clk_hw_get_name(const struct clk_hw *hw)
282 {
283 	return hw->core->name;
284 }
285 EXPORT_SYMBOL_GPL(clk_hw_get_name);
286 
__clk_get_hw(struct clk * clk)287 struct clk_hw *__clk_get_hw(struct clk *clk)
288 {
289 	return !clk ? NULL : clk->core->hw;
290 }
291 EXPORT_SYMBOL_GPL(__clk_get_hw);
292 
clk_hw_get_num_parents(const struct clk_hw * hw)293 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
294 {
295 	return hw->core->num_parents;
296 }
297 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
298 
clk_hw_get_parent(const struct clk_hw * hw)299 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
300 {
301 	return hw->core->parent ? hw->core->parent->hw : NULL;
302 }
303 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
304 
__clk_lookup_subtree(const char * name,struct clk_core * core)305 static struct clk_core *__clk_lookup_subtree(const char *name,
306 					     struct clk_core *core)
307 {
308 	struct clk_core *child;
309 	struct clk_core *ret;
310 
311 	if (!strcmp(core->name, name))
312 		return core;
313 
314 	hlist_for_each_entry(child, &core->children, child_node) {
315 		ret = __clk_lookup_subtree(name, child);
316 		if (ret)
317 			return ret;
318 	}
319 
320 	return NULL;
321 }
322 
clk_core_lookup(const char * name)323 static struct clk_core *clk_core_lookup(const char *name)
324 {
325 	struct clk_core *root_clk;
326 	struct clk_core *ret;
327 
328 	if (!name)
329 		return NULL;
330 
331 	/* search the 'proper' clk tree first */
332 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
333 		ret = __clk_lookup_subtree(name, root_clk);
334 		if (ret)
335 			return ret;
336 	}
337 
338 	/* if not found, then search the orphan tree */
339 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
340 		ret = __clk_lookup_subtree(name, root_clk);
341 		if (ret)
342 			return ret;
343 	}
344 
345 	return NULL;
346 }
347 
clk_core_get_parent_by_index(struct clk_core * core,u8 index)348 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
349 							 u8 index)
350 {
351 	if (!core || index >= core->num_parents)
352 		return NULL;
353 	else if (!core->parents)
354 		return clk_core_lookup(core->parent_names[index]);
355 	else if (!core->parents[index])
356 		return core->parents[index] =
357 			clk_core_lookup(core->parent_names[index]);
358 	else
359 		return core->parents[index];
360 }
361 
362 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)363 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
364 {
365 	struct clk_core *parent;
366 
367 	parent = clk_core_get_parent_by_index(hw->core, index);
368 
369 	return !parent ? NULL : parent->hw;
370 }
371 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
372 
__clk_get_enable_count(struct clk * clk)373 unsigned int __clk_get_enable_count(struct clk *clk)
374 {
375 	return !clk ? 0 : clk->core->enable_count;
376 }
377 
clk_core_get_rate_nolock(struct clk_core * core)378 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
379 {
380 	unsigned long ret;
381 
382 	if (!core) {
383 		ret = 0;
384 		goto out;
385 	}
386 
387 	ret = core->rate;
388 
389 	if (core->flags & CLK_IS_ROOT)
390 		goto out;
391 
392 	if (!core->parent)
393 		ret = 0;
394 
395 out:
396 	return ret;
397 }
398 
clk_hw_get_rate(const struct clk_hw * hw)399 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
400 {
401 	return clk_core_get_rate_nolock(hw->core);
402 }
403 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
404 
__clk_get_accuracy(struct clk_core * core)405 static unsigned long __clk_get_accuracy(struct clk_core *core)
406 {
407 	if (!core)
408 		return 0;
409 
410 	return core->accuracy;
411 }
412 
__clk_get_flags(struct clk * clk)413 unsigned long __clk_get_flags(struct clk *clk)
414 {
415 	return !clk ? 0 : clk->core->flags;
416 }
417 EXPORT_SYMBOL_GPL(__clk_get_flags);
418 
clk_hw_get_flags(const struct clk_hw * hw)419 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
420 {
421 	return hw->core->flags;
422 }
423 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
424 
clk_hw_is_prepared(const struct clk_hw * hw)425 bool clk_hw_is_prepared(const struct clk_hw *hw)
426 {
427 	return clk_core_is_prepared(hw->core);
428 }
429 
clk_hw_is_enabled(const struct clk_hw * hw)430 bool clk_hw_is_enabled(const struct clk_hw *hw)
431 {
432 	return clk_core_is_enabled(hw->core);
433 }
434 
__clk_is_enabled(struct clk * clk)435 bool __clk_is_enabled(struct clk *clk)
436 {
437 	if (!clk)
438 		return false;
439 
440 	return clk_core_is_enabled(clk->core);
441 }
442 EXPORT_SYMBOL_GPL(__clk_is_enabled);
443 
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)444 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
445 			   unsigned long best, unsigned long flags)
446 {
447 	if (flags & CLK_MUX_ROUND_CLOSEST)
448 		return abs(now - rate) < abs(best - rate);
449 
450 	return now <= rate && now > best;
451 }
452 
453 static int
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)454 clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
455 			     unsigned long flags)
456 {
457 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
458 	int i, num_parents, ret;
459 	unsigned long best = 0;
460 	struct clk_rate_request parent_req = *req;
461 
462 	/* if NO_REPARENT flag set, pass through to current parent */
463 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
464 		parent = core->parent;
465 		if (core->flags & CLK_SET_RATE_PARENT) {
466 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
467 						   &parent_req);
468 			if (ret)
469 				return ret;
470 
471 			best = parent_req.rate;
472 		} else if (parent) {
473 			best = clk_core_get_rate_nolock(parent);
474 		} else {
475 			best = clk_core_get_rate_nolock(core);
476 		}
477 
478 		goto out;
479 	}
480 
481 	/* find the parent that can provide the fastest rate <= rate */
482 	num_parents = core->num_parents;
483 	for (i = 0; i < num_parents; i++) {
484 		parent = clk_core_get_parent_by_index(core, i);
485 		if (!parent)
486 			continue;
487 
488 		if (core->flags & CLK_SET_RATE_PARENT) {
489 			parent_req = *req;
490 			ret = __clk_determine_rate(parent->hw, &parent_req);
491 			if (ret)
492 				continue;
493 		} else {
494 			parent_req.rate = clk_core_get_rate_nolock(parent);
495 		}
496 
497 		if (mux_is_better_rate(req->rate, parent_req.rate,
498 				       best, flags)) {
499 			best_parent = parent;
500 			best = parent_req.rate;
501 		}
502 	}
503 
504 	if (!best_parent)
505 		return -EINVAL;
506 
507 out:
508 	if (best_parent)
509 		req->best_parent_hw = best_parent->hw;
510 	req->best_parent_rate = best;
511 	req->rate = best;
512 
513 	return 0;
514 }
515 
__clk_lookup(const char * name)516 struct clk *__clk_lookup(const char *name)
517 {
518 	struct clk_core *core = clk_core_lookup(name);
519 
520 	return !core ? NULL : core->hw->clk;
521 }
522 
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)523 static void clk_core_get_boundaries(struct clk_core *core,
524 				    unsigned long *min_rate,
525 				    unsigned long *max_rate)
526 {
527 	struct clk *clk_user;
528 
529 	*min_rate = core->min_rate;
530 	*max_rate = core->max_rate;
531 
532 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
533 		*min_rate = max(*min_rate, clk_user->min_rate);
534 
535 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
536 		*max_rate = min(*max_rate, clk_user->max_rate);
537 }
538 
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)539 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
540 			   unsigned long max_rate)
541 {
542 	hw->core->min_rate = min_rate;
543 	hw->core->max_rate = max_rate;
544 }
545 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
546 
547 /*
548  * Helper for finding best parent to provide a given frequency. This can be used
549  * directly as a determine_rate callback (e.g. for a mux), or from a more
550  * complex clock that may combine a mux with other operations.
551  */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)552 int __clk_mux_determine_rate(struct clk_hw *hw,
553 			     struct clk_rate_request *req)
554 {
555 	return clk_mux_determine_rate_flags(hw, req, 0);
556 }
557 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
558 
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)559 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
560 				     struct clk_rate_request *req)
561 {
562 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
563 }
564 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
565 
566 /***        clk api        ***/
567 
clk_core_unprepare(struct clk_core * core)568 static void clk_core_unprepare(struct clk_core *core)
569 {
570 	lockdep_assert_held(&prepare_lock);
571 
572 	if (!core)
573 		return;
574 
575 	if (WARN_ON(core->prepare_count == 0))
576 		return;
577 
578 	if (--core->prepare_count > 0)
579 		return;
580 
581 	WARN_ON(core->enable_count > 0);
582 
583 	trace_clk_unprepare(core);
584 
585 	if (core->ops->unprepare)
586 		core->ops->unprepare(core->hw);
587 
588 	trace_clk_unprepare_complete(core);
589 	clk_core_unprepare(core->parent);
590 }
591 
592 /**
593  * clk_unprepare - undo preparation of a clock source
594  * @clk: the clk being unprepared
595  *
596  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
597  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
598  * if the operation may sleep.  One example is a clk which is accessed over
599  * I2c.  In the complex case a clk gate operation may require a fast and a slow
600  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
601  * exclusive.  In fact clk_disable must be called before clk_unprepare.
602  */
clk_unprepare(struct clk * clk)603 void clk_unprepare(struct clk *clk)
604 {
605 	if (IS_ERR_OR_NULL(clk))
606 		return;
607 
608 	clk_prepare_lock();
609 	clk_core_unprepare(clk->core);
610 	clk_prepare_unlock();
611 }
612 EXPORT_SYMBOL_GPL(clk_unprepare);
613 
clk_core_prepare(struct clk_core * core)614 static int clk_core_prepare(struct clk_core *core)
615 {
616 	int ret = 0;
617 
618 	lockdep_assert_held(&prepare_lock);
619 
620 	if (!core)
621 		return 0;
622 
623 	if (core->prepare_count == 0) {
624 		ret = clk_core_prepare(core->parent);
625 		if (ret)
626 			return ret;
627 
628 		trace_clk_prepare(core);
629 
630 		if (core->ops->prepare)
631 			ret = core->ops->prepare(core->hw);
632 
633 		trace_clk_prepare_complete(core);
634 
635 		if (ret) {
636 			clk_core_unprepare(core->parent);
637 			return ret;
638 		}
639 	}
640 
641 	core->prepare_count++;
642 
643 	return 0;
644 }
645 
646 /**
647  * clk_prepare - prepare a clock source
648  * @clk: the clk being prepared
649  *
650  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
651  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
652  * operation may sleep.  One example is a clk which is accessed over I2c.  In
653  * the complex case a clk ungate operation may require a fast and a slow part.
654  * It is this reason that clk_prepare and clk_enable are not mutually
655  * exclusive.  In fact clk_prepare must be called before clk_enable.
656  * Returns 0 on success, -EERROR otherwise.
657  */
clk_prepare(struct clk * clk)658 int clk_prepare(struct clk *clk)
659 {
660 	int ret;
661 
662 	if (!clk)
663 		return 0;
664 
665 	clk_prepare_lock();
666 	ret = clk_core_prepare(clk->core);
667 	clk_prepare_unlock();
668 
669 	return ret;
670 }
671 EXPORT_SYMBOL_GPL(clk_prepare);
672 
clk_core_disable(struct clk_core * core)673 static void clk_core_disable(struct clk_core *core)
674 {
675 	lockdep_assert_held(&enable_lock);
676 
677 	if (!core)
678 		return;
679 
680 	if (WARN_ON(core->enable_count == 0))
681 		return;
682 
683 	if (--core->enable_count > 0)
684 		return;
685 
686 	trace_clk_disable(core);
687 
688 	if (core->ops->disable)
689 		core->ops->disable(core->hw);
690 
691 	trace_clk_disable_complete(core);
692 
693 	clk_core_disable(core->parent);
694 }
695 
696 /**
697  * clk_disable - gate a clock
698  * @clk: the clk being gated
699  *
700  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
701  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
702  * clk if the operation is fast and will never sleep.  One example is a
703  * SoC-internal clk which is controlled via simple register writes.  In the
704  * complex case a clk gate operation may require a fast and a slow part.  It is
705  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
706  * In fact clk_disable must be called before clk_unprepare.
