• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NTP state machine interfaces and logic.
3  *
4  * This code was mainly moved from kernel/timer.c and kernel/time.c
5  * Please see those files for relevant copyright info and historical
6  * changelogs.
7  */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19 
20 #include "ntp_internal.h"
21 
22 /*
23  * NTP timekeeping variables:
24  *
25  * Note: All of the NTP state is protected by the timekeeping locks.
26  */
27 
28 
29 /* USER_HZ period (usecs): */
30 unsigned long			tick_usec = TICK_USEC;
31 
32 /* SHIFTED_HZ period (nsecs): */
33 unsigned long			tick_nsec;
34 
35 static u64			tick_length;
36 static u64			tick_length_base;
37 
38 #define SECS_PER_DAY		86400
39 #define MAX_TICKADJ		500LL		/* usecs */
40 #define MAX_TICKADJ_SCALED \
41 	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
42 #define MAX_TAI_OFFSET		100000
43 
44 /*
45  * phase-lock loop variables
46  */
47 
48 /*
49  * clock synchronization status
50  *
51  * (TIME_ERROR prevents overwriting the CMOS clock)
52  */
53 static int			time_state = TIME_OK;
54 
55 /* clock status bits:							*/
56 static int			time_status = STA_UNSYNC;
57 
58 /* time adjustment (nsecs):						*/
59 static s64			time_offset;
60 
61 /* pll time constant:							*/
62 static long			time_constant = 2;
63 
64 /* maximum error (usecs):						*/
65 static long			time_maxerror = NTP_PHASE_LIMIT;
66 
67 /* estimated error (usecs):						*/
68 static long			time_esterror = NTP_PHASE_LIMIT;
69 
70 /* frequency offset (scaled nsecs/secs):				*/
71 static s64			time_freq;
72 
73 /* time at last adjustment (secs):					*/
74 static long			time_reftime;
75 
76 static long			time_adjust;
77 
78 /* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
79 static s64			ntp_tick_adj;
80 
81 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
82 static time64_t			ntp_next_leap_sec = TIME64_MAX;
83 
84 #ifdef CONFIG_NTP_PPS
85 
86 /*
87  * The following variables are used when a pulse-per-second (PPS) signal
88  * is available. They establish the engineering parameters of the clock
89  * discipline loop when controlled by the PPS signal.
90  */
91 #define PPS_VALID	10	/* PPS signal watchdog max (s) */
92 #define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
93 #define PPS_INTMIN	2	/* min freq interval (s) (shift) */
94 #define PPS_INTMAX	8	/* max freq interval (s) (shift) */
95 #define PPS_INTCOUNT	4	/* number of consecutive good intervals to
96 				   increase pps_shift or consecutive bad
97 				   intervals to decrease it */
98 #define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
99 
100 static int pps_valid;		/* signal watchdog counter */
101 static long pps_tf[3];		/* phase median filter */
102 static long pps_jitter;		/* current jitter (ns) */
103 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
104 static int pps_shift;		/* current interval duration (s) (shift) */
105 static int pps_intcnt;		/* interval counter */
106 static s64 pps_freq;		/* frequency offset (scaled ns/s) */
107 static long pps_stabil;		/* current stability (scaled ns/s) */
108 
109 /*
110  * PPS signal quality monitors
111  */
112 static long pps_calcnt;		/* calibration intervals */
113 static long pps_jitcnt;		/* jitter limit exceeded */
114 static long pps_stbcnt;		/* stability limit exceeded */
115 static long pps_errcnt;		/* calibration errors */
116 
117 
118 /* PPS kernel consumer compensates the whole phase error immediately.
119  * Otherwise, reduce the offset by a fixed factor times the time constant.
120  */
ntp_offset_chunk(s64 offset)121 static inline s64 ntp_offset_chunk(s64 offset)
122 {
123 	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
124 		return offset;
125 	else
126 		return shift_right(offset, SHIFT_PLL + time_constant);
127 }
128 
pps_reset_freq_interval(void)129 static inline void pps_reset_freq_interval(void)
130 {
131 	/* the PPS calibration interval may end
132 	   surprisingly early */
133 	pps_shift = PPS_INTMIN;
134 	pps_intcnt = 0;
135 }
136 
137 /**
138  * pps_clear - Clears the PPS state variables
139  */
pps_clear(void)140 static inline void pps_clear(void)
141 {
142 	pps_reset_freq_interval();
143 	pps_tf[0] = 0;
144 	pps_tf[1] = 0;
145 	pps_tf[2] = 0;
146 	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
147 	pps_freq = 0;
148 }
149 
150 /* Decrease pps_valid to indicate that another second has passed since
151  * the last PPS signal. When it reaches 0, indicate that PPS signal is
152  * missing.