707  */
clk_disable(struct clk * clk)708 void clk_disable(struct clk *clk)
709 {
710 	unsigned long flags;
711 
712 	if (IS_ERR_OR_NULL(clk))
713 		return;
714 
715 	flags = clk_enable_lock();
716 	clk_core_disable(clk->core);
717 	clk_enable_unlock(flags);
718 }
719 EXPORT_SYMBOL_GPL(clk_disable);
720 
clk_core_enable(struct clk_core * core)721 static int clk_core_enable(struct clk_core *core)
722 {
723 	int ret = 0;
724 
725 	lockdep_assert_held(&enable_lock);
726 
727 	if (!core)
728 		return 0;
729 
730 	if (WARN_ON(core->prepare_count == 0))
731 		return -ESHUTDOWN;
732 
733 	if (core->enable_count == 0) {
734 		ret = clk_core_enable(core->parent);
735 
736 		if (ret)
737 			return ret;
738 
739 		trace_clk_enable(core);
740 
741 		if (core->ops->enable)
742 			ret = core->ops->enable(core->hw);
743 
744 		trace_clk_enable_complete(core);
745 
746 		if (ret) {
747 			clk_core_disable(core->parent);
748 			return ret;
749 		}
750 	}
751 
752 	core->enable_count++;
753 	return 0;
754 }
755 
756 /**
757  * clk_enable - ungate a clock
758  * @clk: the clk being ungated
759  *
760  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
761  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
762  * if the operation will never sleep.  One example is a SoC-internal clk which
763  * is controlled via simple register writes.  In the complex case a clk ungate
764  * operation may require a fast and a slow part.  It is this reason that
765  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
766  * must be called before clk_enable.  Returns 0 on success, -EERROR
767  * otherwise.
768  */
clk_enable(struct clk * clk)769 int clk_enable(struct clk *clk)
770 {
771 	unsigned long flags;
772 	int ret;
773 
774 	if (!clk)
775 		return 0;
776 
777 	flags = clk_enable_lock();
778 	ret = clk_core_enable(clk->core);
779 	clk_enable_unlock(flags);
780 
781 	return ret;
782 }
783 EXPORT_SYMBOL_GPL(clk_enable);
784 
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)785 static int clk_core_round_rate_nolock(struct clk_core *core,
786 				      struct clk_rate_request *req)
787 {
788 	struct clk_core *parent;
789 	long rate;
790 
791 	lockdep_assert_held(&prepare_lock);
792 
793 	if (!core)
794 		return 0;
795 
796 	parent = core->parent;
797 	if (parent) {
798 		req->best_parent_hw = parent->hw;
799 		req->best_parent_rate = parent->rate;
800 	} else {
801 		req->best_parent_hw = NULL;
802 		req->best_parent_rate = 0;
803 	}
804 
805 	if (core->ops->determine_rate) {
806 		return core->ops->determine_rate(core->hw, req);
807 	} else if (core->ops->round_rate) {
808 		rate = core->ops->round_rate(core->hw, req->rate,
809 					     &req->best_parent_rate);
810 		if (rate < 0)
811 			return rate;
812 
813 		req->rate = rate;
814 	} else if (core->flags & CLK_SET_RATE_PARENT) {
815 		return clk_core_round_rate_nolock(parent, req);
816 	} else {
817 		req->rate = core->rate;
818 	}
819 
820 	return 0;
821 }
822 
823 /**
824  * __clk_determine_rate - get the closest rate actually supported by a clock
825  * @hw: determine the rate of this clock
826  * @rate: target rate
827  * @min_rate: returned rate must be greater than this rate
828  * @max_rate: returned rate must be less than this rate
829  *
830  * Useful for clk_ops such as .set_rate and .determine_rate.
831  */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)832 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
833 {
834 	if (!hw) {
835 		req->rate = 0;
836 		return 0;
837 	}
838 
839 	return clk_core_round_rate_nolock(hw->core, req);
840 }
841 EXPORT_SYMBOL_GPL(__clk_determine_rate);
842 
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)843 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
844 {
845 	int ret;
846 	struct clk_rate_request req;
847 
848 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
849 	req.rate = rate;
850 
851 	ret = clk_core_round_rate_nolock(hw->core, &req);
852 	if (ret)
853 		return 0;
854 
855 	return req.rate;
856 }
857 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
858 
859 /**
860  * clk_round_rate - round the given rate for a clk
861  * @clk: the clk for which we are rounding a rate
862  * @rate: the rate which is to be rounded
863  *
864  * Takes in a rate as input and rounds it to a rate that the clk can actually
865  * use which is then returned.  If clk doesn't support round_rate operation
866  * then the parent rate is returned.
867  */
clk_round_rate(struct clk * clk,unsigned long rate)868 long clk_round_rate(struct clk *clk, unsigned long rate)
869 {
870 	struct clk_rate_request req;
871 	int ret;
872 
873 	if (!clk)
874 		return 0;
875 
876 	clk_prepare_lock();
877 
878 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
879 	req.rate = rate;
880 
881 	ret = clk_core_round_rate_nolock(clk->core, &req);
882 	clk_prepare_unlock();
883 
884 	if (ret)
885 		return ret;
886 
887 	return req.rate;
888 }
889 EXPORT_SYMBOL_GPL(clk_round_rate);
890 
891 /**
892  * __clk_notify - call clk notifier chain
893  * @core: clk that is changing rate
894  * @msg: clk notifier type (see include/linux/clk.h)
895  * @old_rate: old clk rate
896  * @new_rate: new clk rate
897  *
898  * Triggers a notifier call chain on the clk rate-change notification
899  * for 'clk'.  Passes a pointer to the struct clk and the previous
900  * and current rates to the notifier callback.  Intended to be called by
901  * internal clock code only.  Returns NOTIFY_DONE from the last driver
902  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
903  * a driver returns that.
904  */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)905 static int __clk_notify(struct clk_core *core, unsigned long msg,
906 		unsigned long old_rate, unsigned long new_rate)
907 {
908 	struct clk_notifier *cn;
909 	struct clk_notifier_data cnd;
910 	int ret = NOTIFY_DONE;
911 
912 	cnd.old_rate = old_rate;
913 	cnd.new_rate = new_rate;
914 
915 	list_for_each_entry(cn, &clk_notifier_list, node) {
916 		if (cn->clk->core == core) {
917 			cnd.clk = cn->clk;
918 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
919 					&cnd);
920 		}
921 	}
922 
923 	return ret;
924 }
925 
926 /**
927  * __clk_recalc_accuracies
928  * @core: first clk in the subtree
929  *
930  * Walks the subtree of clks starting with clk and recalculates accuracies as
931  * it goes.  Note that if a clk does not implement the .recalc_accuracy
932  * callback then it is assumed that the clock will take on the accuracy of its
933  * parent.
934  */
__clk_recalc_accuracies(struct clk_core * core)935 static void __clk_recalc_accuracies(struct clk_core *core)
936 {
937 	unsigned long parent_accuracy = 0;
938 	struct clk_core *child;
939 
940 	lockdep_assert_held(&prepare_lock);
941 
942 	if (core->parent)
943 		parent_accuracy = core->parent->accuracy;
944 
945 	if (core->ops->recalc_accuracy)
946 		core->accuracy = core->ops->recalc_accuracy(core->hw,
947 							  parent_accuracy);
948 	else
949 		core->accuracy = parent_accuracy;
950 
951 	hlist_for_each_entry(child, &core->children, child_node)
952 		__clk_recalc_accuracies(child);
953 }
954 
clk_core_get_accuracy(struct clk_core * core)955 static long clk_core_get_accuracy(struct clk_core *core)
956 {
957 	unsigned long accuracy;
958 
959 	clk_prepare_lock();
960 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
961 		__clk_recalc_accuracies(core);
962 
963 	accuracy = __clk_get_accuracy(core);
964 	clk_prepare_unlock();
965 
966 	return accuracy;
967 }
968 
969 /**
970  * clk_get_accuracy - return the accuracy of clk
971  * @clk: the clk whose accuracy is being returned
972  *
973  * Simply returns the cached accuracy of the clk, unless
974  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
975  * issued.
976  * If clk is NULL then returns 0.
977  */
clk_get_accuracy(struct clk * clk)978 long clk_get_accuracy(struct clk *clk)
979 {
980 	if (!clk)
981 		return 0;
982 
983 	return clk_core_get_accuracy(clk->core);
984 }
985 EXPORT_SYMBOL_GPL(clk_get_accuracy);
986 
clk_recalc(struct clk_core * core,unsigned long parent_rate)987 static unsigned long clk_recalc(struct clk_core *core,
988 				unsigned long parent_rate)
989 {
990 	if (core->ops->recalc_rate)
991 		return core->ops->recalc_rate(core->hw, parent_rate);
992 	return parent_rate;
993 }
994 
995 /**
996  * __clk_recalc_rates
997  * @core: first clk in the subtree
998  * @msg: notification type (see include/linux/clk.h)
999  *
1000  * Walks the subtree of clks starting with clk and recalculates rates as it
1001  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1002  * it is assumed that the clock will take on the rate of its parent.
1003  *
1004  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1005  * if necessary.
1006  */
__clk_recalc_rates(struct clk_core * core,unsigned long msg)1007 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1008 {
1009 	unsigned long old_rate;
1010 	unsigned long parent_rate = 0;
1011 	struct clk_core *child;
1012 
1013 	lockdep_assert_held(&prepare_lock);
1014 
1015 	old_rate = core->rate;
1016 
1017 	if (core->parent)
1018 		parent_rate = core->parent->rate;
1019 
1020 	core->rate = clk_recalc(core, parent_rate);
1021 
1022 	/*
1023 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1024 	 * & ABORT_RATE_CHANGE notifiers
1025 	 */
1026 	if (core->notifier_count && msg)
1027 		__clk_notify(core, msg, old_rate, core->rate);
1028 
1029 	hlist_for_each_entry(child, &core->children, child_node)
1030 		__clk_recalc_rates(child, msg);
1031 }
1032 
clk_core_get_rate(struct clk_core * core)1033 static unsigned long clk_core_get_rate(struct clk_core *core)
1034 {
1035 	unsigned long rate;
1036 
1037 	clk_prepare_lock();
1038 
1039 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1040 		__clk_recalc_rates(core, 0);
1041 
1042 	rate = clk_core_get_rate_nolock(core);
1043 	clk_prepare_unlock();
1044 
1045 	return rate;
1046 }
1047 
1048 /**
1049  * clk_get_rate - return the rate of clk
1050  * @clk: the clk whose rate is being returned
1051  *
1052  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1053  * is set, which means a recalc_rate will be issued.
1054  * If clk is NULL then returns 0.
1055  */
clk_get_rate(struct clk * clk)1056 unsigned long clk_get_rate(struct clk *clk)
1057 {
1058 	if (!clk)
1059 		return 0;
1060 
1061 	return clk_core_get_rate(clk->core);
1062 }
1063 EXPORT_SYMBOL_GPL(clk_get_rate);
1064 
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1065 static int clk_fetch_parent_index(struct clk_core *core,
1066 				  struct clk_core *parent)
1067 {
1068 	int i;
1069 
1070 	if (!core->parents) {
1071 		core->parents = kcalloc(core->num_parents,
1072 					sizeof(struct clk *), GFP_KERNEL);
1073 		if (!core->parents)
1074 			return -ENOMEM;
1075 	}
1076 
1077 	/*
1078 	 * find index of new parent clock using cached parent ptrs,
1079 	 * or if not yet cached, use string name comparison and cache
1080 	 * them now to avoid future calls to clk_core_lookup.
1081 	 */
1082 	for (i = 0; i < core->num_parents; i++) {
1083 		if (core->parents[i] == parent)
1084 			return i;
1085 
1086 		if (core->parents[i])
1087 			continue;
1088 
1089 		if (!strcmp(core->parent_names[i], parent->name)) {
1090 			core->parents[i] = clk_core_lookup(parent->name);
1091 			return i;
1092 		}
1093 	}
1094 
1095 	return -EINVAL;
1096 }
1097 
1098 /*
1099  * Update the orphan status of @core and all its children.
1100  */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1101 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1102 {
1103 	struct clk_core *child;
1104 
1105 	core->orphan = is_orphan;
1106 
1107 	hlist_for_each_entry(child, &core->children, child_node)
1108 		clk_core_update_orphan_status(child, is_orphan);
1109 }
1110 
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1111 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1112 {
1113 	bool was_orphan = core->orphan;
1114 
1115 	hlist_del(&core->child_node);
1116 
1117 	if (new_parent) {
1118 		bool becomes_orphan = new_parent->orphan;
1119 
1120 		/* avoid duplicate POST_RATE_CHANGE notifications */
1121 		if (new_parent->new_child == core)
1122 			new_parent->new_child = NULL;
1123 
1124 		hlist_add_head(&core->child_node, &new_parent->children);
1125 
1126 		if (was_orphan != becomes_orphan)
1127 			clk_core_update_orphan_status(core, becomes_orphan);
1128 	} else {
1129 		hlist_add_head(&core->child_node, &clk_orphan_list);
1130 		if (!was_orphan)
1131 			clk_core_update_orphan_status(core, true);
1132 	}
1133 
1134 	core->parent = new_parent;
1135 }
1136 
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)1137 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1138 					   struct clk_core *parent)
1139 {
1140 	unsigned long flags;
1141 	struct clk_core *old_parent = core->parent;
1142 
1143 	/*
1144 	 * Migrate prepare state between parents and prevent race with
1145 	 * clk_enable().
1146 	 *
1147 	 * If the clock is not prepared, then a race with
1148 	 * clk_enable/disable() is impossible since we already have the
1149 	 * prepare lock (future calls to clk_enable() need to be preceded by
1150 	 * a clk_prepare()).
1151 	 *
1152 	 * If the clock is prepared, migrate the prepared state to the new
1153 	 * parent and also protect against a race with clk_enable() by
1154 	 * forcing the clock and the new parent on.  This ensures that all
1155 	 * future calls to clk_enable() are practically NOPs with respect to
1156 	 * hardware and software states.
1157 	 *
1158 	 * See also: Comment for clk_set_parent() below.
1159 	 */
1160 	if (core->prepare_count) {
1161 		clk_core_prepare(parent);
1162 		flags = clk_enable_lock();
1163 		clk_core_enable(parent);
1164 		clk_core_enable(core);
1165 		clk_enable_unlock(flags);
1166 	}
1167 
1168 	/* update the clk tree topology */
1169 	flags = clk_enable_lock();
1170 	clk_reparent(core, parent);
1171 	clk_enable_unlock(flags);
1172 
1173 	return old_parent;
1174 }
1175 
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1176 static void __clk_set_parent_after(struct clk_core *core,
1177 				   struct clk_core *parent,
1178 				   struct clk_core *old_parent)
1179 {
1180 	unsigned long flags;
1181 
1182 	/*
1183 	 * Finish the migration of prepare state and undo the changes done
1184 	 * for preventing a race with clk_enable().
1185 	 */
1186 	if (core->prepare_count) {
1187 		flags = clk_enable_lock();
1188 		clk_core_disable(core);
1189 		clk_core_disable(old_parent);
1190 		clk_enable_unlock(flags);
1191 		clk_core_unprepare(old_parent);
1192 	}
1193 }
1194 
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)1195 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1196 			    u8 p_index)
1197 {
1198 	unsigned long flags;
1199 	int ret = 0;
1200 	struct clk_core *old_parent;
1201 
1202 	old_parent = __clk_set_parent_before(core, parent);
1203 
1204 	trace_clk_set_parent(core, parent);
1205 
1206 	/* change clock input source */
1207 	if (parent && core->ops->set_parent)
1208 		ret = core->ops->set_parent(core->hw, p_index);
1209 
1210 	trace_clk_set_parent_complete(core, parent);
1211 
1212 	if (ret) {
1213 		flags = clk_enable_lock();
1214 		clk_reparent(core, old_parent);
1215 		clk_enable_unlock(flags);
1216 		__clk_set_parent_after(core, old_parent, parent);
1217 
1218 		return ret;
1219 	}
1220 
1221 	__clk_set_parent_after(core, parent, old_parent);
1222 
1223 	return 0;
1224 }
1225 
1226 /**
1227  * __clk_speculate_rates
1228  * @core: first clk in the subtree
1229  * @parent_rate: the "future" rate of clk's parent
1230  *
1231  * Walks the subtree of clks starting with clk, speculating rates as it
1232  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1233  *
1234  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1235  * pre-rate change notifications and returns early if no clks in the
1236  * subtree have subscribed to the notifications.  Note that if a clk does not
1237  * implement the .recalc_rate callback then it is assumed that the clock will
1238  * take on the rate of its parent.
1239  */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)1240 static int __clk_speculate_rates(struct clk_core *core,
1241 				 unsigned long parent_rate)
1242 {
1243 	struct clk_core *child;
1244 	unsigned long new_rate;
1245 	int ret = NOTIFY_DONE;
1246 
1247 	lockdep_assert_held(&prepare_lock);
1248 
1249 	new_rate = clk_recalc(core, parent_rate);
1250 
1251 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1252 	if (core->notifier_count)
1253 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1254 
1255 	if (ret & NOTIFY_STOP_MASK) {
1256 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1257 				__func__, core->name, ret);
1258 		goto out;
1259 	}
1260 
1261 	hlist_for_each_entry(child, &core->children, child_node) {
1262 		ret = __clk_speculate_rates(child, new_rate);
1263 		if (ret & NOTIFY_STOP_MASK)
1264 			break;
1265 	}
1266 
1267 out:
1268 	return ret;
1269 }
1270 
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)1271 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1272 			     struct clk_core *new_parent, u8 p_index)
1273 {
1274 	struct clk_core *child;
1275 
1276 	core->new_rate = new_rate;
1277 	core->new_parent = new_parent;
1278 	core->new_parent_index = p_index;
1279 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1280 	core->new_child = NULL;
1281 	if (new_parent && new_parent != core->parent)
1282 		new_parent->new_child = core;
1283 
1284 	hlist_for_each_entry(child, &core->children, child_node) {
1285 		child->new_rate = clk_recalc(child, new_rate);
1286 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1287 	}
1288 }
1289 
1290 /*
1291  * calculate the new rates returning the topmost clock that has to be
1292  * changed.
1293  */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)1294 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1295 					   unsigned long rate)
1296 {
1297 	struct clk_core *top = core;
1298 	struct clk_core *old_parent, *parent;
1299 	unsigned long best_parent_rate = 0;
1300 	unsigned long new_rate;
1301 	unsigned long min_rate;
1302 	unsigned long max_rate;
1303 	int p_index = 0;
1304 	long ret;
1305 
1306 	/* sanity */
1307 	if (IS_ERR_OR_NULL(core))
1308 		return NULL;
1309 
1310 	/* save parent rate, if it exists */
1311 	parent = old_parent = core->parent;
1312 	if (parent)
1313 		best_parent_rate = parent->rate;
1314 
1315 	clk_core_get_boundaries(core, &min_rate, &max_rate);
1316 
1317 	/* find the closest rate and parent clk/rate */
1318 	if (core->ops->determine_rate) {
1319 		struct clk_rate_request req;
1320 
1321 		req.rate = rate;
1322 		req.min_rate = min_rate;
1323 		req.max_rate = max_rate;
1324 		if (parent) {
1325 			req.best_parent_hw = parent->hw;
1326 			req.best_parent_rate = parent->rate;
1327 		} else {
1328 			req.best_parent_hw = NULL;
1329 			req.best_parent_rate = 0;
1330 		}
1331 
1332 		ret = core->ops->determine_rate(core->hw, &req);
1333 		if (ret < 0)
1334 			return NULL;
1335 
1336 		best_parent_rate = req.best_parent_rate;
1337 		new_rate = req.rate;
1338 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1339 	} else if (core->ops->round_rate) {
1340 		ret = core->ops->round_rate(core->hw, rate,
1341 					    &best_parent_rate);
1342 		if (ret < 0)
1343 			return NULL;
1344 
1345 		new_rate = ret;
1346 		if (new_rate < min_rate || new_rate > max_rate)
1347 			return NULL;
1348 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1349 		/* pass-through clock without adjustable parent */
1350 		core->new_rate = core->rate;
1351 		return NULL;
1352 	} else {
1353 		/* pass-through clock with adjustable parent */
1354 		top = clk_calc_new_rates(parent, rate);
1355 		new_rate = parent->new_rate;
1356 		goto out;
1357 	}
1358 
1359 	/* some clocks must be gated to change parent */
1360 	if (parent != old_parent &&
1361 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1362 		pr_debug("%s: %s not gated but wants to reparent\n",
1363 			 __func__, core->name);
1364 		return NULL;
1365 	}
1366 
1367 	/* try finding the new parent index */
1368 	if (parent && core->num_parents > 1) {
1369 		p_index = clk_fetch_parent_index(core, parent);
1370 		if (p_index < 0) {
1371 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1372 				 __func__, parent->name, core->name);
1373 			return NULL;
1374 		}
1375 	}
1376 
1377 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1378 	    best_parent_rate != parent->rate)
1379 		top = clk_calc_new_rates(parent, best_parent_rate);
1380 
1381 out:
1382 	clk_calc_subtree(core, new_rate, parent, p_index);
1383 
1384 	return top;
1385 }
1386 
1387 /*
1388  * Notify about rate changes in a subtree. Always walk down the whole tree
1389  * so that in case of an error we can walk down the whole tree again and
1390  * abort the change.
1391  */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)1392 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1393 						  unsigned long event)
1394 {
1395 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1396 	int ret = NOTIFY_DONE;
1397 
1398 	if (core->rate == core->new_rate)
1399 		return NULL;
1400 
1401 	if (core->notifier_count) {
1402 		ret = __clk_notify(core, event, core->rate, core->new_rate);
1403 		if (ret & NOTIFY_STOP_MASK)
1404 			fail_clk = core;
1405 	}
1406 
1407 	hlist_for_each_entry(child, &core->children, child_node) {
1408 		/* Skip children who will be reparented to another clock */
1409 		if (child->new_parent && child->new_parent != core)
1410 			continue;
1411 		tmp_clk = clk_propagate_rate_change(child, event);
1412 		if (tmp_clk)
1413 			fail_clk = tmp_clk;
1414 	}
1415 
1416 	/* handle the new child who might not be in core->children yet */
1417 	if (core->new_child) {
1418 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1419 		if (tmp_clk)
1420 			fail_clk = tmp_clk;
1421 	}
1422 
1423 	return fail_clk;
1424 }
1425 
1426 /*
1427  * walk down a subtree and set the new rates notifying the rate
1428  * change on the way
1429  */
clk_change_rate(struct clk_core * core)1430 static void clk_change_rate(struct clk_core *core)
1431 {
1432 	struct clk_core *child;
1433 	struct hlist_node *tmp;
1434 	unsigned long old_rate;
1435 	unsigned long best_parent_rate = 0;
1436 	bool skip_set_rate = false;
1437 	struct clk_core *old_parent;
1438 
1439 	old_rate = core->rate;
1440 
1441 	if (core->new_parent)
1442 		best_parent_rate = core->new_parent->rate;
1443 	else if (core->parent)
1444 		best_parent_rate = core->parent->rate;
1445 
1446 	if (core->new_parent && core->new_parent != core->parent) {
1447 		old_parent = __clk_set_parent_before(core, core->new_parent);
1448 		trace_clk_set_parent(core, core->new_parent);
1449 
1450 		if (core->ops->set_rate_and_parent) {
1451 			skip_set_rate = true;
1452 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1453 					best_parent_rate,
1454 					core->new_parent_index);
1455 		} else if (core->ops->set_parent) {
1456 			core->ops->set_parent(core->hw, core->new_parent_index);
1457 		}
1458 
1459 		trace_clk_set_parent_complete(core, core->new_parent);
1460 		__clk_set_parent_after(core, core->new_parent, old_parent);
1461 	}
1462 
1463 	trace_clk_set_rate(core, core->new_rate);
1464 
1465 	if (!skip_set_rate && core->ops->set_rate)
1466 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1467 
1468 	trace_clk_set_rate_complete(core, core->new_rate);
1469 
1470 	core->rate = clk_recalc(core, best_parent_rate);
1471 
1472 	if (core->notifier_count && old_rate != core->rate)
1473 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1474 
1475 	if (core->flags & CLK_RECALC_NEW_RATES)
1476 		(void)clk_calc_new_rates(core, core->new_rate);
1477 
1478 	/*
1479 	 * Use safe iteration, as change_rate can actually swap parents
1480 	 * for certain clock types.