153  */
pps_dec_valid(void)154 static inline void pps_dec_valid(void)
155 {
156 	if (pps_valid > 0)
157 		pps_valid--;
158 	else {
159 		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
160 				 STA_PPSWANDER | STA_PPSERROR);
161 		pps_clear();
162 	}
163 }
164 
pps_set_freq(s64 freq)165 static inline void pps_set_freq(s64 freq)
166 {
167 	pps_freq = freq;
168 }
169 
is_error_status(int status)170 static inline int is_error_status(int status)
171 {
172 	return (status & (STA_UNSYNC|STA_CLOCKERR))
173 		/* PPS signal lost when either PPS time or
174 		 * PPS frequency synchronization requested
175 		 */
176 		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
177 			&& !(status & STA_PPSSIGNAL))
178 		/* PPS jitter exceeded when
179 		 * PPS time synchronization requested */
180 		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
181 			== (STA_PPSTIME|STA_PPSJITTER))
182 		/* PPS wander exceeded or calibration error when
183 		 * PPS frequency synchronization requested
184 		 */
185 		|| ((status & STA_PPSFREQ)
186 			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
187 }
188 
pps_fill_timex(struct timex * txc)189 static inline void pps_fill_timex(struct timex *txc)
190 {
191 	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
192 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
193 	txc->jitter	   = pps_jitter;
194 	if (!(time_status & STA_NANO))
195 		txc->jitter /= NSEC_PER_USEC;
196 	txc->shift	   = pps_shift;
197 	txc->stabil	   = pps_stabil;
198 	txc->jitcnt	   = pps_jitcnt;
199 	txc->calcnt	   = pps_calcnt;
200 	txc->errcnt	   = pps_errcnt;
201 	txc->stbcnt	   = pps_stbcnt;
202 }
203 
204 #else /* !CONFIG_NTP_PPS */
205 
ntp_offset_chunk(s64 offset)206 static inline s64 ntp_offset_chunk(s64 offset)
207 {
208 	return shift_right(offset, SHIFT_PLL + time_constant);
209 }
210 
pps_reset_freq_interval(void)211 static inline void pps_reset_freq_interval(void) {}
pps_clear(void)212 static inline void pps_clear(void) {}
pps_dec_valid(void)213 static inline void pps_dec_valid(void) {}
pps_set_freq(s64 freq)214 static inline void pps_set_freq(s64 freq) {}
215 
is_error_status(int status)216 static inline int is_error_status(int status)
217 {
218 	return status & (STA_UNSYNC|STA_CLOCKERR);
219 }
220 
pps_fill_timex(struct timex * txc)221 static inline void pps_fill_timex(struct timex *txc)
222 {
223 	/* PPS is not implemented, so these are zero */
224 	txc->ppsfreq	   = 0;
225 	txc->jitter	   = 0;
226 	txc->shift	   = 0;
227 	txc->stabil	   = 0;
228 	txc->jitcnt	   = 0;
229 	txc->calcnt	   = 0;
230 	txc->errcnt	   = 0;
231 	txc->stbcnt	   = 0;
232 }
233 
234 #endif /* CONFIG_NTP_PPS */
235 
236 
237 /**
238  * ntp_synced - Returns 1 if the NTP status is not UNSYNC
239  *
240  */
ntp_synced(void)241 static inline int ntp_synced(void)
242 {
243 	return !(time_status & STA_UNSYNC);
244 }
245 
246 
247 /*
248  * NTP methods:
249  */
250 
251 /*
252  * Update (tick_length, tick_length_base, tick_nsec), based
253  * on (tick_usec, ntp_tick_adj, time_freq):
254  */
ntp_update_frequency(void)255 static void ntp_update_frequency(void)
256 {
257 	u64 second_length;
258 	u64 new_base;
259 
260 	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
261 						<< NTP_SCALE_SHIFT;
262 
263 	second_length		+= ntp_tick_adj;
264 	second_length		+= time_freq;
265 
266 	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
267 	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
268 
269 	/*
270 	 * Don't wait for the next second_overflow, apply
271 	 * the change to the tick length immediately:
272 	 */
273 	tick_length		+= new_base - tick_length_base;
274 	tick_length_base	 = new_base;
275 }
276 
ntp_update_offset_fll(s64 offset64,long secs)277 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
278 {
279 	time_status &= ~STA_MODE;
280 
281 	if (secs < MINSEC)
282 		return 0;
283 
284 	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
285 		return 0;
286 
287 	time_status |= STA_MODE;
288 
289 	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
290 }
291 
ntp_update_offset(long offset)292 static void ntp_update_offset(long offset)
293 {
294 	s64 freq_adj;
295 	s64 offset64;
296 	long secs;
297 
298 	if (!(time_status & STA_PLL))
299 		return;
300 
301 	if (!(time_status & STA_NANO))
302 		offset *= NSEC_PER_USEC;
303 
304 	/*
305 	 * Scale the phase adjustment and
306 	 * clamp to the operating range.
307 	 */
308 	offset = min(offset, MAXPHASE);
309 	offset = max(offset, -MAXPHASE);
310 
311 	/*
312 	 * Select how the frequency is to be controlled
313 	 * and in which mode (PLL or FLL).
314 	 */
315 	secs = get_seconds() - time_reftime;
316 	if (unlikely(time_status & STA_FREQHOLD))
317 		secs = 0;
318 
319 	time_reftime = get_seconds();
320 
321 	offset64    = offset;
322 	freq_adj    = ntp_update_offset_fll(offset64, secs);
323 
324 	/*
325 	 * Clamp update interval to reduce PLL gain with low
326 	 * sampling rate (e.g. intermittent network connection)
327 	 * to avoid instability.
328 	 */
329 	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
330 		secs = 1 << (SHIFT_PLL + 1 + time_constant);
331 
332 	freq_adj    += (offset64 * secs) <<
333 			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
334 
335 	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
336 
337 	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
338 
339 	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
340 }
341 
342 /**
343  * ntp_clear - Clears the NTP state variables
344  */
ntp_clear(void)345 void ntp_clear(void)
346 {
347 	time_adjust	= 0;		/* stop active adjtime() */
348 	time_status	|= STA_UNSYNC;
349 	time_maxerror	= NTP_PHASE_LIMIT;
350 	time_esterror	= NTP_PHASE_LIMIT;
351 
352 	ntp_update_frequency();
353 
354 	tick_length	= tick_length_base;
355 	time_offset	= 0;
356 
357 	ntp_next_leap_sec = TIME64_MAX;
358 	/* Clear PPS state variables */
359 	pps_clear();
360 }
361 
362 
ntp_tick_length(void)363 u64 ntp_tick_length(void)
364 {
365 	return tick_length;
366 }
367 
368 /**
369  * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
370  *
371  * Provides the time of the next leapsecond against CLOCK_REALTIME in
372  * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
373  */
ntp_get_next_leap(void)374 ktime_t ntp_get_next_leap(void)
375 {
376 	ktime_t ret;
377 
378 	if ((time_state == TIME_INS) && (time_status & STA_INS))
379 		return ktime_set(ntp_next_leap_sec, 0);
380 	ret.tv64 = KTIME_MAX;
381 	return ret;
382 }
383 
384 /*
385  * this routine handles the overflow of the microsecond field
386  *
387  * The tricky bits of code to handle the accurate clock support
388  * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
389  * They were originally developed for SUN and DEC kernels.
390  * All the kudos should go to Dave for this stuff.
391  *
392  * Also handles leap second processing, and returns leap offset
393  */
second_overflow(unsigned long secs)394 int second_overflow(unsigned long secs)
395 {
396 	s64 delta;
397 	int leap = 0;
398 
399 	/*
400 	 * Leap second processing. If in leap-insert state at the end of the
401 	 * day, the system clock is set back one second; if in leap-delete
402 	 * state, the system clock is set ahead one second.