1481 	 */
1482 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1483 		/* Skip children who will be reparented to another clock */
1484 		if (child->new_parent && child->new_parent != core)
1485 			continue;
1486 		clk_change_rate(child);
1487 	}
1488 
1489 	/* handle the new child who might not be in core->children yet */
1490 	if (core->new_child)
1491 		clk_change_rate(core->new_child);
1492 }
1493 
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)1494 static int clk_core_set_rate_nolock(struct clk_core *core,
1495 				    unsigned long req_rate)
1496 {
1497 	struct clk_core *top, *fail_clk;
1498 	unsigned long rate = req_rate;
1499 	int ret = 0;
1500 
1501 	if (!core)
1502 		return 0;
1503 
1504 	/* bail early if nothing to do */
1505 	if (rate == clk_core_get_rate_nolock(core))
1506 		return 0;
1507 
1508 	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1509 		return -EBUSY;
1510 
1511 	/* calculate new rates and get the topmost changed clock */
1512 	top = clk_calc_new_rates(core, rate);
1513 	if (!top)
1514 		return -EINVAL;
1515 
1516 	/* notify that we are about to change rates */
1517 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1518 	if (fail_clk) {
1519 		pr_debug("%s: failed to set %s rate\n", __func__,
1520 				fail_clk->name);
1521 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1522 		return -EBUSY;
1523 	}
1524 
1525 	/* change the rates */
1526 	clk_change_rate(top);
1527 
1528 	core->req_rate = req_rate;
1529 
1530 	return ret;
1531 }
1532 
1533 /**
1534  * clk_set_rate - specify a new rate for clk
1535  * @clk: the clk whose rate is being changed
1536  * @rate: the new rate for clk
1537  *
1538  * In the simplest case clk_set_rate will only adjust the rate of clk.
1539  *
1540  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1541  * propagate up to clk's parent; whether or not this happens depends on the
1542  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1543  * after calling .round_rate then upstream parent propagation is ignored.  If
1544  * *parent_rate comes back with a new rate for clk's parent then we propagate
1545  * up to clk's parent and set its rate.  Upward propagation will continue
1546  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1547  * .round_rate stops requesting changes to clk's parent_rate.
1548  *
1549  * Rate changes are accomplished via tree traversal that also recalculates the
1550  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1551  *
1552  * Returns 0 on success, -EERROR otherwise.
1553  */
clk_set_rate(struct clk * clk,unsigned long rate)1554 int clk_set_rate(struct clk *clk, unsigned long rate)
1555 {
1556 	int ret;
1557 
1558 	if (!clk)
1559 		return 0;
1560 
1561 	/* prevent racing with updates to the clock topology */
1562 	clk_prepare_lock();
1563 
1564 	ret = clk_core_set_rate_nolock(clk->core, rate);
1565 
1566 	clk_prepare_unlock();
1567 
1568 	return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(clk_set_rate);
1571 
1572 /**
1573  * clk_set_rate_range - set a rate range for a clock source
1574  * @clk: clock source
1575  * @min: desired minimum clock rate in Hz, inclusive
1576  * @max: desired maximum clock rate in Hz, inclusive
1577  *
1578  * Returns success (0) or negative errno.
1579  */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)1580 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1581 {
1582 	int ret = 0;
1583 
1584 	if (!clk)
1585 		return 0;
1586 
1587 	if (min > max) {
1588 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1589 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1590 		       min, max);
1591 		return -EINVAL;
1592 	}
1593 
1594 	clk_prepare_lock();
1595 
1596 	if (min != clk->min_rate || max != clk->max_rate) {
1597 		clk->min_rate = min;
1598 		clk->max_rate = max;
1599 		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1600 	}
1601 
1602 	clk_prepare_unlock();
1603 
1604 	return ret;
1605 }
1606 EXPORT_SYMBOL_GPL(clk_set_rate_range);
1607 
1608 /**
1609  * clk_set_min_rate - set a minimum clock rate for a clock source
1610  * @clk: clock source
1611  * @rate: desired minimum clock rate in Hz, inclusive
1612  *
1613  * Returns success (0) or negative errno.
1614  */
clk_set_min_rate(struct clk * clk,unsigned long rate)1615 int clk_set_min_rate(struct clk *clk, unsigned long rate)
1616 {
1617 	if (!clk)
1618 		return 0;
1619 
1620 	return clk_set_rate_range(clk, rate, clk->max_rate);
1621 }
1622 EXPORT_SYMBOL_GPL(clk_set_min_rate);
1623 
1624 /**
1625  * clk_set_max_rate - set a maximum clock rate for a clock source
1626  * @clk: clock source
1627  * @rate: desired maximum clock rate in Hz, inclusive
1628  *
1629  * Returns success (0) or negative errno.
1630  */
clk_set_max_rate(struct clk * clk,unsigned long rate)1631 int clk_set_max_rate(struct clk *clk, unsigned long rate)
1632 {
1633 	if (!clk)
1634 		return 0;
1635 
1636 	return clk_set_rate_range(clk, clk->min_rate, rate);
1637 }
1638 EXPORT_SYMBOL_GPL(clk_set_max_rate);
1639 
1640 /**
1641  * clk_get_parent - return the parent of a clk
1642  * @clk: the clk whose parent gets returned
1643  *
1644  * Simply returns clk->parent.  Returns NULL if clk is NULL.
1645  */
clk_get_parent(struct clk * clk)1646 struct clk *clk_get_parent(struct clk *clk)
1647 {
1648 	struct clk *parent;
1649 
1650 	if (!clk)
1651 		return NULL;
1652 
1653 	clk_prepare_lock();
1654 	/* TODO: Create a per-user clk and change callers to call clk_put */
1655 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1656 	clk_prepare_unlock();
1657 
1658 	return parent;
1659 }
1660 EXPORT_SYMBOL_GPL(clk_get_parent);
1661 
1662 /*
1663  * .get_parent is mandatory for clocks with multiple possible parents.  It is
1664  * optional for single-parent clocks.  Always call .get_parent if it is
1665  * available and WARN if it is missing for multi-parent clocks.
1666  *
1667  * For single-parent clocks without .get_parent, first check to see if the
1668  * .parents array exists, and if so use it to avoid an expensive tree
1669  * traversal.  If .parents does not exist then walk the tree.
1670  */
__clk_init_parent(struct clk_core * core)1671 static struct clk_core *__clk_init_parent(struct clk_core *core)
1672 {
1673 	struct clk_core *ret = NULL;
1674 	u8 index;
1675 
1676 	/* handle the trivial cases */
1677 
1678 	if (!core->num_parents)
1679 		goto out;
1680 
1681 	if (core->num_parents == 1) {
1682 		if (IS_ERR_OR_NULL(core->parent))
1683 			core->parent = clk_core_lookup(core->parent_names[0]);
1684 		ret = core->parent;
1685 		goto out;
1686 	}
1687 
1688 	if (!core->ops->get_parent) {
1689 		WARN(!core->ops->get_parent,
1690 			"%s: multi-parent clocks must implement .get_parent\n",
1691 			__func__);
1692 		goto out;
1693 	}
1694 
1695 	/*
1696 	 * Do our best to cache parent clocks in core->parents.  This prevents
1697 	 * unnecessary and expensive lookups.  We don't set core->parent here;
1698 	 * that is done by the calling function.
1699 	 */
1700 
1701 	index = core->ops->get_parent(core->hw);
1702 
1703 	if (!core->parents)
1704 		core->parents =
1705 			kcalloc(core->num_parents, sizeof(struct clk *),
1706 					GFP_KERNEL);
1707 
1708 	ret = clk_core_get_parent_by_index(core, index);
1709 
1710 out:
1711 	return ret;
1712 }
1713 
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)1714 static void clk_core_reparent(struct clk_core *core,
1715 				  struct clk_core *new_parent)
1716 {
1717 	clk_reparent(core, new_parent);
1718 	__clk_recalc_accuracies(core);
1719 	__clk_recalc_rates(core, POST_RATE_CHANGE);
1720 }
1721 
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)1722 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1723 {
1724 	if (!hw)
1725 		return;
1726 
1727 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1728 }
1729 
1730 /**
1731  * clk_has_parent - check if a clock is a possible parent for another
1732  * @clk: clock source
1733  * @parent: parent clock source
1734  *
1735  * This function can be used in drivers that need to check that a clock can be
1736  * the parent of another without actually changing the parent.
1737  *
1738  * Returns true if @parent is a possible parent for @clk, false otherwise.
1739  */
clk_has_parent(struct clk * clk,struct clk * parent)1740 bool clk_has_parent(struct clk *clk, struct clk *parent)
1741 {
1742 	struct clk_core *core, *parent_core;
1743 	unsigned int i;
1744 
1745 	/* NULL clocks should be nops, so return success if either is NULL. */
1746 	if (!clk || !parent)
1747 		return true;
1748 
1749 	core = clk->core;
1750 	parent_core = parent->core;
1751 
1752 	/* Optimize for the case where the parent is already the parent. */
1753 	if (core->parent == parent_core)
1754 		return true;
1755 
1756 	for (i = 0; i < core->num_parents; i++)
1757 		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1758 			return true;
1759 
1760 	return false;
1761 }
1762 EXPORT_SYMBOL_GPL(clk_has_parent);
1763 
clk_core_set_parent(struct clk_core * core,struct clk_core * parent)1764 static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1765 {
1766 	int ret = 0;
1767 	int p_index = 0;
1768 	unsigned long p_rate = 0;
1769 
1770 	if (!core)
1771 		return 0;
1772 
1773 	/* prevent racing with updates to the clock topology */
1774 	clk_prepare_lock();
1775 
1776 	if (core->parent == parent)
1777 		goto out;
1778 
1779 	/* verify ops for for multi-parent clks */
1780 	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1781 		ret = -ENOSYS;
1782 		goto out;
1783 	}
1784 
1785 	/* check that we are allowed to re-parent if the clock is in use */
1786 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1787 		ret = -EBUSY;
1788 		goto out;
1789 	}
1790 
1791 	/* try finding the new parent index */
1792 	if (parent) {
1793 		p_index = clk_fetch_parent_index(core, parent);
1794 		p_rate = parent->rate;
1795 		if (p_index < 0) {
1796 			pr_debug("%s: clk %s can not be parent of clk %s\n",
1797 					__func__, parent->name, core->name);
1798 			ret = p_index;
1799 			goto out;
1800 		}
1801 	}
1802 
1803 	/* propagate PRE_RATE_CHANGE notifications */
1804 	ret = __clk_speculate_rates(core, p_rate);
1805 
1806 	/* abort if a driver objects */
1807 	if (ret & NOTIFY_STOP_MASK)
1808 		goto out;
1809 
1810 	/* do the re-parent */
1811 	ret = __clk_set_parent(core, parent, p_index);
1812 
1813 	/* propagate rate an accuracy recalculation accordingly */
1814 	if (ret) {
1815 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1816 	} else {
1817 		__clk_recalc_rates(core, POST_RATE_CHANGE);
1818 		__clk_recalc_accuracies(core);
1819 	}
1820 
1821 out:
1822 	clk_prepare_unlock();
1823 
1824 	return ret;
1825 }
1826 
1827 /**
1828  * clk_set_parent - switch the parent of a mux clk
1829  * @clk: the mux clk whose input we are switching
1830  * @parent: the new input to clk
1831  *
1832  * Re-parent clk to use parent as its new input source.  If clk is in
1833  * prepared state, the clk will get enabled for the duration of this call. If
1834  * that's not acceptable for a specific clk (Eg: the consumer can't handle
1835  * that, the reparenting is glitchy in hardware, etc), use the
1836  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1837  *
1838  * After successfully changing clk's parent clk_set_parent will update the
1839  * clk topology, sysfs topology and propagate rate recalculation via
1840  * __clk_recalc_rates.
1841  *
1842  * Returns 0 on success, -EERROR otherwise.
1843  */
clk_set_parent(struct clk * clk,struct clk * parent)1844 int clk_set_parent(struct clk *clk, struct clk *parent)
1845 {
1846 	if (!clk)
1847 		return 0;
1848 
1849 	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1850 }
1851 EXPORT_SYMBOL_GPL(clk_set_parent);
1852 
1853 /**
1854  * clk_set_phase - adjust the phase shift of a clock signal
1855  * @clk: clock signal source
1856  * @degrees: number of degrees the signal is shifted
1857  *
1858  * Shifts the phase of a clock signal by the specified
1859  * degrees. Returns 0 on success, -EERROR otherwise.
1860  *
1861  * This function makes no distinction about the input or reference
1862  * signal that we adjust the clock signal phase against. For example
1863  * phase locked-loop clock signal generators we may shift phase with
1864  * respect to feedback clock signal input, but for other cases the
1865  * clock phase may be shifted with respect to some other, unspecified
1866  * signal.
1867  *
1868  * Additionally the concept of phase shift does not propagate through
1869  * the clock tree hierarchy, which sets it apart from clock rates and
1870  * clock accuracy. A parent clock phase attribute does not have an
1871  * impact on the phase attribute of a child clock.
1872  */
clk_set_phase(struct clk * clk,int degrees)1873 int clk_set_phase(struct clk *clk, int degrees)
1874 {
1875 	int ret = -EINVAL;
1876 
1877 	if (!clk)
1878 		return 0;
1879 
1880 	/* sanity check degrees */
1881 	degrees %= 360;
1882 	if (degrees < 0)
1883 		degrees += 360;
1884 
1885 	clk_prepare_lock();
1886 
1887 	trace_clk_set_phase(clk->core, degrees);
1888 
1889 	if (clk->core->ops->set_phase)
1890 		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1891 
1892 	trace_clk_set_phase_complete(clk->core, degrees);
1893 
1894 	if (!ret)
1895 		clk->core->phase = degrees;
1896 
1897 	clk_prepare_unlock();
1898 
1899 	return ret;
1900 }
1901 EXPORT_SYMBOL_GPL(clk_set_phase);
1902 
clk_core_get_phase(struct clk_core * core)1903 static int clk_core_get_phase(struct clk_core *core)
1904 {
1905 	int ret;
1906 
1907 	clk_prepare_lock();
1908 	/* Always try to update cached phase if possible */
1909 	if (core->ops->get_phase)
1910 		core->phase = core->ops->get_phase(core->hw);
1911 	ret = core->phase;
1912 	clk_prepare_unlock();
1913 
1914 	return ret;
1915 }
1916 
1917 /**
1918  * clk_get_phase - return the phase shift of a clock signal
1919  * @clk: clock signal source
1920  *
1921  * Returns the phase shift of a clock node in degrees, otherwise returns
1922  * -EERROR.
1923  */
clk_get_phase(struct clk * clk)1924 int clk_get_phase(struct clk *clk)
1925 {
1926 	if (!clk)
1927 		return 0;
1928 
1929 	return clk_core_get_phase(clk->core);
1930 }
1931 EXPORT_SYMBOL_GPL(clk_get_phase);
1932 
1933 /**
1934  * clk_is_match - check if two clk's point to the same hardware clock
1935  * @p: clk compared against q
1936  * @q: clk compared against p
1937  *
1938  * Returns true if the two struct clk pointers both point to the same hardware
1939  * clock node. Put differently, returns true if struct clk *p and struct clk *q
1940  * share the same struct clk_core object.
1941  *
1942  * Returns false otherwise. Note that two NULL clks are treated as matching.
1943  */
clk_is_match(const struct clk * p,const struct clk * q)1944 bool clk_is_match(const struct clk *p, const struct clk *q)
1945 {
1946 	/* trivial case: identical struct clk's or both NULL */
1947 	if (p == q)
1948 		return true;
1949 
1950 	/* true if clk->core pointers match. Avoid derefing garbage */
1951 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1952 		if (p->core == q->core)
1953 			return true;
1954 
1955 	return false;
1956 }
1957 EXPORT_SYMBOL_GPL(clk_is_match);
1958 
1959 /***        debugfs support        ***/
1960 
1961 #ifdef CONFIG_DEBUG_FS
1962 #include <linux/debugfs.h>
1963 
1964 static struct dentry *rootdir;
1965 static int inited = 0;
1966 static DEFINE_MUTEX(clk_debug_lock);
1967 static HLIST_HEAD(clk_debug_list);
1968 
1969 static struct hlist_head *all_lists[] = {
1970 	&clk_root_list,
1971 	&clk_orphan_list,
1972 	NULL,
1973 };
1974 
1975 static struct hlist_head *orphan_list[] = {
1976 	&clk_orphan_list,
1977 	NULL,
1978 };
1979 
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)1980 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1981 				 int level)
1982 {
1983 	if (!c)
1984 		return;
1985 
1986 	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1987 		   level * 3 + 1, "",
1988 		   30 - level * 3, c->name,
1989 		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
1990 		   clk_core_get_accuracy(c), clk_core_get_phase(c));
1991 }
1992 
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)1993 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1994 				     int level)
1995 {
1996 	struct clk_core *child;
1997 
1998 	if (!c)
1999 		return;
2000 
2001 	clk_summary_show_one(s, c, level);
2002 
2003 	hlist_for_each_entry(child, &c->children, child_node)
2004 		clk_summary_show_subtree(s, child, level + 1);
2005 }
2006 
clk_summary_show(struct seq_file * s,void * data)2007 static int clk_summary_show(struct seq_file *s, void *data)
2008 {
2009 	struct clk_core *c;
2010 	struct hlist_head **lists = (struct hlist_head **)s->private;
2011 
2012 	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
2013 	seq_puts(s, "----------------------------------------------------------------------------------------\n");
2014 
2015 	clk_prepare_lock();
2016 
2017 	for (; *lists; lists++)
2018 		hlist_for_each_entry(c, *lists, child_node)
2019 			clk_summary_show_subtree(s, c, 0);
2020 
2021 	clk_prepare_unlock();
2022 
2023 	return 0;
2024 }
2025 
2026 
clk_summary_open(struct inode * inode,struct file * file)2027 static int clk_summary_open(struct inode *inode, struct file *file)
2028 {
2029 	return single_open(file, clk_summary_show, inode->i_private);
2030 }
2031 
2032 static const struct file_operations clk_summary_fops = {
2033 	.open		= clk_summary_open,
2034 	.read		= seq_read,
2035 	.llseek		= seq_lseek,
2036 	.release	= single_release,
2037 };
2038 
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)2039 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2040 {
2041 	if (!c)
2042 		return;
2043 
2044 	/* This should be JSON format, i.e. elements separated with a comma */
2045 	seq_printf(s, "\"%s\": { ", c->name);
2046 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2047 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2048 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2049 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2050 	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2051 }
2052 
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)2053 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2054 {
2055 	struct clk_core *child;
2056 
2057 	if (!c)
2058 		return;
2059 
2060 	clk_dump_one(s, c, level);
2061 
2062 	hlist_for_each_entry(child, &c->children, child_node) {
2063 		seq_printf(s, ",");
2064 		clk_dump_subtree(s, child, level + 1);
2065 	}
2066 
2067 	seq_printf(s, "}");
2068 }
2069 
clk_dump(struct seq_file * s,void * data)2070 static int clk_dump(struct seq_file *s, void *data)
2071 {
2072 	struct clk_core *c;
2073 	bool first_node = true;
2074 	struct hlist_head **lists = (struct hlist_head **)s->private;
2075 
2076 	seq_printf(s, "{");
2077 
2078 	clk_prepare_lock();
2079 
2080 	for (; *lists; lists++) {
2081 		hlist_for_each_entry(c, *lists, child_node) {
2082 			if (!first_node)
2083 				seq_puts(s, ",");
2084 			first_node = false;
2085 			clk_dump_subtree(s, c, 0);
2086 		}
2087 	}
2088 
2089 	clk_prepare_unlock();
2090 
2091 	seq_puts(s, "}\n");
2092 	return 0;
2093 }
2094 
2095 
clk_dump_open(struct inode * inode,struct file * file)2096 static int clk_dump_open(struct inode *inode, struct file *file)
2097 {
2098 	return single_open(file, clk_dump, inode->i_private);
2099 }
2100 
2101 static const struct file_operations clk_dump_fops = {
2102 	.open		= clk_dump_open,
2103 	.read		= seq_read,
2104 	.llseek		= seq_lseek,
2105 	.release	= single_release,
2106 };
2107 
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)2108 static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2109 {
2110 	struct dentry *d;
2111 	int ret = -ENOMEM;
2112 
2113 	if (!core || !pdentry) {
2114 		ret = -EINVAL;
2115 		goto out;
2116 	}
2117 
2118 	d = debugfs_create_dir(core->name, pdentry);
2119 	if (!d)
2120 		goto out;
2121 
2122 	core->dentry = d;
2123 
2124 	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2125 			(u32 *)&core->rate);
2126 	if (!d)
2127 		goto err_out;
2128 
2129 	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2130 			(u32 *)&core->accuracy);
2131 	if (!d)
2132 		goto err_out;
2133 
2134 	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2135 			(u32 *)&core->phase);
2136 	if (!d)
2137 		goto err_out;
2138 
2139 	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2140 			(u32 *)&core->flags);
2141 	if (!d)
2142 		goto err_out;
2143 
2144 	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2145 			(u32 *)&core->prepare_count);
2146 	if (!d)
2147 		goto err_out;
2148 
2149 	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2150 			(u32 *)&core->enable_count);
2151 	if (!d)
2152 		goto err_out;
2153 
2154 	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2155 			(u32 *)&core->notifier_count);
2156 	if (!d)
2157 		goto err_out;
2158 
2159 	if (core->ops->debug_init) {
2160 		ret = core->ops->debug_init(core->hw, core->dentry);
2161 		if (ret)
2162 			goto err_out;
2163 	}
2164 
2165 	ret = 0;
2166 	goto out;
2167 
2168 err_out:
2169 	debugfs_remove_recursive(core->dentry);
2170 	core->dentry = NULL;
2171 out:
2172 	return ret;
2173 }
2174 
2175 /**
2176  * clk_debug_register - add a clk node to the debugfs clk directory
2177  * @core: the clk being added to the debugfs clk directory
2178  *
2179  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2180  * initialized.  Otherwise it bails out early since the debugfs clk directory
2181  * will be created lazily by clk_debug_init as part of a late_initcall.