403 	 */
404 	switch (time_state) {
405 	case TIME_OK:
406 		if (time_status & STA_INS) {
407 			time_state = TIME_INS;
408 			ntp_next_leap_sec = secs + SECS_PER_DAY -
409 						(secs % SECS_PER_DAY);
410 		} else if (time_status & STA_DEL) {
411 			time_state = TIME_DEL;
412 			ntp_next_leap_sec = secs + SECS_PER_DAY -
413 						 ((secs+1) % SECS_PER_DAY);
414 		}
415 		break;
416 	case TIME_INS:
417 		if (!(time_status & STA_INS)) {
418 			ntp_next_leap_sec = TIME64_MAX;
419 			time_state = TIME_OK;
420 		} else if (secs % SECS_PER_DAY == 0) {
421 			leap = -1;
422 			time_state = TIME_OOP;
423 			printk(KERN_NOTICE
424 				"Clock: inserting leap second 23:59:60 UTC\n");
425 		}
426 		break;
427 	case TIME_DEL:
428 		if (!(time_status & STA_DEL)) {
429 			ntp_next_leap_sec = TIME64_MAX;
430 			time_state = TIME_OK;
431 		} else if ((secs + 1) % SECS_PER_DAY == 0) {
432 			leap = 1;
433 			ntp_next_leap_sec = TIME64_MAX;
434 			time_state = TIME_WAIT;
435 			printk(KERN_NOTICE
436 				"Clock: deleting leap second 23:59:59 UTC\n");
437 		}
438 		break;
439 	case TIME_OOP:
440 		ntp_next_leap_sec = TIME64_MAX;
441 		time_state = TIME_WAIT;
442 		break;
443 	case TIME_WAIT:
444 		if (!(time_status & (STA_INS | STA_DEL)))
445 			time_state = TIME_OK;
446 		break;
447 	}
448 
449 
450 	/* Bump the maxerror field */
451 	time_maxerror += MAXFREQ / NSEC_PER_USEC;
452 	if (time_maxerror > NTP_PHASE_LIMIT) {
453 		time_maxerror = NTP_PHASE_LIMIT;
454 		time_status |= STA_UNSYNC;
455 	}
456 
457 	/* Compute the phase adjustment for the next second */
458 	tick_length	 = tick_length_base;
459 
460 	delta		 = ntp_offset_chunk(time_offset);
461 	time_offset	-= delta;
462 	tick_length	+= delta;
463 
464 	/* Check PPS signal */
465 	pps_dec_valid();
466 
467 	if (!time_adjust)
468 		goto out;
469 
470 	if (time_adjust > MAX_TICKADJ) {
471 		time_adjust -= MAX_TICKADJ;
472 		tick_length += MAX_TICKADJ_SCALED;
473 		goto out;
474 	}
475 
476 	if (time_adjust < -MAX_TICKADJ) {
477 		time_adjust += MAX_TICKADJ;
478 		tick_length -= MAX_TICKADJ_SCALED;
479 		goto out;
480 	}
481 
482 	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
483 							 << NTP_SCALE_SHIFT;
484 	time_adjust = 0;
485 
486 out:
487 	return leap;
488 }
489 
490 #ifdef CONFIG_GENERIC_CMOS_UPDATE
update_persistent_clock(struct timespec now)491 int __weak update_persistent_clock(struct timespec now)
492 {
493 	return -ENODEV;
494 }
495 
update_persistent_clock64(struct timespec64 now64)496 int __weak update_persistent_clock64(struct timespec64 now64)
497 {
498 	struct timespec now;
499 
500 	now = timespec64_to_timespec(now64);
501 	return update_persistent_clock(now);
502 }
503 #endif
504 
505 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
506 static void sync_cmos_clock(struct work_struct *work);
507 
508 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
509 
sync_cmos_clock(struct work_struct * work)510 static void sync_cmos_clock(struct work_struct *work)
511 {
512 	struct timespec64 now;
513 	struct timespec64 next;
514 	int fail = 1;
515 
516 	/*
517 	 * If we have an externally synchronized Linux clock, then update
518 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
519 	 * called as close as possible to 500 ms before the new second starts.
520 	 * This code is run on a timer.  If the clock is set, that timer
521 	 * may not expire at the correct time.  Thus, we adjust...
522 	 * We want the clock to be within a couple of ticks from the target.
523 	 */
524 	if (!ntp_synced()) {
525 		/*
526 		 * Not synced, exit, do not restart a timer (if one is
527 		 * running, let it run out).
528 		 */
529 		return;
530 	}
531 
532 	getnstimeofday64(&now);
533 	if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
534 		struct timespec64 adjust = now;
535 
536 		fail = -ENODEV;
537 		if (persistent_clock_is_local)
538 			adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
539 #ifdef CONFIG_GENERIC_CMOS_UPDATE
540 		fail = update_persistent_clock64(adjust);
541 #endif
542 
543 #ifdef CONFIG_RTC_SYSTOHC
544 		if (fail == -ENODEV)
545 			fail = rtc_set_ntp_time(adjust);
546 #endif
547 	}
548 
549 	next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
550 	if (next.tv_nsec <= 0)
551 		next.tv_nsec += NSEC_PER_SEC;
552 
553 	if (!fail || fail == -ENODEV)
554 		next.tv_sec = 659;
555 	else
556 		next.tv_sec = 0;
557 
558 	if (next.tv_nsec >= NSEC_PER_SEC) {
559 		next.tv_sec++;
560 		next.tv_nsec -= NSEC_PER_SEC;
561 	}
562 	queue_delayed_work(system_power_efficient_wq,
563 			   &sync_cmos_work, timespec64_to_jiffies(&next));
564 }
565 
ntp_notify_cmos_timer(void)566 void ntp_notify_cmos_timer(void)
567 {
568 	queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
569 }
570 
571 #else
ntp_notify_cmos_timer(void)572 void ntp_notify_cmos_timer(void) { }
573 #endif
574 
575 
576 /*
577  * Propagate a new txc->status value into the NTP state:
578  */
process_adj_status(struct timex * txc,struct timespec64 * ts)579 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
580 {
581 	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
582 		time_state = TIME_OK;
583 		time_status = STA_UNSYNC;
584 		ntp_next_leap_sec = TIME64_MAX;
585 		/* restart PPS frequency calibration */
586 		pps_reset_freq_interval();
587 	}
588 
589 	/*
590 	 * If we turn on PLL adjustments then reset the
591 	 * reference time to current time.
592 	 */
593 	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
594 		time_reftime = get_seconds();
595 
596 	/* only set allowed bits */
597 	time_status &= STA_RONLY;
598 	time_status |= txc->status & ~STA_RONLY;
599 }
600 
601 
process_adjtimex_modes(struct timex * txc,struct timespec64 * ts,s32 * time_tai)602 static inline void process_adjtimex_modes(struct timex *txc,
603 						struct timespec64 *ts,
604 						s32 *time_tai)
605 {
606 	if (txc->modes & ADJ_STATUS)
607 		process_adj_status(txc, ts);
608 
609 	if (txc->modes & ADJ_NANO)
610 		time_status |= STA_NANO;
611 
612 	if (txc->modes & ADJ_MICRO)
613 		time_status &= ~STA_NANO;
614 
615 	if (txc->modes & ADJ_FREQUENCY) {
616 		time_freq = txc->freq * PPM_SCALE;
617 		time_freq = min(time_freq, MAXFREQ_SCALED);
618 		time_freq = max(time_freq, -MAXFREQ_SCALED);
619 		/* update pps_freq */
620 		pps_set_freq(time_freq);
621 	}
622 
623 	if (txc->modes & ADJ_MAXERROR)
624 		time_maxerror = txc->maxerror;
625 
626 	if (txc->modes & ADJ_ESTERROR)
627 		time_esterror = txc->esterror;
628 
629 	if (txc->modes & ADJ_TIMECONST) {
630 		time_constant = txc->constant;
631 		if (!(time_status & STA_NANO))
632 			time_constant += 4;
633 		time_constant = min(time_constant, (long)MAXTC);
634 		time_constant = max(time_constant, 0l);
635 	}
636 
637 	if (txc->modes & ADJ_TAI &&
638 			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
639 		*time_tai = txc->constant;
640 
641 	if (txc->modes & ADJ_OFFSET)
642 		ntp_update_offset(txc->offset);
643 
644 	if (txc->modes & ADJ_TICK)
645 		tick_usec = txc->tick;
646 
647 	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
648 		ntp_update_frequency();
649 }
650 
651 
652 
653 /**
654  * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
655  */
ntp_validate_timex(struct timex * txc)656 int ntp_validate_timex(struct timex *txc)
657 {
658 	if (txc->modes & ADJ_ADJTIME) {
659 		/* singleshot must not be used with any other mode bits */
660 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
661 			return -EINVAL;
662 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
663 		    !capable(CAP_SYS_TIME))
664 			return -EPERM;
665 	} else {
666 		/* In order to modify anything, you gotta be super-user! */
667 		 if (txc->modes && !capable(CAP_SYS_TIME))
668 			return -EPERM;
669 		/*
670 		 * if the quartz is off by more than 10% then
671 		 * something is VERY wrong!