2182  */
clk_debug_register(struct clk_core * core)2183 static int clk_debug_register(struct clk_core *core)
2184 {
2185 	int ret = 0;
2186 
2187 	mutex_lock(&clk_debug_lock);
2188 	hlist_add_head(&core->debug_node, &clk_debug_list);
2189 
2190 	if (!inited)
2191 		goto unlock;
2192 
2193 	ret = clk_debug_create_one(core, rootdir);
2194 unlock:
2195 	mutex_unlock(&clk_debug_lock);
2196 
2197 	return ret;
2198 }
2199 
2200  /**
2201  * clk_debug_unregister - remove a clk node from the debugfs clk directory
2202  * @core: the clk being removed from the debugfs clk directory
2203  *
2204  * Dynamically removes a clk and all its child nodes from the
2205  * debugfs clk directory if clk->dentry points to debugfs created by
2206  * clk_debug_register in __clk_init.
2207  */
clk_debug_unregister(struct clk_core * core)2208 static void clk_debug_unregister(struct clk_core *core)
2209 {
2210 	mutex_lock(&clk_debug_lock);
2211 	hlist_del_init(&core->debug_node);
2212 	debugfs_remove_recursive(core->dentry);
2213 	core->dentry = NULL;
2214 	mutex_unlock(&clk_debug_lock);
2215 }
2216 
clk_debugfs_add_file(struct clk_hw * hw,char * name,umode_t mode,void * data,const struct file_operations * fops)2217 struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2218 				void *data, const struct file_operations *fops)
2219 {
2220 	struct dentry *d = NULL;
2221 
2222 	if (hw->core->dentry)
2223 		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2224 					fops);
2225 
2226 	return d;
2227 }
2228 EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2229 
2230 /**
2231  * clk_debug_init - lazily populate the debugfs clk directory
2232  *
2233  * clks are often initialized very early during boot before memory can be
2234  * dynamically allocated and well before debugfs is setup. This function
2235  * populates the debugfs clk directory once at boot-time when we know that
2236  * debugfs is setup. It should only be called once at boot-time, all other clks
2237  * added dynamically will be done so with clk_debug_register.
2238  */
clk_debug_init(void)2239 static int __init clk_debug_init(void)
2240 {
2241 	struct clk_core *core;
2242 	struct dentry *d;
2243 
2244 	rootdir = debugfs_create_dir("clk", NULL);
2245 
2246 	if (!rootdir)
2247 		return -ENOMEM;
2248 
2249 	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2250 				&clk_summary_fops);
2251 	if (!d)
2252 		return -ENOMEM;
2253 
2254 	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2255 				&clk_dump_fops);
2256 	if (!d)
2257 		return -ENOMEM;
2258 
2259 	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2260 				&orphan_list, &clk_summary_fops);
2261 	if (!d)
2262 		return -ENOMEM;
2263 
2264 	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2265 				&orphan_list, &clk_dump_fops);
2266 	if (!d)
2267 		return -ENOMEM;
2268 
2269 	mutex_lock(&clk_debug_lock);
2270 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2271 		clk_debug_create_one(core, rootdir);
2272 
2273 	inited = 1;
2274 	mutex_unlock(&clk_debug_lock);
2275 
2276 	return 0;
2277 }
2278 late_initcall(clk_debug_init);
2279 #else
clk_debug_register(struct clk_core * core)2280 static inline int clk_debug_register(struct clk_core *core) { return 0; }
clk_debug_reparent(struct clk_core * core,struct clk_core * new_parent)2281 static inline void clk_debug_reparent(struct clk_core *core,
2282 				      struct clk_core *new_parent)
2283 {
2284 }
clk_debug_unregister(struct clk_core * core)2285 static inline void clk_debug_unregister(struct clk_core *core)
2286 {
2287 }
2288 #endif
2289 
2290 /**
2291  * __clk_init - initialize the data structures in a struct clk
2292  * @dev:	device initializing this clk, placeholder for now
2293  * @clk:	clk being initialized
2294  *
2295  * Initializes the lists in struct clk_core, queries the hardware for the
2296  * parent and rate and sets them both.
2297  */
__clk_init(struct device * dev,struct clk * clk_user)2298 static int __clk_init(struct device *dev, struct clk *clk_user)
2299 {
2300 	int i, ret = 0;
2301 	struct clk_core *orphan;
2302 	struct hlist_node *tmp2;
2303 	struct clk_core *core;
2304 	unsigned long rate;
2305 
2306 	if (!clk_user)
2307 		return -EINVAL;
2308 
2309 	core = clk_user->core;
2310 
2311 	clk_prepare_lock();
2312 
2313 	/* check to see if a clock with this name is already registered */
2314 	if (clk_core_lookup(core->name)) {
2315 		pr_debug("%s: clk %s already initialized\n",
2316 				__func__, core->name);
2317 		ret = -EEXIST;
2318 		goto out;
2319 	}
2320 
2321 	/* check that clk_ops are sane.  See Documentation/clk.txt */
2322 	if (core->ops->set_rate &&
2323 	    !((core->ops->round_rate || core->ops->determine_rate) &&
2324 	      core->ops->recalc_rate)) {
2325 		pr_warning("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2326 				__func__, core->name);
2327 		ret = -EINVAL;
2328 		goto out;
2329 	}
2330 
2331 	if (core->ops->set_parent && !core->ops->get_parent) {
2332 		pr_warning("%s: %s must implement .get_parent & .set_parent\n",
2333 				__func__, core->name);
2334 		ret = -EINVAL;
2335 		goto out;
2336 	}
2337 
2338 	if (core->ops->set_rate_and_parent &&
2339 			!(core->ops->set_parent && core->ops->set_rate)) {
2340 		pr_warn("%s: %s must implement .set_parent & .set_rate\n",
2341 				__func__, core->name);
2342 		ret = -EINVAL;
2343 		goto out;
2344 	}
2345 
2346 	/* throw a WARN if any entries in parent_names are NULL */
2347 	for (i = 0; i < core->num_parents; i++)
2348 		WARN(!core->parent_names[i],
2349 				"%s: invalid NULL in %s's .parent_names\n",
2350 				__func__, core->name);
2351 
2352 	/*
2353 	 * Allocate an array of struct clk *'s to avoid unnecessary string
2354 	 * look-ups of clk's possible parents.  This can fail for clocks passed
2355 	 * in to clk_init during early boot; thus any access to core->parents[]
2356 	 * must always check for a NULL pointer and try to populate it if
2357 	 * necessary.
2358 	 *
2359 	 * If core->parents is not NULL we skip this entire block.  This allows
2360 	 * for clock drivers to statically initialize core->parents.
2361 	 */
2362 	if (core->num_parents > 1 && !core->parents) {
2363 		core->parents = kcalloc(core->num_parents, sizeof(struct clk *),
2364 					GFP_KERNEL);
2365 		/*
2366 		 * clk_core_lookup returns NULL for parents that have not been
2367 		 * clk_init'd; thus any access to clk->parents[] must check
2368 		 * for a NULL pointer.  We can always perform lazy lookups for
2369 		 * missing parents later on.
2370 		 */
2371 		if (core->parents)
2372 			for (i = 0; i < core->num_parents; i++)
2373 				core->parents[i] =
2374 					clk_core_lookup(core->parent_names[i]);
2375 	}
2376 
2377 	core->parent = __clk_init_parent(core);
2378 
2379 	/*
2380 	 * Populate core->parent if parent has already been __clk_init'd.  If
2381 	 * parent has not yet been __clk_init'd then place clk in the orphan
2382 	 * list.  If clk has set the CLK_IS_ROOT flag then place it in the root
2383 	 * clk list.
2384 	 *
2385 	 * Every time a new clk is clk_init'd then we walk the list of orphan
2386 	 * clocks and re-parent any that are children of the clock currently
2387 	 * being clk_init'd.
2388 	 */
2389 	if (core->parent) {
2390 		hlist_add_head(&core->child_node,
2391 				&core->parent->children);
2392 		core->orphan = core->parent->orphan;
2393 	} else if (core->flags & CLK_IS_ROOT) {
2394 		hlist_add_head(&core->child_node, &clk_root_list);
2395 		core->orphan = false;
2396 	} else {
2397 		hlist_add_head(&core->child_node, &clk_orphan_list);
2398 		core->orphan = true;
2399 	}
2400 
2401 	/*
2402 	 * Set clk's accuracy.  The preferred method is to use
2403 	 * .recalc_accuracy. For simple clocks and lazy developers the default
2404 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2405 	 * parent (or is orphaned) then accuracy is set to zero (perfect
2406 	 * clock).
2407 	 */
2408 	if (core->ops->recalc_accuracy)
2409 		core->accuracy = core->ops->recalc_accuracy(core->hw,
2410 					__clk_get_accuracy(core->parent));
2411 	else if (core->parent)
2412 		core->accuracy = core->parent->accuracy;
2413 	else
2414 		core->accuracy = 0;
2415 
2416 	/*
2417 	 * Set clk's phase.
2418 	 * Since a phase is by definition relative to its parent, just
2419 	 * query the current clock phase, or just assume it's in phase.
2420 	 */
2421 	if (core->ops->get_phase)
2422 		core->phase = core->ops->get_phase(core->hw);
2423 	else
2424 		core->phase = 0;
2425 
2426 	/*
2427 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2428 	 * simple clocks and lazy developers the default fallback is to use the
2429 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2430 	 * then rate is set to zero.
2431 	 */
2432 	if (core->ops->recalc_rate)
2433 		rate = core->ops->recalc_rate(core->hw,
2434 				clk_core_get_rate_nolock(core->parent));
2435 	else if (core->parent)
2436 		rate = core->parent->rate;
2437 	else
2438 		rate = 0;
2439 	core->rate = core->req_rate = rate;
2440 
2441 	/*
2442 	 * walk the list of orphan clocks and reparent any that are children of
2443 	 * this clock
2444 	 */
2445 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2446 		if (orphan->num_parents && orphan->ops->get_parent) {
2447 			i = orphan->ops->get_parent(orphan->hw);
2448 			if (i >= 0 && i < orphan->num_parents &&
2449 			    !strcmp(core->name, orphan->parent_names[i]))
2450 				clk_core_reparent(orphan, core);
2451 			continue;
2452 		}
2453 
2454 		for (i = 0; i < orphan->num_parents; i++)
2455 			if (!strcmp(core->name, orphan->parent_names[i])) {
2456 				clk_core_reparent(orphan, core);
2457 				break;
2458 			}
2459 	 }
2460 
2461 	/*
2462 	 * optional platform-specific magic
2463 	 *
2464 	 * The .init callback is not used by any of the basic clock types, but
2465 	 * exists for weird hardware that must perform initialization magic.
2466 	 * Please consider other ways of solving initialization problems before
2467 	 * using this callback, as its use is discouraged.
2468 	 */
2469 	if (core->ops->init)
2470 		core->ops->init(core->hw);
2471 
2472 	kref_init(&core->ref);
2473 out:
2474 	clk_prepare_unlock();
2475 
2476 	if (!ret)
2477 		clk_debug_register(core);
2478 
2479 	return ret;
2480 }
2481 
__clk_create_clk(struct clk_hw * hw,const char * dev_id,const char * con_id)2482 struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2483 			     const char *con_id)
2484 {
2485 	struct clk *clk;
2486 
2487 	/* This is to allow this function to be chained to others */
2488 	if (!hw || IS_ERR(hw))
2489 		return (struct clk *) hw;
2490 
2491 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2492 	if (!clk)
2493 		return ERR_PTR(-ENOMEM);
2494 
2495 	clk->core = hw->core;
2496 	clk->dev_id = dev_id;
2497 	clk->con_id = con_id;
2498 	clk->max_rate = ULONG_MAX;
2499 
2500 	clk_prepare_lock();
2501 	hlist_add_head(&clk->clks_node, &hw->core->clks);
2502 	clk_prepare_unlock();
2503 
2504 	return clk;
2505 }
2506 
__clk_free_clk(struct clk * clk)2507 void __clk_free_clk(struct clk *clk)
2508 {
2509 	clk_prepare_lock();
2510 	hlist_del(&clk->clks_node);
2511 	clk_prepare_unlock();
2512 
2513 	kfree(clk);
2514 }
2515 
2516 /**
2517  * clk_register - allocate a new clock, register it and return an opaque cookie
2518  * @dev: device that is registering this clock
2519  * @hw: link to hardware-specific clock data
2520  *
2521  * clk_register is the primary interface for populating the clock tree with new
2522  * clock nodes.  It returns a pointer to the newly allocated struct clk which
2523  * cannot be dereferenced by driver code but may be used in conjunction with the
2524  * rest of the clock API.  In the event of an error clk_register will return an
2525  * error code; drivers must test for an error code after calling clk_register.
2526  */
clk_register(struct device * dev,struct clk_hw * hw)2527 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2528 {
2529 	int i, ret;
2530 	struct clk_core *core;
2531 
2532 	core = kzalloc(sizeof(*core), GFP_KERNEL);
2533 	if (!core) {
2534 		ret = -ENOMEM;
2535 		goto fail_out;
2536 	}
2537 
2538 	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2539 	if (!core->name) {
2540 		ret = -ENOMEM;
2541 		goto fail_name;
2542 	}
2543 	core->ops = hw->init->ops;
2544 	if (dev && dev->driver)
2545 		core->owner = dev->driver->owner;
2546 	core->hw = hw;
2547 	core->flags = hw->init->flags;
2548 	core->num_parents = hw->init->num_parents;
2549 	core->min_rate = 0;
2550 	core->max_rate = ULONG_MAX;
2551 	hw->core = core;
2552 
2553 	/* allocate local copy in case parent_names is __initdata */
2554 	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2555 					GFP_KERNEL);
2556 
2557 	if (!core->parent_names) {
2558 		ret = -ENOMEM;
2559 		goto fail_parent_names;
2560 	}
2561 
2562 
2563 	/* copy each string name in case parent_names is __initdata */
2564 	for (i = 0; i < core->num_parents; i++) {
2565 		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2566 						GFP_KERNEL);
2567 		if (!core->parent_names[i]) {
2568 			ret = -ENOMEM;
2569 			goto fail_parent_names_copy;
2570 		}
2571 	}
2572 
2573 	INIT_HLIST_HEAD(&core->clks);
2574 
2575 	hw->clk = __clk_create_clk(hw, NULL, NULL);
2576 	if (IS_ERR(hw->clk)) {
2577 		ret = PTR_ERR(hw->clk);
2578 		goto fail_parent_names_copy;
2579 	}
2580 
2581 	ret = __clk_init(dev, hw->clk);
2582 	if (!ret)
2583 		return hw->clk;
2584 
2585 	__clk_free_clk(hw->clk);
2586 	hw->clk = NULL;
2587 
2588 fail_parent_names_copy:
2589 	while (--i >= 0)
2590 		kfree_const(core->parent_names[i]);
2591 	kfree(core->parent_names);
2592 fail_parent_names:
2593 	kfree_const(core->name);
2594 fail_name:
2595 	kfree(core);
2596 fail_out:
2597 	return ERR_PTR(ret);
2598 }
2599 EXPORT_SYMBOL_GPL(clk_register);
2600 
2601 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)2602 static void __clk_release(struct kref *ref)
2603 {
2604 	struct clk_core *core = container_of(ref, struct clk_core, ref);
2605 	int i = core->num_parents;
2606 
2607 	lockdep_assert_held(&prepare_lock);
2608 
2609 	kfree(core->parents);
2610 	while (--i >= 0)
2611 		kfree_const(core->parent_names[i]);
2612 
2613 	kfree(core->parent_names);
2614 	kfree_const(core->name);
2615 	kfree(core);
2616 }
2617 
2618 /*
2619  * Empty clk_ops for unregistered clocks. These are used temporarily
2620  * after clk_unregister() was called on a clock and until last clock
2621  * consumer calls clk_put() and the struct clk object is freed.
2622  */
clk_nodrv_prepare_enable(struct clk_hw * hw)2623 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2624 {
2625 	return -ENXIO;
2626 }
2627 
clk_nodrv_disable_unprepare(struct clk_hw * hw)2628 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2629 {
2630 	WARN_ON_ONCE(1);
2631 }
2632 
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)2633 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2634 					unsigned long parent_rate)
2635 {
2636 	return -ENXIO;
2637 }
2638 
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)2639 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2640 {
2641 	return -ENXIO;
2642 }
2643 
2644 static const struct clk_ops clk_nodrv_ops = {
2645 	.enable		= clk_nodrv_prepare_enable,
2646 	.disable	= clk_nodrv_disable_unprepare,
2647 	.prepare	= clk_nodrv_prepare_enable,
2648 	.unprepare	= clk_nodrv_disable_unprepare,
2649 	.set_rate	= clk_nodrv_set_rate,
2650 	.set_parent	= clk_nodrv_set_parent,
2651 };
2652 
2653 /**
2654  * clk_unregister - unregister a currently registered clock
2655  * @clk: clock to unregister
2656  */
clk_unregister(struct clk * clk)2657 void clk_unregister(struct clk *clk)
2658 {
2659 	unsigned long flags;
2660 
2661 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2662 		return;
2663 
2664 	clk_debug_unregister(clk->core);
2665 
2666 	clk_prepare_lock();
2667 
2668 	if (clk->core->ops == &clk_nodrv_ops) {
2669 		pr_err("%s: unregistered clock: %s\n", __func__,
2670 		       clk->core->name);
2671 		return;
2672 	}
2673 	/*
2674 	 * Assign empty clock ops for consumers that might still hold
2675 	 * a reference to this clock.
2676 	 */
2677 	flags = clk_enable_lock();
2678 	clk->core->ops = &clk_nodrv_ops;
2679 	clk_enable_unlock(flags);
2680 
2681 	if (!hlist_empty(&clk->core->children)) {
2682 		struct clk_core *child;
2683 		struct hlist_node *t;
2684 
2685 		/* Reparent all children to the orphan list. */
2686 		hlist_for_each_entry_safe(child, t, &clk->core->children,
2687 					  child_node)
2688 			clk_core_set_parent(child, NULL);
2689 	}
2690 
2691 	hlist_del_init(&clk->core->child_node);
2692 
2693 	if (clk->core->prepare_count)
2694 		pr_warn("%s: unregistering prepared clock: %s\n",
2695 					__func__, clk->core->name);
2696 	kref_put(&clk->core->ref, __clk_release);
2697 
2698 	clk_prepare_unlock();
2699 }
2700 EXPORT_SYMBOL_GPL(clk_unregister);
2701 
devm_clk_release(struct device * dev,void * res)2702 static void devm_clk_release(struct device *dev, void *res)
2703 {
2704 	clk_unregister(*(struct clk **)res);
2705 }
2706 
2707 /**
2708  * devm_clk_register - resource managed clk_register()
2709  * @dev: device that is registering this clock
2710  * @hw: link to hardware-specific clock data
2711  *
2712  * Managed clk_register(). Clocks returned from this function are
2713  * automatically clk_unregister()ed on driver detach. See clk_register() for
2714  * more information.
2715  */
devm_clk_register(struct device * dev,struct clk_hw * hw)2716 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2717 {
2718 	struct clk *clk;
2719 	struct clk **clkp;
2720 
2721 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2722 	if (!clkp)
2723 		return ERR_PTR(-ENOMEM);
2724 
2725 	clk = clk_register(dev, hw);
2726 	if (!IS_ERR(clk)) {
2727 		*clkp = clk;
2728 		devres_add(dev, clkp);
2729 	} else {
2730 		devres_free(clkp);
2731 	}
2732 
2733 	return clk;
2734 }
2735 EXPORT_SYMBOL_GPL(devm_clk_register);
2736 
devm_clk_match(struct device * dev,void * res,void * data)2737 static int devm_clk_match(struct device *dev, void *res, void *data)
2738 {
2739 	struct clk *c = res;
2740 	if (WARN_ON(!c))
2741 		return 0;
2742 	return c == data;
2743 }
2744 
2745 /**
2746  * devm_clk_unregister - resource managed clk_unregister()
2747  * @clk: clock to unregister
2748  *
2749  * Deallocate a clock allocated with devm_clk_register(). Normally
2750  * this function will not need to be called and the resource management
2751  * code will ensure that the resource is freed.
2752  */
devm_clk_unregister(struct device * dev,struct clk * clk)2753 void devm_clk_unregister(struct device *dev, struct clk *clk)
2754 {
2755 	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2756 }
2757 EXPORT_SYMBOL_GPL(devm_clk_unregister);
2758 
2759 /*
2760  * clkdev helpers
2761  */
__clk_get(struct clk * clk)2762 int __clk_get(struct clk *clk)
2763 {
2764 	struct clk_core *core = !clk ? NULL : clk->core;
2765 
2766 	if (core) {
2767 		if (!try_module_get(core->owner))
2768 			return 0;
2769 
2770 		kref_get(&core->ref);
2771 	}
2772 	return 1;
2773 }
2774 
__clk_put(struct clk * clk)2775 void __clk_put(struct clk *clk)
2776 {
2777 	struct module *owner;
2778 
2779 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2780 		return;
2781 
2782 	clk_prepare_lock();
2783 
2784 	hlist_del(&clk->clks_node);
2785 	if (clk->min_rate > clk->core->req_rate ||
2786 	    clk->max_rate < clk->core->req_rate)
2787 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2788 
2789 	owner = clk->core->owner;
2790 	kref_put(&clk->core->ref, __clk_release);
2791 
2792 	clk_prepare_unlock();
2793 
2794 	module_put(owner);
2795 
2796 	kfree(clk);
2797 }
2798 
2799 /***        clk rate change notifiers        ***/
2800 
2801 /**
2802  * clk_notifier_register - add a clk rate change notifier
2803  * @clk: struct clk * to watch
2804  * @nb: struct notifier_block * with callback info
2805  *
2806  * Request notification when clk's rate changes.  This uses an SRCU
2807  * notifier because we want it to block and notifier unregistrations are
2808  * uncommon.  The callbacks associated with the notifier must not
2809  * re-enter into the clk framework by calling any top-level clk APIs;
2810  * this will cause a nested prepare_lock mutex.
2811  *
2812  * In all notification cases cases (pre, post and abort rate change) the
2813  * original clock rate is passed to the callback via struct
2814  * clk_notifier_data.old_rate and the new frequency is passed via struct
2815  * clk_notifier_data.new_rate.
2816  *
2817  * clk_notifier_register() must be called from non-atomic context.
2818  * Returns -EINVAL if called with null arguments, -ENOMEM upon
2819  * allocation failure; otherwise, passes along the return value of
2820  * srcu_notifier_chain_register().
2821  */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)2822 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2823 {
2824 	struct clk_notifier *cn;
2825 	int ret = -ENOMEM;
2826 
2827 	if (!clk || !nb)
2828 		return -EINVAL;
2829 
2830 	clk_prepare_lock();
2831 
2832 	/* search the list of notifiers for this clk */
2833 	list_for_each_entry(cn, &clk_notifier_list, node)
2834 		if (cn->clk == clk)
2835 			break;
2836 
2837 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2838 	if (cn->clk != clk) {
2839 		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2840 		if (!cn)
2841 			goto out;
2842 
2843 		cn->clk = clk;
2844 		srcu_init_notifier_head(&cn->notifier_head);
2845 
2846 		list_add(&cn->node, &clk_notifier_list);
2847 	}
2848 
2849 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2850 
2851 	clk->core->notifier_count++;
2852 
2853 out:
2854 	clk_prepare_unlock();
2855 
2856 	return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(clk_notifier_register);
2859 
2860 /**
2861  * clk_notifier_unregister - remove a clk rate change notifier
2862  * @clk: struct clk *
2863  * @nb: struct notifier_block * with callback info
2864  *
2865  * Request no further notification for changes to 'clk' and frees memory
2866  * allocated in clk_notifier_register.
2867  *
2868  * Returns -EINVAL if called with null arguments; otherwise, passes
2869  * along the return value of srcu_notifier_chain_unregister().