672 		 */
673 		if (txc->modes & ADJ_TICK &&
674 		    (txc->tick <  900000/USER_HZ ||
675 		     txc->tick > 1100000/USER_HZ))
676 			return -EINVAL;
677 	}
678 
679 	if (txc->modes & ADJ_SETOFFSET) {
680 		/* In order to inject time, you gotta be super-user! */
681 		if (!capable(CAP_SYS_TIME))
682 			return -EPERM;
683 
684 		if (txc->modes & ADJ_NANO) {
685 			struct timespec ts;
686 
687 			ts.tv_sec = txc->time.tv_sec;
688 			ts.tv_nsec = txc->time.tv_usec;
689 			if (!timespec_inject_offset_valid(&ts))
690 				return -EINVAL;
691 
692 		} else {
693 			if (!timeval_inject_offset_valid(&txc->time))
694 				return -EINVAL;
695 		}
696 	}
697 
698 	/*
699 	 * Check for potential multiplication overflows that can
700 	 * only happen on 64-bit systems:
701 	 */
702 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
703 		if (LLONG_MIN / PPM_SCALE > txc->freq)
704 			return -EINVAL;
705 		if (LLONG_MAX / PPM_SCALE < txc->freq)
706 			return -EINVAL;
707 	}
708 
709 	return 0;
710 }
711 
712 
713 /*
714  * adjtimex mainly allows reading (and writing, if superuser) of
715  * kernel time-keeping variables. used by xntpd.
716  */
__do_adjtimex(struct timex * txc,struct timespec64 * ts,s32 * time_tai)717 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
718 {
719 	int result;
720 
721 	if (txc->modes & ADJ_ADJTIME) {
722 		long save_adjust = time_adjust;
723 
724 		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
725 			/* adjtime() is independent from ntp_adjtime() */
726 			time_adjust = txc->offset;
727 			ntp_update_frequency();
728 		}
729 		txc->offset = save_adjust;
730 	} else {
731 
732 		/* If there are input parameters, then process them: */
733 		if (txc->modes)
734 			process_adjtimex_modes(txc, ts, time_tai);
735 
736 		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
737 				  NTP_SCALE_SHIFT);
738 		if (!(time_status & STA_NANO))
739 			txc->offset /= NSEC_PER_USEC;
740 	}
741 
742 	result = time_state;	/* mostly `TIME_OK' */
743 	/* check for errors */
744 	if (is_error_status(time_status))
745 		result = TIME_ERROR;
746 
747 	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
748 					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
749 	txc->maxerror	   = time_maxerror;
750 	txc->esterror	   = time_esterror;
751 	txc->status	   = time_status;
752 	txc->constant	   = time_constant;
753 	txc->precision	   = 1;
754 	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
755 	txc->tick	   = tick_usec;
756 	txc->tai	   = *time_tai;
757 
758 	/* fill PPS status fields */
759 	pps_fill_timex(txc);
760 
761 	txc->time.tv_sec = (time_t)ts->tv_sec;
762 	txc->time.tv_usec = ts->tv_nsec;
763 	if (!(time_status & STA_NANO))
764 		txc->time.tv_usec /= NSEC_PER_USEC;
765 
766 	/* Handle leapsec adjustments */
767 	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
768 		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
769 			result = TIME_OOP;
770 			txc->tai++;
771 			txc->time.tv_sec--;
772 		}
773 		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
774 			result = TIME_WAIT;
775 			txc->tai--;
776 			txc->time.tv_sec++;
777 		}
778 		if ((time_state == TIME_OOP) &&
779 					(ts->tv_sec == ntp_next_leap_sec)) {
780 			result = TIME_WAIT;
781 		}
782 	}
783 
784 	return result;
785 }
786 