2870  */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)2871 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2872 {
2873 	struct clk_notifier *cn;
2874 	int ret = -ENOENT;
2875 
2876 	if (!clk || !nb)
2877 		return -EINVAL;
2878 
2879 	clk_prepare_lock();
2880 
2881 	list_for_each_entry(cn, &clk_notifier_list, node) {
2882 		if (cn->clk == clk) {
2883 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2884 
2885 			clk->core->notifier_count--;
2886 
2887 			/* XXX the notifier code should handle this better */
2888 			if (!cn->notifier_head.head) {
2889 				srcu_cleanup_notifier_head(&cn->notifier_head);
2890 				list_del(&cn->node);
2891 				kfree(cn);
2892 			}
2893 			break;
2894 		}
2895 	}
2896 
2897 	clk_prepare_unlock();
2898 
2899 	return ret;
2900 }
2901 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2902 
2903 #ifdef CONFIG_OF
2904 /**
2905  * struct of_clk_provider - Clock provider registration structure
2906  * @link: Entry in global list of clock providers
2907  * @node: Pointer to device tree node of clock provider
2908  * @get: Get clock callback.  Returns NULL or a struct clk for the
2909  *       given clock specifier
2910  * @data: context pointer to be passed into @get callback
2911  */
2912 struct of_clk_provider {
2913 	struct list_head link;
2914 
2915 	struct device_node *node;
2916 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
2917 	void *data;
2918 };
2919 
2920 static const struct of_device_id __clk_of_table_sentinel
2921 	__used __section(__clk_of_table_end);
2922 
2923 static LIST_HEAD(of_clk_providers);
2924 static DEFINE_MUTEX(of_clk_mutex);
2925 
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)2926 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2927 				     void *data)
2928 {
2929 	return data;
2930 }
2931 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2932 
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)2933 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2934 {
2935 	struct clk_onecell_data *clk_data = data;
2936 	unsigned int idx = clkspec->args[0];
2937 
2938 	if (idx >= clk_data->clk_num) {
2939 		pr_err("%s: invalid clock index %u\n", __func__, idx);
2940 		return ERR_PTR(-EINVAL);
2941 	}
2942 
2943 	return clk_data->clks[idx];
2944 }
2945 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2946 
2947 /**
2948  * of_clk_add_provider() - Register a clock provider for a node
2949  * @np: Device node pointer associated with clock provider
2950  * @clk_src_get: callback for decoding clock
2951  * @data: context pointer for @clk_src_get callback.
2952  */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)2953 int of_clk_add_provider(struct device_node *np,
2954 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2955 						   void *data),
2956 			void *data)
2957 {
2958 	struct of_clk_provider *cp;
2959 	int ret;
2960 
2961 	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2962 	if (!cp)
2963 		return -ENOMEM;
2964 
2965 	cp->node = of_node_get(np);
2966 	cp->data = data;
2967 	cp->get = clk_src_get;
2968 
2969 	mutex_lock(&of_clk_mutex);
2970 	list_add(&cp->link, &of_clk_providers);
2971 	mutex_unlock(&of_clk_mutex);
2972 	pr_debug("Added clock from %s\n", np->full_name);
2973 
2974 	ret = of_clk_set_defaults(np, true);
2975 	if (ret < 0)
2976 		of_clk_del_provider(np);
2977 
2978 	return ret;
2979 }
2980 EXPORT_SYMBOL_GPL(of_clk_add_provider);
2981 
2982 /**
2983  * of_clk_del_provider() - Remove a previously registered clock provider
2984  * @np: Device node pointer associated with clock provider
2985  */
of_clk_del_provider(struct device_node * np)2986 void of_clk_del_provider(struct device_node *np)
2987 {
2988 	struct of_clk_provider *cp;
2989 
2990 	mutex_lock(&of_clk_mutex);
2991 	list_for_each_entry(cp, &of_clk_providers, link) {
2992 		if (cp->node == np) {
2993 			list_del(&cp->link);
2994 			of_node_put(cp->node);
2995 			kfree(cp);
2996 			break;
2997 		}
2998 	}
2999 	mutex_unlock(&of_clk_mutex);
3000 }
3001 EXPORT_SYMBOL_GPL(of_clk_del_provider);
3002 
__of_clk_get_from_provider(struct of_phandle_args * clkspec,const char * dev_id,const char * con_id)3003 struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3004 				       const char *dev_id, const char *con_id)
3005 {
3006 	struct of_clk_provider *provider;
3007 	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3008 
3009 	if (!clkspec)
3010 		return ERR_PTR(-EINVAL);
3011 
3012 	/* Check if we have such a provider in our array */
3013 	mutex_lock(&of_clk_mutex);
3014 	list_for_each_entry(provider, &of_clk_providers, link) {
3015 		if (provider->node == clkspec->np)
3016 			clk = provider->get(clkspec, provider->data);
3017 		if (!IS_ERR(clk)) {
3018 			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
3019 					       con_id);
3020 
3021 			if (!IS_ERR(clk) && !__clk_get(clk)) {
3022 				__clk_free_clk(clk);
3023 				clk = ERR_PTR(-ENOENT);
3024 			}
3025 
3026 			break;
3027 		}
3028 	}
3029 	mutex_unlock(&of_clk_mutex);
3030 
3031 	return clk;
3032 }
3033 
3034 /**
3035  * of_clk_get_from_provider() - Lookup a clock from a clock provider
3036  * @clkspec: pointer to a clock specifier data structure
3037  *
3038  * This function looks up a struct clk from the registered list of clock
3039  * providers, an input is a clock specifier data structure as returned
3040  * from the of_parse_phandle_with_args() function call.
3041  */
of_clk_get_from_provider(struct of_phandle_args * clkspec)3042 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3043 {
3044 	return __of_clk_get_from_provider(clkspec, NULL, __func__);
3045 }
3046 
of_clk_get_parent_count(struct device_node * np)3047 int of_clk_get_parent_count(struct device_node *np)
3048 {
3049 	return of_count_phandle_with_args(np, "clocks", "#clock-cells");
3050 }
3051 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3052 
of_clk_get_parent_name(struct device_node * np,int index)3053 const char *of_clk_get_parent_name(struct device_node *np, int index)
3054 {
3055 	struct of_phandle_args clkspec;
3056 	struct property *prop;
3057 	const char *clk_name;
3058 	const __be32 *vp;
3059 	u32 pv;
3060 	int rc;
3061 	int count;
3062 	struct clk *clk;
3063 
3064 	if (index < 0)
3065 		return NULL;
3066 
3067 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3068 					&clkspec);
3069 	if (rc)
3070 		return NULL;
3071 
3072 	index = clkspec.args_count ? clkspec.args[0] : 0;
3073 	count = 0;
3074 
3075 	/* if there is an indices property, use it to transfer the index
3076 	 * specified into an array offset for the clock-output-names property.
3077 	 */
3078 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3079 		if (index == pv) {
3080 			index = count;
3081 			break;
3082 		}
3083 		count++;
3084 	}
3085 
3086 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3087 					  index,
3088 					  &clk_name) < 0) {
3089 		/*
3090 		 * Best effort to get the name if the clock has been
3091 		 * registered with the framework. If the clock isn't
3092 		 * registered, we return the node name as the name of
3093 		 * the clock as long as #clock-cells = 0.
3094 		 */
3095 		clk = of_clk_get_from_provider(&clkspec);
3096 		if (IS_ERR(clk)) {
3097 			if (clkspec.args_count == 0)
3098 				clk_name = clkspec.np->name;
3099 			else
3100 				clk_name = NULL;
3101 		} else {
3102 			clk_name = __clk_get_name(clk);
3103 			clk_put(clk);
3104 		}
3105 	}
3106 
3107 
3108 	of_node_put(clkspec.np);
3109 	return clk_name;
3110 }
3111 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3112 
3113 /**
3114  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3115  * number of parents
3116  * @np: Device node pointer associated with clock provider
3117  * @parents: pointer to char array that hold the parents' names
3118  * @size: size of the @parents array
3119  *
3120  * Return: number of parents for the clock node.
3121  */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)3122 int of_clk_parent_fill(struct device_node *np, const char **parents,
3123 		       unsigned int size)
3124 {
3125 	unsigned int i = 0;
3126 
3127 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3128 		i++;
3129 
3130 	return i;
3131 }
3132 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3133 
3134 struct clock_provider {
3135 	of_clk_init_cb_t clk_init_cb;
3136 	struct device_node *np;
3137 	struct list_head node;
3138 };
3139 
3140 /*
3141  * This function looks for a parent clock. If there is one, then it
3142  * checks that the provider for this parent clock was initialized, in
3143  * this case the parent clock will be ready.
3144  */
parent_ready(struct device_node * np)3145 static int parent_ready(struct device_node *np)
3146 {
3147 	int i = 0;
3148 
3149 	while (true) {
3150 		struct clk *clk = of_clk_get(np, i);
3151 
3152 		/* this parent is ready we can check the next one */
3153 		if (!IS_ERR(clk)) {
3154 			clk_put(clk);
3155 			i++;
3156 			continue;
3157 		}
3158 
3159 		/* at least one parent is not ready, we exit now */
3160 		if (PTR_ERR(clk) == -EPROBE_DEFER)
3161 			return 0;
3162 
3163 		/*
3164 		 * Here we make assumption that the device tree is
3165 		 * written correctly. So an error means that there is
3166 		 * no more parent. As we didn't exit yet, then the
3167 		 * previous parent are ready. If there is no clock
3168 		 * parent, no need to wait for them, then we can
3169 		 * consider their absence as being ready
3170 		 */
3171 		return 1;
3172 	}
3173 }
3174 
3175 /**
3176  * of_clk_init() - Scan and init clock providers from the DT
3177  * @matches: array of compatible values and init functions for providers.
3178  *
3179  * This function scans the device tree for matching clock providers
3180  * and calls their initialization functions. It also does it by trying
3181  * to follow the dependencies.
3182  */
of_clk_init(const struct of_device_id * matches)3183 void __init of_clk_init(const struct of_device_id *matches)
3184 {
3185 	const struct of_device_id *match;
3186 	struct device_node *np;
3187 	struct clock_provider *clk_provider, *next;
3188 	bool is_init_done;
3189 	bool force = false;
3190 	LIST_HEAD(clk_provider_list);
3191 
3192 	if (!matches)
3193 		matches = &__clk_of_table;
3194 
3195 	/* First prepare the list of the clocks providers */
3196 	for_each_matching_node_and_match(np, matches, &match) {
3197 		struct clock_provider *parent;
3198 
3199 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3200 		if (!parent) {
3201 			list_for_each_entry_safe(clk_provider, next,
3202 						 &clk_provider_list, node) {
3203 				list_del(&clk_provider->node);
3204 				of_node_put(clk_provider->np);
3205 				kfree(clk_provider);
3206 			}
3207 			of_node_put(np);
3208 			return;
3209 		}
3210 
3211 		parent->clk_init_cb = match->data;
3212 		parent->np = of_node_get(np);
3213 		list_add_tail(&parent->node, &clk_provider_list);
3214 	}
3215 
3216 	while (!list_empty(&clk_provider_list)) {
3217 		is_init_done = false;
3218 		list_for_each_entry_safe(clk_provider, next,
3219 					&clk_provider_list, node) {
3220 			if (force || parent_ready(clk_provider->np)) {
3221 
3222 				clk_provider->clk_init_cb(clk_provider->np);
3223 				of_clk_set_defaults(clk_provider->np, true);
3224 
3225 				list_del(&clk_provider->node);
3226 				of_node_put(clk_provider->np);
3227 				kfree(clk_provider);
3228 				is_init_done = true;
3229 			}
3230 		}
3231 
3232 		/*
3233 		 * We didn't manage to initialize any of the
3234 		 * remaining providers during the last loop, so now we
3235 		 * initialize all the remaining ones unconditionally
3236 		 * in case the clock parent was not mandatory
3237 		 */
3238 		if (!is_init_done)
3239 			force = true;
3240 	}
3241 }
3242 #endif
3243