787 #ifdef	CONFIG_NTP_PPS
788 
789 /* actually struct pps_normtime is good old struct timespec, but it is
790  * semantically different (and it is the reason why it was invented):
791  * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
792  * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
793 struct pps_normtime {
794 	s64		sec;	/* seconds */
795 	long		nsec;	/* nanoseconds */
796 };
797 
798 /* normalize the timestamp so that nsec is in the
799    ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
pps_normalize_ts(struct timespec64 ts)800 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
801 {
802 	struct pps_normtime norm = {
803 		.sec = ts.tv_sec,
804 		.nsec = ts.tv_nsec
805 	};
806 
807 	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
808 		norm.nsec -= NSEC_PER_SEC;
809 		norm.sec++;
810 	}
811 
812 	return norm;
813 }
814 
815 /* get current phase correction and jitter */
pps_phase_filter_get(long * jitter)816 static inline long pps_phase_filter_get(long *jitter)
817 {
818 	*jitter = pps_tf[0] - pps_tf[1];
819 	if (*jitter < 0)
820 		*jitter = -*jitter;
821 
822 	/* TODO: test various filters */
823 	return pps_tf[0];
824 }
825 
826 /* add the sample to the phase filter */
pps_phase_filter_add(long err)827 static inline void pps_phase_filter_add(long err)
828 {
829 	pps_tf[2] = pps_tf[1];
830 	pps_tf[1] = pps_tf[0];
831 	pps_tf[0] = err;
832 }
833 
834 /* decrease frequency calibration interval length.
835  * It is halved after four consecutive unstable intervals.
836  */
pps_dec_freq_interval(void)837 static inline void pps_dec_freq_interval(void)
838 {
839 	if (--pps_intcnt <= -PPS_INTCOUNT) {
840 		pps_intcnt = -PPS_INTCOUNT;
841 		if (pps_shift > PPS_INTMIN) {
842 			pps_shift--;
843 			pps_intcnt = 0;
844 		}
845 	}
846 }
847 
848 /* increase frequency calibration interval length.
849  * It is doubled after four consecutive stable intervals.
850  */
pps_inc_freq_interval(void)851 static inline void pps_inc_freq_interval(void)
852 {
853 	if (++pps_intcnt >= PPS_INTCOUNT) {
854 		pps_intcnt = PPS_INTCOUNT;
855 		if (pps_shift < PPS_INTMAX) {
856 			pps_shift++;
857 			pps_intcnt = 0;
858 		}
859 	}
860 }
861 
862 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
863  * timestamps
864  *
865  * At the end of the calibration interval the difference between the
866  * first and last MONOTONIC_RAW clock timestamps divided by the length
867  * of the interval becomes the frequency update. If the interval was
868  * too long, the data are discarded.
869  * Returns the difference between old and new frequency values.
870  */
hardpps_update_freq(struct pps_normtime freq_norm)871 static long hardpps_update_freq(struct pps_normtime freq_norm)
872 {
873 	long delta, delta_mod;
874 	s64 ftemp;
875 
876 	/* check if the frequency interval was too long */
877 	if (freq_norm.sec > (2 << pps_shift)) {
878 		time_status |= STA_PPSERROR;
879 		pps_errcnt++;
880 		pps_dec_freq_interval();
881 		printk_deferred(KERN_ERR
882 			"hardpps: PPSERROR: interval too long - %lld s\n",
883 			freq_norm.sec);
884 		return 0;
885 	}
886 
887 	/* here the raw frequency offset and wander (stability) is
888 	 * calculated. If the wander is less than the wander threshold
889 	 * the interval is increased; otherwise it is decreased.
890 	 */
891 	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
892 			freq_norm.sec);
893 	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
894 	pps_freq = ftemp;
895 	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
896 		printk_deferred(KERN_WARNING
897 				"hardpps: PPSWANDER: change=%ld\n", delta);
898 		time_status |= STA_PPSWANDER;
899 		pps_stbcnt++;
900 		pps_dec_freq_interval();
901 	} else {	/* good sample */
902 		pps_inc_freq_interval();
903 	}
904 
905 	/* the stability metric is calculated as the average of recent
906 	 * frequency changes, but is used only for performance
907 	 * monitoring
908 	 */
909 	delta_mod = delta;
910 	if (delta_mod < 0)
911 		delta_mod = -delta_mod;
912 	pps_stabil += (div_s64(((s64)delta_mod) <<
913 				(NTP_SCALE_SHIFT - SHIFT_USEC),
914 				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
915 
916 	/* if enabled, the system clock frequency is updated */
917 	if ((time_status & STA_PPSFREQ) != 0 &&
918 	    (time_status & STA_FREQHOLD) == 0) {
919 		time_freq = pps_freq;
920 		ntp_update_frequency();
921 	}
922 
923 	return delta;
924 }
925 
926 /* correct REALTIME clock phase error against PPS signal */
hardpps_update_phase(long error)927 static void hardpps_update_phase(long error)
928 {
929 	long correction = -error;
930 	long jitter;
931 
932 	/* add the sample to the median filter */
933 	pps_phase_filter_add(correction);
934 	correction = pps_phase_filter_get(&jitter);
935 
936 	/* Nominal jitter is due to PPS signal noise. If it exceeds the
937 	 * threshold, the sample is discarded; otherwise, if so enabled,
938 	 * the time offset is updated.
939 	 */
940 	if (jitter > (pps_jitter << PPS_POPCORN)) {
941 		printk_deferred(KERN_WARNING
942 				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
943 				jitter, (pps_jitter << PPS_POPCORN));
944 		time_status |= STA_PPSJITTER;
945 		pps_jitcnt++;
946 	} else if (time_status & STA_PPSTIME) {
947 		/* correct the time using the phase offset */
948 		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
949 				NTP_INTERVAL_FREQ);
950 		/* cancel running adjtime() */
951 		time_adjust = 0;
952 	}
953 	/* update jitter */
954 	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
955 }
956 
957 /*
958  * __hardpps() - discipline CPU clock oscillator to external PPS signal
959  *
960  * This routine is called at each PPS signal arrival in order to
961  * discipline the CPU clock oscillator to the PPS signal. It takes two
962  * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
963  * is used to correct clock phase error and the latter is used to
964  * correct the frequency.
965  *
966  * This code is based on David Mills's reference nanokernel
967  * implementation. It was mostly rewritten but keeps the same idea.
968  */
__hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)969 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
970 {
971 	struct pps_normtime pts_norm, freq_norm;
972 
973 	pts_norm = pps_normalize_ts(*phase_ts);
974 
975 	/* clear the error bits, they will be set again if needed */
976 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
977 
978 	/* indicate signal presence */
979 	time_status |= STA_PPSSIGNAL;
980 	pps_valid = PPS_VALID;
981 
982 	/* when called for the first time,
983 	 * just start the frequency interval */
984 	if (unlikely(pps_fbase.tv_sec == 0)) {
985 		pps_fbase = *raw_ts;
986 		return;
987 	}
988 
989 	/* ok, now we have a base for frequency calculation */
990 	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
991 
992 	/* check that the signal is in the range
993 	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
994 	if ((freq_norm.sec == 0) ||
995 			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
996 			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
997 		time_status |= STA_PPSJITTER;
998 		/* restart the frequency calibration interval */
999 		pps_fbase = *raw_ts;
1000 		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1001 		return;
1002 	}
1003 
1004 	/* signal is ok */
1005 
1006 	/* check if the current frequency interval is finished */
1007 	if (freq_norm.sec >= (1 << pps_shift)) {
1008 		pps_calcnt++;
1009 		/* restart the frequency calibration interval */
1010 		pps_fbase = *raw_ts;
1011 		hardpps_update_freq(freq_norm);
1012 	}
1013 
1014 	hardpps_update_phase(pts_norm.nsec);
1015 
1016 }
1017 #endif	/* CONFIG_NTP_PPS */
1018 
ntp_tick_adj_setup(char * str)1019 static int __init ntp_tick_adj_setup(char *str)
1020 {
1021 	int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1022 
1023 	if (rc)
1024 		return rc;
1025 	ntp_tick_adj <<= NTP_SCALE_SHIFT;
1026 
1027 	return 1;
1028 }
1029 
1030 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1031 
ntp_init(void)1032 void __init ntp_init(void)
1033 {
1034 	ntp_clear();
1035 }
1036